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1. ABSTRACT 
 
  This paper discusses the hyperbolic (Bolyai-Lobachevsky) theory of relativity 
as given by the writer at the previous PIRT conference at Budapest and London 
[1].  The writer’s viewpoint differs from that of Ungar [2] the basic concept in the 
hyperbolic theory being rapidity w given by tan-1(v/c) which replaces ordinary 
velocity v.  Velocity is always less than the velocity of light c but correspondingly 
rapidity may become infinite, as is also hyperbolic velocity V, a scaled version 
cw of rapidity.  Corresponding to the velocity space |v| < c is the infinite 
hyperbolic space of hyperbolic velocities V. 
  An interesting axiomatic question was raised by Borel's assertion [3] that the 
principle of Special Relativity is equivalent to the assumption that kinematic 
space is a hyperbolic space with negative radius of curvature equal to the 
velocity of light.  Such an assertion needs detailed justification which Borel did 
not attempt.  Certainly it ensures validity of Einstein's principle of the constancy 
of the speed of light but leaves open the question of whether a hyperbolic 
velocity space could explain all phenomena of the special theory. 
  A further question concerns the nature of space itself which has importance for 
the philosophy of Special Relativity. It seems plausible that, to avoid known 
difficulties concerned with absolute motion, space should be assumed 
hyperbolic instead of Euclidean.  This assumption, implicit in Varićak's work [4], 
has not been followed up in any detail by other writers. 
  Certainly at terrestrial distances any deviation from Euclidean will be beyond 
observation and so effectively space is Euclidean.  But for philosophy and 
cosmology the question of whether it is actually Euclidean is important. If space 
were hyperbolic then the much-discussed problems of absolute motion and the 
nonexistence of the aether could just disappear. Equivalence of all observers is 
assured so that, possibly, the way could be open for reintroduction of the aether 
  The assumption that space, i.e. the universe, is hyperbolic leads naturally to 
Milne's theory [5] previously discussed in these conferences by Prokhovnik [6], 
Wegener [7] and the writer [8].  As pointed out by Walker [9], Milne's model is 
essentially the same as the asymptotic solution of the Friedmann model for the 
negative curvature case.  A simplified form of the Milne model fits beautifully the 
hyperbolic kinematic representation when use is made of a hyperbolic 
restatement of the Hubble law for recession velocities previously described by 
the writer [10].  This law is equivalent to the exponential red-shift law discussed 
by Prokhovnik [6] and Hawkins [11] in connection with observations of 
Humason, Mayal & Sandage [12] on nebula recession. The resulting hyperbolic 
model of the universe has negative radius of curvature equal to the Hubble 
radius and from this fact an estimate may be made of the minute deviation from 
Euclidean space at terrestrial distances. 
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2. HYPERBOLIC GEOMETRY 
 
Euclid’s axiom of parallels led to the study of the consequences of its 
negation and so to the discovery of hyperbolic geometry where this 
axiom is false by Gauss, Bolyai, Lobachevski and others.  
 
Asymptotic parallels may be defined from a point P to a line l as 
limiting positions of line segments PQ, PQ', PQ", ...from P to l as the 
point Q of intersection moves off to infinity.  In Euclidean geometry 
asymptotic parallels coincide; but in hyperbolic geometry they do 
not. 

 
 

Fig 1   Asymptotic parallels to a line from a point 
 
If space were hyperbolic the divergence from Euclidean geometry 
would be minute.  Nevertheless there would be important 
consequences for the axiomatics of relativity, cosmology and the 
philosophy of physics. 
 
The disbelief and controversy which accompanied early studies of 
hyperbolic geometry hindered recognition of its importance  Now, 
almost a hundred years after the first works on its application to 
relativity by Varićak and others, the basic importance of this 
geometry for physics still remains, in general, unrecognized. 
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3. THE BELTRAMI REPRESENTATION  
     (Beltrami-Klein or Klein disc model) 
 
Straight line segments within a circle satisfy all the axioms of 
hyperbolic geometry if the circle is regarded as an infinite horizon so 
that line segments meeting on the circle are considered 
asymptotically parallel (figure). 

 

 
   

              
Fig 2   Asymptotic parallels from a point P 

 
Dual nature of the representation: An important aspect of this 

representation is its dual nature - it is simultaneously Euclidean and 
non-Euclidean (hyperbolic).  This fact can be made clear by 
introducing a new radial coordinate ρ related to the radial distance r 
by 
 

ρ =  R th[-1](r/R)     0 < r < R;   

r  =  R th (ρ/R)       0 < ρ < ∞  
 

R is here the radius of the circle. Then the points within the circle 
become mapped as 

 
 

x = r cos θ = R th (ρ/R) cos θ 
y = r sin θ  = R th (ρ/R) sin θ 

 
With the new radial coordinate ρ the space is infinite and is in fact a 
hyperbolic space. This can be seen by another viewpoint as follows. 
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4. GEOMETRY OF THE HYPERBOLOID SURFACE 
 
 
Consider the surface 
 

- x² - y² + z²=R² 
 
This is a hyperboloid in two 
sheets (fig). The upper half- 
sheet has parameterization  
 

x = R sh u cos θ 
y = R sh u sin θ 
z = R ch u 
 

Geodesic distance ρ  from the 
vertex is found as:  
 

ρ = Ru                                                         
 
Projection on to a circle: The 
upper surface maps on to a 
circle by central projection, a 
point (x, y, z) 
mapping on to point (X, Y): 
 

X = x/z, Y = y/z 
 
Substituting ρ for u gives: 
 

X = R th(ρ/R) cos θ 
Y = R th(ρ/R) sin θ 

 
 

 
Fig 3   Hyperboloid in 2 sheets 

 
 

 
 
Fig 4   Projection on to a circle 

 

Central projection maps the hyperbolic sheet on to the circle giving 
the Beltrami representation.  Vice-versa, the Beltrami 
representation can be projected upwards to the hyperbola. 
These ideas extend to the Minkowski space-time diagram. 
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5. RAPIDITY 
 
In relativity rapidity replaces velocity.  It was used in early papers on 
hyperbolic theory (Varićak 1910, etc).  The name is due to Robb  
(1911) 
 
Rapidity:  w is defined in terms of velocity v by 
 

v = c th w                 w  = th -1(v/c) 
 
When - c < v < c the value of w lies in the range - ∞ < w < ∞.   
 
* Additivity:  to the composition law 
 

v =      v1 + v2    
        1 + v1 v2/c

2 
 
there corresponds for rapidities 
 

w = w1 + w2 
 
* Trigonometric identities: 
 

ch w   =         1                  sh w  =      (v/c)     
              √(1- v2/c2)                        √ (1- v2/c2) 

 
* Lorentz transformation: 
 

ct  =  ct' ch w  + x' sh w 
x   =  ct' sh w + x' ch w 

 
* Hyperbolic velocity: 
 

V = cw = c th -1(v/c) ( ≈ v when v << c) 
 

 
 
 
 
 
 



 7 

 

6. DOPPLER FORMULAE 

 
The classical formula: (Hubble 1936) 
 

z = v/c 
 
where z is the redshift 
 

z = (λ1 - λ0)/λ0 

 
Einstein's formula: (using wave-length) 
 

λ1/λ0 =  √(1 + v/c)/√(1 - v/c) 

 
Taking logs gives 
 

ln λ1/λ0  =  th [-1] v/c = w 

 
There follows either 
 
(a) exponential law: 
 

λ1/λ0 = exp w 

 
z = exp w – 1 

 
(b) logarithmic redshift law : 
 

Z = ln λ1/λ0 = th [-1] v/c = w = V/c 

i.e.  
Z = V/c 

 
exactly analogous to the classical formula*.  When Z and V are small 
the formula reduces to the classical formula. 

------------------------------------------------------------------------------------- 
* Note: Exponential redshift was used by Varićak and later by Hawkins 
and Prokhovnik. Logarithmic redshift was discussed by the writer [10]   
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7. EINSTEIN ADDITION RULE IN HYPERBOLIC SPACE 
 
A basic step in the construction of the hyperbolic theory of special 
relativity was the recognition that the Einstein addition rule can be 
reinterpreted geometrically in hyperbolic space (Robb 1911, Varićak 
1910 etc, Borel 1913) 
 
Einstein addition rule: Magnitude squared v2of composition of 
velocities v1, v2 inclined at an angle θ is 
 

v2 = {v1
2 + v2

2 + 2 v1 v2 cos θ - (v1 v2/c sin θ)2} 
   (1 + v1.v2 /c

2 cos θ) 2 
Rearrange: 
 

       1         =        1 + v1/c.v2/c
2 cos θ. 

√(1- v2/c2)      √(1 - v1
2/c2) √(1 - v2

2/c2) 
 
Use identities relating rapidities w and velocities v 
 

ch w =       1                         sh w =       v      . 
   √(1- v2/c2)                                √(1- v2/c2) 

 
Cosine law for hyperbolic triangles 
 

ch w = ch w1 ch w2 +  sh w1 sh w2 cos (π – θ) 
or 

ch V/c = ch V1/c ch V2/c +  sh V1/c sh V2/c cos (π – θ) 

 
 
 
 
 
 
 

 
Fig 5   Hyperbolic velocity addition 
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8. BOREL'S ASSERTION 
 
From the hyperbolic interpretation of velocity Borel (1913) asserted: 
 

'The principle of relativity corresponds to the hypothesis that 
the kinematic space is a space of constant negative curvature, 
the space of Bolyai and Lobachevski.  The value of the radius of 
curvature is the speed of light.'  

 
Advantages of using hyperbolic velocity: 
 
(a) The characteristic limiting property of the velocity of light is very 
understandably explained.  
 
(b) It leads to a highly satisfactory restatement of many known 
properties in special relativity in optics and dynamics. 
 
Axiomatic questions: 
 
(a) Do the hyperbolic properties of velocity equate with the principle 
of relativity?  
 
(b) Can they explain all the phenomena of relativity?  Are additional 
assumptions necessary; if so what are they? 
 
What is the nature of space itself?  The assumption that kinematic 
space is hyperbolic leaves the nature of space itself unspecified.  
 
(a) Euclidean space: This is commonly assumed though it is not 
compatible with the Lorentz transformation.  There arise well known 
questions concerning absolute and relative motions and existence of 
the aether resulting in rival theories (Einsteinian, Lorentzian) 
 
(b) Hyperbolic space: Would such difficulties disappear if space were 
hyperbolic?   What new difficulties would arise? 
 
 
 
 
 
 



 10 

 
9. PHYSICAL SPACE AS HYPERBOLIC 
 
A theory of special relativity based on the assumption that both 
physical space and kinematic space are hyperbolic is due to Varićak 
whose papers appeared in 1910, 1912, and his book in 1924.  His 
work is difficult reading but it remains the only attempt to present a 
unified theory and is a valuable source of ideas. 
 
Weierstrass coordinates: The connection between the geometry of 
hyperbolic space and the familiar methods and formulae of relativity 
comes about through the use of Weierstrass coordinates.  These give 
a Cartesian representation (including time) in the Euclidean tangent 
space at a point in the hyperbolic space.  These coordinates denoted  
x, y, z, t as usual, may be represented in parametric form similar to 
that for Minkowski space and with them to the invariant quadratic 
form (ct)2 - (x2+y2+z2). 
 
Lorentz transformation: In hyperbolic space the Lorentz group is the 
natural automorphism group.  Varićak showed directly that the 
familiar one-dimensional Lorentz transformation is equivalent to a 
translation along the x axis.  Lorentz contraction is explained as 
purely geometrical. 
 
Physical space close to Euclidean: There are for physics few 
differences with standard theory.  Differences exist on the 
cosmological scale so making necessary the combination of 
cosmology with the special theory. 
 
Hyperbolic space and optics: What is meant by a parallel beam of 
light must be reinterpreted*.   
 
Hyperbolic space and dynamics: There is difficulty in reconciling 
these completely.  But, as indicated by Varićak, there is a possibility 
of treating also rotation. 
 
 
 
 
-------------------------------------------------------------------------------------------------------- 
* The hyperbolic divergence of light rays was discussed by Varićak (1910 
etc.) and later by Prokhovnik (1967) and the writer (PIRT conf. 1994a.)  
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10. BELTRAMI VELOCITY SPACE 
 
The representation of relativistic velocities in special relativity by the 
Beltrami space originated with Fock (1955) though it was previously 
implicit in Milne's cosmological model (1935). 
 
Cartesian form: Velocities (vx, vy, vz) satisfy the inequality 
 

vx² + vy² + vz² < c² 
 
The velocity (kinematic) space is the interior of a sphere 
parametrized by spherical coordinates θ, φ as 
 

vx  =  v sin φ cos θ 
vy  =  v sin φ sin θ 
vz  =  v cos φ 

 
Hyperbolic form: This spherical region is now taken as a Beltrami - 
Klein representation of a hyperbolic space with parametrization of 
radial distance by rapidity w (or hyperbolic velocity V) so that 
 

vx  =  c th w sin φ cos θ  =  c th (V/c) sin φ cos θ 
vy  =  c th w sin φ sin θ   =  c th (V/c) sin φ sin θ 
vz   =  c th w cos φ            =  c th (V/c) cos φ 

 
It now becomes an infinite hyperbolic space, the metric squared 
differential taking the standard form for a hyperbolic space of 
negative radius of curvature c*: 
 

dV2 + c2 sh2 V/c [dφ2 + sinφ2 dθ2] 
 
 
As described above the Beltrami space can be obtained directly by 
central projection of the hyperboloid of Minkowski 4 vectors. 
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11. MILNE'S COSMOLOGICAL THEORY 
 
Milne's theory is a cosmological version of special relativity with its 
own style of presentation.  It appeared in the 1930s and was 
developed especially by the British school of cosmologists (Milne, 
McCrea, McVittie, Whitrow).  Milne published two books Relativity, 
Gravitation and World Structure (1935) and Kinematical Relativity 
(1948) as well as numerous papers.  A convenient summary is given 
in North: The Measure of the Universe. 
 
Central to the theory is the determination of time and distance 
estimates by light signals using the method indicated by Einstein 
(1905).  Milne also wrote at length on an associated gravitational 
theory.  If special relativity is to include a theory of hyperbolic space, 
then a modified and simplified form of the Milne theory appears to be 
most suitable. 
 
  
At the beginning of Milne (1935) 
is shown a diagram similar to 
that alongside. The sphere is 
the observable universe with a 
statistical distribution of points 
representing a stationary 
distribution of freely moving 
particles.  At the boundary, 
particles move outward with the 
limiting velocity of light, the 
distribution becoming infinitely 
dense there.                 
 

       
                                                                              
Fig 5:  Milne's diagram 

 
The distribution is that in the Beltrami model for a uniform 
distribution in infinite hyperbolic space. 

 
 
-------------------------------------------------------------------------- 
Note: The diagram can be found with annotations in Wikipedia (article 'Milne')  
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12. THE HYPERBOLIC FRIEDMANN MODEL 
 
The Milne model essentially coincides with an asymptotic form of the 
hyperbolic Friedmann model (Walker 1935 etc) 
 
Robertson-Walker metric: Cosmic time t, comoving radial coordinate 
r, spherical coordinates  θ, φ: 
 

ds2  =  c2 dt2  -  R(t)2 {   dr2    + r2(dφ2 + sinφ2 dθ2)} 
         1 + r2 

Transform by replacing r by th u 
 

ds2  =  c2 dt2  -  R(t)2{du2  + sh2u (dφ2 + sinφ2 dθ2)} 
 
Asymptotic form for R(t): General Relativity field equations have 
asymptotic solution for R(t): 
 

R(t) ~ ct 
 
Radial light path: (ds = 0, dθ  = 0, dφ = 0) leads to 
 

c dt = R(t) du 
 
Integration between t1, t0 : 
 

         t0                   t0 
u  =  ∫ c dt/R(t)  ~  ∫ dt/t  =  ln (t0/t1) 
        t1                   t1 

 
General Relativity Doppler shift: change in wavelength is 
 

λ0/λ1 = R(t0)/R(t1) = t0/t1 = exp u 
 
Identifying u with rapidity w* the Doppler law is 
 

Z = ln(λ0/λ1)  =  w = V/c 
 
---------------------------------------------------------------------------------- 
* See Prokhovnik 1967, 1985 
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13. THE HUBBLE RADIUS 
 
The Hubble law relates nebula recession velocity v to radial distance 
r using the Hubble constant H as 
 

v = H r 
 
It determines a radial velocity field for any observer. 

                          
 

Fig 6   Radial nebula field. 
 
The Hubble radius RH is the value of r for which v is the speed of 
light: (3 x 105 km/sec) 
 

RH = c/H 
 
H: known to be in the range 50 to 100 km sec-1/megaparsec. 
A working value of 75 gives for RH in megaparsecs 
 

RH = = 3 x 105 /75 = 4 x 103 (megaparsecs) 
 
A megaparsec is 3 x 1019 km or 3 x 1022 m.  So that 
 

RH = 12 x 1025 = 1.2 x 1026 (metres) 
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14. DUAL VIEWS FOR THE OBSERVABLE UNIVERSE 
 
Euclidean view: observable universe seen as Euclidean sphere with 
receding nebula field following Hubble law 
 

v  =  H r      v < c      (r < c/H = RH ) 

 
Doppler red shift defined for emitted and observed wave-lengths λ0, 
λ1 by 
 

z = (λ1- λ0)/λ0 
 
Classical Doppler shift law gives velocity v observed from z  
 

z = v/c (= r/RH) 
 
The observable universe is finite and private to each observer. 
 
Hyperbolic view: The sphere of the observable universe is regarded 
as a Beltrami space with hyperbolic metric  
 

ρ  =  RH th[-1](r/RH)          0 < ρ < ∞ 
 
The hyperbolic Hubble law comes by substitution for v in: 
 

V  =  c th[-1](v/c) = c th[-1](r/RH)  =  H ρ 
 
Redshift law uses logarithmic redshift Z 
 

Z = V/c 
 
The observable universe is infinite and public (identical for different 
observers).  Both distance and velocity can be parametrized by 
nondimensional rapidity 
 
                  w = th[-1](v/c) = th[-1](r/RH) 
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15. ESTIMATION OF THE ANGLE OF LOBACHEVSKI 
 
Diagram: 
 

 
Fig 7   The deviation from parallelism 

 
Notation: 
 
  Π: angle between perpendicular and an asymptotic parallel 
  p: perpendicular distance of the point from the line  
  R: radius of negative curvature of the space. 
 
The formula of Lobachevski  
 

tan (Π/2) = exp(-p/R) 
 
Calculation: Put Π as π/2 – δ/2 where δ is the very small angle 
between asymptotic parallels. Then approximately 
 

δ = 2p/R (radians) 
 
Set R to the Hubble radius RH. 
 

RH = 1.2 x 1026 (metres) 
 
For a displacement p of 1 metre the value of δ is 
 

δ = 2x57/(1.2 x 1026) ≈ 10-24 (degrees) 
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