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1. ABSTRACT

This paper discusses the hyperbolic (Bolyai-Lobachevsky) theory of relativity
as given by the writer at the previous PIRT conference at Budapest and London
[1]. The writer’s viewpoint differs from that of Ungar [2] the basic concept in the
hyperbolic theory being rapidity w given by tan™'(v/c) which replaces ordinary
velocity v. Velocity is always less than the velocity of light ¢ but correspondingly
rapidity may become infinite, as is also hyperbolic velocity V, a scaled version
cw of rapidity. Corresponding to the velocity space |v| < ¢ is the infinite
hyperbolic space of hyperbolic velocities V.

An interesting axiomatic question was raised by Borel's assertion [3] that the
principle of Special Relativity is equivalent to the assumption that kinematic
space is a hyperbolic space with negative radius of curvature equal to the
velocity of light. Such an assertion needs detailed justification which Borel did
not attempt. Certainly it ensures validity of Einstein's principle of the constancy
of the speed of light but leaves open the question of whether a hyperbolic
velocity space could explain all phenomena of the special theory.

A further question concerns the nature of space itself which has importance for
the philosophy of Special Relativity. It seems plausible that, to avoid known
difficulties concerned with absolute motion, space should be assumed
hyperbolic instead of Euclidean. This assumption, implicit in Vari¢ak's work [4],
has not been followed up in any detail by other writers.

Certainly at terrestrial distances any deviation from Euclidean will be beyond
observation and so effectively space is Euclidean. But for philosophy and
cosmology the question of whether it is actually Euclidean is important. If space
were hyperbolic then the much-discussed problems of absolute motion and the
nonexistence of the aether could just disappear. Equivalence of all observers is
assured so that, possibly, the way could be open for reintroduction of the aether

The assumption that space, i.e. the universe, is hyperbolic leads naturally to
Milne's theory [5] previously discussed in these conferences by Prokhovnik [6],
Wegener [7] and the writer [8]. As pointed out by Walker [9], Milne's model is
essentially the same as the asymptotic solution of the Friedmann model for the
negative curvature case. A simplified form of the Milne model fits beautifully the
hyperbolic kinematic representation when use is made of a hyperbolic
restatement of the Hubble law for recession velocities previously described by
the writer [10]. This law is equivalent to the exponential red-shift law discussed
by Prokhovnik [6] and Hawkins [11] in connection with observations of
Humason, Mayal & Sandage [12] on nebula recession. The resulting hyperbolic
model of the universe has negative radius of curvature equal to the Hubble
radius and from this fact an estimate may be made of the minute deviation from
Euclidean space at terrestrial distances.



2. HYPERBOLIC GEOMETRY

Euclid’s axiom of parallels led to the study of the consequences of its
negation and so to the discovery of hyperbolic geometry where this
axiom is false by Gauss, Bolyai, Lobachevski and others.

Asymptotic parallels may be defined from a point P to a line | as
limiting positions of line segments PQ, PQ', PQ", ...from P to | as the
point Q of intersection moves off to infinity. In Euclidean geometry
asymptotic parallels coincide; but in hyperbolic geometry they do
not.
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Fig 1 Asymptotic parallels to a line from a point

If space were hyperbolic the divergence from Euclidean geometry
would be minute. Nevertheless there would be important
consequences for the axiomatics of relativity, cosmology and the
philosophy of physics.

The disbelief and controversy which accompanied early studies of
hyperbolic geometry hindered recognition of its importance Now,
almost a hundred years after the first works on its application to
relativity by Vari¢ak and others, the basic importance of this
geometry for physics still remains, in general, unrecognized.



3. THE BELTRAMI REPRESENTATION
(Beltrami-Klein or Klein disc model)

Straight line segments within a circle satisfy all the axioms of
hyperbolic geometry if the circle is regarded as an infinite horizon so
that line segments meeting on the circle are considered
asymptotically parallel (figure).
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Fig2 Asymptotic parallels from a point P

Dual nature of the representation: An important aspect of this
representation is its dual nature - it is simultaneously Euclidean and
non-Euclidean (hyperbolic). This fact can be made clear by
introducing a new radial coordinate p related to the radial distance r

by

p= Rth'(r/R) 0<r<R;
r=Rth(p/R) O<p<®

R is here the radius of the circle. Then the points within the circle
become mapped as

X =rcos 0 =R th (p/R) cos 6
y=rsin® =R th (p/R) sin 6

With the new radial coordinate p the space is infinite and is in fact a
hyperbolic space. This can be seen by another viewpoint as follows.



4. GEOMETRY OF THE HYPERBOLOID SURFACE

Consider the surface
- X2 - y2 + ZZ=R2

This is a hyperboloid in two
sheets (fig). The upper half-
sheet has parameterization

Xx=Rshucos®9
y=Rshusin®
z=Rchu

Geodesic distance p from the
vertex is found as:

p = Ru
Projection on to a circle: The
upper surface maps on to a
circle by central projection, a
point (x, y, z)
mapping on to point (X, Y):

X=x/z,Y=ylz

Substituting p for u gives:

X =R th(p/R) cos 6
Y = R th(p/R) sin 0

z

Z=R

™

Fig 3 Hyperboloid in 2 sheets

Fig 4 Projection on to a circle

Central projection maps the hyperbolic sheet on to the circle giving
the Beltrami representation. Vice-versa, the Beltrami
representation can be projected upwards to the hyperbola.

These ideas extend to the Minkowski space-time diagram.



5. RAPIDITY

In relativity rapidity replaces velocity. It was used in early papers on
hyperbolic theory (Vari¢cak 1910, etc). The name is due to Robb
(1911)
Rapidity: w is defined in terms of velocity v by

v=cthw w = th "(v/c)
When - ¢ < v < ¢ the value of w lies in the range - © < w < «,

* Additivity: to the composition law

V= _Vi+ V>
1 + Vv, Vo/C2

there corresponds for rapidities
W=W;+ W,

* Trigonometric identities:

chw = 1 shw = _ (v/c)
V(1- v¥/ic?) v (1- v?/c?)

* Lorentz transformation:

ct = ct'chw +x'shw
X =ct'shw+x'chw

* Hyperbolic velocity:

V =cw = ¢ th (v/c) (= vwhen v << ¢)



6. DOPPLER FORMULAE

The classical formula: (Hubble 1936)
zZ=V/c
Wwhere z is the redshift
z = (M - Ag)/Ag
Einstein's formula: (using wave-length)
A/Ag = V(1 + vic)N(1 - v/c)
Taking logs gives
InA/Ag = thtvic=w
There follows either
(a) exponential law:
A/Ag =expw
z=expw-1
(b) logarithmic redshift law :
Z=InA/Ag=thvic=w=V/c
i.e.
Z=\V/c

exactly analogous to the classical formula*. When Z and V are small
the formula reduces to the classical formula.

* Note: Exponential redshift was used by Variéak and later by Hawkins
and Prokhovnik. Logarithmic redshift was discussed by the writer [10]



7. EINSTEIN ADDITION RULE IN HYPERBOLIC SPACE

A basic step in the construction of the hyperbolic theory of special
relativity was the recognition that the Einstein addition rule can be
reinterpreted geometrically in hyperbolic space (Robb 1911, Vari¢ak
1910 etc, Borel 1913)

Einstein addition rule: Magnitude squared v’of composition of
velocities vy, v, inclined at an angle 0 is

V2 = {Vi® + Vo2 + 2 V; V5 cOS 0 - (v, V,/c sin )%}
(1 + v1.v2/c” cos 8)°

Rearrange:

1 = 1 + v,/C.V,/c? cos 6.
V(1-v3e®) V(1 - vi?/e®) V(1 - vy°ic?)

Use identities relating rapidities w and velocities v

chw= 1 shw= ' .
V(1- v¥/c?) V(1- v¥/c?)

Cosine law for hyperbolic triangles
chw =chw,; chw,+ shw,; shw,cos (11— 0)

or
ch V/c =ch V,/c ch V,/c + sh V,/c sh V,/c cos (1 —0)

Fig 5 Hyperbolic velocity addition



8. BOREL'S ASSERTION
From the hyperbolic interpretation of velocity Borel (1913) asserted:

'The principle of relativity corresponds to the hypothesis that
the kinematic space is a space of constant negative curvature,
the space of Bolyai and Lobachevski. The value of the radius of
curvature is the speed of light.’

Advantages of using hyperbolic velocity:

(a) The characteristic limiting property of the velocity of light is very
understandably explained.

(b) It leads to a highly satisfactory restatement of many known
properties in special relativity in optics and dynamics.

Axiomatic questions:

(a) Do the hyperbolic properties of velocity equate with the principle
of relativity?

(b) Can they explain all the phenomena of relativity? Are additional
assumptions necessary; if so what are they?

What is the nature of space itself? The assumption that kinematic
space is hyperbolic leaves the nature of space itself unspecified.

(a) Euclidean space: This is commonly assumed though it is not
compatible with the Lorentz transformation. There arise well known
questions concerning absolute and relative motions and existence of
the aether resulting in rival theories (Einsteinian, Lorentzian)

(b) Hyperbolic space: Would such difficulties disappear if space were
hyperbolic? What new difficulties would arise?



9. PHYSICAL SPACE AS HYPERBOLIC

A theory of special relativity based on the assumption that both
physical space and kinematic space are hyperbolic is due to Vari¢ak
whose papers appeared in 1910, 1912, and his book in 1924. His
work is difficult reading but it remains the only attempt to present a
unified theory and is a valuable source of ideas.

Weierstrass coordinates: The connection between the geometry of
hyperbolic space and the familiar methods and formulae of relativity
comes about through the use of Weierstrass coordinates. These give
a Cartesian representation (including time) in the Euclidean tangent
space at a point in the hyperbolic space. These coordinates denoted
X, Y, z, t as usual, may be represented in parametric form similar to
that for Minkowski space and with them to the invariant quadratic
form (ct)? - (x*+y*+2).

Lorentz transformation: In hyperbolic space the Lorentz group is the
natural automorphism group. Vari¢ak showed directly that the
familiar one-dimensional Lorentz transformation is equivalent to a
translation along the x axis. Lorentz contraction is explained as
purely geometrical.

Physical space close to Euclidean: There are for physics few
differences with standard theory. Differences exist on the
cosmological scale so making necessary the combination of
cosmology with the special theory.

Hyperbolic space and optics: What is meant by a parallel beam of
light must be reinterpreted®.

Hyperbolic space and dynamics: There is difficulty in reconciling
these completely. But, as indicated by Vari¢ak, there is a possibility
of treating also rotation.

* The hyperbolic divergence of light rays was discussed by Vari¢cak (1910
etc.) and later by Prokhovnik (1967) and the writer (PIRT conf. 1994a.)
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10. BELTRAMI VELOCITY SPACE

The representation of relativistic velocities in special relativity by the
Beltrami space originated with Fock (1955) though it was previously
implicit in Milne's cosmological model (1935).

Cartesian form: Velocities (v, Vy, V;) satisfy the inequality

Vi2 + V2 + V2 < C2

The velocity (kinematic) space is the interior of a sphere
parametrized by spherical coordinates 0, ¢ as

Vy, = vsin@cos 0
Vy = vsin@sin 0
V; = VCOS @

Hyperbolic form: This spherical region is nhow taken as a Beltrami -
Klein representation of a hyperbolic space with parametrization of
radial distance by rapidity w (or hyperbolic velocity V) so that

Vv, = cthwsingcos 0 = cth(V/c)sincos 0
Vy = cthwsingsin® = cth(V/c)sin¢sin®
vV, = cthwcos o = cth (V/c) cos @

It now becomes an infinite hyperbolic space, the metric squared
differential taking the standard form for a hyperbolic space of
negative radius of curvature c*:

dV? + ¢ sh? V/c [d¢? + sing? d6?]

As described above the Beltrami space can be obtained directly by
central projection of the hyperboloid of Minkowski 4 vectors.
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11. MILNE'S COSMOLOGICAL THEORY

Milne's theory is a cosmological version of special relativity with its
own style of presentation. It appeared in the 1930s and was
developed especially by the British school of cosmologists (Milne,
McCrea, McVittie, Whitrow). Milne published two books Relativity,
Gravitation and World Structure (1935) and Kinematical Relativity
(1948) as well as numerous papers. A convenient summary is given
in North: The Measure of the Universe.

Central to the theory is the determination of time and distance
estimates by light signals using the method indicated by Einstein
(1905). Milne also wrote at length on an associated gravitational
theory. If special relativity is to include a theory of hyperbolic space,
then a modified and simplified form of the Milne theory appears to be
most suitable.

At the beginning of Milne (1935) s
is shown a diagram similar to p. S '“‘\\
that alongside. The sphere is ey i

the observable universe with a Vs f‘ i
statistical distribution of points et A
representing a stationary

distribution of freely moving ) Uit
particles. At the boundary, NG /<
particles move outward with the p RS o

limiting velocity of light, the

distribution becoming infinitely ] _ _
dense there. Fig 5: Milne's diagram

The distribution is that in the Beltrami model for a uniform
distribution in infinite hyperbolic space.

Note: The diagram can be found with annotations in Wikipedia (article 'Milne")

12



12. THE HYPERBOLIC FRIEDMANN MODEL

The Milne model essentially coincides with an asymptotic form of the
hyperbolic Friedmann model (Walker 1935 etc)

Robertson-Walker metric: Cosmic time t, comoving radial coordinate
r, spherical coordinates 0, ¢:

ds® = c¢?dt®* - R(t)*{ <:|r22 + r’(d@? + sing? d6%)}
1+r
Transform by replacing r by th u
ds? = c?dt® - R()){du® + sh’u (d¢’ + sing? d6?)}

Asymptotic form for R(t): General Relativity field equations have
asymptotic solution for R(t):

R(t) ~ ct
Radial light path: (ds = 0,d8 =0, d¢ = 0) leads to
c dt = R(t) du

Integration between t;, t,:

to to
u = Jcdt/R(t) ~ | dt/t = In (ty/ty)
t, t;

General Relativity Doppler shift: change in wavelength is
Ao/)\1 = R(to)/R(t1) = to/t1 =expu
Identifying u with rapidity w* the Doppler law is

Z =In(Ao/N) = W=V/C

* See Prokhovnik 1967, 1985
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13. THE HUBBLE RADIUS

The Hubble law relates nebula recession velocity v to radial distance
r using the Hubble constant H as

v=Hr

It determines a radial velocity field for any observer.

Fig 6 Radial nebula field.

The Hubble radius Ry is the value of r for which v is the speed of
light: (3 x 10° km/sec)

RH=C/H

H: known to be in the range 50 to 100 km sec'/megaparsec.
A working value of 75 gives for Ry in megaparsecs

Ru = = 3 x 10° /75 = 4 x 10° (megaparsecs)
A megaparsec is 3 x 10" km or 3 x 10 m. So that

Ry = 12 x 10%° = 1.2 x 10%® (metres)
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14. DUAL VIEWS FOR THE OBSERVABLE UNIVERSE

Euclidean view: observable universe seen as Euclidean sphere with
receding nebula field following Hubble law

v=Hr v<c (r<c/H=RH)

Doppler red shift defined for emitted and observed wave-lengths A,,
A1 by

Z = (M- Ao)/Ao
Classical Doppler shift law gives velocity v observed from z
z = v/c (= r/Ry)
The observable universe is finite and private to each observer.

Hyperbolic view: The sphere of the observable universe is regarded
as a Beltrami space with hyperbolic metric

p = Ry thf'(r/Ry) O<p<
The hyperbolic Hubble law comes by substitution for v in:
V = cth(vic)=c th'(r/Ry) = Hp
Redshift law uses logarithmic redshift Z
Z=\V/c
The observable universe is infinite and public (identical for different
observers). Both distance and velocity can be parametrized by

nondimensional rapidity

w = tht'(v/c) = th""(r/Ry)
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15. ESTIMATION OF THE ANGLE OF LOBACHEVSKI

Diagram:
N P
= . '3
€ n
P
-
Fig 7 The deviation from parallelism
Notation:

N: angle between perpendicular and an asymptotic parallel
p: perpendicular distance of the point from the line
R: radius of negative curvature of the space.
The formula of Lobachevski
tan (IM/2) = exp(-p/R)

Calculation: Put I as /2 — /2 where & is the very small angle
between asymptotic parallels. Then approximately

0 = 2p/R (radians)
Set R to the Hubble radius R;.
Ry = 1.2 x 10?® (metres)
For a displacement p of 1 metre the value of & is

d = 2x57/(1.2 x 10%) = 10?* (degrees)
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