
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Electronics and Computer Science

A Prototype Parallel Multi-FPGA

Accelerator for SPICE CMOS Model

Evaluation

by

Ahmed Maache

A thesis submitted for the degree of

Doctor of Philosophy

January 2011

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:am206r@ecs.soton.ac.uk

ABSTRACT

Due to ever increasing complexity of circuits, EDA tools and algorithms are demanding

more computational power. This made transistor-level simulation a growing bottleneck

in the circuit development process. This thesis serves as a proof of concept to evaluate

and quantify the cost of using multi-FPGA systems in SPICE-like simulations in terms

of acceleration, throughput, area, and power. To this end, a multi-FPGA architecture

is designed to exploit the inherent parallelism in the device model evaluation phase

within the SPICE simulator. A code transformation flow which converts the high-level

device model code to structural VHDL was also implemented. This flow showed that

an automatic compiler system to design, map, and optimise SPICE-like simulations on

FPGAs is feasible.

This thesis has two main contributions. The first contribution is the multi-FPGA ac-

celerator of the device model evaluation which demonstrated speedup of 10 times over

a conventional processor, while consuming six times less power. Results also showed

that it is feasible to describe and optimise FPGA pipelined implementations to exploit

other class of applications similar to the SPICE device model evaluation. The constant

throughput of the pipelined architecture is one of the main factors for the FPGA accel-

erator to outperform conventional processors. The second contribution lies in the use

of multi-FPGA synthesis to optimise the inter-FPGA connections through altering the

process of mapping partitions to FPGA devices. A novel technique is introduced which

reduces the inter-FPGA connections by an average of 18%.

The speedup and power efficiency results showed that the proposed multi-FPGA system

can be used by the SPICE community to accelerate the transistor-level simulation. The

experimental results also showed that it is worthwhile continuing this research further

to explore the use of FPGAs to accelerate other EDA tools.

Declaration of Authorship

I, Ahmed Maache, declare that the thesis entitled: A Prototype Parallel Multi-

FPGA Accelerator for SPICE CMOS Model Evaluation, and the work presented
in it are my own, I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as listed in this thesis.

Signed:
Date :

ii

Acknowledgements

First and foremost, I would like to thank both my supervisors, Dr Jeff Reeve and Pro-
fessor Mark Zwolinski for their valuable help and guidance. Thanks to all members of
the Electronics Systems and Devices Group at the University of Southampton for their
help and support. Thanks also go to Dr Koushik Maharatna for his fruitful discussions.
I would like to thank my family for their unconditional support and love.

iii

Contents

List of figures ix

List of tables xii

Listings xiv

List of Acronyms xv

1 Introduction 1
1.1 FPGAs and High-Performance Computing 1
1.2 Current Technology Limitations . 4

1.2.1 Efficiency of Parallel Systems . 6
1.3 Reconfigurable Computing . 7

1.3.1 FPGA Architecture . 7
1.3.2 Multi-FPGA Synthesis System . 9
1.3.3 Multi-FPGA Hardware System . 11

1.4 Research Motivations . 12
1.4.1 SPICE Simulation . 12
1.4.2 SPICE Simulation Bottleneck . 13

1.5 Research Scope and Objectives . 14
1.6 Thesis Structure . 15
1.7 Publications . 17

2 Multi-FPGA Systems Review 18
2.1 High-Level Synthesis . 18

2.1.1 Scheduling . 20
2.1.2 Allocation . 21
2.1.3 Binding . 22

2.2 Multi-FPGA Logic Partitioning . 22
2.2.1 Partitioning Methodologies . 23

2.2.1.1 Partitioning Problem Formulation 23
2.2.1.2 Kernighan-Lin Algorithm 25
2.2.1.3 Fiduccia-Mattheyses Algorithm 26
2.2.1.4 Structural and Behavioural Partitioning 27

iv

CONTENTS v

2.2.2 Existing Multi-FPGA Synthesis Systems 28
2.3 High-Performance Reconfigurable Computing 29

2.3.1 HPRC Hardware Platforms . 30
2.3.2 HPRC Programming Environments 32
2.3.3 HPRC Systems Review . 33
2.3.4 Floating-Point Operators and FPGAs 34
2.3.5 Serial Communication and FPGAs 35

2.4 Summary . 36

3 Parallel Device Model Evaluation 38
3.1 SPICE Simulation Background . 38

3.1.1 Newton-Raphson Method . 41
3.1.2 Example Circuit . 43

3.2 SPICE Simulator Parallel Execution . 45
3.2.1 Parallelisation Approaches . 45
3.2.2 SPICE Simulator Execution Profile 47

3.3 SPICE Simulator Acceleration Related Work 49
3.3.1 Multiprocessor Paradigm . 49
3.3.2 Hardware Accelerator Paradigm 51

3.3.2.1 GPU Accelerators . 51
3.3.2.2 FPGA Accelerators . 52

3.4 Parallel Device Model Evaluation . 53
3.4.1 Explicit Parallelism Approach . 53
3.4.2 Pipelined Approach . 55
3.4.3 Proposed FPGA Accelerator . 56

3.5 Summary . 57

4 Multi-FPGA Device Model Accelerator 60
4.1 FPGA Design Considerations . 61

4.1.1 Pipelined Architecture . 61
4.1.2 SPICE Model Parameters . 61
4.1.3 Data Word Length Considerations 62
4.1.4 Inter-FPGA Serial Communication 63

4.2 CMOS LEVEL 3 Model . 64
4.3 CMOS LEVEL 3 Model FPGA Implementation 65

4.3.1 CMOS LEVEL 3 Parameters . 65
4.3.2 Device Model Code Transformation Flow 66
4.3.3 Software Implementation for Comparison 71
4.3.4 FPGA Acceleration Calculation . 71

4.4 Single-FPGA Accelerator System . 72
4.4.1 System Architecture . 72

4.4.1.1 With MicroBlaze . 73
4.4.1.2 Without MicroBlaze . 74

CONTENTS vi

4.4.2 Experimental Results . 75
4.4.2.1 Software Implementation Runtime 75
4.4.2.2 Single-FPGA Accelerator Runtime 77

4.4.3 Discussion . 78
4.5 Multi-FPGA Accelerator System . 80

4.5.1 System Architecture . 80
4.5.2 Accelerator Prototype . 82
4.5.3 Theoretical Hardware Execution Time 82

4.6 Experimental Work . 85
4.6.1 Experimental Setup . 85
4.6.2 SPICE Simulation Data . 85

4.7 Summary . 87

5 Multi-FPGA Acceleration Results 89
5.1 Experimental Results . 89

5.1.1 Acceleration Results . 89
5.1.2 Resources Utilisation . 94

5.1.2.1 Slave FPGA . 94
5.1.2.2 Host FPGA . 97

5.1.3 Power Consumption Estimation . 97
5.1.4 Results Comparison . 98

5.1.4.1 Resources Usage Comparison 99
5.1.4.2 Acceleration Comparison 101

5.1.5 Discussion of Results . 102
5.2 Results Extension . 103

5.2.1 Results Extension to Current SPICE CMOS Models 103
5.2.1.1 Resources Estimation Reference Point 104
5.2.1.2 Resources Estimation Results 105

5.2.2 Theoretical Performance Estimation on BEE3 106
5.2.2.1 Performance Estimation of the XUPV2P System 107
5.2.2.2 Performance Estimation of the BEE3 System 107

5.2.3 Discussion . 109
5.2.4 Computing Device Model Derivatives 110

5.2.4.1 The Secant Method . 110
5.2.4.2 Accelerating the secant method 111

5.3 Summary . 111

6 Multi-FPGA Partition Mapping 113
6.1 Problem Definition . 114
6.2 Inter-FPGAs Communication Synthesis 115

6.2.1 Virtual Wires Approach . 115
6.2.2 FunctionBus Approach . 116
6.2.3 Other Approaches . 117

CONTENTS vii

6.3 Multi-FPGA Synthesis System . 119
6.3.1 Input Specification Model . 119
6.3.2 K-way Partitioning . 119
6.3.3 Synthesis . 120

6.3.3.1 Scheduling under Inter-FPGA I/O Constraints 120
6.3.4 Target Architecture Models . 121

6.3.4.1 Problem Formulation . 122
6.3.4.2 Connectivity Matrix . 123
6.3.4.3 The Inter-FPGA I/O Static Router 123

6.3.5 Partition Swapping Optimisation 125
6.3.5.1 Algorithm Example . 126
6.3.5.2 Algorithm Pseudo Code 127

6.4 Experimental Setup . 129
6.4.1 Benchmark DFGs . 129
6.4.2 System Implementation . 130

6.5 Experimental Results . 131
6.5.1 Results Comparison . 133

6.5.1.1 Mesh Model Case . 133
6.5.1.2 Virtual Model Case . 134

6.6 Results Analysis . 135
6.7 Summary . 136

7 Conclusions and Future Work 138
7.1 Conclusions . 138
7.2 Summary of Research Contributions . 140
7.3 Future Work . 141

7.3.1 Multi-FPGA SPICE Accelerator 141
7.3.2 Multi-FPGA Model Evaluation Acceleration 142
7.3.3 Multi-FPGA Iterative Linear Solve 144

References 146

A CMOS LEVEL 3 VHDL-AMS Model 160
A.1 Simulation Model VHDL-AMS Code . 160
A.2 Synthesisable Model VHDL Code . 165
A.3 ModelSim Simulation Waveforms for the pipelined CMOS LEVEL 3 model171
A.4 Chipscope Waveforms for the pipelined CMOS LEVEL 3 model 174

B Pipelined VHDL Design Synthesis Results 176
B.1 Synthesis Reports for both host and slave FPGAs 176

C Xilinx Virtex-II Pro Development Board 178

D JTAG Configuration 180

CONTENTS viii

E Measuring Hardware and Software Times 181
E.1 Measuring Hardware Times . 181
E.2 Measuring Software Times . 182

F Floating-Point Operators for FPGAs 183
F.1 Number Representations . 183

F.1.1 Fixed-Point System . 183
F.1.2 Binary Floating-Point System . 184
F.1.3 Decimal Floating-Point System . 184
F.1.4 Comparison . 184

F.2 Floating-Point FPGAs Libraries . 185
F.2.1 New IEEE VHDL Standard Revision 185

F.2.1.1 Fixed-Point Package ‘fixed pkg’ 185
F.2.1.2 Floating-Point Package ‘float pkg’ 185

F.2.2 OpenCores FPU . 186
F.2.3 FPLibrary . 186
F.2.4 Floating-point Libraries Comparison 188

List of Figures

1.1 Intel CPU Timeline [19] . 4
1.2 Typical Xilinx FPGA Internal Architecture [5] 8
1.3 Configurable Logic Block (CLB) Basic Architecture [30] 8
1.4 FPGA Growth Trend [32] . 9
1.5 A Typical Multi-FPGA Reconfigurable Environment 9
1.6 Electronics Design Automation Flow for Typical Reconfigurable Comput-

ing Systems [33] . 10
1.7 A Typical Reconfigurable Computing Architecture [33] 12

2.1 Generic High-Level Synthesis System [52] 19
2.2 Generic structure of the synthesis target circuit 20
2.3 Example of ASAP (a) and ALAP (b) schedules 20
2.4 (a) Example circuit, (b) Hypergraph representation 23
2.5 Kernighan-Lin Algorithm Pseudo Code 25
2.6 The Gain Bucket Data Structure used in the FM Algorithm 26
2.7 Structural (a) and Behavioural (b) logic partitioning [65] 28
2.8 TMD Architecture Block Diagram [99] . 31
2.9 XD1000 ALTERA-based Coprocessor [105] 32
2.10 Functional diagram of an Aurora-based system 35

3.1 Typical SPICE Simulation Flow . 39
3.2 Example Circuit . 43
3.3 The Increase of MOSFET Models’ Parameters [149] 48
3.4 Parallel Execution of a Newton-Raphson Iteration in the SPICE simulator 54
3.5 Pipelined Execution of a Newton-Raphson Iteration in the SPICE simulator 55
3.6 Pipelined Configuration of Multi-FPGA Systems [168] 55
3.7 (a) The ASAP schedule (Section 2.1.1) (b) a pipelined implementation of

the schedule . 56
3.8 The proposed approach to exploit the inherent parallelism in the device

model evaluation phase . 57
3.9 A suggested FPGA coprocessor to accelerate the SPICE simulator 58

4.1 LEVEL 3 CMOS Model with Parameter Pre-calculation 68
4.2 Transformation Flow of the VHDL-AMS high-level device model code to

a Structural VHDL design . 69

ix

LIST OF FIGURES x

4.3 The Control-Data Flow Graph of the CMOS LEVEL 3 Model code shown
in Figure 4.1 . 70

4.4 Block Diagram of the Single FPGA CMOS Accelerator with MicroBlaze . 73
4.5 Block Diagram of the Single FPGA CMOS Accelerator without MicroBlaze 74
4.6 Change of the software execution times with the number of device evalu-

ations in Table 4.2 . 76
4.7 Single FPGA Acceleration with the number of device model evaluations

in Table 4.2 . 77
4.8 Change of the hardware execution times with the number of device eval-

uations in Table 4.2 . 79
4.9 The Architecture of the multi-FPGA CMOS Accelerator 81
4.10 Hardware execution time estimates annotated on the architecture of the

multi-FPGA Accelerator in Figure 4.9 . 83
4.11 The Prototype Multi-FPGA System Designed to Accelerate the Device

Model Evaluation Phase . 86

5.1 The drain current Id vs. the drain-source voltage Vds 90
5.2 FPGA Acceleration for the Three Test Configurations in Figure 5.3 91
5.3 The Three Test Configurations of the Multi-FPGA System 91
5.4 FPGA Acceleration change with the Number of FPGAs 93
5.5 Percentage difference between the theoretical estimation Ttheory and the

practical hardware times Texperiment . 94
5.6 FPGAs Connected in a Pipelined Ring . 96
5.7 BEE3 Compute Module Block Diagram [179] 108

6.1 Hard wires interconnect (a), Virtual wires interconnect (b) 116
6.2 The FunctionBus Architecture . 117
6.3 Block Diagram of the TOMi Architecture [204] 118
6.4 Block Diagram of the Multi-FPGA Synthesis System 119
6.5 Inter-FPGA Communication Nodes Insertion 121
6.6 Typical Mesh Topology . 122
6.7 Static routing of Inter-FPGA signals using Shortest Path Algorithm, (a)

Partitioned graph, (b) Partition Mapping and Signal Routing 124
6.8 Partition Swapping Optimisation example: (a) Direct Mapping, (b) Par-

tition Swapping . 127
6.9 The Partition Swapping Optimisation Algorithm 129

7.1 Multi-FPGA system with conventional processors like in XtremeData sys-
tems . 143

7.2 A suggested multi-FPGA system to accelerate SPICE 143
7.3 Multi-FPGA framework to synthesise built-in device models 144

A.1 The Chipscope output waveform similar to the simulation waveforms in
Section A.3 . 175

LIST OF FIGURES xi

C.1 The Serial Connections between the FPGAs 178
C.2 Xilinx University Program Virtex-II Pro Development System 179

D.1 JTAG Chain Arrangement . 180
D.2 Thevenin Clock Termination . 180

E.1 Chipscope System Block Diagram . 181

F.1 IEEE single-precision floating-point format 184
F.2 FPLibrary FP number format . 187

List of Tables

3.1 Multiprocessor based SPICE simulator acceleration (Previous work) . . . 51

4.1 CMOS LEVEL 3 Parameters and default values set at the synthesis level
[40] . 67

4.2 The number of device model evaluations N per test case 76

5.1 Average acceleration using the multi-FPGA system 92
5.2 Resources Utilisation of the Full CMOS model Without parameter pre-

calculation on the Virtex-II Pro FPGA . 95
5.3 Resources Utilisation of the CMOS model With parameter pre-calculation

on the Virtex-II Pro FPGA . 96
5.4 Resources Utilisation of the Slave FPGA Design 97
5.5 Resources Utilisation of the Host FPGA Design 97
5.6 Average power consumption of the multi-FPGA system with different

configurations . 98
5.7 Resources Utilisation of the Full CMOS model Without parameter pre-

calculation on the V5LX330T FPGA . 100
5.8 Resources Utilisation of the CMOS model With parameter pre-calculation

on the V5LX330T FPGA . 101
5.9 Resources Utilisation of the Slave FPGA Design 101
5.10 Resource Utilisation Estimates for the BSIM4 and the PSP models 105

6.1 DFG Benchmarks . 130
6.2 Wire Count improvement using the Partition Swapping technique for the

4× 4 Mesh Model . 131
6.3 Wire Count improvement using the Partition Swapping technique for the

4× 4 Virtual Wires Model . 131
6.4 Comparing the wire count improvement with the optimum solution for

3× 3 mesh. 134
6.5 Comparing the wire count improvement with the optimum solution for

3× 2 mesh. 134
6.6 Comparing the wire count improvement with the optimum solution for

3× 3 mesh. 135
6.7 Comparing the wire count improvement with the optimum solution for

3× 2 mesh. 135

xii

LIST OF TABLES xiii

B.1 Synthesis report of the slave FPGA . 176
B.2 Synthesis report of the host FPGA . 177

F.1 Float package synthesis results (Synplify Pro) 186
F.2 Number of clock cycles needed for each operation 187
F.3 Value of X According to Exception Flag 187
F.4 Number of clock cycles needed for each operation 188
F.5 FPLibrary Synthesis Results (Synplify Pro) 188

Listings

4.1 OpenMP parallelisation of device evaluation 71
A.1 VHDL-AMS CMOS LEVEL 3 Model . 160
A.2 Synthesisable VHDL CMOS LEVEL 3 Model 165
A.3 VHDL CMOS LEVEL 3 Model Testbench 169
E.1 QueryPerformanceCounter Function usage 182
F.1 ‘fixed pkg’ package usage model . 185
F.2 ‘float pkg’ package usage model . 186

xiv

List of Acronyms

ALAP As Late As Possible

ANSI American National Standards Institute

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

BEE Berkeley Emulation Engine

BRAM Block Random Access Memory

BSIM Berkeley Short-channel IGFET Model

CAD Computer-Aided Design

CDFG Control-Data Flow Graph

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

COBRA-ABS Column Oriented Butted Regular Architecture Algorithmic Behavioural
Synthesis

CPU Central Processing Unit

DAG Directed Acyclic Graphs

DCT Discrete Cosine Transform

DFG Data Flow Graph

DMA Direct Memory Access

DNA Deoxyribonucleic Acid

DSP Digital Signal Processor

EDA Electronic Design Automation

FCCM FPGA Custom Computing Machines

FDS Force-Directed Scheduling

xv

LIST OF ACRONYMS xvi

FF Flip Flop

FIFO First In First Out

FLOPS FLoating-point Operations Per Second

FM Fiduccia-Mattheyses

FP Floating-Point

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

FSL Fast Simplex Link

FSM Finite State Machine

GA Genetic Algorithm

GMRES Generalized Minimal Residual Method

GPU Graphics Processing Unit

HLS High-Level Synthesis

HPC High-Performance Computing

HPRC High-Performance Reconfigurable Computing

I/O Input/Output

ICON Chipscope Integrated Controller

ILA Integrated Logic Analyser

ILP Integer Linear Programming

ILP Instruction Level Parallelism

IOB Input/Output Block

JTAG Joint Test Action Group

KCL Kirchoff’s Current Law

KL Kernighan and Lin

KVL Kirchoff’s Voltage Law

LU Lower/Upper Decomposition

LUT Lookup Table

MC Monte Carlo

LIST OF ACRONYMS xvii

MGT Multi-Gigabit Transceiver

MNA Modified Nodal Analysis

MOSFET Metal Oxide Semiconductor Field-Effect Transistor

MPI Message Passing Interface

NoC Networks-on-Chip

NP-hard Non-deterministic Polynomial time

NR Newton-Raphson Method

OpenMP The OpenMP API specification for parallel programming

PCB Printed Circuit Board

PLB Processor Local Bus

PSP Penn State Philips

PThreads POSIX -Portable Operating System Interface for Unix- Threads

RAMP Research Accelerator for Multiple Processors

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SA Simulated Annealing

SATA Serial Advanced Technology Attachment

SIMD Single Instruction Multiple Data

SoC System-on-Chip

SPARCS Synthesis and Partitioning for Adaptive and Reconfigurable Computer
Systems

SPICE Simulation Program with Integrated Circuit Emphasis

SPO Signal Processing Object

TMD Toronto Molecular Dynamics

VHDL VHSIC Hardware Description Language

VHDL-AMS VHDL Analogue and Mixed-Signal extensions

VLIW Very Long Instruction Word

WR Waveform Relaxation techniques

Chapter 1

Introduction

1.1 FPGAs and High-Performance Computing

The term High Performance Computing (HPC) is used to describe systems with large

computing capacity (teraFLOPS region), high data throughput, and complex network

architecture (e.g Infiniband). HPC uses supercomputers and computer clusters to solve

advanced computation problems. The supercomputing term refers to a subset within

HPC which uses more powerful computers. According to the TOP500 R© Supercomputer

Sites [1], cluster computing is now the most commonly used architecture in the highest

performing systems. Cluster computing has become dominant mainly because of its

cost-effectiveness. The architecture relies on standard processors from Intel and AMD,

plus standard memory systems and interconnects such as Gigabit Ethernet. Applications

are parallelised or partitioned into sections that can run as independent processes on

multiple processors.

Regarding the wide spectrum of HPC applications, it is becoming harder for general-

purpose CPUs (Central Processing Unit) to keep up with the demands for more computa-

tional power [2, 3]. They are running into memory bottlenecks and consuming increasing

amounts of power, and dissipating large amounts of heat. Conventional processors also

suffer from the increasing latency of using multi-layered caches. The increase in power

1

Chapter 1 Introduction 2

consumption and heat dissipation is the result of increasing clock speeds of processors,

which subsequently increases the costs of power usage and cooling [4].

A proposed solution to this new problem is to add Field Programmable Gate Arrays

(FPGA) as built-in hardware accelerators to the clusters to boost their computational

performance while reducing the power consumption significantly [5, 6, 7, 8, 9]. An FPGA

is a semiconductor device that consists of an array of programmable logic elements, in-

terconnects, and I/O (Input/Output) blocks which are user configured to implement

complex digital circuits. A number of high-performance system designers have begun

exploring the capabilities of FPGAs [10]. This trend highlighted the importance of using

multi-FPGA systems in the domain of algorithm acceleration [11]. HPC applications

are usually very large algorithms and cannot be fitted on a single FPGA, so these ap-

plications are partitioned amongst a number of FPGAs that are connected in a network

[12].

FPGAs are reconfigurable hardware devices that can be finely optimised under software

control to run applications efficiently. Rather than implementing applications in soft-

ware, FPGAs allow the execution of applications at near ASIC (Application Specific

Integrated Circuit) speeds without the extremely high cost of creating custom silicon.

In addition, FPGAs have the ability to exploit the inherent parallelism in the algo-

rithms being implemented [13, 14]. The internal FPGA architecture can be finely tuned

to particularly exploit a certain application parallelism unlike conventional processors

which are designed to suite broader range of applications. FPGAs also provide higher

performance with their high memory bandwidth and hardware parallelism. A processor

would need to execute a number of instructions before it can access the data from the

memory. However, an FPGA is a hardware circuit that can be connected directly to a

system bus, which gives it a direct access to the memory system.

Algorithm parallelism can be addressed at different levels. HPC applications can be

structured for multi-thread execution in parallel across a cluster of processors. This

level is known as coarse-grain parallelism. Coarse-grained parallelism is usually speci-

fied manually using a set of compiler directives at the input source level (e.g. threads,

Chapter 1 Introduction 3

Message Passing Interface MPI). Another level of parallelism would be to execute a

number of instructions simultaneously, which is called fine-grain parallelism. The fine-

grained parallelism can be extracted automatically from the behavioural descriptions

through the synthesis process. Conventional processors also support this type of par-

allelism; but FPGAs provide much deeper pipeline than conventional processors and

can execute much larger number of instructions simultaneously [14]. Processors usu-

ally have to use their own built-in functional units to perform computations, however,

FPGA designs can be finely customised and pipelined to a much deeper degree due to

their internal reconfigurability features.

Benchmarks in [8] showed that an FPGA operating at a frequency of 200 MHz running

the Black Scholes financial simulation [15, 16] can outperform a 3 GHz processor by an

order of magnitude or more, while consuming only quarter of the power. In another ex-

ample, FPGAs have shown 185 to 250 times acceleration in running sequential alignment

algorithms for Deoxyribonucleic Acid (DNA) sequences over conventional processors in

[17]. An FPGA based accelerator for Monte Carlo (MC) simulation have demonstrated

an acceleration of nearly 25 times over the software implementation as reported in [9].

In this work, we target FPGA devices due to their capabilities to provide fine-grain par-

allelism and reconfigurability. One of the main strengths of FPGAs in high-performance

computing lies in the ability to reorganise the internal structure of a machine to feed

data-to-data processes at high speed instead of forcing them to make continual memory

requests [18]. This can make FPGAs much better at sustaining performance compared

to processors, as they do not have to deal with the penalties of cache misses [14].

This made FPGAs an attractive hardware acceleration solution to be used for a wide

variety of computing/power-hungry applications. One of the these applications would

be to enable the Computer-Aided Design (CAD) community to accelerate Electronic

Design Automation (EDA) algorithms and hence reduce the design time. The SPICE

(Simulation Program with Integrated Circuit Emphasis) simulator is an example EDA

tool which present a growing bottleneck in the development process. This thesis outlines

the use of multi-FPGA systems in accelerating the SPICE simulator.

Chapter 1 Introduction 4

Figure 1.1: Intel CPU Timeline [19]

1.2 Current Technology Limitations

According to Moore’s Law, the number of transistors on a chip doubles every two years.

The law also states that improved clock frequency and improved architecture results in

doubling of the processor performance every 18 months. This pattern is illustrated in

Figure 1.1. The figure shows the Intel processors trend in terms of transistor count,

clock speed (MHz), power (W), and performance/clock (ILP) [19], where Instruction-

Level Parallelism (ILP) factor is a measure of the number of operations in a computer

program that can be performed in parallel.

Current conventional processors largely relied on the gains leveraged by Moore’s Law.

Chapter 1 Introduction 5

However, in recent years, these gains started to shrink as this law is expected to hit

physical limitations on feature sizes in the future [20]. The other major limiting factor

is the sharp flattening of clock speeds and the performance gain (just after the year 2005

as seen by the second and the third curves from the top in Figure 1.1). Another limiting

factor is the wide gap between processor and memory speeds. In other words, as the

number of transistors inside chips continues to rise -at least for the time being- clock

speeds are flattening because faster processors would consume more power and dissipate

larger amounts of heat which will increase system costs.

Current trends indicate that future computing platforms are likely to continue benefiting

from the continuation of Moore’s Law by relying on massive parallelism [4, 21]. One

of the main current trends clearly shows a shift from single-core processors to multi-

core processors, which is changing the computing arena [22]. This move is expected to

achieve performance gains, given that new parallel computing tools are developed to

fully exploit the available hardware parallelism. Processor vendors are already moving

to a model where the number of cores available on a single chip will double with each

semiconductor process generation [23, 24].

In addition to the current multi-core trend, FPGAs also have been gaining the attention

of the HPC community in the last few years [5]. Recent Studies point that the peak

FPGA floating-point performance is growing significantly faster than peak floating-point

for CPUs. While CPU performance is doubling every 18 months according to Moore’s

Law, the performance of FPGAs increases by a factor of 4 every two years. For FPGAs

with architectural built-in improvements such as built-in multipliers and Digital Signal

Processing (DSP) blocks, the performance is estimated to be increasing by a factor of

5 every two years [25]. This rapid advances also includes the doubling in capacity of

FPGAs every 18 months [24]. FPGAs now can contain approximately 330,000 logic

blocks and around 1,100 I/O pins and an operating frequency of up to 1,600 MHz

[26, 27].

Chapter 1 Introduction 6

Due to the limitation in clock speeds and Moore’s Law is coming to its physical limi-

tation, the research community have already suggested a number of ways to continue

harvesting the performance gains every year. One of these approaches is to rely on per-

formance delivered using parallelism by adding more cores onto processors and hence

moving from single-core to multi-core processors. This can be seen as a fundamental

turn toward concurrency in software [19]. Another research direction is to use hardware

acceleration engines like FPGAs and GPUs (Graphics Processing Unit) along side con-

ventional processors to continue the performance gain. A vision in the current research

is to use heterogeneous computation elements like FPGA, GPUs, CPUs, and ASICs

together in one complete system to achieve the maximum achievable speedup.

1.2.1 Efficiency of Parallel Systems

Current parallel computer systems provide a large throughput in accelerating computa-

tionally intensive tasks. Usually, the cost to develop a parallel system with N replicated

processors is less than designing an N times faster single-core processor [28]. Hence, it is

possible to use lower performance lower cost technology to construct higher performance

parallel systems. This can also be applied to FPGAs when used to speedup applications.

A number of less performant lower cost FPGAs can be used on parallel to build high

performance hardware accelerators.

In order to achieve high efficiency with parallel implementation of an algorithm, one

must carefully tune the application to ensure that most processors are busy throughout

the execution process, while minimising the parallelisation overhead. Parallel programs

are usually composed of sections of one of the following types:

• Serial Code: Sections of the code which must be executed on a single processor.

Little or no useful work can be done on other processors.

• Critical Code: Sections of the code which can only be executed on a single processor

at any given time. Other parallel section can be executed on other processors

alongside the protected code.

Chapter 1 Introduction 7

• Parallel Code: Sections of the code which can be fully executed in parallel.

From Amdahl’s Law [29], the ratio between the parallel execution time Tparallel on N

processors and the execution time for a single processor Tsingle is given by:

Tparallel

Tsingle
= Fserial +MAX(Fcritical,

Fcritical + Fparallel

N
) (1.1)

Where Fserial, Fcritical, and Fparallel are the serial, critical, and parallel fractions of the

code respectively. From Equation 1.1, Fserial must be minimised in order not to limit

the overall parallel speedup. Each processor runtime usually depends on the data being

processed by that processor. If a processor requires more runtime to execute the parallel

code on its data, the other processors should wait until the slow process terminates.

This granularity problem reduces the gain of parallelisation.

1.3 Reconfigurable Computing

1.3.1 FPGA Architecture

FPGAs are semiconductor devices that consist of arrays of Configurable Logic Blocks

(CLB), interconnects, and I/O Blocks (IOB). Xilinx and Altera are the current main

FPGA vendors. Figure 1.2 shows the typical Xilinx FPGA architecture, which also

contains built-in hardware such as Block Random Access Memory (BRAM) and DSP

blocks [5], which are user configured to implement complex digital circuits. The basic

architecture of a CLB consists of a Look-Up Table (LUT) with four -or more- inputs and

a Flip Flop (FF), as seen in Figure 1.3 [30]. Each IOB provides individually selectable

I/O access to one of the external pins.

Usually, ASIC systems are faster than FPGAs, consume less power, and can implement

very complex designs. However, FPGAs can be reprogrammed to perform different

functionalities [31]. The desired function can be described in any hardware description

language and then synthesised to a technology-mapped netlist ready for reprogramming.

Chapter 1 Introduction 8

Figure 1.2: Typical Xilinx FPGA Internal Architecture [5]

Figure 1.3: Configurable Logic Block (CLB) Basic Architecture [30]

ASIC chips follow the same design flow, however, netlists are mapped permanently on

silicon and cannot be reprogrammed again. Recent advances in FPGA design flow and

the increasing device capabilities have made FPGAs increasingly popular. Figure 1.4

shows the FPGA growth trend [32].

Reconfigurable Computing (RC) is a computer architecture which combines some of the

flexibility of software with the high performance of reconfigurable devices like FPGAs.

Figure 1.5 demonstrates a typical Multi-FPGA Reconfigurable Environment, which con-

sists of the following two main parts:

• The Synthesis system that maps the high-level description of the application.

Chapter 1 Introduction 9

Figure 1.4: FPGA Growth Trend [32]

• The Multi-FPGA Reconfigurable hardware system to map applications onto.

Figure 1.5: A Typical Multi-FPGA Reconfigurable Environment

1.3.2 Multi-FPGA Synthesis System

Multi-FPGA Synthesis design flow consists of two main processes: Synthesis and Par-

titioning as outlined in Figure 1.6 [33]. The input Application Specification can be

expressed at three abstraction levels: High-Level (behavioural), Register Transfer Level

(RTL), and Gate Level. High-Level designs are specified in the form of algorithmic de-

scriptions; and RTL level designs are structural netlists of components; whereas Gate

Chapter 1 Introduction 10

level designs are represented as a set of boolean equations. The size of structural details

reduces as we move from Gate level up to the High-Level abstraction layer. The design

flow also takes as input the RC Resources and Timing Constraints.

Figure 1.6: Electronics Design Automation Flow for Typical Reconfigurable Com-
puting Systems [33]

The synthesis step processes the input specification through a number of sub-processes

(scheduling, binding, and allocation) to generate a final device netlist. The input speci-

fications are usually converted to graph-based platform independent models, with nodes

denoting computations and edges denoting data and control flow. The Partitioning step

uses similar model to partition the design specifications into a number of connected sub-

graphs (i.e. sub-circuits). If the whole input design cannot be fitted into the RC system,

the Temporal Partitioning divides this design description into a sequence of temporal

segments. Each temporal segment can use all the RC resources. Dynamic program-

ming approach is used to sequentially program the system with the different temporal

portions [34, 35]. The Spatial Partitioning divides the input design into a number of

spatial segments to match the number of FPGAs in the system. The system employs a

number of resources estimators in order to satisfy the initial RC resources and timing

constraints. Finally, the system generates the bit-stream files to configure the hardware

system.

Chapter 1 Introduction 11

The RC Systems design flow shown in Figure 1.6 should determine the appropriate trade-

offs between the overall performance of the system, resources utilised, and the inter-

FGPAs communication. The synthesis process translates the behavioural/structural

description of the system to a generic circuit composed of a datapath and a controller.

The main goal of the partitioning process is to achieve the minimum number of signals

between the different partitions due to the limited number of I/O pins in FPGAs.

The degree of acceleration that can be achieved depends heavily on the inherent paral-

lelism available in the application itself. Furthermore, the application design flow for RC

systems is still not a straightforward task. It can range from designing hardware, which

is tedious and error prone, to software that requires hardware knowledge. Therefore,

integrating FPGAs in HPC needs programming tools that address the whole parallel

architecture.

1.3.3 Multi-FPGA Hardware System

Typical FPGA-based RC Systems have several FPGAs and memories communicating

through a predefined network topology as shown in Figure 1.7. A number of approaches

are used for interconnection network like direct connections, programmable intercon-

nects, and buses. The FPGAs are connected to local memory banks or a shared global

memory bank depending on the programming model used for each application. Multi-

FPGA systems are typically used as co-processors connected to a host PC or as stan-

dalone computing systems [33].

RC Systems are generally statically or dynamically programmed. Static programming

approach loads the configuration bit-streams onto the FPGA devices once only and the

entire application is executed thereafter. Dynamic programming, however, loads partial

bit-streams of the application onto the FPGAs and waits for the partial execution to

finish; the host PC then re-programs the FPGA devices to perform another portion of

the application. Dynamic programming approach provides virtually unlimited hardware

resources for the application. However, this approach suffers from long re-programming

delays [36].

Chapter 1 Introduction 12

Figure 1.7: A Typical Reconfigurable Computing Architecture [33]

1.4 Research Motivations

Given the recent advances in the domain of HPRC systems, a key question to ask is

whether we can use multi-FPGA systems to accelerate the SPICE simulator. This

thesis explores ways to answer this question.

1.4.1 SPICE Simulation

SPICE simulation is an essential step in the design and verification of modern circuits

[37, 38, 39]. The SPICE algorithm simulates the behaviour of non-linear circuits. This

is done by formulating the circuit equations of the linear devices (e.g. resistors) and

non-linear devices (e.g. transistors) using Kirchoff’s conservation laws, also known as

the Modified Nodal Analysis (MNA) [40] which is explained in Section 3.1. The MNA

analysis involves the following steps:

• Formulating the circuit equations of the linear devices (e.g. resistors, capacitors)

and non-linear devices (e.g. transistors) using Kirchoff’s conservation laws at the

different nodes of the circuit.

• Evaluating circuit conductances and current matrices from the device model equa-

tions. This phase is called the Device Model Evaluation Phase.

Chapter 1 Introduction 13

• Solving the circuit models using Newton-Raphson (NR) method.

• Solving the system of the linearised equations representing the circuit using meth-

ods like Lower/Upper (LU) decomposition. This phase is called the Linear Solver

Phase.

1.4.2 SPICE Simulation Bottleneck

Due to the current increase in the complexity of analogue and mixed-signal chips,

EDA verification tools are demanding more computational power [41]. This made

the transistor-level simulation a growing bottleneck in the overall development process.

SPICE simulations of large sub-micron circuits with high accuracy can often take days

or weeks of runtime on current processors. SPICE simulation is typically infeasible for

circuits larger than 20,000 devices [42]. Also, given the decreasing minimum feature

size of devices, their numbers on a single chip has risen significantly over the last few

years. The process of down-scaling transistors also impacted the electrical character-

istics of devices. As a result, it became very important to run simulations on larger

segments of circuits in order to validate their electrical and timing behaviours before

fabrication. Hence, there is a very urgent need to accelerate circuit-level simulations

without sacrificing accuracy.

The SPICE simulator has a number of components with varying degrees of inherent con-

trol and data parallelism. Hence, it is not easily parallelisable on conventional processors

due to its irregular structure of computations, limited peak floating-point capacities and

constraints due to limited memory bandwidth. The SPICE simulator is used as a bench-

mark in the SPEC92 collection which represents a set of challenging problems for CPUs

[43]. Hence, the SPICE simulator is a challenging application that is worth looking at

ways to accelerate through parallelism.

A number of approaches were introduced to reduce the SPICE simulator runtime by

parallelisation, which met with mixed success. Attempts either compromised accuracy

(which leads to convergence issues) or have employed specialised custom platforms that

Chapter 1 Introduction 14

has been overtaken by the recent advances in general purpose and multi-core proces-

sors [44, 45, 46]. When considering the acceleration of the SPICE simulator through

parallelisation, one must consider the two phases of the Newton-Raphson iteration: the

Device Model Evaluation and the Linear Solver (Section 1.4.1). A number of studies

explored the hardware-based acceleration of both phases, as detailed in Section 3.3.2.

FPGAs and GPUs are currently under great interest in order to take advantage of their

speedup in boosting the performance of current EDA tools.

1.5 Research Scope and Objectives

The area of hardware accelerated SPICE simulator is becoming more important as FP-

GAs and GPUs are becoming increasingly attractive to continue the performance gain.

New acceleration platforms that can be used to accelerate the SPICE simulations should

be based on standards in order to facilitate maintainability and portability of such appli-

cations [21]. The SPICE simulator bottleneck could be eased by exploiting the inherent

hardware parallelism in FPGAs. The FPGA-based accelerators have a great potential

in relieving the increasing complexities faced by current EDA tools, and hence shorten

the simulation and verification times.

One of the main objectives of this project is to investigate a design methodology for

a high performance, low-cost accelerator that exploits the inherent parallelism in the

SPICE simulator. This involves identifying the key parts of the algorithm most suitable

for FPGA implementation in addition to the design decisions related.

This thesis demonstrates how a Spatial Implementation of Device Model Evaluation

phase of the SPICE circuit simulator can be designed and optimised by exploiting the

inherent parallelism at different levels. The fully spacial implementation of the SPICE

device model would take up the resources of a number of FPGA combined together. This

will result in a number of intermediate signals being exchanged between FPGAs which

have to be transferred through the I/O resources. However, FPGAs tend to be limited

in terms of their available I/O pins. Hence, one of the objectives of this research project

Chapter 1 Introduction 15

is to look at techniques to optimise the inter-FPGA connections and hence reduce the

FPGA pin usage. This thesis addresses the following research questions:

• What are the different degrees of parallelism in the device model evaluation phase

that can be exploited using FPGAs.

• How can the device model evaluation phase be mapped efficiently on multi-FPGA

systems?

• How much acceleration can be achieved over conventional processors?

• How inter-FPGA connections can be minimised in case large device models have

to be mapped on multiple FPGAs?

1.6 Thesis Structure

A multi-FPGA system was presented to perform the transistor device model evaluations

in parallel. The work showed that FPGAs have a great potential to accelerate the SPICE

simulator. Our study also demonstrated a code transformation flow where the device

model code can be translated from a high-level description to a structural description

ready for FPGA mapping.

This study also highlighted the issue of inter-device in the domain of multi-FPGA syn-

thesis especially if a spatial implementation of large device models is considered. This

would require a large number of signals to be exchanged between FPGAs in the multi-

FPGA system. This brings to the surface, the optimisation of the pin usage since FPGAs

are limited in terms of their resources including I/O pins. A multi-FPGA synthesis sys-

tem specifically focused on inter-FPGA optimisation was designed. An optimisation

approach was introduced to reduce the number of inter-FPGA signals by altering the

process of mapping partitions to FPGAs.

The thesis is structured as follows:

Chapter 1 Introduction 16

Chapter 2 outlines the background information relating to high-level synthesis and par-

titioning. This Chapter also presents the state of the art advances in the field of High-

Performance Reconfigurable Computing (HPRC) in the programming/hardware sides in

addition to some applications employing hardware acceleration.

Chapter 3 explains the theoretical background of the SPICE simulator and also outlines

the different approaches used to exploit the inherent parallelism in the algorithm. This

Chapter outlines our approach to accelerate the SPICE model evaluation using a Spatial

FPGA implementation.

Chapter 4 explains the design and implementation of the prototype multi-FPGA system

used to accelerate the device model evaluation as proposed in Chapter 3. A single FPGA

implementation is first considered in order to evaluate the acceleration and resources

results of the device model. A multi-FPGA system is then prototyped using three off-

the-shelf Xilinx Virtex II Pro FPGA boards to demonstrate the amount of acceleration

that can be achieved through parallelism.

Chapter 5 presents the synthesis and acceleration results of the experimental work out-

lined in Chapter 4. The system showed that multi-FPGA systems can effectively be

used to accelerate the device model evaluation, and hence SPICE simulations. The re-

sults were extended theoretically to include newer SPICE device models and to take

advantage of state-of-art multi-FPGA systems.

Chapter 6 presents the design and implementation of a prototype multi-FPGA synthesis

system and an optimisation technique used reduce the multi-FPGA pin-usage. This

Chapter investigates the use of high-level synthesis and partitioning in the process of

pin utilisation optimisation of a mesh-based topology.

Chapter 7 discusses our conclusions, research contributions, and future work. The Chap-

ter showed that our application specific architecture can be used as a high speed co-

processor attached to workstations to boost SPICE-like simulations. This Chapter also

discusses the use of our device model accelerator for iterative solver based simulation.

Chapter 1 Introduction 17

1.7 Publications

• A. Maache, J. Reeve, and M. Zwolinski. Accelerating CMOS Device Model Evalu-

ation Using Multi-FPGA Systems. In Fifth UK Embedded Forum 2009, Leicester,

UK, pages 10–14, September 2009 [47].

• A. Maache, J. Reeve, and M. Zwolinski. Optimising Physical Wires Usage in

Mesh-based Multi-FPGA Systems using Partition Swapping. In 21st International

Conference on Microelectronics, ICM09, Marrakech, Morocco, pages 246–249, 19–

22 December 2009 [48] .

Chapter 2

Multi-FPGA Systems Review

This Chapter outlines the background literature in the domain of algorithms acceleration

using multi-FPGAs. This domain includes multi-FPGA synthesis which is composed of

hardware synthesis and logic partitioning. This Chapter also presents the state of the

art advances in the field of High-Performance Reconfigurable Computing. Section 2.1

gives general overview of hardware synthesis. Section 2.2 describes the different circuit

partitioning methodologies and a number of existing multi-FPGA synthesis systems.

Section 2.3 presents the advances in the architectural/hardware sides and some appli-

cations employing hardware acceleration in high performance computers. Section 2.3.2

outlines the current advances from a programming models’ perspective. Section 2.4

summarises the design decisions taken to design our multi-FPGA system based on the

materials reviewed in this chapter.

2.1 High-Level Synthesis

High-Level Synthesis (HLS) is the process of transforming an abstract specification of

the system to a structural description satisfying user constraints on area, delay, and

power consumption [49, 50, 51]. Figure 2.1 illustrates a generic HLS system [52]. The

HLS system takes as inputs a behavioural description of the design plus user constraints.

18

Chapter 2 Multi-FPGA Systems Review 19

The input description is compiled into an internal representation, usually a Control Data

Flow Graph (CDFG), which is passed through the three synthesis steps: scheduling,

allocation, and binding. Low level module libraries are used to guide the synthesiser

through the optimisation process to meet the design objectives. The synthesis output

is a mixture of structural and RTL descriptions suitable for the placement and routing

tools. Example state-of-art HLS tools includes Synphony HLS from Synopsys [53], and

Catapult C from Mentor Graphics [54].

Figure 2.1: Generic High-Level Synthesis System [52]

The structural description generated by a typical HLS system consists of a datapath,

a controller, and memory elements as seen in Figure 2.2 [55]. The datapath consists

of a set of functional units (adders, multipliers, and shifters), storage units (registers,

counters, and register files) and interconnections units (wires, multiplexers and buses).

The control unit consists of a Finite State Machine (FSM) that controls the functional

and storage units by steering the data in the datapath using internal control signals such

as register load and multiplexer select signals.

Chapter 2 Multi-FPGA Systems Review 20

Figure 2.2: Generic structure of the synthesis target circuit

2.1.1 Scheduling

The Scheduling step assigns each operation in the internal representation (CDFG) to

a particular time step. Schedules are usually optimised to achieve the user constraints

in terms of timing and area. Scheduling algorithms can be generalised into two main

categories: constructive and transformational scheduling. Constructive algorithms are

called so because they construct a solution without performing any backtracking. Trans-

formational algorithms, however, work on improving an initial schedule by applying a

set of transformations [49, 56]. As Soon As Possible (ASAP) and As Late As Possible

(ALAP) are the simplest constructive schedules. ASAP schedules operations in the ear-

liest possible time step permitted by data dependencies, while ALAP assigns operations

to the latest possible time step. Figure 2.3 shows an ASAP and ALAP schedules of the

equation: O = ((A−B) + (C+D))/(E ∗F) + (G+H)2. Operations are treated equally

with no priority given to the more critical ones.

Figure 2.3: Example of ASAP (a) and ALAP (b) schedules

Chapter 2 Multi-FPGA Systems Review 21

List Scheduling assigns operations to time steps based on a pre-defined priority func-

tion. Operations are scheduled sequentially as long as the required resource is available,

otherwise, operations are postponed according to their priority. The Force-Directed

Scheduling (FDS) is a constructive algorithm that makes decisions based on a global

analysis of operations and control steps [57]. The main issue with the above algorithms

is that decisions are made upon local considerations, which might not necessarily produce

an optimum schedule.

The transformational approach starts with an initial schedule, generally ASAP or ALAP,

and iteratively applies a set of local transformations to improve the schedule towards

the user specified constraints. One important advantage of this type of algorithms is

that a complete schedule exits after each iteration and hence an accurate estimates of

time and area can be obtained. Integer Linear Programming (ILP) is a mathematical

method to solve the scheduling problem under resource constraints which provides an

exact analytical solution to the scheduling problem. However, ILP formulation and

solving processes are computationally expensive and limited by the number of variables

used [49, 58].

2.1.2 Allocation

Allocation is the process of determining the type and quantity of resources used in the

design. It also determines the clocking scheme, pipelining style, and memory hierarchy.

The selection process utilises a set of component libraries, which may contain multi-

ple implementations of functional units, each with different properties (size, delay, and

power). The main goal of the allocation phase is to perform the optimum trade-off

between the design performance and cost. Designs with inherent parallelism can be

assigned more hardware resources which results in better performance; but it also in-

creases the area cost. However, allocating less hardware resources reduces the area cost,

but results in poorer performance [50].

Chapter 2 Multi-FPGA Systems Review 22

2.1.3 Binding

Binding is the process of assigning the already allocated datapath units from a list

of technology-dependent cell/module libraries. The latter may contain one or more

implementations of the same functional unit, in which a decision would be made based

on the user objectives. Area and time estimates of the library components are also

used to guide the scheduling/allocation processes [51]. Binding involves assigning the

variables and instructions into one of the following types:

• Functional binding assigns each operation in the schedule to a functional unit such

as adders, shifters and multipliers.

• Storage binding assigns variables to storage units such as registers, register files

and memory units.

• Interconnect binding assigns an interconnection unit to a multiplexer or a bus,

where each interconnect represents a data transfer between functional and storage

units.

2.2 Multi-FPGA Logic Partitioning

Logic Partitioning for multi-FPGAs systems consists of splitting an internal design rep-

resentation into a number of balanced partitions. Each partition is programmed to a

particular FPGA. A common design representation for partitioning would be a graph

based model like Data Flow Graphs [59], Control and Data Flow Graphs [33], or Module

Call Graphs [52, 60]. The design representation is partitioned with the aim to satisfy

the optimisation criteria and the user constraints in terms of area, speed, power, and

I/O pin-usage.

Chapter 2 Multi-FPGA Systems Review 23

2.2.1 Partitioning Methodologies

Partitioning algorithms are categorised into two main categories: constructive and iter-

ative algorithms [61]. Constructive algorithms finds partitions from a graph representa-

tion of the circuit. In other words, partitions are constructed from the original graph in

an incremental fashion. The iterative approach, however, works to improve an existing

solution. One of the most well-know iterative algorithms is the Kernighan and Lin (KL

algorithm) [62] and its variant, the Fiduccia-Mattheyses (FM) heuristic [63]. The con-

structive methods include the Simulated Annealing (SA) and Genetic Algorithms (GA)

[61, 64].

2.2.1.1 Partitioning Problem Formulation

The general graph partitioning consists of dividing a set of components and a netlist of

connections between these components into a number of balanced partitions. A graph

is a set of nodes (nodes) linked together with a set of edges. Each edge connects exactly

two nodes. A Hypergraph is a generalisation of a graph, where an edge can connect mul-

tiple nodes. A hypergraph is particularly useful for representing typical circuit netlists

because connections can be made between multiple components. Figure 2.4 shows an

example circuit and its representation using a hypergraph, where the Circiuit Com-

ponents {n1, n2, ..., n7} are represented as Nodes and the Circuit Connections between

these components are modelled as Edges.

(a) (b)

Figure 2.4: (a) Example circuit, (b) Hypergraph representation

Chapter 2 Multi-FPGA Systems Review 24

The input design is usually modelled as a hypergraph G(V,E), where V is the set of

nodes i(ni) corresponding to the components {n1, n2, ..., n7} as seen in Figure 2.4, and

E represent the signal nets that interconnects the components. A signal net is a simple

connection between two or more components in the hypergraph, which is represented by

the set of groups in Figure 2.4(b). Dividing V into a set of K disjoint partitions is called

multi-way partitioning when K > 2 and bi-partitioning when K = 2. Hence, given the

K-way partition {V } → {V1, V2, ..., VK}, the objective of the partitioning algorithm is

to minimise:

cutsize =
∑
i,j

kij , where i 6= j. (2.1)

Where kij is a signal cut net which represents a signal between the partitions Vi and Vj ,

and cutsize is the total number of these inter-partition signals (i.e. the total number of

signal cut nets).

The cost constraint of each partition r is specified by:

cost(r) =
∑

ni∈Vr

ci ≤ Cr, where 1 ≤ r ≤ k. (2.2)

Where ci is the cost associated with the node i(ni) and Cr is the cost constrain on the

partition r. Cr must be greater or equal to the sum of all the costs associated with

the nodes in partition r. This model aims to minimize the number of signals required

between partitions (Equation 2.1) under the cost constraints stated in Equation 2.2. The

constraints can denote the area usage of each partition, or may be the power consumed

by the individual partitions. Each node in the hypergraph is assigned a weight that

corresponds to a particular attribute to be considered like area or power. These weights

are used to balance partitions and to calculate overheads.

Chapter 2 Multi-FPGA Systems Review 25

2.2.1.2 Kernighan-Lin Algorithm

The Kernighan-Lin algorithm is an iterative algorithm that starts with two random

initial partitions of the input graph G(V,E). The algorithm then improves the solution

by swapping pairs of nodes to reduce the number of cut nets between partitions (cutsize).

The gain of moving a node from its current partition to another partition is the difference

between the external and the internal nets. Each swap operation is made so that the

highest gain value is achieved. After each pair swapping operation, the resulting gain

is stored and the swapped nodes are locked and cannot be considered for swapping

again. The process continues until all nodes are evaluated and locked. The algorithm

terminates when the best gain found in an iteration is less than or equal to zero; in other

words, it is no longer possible to achieve any more improvements from pair swapping.

KL pseudo code is shown in Figure 2.5.

Figure 2.5: Kernighan-Lin Algorithm Pseudo Code

Chapter 2 Multi-FPGA Systems Review 26

2.2.1.3 Fiduccia-Mattheyses Algorithm

The Fiduccia-Mattheyses algorithm is an extension to the KL algorithm which reduces

the time per iteration to a linear time with respect to the size of the netlist [63]. One of

the main concepts introduced in the FM algorithm is the Gain Bucket Data Structure

shown in Figure 2.6, which is a list of the nodes to be moved sorted according to the

gain of each move. The list is ordered from maximal to minimal gain, where a positive

gain improves the overall solution and a negative gain degrades it. The grey nodes in

Figure 2.6 are the ones that have already been moved from their original partition and

cannot be selected to be moved again. The free nodes are sorted in the bucket ready

for selection. The Max Gain index always points to the highest gain value in the bucket

data structure.

Figure 2.6: The Gain Bucket Data Structure used in the FM Algorithm

The FM algorithm starts with a random initial partition, and iteratively improves the

solution by applying a number of moves within a single pass. The node with the highest

gain is selected and moved to the other partition and subsequently locked to prevent the

algorithm from selecting and moving it again. In order to prevent all nodes migrating

to one partition, a balance criteria must be satisfied before any move can be made. The

user specifies a balance factor r called ratio, 0 < r < 1, which satisfies the criteria

r = |A|/(|A| + |B|), where |A| and |B| are the sizes of the partitions A and B. The

condition for the partition {V } → {A,B} to be balanced is given by:

Chapter 2 Multi-FPGA Systems Review 27

(r ∗ |V | − smax) ≤ |A| ≤ (r ∗ |V |+ smax) (2.3)

Where |A| + |B| = |V |, smax is the size of the largest node in the hypergraph. After

a move is performed, the gain values of the neighbouring nodes affected by the move

are updated. The gain bucket data structure is also updated with the new gain values

especially the Max Gain index. This process continues until no unlocked nodes can

be moved without violating the balance criteria; which marks the end of a pass. The

algorithm then uses the best intermediate solution as a starting point for the next pass.

Before any pass begins, locked nodes are freed and all nodes are re-sorted again into the

gain bucket data structure according to their new gain values. The process then stops

when a pass fails to improve the overall solution.

2.2.1.4 Structural and Behavioural Partitioning

Partitioning can be performed at different abstraction levels such as behavioural, RTL

or gate-level (structural). The behavioural approach performs the partitioning of the

design description before the synthesis process takes place. As a result of this partitioning

phase, the design is broken down into a set of sub-designs connected with inter-partition

signals. The synthesis process then takes each sub-design and generates a corresponding

datapath and a controller to implement that particular sub-functionality. Structural

partitioning, however, is applied to the datapath and controller of the already synthesised

design. The result of this partitioning approach is a set of segments of the synthesised

design distributed over multiple devices. Figure 2.7 shows the difference between the

different approaches [65]. Behavioural partitioning, however, needs a number of high

level estimators, which estimates the area, timing, I/O and power attributes of the

design. These estimators have to be efficient and fast in order to cover the large search

space. Several studies demonstrated the superiority of the behavioural over the RTL

partitioning [66, 67, 68].

Chapter 2 Multi-FPGA Systems Review 28

Figure 2.7: Structural (a) and Behavioural (b) logic partitioning [65]

2.2.2 Existing Multi-FPGA Synthesis Systems

A number of multi-FPGA synthesis systems were proposed with varying methodologies

and algorithms. Examples of commercial synthesis tools include Auspy Partition System

II [69] and Certify [70]. These tools perform the partitioning process at the structural

level. A number of academic tools are also available like: COBRA-ABS [71, 72], SPARCS

[67, 33], ISyn [73], and CADDY-II [59, 74].

The COBRA-ABS (Column Oriented Butted Regular Architecture Algorithmic Be-

havioural Synthesis) is a high-level synthesis tool designed for synthesising DSP al-

gorithms in C, targeting Multi-FPGA Custom Computing Machines (FCCMs). The

system is based on a Very Long Instruction Word (VLIW [75]) architecture, where each

partition contains an independent RISC-like (Reduced Instruction Set Computer) pro-

cessor and a set of functional units all connected with a bus-based architecture. The

design and the target architecture files are compiled into a control-flow block graph.

The synthesis and partitioning tasks are performed in a single integrated step. However,

high exploration run times of more than ten hours were reported because of the complex

model of the integrated problem [36].

The SPARCS system (Synthesis and Partitioning for Adaptive and Reconfigurable Com-

puter Systems) is an integrated partitioning and synthesis framework targeted at Multi-

FPGA systems [36, 76, 77]. It provides a tight integration of partitioning and synthesis

tasks at different levels of abstractions. Designs are represented by Behavioural Block

Chapter 2 Multi-FPGA Systems Review 29

Graph (BBG) which is a set of blocks and edges representing both control and data flow.

During partitioning, each block is viewed as atomic entity that cannot be split. This

approach, however, dictates that the designer should have good understanding of the

behavioural specification and its effects on partitioning, which is not always the case.

SPARCS considers only the direct pin-to-pin connection model and does not cope with

the time-multiplexed I/O model. Also, it does not explore performance trade-off with

the number of inter-FPGA connections [52].

The COBRA-ABS system focused mainly on synthesising DSP algorithms to FPGAs,

whereas the SPARCS system focused on combining synthesis and partitioning into a

single process by performing design space exploration. However, none of the synthesis

tools mentioned above considered directly exploring and optimising the inter-FPGA

connections. The is an important issue to explore because FPGAs are limited in terms

of their I/O connectivity. And as the domain of applications requiring multi-FPGAs is

growing noticeably over the last few years, the inter-FPGA communication requirement

also increases. This means that more FPGA I/O pins are used to route the inter-FPGA

signals. Hence, there is a need to further investigate and optimise the FPGA resources

usage especially I/O pins.

2.3 High-Performance Reconfigurable Computing

Reconfigurable computing showed a trend of speed advantages over traditional micro-

processors in a wide range of applications. For example, [78] presented a multi-FPGA

accelerator of a Fourier Integral Operator kernel used in signal processing. The study in

[79] tried to understand and quantify the components of the FPGA’s speedup in image

processing applications. The authors showed that the instruction execution efficiency

of the FPGA is an important factor in addition to loading and storing data to/from

memory or I/O. Similar conclusions were demonstrated for floating-point arithmetic

kernels in [80, 25, 81]. Hence, FPGAs have the potential to boost the high-performance

computing since scientific computing is mostly based on floating-point arithmetic.

Chapter 2 Multi-FPGA Systems Review 30

Typically, FPGA designs are highly optimised and finely tuned, which tend to reduce

the power consumption if compared to general purpose processors. It was shown in [82]

that by just moving the performance critical software loops to reconfigurable hardware

resulted in an average energy saving of about 35% to 70% depending on the FPGA used.

High-Performance Reconfigurable Computing (HPRC) is a new approach to speedup

HPC applications based on conventional processors and FPGAs. It demonstrated orders-

of-magnitude improvement in the overall performance over conventional high-performance

computers [83, 5]. A number of survey papers [84, 85, 86, 87, 88, 89, 90, 91] outline the

modern reconfigurable architectures and design methods.

2.3.1 HPRC Hardware Platforms

Berkeley Emulation Engine (BEE) is a general purpose and scalable framework

for designing high-end performance reconfigurable computers. The system can provide

acceleration throughput of about 10 times more than a DSP-based system with similar

power consumption and cost, and over 100 times than the throughput of general-purpose

processors [92]. The system uses DSP programming models (Simulink and Xilinx System

Generator) for automatic mapping from high-level block diagrams and state machines

to FPGAs.

Research Accelerator for Multiple Processors (RAMP) is a conventional RTL

implementation of a message-passing machine to realise a multi-core cluster based on

embedded processors on multi-FPGA platforms. It relies on massive parallelism to gain

performance improvements. It consists of 768–1008 MicroBlaze cores in 64–84 Virtex-

II Pro 70 FPGAs on 16-21 BEE2 boards connected using point-to-point channels and

switches [93]. Programming relies on GCC and uClinux running off-the-shelf scientific

applications [94, 95].

Toronto Molecular Dynamics (TMD) is an MPI-based programming model for

Multiprocessor System-on-Chip implemented onto Multi-FPGA system [96, 97, 98].

Figure 2.8 shows the architecture hierarchy of the TMD system [99]. The system uses

Chapter 2 Multi-FPGA Systems Review 31

point-to-point channels between the system components controlled by an MPI protocol

implementation. Each compute FPGA consists of both, MicroBlaze embedded proces-

sors and custom application hardware. The communication system uses a light weight

MPI implementations, a software implementation to be used on the MicroBlaze and a

hardware implementation to interface with the local custom hardware. Recently, the

system evolved to include multiple Intel X86 processors alongside the FPGAs, which are

all connected to the main system bus [100, 101].

Figure 2.8: TMD Architecture Block Diagram [99]

Maxwell Supercomputer is a general-purpose computer with 64 FPGAs presented

in [102]. All FPGAs are wired together directly in a two-dimensional torus using Multi-

Gigabit Transceiver (MGT) Rocket I/O connectors. The system uses the Parallel Toolkit

(PTK) that was designed to make it as HPC-system-like as possible [103]

XtremeData developed an FPGA coprocessor XD1000 that is socket-compatible with

the AMD Opteron processor [104]. This allows it to plug directly into standard HPC

systems to replace one of the motherboard’s CPUs as in Figure 2.9 [105]. It also have a

built-in memory controller to access the high speed memory as well as the fast connection

to the host processor via HyperTransport
TM

[8]. The design flow uses the Impulse-C

framework to program the XD1000, using standard C with an API for FPGA-specific

functions. Integrated libraries provide single and double-precision support. Impulse-C is

used to describe the performance-critical sections, which is then compiled, synthesised,

and place-and-routed onto the XD1000.

Nallatech developed both software and hardware HPC systems with FPGA acceler-

ation. The H100 system provides integrated solutions for the IBM
TM

BladeCenters
TM

Chapter 2 Multi-FPGA Systems Review 32

Figure 2.9: XD1000 ALTERA-based Coprocessor [105]

and expansion cards suitable for most cluster systems, which were used in the Maxwell

Supercomputer [106, 102].

DINI FPGA Systems designed large FPGA boards for high-performance comput-

ing including the DN7020k10 emulation system containing 20 Altera Stratix, and the

DNDPB S327 containing 27 Altera Cyclone 3 FPGAs hosted via Ethernet [107].

2.3.2 HPRC Programming Environments

Hardware Description Languages VHDL and Verilog are well established hardware

languages designed to describe high-level algorithms and low-level optimisations. This is

currently the dominant approach to program FPGAs [108]. SystemC is a set of library

routines and macros implemented in C++ that provides hardware-oriented constructs,

which allows it to simulate concurrent processes. It is used for design and verification

of hardware and software [109].

Handel-C is a C-like hardware language designed to express parallelism in algorithms.

It provides platform support libraries with the design suite. Handel-C does not support

floating-point entities as native data types [110].

Nallatech DIME-C is a subset of ANSI-C (American National Standards Institute

C), which gives it a number of advantages over Handel-C. The compiler allows the user

Chapter 2 Multi-FPGA Systems Review 33

to create a network of hardware components on an FPGA [111, 112]. Components can

be wired together to generate an FPGA bit stream.

SPARK Compiler is a C-to-VHDL high-level synthesis framework. It takes input

C code, schedules it using speculative code motions and loop transformations, runs an

interconnect-minimizing resource binding pass and generates a finite state machine for

the scheduled design graph [113].

Trident Compiler is a compiler for floating-point C algorithms, producing reconfig-

urable logic that exploit parallelism in such applications [114, 115]. It extracts paral-

lelism from the input code and pipelines loop bodies. It takes designs with float and

double types and converts them to synthesisable VHDL.

2.3.3 HPRC Systems Review

The Reconfigurable Systems shown in Section 2.3.1 require programming frameworks in

order to take advantage of their hardware capabilities. However, current HPC software

developers are unlikely to have the necessary knowledge of the hardware development

flow using Verilog and VHDL. Hence, a pure software-oriented development flow would

be beneficial to the future of HPRC [116].

The fundamental difference between hardware and software is the execution model. Soft-

ware is sequential by nature and follows a memory based execution, whereas hardware

is concurrent [117]. Generally, software does not assume anything on timing, however,

meeting performance target under timing, power, and area costs is one of the funda-

mental requirements for hardware. Hence, synthesis from C-like languages would require

mechanisms for specifying and achieving timing constraints [23].

The degree of acceleration that can be achieved depends heavily on the inherent paral-

lelism available in the application itself. The application design flow for HPRC systems

is still not a straightforward task. It can range from designing hardware, which is tedious

and error prone, to software that requires hardware knowledge. Therefore, integrating

Chapter 2 Multi-FPGA Systems Review 34

FPGAs in HPC needs programming tools that address the whole parallel architecture

[83].

As current FPGAs are getting bigger and faster, they can support more memory in-

terfaces which means that HPRC system are requiring more memory bandwidth. The

performance of memory systems, however, is not growing with the same pace as the per-

formance of the computing systems. This means that more work is needed to improve

the performance of memory architectures to keep-up with HPRC and HPC demands.

However, the low-power consumption of RC systems is still making HPRC an attractive

solution [83].

2.3.4 Floating-Point Operators and FPGAs

Scientific and financial applications tend to make heavy use of real numbers. This does

not pose much complications to conventional clusters in terms of hardware resources.

Software tends to be flexible when it comes to changing the number representation

system. Reconfigurable Computing systems, however, are limited in terms of hardware

resources. Appendix F.1 outlines the three main real data type representations used in

scientific and financial algorithms and their hardware requirements.

A number of FPGA floating-point libraries are available some of which are examined

in Appendix F. FPU100 in [118] is a IEEE-754 fully compliant core. FPLibrary is

a VHDL parametrisable library of hardware operators for the floating-point and log-

arithmic number systems [119]. It provides extra packages supporting logarithm and

exponential functions [120]. Also, [121, 122] proposed designs of parametrised FPGAs

floating-point libraries. Xilinx also provides a Floating-Point Operator in [123].

The synthesis results in Appendix F.2 shows that FPLibrary is the most efficient library

in terms of area utilisation and clock frequency. FPLibrary provides both combinational

and pipelined versions of the floating-point operators with an easy-to-use interface. In

addition, FPLibrary is fully parametrised, in which the operands’ width can be specified

using generics. This allows the user to synthesise the operators to a specific precision.

Chapter 2 Multi-FPGA Systems Review 35

FPU100 supports single-precision numbers only which limits its usage. The IEEE pro-

posed float and fixed packages provide many useful operators and conversion functions.

However, these operators are all combinational blocks, which means very large area

usage.

2.3.5 Serial Communication and FPGAs

A number of FPGA systems uses parallel buses for communication. However, these

buses have to be routed carefully at the Printed Circuit Board (PCB) level in order to

operate them at high clock frequencies. This makes serial communication an attractive

alternative to the bus approach. Most current FPGAs support gigabit-rate serial I/O

interfaces, one of which is the MGT hardware that implements the underlying physical

link between FPGAs. Aurora is a light-weight, link-layer protocol from Xilinx used

to move data across serial links through the MGT hardware. Figure 2.10 shows the

functional diagram of an Aurora-based system [124]. The user application can send/re-

ceive data through the Aurora interface at speeds of up to 3.125 Gbps using two modes:

streaming and framing modes [125]. An Aurora lane is a high-speed serial connection

between MGTs capable of sending a 16-bit word each transfer cycle. Any number of

lanes combined together are called Aurora channel. When the channel is not sending or

receiving data, it is filled with a random idle sequence (Appendix C).

Figure 2.10: Functional diagram of an Aurora-based system

Chapter 2 Multi-FPGA Systems Review 36

2.4 Summary

As demonstrated by a number of studies, FPGAs have shown large speedup/power gains

over conventional processors up to orders of magnitude. Applications, however, require

different mapping, design, memory, and computation requirement. Hence, results are

very dependant on the amount of parallelism in the application and how this is mapped

efficiently on FPGAs.

As explained in Section 1.4 the SPICE simulator is a challenging application that can

take days or weeks of runtime. This is mainly because of the rise in the number of de-

vices in circuits and the decreasing feature sizes in addition to the increasing complexity

of device models [42, 43]. All these factors increase the complexity of circuits and hence

increase the computational load on the SPICE simulator. Furthermore, current conven-

tional processors are running into a number of technological limitations as explained in

Section 1.2, which limits their ability to speedup the SPICE simulations further.

Current state of the art FPGAs contain thousands of reconfigurable logic elements,

hundreds of distributed high-bandwidth on-chip memories, built-in DSP blocks, and

fast interconnects. These advances allowed FPGAs to support double-precision floating-

point computations with the ability to realise custom floating-point datapaths. Hence,

they provide an attractive architectural solution for accelerating the SPICE simulations

as it relies heavily on floating-point computations. The main challenge is to investigate

whether FPGAs can deliver a respectable speedup in the case of the SPICE simulator.

This involves looking into ways to exploit multi-FPGA systems in this domain. Part of

this thesis focuses on exploiting the inherent parallelism in the SPICE simulator using

a multi-FPGA system.

The experimental validation of the multi-FPGA system must take into account the fact

that the SPICE simulator relies heavily on floating-point computations. Hence, other

number representations are not suitable for accelerating this simulator. In addition, the

minimum usable precision by the SPICE simulation is the single-precision floating-point

[126]. As a result, single-precision floating-point numbers are used to overcome the

Chapter 2 Multi-FPGA Systems Review 37

precision limitation despite the FPGA area and the performance overhead over fixed-

point numbers. The synthesis results showed that FPLibrary is the most efficient library

in terms of area utilisation and clock frequency.

The proposed multi-FPGA system requires a communication interface to exchange data

between FPGAs. A number of approaches are in use to transfer data amongst FPGAs

in HPRC systems. The Aurora serial interface will be used in our multi-FPGA system

to transfer data between FPGAs due to its high-speed and light-weight size as detailed

in Section 2.3.5.

The fully spacial FPGA implementation for large SPICE device models would take up

the resources of a number of FPGAs combined together. These device models can

be partitioned and mapped on multi-FPGA platforms like BEE3. The intermediate

signals between FPGAs have to be exchanged through the I/O resources. However,

current FPGAs tend to be limited in terms of their available I/O pin. Hence, one

of the goals of this research project is to look at techniques to optimise the number

of inter-FPGA communication links. Hence, there is a need to further investigate the

multi-FPGA systems in the domain of partitioning, synthesis and resources optimisation.

This investigation will focus on tackling the main challenge of the partitioning process

which is minimising the number of inter-partition signals.

Chapter 3

Parallel Device Model Evaluation

This Chapter explains the theoretical background of the SPICE simulation process (Sec-

tion 3.1). The different approaches used to exploit the inherent parallelism in the algo-

rithm are outlined in Section 3.2.1. The existing literature and previous work done in

the area of paralleling the SPICE simulator are reviewed in Section 3.3. This Chapter

also explains why the device model evaluation phase is chosen for acceleration. Our

proposed approach to exploit the inherent parallelism in the simulator using a pipelined

FPGA implementation is explained in Section 3.4.3.

3.1 SPICE Simulation Background

SPICE simulation is an essential step in the design and verification of modern integrated

circuits [37, 38, 39]. The algorithm uses a matrix representation of the circuit to find

the nodal voltages over a period of time. A typical SPICE simulation flow is shown in

Figure 3.1, which demonstrates the following key steps:

• The simulation starts by defining an initial trial DC operating point (step 1 in

Figure 3.1). At the core of the SPICE simulation flow is the Modified Nodal

Analysis. This is accomplished by formulating the Nodal Matrix (steps 1, 2, and

38

Chapter 3 Parallel Device Model Evaluation 39

Figure 3.1: Typical SPICE Simulation Flow

Chapter 3 Parallel Device Model Evaluation 40

3) and solving the linearised nodal equations for the circuit voltages (step 5) that

is given by:

GV = I (3.1)

where G is the conductance matrix of the circuit, V is the unknown node voltage

vector, and I is the current vector. The main aim of the SPICE algorithm is to

find V .

• The inner loop finds the solution for non-linear circuits (steps 3, 4, 5, and 6).

Non-linear devices are replaced by equivalent linear models. The linearisation

stage uses methods like the Newton-Raphson (NR) to find solutions, which may

take several iterations before the calculations converge. After each iteration, a new

trial operating point is defined to start the next iteration (step 6).

• The linearisation process includes the Device Model Evaluation Phase (steps

3 and 4). This phase evaluates the non-linear device models such as transistors

and diodes to obtain the electrical current I flowing through them. The current

values are then loaded into the Nodal Matrix which is then solved in step 5 to

find the unknown nodal voltages. The SPICE simulator uses built-in non-linear

mathematical equations to model the behaviour of the physical devices. For Com-

plementary Metal Oxide Semiconductor (CMOS) transistors, a number of models

exist which have a number of physical and empirical parameters [40]. Accelerating

this phase using FPGAs is the main focus of this thesis.

• The Linear Solver Phase in step 5 solves the Nodal Matrix to find the unknown

nodal voltages. Figure 3.1 shows the two main phases of the simulator which are

the Device Model Evaluation and the Linear Solver.

• The outer loop (step 7), together with the inner loop, performs a Transient Analysis

for energy-storage components (capacitors, inductors, etc.) and incrementing the

time-step.

Chapter 3 Parallel Device Model Evaluation 41

3.1.1 Newton-Raphson Method

One of the well known methods to successively approximate the roots of a real-valued

function is the Newton-Raphson (NR) method. Equation 3.2 demonstrates the basic

formula used by this method for general root finding tasks:

xi+1 = xi − f(xi)
f ′(xi)

(3.2)

where f(x) is the function which we want to approximate the roots for and f ′(x) is its

first derivative. The method starts with an inital value x0 and uses the above formula

for a better approximation x1 and so on until convergence. This method converges

quadratically when a sufficiently close initial operating point is chosen. For an efficient

implementation of the NR method, the user should provide routines to evaluate both

f(x) and its first derivative f ′(x) at the point xi [127, 128]. This present the main

drawback of the NR method, as the first derivative cannot always be calculated or may

be very expensive to evaluate.

Typical circuit simulator solves the non-linear equations using the Newton-Raphson

(NR) [41]. The circuit is represented according to the Kirchoff’s Current Law (KCL):

F (V) = 0 (3.3)

Where F is the sum of the current flowing into each node in the circuit and V is the

vector of the nodal voltages. Both vectors have dimension of N which is the number

of nodes in the circuit. By applying the NR method to find the nodal voltages using

Equation 3.2 on Equation 3.3, it yields the linear matrices system in Equation 3.4:

V i+1 = V i − J−1(V i)F (V i) (3.4)

Chapter 3 Parallel Device Model Evaluation 42

Where: J(V i) is the Jacobian computed with V i, which is the solution at the NR ith

iteration, F (V i) =


F1(V 1)

F2(V 2)

. . .

FN (V N)

, and J(V i) =


∂F1
∂V 1

∂F1
∂V 2 . . . ∂F1

∂V N

.
.

∂FN
∂V 1

∂FN
∂V 2 . . . ∂FN

∂V N


For each NR iteration i, the voltage V i is used to compute the next iteration’s voltage

V i+1. This process continues until the difference between the current/previous voltages

is less than or equal a pre-set threshold (i.e. V i+1 ≈ V i). In the SPICE simulator, the

current change in each circuit branch is also required to be below certain threshold in

order for convergence to be reached.

Transient analysis is performed using the same method. For each time step, the NR

method is used to reach convergence. For a typical circuit, the non-linear equations is

replaced by a set of linear system at each iteration as shown in Equation 3.5:

J(V i)V i+1 = J(V i)V i − F (V i) (3.5)

The conductance and current parameters are calculated according to the model equations

built into the simulator’s device loading routines. The conductance contributes to the

entries in the matrix used in the linear system, while the current values are entered into

the right-hand-side of the same linear system. The process of calculating the conductance

and current values J(V i), F (V i)) is called the Device Model Evaluation Phase.

Equation 3.5 is usually expressed as a generic system of linear equations as follows:

Ax = b (3.6)

where A is an m× n matrix, x is a column vector with n unknowns, and b is a column

vector with m entries. This system can be solved using an LU decomposition (Lower/Up-

per) linear solver which transforms the circuit matrix A into a lower L, and an upper

U , triangular matrix. This process is called the Linear Solver Phase. Equation 3.6 is

then rewritten as:

Chapter 3 Parallel Device Model Evaluation 43

LUx = b (3.7)

After factorising A into L and U , the unknown vector x is then given by:

x = U−1L−1b (3.8)

The solution to the system in Equation 3.6 is done in two steps:

• First, solve the equation Ly = b for y, where y is a column vector with n entries,

• Then, use backward substitution to solve the equation Ux = y for x.

For a more detailed discussion of the SPICE simulation algorithm, refer to [40, 37, 129].

3.1.2 Example Circuit

In order to illustrate how the simulation process works, a simple circuit is used as an

example. Figure 3.2 shows a circuit that contains a current source, two resistors, and a

diode. The circuit equations are as follow:

Figure 3.2: Example Circuit

Node 1 : IC + (V2 − V1)/R1 = 0

Node 2 : (V2 − V1)/R1 + V2/R2 + ID = 0

Chapter 3 Parallel Device Model Evaluation 44

Where the diode current is given by the device model equation as follows:

ID = IS(eV2/Vj − 1) (3.9)

where IS is the Saturation current and Vj is the Junction potential [40], IC is the input

current of the current source. The circuit equations are then aligned into the matrix

form Ax = b as follows:1/R1 −1/R1

1/R1 −(R1 +R2)/R1R2

V1

V2

 =

IC
ID


Gaussian elimination is then used to form the following linear system:1/R1 −1/R1

0 −1/R2

V1

V2

 =

 IC

ID − IC


The NR method is first used to solve the Equation 3.10 for V2 using the Equation 3.11

before back substitution to find V1.

F (V2) =
1
R2
V2 + IS(eV2/Vj − 1)− IC (3.10)

Therefore we have:

V2n+1 = V2n −
F (V2n)
F ′(V2n)

= V2n −
1

R2
V2n + [IS(eV2n/Vj − 1)]− IC

1
R2

+ [IS
Vj

(eV2n/Vj)]
(3.11)

The Device Model Evaluation Phase evaluates the equations that represent the

current and the conductance of the diode. These are shown in bold in Equation 3.11.

The aim of this research project is to evaluate these device model equations on FPGAs.

Chapter 3 Parallel Device Model Evaluation 45

3.2 SPICE Simulator Parallel Execution

3.2.1 Parallelisation Approaches

SPICE simulation has two main phases where computations can be parallelised. The

first phase is the Device Model Evaluation, in which non-linear device models are eval-

uated (e.g. diodes, transistors). The other phase is the Linear Solver using the common

LU decomposition as detailed in [130, 131] and Figure 3.1. A number of approaches have

been introduced to parallelise the SPICE circuit simulation, each exploiting a different

level of granularity. In the model evaluation phase, device models and their correspond-

ing derivatives are computed. These computations are performed independently from

each other, which allow them to run on different processes in parallel. The parallelism

approaches are categorised into two main streams: Direct and Iterative Methods [44].

Direct Methods present one of the main approaches known in literature to parallelise the

key phases in the SPICE algorithm. Direct linear solvers typically find the final solution

via computationally intensive matrix factorization [132], whereas iterative methods refine

a solution with each iteration [133]. These two approaches are mainly concerned with

parallelising the sparse linear solver, as the device model evaluation is always performed

to form the linear system Ax = b as explained in Section 3.1.

Direct Methods are usually more robust in solving linear systems than Iterative solvers.

However, they suffer from fill-in which results in longer execution times with higher

memory requirements which effect its scalability in parallel environment. Pivoting and

reordering techniques are introduced to overcome such issues. Iterative methods, even

though less robust, they requires far less memory and the execution time can be lower

than direct methods if convergence is achieved in relatively few iterations [134].

In [135, 136], Waveform Relaxation techniques (WR) were proposed on supercomputers,

in which parts of the circuit are solved independently. These techniques are not widely

used for typical designs as WR converges slowly, i.e. their convergence properties are

limited [137]. Relaxation-based simulation may converge slower and simulation time can

be larger than direct methods [138].

Chapter 3 Parallel Device Model Evaluation 46

The approach proposed in [139] is based on the domain decomposition of the SPICE

algorithm, in which the linear system of the Differential Algebraic equations is decoupled

into smaller linear systems which can be executed on separate processes. The efficiency of

the method is strongly based on the type of application, which significantly limits its use.

Domain decomposition works for small systems in which the number of communication

nodes should be small. In other words, the efficiency drops as the number of interface

nodes increases [139, 137]. A modified overlapping domain decomposition techniques

was proposed in [137] which uses the Schwarz method.

WavePipe approach in [140] extends the classical time-integration methods in the SPICE

simulator. It takes advantage of both multi-threading fine-grained parallelism at the

numerical discretisation level and the coarse-grained application parallelism. This is

done via simultaneously computing circuit solutions at multiple adjacent time points.

A Multi-Algorithm Parallel Circuit Simulation (MAPS) approach is proposed in [141],

where different simulation algorithms are started simultaneously on different threads

for a single simulation task. Threads are synchronised dynamically to pick the best

performing algorithm at every time point. In other words, this approach tries to find

the best result for each time point by trying a number of algorithms in parallel. This is

likely to add to the computational requirement of the SPICE simulation as some threads

will not be considered because of their low performance in certain time points.

The techniques discussed above have either limited applicability or slow convergence,

which limit their use for circuit simulation acceleration [134]. The direct methods are

more robust in parallelising the linear solve and can take advantage of the hardware

acceleration to match or exceed the performance of the other techniques. This empha-

sises the importance of speeding up the device evaluation phase as it is the first phase

that have to be performed before applying any of the linear solve approaches discussed

above.

Chapter 3 Parallel Device Model Evaluation 47

3.2.2 SPICE Simulator Execution Profile

Device model evaluation is an important phase of the SPICE circuit simulator. It is

characterised by large irregular floating-point compute graphs. These graphs represent

the mathematical equations of the device models which make heavy use of floating-point

operations. The device evaluation runtime grows linearly with the number of nodes in

the circuit O(n). On the other hand, the complexity of the linear solver phase ranges

from O(n1.2) to O(n1.5), where n is the size of the matrix, when efficient sparse matrix

techniques are used [44].

The time consumed by the simulator is typically divided between the two simulator

phases, in other words, most of the simulation runtime is spent performing these two

tasks. The runtime of the matrix solvers, however, does not scale well with the number

of processors used, as demonstrated in [142, 143]. For small circuits, the device evalua-

tion phase dominates the runtime and grows linearly with circuit size (n). The matrix

solver, however, dominates the runtime as the circuit size grows, because the solver time

increases approximately to the power of 2 of the number of circuit nodes [28, 144].

In [42], the profiling experiments using the Berkeley Short-channel IGFET Model (BSIM3)

[145] models showed that on average 75% of the SPICE simulator runtime is spent eval-

uating device models. Device evaluations are generally performed for each device in

the circuit and for each time step, until convergence is reached by the NR solver. At

this point, the number of device models evaluated can reach an enormous figure. The

profiling results in [42] showed that a benchmark design containing 324 CMOS devices

requires 1.86× 107 BSIM3 device model evaluations over the whole simulation. Hence,

the speed of calculating these device evaluations can have significant impact on the over-

all performance of the whole simulation flow [146]. In [147], an analysis of a test suite

of 27 circuits based on the BSIM4 transistor model code showed that nearly 66% of the

transient runtime is spent evaluating the transistor models.

Furthermore, the profiling results presented in [43] showed that for circuit dominated

by non-linear transistor devices with no parasitics, in which the Spice3f5 simulator can

spend almost half its runtime evaluating device models. For circuits dominated by

Chapter 3 Parallel Device Model Evaluation 48

Figure 3.3: The Increase of MOSFET Models’ Parameters [149]

linear parasitics simulation runtime may be dominated by the linear solve phase. It is,

however, still important to quantify the amount of runtime reduction when accelerating

the device evaluations through parallelisation, even though it is not the main time-

consuming phase.

In addition to the increasing number of devices in circuits according to Moore’s Law

(Figure 1.1), the mathematical models themselves are becoming larger and more com-

plicated. With the device process being scaled down, the complexity of device models

grows over time in order to simulate the electrical and physical behaviours of devices

accurately. This is represented in a complexity increase of about 4 to 5 times that of

classical BSIM3 model, as estimated in [43, 148]. Study [43] estimated the increase in

complexity by observing the increase in the number of the model parameters introduced

into each new model. Figure 3.3 illustrates the increase in the number of parameters of

the most known MOSFET (Metal Oxide Semiconductor Field-Eect Transistor) models

[149].

This means that the device evaluation’s computational requirements increase with time

according to the increasing complexity of the device models. These findings, if coupled

with the increasing number of devices per chip, dictates the need to accelerate the device

evaluation to cope with future circuits.

Chapter 3 Parallel Device Model Evaluation 49

While direct methods used in solving sparse linear systems found in circuits are more

robust than iterative methods, our research on parallel device model evaluation becomes

also important when iterative methods are used. This is because iterative algorithms

are easier to parallelise than direct methods and hence a significant computation time

is spent evaluating device models [150]. In other words, the iterative methods are used

to solve the linear system through parallelisation which reduces the overall execution

time of the SPICE simulator. Therefore it is important to accelerate the device model

evaluation to reduce the simulator runtime further.

The work presented in this thesis is based on parallelising the device model evaluation

phase. More precisely, performing the device evaluation of the CMOS transistor model

in parallel on a number of FPGAs. All the non-linear equations representing CMOS

devices will be computed in parallel using a multi-FPGA system. It is assumed that the

number of transistors in a digital circuit is approximately the same number of nodes N .

Hence, the hardware acceleration would perform N number of device evaluations per

iteration per time step in a transient analysis. The overall number of device evaluations

performed can reach enormous figures by the end of the simulation (e.g. 1.86×107 [42]).

3.3 SPICE Simulator Acceleration Related Work

A number of studies have explored the use of both conventional multiprocessors and

hardware accelerators (FPGAs and GPUs) to implement the parallelisation approaches

outlined in Section 3.2, some of which are detailed here.

3.3.1 Multiprocessor Paradigm

One of the earliest attempts to parallelise the circuit simulation was proposed in [46],

which used the Alliant FX/8 shared-memory multiprocessor system with six processors.

The main focus was to accelerate the transient analysis. PARASPICE simulator in [151]

used a similar shared-memory multiprocessor system to accelerate the device load and

linear solve phases.

Chapter 3 Parallel Device Model Evaluation 50

In [150], accelerating device model evaluation using the PACE distributed memory multi-

processor system, with a four-processor cluster, was proposed. The aim was to accelerate

the transient analysis of the AT&T ADVICE circuit simulator. The experimental results

showed an acceleration of about 3.6 times for small example circuits.

A highly-parallel electronic simulator called Xyce is presented in [152, 153]. It is specifi-

cally designed for supercomputers using a message passing parallel implementation. The

simulator uses weighted graphs and graph decomposition heuristics to partition the cir-

cuit graph to facilitate load-balancing between processors and reduce communications

costs. The simulator showed an acceleration of about 24 times on 40 processors solving

a transmission line problem with up to 140 thousand elements [152].

The study of [144] used multi-threaded implementation based on pthreads (pthreads

is a POSIX -Portable Operating System Interface for Unix- standard API for creating

and manipulating threads) and reported a speedup figure of about 5 times on 8 proces-

sors. The study showed a scaling trend with the number of processors without loosing

accuracy. However, pthreads requires major code rewriting and porting effort as it is

a low-level programming model which is particularly useful for task parallelism. The

modified code would be difficult to maintain taking into account the large number of

calls to pthreads library functions and explicit coding of parallelism [154].

OpenMP parallelisation approach was used in [154] to parallelise the existing the SPICE

device evaluation code in SPICE3. The implementation demonstrated speedup and

scaling figures, where the acceleration saturates at 2–3 times with 4 processors. The

main issue with this implementation is the significant fork-join overhead incurred as

the number of threads increases. Also it was not possible to perform much parallelism

without great modifications of the code.

WavePipe approach introduced in [140] exploits the coarser-grain parallelism of the time-

domain transient analysis by simultaneously evaluating circuit solutions at multiple time

steps (i.e. parallelism along the time axis). The speedup reported was approximately 3

times using 8 processors. The approach does not focus specifically on accelerating the

individual steps like the device evaluation.

Chapter 3 Parallel Device Model Evaluation 51

Table 3.1 summarised the recent work done in the area of the SPICE simulator accel-

eration through parallelisation. The table shows the number of processors used in each

system and the speedup results. The table also shows the speedup per processor fig-

ures (4th column), which is considered to be low if compared to the speedup-per-chip

results reported for FPGAs. Hence, FPGAs have a great potential to deliver respectable

speedups per-chip in accelerating the SPICE simulation.

Table 3.1: Multiprocessor based SPICE simulator acceleration (Previous work)
Year System Proc Speedup/Proc Approach
2001 [152] SGI Origin 2000 (MIPS) 40 0.6 Xyce Simulator
2002 [144] Hitachi N4000 (PA-RISC

8600)
5 0.625 PThreads

2007 [154] Sun Fire V880
(Ultrasparc-III)

4 0.75 OpenMP Pragmas

2008 [140] High-end workstation 8 0.375 WavePipe, pthreads

3.3.2 Hardware Accelerator Paradigm

In recent years, hardware acceleration based on FPGAs and GPUs have been used to

accelerate EDA tools [32, 155]. In general, FPGAs are highly customisable while pro-

viding a good expectation of performance, flexibility and low overhead. GPUs, however,

tend to provide massive parallel execution resources and high memory bandwidth, while

being easier to program and require less hardware resources [156, 157, 158]. Each hard-

ware platform (FPGA and GPU) is suitable for specific application depending on its

architectural requirements as explored in [159, 157].

3.3.2.1 GPU Accelerators

GPUs have also been used to accelerate the device model evaluation. Double-precision

implementation in [160] showed speedup figures of 10-50 times over a quad-core AMD

CPU when using an AMD Firestream 9170 GPU which contains 512 processors. [42] im-

plemented a single-precision device evaluation accelerator which demonstrated speedup

Chapter 3 Parallel Device Model Evaluation 52

figures of 32-40 times over a quad-core Intel CPU when using an NVIDIA 8800 GTX

GPU with 128 processors.

Recently, Nascentric announced the first SPICE simulator hardware accelerator, Omi-

gaSim GX, with a speedup factor of nearly 10 times the performance of current simu-

lators [161]. The accelerator is based on the NVIDIA Tesla C-870 PCI express add-in

GPU Card [3]. The implementation is based on the fast-SPICE methodology which uses

lookup tables for device evaluation.

The GPU platform used in [161] provides a massively parallel multi-threaded archi-

tecture with 128 to 512 cores depending on the system configuration. The speedup

improvement is achieved by dispatching the transistors models evaluations to the GPU

cores, which performs them in a fraction of the time that would be taken by a CPU core.

Nascentric claims that when running the SPICE simulator in its most accurate mode,

nearly ninety percent of the CPU time during simulation is spent evaluating transistors,

as these evaluations are computationally intensive [161]. In [147], circuit simulation is

sped up by a factor of 3 to 6, by performing the transistor model evaluation on the

NVIDIA GTX 280 GPU.

3.3.2.2 FPGA Accelerators

A VLIW architecture was proposed in [162, 138, 163] to accelerate the device model

evaluation process on FPGAs. The Awsim-3 architecture in [138] used lookup tables to

perform the model evaluations in order to reduce the resources usage, and hence make

the implementation feasible. The FPGA implementation of the Awsim-3 architecture

of the device evaluation in [162] is called TINA which uses the Marc-1 reconfigurable

board that contains 9 XC4005 FPGAs. The TINA system used table lookup for device

evaluation in order to trades-off accuracy for resources utilisation. The study did not

provide information about the speedup figures.

An FPGA-based implementation of an NMOS LEVEL 1 model using Signal-Processing

Object (SPO) is presented in [41]. A design methodology was proposed which uses

Chapter 3 Parallel Device Model Evaluation 53

Simulink to design the SPOs first then to map the model onto the FPGA based on

fixed-point operations. This approach reduced the cost of resources utilised. However,

the use of fixed-point operations would add to the the accuracy convergence issues faced

by the SPICE simulator. Hence, this system compromises accuracy to reduce the area

requirements.

A pipelined VLIW-scheduled architecture was proposed in [43, 155] to accelerate the

device evaluation step using a single FPGA implementation. This demonstrated an

acceleration of 2-18 times over a dual-core 3GHz Intel Xeon 5160 when using a Xilinx

Virtex 5 LX330T for a variety of SPICE device models. The study reported a speedup

figure of approximately 10 times for the MOS3 model which is the same model used in

our system (Section 4.3). A similar system was used by the authors to parallelise the

sparse matrix solver as shown in [164].

Our approach is based on a spatial implementation the CMOS LEVEL 3 model on single

FPGA. This is then mapped on a number of FPGAs in parallel to perform the device

evaluation process. The spacial implementation is deeply pipelined to provide the maxi-

mum throughput. The system proposed in this thesis exploits a different parallelisation

approach based on the larger FPGAs currently available today to provide performance

improvements without any loss in accuracy.

3.4 Parallel Device Model Evaluation

The process of parallelising the SPICE circuit simulator based on direct methods essen-

tially reduces to designing parallel algorithms for the two most time-consuming tasks:

device evaluation and linear solve. This thesis focuses on the parallelisation of the device

evaluation phase. The linear solve phase was the focus of Tarek Nechma in [165].

3.4.1 Explicit Parallelism Approach

Figure 3.4 shows the basic diagram of a single Newton-Raphson iteration, where the

device evaluation and the linear matrix solution are executed in parallel on different

Chapter 3 Parallel Device Model Evaluation 54

threads (T1 to T6). The device evaluation phase has to be completed before the linear

solver finds the solution to the Nodal Matrix. The linear solver phase must terminate

before the device evaluation from the next NR iteration can start. These two barriers

limit the amount of parallelism that can be performed. Each thread of the device

evaluation and the linear matrix solution can be executed on a separate FPGA. Each

thread in the device model evaluation phase simultaneously evaluates a number of device

models in the circuit as there is no interaction between devices.

Figure 3.4: Parallel Execution of a Newton-Raphson Iteration in the SPICE simulator

Each Newton-Raphson iteration requires the evaluation of both the CMOS model and

its derivative. This poses an issue as FPGAs are usually limited in terms of resources,

and both the model and its derivative might not fit into a single FPGA. In this case,

Secant method may be worth investigating as it does not require calculating derivatives.

This is further discussed in Section 5.2.4.

The LU decomposition method can also be performed in parallel. Due to the nature

of electronic circuits, the nodal matrices tend to be very sparse. In other words, many

of the off-diagonal elements in the linear equation are zeros. This is because the off-

diagonal terms are generated by conductances connected between pairs of nodes, and

nodes in general are connected to only two or three other nodes in the circuit [40, 126].

This topic is out of the focus of this research project. For further details, refer to

[131, 130, 2, 166, 165, 167].

Chapter 3 Parallel Device Model Evaluation 55

3.4.2 Pipelined Approach

Figure 3.4 showed the parallel execution of the SPICE simulation iteration based on a

of parallel threads. Each of these threads would be executing on a single FPGA. In

order to improve the performance further, pipelined designed can be used to provide

constant throughput. Figure 3.5 demonstrated the pipelined approach to perform the

NR iteration.

Figure 3.5: Pipelined Execution of a Newton-Raphson Iteration in the SPICE simu-
lator

Figure 3.6: Pipelined Configuration of Multi-FPGA Systems [168]

Due to the limited resources of FPGAs, it might not possible to fit a single execution

thread (i.e. the models or their derivatives) into a single FPGA. These models could

be partitioned and mapped onto a number of FPGAs and pipelined to improve the

overall performance as seen in Figure 3.6 [168]. Each partition shown in the Figure 3.5

is assigned to one FPGA (P1 to P5 partitions). A number of FPGAs have to be used

to realise this approach. This will provide a constant throughput, but the inter-FPGA

Chapter 3 Parallel Device Model Evaluation 56

communications are expected to have heavy impact on the overall performance of the

system.

Figure 3.7: (a) The ASAP schedule (Section 2.1.1) (b) a pipelined implementation of
the schedule

Each instance of the device model can be pipelined in such a way that results are

produced every clock cycle. This approach would take the device model in the form

of a DFG graph and adds registers between operations to allows us to start a device

evaluation every clock cycle. Figure 3.7 shows the pipelined DFG with registers inserted

to buffer intermediate results. In this approach, all the operation have to be mapped

on hardware spatially and cannot be re-used. This is because computations are being

initiated every clock cycle. This is what is known as Spatial Implementation.

3.4.3 Proposed FPGA Accelerator

Our proposed architecture is based on exploiting three degrees of parallelism embed-

ded within the device model evaluation phase. The first degree is the data parallelism

explored in Section 3.4.1 as device model evaluations can be performed independently

from each other. We can map multiple instances of the same model mapped onto a

number of FPGAs to have a parallel architecture. The second degree to be exploited

is the pipeline parallelism approach explored in Section 3.4.2. The third degree is the

basic fine-grain instruction level parallelism at the functional units level. Figure 3.8

shows the different degrees of parallelism inherent in the device model evaluation. Our

Chapter 3 Parallel Device Model Evaluation 57

multi-FPGA discussed in this thesis exploits this parallelism to maximise the FPGA

acceleration.

Figure 3.8: The proposed approach to exploit the inherent parallelism in the device
model evaluation phase

Our application specific architecture can be used as a high speed co-processor attached

to workstations to boost SPICE-like simulations. Figure 3.9 shows how the outcome of

this thesis can be used to accelerate the SPICE simulator. The Host PC sends the bulk

computations to the FPGAs to perform the Device Model Evaluation and the Linear

Solver phases. After computations are completed, the FPGAs would send the resulted

nodal voltages back to the Host PC. This process continues until the end of simulation is

reached. It is shown in the figure that each simulator phase is mapped to one FPGA only.

This is just to illustrate the concept of an FPGA accelerator for the SPICE simulator.

More FPGAs can be used to implement any of the SPICE simulator phases if required.

3.5 Summary

The SPICE simulator has two main phases where computations can be parallelised: the

device model evaluation and the linear solver. Profiling results in Section 3.2.2 showed

that considerable amount of the simulator time is spent in evaluating the device models.

Device evaluations are generally performed for each device in the circuit and for each time

Chapter 3 Parallel Device Model Evaluation 58

Figure 3.9: A suggested FPGA coprocessor to accelerate the SPICE simulator

step, until convergence is reached. At this point, the number of device models evaluated

can reach enormous figures (e.g. 1.86 × 107 [42]). Hence, the speed of calculating

these device evaluations can have significant impact on the overall performance of the

whole simulation flow. In addition, the increasing complexity of device models and the

increasing number of devices per chip dictates the need to accelerate the device model

evaluation to cope with future circuits. It is, however, still important to quantify the

amount of runtime reduction when accelerating the device evaluation phase through

parallelisation, even though it is not the main time-consuming phase.

As device model evaluations can be performed independently from each other, it would

be sensible to have multiple instances of the same model mapped onto a number of

FPGAs to have a Single Instruction Multiple Data (SIMD) architecture. Furthermore,

each instance can be pipelined in such a way that results are produced every clock

cycle. This approach would take the device model in the form of a DFG graph and adds

registers between operations to allows us to start a device evaluation every clock cycle

as seen in Figure 3.7. This architecture allows us to exploit the fine-grained parallelism

nature of FPGAs in two ways. The first way is to allow multiple instructions to run in

parallel and the second way by pipelining each operation to start new computation every

clock cycle. In short, our proposed approach exploits the inherent data parallelism in the

SPICE device model evaluation, in addition to the instructions and pipeline parallelism.

This proposed architecture is one of the main contributions of this thesis.

Chapter 3 Parallel Device Model Evaluation 59

While we used the direct method for solving the matrix equations, the research on paral-

lel evaluation becomes more meaningful for relaxation-based algorithms. This is because

such iterative algorithms are simpler to parallelise which leaves the bulk computation

time in the model evaluation phase.

Chapter 4

Multi-FPGA Device Model

Accelerator

Chapter 3 briefly explained the SPICE simulation process and the different parallelism

approaches that can be exploited in acceleration. It also outlined our approach to exploit

such parallelism in the simulator at different levels. This Chapter presents the system

architecture to implement our approach based on a multi-FPGA system built using

the off-the-shelf Xilinx Virtex-II Pro FPGA boards. A single FPGA implementation is

first considered in order to evaluate the acceleration and resources results of the CMOS

device model. A multi-FPGA system is then prototyped to demonstrate the amount of

acceleration that can be achieved through parallelism.

Section 4.1 outlines the FPGA design considerations that have to be taken into account

when implementing the SPICE device evaluation on FPGAs. The mathematical descrip-

tion of the CMOS LEVEL 3 model used in the multi-FPGA accelerator is presented in

Section 4.2 and Section 4.3. The transformation flow to transform the device model

from a high-level description to a synthesisable design is described in Section 4.3.2. A

single-FPGA accelerator was tested in Section 4.4. Sections 4.5 and 4.6 present the

design, implementation, and experimental setup of the multi-FPGA system.

60

Chapter 4 Multi-FPGA Device Model Accelerator 61

4.1 FPGA Design Considerations

4.1.1 Pipelined Architecture

Generally, the CMOS models used in current SPICE simulators are inherently sequential.

Hence, extracting the low level parallelism from these models will not result in the accel-

eration aimed for. Therefore, in order to exploit the hardware acceleration capabilities

embedded in FPGAs, a pipelined version of the models has to be designed. Computa-

tions in a pipelined architecture are cascaded together with registers inserted in between

to hold the intermediate values after each clock cycle as explained in Section 3.4.2.

This would produce constant throughput after a certain start-up delay [168]. However,

the pipelined implementation usually utilises a large amount of logic and interconnect

on FPGAs. In addition, the CMOS models tend to be large in terms of the number

of floating-point operations to be performed. Furthermore, the floating-point operators

themselves would have to be pipelined in order to ensure large throughput. Therefore,

a trade-off between performance and resources usage is necessary.

4.1.2 SPICE Model Parameters

In order to reduce the amount of logic utilised, it is assumed that the model parameters

are pre-calculated. In other words, the circuit simulator uses a single transistor model

during simulation. This assumption is based on the fact that, in most cases, the same

parameters are used to describe all the transistors in the same chip. In addition, CMOS

model parameters are independent of the nodal voltage values; which means that they

stay fixed during the SPICE simulation process. Typically, the SPICE simulator pre-

calculate the models given the pre-set parameters, and use the resulting simplified models

during the rest of the iterations (i.e. transient analysis or NR iterations).

If different manufacturing process is to be targeted, the model parameters are changed

accordingly. The new parameters are then pre-calculated to produce a new transistor

Chapter 4 Multi-FPGA Device Model Accelerator 62

model ready for FPGA implementation. The given assumption allows the synthesis sys-

tem to apply compiler optimisation techniques like constant propagation at the schedul-

ing level. At this level, operations involving constant operands are performed by the

synthesis system and their results are substituted in subsequent operations. The pa-

rameters can be changed at the synthesis level to produce the required transistor model

needed for simulation.

4.1.3 Data Word Length Considerations

Generally, SPICE simulation suffers from a number of accuracy problems. These issues

are classified into either topological or numerical [40, 169]. The topological problems

are due to the nature of circuits such as zero diagonal terms. These are usually solved

by preordering and pivoting techniques.

The numerical aspect of the problem occurs due to the limited finite precision that

computers utilise to represent the nodal matrix terms. This can lead to the loss of

the significance of a term in the matrix to another during the solution of the linear

equations. This can also introduce some stability issues for example when dividing

by near-zero values. Hence, a large dynamic range is required in circuit simulation in

order to avoid such numerical issues. Given the accuracy requirements of the SPICE

simulation, single-precision floating-point would be the minimum usable precision [126].

As seen in Appendix F.1, the fixed-point number system has a limited dynamic range

if compared to the floating-point format. This is the main issue with the FPGA-based

MOS accelerator presented in [41], as fixed-point operations were used. Although, the re-

sources utilisation is reduced, the system compromised accuracy to reduce the resources

requirements.

Software implementations of the SPICE simulator usually employs double precision

floating-point arithmetic. Single-precision based SPICE simulators are also used. FP-

GAs, on the other hand, are still constrained in terms of logic resources when it comes to

Chapter 4 Multi-FPGA Device Model Accelerator 63

performing high-precision floating-point computations. The implementation of floating-

point applications on FPGAs is a challenging task since the basic operators require a

significant amount of resources as explained in Section 2.3.4 and Appendix F.

Typically, the FPGA resources cost increases linearly with precision for adders and

quadratically for multipliers [130]. A similar or higher cost increase in resources re-

quirements would apply to the other floating-point operations like division, exponential,

and logarithm [120]. In order to reduce the cost of hardware resources and to improve

performance, some operators can be partially mapped using either combinational blocks

or efficient built-in circuits like the on-chip 18×18 multipliers and the DSP48E blocks

for Xilinx FPGAs. However, this approach is still limited and the implementation of the

CMOS model on FPGAs with higher precision cannot always be implemented.

Using single-precision computations is expected to introduce a small loss in simulation

accuracy over higher precisions. In [155], it was shown that convergence can still be

reached at single-precision accuracy by relaxing the simulator’s default tolerance pa-

rameters reltol (relative tolerance), abstol (absolute current tolerance), and vntol

(absolute voltage tolerance). The parameter reltol was relaxed from 1e−3 to 1e−2

(accuracy of 1 part in 100), abstol was relaxed from 1e−12 to 1e−11 (accuracy of 10

picoAmperes), and vntol was relaxed from 1e−6 to 1e−3 (accuracy of 1 milliVolt). Al-

though a 10% increase in the SPICE simulator iterations was observed, it is expected

that single-precision model evaluation runs faster with a slight loss in the quality of

results.

4.1.4 Inter-FPGA Serial Communication

In the context of multi-FPGA systems, synchronisation between FPGAs is a very im-

portant aspect affecting system performance. A number of approaches are in use to syn-

chronise multi-FPGA communication operations. The high-speed serial communication

is preferred in this context due to its simplicity of design and relatively high-bandwidth.

From a system point of view, the off-chip serial communications have to be transparent,

Chapter 4 Multi-FPGA Device Model Accelerator 64

fast, and easy to integrate with the on-chip communication sub-system. An example

serial interface is Aurora described in Section 2.3.5.

4.2 CMOS LEVEL 3 Model

SPICE simulation of analogue circuits uses built-in non-linear mathematical equations

to model the behaviour of the physical devices. For CMOS transistors, a number of

models exist which take a number of physical and empirical parameters. The LEVEL 3

model is a semi-empirical model described by a number of parameters which are defined

by curve-fitting approach rather than physical background [40].

This model is one of the fundamental well known CMOS models. Although it is an old

model, however, it was chosen because of its wide acceptance in the EDA community in

addition to its relative simplicity to be implemented in our prototype system. One of

the features of this model is that it simplifies a complex equation with many parameters

into a simpler equation with fewer parameters under specific bias conditions. This led

to the high acceptance and long life of this model [170].

The basic drain current equation for the CMOS LEVEL 3 model when the transistor is

operating in the linear region is given by:

IDS = β(VGS − VTH − 1 + FB

2
VDS)VDS (4.1)

and:

β = µeffCox
W

Leff
(4.2)

Where: FB is the coefficient of bulk charge, VTH is the threshold voltage, VDS is the

drain source voltage, VGS is the gate source voltage. In Equation 4.2, µeff is the charge-

carrier effective mobility, W is the gate width, Leff is the effective gate length and Cox

is the gate oxide capacitance per unit area.

Chapter 4 Multi-FPGA Device Model Accelerator 65

When VDS is small compared to the value of (VGS−VTH), the IDS equation is given by:

IDS = β(VGS − VTH)VDS (4.3)

The CMOS model takes into account a large number of parameters. The physical

parameters of LEVEL 1 reappear, as well as new parameters. Some of these parameters

are of an empirical nature and others have a physical origin. The accuracy of the model

depends heavily on the values of the input parameters. These input parameters are

related to the particular process used at each manufacturing site [170].

Generally, this transistor model takes three voltage values VDS , VGS , and VBS . The three

voltages are used to calculate the nodal currents IDS , which are used by the Newton-

Raphson algorithm to form the nodal matrix given by Equation 3.5. The latter is then

solved using methods like LU factorisation. The mathematical equations presented in

Section 4.3 covers the drain-current calculation only (F (V i)). The full mathematical

description of the model is presented in [40].

4.3 CMOS LEVEL 3 Model FPGA Implementation

4.3.1 CMOS LEVEL 3 Parameters

The device model used in this section is based on the CMOS LEVEL 3 model as part

of the Southampton VHDL-AMS Validation Suite in [171]. The VHDL-AMS code of

the model is shown in Appendix A. Due to the resources limitation of FPGAs, the

CMOS LEVEL 3 model implementation cost should be within the available hardware

resources. In order to achieve this objective, the model implementation was carried out

in two steps:

1. The full CMOS LEVEL 3 model in [172] is implemented, where all model param-

eters are supplied as inputs to the design each time the model is executed. The

Chapter 4 Multi-FPGA Device Model Accelerator 66

same full model is used for all device evaluations in every iteration until the end

of simulation.

2. The parameters are fixed to the default parameters as shown in Table 4.1 on

page 67 [40]. Once the parameters are set, the simplified CMOS model is used

to perform the model evaluations. This step uses constant propagation to pre-

calculate all the operations involving constant-only operands. Once all parameters

are set, only the nodal voltage values are supplied as inputs. The resulted CMOS

LEVEL 3 model code -after fixing all the parameters- is shown in Figure 4.1 on

page 68, where all intermediate variables were calculated. This algorithm actually

represents a transistor model that corresponds to the technology parameters shown

in Table 4.1. This was explained in Section 4.1.2.

After pre-calculating all the device model parameters, the resulted device model code

needs to be mapped onto our multi-FPGA system. Due to the custom nature of this

task, there is no tool that can be used readily off-the-shelf. Hence, a manual device

model code transformation has to be considered. This flow is explained in the next

section (Section 4.3.2).

4.3.2 Device Model Code Transformation Flow

A manual transformation flow was embarked due to the large complexity and the long

time scale needed to develop a compiler to transform the high-level device model code

to a synthesisable code. The transformation flow involves a number of steps which are

shown in Figure 4.2 on page 69.

The device model parameters in the high-level VHDL-AMS code are first assigned to

their default values shown in Table 4.1. The resulted formulae after fixing the model

parameters are listed in the code shown in Figure 4.1, where the intermediate vari-

ables were already calculated and their values are shown. Figure 4.1 shows an irregular

floating-point DFG as seen in Figure 4.3 on page 70. The resulted model code represents

a device model that correspondences to a specific transistor technology. This is basically

Chapter 4 Multi-FPGA Device Model Accelerator 67

Table 4.1: CMOS LEVEL 3 Parameters and default values set at the synthesis level
[40]

Name Parameter Value Unit
WIDTH Width 1.0e-4 m
LENGTH Length 1.0e-4 m
CHANNEL Channel type 1.0 -
VTO Threshold voltage −∞ V
KP Transconductance parameter 2.0e-5 A/V 2

GAMMA Bulk threshold parameter 0.0 V 1/2

PHI Surface potential 0.6 V
TOX Thin-oxide thickness 1.0e-7 m
NSUB Substrate doping 0.0 cm−3

NSS Surface state density 0.0 cm−2

NFS Fast surface state density 0.0 cm−2

TPG Type of gate material 1.0 -
XJ Metallurgical junction depth 0.0 m
LD Lateral diffusion 0.0 m
UO Surface mobility 600.0 cm2/V.s
VMAX Maximum drift velocity of carriers 0.0 m/s
XQC Thin-oxide capacitance model flag and channel

charge share for drain coefficient
1.0 -

KF kf 0.0 -
AF af 1.0 -
FC Forward Bias Non-Ideal Junction Capacitance Co-

efficient
0.5 -

DELTA Width effect on threshold voltage 0.0 -
THETA Mobility modulation 0.0 V −1

ETA Static feedback coefficient 0.0 -
KAPPA Saturation feild factor 0.2 -
NGATE Poly Si-gate doping concentration 1.5e19 cm−3

TEMP Temperature 300.0 K

a DFG with is a set of floating-point operations that are executed on the input nodal

voltages (Vds, Vgs and Vbs) and return currents and charges values (Ids, Qb and Qc).

The DFG shown in Figure 4.1 is then statically scheduled using the TORSCHE Schedul-

ing Toolbox for Matlab in [173]. This tool schedules the operations in algorithm shown

in Figure 4.1 using the ASAP scheduling approach, by assuaging each operation to a

specific control step. In other words, each operation in the model is assigned both a start

and a finish times as seen in Section 2.1.1. This tool was used to schedule the operations

automatically as this process is tedious and error prone to be conducted manually.

Chapter 4 Multi-FPGA Device Model Accelerator 68
Chapter 4 Multi-FPGA Device Model Accelerator 67

Algorithm 1 LEVEL 3 CMOS Model with Parameter Pre-calculation
1: Inputs: Vds, Vgs and Vbs

2:

3: Vfb = −0.1175
4: Vgstos = Vgs − Vfb

5: Vgst = max(Vgstos, 0)
6: Vth = Vfb = −0.1175
7: beta = kp = 2.0e− 5
8:

9: if (Vgs ≥ Vth) then
10: Vpp = min(Vds, Vgst)
11: It = Vgst − Vpp ∗ 0.5
12: Ids = beta ∗ Vpp ∗ It

13: else
14: {Cutoff mode}
15: Vpp = 0
16: It = 0
17: Ids = 0
18: end if
19:

20: cox = 3.4531e− 12
21:

22: if (Vgs ≤ Vth) then
23: Qg = 0
24: Qb = 0
25: Qc = 0
26: else
27: {Depletion mode}
28: R = Vpp ∗ Vpp/(12.0 ∗ It)
29: Qg = cox(Vgstos − Vpp ∗ 0.5 + R)
30: Qc = −cox(Vgst + (R− Vpp ∗ 0.5))
31: Qb = −(Qc + Qg)
32: end if
33: return Ids, Qb and Qc

as seen in Section 2.1.1. The tool was used to schedule the operations as this process is

tedious and error prone to be conducted manually.

The scheduling/timing information of the operations are then used to create the struc-

tural VHDL implementation by instantiating and cascading the floating-point operations

together according to their data dependency and their start/finish times. Intermedi-

ate registers are added next to hold the output values between operation after each

Figure 4.1: LEVEL 3 CMOS Model with Parameter Pre-calculation

The scheduling/timing information of the operations are then used to manually create

the structural VHDL implementation by instantiating and cascading the floating-point

operations together according to their data dependency and their start/finish times.

Intermediate registers are added next to hold the output values between operation after

each clock cycle. This allows the operators to perform a new computation every clock

cycle. Computations are performed using the single-precision deeply pipelined operators

in FPLibrary [119] (Appendix F.2.3). The device model is implemented spatially, in

which the floating-point operators were not shared amongst different operations. The

resulted structural VHDL is then simulated using ModelSim and the output is compared

Chapter 4 Multi-FPGA Device Model Accelerator 69

Figure 4.2: Transformation Flow of the VHDL-AMS high-level device model code to
a Structural VHDL design

to the one for the VHDL-AMS high-level model. This structural VHDL code is then

synthesised using the Xilinx ISE synthesis tool (XST). The synthesisable VHDL code

-that implements the pipelined CMOS LEVEL Model in Figure 4.3- and its VHDL

testbench are listed in Appendix A.2.

For the multi-FPGA accelerator to be discussed in Section 4.5, there are a number of

more steps to simulate/synthesise the device model code. The complete system shown

in Figure 4.9 and Section 4.5.2 is assembled by connecting the different system blocks

together which are: the CMOS LEVEL 3 device model, the Aurora serial interface, the

local FIFOs (First In First Out), the FPLibrary, and the control logic. The complete

system is first simulated with ModelSim using the experimental input data described

in Section 4.6.2. The input nodal voltages are sent from the FIFOs in the Host FPGA

to the Slave FPGA through the Aurora interface. The CMOS device model accelerator

Chapter 4 Multi-FPGA Device Model Accelerator 70

Vgs Vth

Vgstos0

Vgst
Ids = 0
Qg = Qb = Qc = 0

Vds

Vpp1/2

Itbeta 12

R

1/2*Vpp

1/2*Vpp

Vgstos Vgst

Qc

-cox

Qg

cox

-Qb

Vpp

Ids

Qb

2’s Complement

Figure 4.3: The Control-Data Flow Graph of the CMOS LEVEL 3 Model code shown
in Figure 4.1

Chapter 4 Multi-FPGA Device Model Accelerator 71

calculates the output currents/charges and returns them back to the Host FPGA through

the same Aurora interface.

4.3.3 Software Implementation for Comparison

In order to measure the performance of the FPGA implementation described in Sec-

tion 4.3.1, the CMOS LEVEL 3 was implemented in software running on a conventional

processor. The software runtime is then compared to hardware runtime in order to

quantify the acceleration offered by the FPGA system compared to a processor.

The software implementation used for comparison is written in C running on an Intel 2.0

GHz Due Core 2 processor with 2.5 GB of RAM. The software used is a direct transla-

tion of the same device model from high-level VHDL-AMS code in [172] to a C function

to allow direct comparison. The software was parallelised using the OpenMP library

to take advantage of the dual core processor. Device evaluations were divided on the

two Intel cores using the #pragma omp parallel for directive as seen in Listing 4.1.

The software execution time taken to evaluate the input device evaluations is denoted

by Tsoftware, which is measured according to the method described in Appendix E.2.

#pragma omp parallel for

for(index = 0; index < NumberOfDevices ; index ++)

{

deviceModel ();

}

Listing 4.1: OpenMP parallelisation of device evaluation

4.3.4 FPGA Acceleration Calculation

In order to measure the FPGA acceleration of the FPGA implementation over the

software counterpart detailed in Section 4.3.3, we examined two experiments:

Chapter 4 Multi-FPGA Device Model Accelerator 72

• The first experiment measures the FPGA acceleration using a Single-FPGA Im-

plementation as detailed in Section 4.4.

• In the second experiment, we measure the FPGA acceleration using a multi-FPGA

implementation by using three identical FPGAs connected to a Host FPGA con-

troller as detailed in Section 4.5.

In both experiments, the hardware timing information is obtained using the ChipScope

debugging tool [174]. The ChipScope Integrated Logic Analyser (ILA) was used to count

the number of clock cycles required to perform the device evaluation process as seen in

Appendix E.1. The hardware execution time taken by the FPGA accelerator to perform

the device evaluations is denoted by Texperiment. The hardware execution time figures

are compared to the software execution times Tsoftware.

The FPGA Acceleration of the device model accelerator is calculated as the ratio

between the software execution times and the hardware execution times as follows:

FPGA Acceleration =
Tsoftware

Texperiment
(4.4)

This equation is used throughout the thesis to calculate the FPGA acceleration.

4.4 Single-FPGA Accelerator System

4.4.1 System Architecture

In order to evaluate the Single-FPGA acceleration of the CMOS LEVEL 3 model (Sec-

tion 4.3), we considered two experimental cases:

• The first case utilises the embedded MicroBlaze as a controller of the accelerator

core as seen in Section 4.4.1.1.

Chapter 4 Multi-FPGA Device Model Accelerator 73

• The second case we used a dedicated controller to manage the accelerator core as

seen in Section 4.4.1.2.

The purpose of conducting these two experiments is to measure the added overhead

from using the MicroBlaze and the external memory. The experiments also measure

the acceleration that can be achieved when the built-in BRAM blocks are used. The

MicroBlaze experiment demonstrates how the accelerator core can be called from a C

routine -running on the MicroBlaze- that mimics a SPICE simulator process.

4.4.1.1 With MicroBlaze

The CMOS model was implemented in VHDL and deeply pipelined (as seen in Sec-

tion 4.3) and used in the FPGA system as demonstrated in Figure 4.4. The architecture

consists of a single FPGA that contains a MicroBlaze processor [175] which runs a C

routine that sends the data (i.e. nodal voltage values) to the hardware accelerator and

reads the results back to memory. The CMOS model accelerator connects to the PLB

(Processor Local Bus) system bus through two Read/Write FIFOs.

Figure 4.4: Block Diagram of the Single FPGA CMOS Accelerator with MicroBlaze

Chapter 4 Multi-FPGA Device Model Accelerator 74

The MicroBlaze processor was used in order to assess the performance effect of calling

the accelerator core from a C routine. The system is designed to use a Direct Memory

Access (DMA) controller which transfers data from the external DRAM to the CMOS

accelerator through Read/Write FIFOs. It was found through a number of experiments

that using the DMA controller is the fastest way to transfer data to and from memory

if compared to FSLs (Fast Simplex Link) or direct Read/Write FIFOs accesses.

4.4.1.2 Without MicroBlaze

Figure 4.5: Block Diagram of the Single FPGA CMOS Accelerator without MicroB-
laze

The system was also tested without the MicroBlaze as shown in Figure 4.5. A dedicated

controller was implemented to read data from the local BRAM and supplies it to the

device model accelerator. The controller is a State Machine which reads the data from

the BRAM at every clock cycle and supplies it to the pipelined CMOS model. The

controller also reads the results back from the accelerator core every clock cycle and

stores them in the local BRAM. The input data is pre-loaded into the BRAM blocks

when programming the FPGA.

Chapter 4 Multi-FPGA Device Model Accelerator 75

4.4.2 Experimental Results

4.4.2.1 Software Implementation Runtime

In order to calculate the speedup offered by the FPGA implementation, we need first

to quantify the runtime of the software version described in Section 4.3.3. Firstly, the

OpenMP-parallelised software implementation is compared to the sequential version in

order to assess the experimental setup. The dual core software implementation was

found to be up to about 1.53 times faster than the single core version. This is a rea-

sonable speedup taking into account Amdahl’s Law and the underlying OS/applications

limitations.

The software implementation was executed on the Intel processor system for a number

of test cases where each test case corresponds to specific number of device evaluations

N as shown in Table 4.2. The number of device model evaluations increases from one

test case to the next to assess the variation of the hardware acceleration results for large

number of model evaluations N . The latter does not correspond to any specific circuits

or represent any particular pattern, they are used for evaluation purposes only as our

main focus is to quantify the system speedup. The software execution runtime versus

the number of device evaluations is shown in Figure 4.6. The graph indicates that the

software times changes almost linearly with the number of device evaluations performed.

The X-axis represents the number of device evaluations (N) for each test case as detailed

in Table 4.2.

The software execution times shown in Figure 4.6 are used throughout the thesis to

calculate the FPGA Acceleration using Equation 4.4 for both the Single- and Multi-

FPGA Accelerators. These results are used in the next section (Section 4.4.2.2) to

calculate the speedup for the Single-FPGA accelerator with- and without MicroBlaze.

Chapter 4 Multi-FPGA Device Model Accelerator 76

Table 4.2: The number of device model evaluations N per test case
Test Case N

1 3.0E+02
2 3.0E+03
3 1.5E+04
4 3.0E+04
5 6.0E+04
6 1.5E+05
7 3.0E+05
8 6.0E+05
9 9.0E+05
10 1.2E+06
11 1.5E+06
12 1.8E+06
13 2.1E+06

0

100

200

300

400

500

S
of

tw
ar

e
E

xe
cu

tio
n

T
im

es
(m

s)

0 500000 1.e+006 1.5e+006 2.e+006

Number of Device Model Evaluations

Figure 4.6: Change of the software execution times with the number of device evalu-
ations in Table 4.2

Chapter 4 Multi-FPGA Device Model Accelerator 77

4.4.2.2 Single-FPGA Accelerator Runtime

Both cases outlined in Section 4.4 are implemented on the Xilinx Virtex-II Pro board.

For the case where the MicroBlaze is used, the system bus is clocked at 100 MHz. The

hardware execution timing information is obtained using the on-chip timer. The input

data is a set of nodal voltage values stored in the external memory. These values are

sent to the accelerator in packets of three nodal voltages for each device evaluation. The

data used in the evaluation was based on random voltage values, as the experiments are

mainly concerned with quantifying the achievable hardware acceleration.

The FPGA acceleration versus the number of device evaluations is shown in Figure 4.7.

The graph shows the FPGA acceleration results, which is the ratio between the software

execution times and the hardware execution times. The graph demonstrates two streams

of results for the two test configurations: with- and without- Microblaze and external

DRAM.

0

5

10

15

20

25

30

S
in

gl
e

F
P

G
A

A
cc

el
er

at
io

n

1 2 3 4 5 6 7 8 9 10 11 12 13

Test Cases (Number of Device Model Evaluations)

Without Microblaze
With Microblaze

Figure 4.7: Single FPGA Acceleration with the number of device model evaluations
in Table 4.2

Chapter 4 Multi-FPGA Device Model Accelerator 78

Figure 4.7 shows no speedup over the software version (Section 4.4.2.1) for the case

where the MicroBlaze is used as a controller. This result takes into account the time

to send and receive data to and from the accelerator and the external memory through

the system bus. This indicates that the external memory access is the bottleneck of this

design as nearly most of the time was spent sending/receiving data from memory to the

accelerator core.

Figure 4.7 shows that using a single instance to accelerate the CMOS model demon-

strated a speedup of up to 25 times over the software execution results. This test

assumed that all inputs are stored in local BRAM buffers and are provided at each clock

cycle after a fixed start-up delay. This test does not include the overheads introduced

by the system bus and the external memory.

The hardware execution runtime versus the number of device evaluations is shown in

Figure 4.8. The graph demonstrates two streams of results for the two cases: with-

and without- Microblaze and external DRAM. The graph indicates that the hardware

execution times changes linearly with the number of device evaluations performed.

4.4.3 Discussion

The device model used in our system is based on the CMOS LEVEL 3 model from the

Southampton VHDL-AMS Validation Suite in [171], in which the main model parameters

are fixed (Section 4.3). A single FPGA pipelined implementation of the model was

analysed without the use of the Microblaze and the External Memory. The results

showed that using a single instance to accelerate the CMOS model demonstrated a

speedup of up to 25 times. However, this result is reduced dramatically because of the

slow memory interface of the XUPV2 board.

The pipelined design has a constant throughput as results are provided every a fixed

number of clock cycles. Hence, this explain the nearly constant acceleration of the single-

FPGA system over the software implementation. This is demonstrated by the graph in

Figure 4.8. The graphs in Figure 4.7 show nearly the same pattern in terms of hardware

Chapter 4 Multi-FPGA Device Model Accelerator 79

0

100

200

300

400

500

600

H
ar

dw
ar

e
E

xe
cu

tio
n

T
im

es
(m

s)

0 500000 1.e+006 1.5e+006 2.e+006

Number of Device Model Evaluations

Hardware Times Without Microblaze
Hardware Times With Microblaze

Figure 4.8: Change of the hardware execution times with the number of device eval-
uations in Table 4.2

acceleration change with the number of device evaluations. This is mainly because both

the software and hardware times are changing almost linearly with the number of device

evaluations as shown in Figure 4.6 and Figure 4.8.

The acceleration figure for the first test case is lower than the rest of the cases. This can

be due to the good performance of the software implementation as the number of the

device counts are small and hence data can be cached within the processor. Acceleration

then increases to reach a steady state in the rest of the cases. This is due to the constant

throughput of the hardware pipeline.

The MicroBlaze bus and the external memory access present the bottleneck in the Single-

FPGA accelerator design. The memory interface of the XUPV2 board is slow, which

Chapter 4 Multi-FPGA Device Model Accelerator 80

limits the maximum acceleration that can be achieved. The memory bottleneck can be

eased by using a better BRAM scheduler to buffer data from memory, or use an FPGA

system with a higher memory bandwidth. The multi-FPGA parallel architecture to be

discussed in Section 4.5 is expected to offer better acceleration as demonstrated in the

next section (Section 4.5).

4.5 Multi-FPGA Accelerator System

4.5.1 System Architecture

The previous section evaluated a single-FPGA accelerator of the CMOS LEVEL 3 model.

This section extends the system to perform the device model evaluations on FPGAs in a

SIMD execution model. In order to have a SIMD-like architecture, all FPGAs must have

the same identical code which is executed on a different simulation data. The different

instances of the model should not have any data or control dependency amongst them.

FPGA internal memory banks can be accessed in parallel, which means that multiple

model instances can execute on the same device if hardware area permits. Hence, the

SIMD execution model is an attractive approach to perform a large number of device

model evaluations in parallel using FPGAs as explained in Section 3.4.

The aim of this section is to investigate a parallel architecture composed of a number

of FPGAs used to perform the device model evaluation phase simultaneously. The host

(master) FPGA outsources the computations to three FPGAs to perform the device

evaluations in parallel. The data to and from the accelerators are buffered in local

FIFOs in the Host FPGA and in each slave FPGA.

Each slave FPGA is executing an instance of the same CMOS model using the incoming

data from the host as model inputs. Given a pipelined design of the CMOS model, the

slave FPGAs will start to produce results at a constant rate (constant throughput). The

latter assumption is only satisfied when the pipeline is full. The calculated results are

sent back to the host FPGAs and used to form the nodal matrix as seen in Equation 3.5.

Chapter 4 Multi-FPGA Device Model Accelerator 81

The prototype acceleration system computes the device evaluation of the CMOS LEVEL

3 model in the vector F (V i) of Equation 3.4 in parallel on a number of FPGAs. The

system will be based on a SIMD architecture in which the same model resides on the

slave FPGAs to process different data sets as seen in Figure 4.9.

Figure 4.9: The Architecture of the multi-FPGA CMOS Accelerator

For our experiments, it is assumed that the number of transistors in a circuit is ap-

proximately the same as the number of nodes N . Hence, the hardware acceleration

would perform N device evaluations per Newton Raphson iteration per time step in a

transient analysis. This number of device evaluations is divided between the number

of available execution threads. Therefore, each slave FPGA of the multi-FPGA system

would perform approximately NFPGA device evaluations during each iteration, which is

given by:

NFPGA =
N

Number of FPGAs
(4.5)

It can be seen that the more number of FPGAs used as computation nodes, the faster the

overall device evaluation step is performed, but with extra costs. However, a trade-off

between the number of FPGAs used and the cost of the system must be found in order

to achieve optimum acceleration results. Acceleration is also limited by the sequential

sections and the synchronisation barriers in the simulation process as set by Amdahl’s

Law [29] and explained in Sections 1.2.1 and 3.4.

Chapter 4 Multi-FPGA Device Model Accelerator 82

4.5.2 Accelerator Prototype

The Multi-FPGA Accelerator prototype is based on three off-the-shelf XUP V2-Pro Xil-

inx boards connected together using serial links as shown in Figure 4.9. The serial links

are controlled by the Aurora serial interface from Xilinx (see Section 2.3.5). The host

FPGA outsources the computations to three FPGAs to perform the device evaluations

in a parallel SIMD fashion. The data to and from the accelerator cores are buffered in

local FIFOs in the Host FPGA and in each slave FPGA. The architecture is limited to

three slaves due to the limited number of available on-board serial links, as each board

has only three usable serial connections.

The nodal voltages data is stored at the host FPGA and pushed into the Send FIFOs.

The data is then sent to the computing slave FPGAs in parallel. The resulting currents

are received back from the slaves and saved into the Receive FIFOs. The FIFOs are

implemented using the on-chip BRAM. Each block of BRAM provides the data to one

FPGA at an aggregate throughput of one single-precision word per clock cycle. All three

blocks of BRAM used in the design are accessed independently from each other, hence,

provide the maximum data throughput to the FPGAs.

The use of BRAM in the design allows the system to be modular, as other memory

system hierarchy can be built on top of the BRAM. For example, a memory controller

can be used to map an external memory module to the local memory blocks. Also, the

BRAM blocks are addressable simultaneously, this allows the data to be easily sent to

the computing FPGAs in parallel. This allows the acceleration results to be obtained

regardless of the limited memory bandwidth of the board used.

4.5.3 Theoretical Hardware Execution Time

Estimating the total execution time of the hardware accelerator (in Section 4.5.1) de-

pends on a number of factors which include the following: the number of data transfers,

the latency of a single transfer, time to evaluate the device models, and the speed of

the inter-FPGA serial links. The Aurora communication interface uses the streaming

Chapter 4 Multi-FPGA Device Model Accelerator 83

mode clocked at 75 MHz to send a packet of three 32-bits words containing the three

voltage values to each slave FPGA. The overall hardware execution time of the system

in Figure 4.9 takes into account the following times:

• The time taken for the system to initialise and the interface Aurora be ready to

transmit data, this is denoted by Tinit.

• The initial transfer time of the Aurora core to send the first packet of data from

the Host to the Slave FPGA of data. This is denoted by Ta , which is equal to 38

clock cycles according to Aurora Datasheet in [176]. The Host FPGA should wait

for: 2Ta cylces, which includes the time to send the first data inputs to the Slave

FPGA and the time to receive the first output data back from the Slave FPGA to

the Host.

• The time taken to process the first set of inputs nodal voltages by the device model

accelerator, this is denoted by Ts as seen in Figure 4.10.

Figure 4.10: Hardware execution time estimates annotated on the architecture
of the multi-FPGA Accelerator in Figure 4.9

• The main hardware execution time is spent processing an N number of device

model evaluations. Each device evaluation requires three input voltage values

(Vds, Vgs, and Vbs) and produces three output values which are the nodal cur-

rents/charges (Ids, Qb, and Qc). Each Slave FPGA processes a number of device

Chapter 4 Multi-FPGA Device Model Accelerator 84

evaluations which is given by: N
SFPGA

, where: SFPGA is the number of Slave

FPGAs used for computations (as also seen in Equation 4.5 and illustrated in Fig-

ure 4.10). In the case of our system we have three slave FPGAs which means that

SFPGA = 3.

After the hardware pipeline is filled with the input nodal voltages data, the accel-

erator starts producing results at a constant number of clock cycles. The latter

is equal to the time to transfer the inputs and receive the outputs. Each input

voltage value is a single precision floating-point number (32-bit) which requires

two clock cycles to be transferred across the serial link as the Aurora standard

uses a 16-bit transfer interface packet [125].

Aurora can also be configured to use more serial links to send higher width data

transfers than the default 16-bit. This can be done by adding more serial connec-

tions between the Host FPGA and the Slave FPGA. The number of serial links

between the Host and the Slave FPGA is denoted by: Slinks. Therefore the time

taken to send the three voltage values would be: 3
(

2
Slinks

)
. In the case of our

system we have one single serial connection between each Slave FPGA and Host

FPGA, which mean that Slinks = 1. The Aurora protocol allows data to be sent

and received using the same serial link simultaneously. Hence, the time taken

to receive the output results is not considered. Aurora clock compensation delay

which is a result of the clock synchronisation is not taken into account as it is

negligible [176].

The total theoretical execution time of the hardware accelerator Ttheory, in clock cycles,

is given by the sum of all the time portions detailed above as follows:

Ttheory ≈ Tinit + 2Ta +
(

N

SFPGA

)
× 3

(
2

Slinks

)
+ Ts (4.6)

In the case of our system in Figure 4.10, we have Slinks = 1 and SFPGA = 3, hence,

Equation 4.6 is reduced to:

Chapter 4 Multi-FPGA Device Model Accelerator 85

Ttheory ≈ Tinit + 2Ta + (2N) + Ts (4.7)

4.6 Experimental Work

This section outlines the experimental setup used to implement the multi-FPGA accel-

erator in Section 4.5.

4.6.1 Experimental Setup

The system in Figure 4.9 was implemented using one host FPGA and three slave FPGAs.

The hardware timing information is obtained using the ChipScope debugging tool [174]

as seen in Appendix E. The hardware timing figures Texperiment obtained using Chip-

Scope are compared to their software Tsoftware counterparts as seen in Equation 4.4.

The number of device evaluations performed by the hardware accelerator was increased

after each run as seen in Table 4.2. This is to demonstrate how the acceleration changes

in accordance with the number of device evaluations performed.

Figure 4.11 shows the rack of FPGAs connected together using Serial Advanced Technol-

ogy Attachment (SATA) links (top four FPGAs only, see Appendix C). The top FPGA

is used as the host controller, and the subsequent three FPGAs are used as computing

slaves as seen in the Figure 4.9. The rest of the FPGAs are not connected, and hence not

used in our system due to the limited serial connectivity of the boards (Appendix D).

4.6.2 SPICE Simulation Data

In order to test the FPGA accelerator described in Section 4.5.2, a suitable benchmark

input data has to be provided. The input data to the hardware accelerator consists

of the nodal voltage values for each device evaluation. The LEVEL 3 model takes the

three nodal voltages: Vds, Vgs, and Vbs to calculate the next iteration’s voltage. The

data returned from the FPGA includes the nodal currents and charges Ids, Qb, and Qc.

Chapter 4 Multi-FPGA Device Model Accelerator 86

Figure 4.11: The Prototype Multi-FPGA System Designed to Accelerate the Device
Model Evaluation Phase

Chapter 4 Multi-FPGA Device Model Accelerator 87

Because the experiments in this section are mainly concerned with the maximum achiev-

able hardware acceleration, the data used in the evaluation process is based on re-

peated set of 100 sample voltage values for Vds changing from 0 to 5.0V ; and taking

Vgs = Vbs = 2.0V as constants. This test data is repeatedly used as input data to

the device model in order to facilitate the comparison between the software and the

experimental hardware outputs. The input voltage values (Vds,Vgs, and Vbs) are selected

to be the same values used in [172]. This is to allow us to easily compare our drain

current outputs (Ids) to the VHDL-AMS results quoted in [172]. This comparison will

be illustrated in the next Chapter in Section 5.1.1.

4.7 Summary

This Chapter described the experimental validation of the FPGA accelerator proposed

in Section 3.4. The device model used in the multi-FPGA system is based on the CMOS

LEVEL 3 model from the Southampton VHDL-AMS Validation Suite in [171], in which

the main model parameters are fixed (Section 4.3). The resulted device model code after

the parameters pre-calculation needs to be mapped on FPGAs. However, there is no

tool that can be used readily off-the-shelf due to the custom nature of this task. Hence,

a manual device model code transformation have to be considered in Section 4.3.2.

In order to implement the device model evaluation on FPGAs, two cases were considered.

Firstly, A single FPGA pipelined implementation of the model was analysed without the

use of the Microblaze and the External Memory. The results showed that using a single

instance to accelerate the CMOS model showed speedup of up to 25 times. However, this

result is reduced dramatically because of the slow memory interface of the evaluation

board used. This memory bottleneck can be eased by using a BRAM scheduler to buffer

data from memory, or using a higher memory bandwidth.

Secondly, a parallel architecture is designed so that each FPGA can execute one instance

of the device model which would exploit the inherent parallelism in the SPICE simulator.

The FPGA spatial implementation is expected to deliver high acceleration as it exploits

Chapter 4 Multi-FPGA Device Model Accelerator 88

the instructions and the pipeline parallelism approaches as explained in Section 3.5.

This is due to the highly customisable FPGA architecture which allows the realisation of

custom pipelined model computations. This is one of the factors which allows FPGAs to

deliver respectable speedup figures over conventional processors. The main contribution

of this Chapter lies in the proposed architecture to exploit the inherent parallelism in

the device mode evaluation using multi-FPGA systems.

Chapter 5

Multi-FPGA Acceleration Results

This Chapter presents the experimental results of the multi-FPGA accelerator described

in the previous Chapter in Section 4.5. The experimental results include the FPGA

acceleration, the resources usage, and the power consumption estimates. Section 5.2

extends the experimental and theoretical results from this Chapter and the previous

Chapter to include other newer device models and more advanced reconfigurable systems.

5.1 Experimental Results

5.1.1 Acceleration Results

Before calculating the FPGA acceleration achieved by our multi-FPGA accelerator, the

drain current output of the multi-FPGA system is first compared to results of simulating

the VHDL-AMS device model in [172]. Both experiments used the input nodal voltages

data as detailed in Section 4.6.2. Figure 5.1 shows the drain current Id versus the drain-

to-source voltage Vds using the simulation VHDL-AMS model shown in Listing A.1

[172] and our synthesisable VHDL code in Listing A.2 (Appendix A). The figure shows

that the current values Id calculated using our synthesisable pipelined VHDL design is

aligned with the VHDL-AMS simulation results in [172]. The ModelSim simulation and

ChipScope waveforms of the multi-FPGA system are shown in Appendix A.3 and A.4.

89

Chapter 5 Multi-FPGA Acceleration Results 90

0

5

10

15

20

25

30

35

40

45
Id

(u
A

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Vds (V)

VHDL-AMS LEVEL 3 Model
Synthesisable Pipelined VHDL LEVEL 3 Model

Figure 5.1: The drain current Id vs. the drain-source voltage Vds

The FPGA Acceleration of our multi-FPGA system is calculated according to Equa-

tion 4.4 (Section 4.3.4), where the hardware execution time is compared to the software

execution time shown in Section 4.4.2.1. The FPGA acceleration is shown in Figure 5.2.

The graph demonstrates three streams of results for three test configurations versus the

number of device evaluations (test cases in Table 4.2). The three graphs correspond

to the hardware acceleration using three, two, and one FPGA(s) as computation nodes

(SFPGA) as seen in Figure 5.3. Table 5.1 shows the average acceleration of the different

set-ups.

The X-axis represents the number of device evaluations (N) for each test case as detailed

in Table 4.2. The table shows that the number of device evaluations increases from one

test case to the next, this is to assess the variation of the hardware acceleration results

for large number of device model evaluations.

From a pipelined hardware point of view, results are produced at constant throughput

regardless of the number of operations to be performed. Hence, the hardware times

Chapter 5 Multi-FPGA Acceleration Results 91

2

3

4

5

6

7

8

9

10

11

12
F

P
G

A
A

cc
el

er
at

io
n

1 2 3 4 5 6 7 8 9 10 11 12 13

Test Cases (Number of Device Model Evaluations)

3 FPGAs
2 FPGAs
1 FPGA

Figure 5.2: FPGA Acceleration for the Three Test Configurations in Figure 5.3

Figure 5.3: The Three Test Configurations of the Multi-FPGA System

change linearly with respect to the number of device evaluations. The graphs show nearly

the same pattern in terms of hardware acceleration change with the number of device

evaluations. This is mainly due to the fact that the software times are influenced by a

number of factors like the operating system scheduling and other concurrent processes.

This is confirmed by the graph shown in the Figure 4.6. The graph shows that the

software times changes almost linearly with the number of device evaluations performed.

Chapter 5 Multi-FPGA Acceleration Results 92

Table 5.1: Average acceleration using the multi-FPGA system
3 FPGAs 2 FPGAs 1 FPGA

Average Acceleration 8.67 5.80 2.92

Usually, the number of transistors in typical circuit simulations does not reach the

maximum number shown in Table 4.2, however, it was used to assess the effectiveness of

the system in evaluating large transistor counts. Generally, SPICE simulation of circuits

larger than 20,000 devices is not feasible [42].

The acceleration figure for the first test case is lower than the rest of the cases. This can

be due to the good performance of the software implementation as the number of the

device model evaluations are small and hence data can be cached within the processor.

FPGA Acceleration then increases to reach a steady value in the rest of the cases. This is

due to the constant throughput of the hardware pipeline. In addition, the main reason

for this fairly constant speedup is that the system accelerates the device evaluation

phase as an isolated task. In other words, other limiting (i.e. non-parallelised) tasks

in the SPICE simulator like matrix solve, error truncation and transient loop are not

considered.

The acceleration results are limited by the speed and the number of the available se-

rial communication links in the hardware platform used. The parallel architecture is

expected to offer larger throughput if larger FPGAs and faster serial links are used.

Figure 5.4 shows the FPGA acceleration results plotted against the number of FPGAs

used. This shows a linear speedup increase when adding more FPGAs for almost all

the test cases. It can be seen that the graphs do not show any noticeable saturation

which would indicate when performance degrades as more FPGAs are added. Based on

these results, higher performance (speedup) is expected if more FPGAs are added to

the system. However, due to the limitation of the current system serial I/O resources,

further study should be conducted to estimate when the speedup curve saturates.

In order to assess the accuracy of the theoretical execution time estimation Ttheory in

Equation 4.6, the experimental hardware times Texperiment are compared to the theo-

retical estimates. The percentage difference between Ttheory and Texperiment is shown in

Chapter 5 Multi-FPGA Acceleration Results 93

3

4

5

6

7

8

9

F
P

G
A

A
cc

el
er

at
io

n

1 2 3

Number of FPGAs

❀

❀

❀

✯

✯

✯
test 1
test 2
test 3
test 4
test 5
test 6
test 7
test 8
test 9
test 10

❀ test 11
test 12

✯ test 13
Average

Figure 5.4: FPGA Acceleration change with the Number of FPGAs

Figure 5.5 for the three test configurations. The maximum percentage difference is ap-

proximately 5%. The graph shows that the difference between the theoretical estimation

and the practical hardware times decreases with the number of device model evaluation

increase for the three test configurations. This is due to the improved hardware through-

put of the pipelined model accelerator for large number of model evaluations. Hence, the

difference becomes more negligible when the number of device evaluations grows larger.

Chapter 5 Multi-FPGA Acceleration Results 94

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
P

er
ce

nt
ag

e
E

rr
or

(%
)

1 2 3 4 5 6 7 8 9 10 11 12 13

Test Cases (Number of Device Model Evaluations)

3 FPGAs
2 FPGAs
1 FPGA

Figure 5.5: Percentage difference between the theoretical estimation Ttheory and the
practical hardware times Texperiment

5.1.2 Resources Utilisation

5.1.2.1 Slave FPGA

As explained in Section 4.3, the implementation of the CMOS LEVEL 3 model on the

multi-FPGA system was performed in two steps:

1. Without Parameter Pre-calculation

In the first step, the generic design of the CMOS LEVEL 3 model was implemented

in VHDL using single-precision FPLibrary floating-point operations. The model

was implemented without including derivatives and all the transistor parameters

are not pre-calculated.

The area utilisation ratio of the full CMOS model (32-bit operations) was esti-

mated by the synthesis tool to be about 438% of the Virtex-II Pro FPGA. This

Chapter 5 Multi-FPGA Acceleration Results 95

implemenetation is a pipelined version which includes all the model parameters

as inputs. Table 5.2 shows the resource utilisation of the model, based on single-

precision floating-point operators. The maximum clcok frequency of this design

was estimated to be around 60 MHz.

The design overutilises the FPGA resources and could not be mapped. The design

requires more than four times the resources of one FPGA. The double-precision

design could not be synthesised using the ISE synthesis tool due to the large design

size. However, the resulting area usage would be significantly higher than that of

the single-precision version found earlier.

Table 5.2: Resources Utilisation of the Full CMOS model Without parameter
pre-calculation on the Virtex-II Pro FPGA

Logic Resources Available Used Usage (%)
Slice Flip Flops 27,392 55,450 202
Slice LUTs 27,392 912,995 333
MULT18X18s 136 136 100
Block RAMs 136 4 2

The resources usage in Table 5.2 shows that the full model could be partitioned

into a number of sub-designs that can be mapped onto FPGAs. These FPGAs can

be cascaded together in a pipelined fashion as shown in Figure 5.6 (Section 3.4.2).

This has not been evaluated experimentally, however, the number of inter-FPGA

signals that have to be communicated across the serial links would be considerable.

Hence, the bottleneck in this case becomes the serial communication link. The

communication bandwidth between the FPGAs cannot cope with the large amount

of intermediate signals (e.g. voltages, currents, and other parameters) that need to

be communicated. Hence, the problem of multi-FPGA inter-device signals and the

limited bandwidth of the serial communication, emphasise the need to optimise

the number of signals between the different FPGAs partitions resulted from the

partitioning phase in the multi-FPGA synthesis system. This problem is further

investigated in the next Chapter in Section 6.3 where a technique is introduced to

optimise the inter-FPGA interconnections. This technique uses the CMOS LEVEL

3 model as a benchmark to measure its effectiveness.

Chapter 5 Multi-FPGA Acceleration Results 96

Figure 5.6: FPGAs Connected in a Pipelined Ring

2. With Parameter Pre-calculation

For the second step, the generic design was synthesised by setting the parameters

to match the default values demonstrated in Table 4.1. The synthesis estimates

of the area usage is nearly 57% of the FPGA resources. The maximum estimated

frequency of the design is approximately 121 MHz.

Table 5.3 shows the resource utilisation of the model, based on single/double-

precision floating-point operators, respectively. The results show that the design

uses nearly the third of the LUTs slices in the FPGA and consumed half of the

built-in multipliers for single-precision implementation. The double-precision de-

sign used 155% of the FPGA with a maximum frequency of about 97 MHz, and

hence, cannot be fitted.

Table 5.3: Resources Utilisation of the CMOS model With parameter pre-
calculation on the Virtex-II Pro FPGA

Logic Resources Available
Single-Precision Double-Precision

Used Usage (%) Used Usage (%)
Slice Flip Flops 27,392 6,357 23 17,663 64
Slice LUTs 27,392 8,349 30 25,052 91
MULT18X18s 136 64 47 135 99

Chapter 5 Multi-FPGA Acceleration Results 97

Table 5.4 gives the whole slave FPGA resources estimations, which includes the

CMOS model plus the control and communication logic.

Table 5.4: Resources Utilisation of the Slave FPGA Design
Logic Resources Available Used Usage (%)
Slice Flip Flops 27,392 9,956 36
Slice LUTs 27,392 8,701 31
MULT18X18s 136 64 47
Block RAMs 136 23 16

5.1.2.2 Host FPGA

Table 5.5 shows the resource utilisation of the host FPGA design, which consumed 15%

of the host FPGA area and the maximum estimated frequency was about 134 MHz. This

design consumes mainly the Block RAM (BRAM) resources (62%) as they are used for

the data FIFOs. The nodal voltages data is being stored at the host FPGA and pushed

into the Send FIFOs as shown in Section 4.6.2. The data is then sent to the computing

slave FPGAs in parallel. The resulting currents are received back from the slaves and

saved into the Receive FIFOs.

The FIFOs are implemented using the on-chip BRAM. By using a pipelined state ma-

chine, the BRAM can provide data every clock cycle, which produces the best perfor-

mance using the current system. Each block of BRAM is accessed independently, which

provide the maximum data parallelism.

Table 5.5: Resources Utilisation of the Host FPGA Design
Logic Resources Available Used Usage (%)
Slice Flip Flops 27,392 2,263 8
Slice LUTs 27,392 3,271 11
Block RAMs 136 85 62

5.1.3 Power Consumption Estimation

Table 5.6 demonstrates the average power consumption of the different configurations

of the FPGA system (3, 2, and 1 slave FPGAs) connected to one host FPGA as seen in

Chapter 5 Multi-FPGA Acceleration Results 98

Figure 5.3. The power usage is approximated by experimentally measuring the current

flowing into the multi-FPGA system from a 5 volts power supply. The electrical current

drawn from the source by the multi-FPGA Rack (shown in Figure 4.11) is used as the

power consumption estimates. The measurements are taken while the device model eval-

uation process is running. The measured figures are just used to approximate the power

ratio between the processor and the FPGA. Hence, these estimates are for evaluation

purposes and not for specifically comparing the power usage.

The Power Ratio shown in Table 5.6 represents the ratio of the power consumed by the

Intel processor to the multi-FPGA system power. The maximum power consumption

according to the processor specifications is approximately 65 Watts [177]. The maximum

processor power consumption figure was used in our comparison as it is not feasible

to estimate the power consumed by the software alone. The results shows a power

consumption reduction ratio of approximately six, which means that the multi-FPGA

system consumes one sixth the power consumed by the Intel Processor. The table

also shows the energy estimates for both the FPGA accelerator and the Intel processor

system. The last row in the table shows the Energy Ratio between the two energy

figures.

Table 5.6: Average power consumption of the multi-FPGA system with different
configurations

3 FPGAs 2 FPGAs 1 FPGA
Current (Amps) 2.21 1.73 1.25
Power (Watt) 11.05 8.65 6.25
Power Ratio (CPU/FPGA) 5.88 7.51 10.40
FPGA Energy (mJ) 617.90 725.06 1049.43
CPU Energy (mJ) 33343.10 33343.10 33343.10
Energy Ratio (CPU/FPGA) 53.96 45.99 31.77

5.1.4 Results Comparison

Although the FPGA boards used in our prototype system are limited in terms of their

hardware capabilities, it is worth noting that it achieved about 10 times speedup over

an Intel 2.0 GHz Due core 2 processor with 2.5 GB of RAM. The system also consumes

Chapter 5 Multi-FPGA Acceleration Results 99

less power that the processors as demonstrated in Section 5.1.1. Our system gave a

quantitative analysis of the amount of acceleration that can be achieved using current

available FPGA boards given the fast technology growth curve of FPGA fabric [178].

Acceleration results showed little or no sign of saturation with increasing number of FP-

GAs. Other studies [144, 28, 154] also showed very little saturation of device evaluation

acceleration for small number of processors, which confirms our findings.

From a design point-of-view, our design relied on a spatial deeply pipelined implemen-

tation of the model whereas the design in [43] works by compiling a high-level Verilog-

AMS description to a statically-scheduled custom VLIW architecture. The result clearly

depends on the number of computing FPGAs, hence any comparison must take into con-

sideration the number of parallel chips/threads, like-with-like. The work presented in

[43] is the main recent study that focused on accelerating device mode evaluations on

FPGAs. Authors have used a custom VLIW processor running the device models on a

single Virtex 5 FPGA. This demonstrated an acceleration of 2-18 times over a dual-core

3GHz Intel Xeon 5160 for a number of device models. The study reported a speedup

figure of approximately 7 times for the MOS3 model which is the same model used in

our system.

In order to compare our results to the ones in [43], the target FPGA used in our system

is changed from the Virtex-II Pro to the Virtex 5 V5LX330T FPGA used in [43]. The

acceleration results and resources utilisation of the new system are then estimated and

therefore used for comparison. The comparison is performed in two steps. Firstly, the

resources utilisation of our FPGA implementation on the Virtex 5 V5LX330T FPGA

are outlined in Section 5.1.4.1. No resource usage comparison is possible because the

study [43] did not quote any resources utilisation estimates. The second step involves

comparing our acceleration results to the ones reported in [43] as seen in Section 5.1.4.2.

5.1.4.1 Resources Usage Comparison

This section presents the resources utilisation of the CMOS LEVEL 3 model on the

V5LX330T used in [43]. As explained in Section 4.3, the experimental validation of the

Chapter 5 Multi-FPGA Acceleration Results 100

CMOS model implementation on the multi-FPGA system was performed in two steps:

1. Without Parameter Pre-calculation

The model was implemented with all the transistor parameters as inputs (not pre-

calculated). The design was synthesised targeting the Virtex 5 V5LX330T FPGA.

The area utilisation ratio of the full CMOS model (32-bit operations) was estimated

by the synthesis tool to be 52% of the Virtex 5 FPGA. This implementation is

a pipelined version which includes all the model parameters as inputs. Table 5.7

shows the resource utilisation of the model, based on single-precision floating-

point operators. The maximum clock frequency of this design was estimated to be

around 96 MHz. The double-precision design could not be synthesised using the

ISE synthesis tool due to the large design size.

Table 5.7: Resources Utilisation of the Full CMOS model Without parameter
pre-calculation on the V5LX330T FPGA

Logic Resources Available Used Usage (%)
Slice Registers 207,360 52,129 25
Slice LUTs 207,360 76,497 36
DSP48Es 192 159 82
Block RAM/FIFO 324 3 1

2. With Parameter Pre-calculation

For the second step, the generic design was synthesised by setting the parameters

to match the default values demonstrated in Table 4.1. The synthesis estimates

of the resource usage of the model is nearly 7% of the FPGA resources. The

maximum estimated frequency of the design is approximately 192 MHz. Table

5.8 shows the resource utilisation of the model, based on single/double-precision

floating-point operators. The double-precision design used 22% of the FPGA with

a maximum frequency of about 87 MHz.

Table 5.9 gives the whole slave FPGA resources estimations, which includes the

CMOS model plus the control and communication logic. It can be seen that the

device model occupied a small portion of the FPGA due to its large hardware size.

Chapter 5 Multi-FPGA Acceleration Results 101

Table 5.8: Resources Utilisation of the CMOS model With parameter pre-
calculation on the V5LX330T FPGA

Logic Resources Available
Single-Precision Double-Precision

Used Usage (%) Used Usage (%)
Slice Registers 207,360 5,931 2 18,308 8
Slice LUTs 207,360 7,352 3 20,476 9
DSP48Es 192 21 10 282 146

Table 5.9: Resources Utilisation of the Slave FPGA Design
Logic Resources Available Used Usage (%)
Slice Registers 207,360 6,084 2
Slice LUTs 207,360 7,223 3
DSP48Es 192 21 10
Block RAM/FIFO 324 1 0.3

5.1.4.2 Acceleration Comparison

The study in [43] used a VLIW custom architecture to run the device model evaluation on

the Virtex 5 V5LX330T FPGA. The V5LX330T device is far superior than the Virtex-

II Pro FPGA used in our work in terms of capacity, frequency, and communication

bandwidth. The V5LX330T contains 207,360 logic elements and supports an operating

frequency of up to 550 MHz. The Aurora interface on the V5LX330T can have a

bandwidth of up to 3.7 Gb/s and a frequency of up to 300 MHz.

The simulation and synthesis estimates showed that by using the Virtex 5 in our system,

the Aurora serial communication can run at 156.25 MHz (3.125Gb/s) which is twice the

speed of the current system (75 MHz). In Section 5.1.4.1, the synthesis tool estimated

that the single-precision device model with parameters pre-calculation can run at 192

MHz. This means that the design can run at about twice the speed of the current

system. Hence, theoretically, the new system that uses the Virtex 5 FPGA will have an

approximate speedup of about 20 times over the software implementation discussed in

Section 4.3. If the Virtex 5 FPGA support more than one serial links between the Host

and the Slave FPGAs, the acceleration would be higher than this estimate as more data

will be sent/received in parallel to/from the Host to the Slave FPGAs.

Chapter 5 Multi-FPGA Acceleration Results 102

The acceleration figure reported in [43] was measured against a dual-core 3.0 GHz Intel

Xeon 5160, which is faster than the one used in our system (i.e. Intel Due core 2.0

GHz). For simplicity of comparison, it is assumed that the Intel Xeon is roughly one

and half times faster than the Due Core 2 (by taking the ratio between both processors’

speeds). Hence, in order to make the comparison as accurate as possible, the acceleration

figure in [43] is multiplied by the ratio between both processors’ speeds. Hence, the new

acceleration figure for [43] is about 10.5 which is measured against the Intel Due core 2

processor. Hence, it can be concluded that our system would achieve an acceleration of

about 20 times which is nearly twice that for [43] if the Virtex 5 FPGA is used instead.

5.1.5 Discussion of Results

A prototype multi-FPGA system has been presented to accelerate the CMOS model

device evaluation step in the SPICE simulator. The architecture demonstrated a speedup

of up to 10 times over a C software implementation parallelised using the OpenMP

library running on an Intel 2.0 GHz Due core 2 processor with 2.5 GB of RAM. Also, the

system consumed six times less power than the processor system as seen in Section 5.1.1.

This application specific architecture to accelerate the CMOS model evaluation process

can be used as a high speed co-processor attached to workstations to boost performance

of SPICE-like simulations as seen in Section 3.4.3. Although the prototype system

implementation is based on the CMOS LEVEL 3 model, it has been demonstrated

that multi-FPGA systems can effectively be employed to accelerate the CMOS device

evaluation process, and hence the SPICE simulation.

In order to reduce the complexity of the prototype system, the BRAM blocks were used

to map the local FIFOs. This also adds to the modularity of the memory system, as data

can be easily mapped from external memory systems. The BRAM can be addressed in

parallel, through the FIFOs abstraction layer, which allows the data to be sent/received

simultaneously to/from the computing nodes.

The acceleration result outlined here clearly depends on the number and the hardware

capabilities of the computing FPGAs used. As FPGAs are on a fast technology growth

Chapter 5 Multi-FPGA Acceleration Results 103

curve, our system gives an idea about the amount of acceleration that can be achieved

using current state-of-art FPGA boards.

In addition, the OpenMP-based software implementation was compiled using high op-

timisation level using commercial compilers. However, the FPGA code was not as op-

timised, as it begins with implementing a textbook algorithm, with little optimisation.

Hence, an acceleration figure of 10 times over an optimised software illustrates the po-

tential of reconfigurable systems.

Only the device evaluation phase was considered in this work. The acceleration be-

haviour showed very little saturation with three FPGAs, which means that more speedup

could be achieved using more FPGAs in parallel. This becomes possible especially as

large multi-FPGA systems [107, 179] with several FPGAs and superior hardware capa-

bilities are available off-the-shelf as seen in Section 2.3.1. However, a trade-off between

the system cost and the achievable acceleration must be identified.

5.2 Results Extension

The SPICE model and the FPGAs used in the system (Section 4.2) do not reflect cur-

rent state-of-art technologies. Hence, the results shown do not reflect the true amount of

acceleration that can be achieved. This section estimates the acceleration and resources

usage for current systems and models by theoretically extending the results shown previ-

ously. Section 5.2.1 investigates the feasibility to include current SPICE CMOS models

in the device evaluation process. Section 5.2.2 estimates the speedup results when the

BEE3 multi-FPGA system is used.

5.2.1 Results Extension to Current SPICE CMOS Models

The CMOS LEVEL 3 model used in the evaluation process is an old SPICE model. It is

used in the system due to its relative simplicity, code size, and its high acceptance in the

SPICE simulator community. Section 4.1 showed that by pre-evaluating the constant

Chapter 5 Multi-FPGA Acceleration Results 104

parameters in the CMOS model, large amount of computations are reduced as they are

done beforehand. This was based on the assumption that most circuit simulation uses

one transistor technology for its transistors (i.e. pre-calculating parameters). Model

parameters are changed to target new transistor technology.

However, in order to make the obtained results useful to current SPICE simulation

environments, the generalisation to accelerate other current sophisticated models such

as the BSIM4 [180] and the Penn State Philips (PSP103) [181] is needed. This requires

further work to determine the feasibility of mapping these models on FPGAs in terms

of resources and timing.

5.2.1.1 Resources Estimation Reference Point

The resources usage for the BSIM4 and PSP models can be estimated using the results

obtained so far for the CMOS LEVEL 3 model. Since one of the major factors that affect

the FPGA area usage is the number of floating-point operations to be implemented on

fabric. Hence, the percentage decrease in the number of floating-point operations in

the LEVEL 3 model (after pre-calculating all the transistor parameters) is used as a

reference point to calculate the number of floating-point operations for both models. The

percentage reduction in the number of floating-point operations is denoted by Opr(%).

For experimental purposes, the Verilog-A codes for the BSIM4 [182] and the PSP [183]

models were used to approximate the number of floating point operations (∗, +, /,

sqrt, exp, log, and pow), before any parameters substitutions are performed. These

estimates are used to approximate the number of floating-points operations after all

the parameters are pre-calculated, by applying the percentage reduction Opr obtained

earlier. The resulted number of floating-point operations after pre-calculating all the

parameters is used to estimate the number of LUTs to implement both models in the

FPGA fabric.

Chapter 5 Multi-FPGA Acceleration Results 105

5.2.1.2 Resources Estimation Results

Table 5.10 summarises the results of resources estimation. The first column represents

the different floating-point operations, with their corresponding area usage (OpLUT) in

the second column. The FPGA used for resource usage assessment is the Xilinx Virtex-

5 (V5-LX110T device contains 17,280 slices and 64 DSP48E). The three sub-columns

under the LEVEL 3 column represent respectively:

• Opi is the initial number of the floating-point operations, in the model before the

parameters pre-calculation procedure,

• Opf is the final number of floating-point operations after the parameters pre-

calculation procedure,

• Opr(%) is the percentage reduction in the number of floating-point operations after

the parameters pre-calculation procedure.

Table 5.10: Resource Utilisation Estimates for the BSIM4 and the PSP models

Operations OpLUT
LEVEL 3 BSIM4 PSP

Opi Opf Opr(%) Opi Opf Opi Opf

∗ 504 112 7 6.25 742 47 839 53
/ 827 36 1 2.78 217 7 133 4
+,− 551 59 6 10.17 579 59 448 46
sqrt 477 11 0 0.00 49 4 33 3
exp 1,755 1 0 0.00 44 3 7 1
log 2,460 2 0 0.00 24 2 13 1
pow 4,708 1 0 0.00 0 0 33 3

Model LUTs 7,661 74,079 75,136
Total LUTs 8,581 82,969 84,152

The percentage reduction, Opr, is used to calculate the final number of floating point

operations (Opf) for both the BSIM4 and the PSP models. In the case where Opr

is zero, the average reduction percentage of the non-zero values is used instead. The

average reduction percentage of the non-zero values is approximately 6.4%.

The Opf results were used to estimate the total number of LUTs used to implement the

BSIM4 and the PSP models. This is calculated as the sum of each Opf multiplied with

Chapter 5 Multi-FPGA Acceleration Results 106

its corresponding LUTs usage (OpLUT) for each operation. The estimated Model LUTs

usage for the models is demonstrated in the row before the last in Table 5.10.

In order to estimate the amount of logic utilised by the controlling state machine, rout-

ing resources, and the communication logic, we used the same method as above. The

difference between the resources used by the pure CMOS model in Table 5.3 and the

slave FPGA design in Table 5.4 would give an approximate percentage for the control

and communication logic. The percentage is found to be be nearly 12%. The estimated

Total LUTs usage for the models is demonstrated in the last row of the Table 5.10.

Current state-of-the-art FPGA device are far larger than the FPGA used in our sys-

tem. For example the Virtex-5 VLX330T device contains 207,360 LUTs, and the latest

Virtex-6 VLX760 contains 474,240 LUTs. Also, current FPGAs contain more built-in

hardware blocks like the DSP48E slices (Each DSP48E slice contains a 25×18 multi-

plier, an adder, and an accumulator), and larger Block RAM blocks. Given these large

hardware resources, both the BSIM4 and the PSP models can easily be fitted in such

devices given the estimated total number of LUTs shown in the Table 5.10.

Furthermore, current FPGA devices are superior than the Virtex-II Pro, in terms of

supported system clock and serial communication speeds (up to 6.5 Gb/s for RocketIO

GTX transceiver [184, 27]), which suggests that the acceleration figures for the CMOS

model will be better than the results in Section 5.1.1. This is further explored in the

next section.

5.2.2 Theoretical Performance Estimation on BEE3

The acceleration result is highly dependant on the number of FPGAs used and their

hardware capabilities. Current FPGAs are far more advanced and the technology growth

is continuing as seen in Figure 1.4 [25]. Hence, better acceleration results are expected to

be achieved using current state-of-art FPGA boards. This section outlines the theoretical

performance estimation of the CMOS LEVEL 3 model on the BEE3 board, using the

results demonstrated previously.

Chapter 5 Multi-FPGA Acceleration Results 107

5.2.2.1 Performance Estimation of the XUPV2P System

By recalling the theoretical performance estimate of the prototype multi-FPGA system

proposed in Equation 4.6, which can be reduced to Equation 4.7 by taking:

• the number of serial links between the host FPGA and each slave FPGA is one

(Slinks = 1),

• and the number of slave FPGAs is three (SFPGA = 3).

The operating frequency of the system is (75 MHz), which is the same as the operating

frequency of the serial communication system. This means that the hardware execution

time of the prototype system in seconds, Thw, is approximately given by:

Thw ≈ Ttheory

clkhw
(5.1)

Where clkhw is the design’s operating frequency (75 MHz).

5.2.2.2 Performance Estimation of the BEE3 System

The BEE3 multi-FPGA board is one of the current well known research systems [179].

Figure 5.7 outlines the architectural block diagram of this system. This system was

selected for performance estimation due to its current acceptance in the research com-

munity and its advanced hardware capabilities.

The BEE3 system is the third generation of the BEE2 engine described in Section 2.3.1.

The BEE3 board have four Xilinx Virtex-5 FPGAs combined with up to 64 GB of DRAM

and several I/O subsystems [179], as seen in Figure 5.7. The FPGAs are connected as

a ring with 72 connections between each adjacent devices. Each FPGA is connected to

four memory banks, which provide superior memory bandwidth and hence faster access

to data through the local BRAM buffers.

Chapter 5 Multi-FPGA Acceleration Results 108

Figure 5.7: BEE3 Compute Module Block Diagram [179]

By mapping the system architecture shown in Figure 4.9 to the four available FPGAs

in the BEE3 board (one host FPGA and three slaves), the same estimation equation

as in Equation 4.6 can be used to approximate the performance figures on the BEE3

hardware, by taking:

• Slinks = 6 , the number of links between the host FPGA and each slave FPGA,

this is taken to be the number of input words (6 words of 16-bit length) required

to compute the LEVEL 3 model.

• and SFPGA = 3 the number of slave FPGAs used for computing, as the board

contains four FPGAs, three of them can be used for computing and one FPGA as

a host controller.

Equation 4.6 becomes:

Chapter 5 Multi-FPGA Acceleration Results 109

CyclesBEE3 ≈ Tinit + 2Ta +
N

3
+ Ts (5.2)

where CyclesBEE3 is the estimated execution time on the BEE3 hardware in clock cycles.

Hence, the hardware execution time on the BEE3 hardware in seconds, TBEE3, is given

by:

TBEE3 ≈ CyclesBEE3

clkBEE3
(5.3)

Where clkBEE3 is the design’s operating frequency on the BEE3 hardware, which is

estimated to be about 150 MHz.

The Execution Time Ratio between the BEE3 hardware execution time in Equation 5.3

and the prototype system execution time in Equation 5.1 gives an approximate estima-

tion of the expected acceleration of the BEE3 hardware. This is given by the following:

Execution T ime Ratio ≈ TBEE3

Thw
≈ 2N

2N/3
≈ 3 (5.4)

Equation 5.4 shows that the BEE3 hardware is expected to be three times faster than

the current prototype system. Hence, the theoretical results showed that the BEE3

hardware is expected to achieve an average acceleration of about 30 times than the

OpenMP software implementation.

5.2.3 Discussion

Estimates of the resource usage showed that other current sophisticated models such

as the BSIM4 and the PSP are feasible to be implemented on FPGAs. The system is

also expected to provide larger speedup results, by taking advantage of more powerful

FPGAs as demonstrated by the estimated speedup that can be achieved by the BEE3

engine.

Chapter 5 Multi-FPGA Acceleration Results 110

The prototype system assumed one instance of the LEVEL 3 CMOS model per FPGA.

Using BEE3 boards, Virtex-5 FPGAs can contain more instances of the model and

hence have more computation threads. Therefore, the acceleration estimation reported

in this section would be higher depending on the number of model instances that can

be fitted on a single FPGA. Furthermore, the inter-FPGAs links between devices in the

BEE3 board would enable more signals and hence more data to be exchanged in parallel.

In addition, the superior memory bandwidth available will provide fast access to data

through the local BRAM buffers.

5.2.4 Computing Device Model Derivatives

The prototype system discussed in Section 4.5.2 does not implement the device model

derivative. For better accuracy and convergence, both continuous models and derivatives

are provided. However, due to the unavailability of derivative for the LEVEL 3 model

and the small size of the used FPGA, derivatives could not implemented and evaluated

on the prototype system. This section looks into using the Secant Method instead of

the Newton-Raphson’s Method in SPICE simulations.

5.2.4.1 The Secant Method

Typically, NR method converges quadratically when a sufficiently close initial operating-

point is chosen (Section 3.1.1). The simulator that uses the NR method should include

routines to evaluate both the device model funtion f(xi) and its first derivative f ′(xi)

at the point xi [127, 128]. The use of continues model functions and their derivatives

ensures the continuity of the simulation without overflows or errors.

One of the main drawback of the NR method is that the first derivative f ′(xi) cannot

always be calculated or may be very expensive to evaluate. Other methods like the secant

method are used in this case, which uses a difference quotient as seen in Equation 5.5

[127].

Chapter 5 Multi-FPGA Acceleration Results 111

xi+1 = xi − xi − xi−1

f(xi)− f(xi−1)
f(xi) (5.5)

5.2.4.2 Accelerating the secant method

The secant method has a convergence of the order of 1.6 to 1.4 and linear at worst

case, if the initial values are close to the root [185]. Hence, this method is slower in

convergence than the NR Method. However, the main advantage of the secant method

is that it does not require the existence of any derivatives of the main function.

In the circuit simulator in [186], device model derivatives were computed numerically

using finite differences. This does not effect whether a simulation converges or not. The

use of numerical differentiation, however, affects the rate of convergence of simulations.

The rates of convergence drops from quadratic (NR), to approximately 1.68, which

means that the error between successive iterations is reduced by a power of 1.68 instead

of a power of 2. In [186], it was found that a step size (h) value of h = 0.02V is suitable

for computing the transconductance values for many non-linear devices [185].

Given the limited hardware area of FPGAs, the secant method would be an attractive

solution to find the derivatives over Newton’s method, as no separate derivative code is

required. The use of difference equation in place of the derivative reduces the complexity

of the hardware design and hence conserve device resources. The superior convergence

rate of Newton’s method can be overtook by the potential large speedup and parallelism

delivered by FPGAs.

5.3 Summary

The synthesis results showed that by pre-evaluating the constant parameters in the

CMOS model, large amount of computations are reduced. This is based on the assump-

tion that most circuit simulation uses one transistor model during simulation. In other

words, the device model parameters usually stay the same during the SPICE simulation.

Chapter 5 Multi-FPGA Acceleration Results 112

The synthesis system can apply compiler optimisation techniques like constant propa-

gation at the scheduling level. The parameters can be changed at the synthesis level to

produce the required device model needed for a specific simulation.

Our architecture demonstrated a speedup of up to 10 times over a C software imple-

mentation, while consuming six times less power than the processor system as seen in

Section 5.1.1 and Section 5.1.3. The pipelined model implementation is used to perform

the device model computations on multi-FPGAs in a SIMD execution model. All FP-

GAs must have identical code that it is executed on different simulation data. The main

contribution of this Chapter is that out prototype multi-FPGA system accelerated the

device model evaluation step by up to 10 times. We expect that this approach would

provide higher speedup figures if more powerful FPGAs are used.

Estimates of resource usage showed that other current models such as the BSIM4 and

the PSP are feasible for implementation on FPGAs and are expected to provide similar

speed-up results, by taking advantage of more powerful FPGAs. Given the small FPGAs

used in our implementation process, the speed-up results may exceed the figures quoted

herein.

The synthesis results in Section 5.1.2 also showed that large device models could be par-

titioned into a number of sub-designs that can be fitted onto multiple FPGAs. However,

the number of inter-FPGA signals that have to be communicated would be considerable.

These signals have to be routed through a limited number of FPGA I/O pins. Hence, the

problem of exchanging the inter-FPGA signals over the limited communication band-

width, emphasises the need to optimise the number of inter-device signals resulted from

multi-FPGA partitioning. This issue is further explored in the next Chapter where an

interconnection optimisation technique is proposed in Section 6.3.5.

Chapter 6

Multi-FPGA Partition Mapping

As the synthesis results in Section 5.1.2 showed that the full CMOS LEVEL 3 model

used in the system in Section 4.3 could not be fitted on a single FPGA. Hence, this

model can be partitioned and mapped onto a number of FPGAs, in which the number

of inter-partitions connections must be minimised. This is because FPGAs are limited

in terms of available I/O pins. These results emphasised the importance to optimise

the inter-FPGA connections in the domain of multi-FPGA partitioning. This Chapter

introduces a novel technique which optimises the process of mapping partitions to their

corresponding FPGAs. Our technique exploits the topological properties of the Mesh

topology using simple partition swapping operations. This technique is applied on the

CMOS LEVEL 3 model in order to assess the effectiveness of the proposed technique on

a SPICE simulator device model.

This Chapter investigates the use of high-level synthesis and the logic partitioning in

the process of pin usage optimisation of a mesh-based topology. The design flow uses

a partition mapping technique applied after partitioning to optimise the pin usage of

the final design. This Chapter is organised as follows: Section 6.2 outlines the related

work done in the domain of inter-FPGA communication systems. Section 6.3 explains

the components of the multi-FPGA synthesis system used in the optimisation process.

Section 6.4 presents the experimental setup used. Results, observations and conclusions

are presented in Sections 6.5 and 6.6.

113

Chapter 6 Multi-FPGA Partition Mapping 114

6.1 Problem Definition

The domain of applications requiring multi-FPGAs as a prototype or actual systems

is growing noticeably over the last few years. Examples of such applications include

emulating large System-on-Chip (SoC) designs [187, 12], evaluating large scale Networks-

on-Chip (NoC) [188], and the use of increasing numbers of processors in Multi-Core

systems [97, 189]. The synthesis results in Section 5.1.2 showed that the full CMOS

LEVEL 3 model could not be fitted into a single FPGA and hence should be partitioned

into a number of partitions. These partitions can be cascaded together in a pipelined

fashion to achieve high performance, which can be mapped on multiple FPGA devices.

Speeding up such applications with Reconfigurable Computers is highly dependant on

the amount of parallelism in each application and how this can be mapped efficiently

on hardware. On the other hand, the complexity of reconfigurable computers is con-

stantly increasing as well with example systems like BEE, RAMP, Maxwell, TMD, and

DINI [107] as seen in Section 2.3.1. This paradigm is further encouraged by the enor-

mous efforts of the research community to port several scientific computation kernels to

the reconfigurable domain such as high-precision floating-point units and linear algebra

kernels [190, 191].

These example applications are usually very large and need large amount of FPGA

resources such as built-in blocks like memory, multipliers, and DSP; and require different

mapping, design, memory, and computational requirements. Because of the large sizes of

these applications, multi-FPGA mapping will introduce inter-FPGA connections which

requires more I/O pins. Hence, there is a need to further investigate multi-FPGA system

in the domain of partitioning, synthesis and resources optimisation including the I/O

communication especially when fully spatial implementation is considered as this would

require more inter-device connections.

Chapter 6 Multi-FPGA Partition Mapping 115

6.2 Inter-FPGAs Communication Synthesis

Multi-FPGA synthesis involves both high-level synthesis and logic partitioning. The

partitioning process can be performed at different abstraction levels such as behavioural,

structural [192]. The design is broken down into a set of sub-designs connected with

inter-partition signals synthesised over multiple devices [65, 193].

The output of the multi-FPGA design flow depends heavily on the target architecture.

Inter-FPGA communication is one of the fundamental issues to be addressed when

dealing with multi-FPGA systems. The communication could be done through direct

pin-to-pin connections between FPGAs, or using architectures like Mesh [194, 195],

Crossbar [196, 197], and Bus [198, 199].

The signals are changed in the source device, then passed on to the sink device. However,

FPGAs are very limited in terms of the number of available I/O pins, and hence may

not cover all inter-FPGA signals required. Poor inter-FPGA communication bandwidth,

commonly limits the gate utilisation to less than 20% [200]. In order to overcome this

limitation, a number of approaches have been proposed, which include the following:

6.2.1 Virtual Wires Approach

The Virtual Wires approach in [200] provides a way to overcome the FPGA I/O pin

limitation. This approach multiplexes and pipelines the inter-FPGA logical signals into a

single physical wire. Both the sender and the receiver sides use shift registers configured

into shift loops. Partitioning is performed at the netlist (structural) level.

The hardware emulation platform used consists of a number of FPGA-boards each con-

taining sixteen Xilinx XC4005 devices connected in a two-dimensional nearest-neighbour

mesh. The design flow uses a commercial netlist partitioning tool and a routing algo-

rithm that statically schedules and routes inter-FPGA communication. The routing

hardware is then added to the resulted netlists.

Chapter 6 Multi-FPGA Partition Mapping 116

Figure 6.1 shows an illustrating example of six logical signals allocated to six physical

wires using the Hard wire interconnect approach (a). The figure also shows the Virtual

Wire interconnect approach (b) in which the same six logical signals are multiplexed

between two pipelined shift loops over the same single physical wire. Each register in

the pipelined shift loop holds a single bit of the logical output from one FPGA to the

corresponding logical input of the other FPGA.

(a) (b)

Figure 6.1: Hard wires interconnect (a), Virtual wires interconnect (b)

The design flow performs partitioning at the netlist level, which subsequently reduces the

performance of the final system. Furthermore, the number of I/O signals resulted from

the partitioning process is larger than the behavioural partitioning approach [201] as

explained in Section 2.2.1. Multiplexing these signals via the same physical wire would

hugely effect the performance of the system. In addition, the signals to be shifted in and

out from one device to the other require multiplexing hardware in the receiver/sender

ends. Hence, this approach traded-off area and performance with I/O usage.

6.2.2 FunctionBus Approach

Another approach to overcome the pin limitation problem was proposed in [65], where

a single FunctionBus is used to transmit function calls between FPGAs. The bus archi-

tecture consists of a data/address bus AD with two bidirectional control lines Areq and

Dreq, as shown in Figure 6.2 [65]. The functional specification of the designs were auto-

matically partitioned rather than the structural implementation. Coarse-grain functions

Chapter 6 Multi-FPGA Partition Mapping 117

from the specification are considered as nodes, and data transfers between these func-

tions are represented as edges. The bus implements these function calls by multiplexing

the edges over a single bus, and multiplexing the control signal as addresses over the

same bus.

Figure 6.2: The FunctionBus Architecture

It was also shown in [65] that the system’s performance can be traded-off with inter-

communication by modifying the width of the bus AD. However, the bus approach would

be very slow as only one FPGA is active and accessing the bus at any time. In addition,

functions are executed in a sequential fashion where a caller function waits for the callee

function to return and then resumes the execution. This approach underutilise the

parallelism inherently embedded in FPGAs.

6.2.3 Other Approaches

Other topologies and partitioning approaches were proposed to improve upon the re-

source utilisation in multi-FPGA systems. A circuit partitioning algorithm, introduced

in [202], uses time-multiplexed interconnection wires between FPGAs exploiting multi-

casting signals to reduce the pin limitation. This technique is named Time-multiplexed

Off-chip Multi-casting interconnection (TOMi). The performance of this architecture

can suffer degradation depending on the number of FPGAs and intercommunication

signals [203]. Figure 6.3 shows the overall TOMi architecture [204].

A similar approach was proposed in [205, 206] based on time-multiplexing the I/O

signals . The algorithm uses an Integer Linear Programming formulation (ILP) to find

Chapter 6 Multi-FPGA Partition Mapping 118

Figure 6.3: Block Diagram of the TOMi Architecture [204]

the optimum number of required I/O pins under the given time constraints by selecting

the signals to be time-multiplexed. However, forming and solving ILP equations is

computationally expensive as the number of variables heavily limits the solver finding a

solution.

In [194], a placement algorithm called Placement&Routing-based Partitioning (PRP)

was proposed. The multi-FPGA mesh topology is modelled as a single large FPGA and

the borders between devices is considered as a superimposed template. The Simulated

Annealing placement optimisation approach used to route inter-FPGA nets amongst

fixed mesh topology.

The partitioning approaches discussed earlier focus only on the partitioning and the

synthesis without taking into account the process of mapping the resulting partitions

to their corresponding FPGAs. A fixed mapping of partitions to FPGAs is assumed

before their corresponding optimisation process is performed. In other words, there is

not consideration of which partition should be mapped to which FPGA. The technique

presented here exploits the topological properties of the Mesh topology in order to reduce

the physical wire count of the final design by optimizing the mapping process.

Chapter 6 Multi-FPGA Partition Mapping 119

6.3 Multi-FPGA Synthesis System

A functional block digram of the proposed synthesis system is shown in Figure 6.4. This

section explains in details the components of this system.

Figure 6.4: Block Diagram of the Multi-FPGA Synthesis System

6.3.1 Input Specification Model

The input of the system is expressed in terms of Data Flow Graphs (DFG). The DFG is

a directed graph that consists of a number of nodes representing operations connected

via a number of edges denoting data transfers (dependencies) between these operations.

DFG is a common intermediate representation both in software and hardware which is

used to model the data flow information. Hence, the DFG model appeared to be the

suitable starting point for our synthesis process. The current prototype synthesis system

supports DFG only, where operation are executed without any control flow changes.

6.3.2 K-way Partitioning

Logic Partitioning for multi-FPGAs systems consists of splitting the internal represen-

tation into a number of balanced partitions. Each partition is mapped to a particular

FPGA. Our system uses the partitioning tool Metis in [207, 208]. Metis is a family of

Chapter 6 Multi-FPGA Partition Mapping 120

programs for partitioning unstructured graphs and hypergraphs. The underlying algo-

rithms used are based on the multilevel partitioning approach that has been shown to

produce high quality results and scale to very large problems. This approach starts off

by coarsening (clustering) the original graph to reduce its size, then partitioning the

smaller graph, and finally uncoarsening it to construct the final partition. The graph

nodes can represent different design components; hence, this tool can perform partition-

ing at different levels of abstraction.

The DFG description of the input design is partitioned into balanced segments using

Metis. The output of the partitioner consists of a number of partitions connected to-

gether using inter-partitions signals. This task is performed before the synthesis step.

6.3.3 Synthesis

High-level synthesis (HLS) is the process of transforming the DFG sub-graphs produced

by the partitioner to a structural description satisfying user constraints on area, delay

and power consumption. For the sake of simplicity, the synthesis task in this work

mainly focuses on the scheduling of operations, as it was assumed that operations were

uniquely mapped to specific resources. In other words, a spacial implementation of

design is considered. The graph nodes can represent different components at different

levels of granularities.

The scheduler implements a version of the resource constrained List Scheduling heuristic.

The priority list labels each node with its longest path to the sink. Nodes are then

ordered in a decreasing order, in other words, the most urgent operations are scheduled

first [49].

6.3.3.1 Scheduling under Inter-FPGA I/O Constraints

After performing the partitioning task, inter-FPGA I/O operations are inserted in the

DFG at each cut net. Each I/O operation represents the communication block between

Chapter 6 Multi-FPGA Partition Mapping 121

the connected FPGAs. I/O operations are then scheduled similarly to functional opera-

tions under I/O constraints. The List Scheduling processes the I/O operations according

to their priority (urgency in this case) and resources availability. A constraint was added

to the scheduling model to limit the number of simultaneous communication nodes in a

single control step.

A simple example is illustrated in Figure 6.5. The two cut nets produced by the par-

titioner are replaced by two I/O operation nodes. For this example, the inter-FPGA

transfer delay is assumed to be one clock cycle for each communication node. After

rescheduling, the overall latency increased by one clock cycle.

Figure 6.5: Inter-FPGA Communication Nodes Insertion

6.3.4 Target Architecture Models

In this section, two target model architectures were used in the evaluation process:

1. The first architecture is a classical Mesh topology with a grid of FPGAs connected

together using direct physical connections.

2. The second architecture is also a Mesh based topology based on the Virtual Wires

model outlined in [200]. The latter is different from the classical Mesh in the fact

that the inter-FPGA signals are time-multiplexed to reduce the pin utilisation.

In other word, Virtual Wires approach multiplexes and pipelines the inter-FPGA

Chapter 6 Multi-FPGA Partition Mapping 122

logical signals into a single physical wire as seen in Section 6.2. For the second

architecture the Virtual Wires Model is applied after the Mesh Model to reduce

the inter-FPGA connections.

Figure 6.6 shows a diagram of the target Mesh topology, where pi denotes the partition

mapped to FPGAj . The fully connected mesh is generally too expensive to realise

unless the number of devices is small. Partially connected topology are more common

where some nodes are connected to more than one other devices usually with point-to-

point links. Internal signals are changed in one device and are fed to next neighbouring

device until reaching the target devices. A number of multi-FPGA systems shown in

Section 2.3.1 are based on varying mesh topologies, which make them interesting targets

for inter-FPGA bandwidth optimisation.

Figure 6.6: Typical Mesh Topology

6.3.4.1 Problem Formulation

FPGAs in a classical Mesh topology are connected to their imediate neighbouring FP-

GAs through direct I/O connections. The pin utilisation optimisation process should

satisfy the constraints in Equation 6.1:

minimise Ctotal =
∑

Ci, where: Ci ≤ Cmax (6.1)

where Ci is the number of pins utilised in each FPGA, Cmax is the number of I/O pins

available in each FPGA. Ctotal denotes the total number of pins utilised by each design.

Chapter 6 Multi-FPGA Partition Mapping 123

In this work, we use the wire count W to measure the effectiveness of the proposed

approach. This is defined as the number of all the allocated physical wires amongst all

devices.

6.3.4.2 Connectivity Matrix

The Connectivity Matrix is an intermediate data structure used by the algorithm to

keep track of the different partitions and their FPGA mapping to the actual architec-

tural model. This structure also stores information such as the number of I/O transfers

amongst FPGAs and their timings. The matrix also stores the N×N mappings of par-

titions to FPGAs.

The Connectivity Matrix acts like the Bucket structure in the FM algorithm (Sec-

tion 2.2.1). The Connectivity Matrix, however, stores the state of the partitions and

the FPGAs in the system, whereas the FM bucket stores the graph nodes and their

corresponding gains.

6.3.4.3 The Inter-FPGA I/O Static Router

Once the partitioner divides the input DFG into a number of sub-graphs (N×N parti-

tions), these are then mapped to devices in the topology. The inter-FPGA signals have

to be routed from a source to a sink FPGA. The routing process is performed as follows:

• For the Mesh model, the inter-FPGA signals are first statically routed using the

same approach of the Virtual Wires routing algorithms. Direct physical wires are

used between adjacent FPGAs, and the feedthrough signals are routed through

the neighbouring FPGAs until the sink FPGA is reached. In the routing process,

no time-multiplexing technique is applied and all signals are treated separately as

direct physical connections.

Chapter 6 Multi-FPGA Partition Mapping 124

Figure 6.7: Static routing of Inter-FPGA signals using Shortest Path Algorithm, (a)
Partitioned graph, (b) Partition Mapping and Signal Routing

• In the case of the Virtual Wires architecture, the phase routing algorithm outlined

in [200] is applied to route the inter-FPGA nets. Direct connections between neigh-

bouring devices are time-multiplexed and routed using physical wires. Connections

between non-neighbouring FPGAs are routed through the nearest neighbours un-

til reaching the target FPGA. This algorithm uses the Dijkstra’s Shortest Path

algorithm to find the shortest path between the source and the sink FPGAs. The

process of mapping partitions to FPGAs and signal routing is shown in Figure 6.7.

A signal between the source p0 to the sink p5 is routed through neighbouring

FPGAs p1 and p4.

The signals routed through intermediate FPGAs are called feedthrough signals.

The algorithm takes into account the number of I/O pins for each device while

routing the signals. If all physical connections are used, signals are scheduled

to start in a later phase. One of the outputs of this procedure is a mapping

of partitions to specific FPGAs with all I/O operations scheduled to particular

phases. Pin utilisation of the architecture is also calculated.

Chapter 6 Multi-FPGA Partition Mapping 125

6.3.5 Partition Swapping Optimisation

The output of the partitioning process consists of a number of balanced segments con-

nected together via a number of I/O operations. These partitions are then mapped to

FPGAs in both the Mesh and the Virtual Wires architectures. The phase routing pro-

cedure then statically routes the inter-FPGA signals and stores all mapping information

to the Connectivity Matrix.

Assuming that there is no restriction on the flow of control or any constraint to map a

particular part of the circuit to a specific FPGA; it can be suggested that any logical

partition can be mapped to any FPGA in the system. For instance, a simple mapping

process might assign a partition to its corresponding FPGA e.g. map partition p1 to

FPGA1. This will result in a number of signals being routed through other FPGAs via

feedthrough signals.

The algorithm outlined in this section explores the possibility to optimise the design

by altering the Partition → FPGA mapping process in the Connectivity Matrix. The

assumption that partitions are not locked for movement is important because the algo-

rithm tries to reduce the wire usage by swapping the logical partitions to minimize the

number of inter-FPGA physical connections. If there is a restriction on mapping the

logical partitions to specific FPGAs, the swapping operation cannot be performed. It is

also assumed that each FPGA is assigned a single logical partition only.

The novelty of our technique lies in using simple swapping operations to exploit the

topological properties of the Mesh topology. Our technique looks at optimising the

mapping process of partitions to FPGAs. A simple direct mapping process would assign

each Partition i to FPGAi. However, our technique tries to optimises this mapping

process by swapping partitions from one FPGA to another in order to reduce the inter-

FPGA connections.

The Kernighan-Lin algorithm [62] is used in minimum-cut graph partitioning to itera-

tively improve the solution by swapping pairs of vertices between partitions to reduce

the number of cut nets between partitions (i.e. the cutsize) as seen in Section 2.2.1.

Chapter 6 Multi-FPGA Partition Mapping 126

Our technique, however, is applied after the partitioning process, by swapping pairs of

partitions to minimize the number of inter-FPGA connections used by exploiting the

topological property of the Mesh architecture. Also, partitions are not fixed to a specific

FPGA after being moved, which allow them to be swapped again as long as the move

improves the current mapping.

The Partition Swapping technique starts by assigning partitions to their corresponding

FPGAs, following the Direct Mapping approach in which Partition i is assigned to

FPGAi. The algorithm then calculates the number of the physical wires after swapping

each pair of logical partitions. The pair that results in reducing the wire count most is

selected for swapping. This process is called a pass. A new pass is started and a pair of

partitions is then selected for swapping again. The algorithm terminates when a pass

cannot improve the design; in other words, the number of the physical wires cannot be

reduced any further.

6.3.5.1 Algorithm Example

A simple example is illustrated in Figure 6.8. The example consists of four partitions

p0 to p3 connected together using logical links. The integer numbers shown near each

connection denotes the number of I/O links between the connected partitions. For this

example, the I/O links are assumed to be 1 bit-sized. The figure also shows the multi-

FPGA target architecture consisting of a Mesh of four FPGAs (2×2) connected together

using direct connections. Two mapping techniques (a) and (b) are demonstrated as seen

in the Figure.

The Direct Mapping approach (a) maps the partition pi to the corresponding FPGAi,

regardless of the number of the I/O links between these partitions. In this case, the

connections between p0 and p3 (12 links) are routed through the neighbouring (FPGA1)

to reach the target FPGA3. This means that FPGA1 would have at least 24 of its bits

wasted to feedthrought signals between FPGA0 and FPGA3. The estimated wire count

for this mapping is 36.

Chapter 6 Multi-FPGA Partition Mapping 127

Figure 6.8: Partition Swapping Optimisation example: (a) Direct Mapping, (b) Par-
tition Swapping

The Partition Swapping technique (b), however, improves on the Direct Mapping so-

lution in (a). The number of physical wires required was reduced to 29, simply by

swapping the partitions p1 and p3.

In this example, only one swap operation was identified and no more improvement is

possible. In the case of much larger examples, the algorithm follows the same process

to identify the best sequence of the swapping operations that leads to the minimum

number of wires.

6.3.5.2 Algorithm Pseudo Code

Our technique is applied after the partitioning process by swapping pairs of partitions

to minimize the number of inter-FPGA pins used by exploiting the topological property

of the Mesh topology. Partitions can be swapped again as long as the move improves

Chapter 6 Multi-FPGA Partition Mapping 128

the current mapping. The novel features of our technique lies in using simple swapping

operations to exploit the topological properties of the Mesh topology. Our technique

optimises the mapping process of partitions to FPGAs by swapping partitions from one

FPGA to another in order to reduce the inter-FPGA connections.

The swapping operation reduces the feedthrough signals which are going from the source

FPGA to the sink FPGA through the neighbouring FPGAs. In other words, this tech-

nique brings the FPGAs that have large number of interconnections closer to each other

to avoid these connections to be routed through other neighbouring devices.

The algorithm shown in Figure 6.9 is the pseudo code for the proposed optimisation

technique. The function

routingAlgorithm() is an implementation of the routing algorithm that corresponds

to the specific target architecture (the mesh routing algorithm and the phase routing

algorithm). This function estimates the number of the physical wires of the mapped

design. swap(i,j) is the function to swap the partitions i and j. This is done by

switching a partition tag in all the functional nodes belonging to these partitions.

In line 10, the partitions i and j are swapped back after the wire count value is calculated;

this is performed so that the swapping operation will not effect the values calculated in

the next pass. After each swap operation, the resulting tempWireCount - which is less than

the initial wire count initWireCount - is stored using the function storeTempWireCount().

A swap operation is selected if there exist a tempSmallestWireCount which is less than

the tempPinCount achieved so far.

The algorithm terminates if there is no swap operation that further reduces the

tempPinCount. The optWireCount is the final wire count achieved by the optimisation

algorithm.

Chapter 6 Multi-FPGA Partition Mapping 129
Chapter 6 Multi-FPGA Partition Mapping 126

Algorithm 2 The Partition Swapping Optimisation Algorithm
1: initWireCount ← routingAlgorithm()
2: optWireCount ← initWireCount
3: loop
4: {Start of a pass}
5: tempWireCount ← optWireCount
6: for i = partition 0 to (n-1) do
7: for j = partition (i+1) to (n-1) do
8: swap(i, j)
9: swapWireCount ← routingAlgorithm()

10: swap(j, i)
11: if swapWireCount < tempWireCount then
12: storeTempWireCount()
13: tempWireCount = swapWireCount
14: end if
15: end for
16: end for
17: tempSmallestWireCount ← findSmallestTempWireCount()
18: if tempSmallestWireCount < tempWireCount then
19: swap(i, j)
20: optWireCount ← tempSmallestWireCount
21: {End of a pass}
22: else
23: break
24: {End of algorithm}
25: end if
26: end loop

6.4 Experimental Setup

6.4.1 Benchmark DFGs

Table 6.1 shows a number of designs with varying sizes used as inputs to the multi-

FPGA synthesis system described earlier. The input operators are 16-bit sized. The

first five design were first written mathematically in a straight-line fashion (i.e. no loops

or conditional) and then translated into our custom DFG format.

2D4x4DCT and 2D8x8DCT are DFG examples for two dimensional discrete cosine

transforms of 4x4 and 8x8 matrices respectively. All the sine values are pre-calculated

Figure 6.9: The Partition Swapping Optimisation Algorithm

6.4 Experimental Setup

6.4.1 Benchmark DFGs

Table 6.1 shows a number of designs with varying sizes used as inputs to the multi-

FPGA synthesis system described earlier. The input operators are 16-bit sized. The

first five design were first written mathematically in a straight-line fashion (i.e. no loops

or conditional) and then translated into our custom DFG format.

2D4x4DCT and 2D8x8DCT are DFG examples for two dimensional discrete cosine

transforms of 4x4 and 8x8 matrices respectively. All the sine values are pre-calculated

and hardcoded in the code. MatMult are the DFG examples for n × n matrix multi-

plication with different lengths (4, 8 and 16).

Chapter 6 Multi-FPGA Partition Mapping 130

CMOS LEVEL 3 is model used in our device model accelerator in Section 4.3. We used

the full CMOS LEVEL 3 model before the parameters pre-calculation. Our technique

is applied on the CMOS LEVEL 3 example in order to assess the effectiveness of the

proposed technique on the SPICE simulator device model. This model could not be fitted

on the Virtex-II Pro, and hence makes a suitable benchmark to test our technique.

DFG is a randomly generated DAG (Directed Acyclic Graphs) using the random gener-

ation tool described in [209]. This graph is then annotated randomly with information

like operation type and area size. The randomly generated graph is used to assess the

effectiveness of the system with big designs. This is due to the lack of large DFG bench-

marks dedicated for synthesis and partitioning in literature. Also, the random graph is

used to examine whether it can be representative of the actual DFGs in synthesis and

partitioning.

Table 6.1: DFG Benchmarks
Benchmark No. of Nodes No. of Edges Latency (cycles)
2D4x4DCT 226 336 9
2D8x8DCT 1922 2880 11
MatMult4 114 176 5
MatMult8 962 1472 6
MatMult16 7938 12032 8
CMOS LEVEL 3 143 246 40
DFG 15606 45878 1065

6.4.2 System Implementation

The multi-FPGA synthesis system discussed in Section 6.3 (Figure 6.4) was implemented

in Java. The target architecture consists of 16 FPGAs connected together in a 4 × 4

grid topology. Inter-FPGA signals are routed using both the Mesh model and the

Virtual Wires model. The system input consists of DFG graphs. These graphs are

partitioned using the Metis tool into 16 balanced partitions. Partitions are balanced

according to their size, where the total size of the all operations in each partition must

be the same (Section 2.2.1.3). Each design is then routed using the phase routing

algorithm. This algorithm time-multiplexes all inter-FPGA logical signals into physical

Chapter 6 Multi-FPGA Partition Mapping 131

wires. The optimisation algorithm then tries to reduce the wire count of the design using

the procedure explained in Section 6.3.5.

The same procedure is applied to the Mesh model, but without the time-multiplexing

step. The evaluation metric used to measure the improvement in this experimental work

is the wire count. This is the number of effective physical wires between all the FPGAs.

It is clear that reducing the wire count of the design implies the reduction in the pin

utilisation of FPGAs.

6.5 Experimental Results

The multi-FPGA synthesis optimisation procedure was applied to the different DFG

benchmarks and the results are shown in Table 6.2 for the Mesh model and Table 6.3

for the Virtual Wires model.

Table 6.2: Wire Count improvement using the Partition Swapping technique for the
4× 4 Mesh Model

Benchmark Winit Wfinal P I(%)
2D4x4DCT 100 97 2 3.00
2D8x8DCT 232 230 2 0.86
MatMult4 46 34 2 26.09
MatMult8 167 132 2 20.96
MatMult16 843 542 7 35.71
CMOS LEVEL 3 128 103 4 19.53
DFG 1916 1414 7 26.20
Averages 3.71 18.91

Table 6.3: Wire Count improvement using the Partition Swapping technique for the
4× 4 Virtual Wires Model

Benchmark Winit Wfinal P I(%)
2D4x4DCT 63 63 0 0.0
2D8x8DCT 177 163 4 7.91
MatMult4 43 33 2 23.26
MatMult8 155 121 3 21.94
MatMult16 728 473 5 35.03
CMOS LEVEL 3 61 48 5 21.31
DFG 187 149 4 20.32
Averages 3.29 18.54

Chapter 6 Multi-FPGA Partition Mapping 132

Both tables include the results of applying our optimisation algorithm on the SPICE

LEVEL 3 model. The results demonstrate the optimised wire counts for both architec-

tures: the Virtual Wires and the Mesh models. The tables show the initial wire count

Winit obtained using the routing algorithm that corresponds to each architecture model

prior to the optimisation process. The next column of the tables show the final wire

count Wfinal which is the minimum number of connections achieved by our optimisation

algorithm. The number of passes performed by the algorithm is P , and the percentage

improvement in the wire count I(%) are shown in the last two columns of the tables.

This is calculated as the relative difference bewteen the initial wire count Winit and the

final wire count Wfinal as follows:

I(%) =
100(Winit −Wfinal)

Winit
(6.2)

The average improvement over the evaluated benchmarks was found to be approximately

18% for both architecture models. From both tables (6.2 and 6.3), it can also be seen

that there is consistency between the wire count of the actual DFG graphs and the

random DFGs. It can also be noted that there is consistency between the wire count for

the large and the small graphs. The latter suggests that the algorithm is also effective

when dealing with large random graphs. The average wire count is approximately the

same for both architectures. The table also suggests that the algorithm can perform an

average of 3 to 7 iterations to achieve the final wire count. It can be seen from the table

that the concept of Virtual Wires provides an improvement over the Mesh topology,

which confirms the conclusions in [200].

The results showed that our technique achieved nearly the same results for both the

Mesh model and the Virtual Wires model. This is because the main factor which drives

the swapping technique is minimising the interconnection between FPGAs regardless

if they are time-multiplexed or not. Hence, as far as our technique is concerned, a

Mesh model and a Virtual Wires model would look like a generic Mesh topology with

connections between partitions.

Chapter 6 Multi-FPGA Partition Mapping 133

6.5.1 Results Comparison

In order to assess the effectiveness of the optimisation approach, our results are compared

with the optimum wire count denoted by Wopt. This is obtained by calculating the wire

count W for each possible mapping of the partitions. However, calculating such results

for the 4 × 4 Mesh would require phenomenal amount of time (16! permutations).

Instead, only the following Mesh topologies were calculated: 3 × 3 and 3 × 2. Each of

the latter arrangement was tested on both the Mesh and the Virtual Wire Models.

6.5.1.1 Mesh Model Case

Tables 6.4 and 6.5 compare the calculated wire count with the optimum values for the

3 × 3 and 3 × 2 Mesh Models. The tables show the initial wire count Winit obtained

using the Mesh routing algorithm prior to the optimisation process. The next column of

the table shows the final wire count Wfinal which is the number of connections achieved

by our optimisation algorithm.

The next column shows the optimum wire count Wopt. The Optimum wire count values

are obtained by calculating the wire count of all the possible mapping permutations. In

other words, all the possible cases of mapping N×N partitions to N×N FPGAs, which

would result in N ! possible mappings to be tested. Due to the time complexity of this

process, only 3× 2 and 3× 3 mesh topologies were calculated as seen in Tables 6.4 and

6.5. The last column indicates the relative error value Error(%) between Wfinal and

Wopt which is given by:

Error(%) =
100(Wfinal −Wopt)

Wfinal
(6.3)

It can be seen from the table that the results obtained by our approach are the same or

very close to the optimum solutions. It can also be seen that our optimisation technique is

also effective for the CMOS LEVEL 3 device model used in our multi-FPGA accelerator

in Section 4.3.

Chapter 6 Multi-FPGA Partition Mapping 134

Table 6.4: Comparing the wire count improvement with the optimum solution for
3× 3 mesh.

Benchmark Winit Wfinal Wopt Error(%)
2D4x4DCT 79 49 49 0
2D8x8DCT 193 161 161 0
MatMult4 34 26 26 0
MatMult8 116 91 91 0
MatMult16 464 368 368 0
CMOS LEVEL 3 87 64 64 0
DFG 1237 967 930 3.83

Table 6.5: Comparing the wire count improvement with the optimum solution for
3× 2 mesh.

Benchmark Winit Wfinal Wopt Error(%)
2D4x4DCT 55 41 41 0
2D8x8DCT 224 150 150 0
MatMult4 25 22 22 0
MatMult8 107 83 83 0
MatMult16 437 334 333 0.30
CMOS LEVEL 3 60 51 51 0
DFG 842 669 669 0

6.5.1.2 Virtual Model Case

Tables 6.6 and 6.7 compare the calculated wire count with the optimum values for

the 3× 3 and 3× 2 Virtual Wires Models. The tables show the initial wire count Winit

obtained using the Virtual Wire routing algorithm prior to the optimisation process, the

final wire count Wfinal which is the number of connections achieved by our optimisation

algorithm. The optimum wire count Wopt figure is calculated the same way used in

Section 6.5.1.1. The last column indicates the relative error value Error(%) between

Wfinal and Wopt which is calculated using Equation 6.3.

The same conclusions obtained for the Mesh model can also be observed for the Virtual

Wire model as the results obtained by our approach are the same or very close to the

optimum solutions. It can also be seen that our optimisation technique is also effective

for the CMOS LEVEL 3 device model.

Chapter 6 Multi-FPGA Partition Mapping 135

Table 6.6: Comparing the wire count improvement with the optimum solution for
3× 3 mesh.

Benchmark Winit Wfinal Wopt Error(%)
2D4x4DCT 49 34 33 3.03
2D8x8DCT 129 109 108 0.93
MatMult4 29 20 20 0
MatMult8 109 86 86 0
MatMult16 417 326 325 0.31
CMOS LEVEL 3 30 24 22 9.09
DFG 95 85 82 3.66

Table 6.7: Comparing the wire count improvement with the optimum solution for
3× 2 mesh.

Benchmark Winit Wfinal Wopt Error(%)
2D4x4DCT 38 27 27 0
2D8x8DCT 148 102 102 0
MatMult4 22 18 18 0
MatMult8 97 73 73 0
MatMult16 372 287 287 0
CMOS LEVEL 3 22 18 18 0
DFG 67 51 48 6.25

6.6 Results Analysis

An effective technique was presented to reduce the inter-FPGA connections and hence

the I/O pins utilisation of the Mesh-based multi-FPGA architecture. The technique

achieved an average improvement of about 18% as seen in Section 6.5. The results

produced were very close to the calculated optimum solution. The technique is based on

optimising the process of mapping the logical partitions to their corresponding FPGAs.

It has been tested on an architecture based on the Virtual Wires model and a classical

Mesh model. Our technique showed the same effectiveness when applied on the LEVEL

3 SPICE device model.

In order to reduce the complexity of the implementation, a number of assumptions were

made. This technique assumes that partitions can be freely swapped from one FPGA to

the other. However, if there is any design restriction on a particular part that cannot be

swapped, this would reduce the effectiveness of the optimisation process. The process

of parsing and lexically analysing the high level descriptions using C or VHDL was not

Chapter 6 Multi-FPGA Partition Mapping 136

implemented due to time limits, hence DFG graphs were used instead as nodes and

edges can represent systems at different abstraction levels.

The results shows that the algorithm is also effective in the case of large DFG designs.

The randomly generated graph showed similar improvement results to the actual DFGs,

which suggests that the random graphs are representative of actual graphs. Because the

technique uses simple swapping operations, it can be applied after the partitioning step

regardless of the level of granularity is was performed at.

The swapping technique does not require any extra hardware circuitry for I/O interfacing

like the shift loops (serialiser, diserialiser) needed in the Virtual Wires. The proposed

approach can be extended to exploit the topological properties of other architectures.

It can also be integrated into current multi-FPGA EDA tools like Certify [70] at the

optimisation stage to reduce the physical wire usage and hence increase the FPGA logic

utilisation.

6.7 Summary

In this Chapter, a multi-FPGA synthesis system has been presented focusing on min-

imising the inter-FPGA connections. This system performs partitioning and synthesis

on the input design specified using DFG graphs. Inter-FPGA I/O operations are in-

serted in the partitioned graphs and handled similarly to other functional operations,

this simplifies the scheduling and the static routing tasks. The main focus of our syn-

thesis system, however, is optimising the inter-FPGA connections which subsequently

reduces the FPGA I/O pins usage. An optimisation technique is introduced to minimise

the inter-FPGA connections by applying partition swapping moves. The novelty of our

technique lies in using simple swapping operations to exploit the topological properties of

the Mesh topology. Our technique looks at optimising the mapping process of partitions

to FPGAs by bringing the FPGAs with heavy inter-communication closer together.

One of the main advantages of our technique is that it does not require any extra

hardware circuitry like the ones needed in the Virtual Wires. Furthermore, it can be

Chapter 6 Multi-FPGA Partition Mapping 137

applied after the partitioning process regardless of abstraction level is was performed at.

The technique was also shown to be effective to reduce the pin-usage when the SPICE

LEVEL 3 model was used as a benchmark.

Future extension to our technique is to investigate the application of such technique

in system-on-chip clustering and FPGA on-chip routing. In addition to extending the

algorithm to work on mapping multiple partitions on a single FPGA.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

EDA tools and algorithms are example applications which are demanding more com-

putational power due to the current increase in complexity of circuits. This made the

transistor-level SPICE simulation a growing bottleneck in the circuit development pro-

cess. The main objective of this thesis is to investigate the FPGA’s potential to acceler-

ate the SPICE simulator through parallelism. Our work demonstrated an architecture

to exploit the parallelism in the SPICE model evaluation to maximum acceleration.

The first part of this thesis focuses on the design and implementation of a prototype

multi-FPGA system to accelerate the device model evaluation step in the SPICE simu-

lator. The main contribution of this part lies in the proposed architecture which exploits

three degrees of inherent parallelism available in the model evaluation phase. Firstly,

each device model can be evaluated independently from each other, which can easily be

mapped on a number of FPGAs. Secondly, the device model is pipelined using a spacial

implementation in order to maximise the throughput. The pipelined design can start a

device model evaluation at constant number of clock cycles. Thirdly, instruction level

parallelism is also exploited by executing multiple instructions simultaneously.

138

Chapter 7 Conclusions and Future Work 139

The second part of the thesis outlined the experimental validation of the proposed ar-

chitecture. The experimental results demonstrated speedup of up to 10 times over a C

software implementation parallelised using the OpenMP library running on an Intel 2.0

GHz Due core 2 processor with 2.5 GB of RAM. The FPGA accelerator consumed one

sixth of the processor power. The main factor which allowed the FPGA accelerator to

show such improvement over conventional processors is the flexibility and efficiency of

FPGAs to implement custom pipelined datapaths. Estimates of resource usage showed

that other current device models such as the BSIM4 and the PSP models are feasible for

FPGA implementation. The FPGA accelerator is expected to provide larger speedup

results by taking advantage of more powerful FPGAs. The platform is built using Xil-

inx development boards, which will make it much cheaper than third-party specialised

hardware.

In the experimental validation part, a manual transformation flow to translate the high-

level device model code to a synthesisable code was embarked due to the large complexity

and the long time scale needed to develop a dedicated compiler. However, the manual

flow showed that an automatic compiler system that performs this operation is feasible.

The transformation flow reduces the FPGA resource usage by fixing the model param-

eters beforehand. This is based on the assumption that in most cases only one device

model is used to model all the transistors in a circuit. The model parameters can be

changed to target a different transistor model.

The third part of this thesis focused mainly on the case where the device model is large

and cannot be fitted into a single FPGA. The synthesis results of the full CMOS LEVEL

3 model showed that it could not be mapped on the Virtex-II Pro FPGA. This model

can be partitioned to a number of sub-designs which can be mapped on a multi-FPGA

system. This approach dictates that inter-FPGA signals must be minimised as FPGAs

are limited in terms of their available I/O pins. Hence, a multi-FPGA synthesis system is

designed specifically to explore the problem of minimising the inter-FPGA connections.

An effective optimisation technique has been presented that can be used to reduce the pin

utilisation and hence the inter-FPGA connections of the Mesh topology by optimising the

process of mapping the logical partitions to their corresponding FPGAs. This technique

Chapter 7 Conclusions and Future Work 140

uses simple partition swapping moves to bring FPGAs with heavy inter-communication

together. The technique has been tested on an architecture based a on the Mesh model

and the Virtual Wires model. The technique achieved an average improvement of about

18% for a number of benchmark DFGs which include the CMOS LEVEL 3 model. The

results produced were very close to the calculated optimum solution.

To conclude, the work presented in this thesis aims to contribute towards permitting the

EDA community to speed up the design/verification using modern hardware platforms.

The proposed system can be used as an acceleration coprocessor that can be used by the

SPICE simulator community to speedup transistor-level simulations. In this thesis we

demonstrated that it is worthwhile continuing this research direction further to explore

the use of FPGAs to accelerate other state-of-art EDA tools.

7.2 Summary of Research Contributions

This thesis serves as a proof of concept to evaluate and quantify the cost of using

multi-FPGA systems in SPICE-like simulations in terms of area, power, acceleration,

and throughput. A code transformation flow which converts the high-level model code

to structural VHDL was also implemented. This showed that an automatic compiler

system to design, map, and optimise the SPICE-like simulation on FPGAs is feasible.

This thesis has two main contributions. The first contribution is the multi-FPGA ac-

celerator of the device model evaluation which demonstrated a 10 times speedup over

conventional processors. The second contribution lies in the use of multi-FPGA syn-

thesis to optimise the inter-FPGA connections through altering the process of mapping

partitions to FPGA devices.

An expanded list of research contributions is as follows:

• Parallel Device Model Evaluation on Multi-FPGAs: Our architecture ex-

ploited the medium-grained parallelism, by executing the device model evaluation

on a number of FPGAs simultaneously. The pipeline and instructions parallelism

Chapter 7 Conclusions and Future Work 141

levels are also exploited to maximise the FPGA acceleration. We demonstrated a

speedup of up to 10 times over a C software implementation parallelised using the

OpenMP library, and running on an Intel 2.0 GHz Due core 2 processor with 2.5

GB of RAM. The system consumed six times less power than the Intel processor

used for comparison. The prototype system used the SPICE CMOS LEVEL 3

model [40] in the evaluation process. The system is built using off-the-shelf Xilinx

development boards, which will make the system much cheaper than third-party

specialised multi-FPGA hardware.

• Multi-FPGA Partition Mapping Optimisation: In the multi-FPGA synthe-

sis domain, a novel optimisation technique was introduced to reduce the inter-

FPGA connections and hence the pin utilisation of the Mesh-based Multi-FPGA

architecture. The technique achieved an average improvement of about 18%. It

has been tested on an architecture based on a classical Mesh model and the Virtual

Wires model. It was also shown that our technique achieved semilar results for

the CMOS LEVEL 3 device model used earlier. One of the main advantages of

our optimisation technique is that it does not require any extra hardware circuitry

like the ones needed in the Virtual Wires. Furthermore, it can be applied after the

partitioning process regardless of abstraction level is was performed at. This tech-

nique can be integrated into current multi-FPGA EDA tools at the optimisation

stage to reduce the FPGA pin usage.

7.3 Future Work

7.3.1 Multi-FPGA SPICE Accelerator

Alongside this project, the realisation of a parallel multi-FPGA system to accelerate

part of the linear solve phase using the LU decomposition was carried out by Tarek

Nechma. The system performs the linear solve in parallel using a Virtex-5 FPGA [165].

Acceleration figures of about 10–30 times are reported compared to a 2.4 GHz Intel Core

Duo processor running the state-of-the-art sparse matrix solver UMFPACK.

Chapter 7 Conclusions and Future Work 142

A future work would be to combine both phases implemented (device evaluation and

linear solve) to form a complete multi-FPGA SPICE simulator as seen in Figure 3.9

(Section 3.4.3). However, a number of challenges have to be overcome before the reali-

sation of the complete system. The main problem would be the pre-processing task of

the linear solve. In addition to all the other parts of the SPICE algorithm such as the

transient analysis, DC operating point determination, and error truncation that cannot

be easily parallelised or mapped on reconfigurable hardware. Also, investigation has to

be carried out to find the trade-offs between the performance improvement achieved by

the multi-FPGA system over the conventional simulators and the computational error

due to the FP precision selection. Another challenge to investigate is to find efficient

ways to incorporate the hardware accelerators into the current circuit design flow.

7.3.2 Multi-FPGA Model Evaluation Acceleration

More FPGAs are integrated into HPC systems CPU sockets or designed to reside on

the same board and connected to the same standard bus like the HyperTransport in

the XtremeData Module [105]. The FPGA will have direct access to the main memory

and the host CPU. Hence, FPGAs can be used to accelerate SPICE as coprocessors to

perform the device evaluation and linear solve on parallel while the host CPU performs

the other non-parallelisable tasks. Smaller and cheaper FPGAs can also be used together

in parallel to provide better performance, which would be the same as using cheaper/less

performant processors in current Multi-Core systems. GPUs are also very interesting

accelerators which have recently showed large speedup figures for different scientific

applications including SPICE, especially after the realisation of high precision floating-

point arithmetic.

Close coupling of computing devices (FPGAs, CPUs and GPUs) would reduce the com-

munication cost and allow faster access to memory. The built-in BRAM blocks in FP-

GAs can be used to improve the modularity of the memory system, as data can easily

be mapped from external memory system. Also, the BRAM can be addressed in par-

allel which allows the data to be sent/received simultaneously to/from the computing

Chapter 7 Conclusions and Future Work 143

nodes. This would enable more EDA tools to be accelerated by taking advantage of such

systems.

Therefore, it is possible to build heterogeneous computing systems using convention-

al/embedded processors and FPGA engines to accelerate both phases in SPICE. Fig-

ure 7.1 shows an example HPRC configuration which uses systems from XtremeData and

Nallatech. Large multi-FPGA systems like DINI systems and the BEE3 (Section 2.3.1)

can also be used by incorporating embedded processors as shown in Figure 7.2.

Figure 7.1: Multi-FPGA system with conventional processors like in XtremeData
systems

Figure 7.2: A suggested multi-FPGA system to accelerate SPICE

Chapter 7 Conclusions and Future Work 144

The multi-FPGA synthesis system can also take advantage from the reducing size of

device models when parameters are fixed as seen in Section 5.1. The framework could

allow the user to select the specific device models that will be used and set their possible

parameters. The device models should be already built in the framework. The frame-

work then generates the FPGA synthesisable code to implemented the required models,

which will then reside on the slave FPGAs as demonstrated in Figure 7.3.

Figure 7.3: Multi-FPGA framework to synthesise built-in device models

7.3.3 Multi-FPGA Iterative Linear Solve

Direct linear solvers are usually more robust than Iterative solvers in solving sparse lin-

ear systems found in SPICE. However, they tend to have higher memory requirements,

dynamic data structures, and longer execution times due to fill-ins appearing during

factorisation. These factors effect the scalability of the direct liner solvers to paral-

lel environments and to hardware platforms such as FPGAs. Pivoting and reordering

techniques are introduced to overcome these issues. For FPGAs, static pivoting and

pre-ordering is used to determine the positions of fill-ins.

Iterative methods, on the other hand, are less robust than the direct methods, but they

tend to have small and constant memory requirements and can have significantly less ex-

ecution times when convergence is reached within few iterations [210]. Although conver-

gence is an issue for iterative methods, but it can improved by employing the appropriate

Chapter 7 Conclusions and Future Work 145

pre-conditioners [211]. Therefore, iterative methods are attractive for their low memory

usage, which make them suitable for FPGA implementations. In addition, a number

of linear algebra kernels are recently ported to FPGAs such as LAPACKrc which is a

Fast Linear Algebra Kernels/Solvers for FPGAs [190] and sparse/dense matrix-vector

multiplier in [212, 213]. These advances encouraged the Reconfigurable Computing

community to easily port their time-consuming applications to hardware.

A future extension to our work is to investigate how iterative linear methods -used to

solve sparse matrices- can be realised on reconfigurable devices like FPGAs by exploit-

ing the inherent parallelism. An example iterative method that can be studied is the

GMRES method (Generalized Minimal Residual Method) [133, 211]. The investigation

would demonstrate the suitability of the GMRES algorithm for use on FPGAs. Fur-

ther research can be conducted to analyse the different design trade-offs and decisions

involved in creating a Parallel Iterative Linear Solver using multi-FPGA Systems.

References

[1] TOP500 Supercomputer Sites. TOP500 project. see link: http://www.top500.org/,
2006.

[2] Michael Garland. Sparse Matrix Computations on Manycore GPUs. In Computer Arith-
metic, 2003. Proceedings. 16th IEEE Symposium on, pages 2–6, June 2008.

[3] NVIDIA. NVIDIA Tesla C870 GPU Computing Processor Board. http://www.nvidia.
com/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf, July 2009.

[4] Tarek El-Ghazawi, Dave Bennett, Dan Poznanovic, Allan Cantle, Keith Underwood,
Rob Pennington, Duncan Buell, Alan George, and Volodymyr Kindratenko. Is High-
Performance Reconfigurable Computing the Next Supercomputing Paradigm? In
ACM/IEEE conference on Supercomputing, page 71, New York, USA, 2006.

[5] Duncan Buell, Tarek El-Ghazawi, Kris Gaj, and Volodymyr Kindratenko. High-
Performance Reconfigurable Computing. IEEE Computer Society, Computer Magazine,
40(3):23–27, 2007.

[6] C. Edwards. The Soft Machines. Electronics Systems and Software, 5(1):28–33, Feb.-March
2007.

[7] Ronald Scrofano. Accelerating Scientific Computing Applications with Reconfigurable Hard-
ware. PhD thesis, University of Southern California, Los Angeles, CA, USA, 2006. Adviser-
Viktor K. Prasanna.

[8] Bryce Mackin and Nathan Woods. FPGA Acceleration in HPC: A Case Study in Financial
Analytics. Technical report, XtremeData, 2006.

[9] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung, D.-U. Lee, R.C.C. Che-
ung, and W. Luk. Reconfigurable Acceleration for Monte Carlo Based Financial Simu-
lation. In Field-Programmable Technology, 2005. Proceedings. 2005 IEEE International
Conference on, pages 215–222, Dec. 2005.

[10] Ian Kuon and Jonathan Rose. Measuring the Gap between FPGAs and ASICs. In FPGA
’06: Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field pro-
grammable gate arrays, pages 21–30, New York, NY, USA, 2006. ACM.

[11] Volodymyr Kindratenko and David Pointer. A Case Study In Porting A Production Sci-
entific Supercomputing Application To A Reconfigurable Computer. In FCCM ’06: Pro-
ceedings of the 14th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 13–22, Washington, DC, USA, 2006. IEEE Computer Society.

[12] H. Krupnova. Mapping Multi-Million Gate SoCs on FPGAs: Industrial Methodology and
Experience. In Design, Automation and Test in Europe Conference and Exhibition, 2004.
Proceedings, volume Vol.2, pages 1236 – 41, Paris, France, 2004.

[13] Maya Gokhale and Paul S. Graham. Reconfigurable Computing: Accelerating Computation
with Field-Programmable Gate Arrays. Springer Verlag, 2005.

146

http://www.top500.org/
http://www.nvidia.com/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf
http://www.nvidia.com/docs/IO/43395/C870-BoardSpec_BD-03399-001_v04.pdf

REFERENCES 147

[14] C. Edwards. Game on for Acceleration. Engineering & Technology, 3(11):36–38, 21 June
2008.

[15] Black Fischer and Myron Scholes. The Pricing of Options and Corporate Liabilities.
Journal of Political Economy, 81 (3):637–654, 1973.

[16] Sachin Tandon. A Programmable Architecture for Real-time Derivative Trading. Master’s
thesis, School of Informatics, University of Edinburgh, 2003.

[17] Peiheng Zhang, Guangming Tan, and Guang R. Gao. Implementation of The Smith-
Waterman Algorithm on a Reconfigurable Supercomputing Platform. In The 1st Interna-
tional Workshop on High-Performance Reconfigurable Computing Technology and Appli-
cations, pages 39–48, New York, USA, 2007.

[18] Walid A. Najjar and Jason R. Villarreal. Reconfigurable Computing in the New Age
of Parallelism. In Koen Bertels, Nikitas J. Dimopoulos, Cristina Silvano, and Stephan
Wong, editors, SAMOS, volume 5657 of Lecture Notes in Computer Science, pages 255–
262. Springer, 2009.

[19] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobbs Journal, 30(3):202–210, 2005. http://www.gotw.ca/publications/
concurrency-ddj.htm.

[20] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4):23–29, Jul-Aug
1999.

[21] Tim Mattson and Michael Wrinn. Parallel programming: can we PLEASE get it right this
time? In DAC ’08: Proceedings of the 45th annual Design Automation Conference, pages
7–11, New York, NY, USA, 2008. ACM.

[22] Shekhar Borkar. Thousand Core Chips: A Technology Perspective. In DAC ’07: Proceed-
ings of the 44th annual Design Automation Conference, pages 746–749, New York, NY,
USA, 2007. ACM.

[23] Satnam Singh. Integrating FPGAs in High-Performance Computing: Programming Models
for Parallel Systems – The Programmer’s Perspective. In FPGA ’07: Proceedings of the
2007 ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays,
pages 133–135, New York, NY, USA, 2007. ACM.

[24] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry Husbands, Kurt
Keutzer, David A. Patterson, William L. Plishker, John Shalf, Samuel W. Williams, and
Katherine A. Yelick. The Landscape of Parallel Computing Research: A View from Berke-
ley. Technical report, Electrical Engineering and Computer Sciences, University of Cali-
fornia at Berkeley, 2006.

[25] Keith Underwood. FPGAs vs. CPUs: Trends in Peak Floating-Point Performance. In
FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays, pages 171–180, New York, NY, USA, 2004. ACM.

[26] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA Architecture: Survey and Chal-
lenges. Foundations and Trends in Electronic Design Automation, 2:135–253, February
2008.

[27] Xilinx. Virtex-6 Family FPGAs, July 2009. http://www.xilinx.com/products/
virtex6/.

[28] P.F. Cox, R.G. Burch, D.E. Hocevar, P. Yang, and B.D. Epler. Direct Circuit Simulation
Algorithms for Parallel Processing. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 10(6):714–725, Jun 1991.

[29] Gene Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capabilities. AFIPS Conference Proceedings, 30:483–485, 1967.

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.xilinx.com/products/virtex6/
http://www.xilinx.com/products/virtex6/

REFERENCES 148

[30] Tutorial reports. FPGA Logic Blocks. see link: http://www.tutorial-reports.com/
computer-science/fpga/logic-block.php, 2007.

[31] Wayne Luk. Customising Processors: Design-Time and Run-Time Opportunities. In
Embedded Computer Systems: Architectures, MOdeling, and Simulation, volume 3133 of
Lecture Notes in Computer Science, pages 49–58. Springer, 2004.

[32] Kanupriya Gulati and Sunil P Khatri. Hardware Acceleration of EDA Algorithms: Custom
ICs, FPGAs and GPUs. Springer, 2010.

[33] Vinoo Natt Srinivasan. Partitioning for FPGA-based Reconfigurable Computers. PhD
thesis, Departement of Electrical and Computer Engineering and Computer Science, Uni-
versity of Cincinnati, Cincinnati, OH, USA, 1999. Adviser-Ranga R. Vemuri.

[34] Esam El-Araby, Ivan Gonzalez, and Tarek El-Ghazawi. Exploiting Partial Runtime Re-
configuration for High-Performance Reconfigurable Computing. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 1(4):1–23, January 2009.

[35] Karthikeya M. Gajjala Purna and Dinesh Bhatia. Temporal Partitioning and Scheduling
Data Flow Graphs for Reconfigurable Computers. IEEE Trans. Computing, 48(6):579–590,
1999.

[36] Sriram Govindarajan. Algorithms for Design Space Exploration and High-Level Synthesis
for Multi-FPGA Reconfigurable Computers. PhD thesis, University of Cincinnati, Engi-
neering : Computer Science and Engineering, 2000.

[37] Laurence W Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits.
University of California, Berkeley, May 1975.

[38] Laurence W. Nagel. Is it Time for SPICE4? In Numerical Aspects of Device and Circuit
Modeling Workshop, June 23–25, 2004, Santa Fe, New Mexico, 2004.

[39] David Pescovitz. 1972: The release of SPICE, still the industry standard tool for integrated
circuit design. http://coe.berkeley.edu/labnotes/0502/history.html, May 2002.

[40] Andrei Vladimirescu. The SPICE Book. John Wiley & Sons, Inc., New York, NY, USA,
1994.

[41] B.S. Deepaksubramanyan, P. Parakh, Zhenhua Chen, H. Diab, D. Marcy, and F.H.
Schlereth. An FPGA-Based MOS Circuit Simulator. In Proc. 48th Midwest Symposium
on Circuits and Systems, pages 655–658 Vol. 1, 2005.

[42] Kanupriya Gulati, John F. Croix, Sunil P. Khatr, and Rahm Shastry. Fast Circuit Simu-
lation on Graphics Processing Units. In ASP-DAC ’09: Proceedings of the 2009 Asia and
South Pacific Design Automation Conference, pages 403–408, Piscataway, NJ, USA, 2009.
IEEE Press.

[43] N. Kapre and A. DeHon. Accelerating SPICE Model-Evaluation using FPGAs. In IEEE
Symposium on Field-Programmable Custom Computing Machines, 09, pages 37–44, Wash-
ington, DC, USA, April 2009. IEEE Computer Society.

[44] R.A. Saleh, K.A. Gallivan, M.-C. Chang, I.N. Hajj, D. Smart, and T.N. Trick. Parallel
Circuit Simulation On Supercomputers. Proceedings of the IEEE, 77(12):1915–1931, Dec
1989.

[45] A. Vladimirescu, D. Weiss, M. Katevenis, Z. Bronstein, A. Kifir, K. Danuwidjaja, K. C.
Ng., N. Jain, and S. Lass. A Vector Hardware Accelerator with Circuit Simulation Em-
phasis. In DAC ’87: Proceedings of the 24th ACM/IEEE Design Automation Conference,
pages 89–94, New York, NY, USA, 1987. ACM.

[46] P. Sadayappan and V. Visvanathan. Circuit Simulation on Shared-Memory Multiproces-
sors. IEEE Transactions on Computers, 37(12):1634–1642, 1988.

http://www.tutorial-reports.com/computer-science/fpga/logic-block.php
http://www.tutorial-reports.com/computer-science/fpga/logic-block.php
http://coe.berkeley.edu/labnotes/0502/history.html

REFERENCES 149

[47] A. Maache, J. Reeve, and M. Zwolinski. Accelerating CMOS Device Model Evaluation
Using Multi-FPGA Systems. In Fifth UK Embedded Forum 2009, Leicester, UK, pages
10–14, September 2009.

[48] A. Maache, J. Reeve, and M. Zwolinski. Optimising Physical Wires Usage in Mesh-based
Multi-FPGA Systems using Partition Swapping. In 21st International Conference on Mi-
croelectronics, ICM09, Marrakech, Morocco, pages 246–249, 19-22 December 2009.

[49] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher
Education, 1994.

[50] Daniel D. Gajski and Loganath Ramachandran. Introduction to High-Level Synthesis.
IEEE Design and Test, 11(4):44–54, 1994.

[51] Daniel D. Gajski, Nikil D. Dutt, Allen C.-H. Wu, Steve Y.-L. Lin, and Steve Y.-L. Lin.
High-Level Synthesis: Introduction to Chip and System Design. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1992.

[52] Tack Boon Yee. Synthesis of Multi-FPGA Systems with Asynchronous Communications.
PhD thesis, Electronics and Computer Science School, University of Southampton, 2007.

[53] Synopsys. Synphony High-Level Synthesis. http://www.synopsys.com/Systems/
BlockDesign/HLS/Pages/default.aspx, November 2010.

[54] Mentor Graphics. Catapult C Synthesis. http://www.mentor.com/esl/catapult/
overview, November 2010.

[55] Arash Ahmadi. High Level Synthesis of Signal Processors. MPhil Thesis, School of Elec-
tronics and Computer Science, University of Southampton, 2005.

[56] Youn-Long Lin. Recent Developments in High-Level Synthesis. ACM Transactions on
Design Automation of Electronic Systems, 2(1):2–21, 1997.

[57] P.G. Paulin and J.P. Knight. Force-directed Scheduling for the Behavioral Synthesis of
ASICs. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 8(6):661–679, 1989.

[58] Jiahn-Hung Lee, Yu-Chin Hsu, and Youn-Long Lin. A New Integer Linear Programming
Formulation For The Scheduling Problem In Data Path Synthesis. In Computer-Aided
Design, ICCAD-89, Digest of Technical Papers, IEEE International Conference on, pages
20–23, Nov 1989.

[59] Oliver Bringmann, Wolfgang Rosenstiel, and Carsten Menn. Target Architecture Oriented
High-Level Synthesis for Multi-FPGA Based Emulation. In DATE ’00., pages 326 – 32,
Paris, France, 2000.

[60] Tack Boon Yee, M. Zwolinski, and A.D. Brown. Multi-FPGA Synthesis with Asynchronous
Communication Subsystems. In IFIP International Conference on Very Large Scale Inte-
gration, pages 139 – 45, Perth, WA, Australia, 2005.

[61] Charles J. Alpert and Andrew B. Kahng. Recent Directions in Netlist Partitioning: A
Survey. Integration, the VLSI Journal, 19(1-2):1–81, 1995.

[62] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal, 49(1):291–307, 1970.

[63] C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In DAC ’82: Proceedings of the 19th conference on Design Automation, pages
175–181. IEEE Press, 1982.

[64] Sao-Jie Chen and Chung-Kuan Cheng. Tutorial on VLSI partitioning. VLSI Design,
11(3):175 – 218, 2000.

http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.aspx
http://www.mentor.com/esl/catapult/overview
http://www.mentor.com/esl/catapult/overview

REFERENCES 150

[65] Frank Vahid. I/O and Performance Tradeoffs with the FunctionBus During Multi-FPGA
Partitioning. In ACM fifth Int. Symposium on FPGAs, pages 27–34, New York, USA,
1997.

[66] Frank Vahid, Thuy Dm Le, and Yu-Chin Hsu. Functional Partitioning Improvements over
Structural Partitioning for Packaging Constraints and Synthesis: Tool Performance. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 3(2):181–208, April
1998.

[67] V. Srinivasan, S. Govindarajan, and R. Vemuri. Fine-grained and Coarse-grained Behav-
ioral Partitioning with Effective Utilization of Memory and Design Space Exploration for
Multi-FPGA Architectures. IEEE Trans. on VLSI Systems, 9(1):140 – 58, 2001.

[68] Wen-Jong Fang and Allen C.-H. Wu. Multiway FPGA Partitioning by Fully Exploit-
ing Design Hierarchy. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 5(1):34–50, 2000.

[69] Auspy Development Inc. Auspy Partition System II. http://www.auspy.com, May 2008.

[70] Synopsys. Multi-FPGA Implementation and Partitioning. http://www.synopsys.com/
Tools/Verification/HardwareAssistedVerification/Confirma/Pages/Certify.
aspx, May 2010.

[71] Andrew A. Duncan, David C. Hendry, and Peter Gray. An Overview of the COBRA-ABS
High Level Synthesis System for Multi-FPGA Systems. In FCCM ’98: Proceedings of the
IEEE Symposium on FPGAs for Custom Computing Machines, page 106, Washington,
DC, USA, 1998. IEEE Computer Society.

[72] Andrew A. Duncan, David C. Hendry, and Peter Gray. The COBRA-ABS High-Level
Synthesis System for Multi-FPGA Custom Computing Machines. IEEE Trans on VLSI
Systems, 9(1):218–223, 2001.

[73] Wen-Jong Fang and Allen C.-H. Wu. Integrating HDL Synthesis and Partitioning for
Multi-FPGA Designs. IEEE Design and Test of Computers, 15(2):65–72, 1998.

[74] K. Harbich and E. Barke. PuMA++: from Behavioral Specification to Multi-FPGA-
Prototype. In The 11th Int. Conf. on Field-Programmable Logic and Applications, pages
133 – 41, Belfast, Northern Ireland, UK, 2001.

[75] J.A. Fisher. The VLIW Machine: A Multiprocessor for Compiling Scientific Code. Com-
puter, 17(7):45–53, July 1984.

[76] Preetham Lakshmikanthan, Sriram Govindarajan, Vinoo Srinivasan, and Ranga Vemuri.
Behavioral Partitioning with Synthesis for Multi-FPGA Architectures under Interconnect,
Area, and Latency Constraints. In IPDPS ’00: Proceedings of the 15 IPDPS 2000 Work-
shops on Parallel and Distributed Processing, pages 924–931, London, UK, 2000. Springer-
Verlag.

[77] S. Govindarajan, V. Srinivasan, P. Lakshmikanthan, and R. Vemuri. A Technique for
Dynamic High-Level Exploration During Behavioral-Partitioning for Multi-Device Archi-
tectures. In VLSI Design, 2000. Thirteenth International Conference on, pages 212–219,
2000.

[78] Jason Lee, Lesley Shannon, Matthew J. Yedlin, and Gary F. Margrave. A Multi-FPGA
Application-Specific Architecture for Accelerating a Floating Point Fourier Integral Opera-
tor. In ASAP ’08: Proceedings of the 2008 International Conference on Application-Specific
Systems, Architectures and Processors, pages 197–202, Washington, DC, USA, 2008. IEEE
Computer Society.

[79] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A Quantitative Analysis of The
Speedup Factors of FPGAs over Processors. In FPGA ’04: Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate arrays, pages
162–170, New York, NY, USA, 2004. ACM.

http://www.synopsys.com/Tools/Verification/HardwareAssistedVerification/Confirma/Pages/Certify.aspx
http://www.synopsys.com/Tools/Verification/HardwareAssistedVerification/Confirma/Pages/Certify.aspx
http://www.synopsys.com/Tools/Verification/HardwareAssistedVerification/Confirma/Pages/Certify.aspx

REFERENCES 151

[80] Xizhen Xu, Sotirios G. Ziavras, and Tae-Gyu Chang. An FPGA-Based Parallel Accelerator
for Matrix Multiplications in the Newton-Raphson Method. In Embedded and Ubiquitous
Computing, International Conference EUC 2005, Nagasaki, Japan, December 6-9, 2005.
Proceedings, pages 458–468, 2005.

[81] K.D. Underwood and K.S. Hemmert. Closing the Gap: CPU and FPGA Trends in Sus-
tainable Floating-Point BLAS Performance. In Field-Programmable Custom Computing
Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on, pages 219–228, April
2004.

[82] Greg Stitt, Frank Vahid, and Shawn Nematbakhsh. Energy Savings and Speedups From
Partitioning Critical Software Loops to Hardware in Embedded Systems. ACM Trans.
Embed. Comput. Syst., 3(1):218–232, 2004.

[83] Rob Baxter, Stephen Booth, Mark Bull, Geoff Cawood, Kenton D’Mellow, Xu Guo, Mark
Parsons, James Perry, Alan Simpson, and Arthur Trew. High-Performance Reconfigurable
Computing - the View from Edinburgh. In Proceedings of the Second NASA/ESA Confer-
ence on Adaptive Hardware and Systems, pages 273–279, Aug. 2007.

[84] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and P.Y.K. Che-
ung. Reconfigurable Computing: Architectures and Design Methods. Computers and
Digital Techniques, IEE Proceedings -, 152(2):193–207, Mar 2005.

[85] K. Bondalapati and V.K. Prasanna. Reconfigurable Computing Systems. Proceedings of
the IEEE, 90(7):1201–1217, Jul 2002.

[86] K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems and Software.
ACM Computuer Surveys, 34(2):171–210, 2002.

[87] Russell Tessier and Wayne Burleson. Reconfigurable Computing for Digital Signal Pro-
cessing: A Survey. J. VLSI Signal Process. Syst., 28(1/2):7–27, 2001.

[88] Joao M. P. Cardoso and Mario P. Vestistias. Architectures And Compilers To Support
Reconfigurable Computing. Crossroads, 5(3):15–22, 1999.

[89] P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh. A Quick Safari Through
The Reconfiguration Jungle. In Design Automation Conference, 2001. Proceedings, pages
172–177, 2001.

[90] T. Ramdas and G. Egan. A Survey of FPGAs for Acceleration of High Performance
Computing and their Application to Computational Molecular Biology. In TENCON 2005
2005 IEEE Region 10, pages 1–6, Nov. 2005.

[91] S. Arash Ostadzadeh and Koen Bertels. Parallelism Utilization in Embedded Reconfig-
urable Computing Systems: A Survey of Recent Trends. The Journal of VLSI Signal
Processing, 28(1-2):7–27, 2004. Springer.

[92] C. Chang, J. Wawrzynek, and R.W. Brodersen. BEE2: A High-End Reconfigurable Com-
puting System. Design & Test of Computers, IEEE, 22(2):114–125, March-April 2005.

[93] Dan Burke, John Wawrzynek, Krste Asanovic, Alex Krasnov, Andrew Schultz, Greg Gibel-
ing, and Pierre-Yves Droz. RAMP Blue: Implementation of a Manycore 1008 Processor
System. In Proceedings of the Reconfigurable Systems Summer Institute RSSI 2008, 2008.

[94] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz. RAMP Blue: A
Message-Passing Manycore System in FPGAs. In Proc. International Conference on Field
Programmable Logic and Applications FPL 2007, pages 54–61, 27–29 Aug. 2007.

[95] RAMP. Research Accelerator for Multiple Processors. see link: http://ramp.eecs.
berkeley.edu/index.php?index, March 2009.

[96] M. Saldana and P. Chow. TMD-MPI: An MPI Implementation for Multiple Processors
Across Multiple FPGAs. In Proc. International Conference on Field Programmable Logic
and Applications FPL ’06, pages 1–6, 28–30 Aug. 2006.

http://ramp.eecs.berkeley.edu/index.php?index
http://ramp.eecs.berkeley.edu/index.php?index

REFERENCES 152

[97] Manuel Saldana, Daniel Nunes, Emanuel Ramalho, and Paul Chow. Configuration and
Programming of Heterogeneous Multiprocessors on a Multi-FPGA System Using TMD-
MPI. In Reconfigurable Computing and FPGA’s, 2006. ReConFig 2006. IEEE Interna-
tional Conference on, pages 1–10, Sept. 2006.

[98] Manuel Alejandro Saldana De Fuentes. A Parallel Programming Model for A Multi-FPGA
Multiprocessor Machine. Master’s thesis, University of Toronto, 2006.

[99] Arun Patel, Christopher A. Madill, Manuel Saldana, Christopher Comis, Regis Pomes,
and Paul Chow. A Scalable FPGA-based Multiprocessor. In FCCM ’06: Proceedings of
the 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 111–120, Washington, DC, USA, 2006. IEEE Computer Society.

[100] M. Saldana, A. Patel, C. Madill, D. Nunes, Danyao Wang, H. Styles, A. Putnam, R. Wittig,
and P. Chow. MPI as an Abstraction for Software-Hardware Interaction for HPRCs.
In Proc. Second International Workshop on High-Performance Reconfigurable Computing
Technology and Applications HPRCTA 2008, pages 1–10, 16–16 Nov. 2008.

[101] M. Saldana, E. Ramalho, and P. Chow. A Message-Passing Hardware/Software Co-
simulation Environment to Aid in Reconfigurable Computing Design Using TMD-MPI.
In Proc. International Conference on Reconfigurable Computing and FPGAs ReConFig
’08, pages 265–270, 3–5 Dec. 2008.

[102] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew,
A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, and G. Genest. Maxwell -
a 64 FPGA Supercomputer. In Adaptive Hardware and Systems, 2007. AHS 2007. Second
NASA/ESA Conference on, pages 287–294, Aug. 2007.

[103] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew,
A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, and G. Genest. The
FPGA High-Performance Computing Alliance Parallel Toolkit. In Adaptive Hardware and
Systems, 2007. AHS 2007. Second NASA/ESA Conference on, pages 301–310, 2007.

[104] Nathan Woods. Integrating FPGAs in High-Performance Computing: the Architecture
and Implementation Perspective. In FPGA ’07: Proceedings of the 2007 ACM/SIGDA
15th international symposium on Field programmable gate arrays, pages 132–132, New
York, NY, USA, 2007. ACM.

[105] XtremeData. XD1000 Accelerator Module. http://www.xtremedatainc.com/index.
php?option=com_content&view=article&id=89&Itemid=140, June 2007.

[106] Nallatech. FPGA Accelerated Computing Solutions. http://www.nallatech.com/?node_
id=1.2&request=2008update&family=1&details=true, June 2009.

[107] DINIGroup. Big FPGA Boards: High Performance Computing. http://www.dinigroup.
com/, April 2010.

[108] Richard Wain, Ian Bush, Martyn Guest, Miles Deegan, Igor Kozin, and Christine Kitchen.
An Overview of FPGAs and FPGA Programming: Initial Experiences at Daresbury. Tech-
nical report, CCLRC Daresbury Laboratory, 2006.

[109] SystemC Community. Synthesisable Subset Document. see link: http://www.systemc.
org/, December 2006.

[110] Agility Design Solutions. Handel-C Language Reference Manual, 2007. http://www.
agilityds.com/literature/HandelC_Language_Reference_Manual.pdf.

[111] Nallatech. DIME-C, C-to-VHDL Compiler. http://www.nallatech.com/index.php/
Development-Tools/dime-c.html, July 2009.

[112] G. Genest, R. Chamberlain, and R. Bruce. Programming an FPGA-based Super Computer
Using a C-to-VHDL Compiler: DIME-C. In Adaptive Hardware and Systems, 2007. AHS
2007. Second NASA/ESA Conference on, pages 280–286, Aug. 2007.

http://www.xtremedatainc.com/index.php?option=com_content&view=article&id=89&Itemid=140
http://www.xtremedatainc.com/index.php?option=com_content&view=article&id=89&Itemid=140
http://www.nallatech.com/?node_id=1.2&request=2008update&family=1&details=true
http://www.nallatech.com/?node_id=1.2&request=2008update&family=1&details=true
http://www.dinigroup.com/
http://www.dinigroup.com/
http://www.systemc.org/
http://www.systemc.org/
http://www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
http://www.agilityds.com/literature/HandelC_Language_Reference_Manual.pdf
http://www.nallatech.com/index.php/Development-Tools/dime-c.html
http://www.nallatech.com/index.php/Development-Tools/dime-c.html

REFERENCES 153

[113] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. SPARK: A Parallelizing
Approach to the High-Level Synthesis of Digital Circuits. Kluwer Academic, 2004.

[114] J. L. Tripp, K. D. Peterson, C. Ahrens, J. D. Poznanovic, and M. B. Gokhale. TRIDENT:
An FPGA Compiler Framework for Floating-point Algorithms. In Field Programmable
Logic and Applications, 2005. International Conference on, pages 317–322, 2005.

[115] J.L. Tripp, M.B. Gokhale, and K.D. Peterson. TRIDENT: From High-Level Language to
Hardware Circuitry. Computer, 40(3):28–37, March 2007.

[116] David Andrews, Douglas Niehaus, Razali Jidin, Michael Finley, Wesley Peck, Michael
Frisbie, Jorge Ortiz, Ed Komp, and Peter Ashenden. Programming Models for Hybrid
FPGA-CPU Computational Components: A Missing Link. IEEE Micro, 24(4):42–53,
2004.

[117] Stephen A. Edwards. The Challenges of Synthesizing Hardware from C-Like Languages.
IEEE Design & Test, 23(5):375–386, 2006.

[118] Jidan Al-Eryani. FPU. see link: http://www.opencores.org/projects.cgi/web/
fpu100/overview, 2007.

[119] J. Detrey and F. de Dinechin. A VHDL Library of Parametrisable Floating-Point and
LNS Operators for FPGA. http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/,
Dec 2006.

[120] Jérémie Detrey and Florent de Dinechin. Parameterized Floating-Point Logarithm and
Exponential Functions For FPGAs. Microprocessors & Microsystems, 31(8):537–545, 2007.

[121] Pavle Belanovic and Miriam Leeser. A Library of Parameterized Floating-Point Mod-
ules and Their Use. In FPL ’02: Proceedings of the Reconfigurable Computing Is Going
Mainstream, 12th International Conference on Field-Programmable Logic and Applica-
tions, pages 657–666, London, UK, 2002. Springer-Verlag.

[122] Jian Liang, R. Tessier, and O. Mencer. Floating Point Unit Generation and Evaluation for
FPGAs. In Field-Programmable Custom Computing Machines, 2003. FCCM 2003. 11th
Annual IEEE Symposium on, pages 185–194, April 2003.

[123] Xilinx. Floating-Point Operator. http://www.xilinx.com/products/ipcenter/
floating_pt.htm, March 2009.

[124] Xilinx. Aurora Quick Start Guide XUP Virtex-2 Pro Development System. Xilinx, Inc.,
2008.

[125] Xilinx. Xilinx University Program Virtex-II Pro Development System Hardware Reference
Manual, April 2008.

[126] Mark Zwolinski. Multi-Threaded Circuit Simulation Using OpenMP. Unpublished paper,
Dec 2008.

[127] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2
edition, October 1992.

[128] R. Raghuram. Computer Simulation of Electronic Circuits. Halsted Press, New York, NY,
USA, 1988.

[129] V. Litovski and M. Zwolinski. VLSI Circuit Simulation and Optimization. Chapman and
Hall, 1997.

[130] Junqing Sun, G.D. Peterson, and O.O. Storaasli. High-Performance Mixed-Precision Lin-
ear Solver for FPGAs. Computers, IEEE Transactions on, 57(12):1614–1623, Dec. 2008.

http://www.opencores.org/projects.cgi/web/fpu100/overview
http://www.opencores.org/projects.cgi/web/fpu100/overview
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/
http://www.xilinx.com/products/ipcenter/floating_pt.htm
http://www.xilinx.com/products/ipcenter/floating_pt.htm

REFERENCES 154

[131] Seth Young, Arvind Sudarsanam, Aravind Dasu, and Thomas Hauser. Memory Support
Design for LU Decomposition on the Starbridge Hyper-Computer. In Field Programmable
Technology, 2006. FPT 2006. IEEE International Conference on, pages 157–164, Dec.
2006.

[132] Michael T. Heath, Esmond Ng, and Barry W. Peyton. Parallel Algorithms for Sparse
Linear Systems. SIAM Review, 33(3):420–460, 1991.

[133] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[134] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien Lan-
gou, Piotr Luszczek, and Stanimire Tomov. Accelerating Scientific Computations with
Mixed Precision Algorithms. Computer Physics Communications, 180(12):2526 – 2533,
2009.

[135] E. Lelarasmee, A.E. Ruehli, and A.L. Sangiovanni-Vincentelli. The Waveform Relaxation
Method for Time-Domain Analysis of Large Scale Integrated Circuits. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 1(3):131–145, July 1982.

[136] A. Lumsdaine, M.W. Reichelt, J.M. Squyres, and J.K. White. Accelerated Waveform
Methods for Parallel Transient Simulation of Semiconductor Devices. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 15(7):716–726, Jul 1996.

[137] He Peng and Chung-Kuan Cheng. Parallel Transistor Level Circuit Simulation using
Domain Decomposition Methods. In Design Automation Conference, 2009. ASP-DAC
2009. Asia and South Pacific, pages 397–402, Jan. 2009.

[138] D.M. Lewis. A Compiled-Code Hardware Accelerator for Circuit Simulation. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 11(5):555–565,
May 1992.

[139] U. Wever and Q. Zheng. Parallel Transient Analysis for Circuit Simulation. In System
Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Conference on ,,
volume 1, pages 442–447 vol.1, Jan 1996.

[140] Wei Dong, Peng Li, and Xiaoji Ye. WavePipe: Parallel Transient Simulation Of Analog
And Digital Circuits On Multi-Core Shared-Memory Machines. In DAC ’08: Proceedings
of the 45th annual Design Automation Conference, pages 238–243, New York, NY, USA,
2008. ACM.

[141] Xiaoji Ye, Wei Dong, Peng Li, and S. Nassif. MAPS: Multi-Algorithm Parallel Circuit
Simulation. In Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International
Conference on, pages 73–78, Nov. 2008.

[142] H. Kotakemori, H. Hasegawa, and A. Nishida. Performance Evaluation of a Parallel It-
erative Method Library using OpenMP. In High-Performance Computing in Asia-Pacific
Region, 2005. Proceedings. Eighth International Conference on, pages 432–436, July 2005.

[143] S. Markus, S.B. Kim, K. Pantazopoulos, A.L. Ocken, E.N. Houstis, P. Wu, S. Weerawarana,
and D. Maharry. Performance Evaluation of MPI Implementations and MPI Based Parallel
ELLPACK Solvers. In MPI Developer’s Conference, 1996. Proceedings., Second, pages
162–169, Jul 1996.

[144] P.M. Lee, S. Ito, T. Hashimoto, J. Sato, T. Touma, and G. Yokomizo. A Parallel and
Accelerated Circuit Simulator with Precise Accuracy. In Design Automation Conference,
2002. Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the 15th International
Conference on VLSI Design. Proceedings., pages 213–218, 2002.

[145] BSIM3 MOSFET SPICE model. http://www-device.eecs.berkeley.edu/~bsim3/,
March 2009.

http://www-device.eecs.berkeley.edu/~bsim3/

REFERENCES 155

[146] Lawrence Pillage. Electronic Circuit & System Simulation Methods (SRE). McGraw-Hill,
Inc., New York, NY, USA, 1999.

[147] R.E. Poore. GPU-Accelerated Time-Domain Circuit Simulation. In Custom Integrated
Circuits Conference, 2009. CICC ’09. IEEE, pages 629–632, Sept. 2009.

[148] B. Murmann, P. Nikaeen, D.J. Connelly, and R.W. Dutton. Impact of Scaling on Analog
Performance and Associated Modeling Needs. Electron Devices, IEEE Transactions on,
53(9):2160–2167, Sept. 2006.

[149] M. Chan and C. Hu. The Engineering of BSIM for the Nano-Technology Era and Beyond.
In Modeling and Simulation Microsistem, pages 662–665, 2002.

[150] P. Agrawal, S. Goil, S. Liu, and J.A. Trotter. Parallel Model Evaluation for Circuit Sim-
ulation on the PACE Multiprocessor. In VLSI Design, 1994., Proceedings of the Seventh
International Conference on, pages 45–48, Jan 1994.

[151] Gung-Chung Yang. PARASPICE: A Parallel Circuit Simulator for Shared-Memory Multi-
processors. In Design Automation Conference, 1990. Proceedings., 27th ACM/IEEE, pages
400–405, Jun 1990.

[152] S. Hutchinson, E. Keiter, R Hoekstra, H. Watts, A. Waters, T. Russo, R. Schells, S. Wix,
and C. Bogdan. The Xyce Parallel Electronic Simulator - An Overview. In Parallel
Computing, Advances and Current Issues. Proceedings of the International Conference,
ParCo2001, Naples, Italy, pages 165–172, London, September 2001. Imperial College Press.

[153] Xyce: Parallel Electronic Simulator. http://xyce.sandia.gov/, July 2009.

[154] Tien-Hsiung Weng, Ruey-Kuen Perng, and Barbara Chapman. OpenMP Implementation
of SPICE3 Circuit Simulator. Int. J. Parallel Program., 35(5):493–505, 2007.

[155] N. Kapre and A. DeHon. Performance Comparison of Single-Precision SPICE Model-
Evaluation on FPGA, GPU, Cell, and Multi-Core Processors. In International Conference
on Field Programmable Logic and Applications, 09, pages 65–27, September 2009.

[156] B. Cope, P.Y.K. Cheung, W. Luk, and S. Witt. Have GPUs made FPGAs redundant in
the field of video processing? In Field-Programmable Technology, 2005. Proceedings. 2005
IEEE International Conference on, pages 111–118, Dec. 2005.

[157] Shuai Che, Jie Li, J.W. Sheaffer, K. Skadron, and J. Lach. Accelerating Compute-Intensive
Applications with GPUs and FPGAs. In Application Specific Processors, 2008. SASP 2008.
Symposium on, pages 101–107, June 2008.

[158] Zhe Fan, Feng Qiu, A. Kaufman, and S. Yoakum-Stover. GPU Cluster for High Per-
formance Computing. In Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004
Conference, pages 47–47, Nov. 2004.

[159] David Barrie Thomas, Lee Howes, and Wayne Luk. A Comparison of CPUs, GPUs, FP-
GAs, and Massively Parallel Processor Arrays for Random Number Generation. In FPGA
’09: Proceeding of the ACM/SIGDA international symposium on Field programmable gate
arrays, pages 63–72, New York, NY, USA, 2009. ACM.

[160] Amr M. Bayoumi and Yasser Y. Hanafy. Massive Parallelization of SPICE Device Model
Evaluation on GPU-Based SIMD Architectures. In IFMT’08: Proceedings Of The 1st
International Forum on Next-generation Multicore/Manycore Technologies, pages 1–5, New
York, NY, USA, 2008. ACM.

[161] Nascentric. OmegaSim GX Hardware-Accelerated SPICE Simulator. see link: http:
//www.nascentric.com/omegasim_gx.html, October 2008.

[162] Marcus van Ierssel. Circuit Simulation on a Field Programmable Accelerator. Master’s
thesis, University of Toronto, 1995.

http://xyce.sandia.gov/
http://www.nascentric.com/omegasim_gx.html
http://www.nascentric.com/omegasim_gx.html

REFERENCES 156

[163] D.M. Lewis, M.H. van Ierssel, and D.H. Wong. A Field Programmable Accelerator for
Compiled-Code Applications. In Computer Design: VLSI in Computers and Processors,
1993. ICCD ’93. Proceedings., 1993 IEEE International Conference on, pages 491–496,
Oct 1993.

[164] N. Kapre and A. DeHon. Parallelizing Sparse Matrix Solve for SPICE Circuit Simula-
tion using FPGAs. In IEEE International Conference on Field-Programmable Technology,
FPT09, pages 190–198, December 2009.

[165] Nechma Tarek, Zwolinski Mark, and Reeve Jeff. Parallel Sparse Matrix Solver for Direct
Circuit Simulations on FPGAs. In IEEE International Symposium on Circuits and Systems
(ISCAS10), June 2010.

[166] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara, and C. Nwankpa. Sparse LU
Decomposition using FPGAs. In International Workshop on State-of-the-Art in Scientific
and Parallel Computing (PARA), 2008.

[167] Xiaofang Wang and Sotirios G. Ziavras. Parallel LU Factorization of Sparse Matrices on
FPGA-based Configurable Computing Engines. Concurrency and Computation: Practice
& Experience, 16(4):319–343, 2004.

[168] H. Ziegler, Byoungro So, M. Hall, and P.C. Diniz. Coarse-Grain Pipelining on Multiple
FPGA Architectures. In FCCM ’02: Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 77 – 86, Napa, CA, USA, 2002.

[169] K G Nichols, T J Kazmierski, A D Brown, and M Zwolinski. Overview of SPICE-like
Circuit Simulation Algorithms. IEE Proc. Circuits, Devices and Systems, 141(4):242–250,
1994.

[170] SIMUCAD. ModelLib User’s Manual. SIMUCAD Design Automation, Inc., April
2010. https://dynamic.silvaco.com/dynamicweb/jsp/downloads/EntryAction.do?
action=silen-menu&key=20004&format=4.

[171] Mark Zwolinski. Southampton VHDL-AMS Validation Suite. http://www.syssim.ecs.
soton.ac.uk/, April 2010.

[172] Mark Zwolinski. VHDL-AMS Model of LEVEL 3 MOS Transistor. http://www.syssim.
ecs.soton.ac.uk/vhdl-ams/examples/mos.htm, June 2005.

[173] P. Š̊ucha, M. Kutil, M. Sojka, and Z. Hanzálek. TORSCHE Scheduling Toolbox for Matlab.
In IEEE Computer Aided Control Systems Design Symposium (CACSD’06), pages 1181–
1186, Munich, Germany, October 2006.

[174] Xilinx. ChipScope Pro Tool User Guide, April 2009. http://www.xilinx.com/tools/
cspro.htm.

[175] Xilinx. MicroBlaze Processor. http://www.xilinx.com/products/design_resources/
proc_central/microblaze.htm, March 2009.

[176] Xilinx. Aurora Link-layer Protocol. http://www.xilinx.com/products/design_
resources/conn_central/grouping/aurora.htm, March 2009.

[177] Intel. Core 2 Duo E6300 specifications. http://ark.intel.com/product.aspx?id=27248,
July 2009.

[178] Florent de Dinechin, Jérémie Detrey, Octavian Cret, and Radu Tudoran. When FPGAs
are better at floating-point than microprocessors. In FPGA ’08: Proceedings of the 16th
international ACM/SIGDA symposium on Field programmable gate arrays, pages 260–260,
New York, NY, USA, 2008. ACM.

[179] John D. Davis, Charles P. Thacker, and Chen Chang. BEE3: Revitalizing Computer
Architecture Research. Technical Report MSR-TR-2009-45, Microsoft Research, Silicon
Valley Campus, April 2009.

https://dynamic.silvaco.com/dynamicweb/jsp/downloads/EntryAction.do?action=silen-menu&key=20004&format=4
https://dynamic.silvaco.com/dynamicweb/jsp/downloads/EntryAction.do?action=silen-menu&key=20004&format=4
http://www.syssim.ecs.soton.ac.uk/
http://www.syssim.ecs.soton.ac.uk/
http://www.syssim.ecs.soton.ac.uk/vhdl-ams/examples/mos.htm
http://www.syssim.ecs.soton.ac.uk/vhdl-ams/examples/mos.htm
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm
http://www.xilinx.com/products/design_resources/proc_central/microblaze.htm
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://www.xilinx.com/products/design_resources/conn_central/grouping/aurora.htm
http://ark.intel.com/product.aspx?id=27248

REFERENCES 157

[180] BSIM4 MOSFET SPICE model. http://www-device.eecs.berkeley.edu/~bsim3/
bsim4.html, March 2009.

[181] G. Gildenblat, X. Li, H. Wang, W. Wu, R.Van Langevelde, A.J. Scholten, G.D.J. Smit, and
D.B.M. Klaassen. Introduction to PSP MOSFET Model. In 2005 Workshop on Compact
Modeling, pages 19 – 24. Pennsylvania State University, US, 2005.

[182] SIMUCAD. Open Source Verilog-A Models. https://dynamic.simucad.com/
dynamicweb/jsp/downloads/EntryAction.do?action=smcen-menu&key=95&format=
16, July 2009.

[183] PSP Verilog-A code. http://pspmodel.asu.edu/psp_code.htm, July 2009.

[184] Xilinx. Virtex-5 Family FPGAs, July 2009. www.xilinx.com/support/documentation/
data_sheets/ds100.pdf.

[185] R.J. McDonald. Convergence in SPICE for Advanced IC Device Modelling. In Southeastcon
’88., IEEE Conference Proceedings, pages 349–352, Apr 1988.

[186] DA Zein. Solution of a Set of Nonlinear Algebraic Equations for General Purpose CAD
Programs. IEEE Circ. and Dev, 1(5):7–20, 1985.

[187] Ari Kulmala, Erno Salminen, and Timo D. Hämäläinen. Evaluating Large System-on-Chip
on Multi-FPGA Platform. In Embedded Computer Systems: Architectures, Modeling, and
Simulation, 7th International Workshop, SAMOS 07, Greece, Proceedings, pages 179–189,
July 16-19 2007.

[188] Abdellah-Medjadji Kouadri-Mostefaoui, Benaoumeur Senouci, and Frederic Petrot. Large
Scale On-Chip Networks: An Accurate Multi-FPGA Emulation Platform. In DSD ’08:
Proceedings of the 2008 11th EUROMICRO Conference on Digital System Design Archi-
tectures, Methods and Tools, pages 3–9, Washington, DC, USA, 2008. IEEE Computer
Society.

[189] P.G. Del valle, D. Atienza, I. Magan, J.G. Flores, E.A. Perez, J.M. Mendias, L. Benini,
and G.D. Micheli. A Complete Multi-Processor System-on-Chip FPGA-Based Emulation
Framework. In Very Large Scale Integration, 2006 IFIP International Conference on,
pages 140–145, Oct. 2006.

[190] Juan Gonzalez and Rafael C Nez. LAPACKrc: Fast Linear Algebra Kernels/Solvers for
FPGA Accelerators. Journal of Physics: Conference Series, 180(1):012042, 2009.

[191] Jong-Ho Byun, A. Ravindran, A. Mukherjee, B. Joshi, and D. Chassin. Accelerating the
Gauss-Seidel Power Flow Solver on a High Performance Reconfigurable Computer. In Field
Programmable Custom Computing Machines, 2009. FCCM ’09. 17th IEEE Symposium on,
pages 227 –230, april 2009.

[192] S. Hauck and G. Borriello. An Evaluation of Bipartitioning Techniques. In ARVLSI ’95:
Proceedings of the 16th Conference on Advanced Research in VLSI (ARVLSI’95), page
383, Washington, DC, USA, 1995. IEEE Computer Society.

[193] Raghu Burra and Dinesh Bhatia. Timing Driven Multi-FPGA Board Partitioning. In
VLSID ’98: Proceedings of the Eleventh International Conference on VLSI Design: VLSI
for Signal Processing, page 234, Washington, DC, USA, 1998. IEEE Computer Society.

[194] Juan de Vicente, Juan Lanchares, and Romn Hermida. Placement Optimization Based
on Global Routing Updating for System Partitioning onto Multi-FPGA Mesh Topologies.
In Field Programmable Logic and Applications, volume 1673/2004 of Lecture Notes in
Computer Science, pages 91–101. Springer Berlin / Heidelberg, 1999.

[195] Scott Hauck, Gaetano Borriello, and Carl Ebeling. Mesh Routing Topologies for Multi-
FPGA Systems. In ICCS ’94: Proceedings of the1994 IEEE International Conference on
Computer Design: VLSI in Computer & Processors, pages 170–177, Washington, DC,
USA, 1994. IEEE Computer Society.

http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html
http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html
https://dynamic.simucad.com/dynamicweb/jsp/downloads/EntryAction.do?action=smcen-menu&key=95&format=16
https://dynamic.simucad.com/dynamicweb/jsp/downloads/EntryAction.do?action=smcen-menu&key=95&format=16
https://dynamic.simucad.com/dynamicweb/jsp/downloads/EntryAction.do?action=smcen-menu&key=95&format=16
http://pspmodel.asu.edu/psp_code.htm
www.xilinx.com/support/documentation/data_sheets/ds100.pdf
www.xilinx.com/support/documentation/data_sheets/ds100.pdf

REFERENCES 158

[196] Sushil Chandra Jain, Shashi Kumar, and Anshul Kumar. Evaluation of Various Routing
Architectures for Multi-FPGA Boards. In VLSID ’00: Proceedings of the 13th International
Conference on VLSI Design, page 262, Washington, DC, USA, 2000.

[197] Mohammed A. S. Khalid and Jonathan Rose. A Novel And Efficient Routing Architecture
For Multi-FPGA Systems. IEEE Trans. Very Large Scale Integr. Syst., 8(1):30–39, 2000.

[198] M. Dörfel and R. Hofmann. A Prototyping System for High Performance Communication
Systems. In RSP ’98: Proceedings of the Ninth IEEE International Workshop on Rapid
System Prototyping, page 84, Washington, DC, USA, 1998. IEEE Computer Society.

[199] F. Vahid. Techniques for Minimizing and Balancing I/O During Functional Partition-
ing. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
18(1):69–75, Jan 1999.

[200] J. Babb, R. Tessier, M. Dahl, S.Z. Hanono, D.M. Hoki, and A. Agarwal. Logic Emulation
with Virtual Wires. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 16(6):609–626, Jun 1997.

[201] Vahid, Le, and Hsu. A Comparison of Functional and Structural Partitioning. In ISSS ’96:
Proceedings of the 9th international symposium on System synthesis, page 121, Washington,
DC, USA, 1996. IEEE Computer Society.

[202] Young-Su Kwon and Chong-Min Kyung. ATOMi: An Algorithm for Circuit Partitioning
Into Multiple FPGAs Using Time-Multiplexed, Off-Chip, Multicasting Interconnection
Architecture. IEEE Trans. on VLSI Systems, 13(7):861–4, 2005.

[203] Young-Su Kwon and Chong-Min Kyung. Performance-Driven Event-Based Synchroniza-
tion for Multi-FPGA Simulation Accelerator with Event Time-Multiplexing Bus. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(9):1444 –
56, 2005.

[204] Young-Su Kwon and Chong-Min Kyung. Scheduling driven circuit partitioning algorithm
for multiple FPGAs using time-multiplexed, off-chip, multi-casting interconnection archi-
tecture. Microprocessors & Microsystems, 28(5-6):341–350, 2004.

[205] M. Inagi, Y. Takashima, Y. Nakamura, and A. Takahashi. ILP-Based Optimization of
Time-Multiplexed I/O Assignment for Multi-FPGA Systems. In ISCAS 2008., pages 1800–
1803, May 2008.

[206] Masato Inagi, Yasuhiro Takashima, Yuichi Nakamura, and Yoji Kajitani. A Performance-
Driven Circuit Bipartitioning Method Considering Time-Multiplexed I/Os. IEICE Trans
Fundamentals, E90-A(5):924–931, May 2007.

[207] George Karypis and Vipin Kumar. METIS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System. Technical report, Department of Computer Science and Engi-
neering, University of Minnesota, 1995.

[208] George Karypis. METIS - Family of Multilevel Partitioning Algorithms.
http://glaros.dtc.umn.edu/gkhome/views/metis/, March 2008.

[209] Richard Johnsonbaugh and Martin Kalin. A Graph Generation Software Package. SIGCSE
Bull., 23(1):151–154, 1991.

[210] W. M. Zuberek and T. D. P. Perera. Performance Analysis of Distributed Iterative Linear
Solvers. In MMACTE’05: Proceedings of the 7th WSEAS International Conference on
Mathematical Methods and Computational Techniques In Electrical Engineering, pages
194–199, Stevens Point, Wisconsin, USA, 2005. World Scientific and Engineering Academy
and Society (WSEAS).

[211] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial Mathe-
matics, 2003.

REFERENCES 159

[212] G. Kuzmanov and M. Taouil. Reconfigurable Sparse/Dense Matrix-Vector Multiplier. In
Field-Programmable Technology, 2009. FPT 2009. International Conference on, pages 483
–488, dec. 2009.

[213] Ling Zhuo and Viktor K. Prasanna. High-Performance Designs for Linear Algebra Oper-
ations on Reconfigurable Hardware. IEEE Trans. Computers, 57(8):1057–1071, 2008.

[214] Microsoft. QueryPerformanceCounter Function. http://msdn.microsoft.com/en-us/
library/ms644904(VS.85)29.aspx, May 2009.

[215] IEEE. IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754, 1985.

[216] IEEE. IEEE Standard for Radix-Independent Floating-Point Arithmetic, IEEE Std 854,
1987.

[217] Zaher Abdulkarim Baidas. High Level Floating-Point Synthesis. PhD thesis, Electronics
and Computer Science, University of Southampton, 2000.

[218] Michael F. Cowlishaw. Decimal Floating-Point: Algorism for Computers. In IEEE Sym-
posium on Computer Arithmetic, pages 104–111, 2003.

[219] Gokul Govindu, Ronald Scrofano, and Viktor K. Prasanna. A Library of Parameterizable
Floating-Point Cores for FPGAs and their Application to Scientific Computing. In In
Proc. of International Conference on Engineering Reconfigurable Systems and Algorithms,
pages 137–148, 2005.

[220] IEEE. Standard VHDL Reference Manual, IEEE Std 1076, 1993.

[221] David Bishop. Fixed-Point Package User Guide, 2006. see link: http://www.vhdl.org/
vhdl-200x/vhdl-200x-ft/packages/Fixed_ug.pdf.

[222] David Bishop. Floating-Point Package User Guide, 2006. see link: http://www.vhdl.
org/vhdl-200x/vhdl-200x-ft/packages/float_ug.pdf.

[223] J. Detrey and F. de Dinechin. FPLibrary v0.91 User Documentation, Dec 2006. https:
//lipforge.ens-lyon.fr/docman/view.php/12/1/fplib_doc.pdf.

http://msdn.microsoft.com/en-us/library/ms644904(VS.85)29.aspx
http://msdn.microsoft.com/en-us/library/ms644904(VS.85)29.aspx
http://www.vhdl.org/vhdl-200x/vhdl-200x-ft/packages/Fixed_ug.pdf
http://www.vhdl.org/vhdl-200x/vhdl-200x-ft/packages/Fixed_ug.pdf
http://www.vhdl.org/vhdl-200x/vhdl-200x-ft/packages/float_ug.pdf
http://www.vhdl.org/vhdl-200x/vhdl-200x-ft/packages/float_ug.pdf
https://lipforge.ens-lyon.fr/docman/view.php/12/1/fplib_doc.pdf
https://lipforge.ens-lyon.fr/docman/view.php/12/1/fplib_doc.pdf

Appendix A

CMOS LEVEL 3 VHDL-AMS
Model

A.1 Simulation Model VHDL-AMS Code

The CMOS LEVEL 3 device model from the Southampton VHDL-AMS Verification Suite used
in the evaluation process is shown in Listing A.1 [172].

l ibrary IEEE ;

use IEEE . math rea l . a l l ;
use IEEE . e l e c t r i c a l s y s t em s . a l l ;

entity mos i s
generic (

−− i n s t an c e parameters
width : r e a l :=1.0E−4; −− s hou l d be g l o b a l c on s t an t DEFW!
l ength : r e a l :=1.0E−4; −− DEFL
channel : r e a l :=1 . 0 ; −− +1 f o r NMOS, −1 f o r PMOS
−− model parameters
vt0 : r e a l := rea l ’ low ;
kp : r e a l := 2 .0E−5;
gamma : r e a l := 0 . 0 ;
phi : r e a l := 0 . 6 ;
tox : r e a l := 1 .0E−7;
nsub : r e a l := 0 . 0 ;
nss : r e a l := 0 . 0 ;
n f s : r e a l := 0 . 0 ;
tpg : r e a l := 1 . 0 ;
x j : r e a l := 0 . 0 ;
ld : r e a l := 0 . 0 ;
u0 : r e a l := 600 . 0 ;
vmax : r e a l := 0 . 0 ;
xqc : r e a l := 1 . 0 ;
k f : r e a l := 0 . 0 ;
a f : r e a l := 1 . 0 ;
f c : r e a l := 0 . 5 ;
d e l t a : r e a l := 0 . 0 ;
theta : r e a l := 0 . 0 ;
eta : r e a l := 0 . 0 ;
kappa : r e a l := 0 . 2 ;
ngate : r e a l := 1 .5 e19 ;
−− environment parameters
Temperature : r e a l :=300.0 −− Shou ld be g l o b a l) ;
port (te rmina l drain , gate , source , bulk : e l e c t r i c a l) ;

end entity ;

architecture mos3 of mos i s

quant i ty MOSquantities : r e a l v e c t o r (0 to 3) ;
quant i ty Vdsq ac ro s s dra in to source ;
quant i ty Vgsq ac ro s s gate to source ;

160

Appendix A CMOS LEVEL 3 VHDL-AMS Model 161

quant i ty Vbsq ac ro s s bulk to source ;
quant i ty Idq through dra in ;
quant i ty Igq through gate ;
quant i ty I sq through source ;
quant i ty Ibq through bulk ;
constant eps0 : r e a l :=8.85418 e−12;
constant Ni : r e a l :=1.45 e16 ;
constant Boltzmann : r e a l :=1.380662 e−23;
constant echarge : r e a l :=1.6021892 e−19;
constant epsSiO2 : r e a l :=3.9∗ eps0 ;
constant epsS i : r e a l :=11.7∗ eps0 ;
constant pi : r e a l := 3 .14159 ;

Function Max(x , y : r e a l) return r e a l i s
variable z : r e a l ;

begin
i f x>=y then

z :=x ;
else

z :=y ;
end i f ;
return z ;

end function Max;

Function Min(x , y : r e a l) return r e a l i s
variable z : r e a l ;

begin
i f x<=y then

z :=x ;
else

z :=y ;
end i f ;
return z ;

end function Min ;

Function MOSequations (vdsq , vgsq , vbsq , width , length , channel , vt0 , kp , gamma,
phi , tox , nsub , nss , nfs , tpg , xj , ld , u0 , vmax , xqc , kf , af , fc , de l ta , theta ,
eta , kappa , ngate , temperature : r e a l) return r e a l v e c t o r i s

variable Qc ,Qb,Qg : r e a l ;
variable cox , beta , vt , sigma , nsub in , Phi in , Gamma in , ns s in , ngate in ,A,B,C,D, Vfb , f shor t ,

wp,wc , sqwpxj , vbulk , delv , vth , Vgstos , Vgst , e f f , Tau , Vsat ,Vpp , fdra in , eg f e t ,
fermig , mobdeg , s t f c t , l e f f , xd , qnfscox , fn , dc r i t , d e l t a l , I t , Ids ,R, Vds , Vgs , Vbs ,
forward ,kTQ : r e a l ;

variable r e s u l t s : r e a l v e c t o r (0 to 3) ;
begin

kTQ :=Boltzmann∗ temperature / echarge ;

i f tox <=0.0 then
cox :=epsSiO2 /(1 . 0 e−7) ;

else
cox :=epsSiO2/ tox ;

end i f ;

i f kp = 0.0 then
beta :=cox∗u0 ;

else
beta :=kp ;

end i f ;

nsub in := nsub ∗ 1 .0 e6 ; −− s c a l e nsub to SI un i t s

i f (phi = rea l ’ low) then
i f (nsub in > 0 . 0) then

Phi in :=max(0 . 1 , 2 . 0∗kTQ∗ l og (nsub in /Ni)) ;
else

Phi in :=0 . 6 ;
end i f ;

else
Phi in :=phi ;

end i f ; −− model . ph i = unde f ined

i f (gamma = rea l ’ low) then
i f (nsub in > 0 . 0) then

Gamma in:= sq r t (2 . 0∗ epsS i ∗ echarge∗nsub in) /cox ;
else

Gamma in :=0 . 0 ;
end i f ;

else
Gamma in:=gamma;

end i f ; −− gamma = unde f ined

n s s i n :=nss ∗1.0 e4 ; −− Sca l e to SI
ngate in :=ngate ∗1.0 e4 ; −− Sca l e to SI

i f (vt0 = rea l ’ low) then
e g f e t :=1.16−(7.02 e−4∗Temperature∗Temperature) /(Temperature +1108.0) ;
i f tpg=0.0 then

f e rmig :=0.05+ eg f e t / 2 . 0 ;

Appendix A CMOS LEVEL 3 VHDL-AMS Model 162

else
i f ngate in >0.0 then

f e rmig :=tpg∗ channel∗kTQ∗ l og (nga t e in /Ni) ;
else

f e rmig :=tpg∗ channel∗ e g f e t / 2 . 0 ;
end i f ;
vt:=− f e rmig+channel ∗(Ph i in ∗0.5+Gamma in∗ sq r t (Ph i in))−n s s i n ∗ echarge /cox ;

end i f ;
else

vt :=vt0 ;
end i f ; −− v t 0 = unde f ined

l e f f := length −2.0∗ ld ;

i f l e f f >0.0 then
Sigma:= eta ∗8.15 e−22/(cox∗ l e f f ∗ l e f f ∗ l e f f) ;

else
Sigma :=0 . 0 ;

end i f ; −− l e f f >0

i f nsub in >0.0 then −− N.B. nsub was s ca l ed , above .
xd:= sq r t (2 . 0∗ epsS i /(echarge∗nsub in)) ;

else
xd :=0 . 0 ;

end i f ; −− nsub >0

i f (nfs >0.0) and(cox >0.0) then
qnfscox := echarge∗ n f s /cox ;

else
qnfscox :=0 . 0 ;

end i f ; −−n f s > 0

i f cox >0.0 then
fn := de l t a ∗pi ∗ epsS i ∗0 .5/(cox∗width) ;

else
fn := de l t a ∗pi ∗ epsS i ∗0.5∗ tox/epsSiO2 ;

end i f ; −− cox > 0

−−Sca l e b e t a and conve r t cox from Fmˆ−2 to F
beta :=beta∗width/ l e f f ;
cox :=cox∗width∗ l e f f ;

Vds:= channel∗Vdsq ;

i f Vds>=0.0 then
Vgs:= channel∗ Vgsq ;
Vbs:= channel∗ Vbsq ;
forward :=1 . 0 ;

else
Vds:=−Vds ;
Vgs:= channel∗ Vgsq ;
Vbs:= channel∗ Vbsq ;
forward :=−1.0;

end i f ; −− Vds >=0

i f Vbs<=0.0 then
A:=Phi in−Vbs ;
D:= sq r t (A) ;

else
D:=2.0∗ sq r t (Ph i in)∗Phi in /(2 .0∗ Phi in+Vbs) ;
A:=D∗D;

end i f ; −− Vbs <= 0

Vfb:=Vt−Gamma in∗ sq r t (Ph i in)−Sigma∗Vds ;

i f (xd=0.0) OR (x j =0.0) then
f s h o r t :=1 . 0 ;

else
wp:=xd∗D;
wc:=0.0631353∗ xj +0.8013292∗wp−0.01110777∗wp∗wp/ xj ;
sqwpxj := sq r t (1.0−(wp∗wp/((wp+xj) ∗(wp+xj)))) ;
f s h o r t :=1.0−((ld+wc)∗sqwpxj−ld) / l e f f ;

end i f ; −− xd or x j = 0

vbulk :=Gamma in∗ f s h o r t ∗D+fn∗A;

i f n f s =0.0 then
delv :=0 . 0 ;

else
delv :=kTQ∗(1.0+ qnfscox+vbulk ∗0.5/A) ;

end i f ; −− n f s = 0

vth :=Vfb+vbulk ;
Vgstos :=Vgs−Vfb ;
Vgst :=max(Vgs−vth , de lv) ;

i f (vgs>=vth) or (de lv /=0.0) then
i f (Vbs<=0.0) or (Ph i in /= 0 . 0) then

B:=0.5∗Gamma/D+fn ;

Appendix A CMOS LEVEL 3 VHDL-AMS Model 163

else
B:= fn ;

end i f ;
mobdeg :=1.0/(1.0+ theta ∗Vgst) ;
i f (vmax /=0.0) then

Uef f :=u0∗mobdeg ;
Tau:=Uef f / Le f f ∗vmax ;

else
Tau :=0 . 0 ;

end i f ;

Vsat :=Vgst /(1.0+B) ;
Vsat :=Vsat ∗(1.0−0.5∗Tau∗Vsat) ;
Vpp:=min (Vds , Vsat) ;
f d r a i n :=1.0/(1.0+Tau∗Vpp) ;

i f (Vgs<vth+delv) and (nfs >0.0) then
s t f c t :=exp ((Vgs−vth−delv) / de lv) ;

else
s t f c t :=1 . 0 ;

end i f ;

i f Vds>=Vsat then
i f (kappa >0.0) and (xd>0.0) then

i f vmax=0.0 then
d e l t a l := sq r t (kappa∗xd∗xd∗(Vds−Vsat)) ;

else
d c r i t :=(xd∗xd∗vmax∗0 .5) /(Uef f ∗(1.0− f d r a i n)) ;
d e l t a l := sq r t (kappa∗xd∗xd∗(Vds−Vsat)+d c r i t ∗ d c r i t)−d c r i t ;

end i f ;
i f de l t a l <=0.5∗Le f f then

C:= Le f f /(Lef f−d e l t a l) ;
else

C:=4.0∗ d e l t a l / Le f f ;
end i f ;

else −−kappa=0.0 or xd=0.0
C:=1 .0 ;

end i f ;
else

C:=1 .0 ;
end i f ;
I t :=Vgst−Vpp∗(1.0+B) ∗ 0 . 5 ;
Beta :=Beta∗mobdeg ;
Ids :=Beta∗Vpp∗ I t ∗C∗ f d r a i n ∗ s t f c t ;

else
−− Cu to f f
Ids :=0 . 0 ;

end i f ; −− vg s >= vth

i f Cox /= 0.0 then
−−Charges

i f Vgs<=vth then
i f Gamma in /= 0.0 then

i f Vgstos < −A then
Qg:=Cox∗(Vgstos+A) ; −− Accumulat ion

else
Qg:=0.5∗Gamma in∗Cox∗(sq r t (4 . 0∗ (Vgstos+A)+sqr t (Gamma in))−Gamma in) ;

end i f ; −− v g s t o s <−A
else−− Gamma = 0.0

Qg:=0 . 0 ;
end i f ; −− gamma /= 0

Qb:=−Qg;
Qc :=0 . 0 ;

else
−− d e p l e t i o n mode :

R:=(1.0+B)∗Vpp∗Vpp/(12 .0∗ I t) ;
Qg:=Cox∗(Vgstos−Vpp∗0.5+R) ;
Qc:=−Cox∗(Vgst+(1.0+B) ∗(R−Vpp∗0 .5)) ;
Qb:=−(Qc+Qg) ;

end i f ; −− vgs<=vth
else

Qg:=0 . 0 ;
Qc :=0 . 0 ;
Qb:=0 . 0 ;

end i f ; −− cox /= 0

r e s u l t s (0) := channel∗ forward∗ Ids ;
r e s u l t s (1) := channel∗xqc∗Qc ;
r e s u l t s (2) := channel∗Qg;
r e s u l t s (3) := channel∗Qb;

return r e s u l t s ;
end function MOSequations ;

begin
−− e qua t i on s f o r c u r r en t s :

MOSquantities == MOSequations (vdsq , vgsq , vbsq , width , length , channel , vt0 , kp , gamma,
phi , tox , nsub , nss , nfs , tpg , xj , ld , u0 , vmax , xqc , kf , af , fc , de l ta , theta ,
eta , kappa , ngate , temperature) ;

Appendix A CMOS LEVEL 3 VHDL-AMS Model 164

Idq == MOSquantities (0)+MOSquantities (1) ’ dot ;
Igq == MOSquantities (2) ’ dot ;
Ibq == MOSquantities (3) ’ dot ;
I sq == −Idq − Igq − Ibq ;

end architecture mos3 ;

−− 2 . Tes tbench
l ibrary IEEE ;
use IEEE . math rea l . a l l ;
use IEEE . e l e c t r i c a l s y s t em s . a l l ;

entity test mos i s
end entity test mos ;

architecture t e s t of test mos i s
te rmina l d , g : e l e c t r i c a l ;
a l ias ground i s ELECTRICAL REF;

begin
vgs : entity v constant generic map (l e v e l =>2.0) port map (pos=>g , neg=>ground) ;
vds : entity v pu l s e generic map (pu l se =>5.0, tchange=>10sec) port map(pos=>d , neg=>ground

) ;
nmos : entity mos port map (dra in=>d , gate=>g , source=>ground , bulk=>ground) ;

end architecture ;

−− 3 . Constant Vo l t age Source
l ibrary IEEE ;
use IEEE . math rea l . a l l ;
use IEEE . e l e c t r i c a l s y s t em s . a l l ;

entity v constant i s
generic (l e v e l : vo l tage) ;
port (te rmina l pos , neg : e l e c t r i c a l) ;

end entity v constant ;

architecture i d e a l of v constant i s
quant i ty v ac ro s s i through pos to neg ;

begin
v == l e v e l ;

end architecture ;

−− 4 . Pu l se Vo l t age Source

l ibrary IEEE ;
use IEEE . math rea l . a l l ;
use IEEE . e l e c t r i c a l s y s t em s . a l l ;

entity v pu l s e i s
generic (

i n i t i a l : r e a l := 0 . 0 ;
pu l s e : r e a l := 5 . 0 ;
tchange : time := 10 sec) ; −− i n i t i a l t o p u l s e [Sec]

port (te rmina l pos , neg : e l e c t r i c a l) ;
end entity v pu l s e ;

architecture behaviour of v pu l s e i s
function t ime2rea l (t t : time) return r e a l i s
begin

return time ’ pos (t t) ∗ 1 .0 e−15;
end t ime2rea l ;

constant s l ope : r e a l := pu l se / t ime2rea l (tchange) ;

quant i ty v ac ro s s i through pos to neg ;
−− S i g na l used in CreateEvent p r o c e s s be low
signal pu l s e s i g n a l : r e a l := i n i t i a l ;

begin

v==pu l s e s i g na l ’ s lew (s l ope) ;
CreateEvent : process
begin

wait until domain = time domain ; −− Run pro c e s s in Time Domain on l y
pu l s e s i g n a l <=pulse ;

end process CreateEvent ;
end architecture behaviour ;

Listing A.1: VHDL-AMS CMOS LEVEL 3 Model

Appendix A CMOS LEVEL 3 VHDL-AMS Model 165

A.2 Synthesisable Model VHDL Code

The synthesisable CMOS code, full implementation, only the simple implementation is shown in
Listing A.2. The VHDL testbench is shown in Listing A.3. The simulation waveforms is shown
in Appendix A.3.

l ibrary i e e e ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . math rea l . a l l ;
use std . t e x t i o . a l l ;

l ibrary f p l i b ;
use f p l i b . pkg f p l i b . a l l ;

l ibrary i e e e p ropo s ed ;
use i e e e p ropo s ed . math ut i l i t y pkg . a l l ;
use i e e e p ropo s ed . f l o a t pkg . a l l ;

−−use work . matr i x ;

entity cmos syn p ipe l i n e i s

generic (
wE : p o s i t i v e := 8 ;

wF : p o s i t i v e := 23) ; −− Shou ld be g l o b a l
−− po r t (t e rm ina l drain , gate , source , b u l k : e l e c t r i c a l) ;

port (vdsq i , vgsq i , vb sq i : in s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
c l k : in s t d l o g i c ;

s t a r t : in s t d l o g i c ;
done : out s t d l o g i c ;
r e s u l t 1 o : out s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
r e s u l t 2 o : out s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
r e s u l t 3 o : out s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
r e s u l t 4 o : out s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
r e s e t : in s t d l o g i c) ;−−;

end entity ;

architecture r t l of cmos syn p ipe l i n e i s
type vector i s array (i n t e g e r range <>) of s t d l o g i c v e c t o r (2+wE+wF downto 0) ;

signal vdsq , vgsq , vbsq : s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
signal r e s u l t 1 : s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
signal r e s u l t 2 : s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
signal r e s u l t 3 : s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
signal r e s u l t 4 : s t d l o g i c v e c t o r (2+wE+wF downto 0) ;

constant one : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (1 . 0 , wE,
wF)) ; −− ”0100111111100000000000000000000000”;

constant ha l f : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (0 . 5 , wE,
wF)) ; −− ”0100111111000000000000000000000000”;

constant two : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (2 . 0 , wE,
wF)) ; −− ”0100111111000000000000000000000000”;

constant zero : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”00” & t o s l v (t o f l o a t (0 . 0 , wE,
wF)) ; −− ”0000000000000000000000000000000000”;

constant f our : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (4 . 0 , wE,
wF)) ;

signal r e a l l ow : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”10” & t o s l v (t o f l o a t (r ea l ’
low , wE, wF)) ; −− 11111111100000000000000000000000”; −− − I n f

signal r e a l h i g h : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”10” & t o s l v (t o f l o a t (r ea l ’
high , wE, wF)) ; −− 01111111100000000000000000000000”; −− + In f

constant fp : p o s i t i v e := wE + wF;

signal t1 , t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 , t10 , t11 , t12 , t13 , t14 , t14 1 , t14 2 , t15 ,
t16 , t17 , t17 1 , t18 , t19 , t20 , t21 , t22 , t23 , t24 , t25 , t26 , t27 , t27 1 , t28 , t29 , t30 ,

t30 1 , t31 , t32 , t33 , t34 , t35 , t36 , t37 , t38 , t39 , t40 , t41 , t42 , t43 , t44 , t45 , t46 , t47
, t48 , t49 , t50 , t51 , t52 , t53 , t54 , t55 , t56 , t57 , t58 , t59 , t60 , t61 , t62 , t63 , t64 , t65
, t66 , t66 1 , t67 , t68 , t69 , t70 , t71 , t72 , t73 , t74 , t75 , t76 , t77 , t78 , t79 , t80 , t81 ,
t82 , t83 , t84 , t85 , t86 , t87 , t88 , t89 , t90 , t91 , t92 , t93 , t94 , t95 , t96 , t97 , t98 , t99
, t100 , t101 , t102 , t103 , t104 , t105 , t106 , t107 , t108 , t109 , t110 , t111 , t112 , t113 , t114
, t115 : s t d l o g i c v e c t o r (2+wE+wF downto 0) := (others => ’ 0 ’) ;

signal t104 in , t86 in , Vpp in , Vgstos in , Vgst in2 , Qc , Qc out , Vds in , Vgst out ,
Vgst in , id s out , Qb, Qg out , Qg , cox , new beta , Vt , Sigma , nsub in , sq r tPh i in , Gamma in ,
ns s in , ngate in ,A,B,C,D, f shor t , vth delv , xd 2 , Vds Vsat , wp,wc , sqwpxj , vbulk , delv , Vgstos ,
Vgst , Ueff , Tau , Vsat , Vsat0 ,Vpp , fdra in , eg f e t , e g f e t 2 , fermig , mobdeg , s t f c t , Le f f , Le f f 2 ,
l e f f 3 , xd , qnfscox , fn , dc r i t , d e l t a l , I t , Ids ,R, Vds , Vgs , Vbs , vtTmp , echCox : s t d l o g i c v e c t o r
(2+wE+wF downto 0) := (others => ’ 0 ’) ;

signal forward : s t d l o g i c := ’ 0 ’ ;

function minus (i : s t d l o g i c v e c t o r) return s t d l o g i c v e c t o r i s
variable r e s : s t d l o g i c v e c t o r (2+wE+wF downto 0) := i ;

begin

Appendix A CMOS LEVEL 3 VHDL-AMS Model 166

i f (i (wE+wF) = ’0 ’) then
r e s (wE+wF) := ’ 1 ’ ;

else
r e s (wE+wF) := ’ 0 ’ ;

end i f ;
return r e s ;
end function ;

function f (i : s t d l o g i c v e c t o r) return f l o a t i s
variable ex : s t d l o g i c v e c t o r (1 downto 0) ;
variable s i gn : s t d l o g i c ;

variable s : l i n e ;
begin

ex := i (2+ fp downto 1+fp) ; −− The e x e c p t i o n b i t s
s i gn := i (fp) ; −− Sign b i t
i f (ex = ”00”) then −− Zero

return t o f l o a t (0 . 0 , wE, wF) ;
e l s i f (ex = ”10”) then −− i n f

i f (s i gn = ’1 ’) then
return t o f l o a t (r ea l ’ low , wE, wF) ;

else
return t o f l o a t (r ea l ’ high , wE, wF) ;

end i f ;
e l s i f (ex = ”11”) then −− NaN

return qnanfp (wE, wF) ;
e l s i f (ex = ”01”) then −− Normal Fp number

return t o f l o a t (i (fp downto 0) , wE, wF) ;
else

return t o f l o a t (i (fp downto 0) , wE, wF) ; −− To pass t h e
X dont

end i f ;
end function ;

constant beta : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (2 . 0 e−5,
wE, wF)) ;

constant Phi in : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (0 . 6 , wE
, wF)) ;

constant Phi in2 : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (1 . 2 ,
wE, wF)) ;

constant ph i 2 s q r t : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t
(0 .92951600308978 , wE, wF)) ;

constant Vfb : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t
(−0.117562084960685 , wE, wF)) ;

constant Vth : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t
(−0.117562084960685 , wE, wF)) ;

constant new cox : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t
(3 .4531 e−012 , wE, wF)) ;

constant minus new cox : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t
(−3.4531e−012 , wE, wF)) ;
−−con s t an t cons9 : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t

(0 .083333333333333333333333333333333 , wE, wF)) ; −− 1/12
constant cons9 : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (12 . 0 ,

wE, wF)) ; −− 1/12

−− Real v a l u e s :
−− s y n t h e s i s t r a n s l a t e o f f
signal vds r , vgs r , vbs r , Vgst r , Vpp r , I t r , Id s r , R r , Qg r , Qb r , Qc r : r e a l :=

0 . 0 ;
−− s y n t h e s i s t r a n s l a t e o n

−− Re g i s t e r s to p i p e l i n e t h e o p e r a t i o n s in t h e CMOS model
signal r1 : vec tor (1 to 3) ; −− Vds
signal r2 : vec tor (1 to 29) ; −− Vgst
signal r3 : vec tor (1 to 29) ; −− Vgstos
signal r4 : vec tor (1 to 22) ; −− 0 .5 ∗ Vpp
signal r5 : vec tor (1 to 25) ; −− I d s
signal r6 : vec tor (1 to 39) ; −− Vgst to ou tpu t
signal r7 : vec tor (1 to 11) ; −− Vpp to (b e t a ∗ I t ∗Vpp)
signal r8 : vec tor (1 to 4) ; −− Vgst to (Vgst ∗0.5∗Vpp)
signal r9 : vec tor (1 to 7) ; −− Vgst to (Vgst ∗0.5∗Vpp)
signal r10 : vec tor (1 to 3) ; −− Qg
signal r11 : vec tor (1 to 3) ; −− Qc

begin

i n b u f f : process (c lk , r e s e t) −− , s t a r t , v d s q i , v g s q i , v b s q i , r e s u l t 1 , r e s u l t 2 ,
r e s u l t 3 , r e s u l t 4)

variable t imer : i n t e g e r := 0 ;
begin

i f (r e s e t = ’1 ’) then
vdsq <= zero ;
vgsq <= zero ;
vbsq <= zero ;
r e s u l t 1 o <= zero ;
r e s u l t 2 o <= zero ;
r e s u l t 3 o <= zero ;
r e s u l t 4 o <= zero ;
done <= ’0 ’ ;

Appendix A CMOS LEVEL 3 VHDL-AMS Model 167

e l s i f (r i s i n g e d g e (c l k)) then
i f (s t a r t = ’1 ’) then

vdsq <= vdsq i ;
vgsq <= vgsq i ;
vbsq <= vbsq i ;
i f (t imer > 51) then

r e s u l t 1 o <= re s u l t 1 ;
r e s u l t 2 o <= re s u l t 2 ;
r e s u l t 3 o <= re s u l t 3 ;
r e s u l t 4 o <= re s u l t 4 ;
done <= ’1 ’ ;

end i f ;
t imer := timer + 1 ;

else
vdsq <= zero ;
vgsq <= zero ;
vbsq <= zero ;
r e s u l t 1 o <= zero ;
r e s u l t 2 o <= zero ;
r e s u l t 3 o <= zero ;
r e s u l t 4 o <= zero ;
done <= ’0 ’ ;

end i f ;
end i f ;

end process ;

Vgs <= Vgsq ;
Vbs <= Vbsq ;

fsm : process (r e s e t , c l k)
begin

i f (r e s e t = ’1 ’) then

Vds <= zero ;
forward <= ’0 ’ ;
Vgst <= zero ;
Vpp <= zero ;
I t <= zero ;
Ids <= zero ;
R <= zero ;
Qg <= zero ;
Qc <= zero ;
Qb <= zero ;
r e s u l t 1 <= zero ;
r e s u l t 2 <= zero ;
r e s u l t 3 <= zero ;
r e s u l t 4 <= zero ;

e l s i f (r i s i n g e d g e (c l k)) then

i f (f (Vdsq)>=f (zero)) then
Vds <= Vdsq ;
forward <= ’0 ’ ;

else
Vds <= minus (Vdsq) ;
forward <= ’1 ’ ;

end i f ; −− Vds >=0

Vgst <= ”01” & t o s l v (maximum(f (Vgstos) , f (zero))) ;

−− 230
i f (f (vgs) >= f (vth)) then −− d e p l e t i o n mode :

Vpp <= ”01” & t o s l v (minimum(f (Vds in) , f (Vgst))) ;
I t <= t88 ; −− ; Vgst−Vpp∗(1.0+B) ∗0 . 5 ;
Ids <= t94 ;−− Beta∗Vpp∗ I t ∗C∗ f d r a i n ∗ s t f c t ;
R <= t107 ; −− (1.0+B)∗Vpp∗Vpp/(12 .0∗ I t) ;
Qg <= t110 ; −− new cox ∗(Vgstos−Vpp∗0.5+R) ;
Qc <= t113 ; −− −new cox ∗(Vgst +(1.0+B) ∗(R−Vpp ∗0 .5)) ;
Qb <= minus (t114) ;−− −(Qc+Qg) ;

else
−− Cu to f f
Vpp <= zero ; −− min (Vds , Vsat) ;
I t <= zero ;
Ids <= zero ;
R <= zero ;
Qg <= zero ;
Qc <= zero ;
Qb <= zero ; −−minus (Qg) ;

end i f ; −− vg s >= vth

−− i f (f (Vgs)<=f (v t h)) then
−−e l s e
−−end i f ; −− vgs<=vth

i f (forward = ’0 ’) then
r e s u l t 1 <= Ids out ;

else
r e s u l t 1 <= minus (Id s out) ;

Appendix A CMOS LEVEL 3 VHDL-AMS Model 168

end i f ;

r e s u l t 2 <= Qc out ;
r e s u l t 3 <= Qg out ;
r e s u l t 4 <= Qb;

end i f ;

end process ;

r e g i s t e r s : process (c lk , r e s e t)
begin

i f (r e s e t = ’1 ’) then
r1 <= ((others=> (others=> ’0 ’))) ;
r2 <= ((others=> (others=> ’0 ’))) ;
r3 <= ((others=> (others=> ’0 ’))) ;
r4 <= ((others=> (others=> ’0 ’))) ;
r5 <= ((others=> (others=> ’0 ’))) ;
r6 <= ((others=> (others=> ’0 ’))) ;
r7 <= ((others=> (others=> ’0 ’))) ;
r8 <= ((others=> (others=> ’0 ’))) ;
r9 <= ((others=> (others=> ’0 ’))) ;
r10 <= ((others=> (others=> ’0 ’))) ;
r11 <= ((others=> (others=> ’0 ’))) ;

e l s i f (r i s i n g e d g e (c l k)) then
−− r1
Vds in <= r1 (1) ;
for i in 1 to (r1 ’ high − 1) loop

r1 (i) <= r1 (i +1) ;
end loop ;
r1 (r1 ’ high) <= Vds ;

−− r2
Vgst in <= r2 (1) ;
for i in 1 to (r2 ’ high − 1) loop

r2 (i) <= r2 (i +1) ;
end loop ;
r2 (r2 ’ high) <= Vgst ;

−− r3
Vgstos in <= r3 (1) ;
for i in 1 to (r3 ’ high − 1) loop

r3 (i) <= r3 (i +1) ;
end loop ;
r3 (r3 ’ high) <= Vgstos ;

−− r4
t 8 6 i n <= r4 (1) ;
for i in 1 to (r4 ’ high − 1) loop

r4 (i) <= r4 (i +1) ;
end loop ;
r4 (r4 ’ high) <= t86 ; −− Vpp∗0.5

−− r5
i d s ou t <= r5 (1) ;
for i in 1 to (r5 ’ high − 1) loop

r5 (i) <= r5 (i +1) ;
end loop ;
r5 (r5 ’ high) <= Ids ;

−− r6
Vgst out <= r6 (1) ;
for i in 1 to (r6 ’ high − 1) loop

r6 (i) <= r6 (i +1) ;
end loop ;
r6 (r6 ’ high) <= Vgst ;

−− r7
Vpp in <= r7 (1) ;
for i in 1 to (r7 ’ high − 1) loop

r7 (i) <= r7 (i +1) ;
end loop ;
r7 (r7 ’ high) <= Vpp ;

−− r8
Vgst in2 <= r8 (1) ;
for i in 1 to (r8 ’ high − 1) loop

r8 (i) <= r8 (i +1) ;
end loop ;
r8 (r8 ’ high) <= Vgst ;

−− r9
t 104 in <= r9 (1) ;
for i in 1 to (r9 ’ high − 1) loop

r9 (i) <= r9 (i +1) ;
end loop ;
r9 (r9 ’ high) <= t104 ; −− Vpp∗Vpp

Appendix A CMOS LEVEL 3 VHDL-AMS Model 169

−− r10
Qg out <= r10 (1) ;
for i in 1 to (r10 ’ high − 1) loop

r10 (i) <= r10 (i +1) ;
end loop ;
r10 (r10 ’ high) <= Qg;

−− r11
Qc out <= r11 (1) ;
for i in 1 to (r11 ’ high − 1) loop

r11 (i) <= r11 (i +1) ;
end loop ;
r11 (r11 ’ high) <= Qc ; −− Vpp∗Vpp

end i f ;

end process ;

add16 : entity f p l i b . fpadd c lk generic map (wE, wF) port map (Vgs , minus (Vfb) ,
Vgstos , c l k) ;
−− 274
mul54 : entity f p l i b . fpmul c lk generic map (wE, wF) port map (Vpp , ha l f , t86 , c l k) ;
add30 : entity f p l i b . fpadd c lk generic map (wE, wF) port map (Vgst in2 , minus (t86) ,

t88 , c l k) ; −− I t :=Vgst−Vpp∗(1.0+B) ∗0 . 5 ;
−− 276
mul56 : entity f p l i b . fpmul c lk generic map (wE, wF) port map (beta , It , t89 , c l k) ;
mul57 : entity f p l i b . fpmul c lk generic map (wE, wF) port map (t89 , Vpp in , t94 , c l k)

;
−− −− 298
mul66 : entity f p l i b . fpmul c lk generic map (wE, wF) port map (Vpp , Vpp , t104 , c l k) ;
−− Vpp∗Vpp
mul68 : entity f p l i b . fpmul c lk generic map (wE, wF) port map (It , cons9 , t105 , c l k

) ; −− I t ∗ 12
div20 : entity f p l i b . f p d i v c l k generic map (wE, wF) port map (t104 in , t105 , t107 ,

c l k) ; −− Vpp∗Vpp / I t ∗12
−− −− 299
add34 : entity f p l i b . fpadd c lk generic map (wE, wF) port map (R, minus (t 86 i n) , t108

, c l k) ; −− R−Vpp∗0.5
add35 : entity f p l i b . fpadd c lk generic map (wE, wF) port map (Vgstos in , t108 , t109 ,

c l k) ;
mul69 : entity f p l i b . fpmul c lk generic map (wE, wF) port map (new cox , t109 , t110 ,

c l k) ;
−− −− 300
add36 : entity f p l i b . fpadd c lk generic map (wE, wF) port map (Vgst in , t108 , t112 ,

c l k) ;
mul71 : entity f p l i b . fpmul c lk generic map (wE, wF) port map (minus new cox , t112 ,

t113 , c l k) ;
−− −− 301
add37 : entity f p l i b . fpadd c lk generic map (wE, wF) port map (Qc , Qg, t114 , c l k) ;

counter : process (c lk , r e s e t)
variable c : i n t e g e r := 0 ;

begin
i f (r e s e t = ’1 ’) then

c := 0 ;
e l s i f (c lk ’ event and c l k = ’1 ’) then

c := c + 1 ;
end i f ;

end process ;

−− s y n t h e s i s t r a n s l a t e o f f

vds r <= t o r e a l (f (vds)) ;
vg s r <= t o r e a l (f (vgs)) ;
vbs r <= t o r e a l (f (vbs)) ;
Vgst r <= t o r e a l (f (Vgst)) ;
Vpp r <= t o r e a l (f (Vpp)) ;
I t r <= t o r e a l (f (I t)) ;
I d s r <= t o r e a l (f (Ids)) ;
R r <= t o r e a l (f (R)) ;
Qg r <= t o r e a l (f (Qg)) ;
Qb r <= t o r e a l (f (Qb)) ;
Qc r <= t o r e a l (f (Qc)) ;

−− s y n t h e s i s t r a n s l a t e o n

end architecture ;

Listing A.2: Synthesisable VHDL CMOS LEVEL 3 Model

l ibrary i e e e ;

use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;
use i e e e . math rea l . a l l ;
use std . t e x t i o . a l l ;

Appendix A CMOS LEVEL 3 VHDL-AMS Model 170

l ibrary i e e e p ropo s ed ;
use i e e e p ropo s ed . math ut i l i t y pkg . a l l ;
use i e e e p ropo s ed . f l o a t pkg . a l l ;

entity cmos tb i s
−−por t (c l k : in s t d l o g i c) ;

end entity cmos tb ;

architecture r t l of cmos tb i s
−− s i g n a l Vd , N, T, I s , r e s : s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
signal clk , r e s e t , r e s rdy , s ta r t , done : s t d l o g i c := ’ 0 ’ ;
constant wE : p o s i t i v e := 8 ;
constant wF : p o s i t i v e := 23 ;

signal r1 1 , r1 2 , r1 3 , r1 4 , r2 1 , r2 2 , r2 3 , r2 4 : s t d l o g i c v e c t o r (2+wE+wF downto 0)
;

signal Id , Ig , Ib , Isq , Idq1 , Igq1 , Ibq1 : r e a l ;

signal vdsq : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (2 . 5 , wE, wF
)) ;

signal vgsq : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (1 . 5 , wE, wF
)) ;

signal vbsq : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (1 . 5 , wE, wF
)) ;

constant one : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (1 . 0 , wE,
wF)) ;

constant ha l f : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (0 . 5 , wE,
wF)) ;

constant two : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (2 . 0 , wE,
wF)) ;

constant zero : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”00” & t o s l v (t o f l o a t (0 . 0 , wE,
wF)) ;

constant f our : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”01” & t o s l v (t o f l o a t (4 . 0 , wE,
wF)) ;

signal r e a l l ow : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”10” & t o s l v (t o f l o a t (r ea l ’
low , wE, wF)) ; −− − I n f

signal r e a l h i g h : s t d l o g i c v e c t o r (2+wE+wF downto 0) := ”10” & t o s l v (t o f l o a t (r ea l ’
high , wE, wF)) ; −− + In f

constant fp : p o s i t i v e := wE + wF;

type vector i s array (i n t e g e r range <>) of s t d l o g i c v e c t o r (2+wE+wF downto 0) ;
signal vo l t ag e s : vec tor (1 to 300) ;

begin
c l k <= not c l k after 5 ns ;
r e s e t <= ’1 ’ , ’0 ’ after 10 ns ;
−−s t a r t <= ’0 ’ , ’1 ’ a f t e r 10 ns ;

−−vdsq <= ”01” & t o s l v (t o f l o a t (1 . 7 5 , wE, wF)) ;
vgsq <= ”01” & t o s l v (t o f l o a t (2 . 0 , wE, wF)) ;−−e−5;
vbsq <= ”01” & t o s l v (t o f l o a t (2 . 0 , wE, wF)) ;−−e−5

Id <= t o r e a l (t o f l o a t (r2 1 (wE + wF downto 0) , wE, wF)) ;
Ig <= t o r e a l (t o f l o a t (r2 2 (wE + wF downto 0) , wE, wF)) ;
Ib <= t o r e a l (t o f l o a t (r2 3 (wE + wF downto 0) , wE, wF)) ;
I sq <= t o r e a l (t o f l o a t (r2 4 (wE + wF downto 0) , wE, wF)) ;

mos syn : entity work . cmos syn p ipe l i n e generic map (wE, wF) port map (vdsq , vgsq ,
vbsq , c lk , s ta r t , done , r2 1 , r2 2 , r2 3 , r2 4 , r e s e t) ;

data in : process (c l k)
constant num : r e a l := 100 . 0 ;
variable cyc le , de lay : i n t e g e r := 0 ;
variable vds : r e a l := 0 . 0 ;
variable vds max : r e a l := 5 . 0 ;
variable i nc : r e a l := vds max/num;
variable re1 , re2 , re3 , re4 , re5 , re6 , re7 , re8 , id1 , id2 , e r r o r : r e a l ;
variable s : l i n e ;
variable i : i n t e g e r := 1 ;

begin
i f (r e s e t = ’1 ’) then

vdsq <= zero ;
s t a r t <= ’0 ’ ;
vds := inc ;

e l s i f (r i s i n g e d g e (c l k)) then
i f (de lay > 10) then
s t a r t <= ’1 ’ ;
−− i f (vds <= 5 . 0) then

−−c y c l e := c y c l e + 1 ;
i f (done = ’1 ’) then

re1 := t o r e a l (t o f l o a t (r2 1 (wE + wF downto 0) , wE, wF
)) ;

re2 := t o r e a l (t o f l o a t (r2 2 (wE + wF downto 0) , wE, wF
)) ;

−−e r r o r := re2 − Idq1 ;

−− re3 <= t o r e a l (t o f l o a t (r3 (wE + wF downto 0) , wE,
wF)) ;

Appendix A CMOS LEVEL 3 VHDL-AMS Model 171

−− re4 <= t o r e a l (t o f l o a t (r4 (wE + wF downto 0) , wE,
wF)) ;

id1 := re1 + re2 ;

−−i d2 :=

−−wr i t e (s , vds) ;
−−wr i t e (s , s t r i n g ’ (” , ”)) ;
wr i te (s , id1) ;
w r i t e l i n e (output , s) ;

end i f ;

i f (vds <= vds max) then
−−c y c l e := 0 ;
vdsq <= ”01” & t o s l v (t o f l o a t (vds , wE, wF)) ;
vo l t ag e s (i) <= ”01” & t o s l v (t o f l o a t (vds , wE, wF)) ;
i := i +1;
vo l t ag e s (i) <= ”01” & t o s l v (t o f l o a t (2 . 0 , wE, wF)) ;
i := i +1;
vo l t ag e s (i) <= ”01” & t o s l v (t o f l o a t (2 . 0 , wE, wF)) ;
i := i +1;
vds := vds + inc ;

end i f ;
−−end i f ;
end i f ;
de lay := delay + 1 ;

end i f ;
end process ;

−−mos3 : e n t i t y work . cmos g en e r i c map (wE, wF) po r t map (vdsq , vgsq , vbsq , c l k , s t a r t ,
done , r1 1 , r1 2 , r1 3 , r1 4 , r e s e t) ;
−− , width , l en g t h , channel , vt0 , kp , gamma , phi , tox , nsub , nss , nfs , tpg , x j , ld , u0 ,

vmax , xqc , d e l t a , t h e t a , eta , kappa , ngate , t empera ture) ;

−−mosOrig : e n t i t y work . mos po r t map (5 . 0 , 2 . 0 , 2 . 0 , Idq1 , Igq1 , I bq1) ;
−−mos syn : e n t i t y work . cmos syn g en e r i c map (wE, wF) po r t map (vdsq , vgsq , vbsq , c l k ,

s t a r t , done , r2 1 , r2 2 , r2 3 , r2 4 , r e s e t) ;

−−mos3 : e n t i t y work . cmosFul l p o r t map (vdsq , vgsq , vbsq , c l k , r1 , r2 , r3 , r4 , width ,
l en g t h , channel , vt0 , kp , gamma , phi , tox , nsub , nss , nfs , tpg , x j , ld , u0 , vmax , xqc ,
d e l t a , t h e t a , eta , kappa , ngate , t empera ture) ;

−−re1 <= t o r e a l (t o f l o a t (r1 1 (wE + wF downto 0) , wE, wF)) ;
−−re2 <= t o r e a l (t o f l o a t (r1 2 (wE + wF downto 0) , wE, wF)) ;
−−re3 <= t o r e a l (t o f l o a t (r1 3 (wE + wF downto 0) , wE, wF)) ;
−−re4 <= t o r e a l (t o f l o a t (r1 4 (wE + wF downto 0) , wE, wF)) ;

end architecture ;

Listing A.3: VHDL CMOS LEVEL 3 Model Testbench

A.3 ModelSim Simulation Waveforms for the pipelined
CMOS LEVEL 3 model








































































































































































































































































































































































































































































































































































































































































































































































































































Appendix A CMOS LEVEL 3 VHDL-AMS Model 174

A.4 Chipscope Waveforms for the pipelined CMOS LEVEL
3 model

Figure A.1 shows the Chipscope output waveforms used to measure the hardware times. The
signal names are the same used in the ModelSim simulation waveforms in Section A.3.

Appendix A CMOS LEVEL 3 VHDL-AMS Model 175

Figure A.1: The Chipscope output waveform similar to the simulation waveforms in
Section A.3

Appendix B

Pipelined VHDL Design
Synthesis Results

B.1 Synthesis Reports for both host and slave FPGAs

Table B.1 and Table B.2 show the resource usage reports for the host and slave FPGAs.

Table B.1: Synthesis report of the slave FPGA
Logic Utilization Used Available Utilization
Number of Slice Flip Flops 9,956 27,392 36%
Number of 4 input LUTs 8,019 27,392 29%
Logic Distribution
Number of occupied Slices 7,445 13,696 54%
Number of Slices containing only related logic 7,445 7,445 100%
Number of Slices containing unrelated logic 0 7,445 0%
Total Number of 4 input LUTs 8,701 27,392 31%
Number used as logic 7,267
Number used as a route-thru 682
Number used as Shift registers 752
Number of bonded IOBs
Number of bonded 7 556 1%
IOB Master Pads 1
IOB Slave Pads 1
Number of RAMB16s 23 136 16%
Number of MULT18X18s 64 136 47%
Number of BUFGMUXs 2 16 12%
Number of BSCANs 1 1 100%
Number of GTs 1 8 12%

176

Appendix B Pipelined VHDL Design Synthesis Results 177

Table B.2: Synthesis report of the host FPGA
Logic Utilization Used Available Utilization
Number of Slice Flip Flops 2,263 27,392 8%
Number of 4 input LUTs 2,755 27,392 10%
Logic Distribution
Number of occupied Slices 2,672 13,696 19%
Number of Slices containing only related logic 2,672 2,672 100%
Number of Slices containing unrelated logic 0 2,672 0%
Total Number of 4 input LUTs 3,271 27,392 11%
Number used as logic 2,534
Number used as a route-thru 516
Number used as Shift registers 221
Number of bonded IOBs
Number of bonded 8 556 1%
IOB Master Pads 1
IOB Slave Pads 1
Number of RAMB16s 85 136 62%
Number of BUFGMUXs 2 16 12%
Number of BSCANs 1 1 100%
Number of GTs 3 8 37%

Appendix C

Xilinx Virtex-II Pro Development
Board

Aurora is a gigabit serial communication protocol which can be customised to add communication
ports to communicate with the other components in the FPGA fabric. The core utilises the
build-in RocketIO MGT (Multi Gigabit Transceiver) hardware to transfer data between FPGAs
in two different modes of operation: framing and streaming modes [176]. The theoretical serial
communication bandwidth of the system in Figure 4.9 is approximately 3.6 Gb/s, as the aggregate
bandwidth for each serial link is about 1.2 Gb/s. The architecture uses up to three slave FPGAs
only because of the limitation of the number of available on-board serial links in the XUPV2Pro
board [125].

Xilinx boards in Figure C.2 have built in support for the serial communication both in terms
of hardware (e.g. Aurora IP) and software (e.g. configuration). However, the boards have a
limitation in which only three MGTs are brought forward to SATA connectors. Serial ATA
(Serial Advanced Technology Attachment) is a computer bus interface for connecting host bus
adapters to mass storage devices such as hard disk drives and optical drives. The rest of the
MGTs are connected to the on-board SMA connectors which require new type of connectors.
The SATA channels are split into two different formats: two HOST ports and a single TARGET
port. Any ports of the same format cannot be connected together. This allows two boards to
be connected together, or multiple boards to be connected in a ring fashion. Figure C.1 shows
the physical connections of the Target (T) and Host (H) SATA connectors for the four FPGAs
used.

Figure C.1: The Serial Connections between the FPGAs

178

Appendix C Xilinx Virtex-II Pro Development Board 179

Figure C.2: Xilinx University Program Virtex-II Pro Development System

Appendix D

JTAG Configuration

The JTAG (Joint Test Action Group) scan-chain used to debug the multi-FPGA system is shown
in Figure D.1. The JTAG TCK clock termination circuit is shown in Figure D.2 where R = 54Ω.

Figure D.1: JTAG Chain Arrangement

Figure D.2: Thevenin Clock Termination

The boards shown in Figure 4.11 (Section 4.6.1) are connected to a bench power supply providing
5 volts and 4 Amps power source. The boards are daisy-chained through the JTAG interface
in order to facilitate batch programming as seen in Figure D.1. This chain is also used by the
ChipScope debugger to retrieves the timing/state information for all the FPGAs.

180

Appendix E

Measuring Hardware and
Software Times

E.1 Measuring Hardware Times

Measuring the hardware execution times is done using the Chipscope tool. The ICON core
provides a communications path between the JTAG Boundary Scan port of the target FPGA.
The ILA core is a logic analyser core that can be used to monitor any internal signal of the
design. Figure E.1 shows the overall Chipscope system block diagram. The embedded ILA is
triggered and stopped by a start and a stop signals which are added to the overall design for
control.

Figure E.1: Chipscope System Block Diagram

181

Appendix E Measuring Hardware and Software Times 182

E.2 Measuring Software Times

For measuring the time spent in software execution of the model evaluation, the
QueryPerformanceCounter() function from the MSDN Library was used. The function retrieves
the current value of the high-resolution performance counter [214]. Example usage is shown in
Listing E.1.

#include <windows . h>

double PCFreq = 0 . 0 ;
i n t 6 4 CounterStart = 0 ;

void StartCounter ()
{

LARGE INTEGER l i ;
i f (! QueryPerformanceFrequency(& l i))

cout << ”QueryPerformanceFrequency f a i l e d !\n” ;

PCFreq = double (l i . QuadPart) /1000 . 0 ;

QueryPerformanceCounter(& l i) ;
CounterStart = l i . QuadPart ;

}
double GetCounter ()
{

LARGE INTEGER l i ;
QueryPerformanceCounter(& l i) ;
return double (l i . QuadPart−CounterStart) /PCFreq ;

}

int main ()
{

StartCounter () ;
S leep (1000) ;
cout << GetCounter () <<”\n” ;
return 0 ;

}

Listing E.1: QueryPerformanceCounter Function usage

Appendix F

Floating-Point Operators for
FPGAs

Generally, scientific and financial algorithms make heavy use of floating-point operations. There-
fore, the use of FPGA in HPC acceleration requires extra hardware libraries including floating-
point operations. This section presents three different floating-point implementations written
in VHDL. The VHDL designs were tested using ModelSim and synthesised using Synplify Pro
targeting the ALTERA Cyclone-I FPGA.

F.1 Number Representations

Number Representation is a fundamental topic in scientific algorithms and hardware design due
to its impact on resources usage. Accuracy is a major requirement for many scientific applications
such as the SPICE simulator, where convergence is hugely affected by the precision of quantities
(voltages and currents). There are several ways to represent real numbers, however, the most
widely used is the binary floating-point format. This section explains the different number
systems and their applications especially for resources limited devices like FPGAs.

F.1.1 Fixed-Point System

This system represents a real data type with a fixed number of digits before and after the radix
point. Fixed-point numbers are useful for representing fractional numbers in two’s complement
format. This can be written as M.F where M is the integer part and F is the fractional part.
Each integer bit represents a power of two, while each fractional bit represents an inverse power of
two. This system is useful for representing fractional numbers in native two’s complement format
if a Floating-Point Unit (FPU) is not available. This format provides improved performance and
reduce hardware complexity as most low-cost processors do not have FPUs. One of the main
applications of fixed-point representation are 2D and 3D graphics engines where high throughput
is gained with less complex hardware. However, information loss can occur if the results of fixed-
point operations exceed the operands’ length. The resulting values then have to be rounded or
truncated.

183

Appendix F Floating-Point Operators for FPGAs 184

F.1.2 Binary Floating-Point System

Floating-point system represents a real number with a string of digits or bits. The IEEE-754 [215]
and IEEE-854 [216] standards provides full representation and arithmetic of Binary and Radix-
Independent floating-point numbers. It is the most widely adopted standard with many CPU
implementations and a number of FPGA FPUs Section F.2. The IEEE-754 standard specifies
the binary floating-point format in which a float type is represented by a sign-magnitude form.
Figure F.1 shows the single-precision floating-point format (32-bit). The most significant bit
is the Sign bit where a negative number has a sign bit equals to ‘1’. The Biased Exponent is
an unsigned integer representing a multiplicative value of power of two biased with 127. The
Fraction field contains the 23 most significant bits of the mantissa, with an implicit leading ‘1’
that does not appear in the fraction field. A real number R in single-precision format can be
generated using Equation F.1 [217].

R = (−1)S × F × 2E−127 (F.1)

Figure F.1: IEEE single-precision floating-point format

F.1.3 Decimal Floating-Point System

Despite the fact that binary floating-point is suitable for many applications, it cannot exactly
represent decimal values used in human calculations. Hence, it should not be used for financial,
and commercial applications. This problem can be avoided by using decimal floating-point
numbers. Initial benchmarks in [218] indicates that some applications spend 50% to 90% of
their time processing decimal data, and software decimal arithmetic is around hundred times
slower than hardware implementation.

F.1.4 Comparison

Fixed-point representation has the advantage of being very efficient if terms of performance and
hardware area requirement as a fixed-point number has a defined width and decimal point loca-
tion. This is fine for many applications as long as the number is within the range to give enough
precision. Decimal floating-point solves the problem of representing decimal values accurately.
A common use of this representation is for storing monetary values, where the inexact values of
floating-point numbers are often a liability. But, the hardware needed to implement this system
is rather complex.

Recently, there have been an increasing demand for the extended dynamic range and precision
in floating-point arithmetic by several applications such as signal processing, advanced wireless
communication, and imaging applications. Floating-point numbers are used to overcome this

Appendix F Floating-Point Operators for FPGAs 185

precision limitation. However, these operators often take up around three times the hardware
area of fixed-point on FPGAs.

High numerical precisions are a big problem for both FPGAs and ASICs as these designs tend
to consume significant area and require deep pipelining [157]. For example, double precision
multipliers require about 20 pipeline stages and 30-40 stages for the square root operator as
shown in [219].

F.2 Floating-Point FPGAs Libraries

F.2.1 New IEEE VHDL Standard Revision

IEEE is currently undergoing a revision to the VHDL standard [220]. The new standard IEEE
1076-2006 contains some improvements to the old packages plus two new math packages :
‘fixed pkg’ and ‘float pkg’. These packages have been designed for use in VHDL-2006 and
will be part of the IEEE library. A compatibility version of the proposed packages is provided
which is fully synthesisable and has no dependencies on the other new packages.

F.2.1.1 Fixed-Point Package ‘fixed pkg’

This package defines two new types : ‘ufixed’ which is the unsigned fixed-point type and ‘sfixed’
is the signed fixed-point type [221]. The following VHDL listing shows the usage model of this
package.

type ufixed is array (INTEGER range <>) of STD_LOGIC;

type sfixed is array (INTEGER range <>) of STD_LOGIC;

...

use ieee.math_utility_pkg.all; -- ieee_proposed for VHDL -93 version

use ieee.fixed_pkg.all; -- ieee_proposed for compatibility version

...

signal a, b : sfixed (7 downto -6);

signal c: sfixed (8 downto -6);

begin

...

c <= a + b;

Listing F.1: ‘fixed pkg’ package usage model

The location of the decimal point is assumed to be between the 0 and −1 indices. The package
provides most of the standard functions available in the numeric std and std logic 1164 pack-
ages such as add “+”, subtract “−”, multiply “∗”, divide “/”, modulo “mod”, and remainder
“rem”. All fixed-point operators defined in this package are purely combinational. Conversion
operators are also available to convert between standard types and the new fixed-point types.

F.2.1.2 Floating-Point Package ‘float pkg’

The floating-point numbers are defined by the standards IEEE-754 [215] and IEEE-854 [216].
The floating-point package provides full implementation of these specifications. The base package
defines three floating-point types [222]:

Appendix F Floating-Point Operators for FPGAs 186

‘Float32’ : 32-bit IEEE 754 single precision floating point
‘Float64’ : 64-bit IEEE 754 double precision floating point
‘Float128’ : 128-bit IEEE 854 extended precision floating point

The package also allows custom floating-point widths to be specified by bounding the ‘float’
type as shown in the VHDL listing bellow. A negative index is used to distinguish between the
exponent and the fraction fields. The package defines the operators for all the standard math,
conversion, and compare operations specified in the IEEE floating-point standard. All of these
operators are purely combinational. The following VHDL listing shows the package usage model.

use ieee.float_pkg.all; -- use ieee_proposed for VHDL -93 version

variable x, y, z : float (5 downto -10);

begin

y := to_float (3.1415 , y); -- Uses ‘‘y’’ for the sizing only.

z := ‘ ‘0011101010101010 ’ ’; -- 1/3

x := z + y;

Listing F.2: ‘float pkg’ package usage model

All operators implemented in the new packages are combinational, which means very high area
usage and low frequencies. However, both packages contain several useful conversion and com-
parison operators that can be used to handle real data type. Table F.1 shows the operations’
area usage both single and double-precision types.

Table F.1: Float package synthesis results (Synplify Pro)
Operation Single-precision FP Double-precision FP

CLBs % of EP1C12 CLBs % of EP1C12
Addition 1167 9 2745 22
Multiplication 1535 12 7467 61
Division 2322 19 8313 68
Square root 27605 228 204454 1695

F.2.2 OpenCores FPU

This is a free 32-bit floating-point arithmetic implementation fully compliant with the IEEE-754
Standard [118]. It supports addition, subtraction, multiplication, division, and square root. For
each operation four rounding modes are supported: round up, round down, round to nearest
even, and round to zero. These operators are sequential, designed to achieve high operating
frequency with less hardware area. Table F.2 shows the number of clock cycles needed to perform
each operation. Synthesis process showed 37% area usage and 70 MHz frequency on Cyclone-I
EP1C12. However, one of the main constraints of this library is that it supports single-precision
floating-point numbers only (32-bit).

F.2.3 FPLibrary

FPLibrary is a parametrisable library of hardware operators for the floating-point and logarith-
mic number systems, developed in the Arénaire project at ENS, University of Lyon [119]. This is
an open source library written in VHDL, mainly targeted for FPGAs. All FP and LNS operators

Appendix F Floating-Point Operators for FPGAs 187

Table F.2: Number of clock cycles needed for each operation
Operation Number of clock cycles
Addition 7
Subtraction 7
Multiplication 12
Division 35
Square root 35

are parametrisable in terms of precision of operands and results. They are also available in both
combinatorial and pipelined versions. The library provides extra packages supporting floating-
point logarithm and exponential functions [120]. The floating-point format used in FPLibrary
is slightly different from the IEEE-754 Standard. This representation is parametrised by two
bit-widths wE (exponent width) and wF (fraction width) [223]. A FP number X is represented
as a vector of wE + wF + 3 bits as shown in figure F.2.

Figure F.2: FPLibrary FP number format

• exn (2 bits): the exception tag

• SX (1 bit): the sign bit

• EX (wE bits): the exponent biased by E0 = 2wE−1 − 1

• FX (wF bits): the fraction

The exception tag controls the value of X as follows:

Table F.3: Value of X According to Exception Flag
exn Value of X
00 0
01 (−1)SX × 1.FX × 2EX−E0

10 (−1)SX ×∞
11 NaNs

Table F.4 shows the number of clock cycles needed to perform each single-precision operation.
Table F.5 demonstrates the synthesis results of the FPLibrary floating-point operations. It
shows the estimated frequency and area usage of each operation for single and double-precision
FP formats (pipelined designs only). It can be seen from these results that FPLibrary uses larger
number of logic units than the OpenCores FPU, but with very high frequencies which means
higher throughput.

Appendix F Floating-Point Operators for FPGAs 188

Table F.4: Number of clock cycles needed for each operation
Operation Number of clock cycles
Addition 3
Multiplication 4
Division 15
Square root 14
Logarithm 11
Exponential 14

Table F.5: FPLibrary Synthesis Results (Synplify Pro)
Operation Single-precision FP Double-precision FP

f(MHz) CLBs % of EP1C12 f(MHz) CLBs % of EP1C12
Addition 113.3 897 7 78.8 1794 14
Multiplication 139.7 1283 10 110.4 6133 50
Division 146.9 1993 16 111.1 8463 70
Square root 153.5 950 7 121.8 4472 37
Logarithm 71.57 3122 26 n/a n/a n/a
Exponential 80.9 2811 23 n/a n/a n/a

F.2.4 Floating-point Libraries Comparison

The synthesis results shows that FPLibrary is the most efficient library in terms of area util-
isation and clock frequency. FPLibrary provides both combinational and pipelined versions
of the floating-point operators with an easy-to-use interface. In addition, FPLibrary in fully
parametrised, in which the operands’ width can be specified using generics. This allows the
user to synthesise the operators to a specific floating-point precision of choice. FPU supports
single-precision numbers only which limits its usage. IEEE proposed float and fixed packages
provide many useful operators and conversion functions. However, these operators are all combi-
national blocks, which means very large area usage. The IEEE fixed and float packages provide
very useful functions that are not provided in the other two libraries. This includes data types
conversion functions, logical operators, compare operations, and text I/O functions.

