Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole
Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass $\mu$ is much smaller than the black hole mass $M$, and explore post-geodesic corrections of $O(\mu/M)$. Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the $O(\mu/M)$ conservative correction to the periastron advance of the orbit, as a function of the (gauge dependent) semi-latus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit "red shift" invariant. We compute the $O(\mu/M)$ conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly-gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations
Barack, Leor
f08e66d4-c2f7-4f2f-91b8-f2c4230d0298
Sago, Norichika
c4baa9a1-e4fb-448e-8818-f7d189ed2773
Barack, Leor
f08e66d4-c2f7-4f2f-91b8-f2c4230d0298
Sago, Norichika
c4baa9a1-e4fb-448e-8818-f7d189ed2773
Barack, Leor and Sago, Norichika
(2011)
Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole.
Physical Review D.
(Submitted)
Abstract
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass $\mu$ is much smaller than the black hole mass $M$, and explore post-geodesic corrections of $O(\mu/M)$. Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the $O(\mu/M)$ conservative correction to the periastron advance of the orbit, as a function of the (gauge dependent) semi-latus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit "red shift" invariant. We compute the $O(\mu/M)$ conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly-gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations
This record has no associated files available for download.
More information
Submitted date: 2011
Identifiers
Local EPrints ID: 173671
URI: http://eprints.soton.ac.uk/id/eprint/173671
ISSN: 1550-7998
PURE UUID: 45f74acd-2752-43d5-9127-6a6e7eca5c53
Catalogue record
Date deposited: 08 Feb 2011 08:58
Last modified: 28 Jun 2022 01:40
Export record
Contributors
Author:
Norichika Sago
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics