The University of Southampton
University of Southampton Institutional Repository

Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole

Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole
Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass $\mu$ is much smaller than the black hole mass $M$, and explore post-geodesic corrections of $O(\mu/M)$. Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the $O(\mu/M)$ conservative correction to the periastron advance of the orbit, as a function of the (gauge dependent) semi-latus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit "red shift" invariant. We compute the $O(\mu/M)$ conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly-gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations
1550-7998
Barack, Leor
f08e66d4-c2f7-4f2f-91b8-f2c4230d0298
Sago, Norichika
c4baa9a1-e4fb-448e-8818-f7d189ed2773
Barack, Leor
f08e66d4-c2f7-4f2f-91b8-f2c4230d0298
Sago, Norichika
c4baa9a1-e4fb-448e-8818-f7d189ed2773

Barack, Leor and Sago, Norichika (2011) Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole. Physical Review D. (Submitted)

Record type: Article

Abstract

We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass $\mu$ is much smaller than the black hole mass $M$, and explore post-geodesic corrections of $O(\mu/M)$. Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the $O(\mu/M)$ conservative correction to the periastron advance of the orbit, as a function of the (gauge dependent) semi-latus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit "red shift" invariant. We compute the $O(\mu/M)$ conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly-gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations

This record has no associated files available for download.

More information

Submitted date: 2011

Identifiers

Local EPrints ID: 173671
URI: http://eprints.soton.ac.uk/id/eprint/173671
ISSN: 1550-7998
PURE UUID: 45f74acd-2752-43d5-9127-6a6e7eca5c53
ORCID for Leor Barack: ORCID iD orcid.org/0000-0003-4742-9413

Catalogue record

Date deposited: 08 Feb 2011 08:58
Last modified: 28 Jun 2022 01:40

Export record

Contributors

Author: Leor Barack ORCID iD
Author: Norichika Sago

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×