UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Chemistry

Synthesis and Complexes of New Selenoether Macrocycles

by

Joanna Margaret Manning

Thesis for the degree of Doctor of Philosophy

March 2010
UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF CHEMISTRY

Doctor of Philosophy

Synthesis and Complexes of New Selenoether Macrocycles
by Joanna Margaret Manning

The first known examples of alkyl Pt(II) complexes with macrocyclic selenoethers [PtMe$_2$L] (L = [8]aneSe$_2$ and [16]aneSe$_4$) have been synthesised and characterised as part of a series of dimethyl Pt(II) complexes with selenoether ligands (L = MeSe(CH$_2$)$_n$SeMe, n = 2, 3; o-C$_6$H$_4$(CH$_2$SeMe)$_2$). A new series of [PtMe$_3$(κ2-L-L)] complexes has been synthesised and characterised, which includes the first examples of this type with macrocyclic selenoethers (L-L = o-C$_6$H$_4$(CH$_2$ESeMe)$_2$, E = Se, Te; MeC(CH$_2$SeMe)$_2$; [8]aneSe$_2$ and [16]aneSe$_4$). The first bridging ditelluroether trimethyliodo Pt(IV) complex, [(PtMe$_3$I)$_2$(MeTeCH$_2$TeMe)] has also been characterised. [PtMe$_3$(κ3-[16]aneSe$_4$)]PF$_6$ was isolated and characterised, which is the first cationic trialkylplatinum(IV) complex with a macrocyclic selenoether ligand, and an unusual example of κ3-[16]aneSe$_4$ coordination.

Five novel macrocycles containing a mixed O/Se donor set of the type O$_x$Se$_{2x}$, two small ring Se$_3$ macrocycles and two Se$_2$N macrocycles have been synthesised. Two methods of production have been investigated from the same precursors, a NaBH$_4$ reduction and a low temperature Na/NH$_3$ (l) reduction, demonstrating that reaction conditions are very important for determining preferred ring size and yields. The Se$_3$ and Se$_2$N macrocycles have been synthesised in multigram quantities, and crystal structures of two of these macrocycles have been obtained.

The first examples of complexes with tridentate homoleptic selenoether macrocycles and tridentate Se$_2$N macrocycles have been prepared and characterised. Platinum(II) dichloride complexes were prepared for L6-L9, but proved to be extremely poorly soluble. No evidence of platinum(II) complexation with methyl co-ligands was observed. Reaction of [PtMe$_3$I] with L6-L10 resulted in the production of fac-coordinated, cationic Pt(IV) complexes of the type [PtMe$_3$L]I. This geometry is confirmed by two crystal structures, of [PtMe$_3$(L6)]I and [PtMe$_3$(L9)]I. Cr(III) complexes of the type [CrCl$_3$L] have been produced and characterised for L1, L6-9, and are generally hydrolytically sensitive, insoluble solids.
Table of Contents

Declaration of Authorship ... i
Table of Contents ... ii
Table of Tables .. iv
Table of Figures .. v
Dedication ... viii
Abstract .. ix
List of Abbreviations ... x

Chapter 1: Introduction

1.1 – General Introduction ... 1
1.2 – Preparation Methods for Macrocycles 5
1.3 – Metal-Chalcogenoether Bonding 9
1.4 – Pyramidal Inversion ... 10
1.5 – Chelate and Macrocyclic Effects 11
1.6 – Uses of Macrocycles .. 12
1.7 – Multinuclear NMR (\(^{77}\)Se, \(^{125}\)Te, \(^{195}\)Pt) 13
1.8 – Aims of this Thesis ... 16
1.9 – References .. 17

Chapter 2: Alkyl Platinum(II) and (IV) Complexes with Acyclic Seleno- and Telluroethers and Macrocyclic Selenoethers

2.1 – Introduction ... 20
2.2 – Aims of this Chapter ... 24
2.3 – Ligand Syntheses .. 25
2.4 – Novel Dimethyl Platinum(II) Complexes 25
2.5 – Novel Trialkyl Platinum(IV) Complexes 32
2.6 – Reductive Elimination .. 43
2.7 – Oxidative Addition ... 44
2.8 – Conclusions .. 44
2.9 – Experimental ... 47
2.10 – X-Ray Crystallography ... 52
2.11 – References ... 53

Chapter 3: Selenium-Rich Selenium/Oxygen Macrocycles

3.1 – Mixed Chalcogenoether Macrocycles 55
3.2 – Aims ... 59
3.3 – Production of O\(_{2}\)Se\(_{2n}\) Macrocycles 59
3.4 – Coordination Chemistry of O\(_{2}\)Se\(_{2n}\) Macrocycles 70
3.5 – Conclusion .. 74
3.6 – Experimental ... 76
3.7 – X-Ray Crystallography ... 80
3.8 – References ... 81

Chapter 4: Novel Selenium-Rich Macrocycles

4.1 – Introduction ... 82
4.2 – Aims ... 91
4.3 – Production of Homoleptic Se\(_{3}\) Macrocycles 92
4.4 – Production of Mixed Donor Se\(_{3}\)N Macrocycles 98
4.5 – Conclusions ... 103
4.6 – Experimental ... 105
4.7 – X-Ray Crystallography .. 108
Chapter 5: Platinum Complexes with Selenium-Rich Macrocycles

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 – Introduction</td>
<td>111</td>
</tr>
<tr>
<td>5.2 – Aims</td>
<td>117</td>
</tr>
<tr>
<td>5.3 – Platinum Complexes with Tridentate Selenium-Rich Macrocycles</td>
<td>117</td>
</tr>
<tr>
<td>5.4 – Conclusions</td>
<td>127</td>
</tr>
<tr>
<td>5.5 – Experimental</td>
<td>128</td>
</tr>
<tr>
<td>5.6 – X-Ray Crystallography</td>
<td>130</td>
</tr>
<tr>
<td>5.7 – References</td>
<td>131</td>
</tr>
</tbody>
</table>

Chapter 6: 3d Metals with Selenium Containing Ligands

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 – Cobalt, Chromium and Vanadium Complexes with Thio- and Selenoether Ligands</td>
<td>133</td>
</tr>
<tr>
<td>6.2 – Aims</td>
<td>137</td>
</tr>
<tr>
<td>6.3 – Cobalt(II) with Acyclic Thio- and Selenoether Ligands</td>
<td>137</td>
</tr>
<tr>
<td>6.4 – Chromium(III) and Vanadium(III) Complexes with Selenium-rich Tridentate Macrocycles</td>
<td>139</td>
</tr>
<tr>
<td>6.5 – Conclusions</td>
<td>145</td>
</tr>
<tr>
<td>6.6 – Experimental</td>
<td>146</td>
</tr>
<tr>
<td>6.7 – X-Ray Crystallography</td>
<td>148</td>
</tr>
<tr>
<td>6.8 – References</td>
<td>149</td>
</tr>
</tbody>
</table>

Appendix
- Spectroscopic Equipment xii
Table of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1: Comparison of physical contents of Group 16 elements.</td>
<td>1</td>
</tr>
<tr>
<td>1.2: Comparison of NMR active isotopes of chalcogens.</td>
<td>2</td>
</tr>
<tr>
<td>2.1: 77Se and 125Te NMR spectroscopic shifts for ligands used in this chapter.</td>
<td>25</td>
</tr>
<tr>
<td>2.2: Selected NMR data for Pt(II) complexes with selenoethers.</td>
<td>31</td>
</tr>
<tr>
<td>2.3: Selected bond lengths and angles for [PtMe$_3$(o-C$_6$H$_4$(CH$_2$SeMe)$_2$)].</td>
<td>35</td>
</tr>
<tr>
<td>2.4: Selected NMR data for Pt(IV) complexes with selenoethers.</td>
<td>40</td>
</tr>
<tr>
<td>2.5: Selected NMR data for Pt(IV) complexes with telluroethers.</td>
<td>43</td>
</tr>
<tr>
<td>2.6: Crystallographic data collection and refinement parameters.</td>
<td>52</td>
</tr>
<tr>
<td>3.1: 1H NMR data of L$_1$-L$_3$.</td>
<td>64</td>
</tr>
<tr>
<td>3.2: Selected bond lengths and angles for L$_1$.</td>
<td>65</td>
</tr>
<tr>
<td>3.3: Selected bond lengths and angles for L$_2$.</td>
<td>66</td>
</tr>
<tr>
<td>3.4: 77Se (1H) NMR spectroscopic data for mixed donor O/Se macrocycles.</td>
<td>70</td>
</tr>
<tr>
<td>3.5: Crystallographic data collection and refinement parameters.</td>
<td>80</td>
</tr>
<tr>
<td>4.1: Selected bond lengths and angles for L$_6$.</td>
<td>96</td>
</tr>
<tr>
<td>4.2: Selected bond lengths and angles for L$_9$.</td>
<td>101</td>
</tr>
<tr>
<td>4.3: 77Se (1H) NMR shifts of the tridentate macrocycles produced in this thesis.</td>
<td>102</td>
</tr>
<tr>
<td>4.4: Crystallographic data collection and refinement parameters.</td>
<td>108</td>
</tr>
<tr>
<td>5.1: Selected bond lengths and angles for [PtMe$_3$L$_6$]I·0.13CH$_2$Cl$_2$.</td>
<td>121</td>
</tr>
<tr>
<td>5.2: Selected bond lengths and angles for [PtMe$_3$L$_9$]I·CHCl$_3$.</td>
<td>126</td>
</tr>
<tr>
<td>5.3: Crystallographic data collection and refinement parameters.</td>
<td>130</td>
</tr>
<tr>
<td>6.1: Average Co-S bond lengths for distorted octahedral homoleptic Co(II) complexes with thioether ligands.</td>
<td>134</td>
</tr>
<tr>
<td>6.2: Selected bond lengths and angles for [Co$_2$(o-C$_6$H$_4$(CH$_2$SMe)$_2$)].</td>
<td>138</td>
</tr>
<tr>
<td>6.3: Electronic spectroscopy data for [CrCl$_3$(L)].</td>
<td>142</td>
</tr>
<tr>
<td>6.4: Electronic spectroscopy data for [VCl$_3$(L)].</td>
<td>145</td>
</tr>
<tr>
<td>6.5: Crystallographic data collection and refinement parameters.</td>
<td>148</td>
</tr>
</tbody>
</table>
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1: Schemes for production of a selection of di-thioether ligands.</td>
<td>2</td>
</tr>
<tr>
<td>1.2: Syntheses of selenoethers used in Chapter 2.</td>
<td>4</td>
</tr>
<tr>
<td>1.3: Syntheses of telluroethers used in Chapter 2.</td>
<td>5</td>
</tr>
<tr>
<td>1.4: A schematic view of the cyclisation step involved in macrocycle synthesis.</td>
<td>6</td>
</tr>
<tr>
<td>1.5: Synthesis of [14]aneSe4.</td>
<td>6</td>
</tr>
<tr>
<td>1.6: Template synthesis of [9]aneS3.</td>
<td>7</td>
</tr>
<tr>
<td>1.7: Production of crown ethers as promoted by Group 1 metal ions.</td>
<td>8</td>
</tr>
<tr>
<td>1.8: New selenium-rich macrocycles prepared in this work.</td>
<td>8</td>
</tr>
<tr>
<td>1.9: Possible inversion mechanism involving a planar intermediate.</td>
<td>10</td>
</tr>
<tr>
<td>1.10: Diastereoisomers of a coordinated dichalcogenoether.</td>
<td>11</td>
</tr>
<tr>
<td>1.11: Three naturally occurring macrocycles.</td>
<td>13</td>
</tr>
<tr>
<td>1.12: Approximate chemical shift ranges for δ77Se.</td>
<td>14</td>
</tr>
<tr>
<td>1.13: Approximate chemical shift ranges for δ125Te.</td>
<td>15</td>
</tr>
<tr>
<td>1.14: Approximate range of δ195Pt (relative to [PtCl6]3–) for different oxidation states.</td>
<td>16</td>
</tr>
<tr>
<td>2.1: Structural diagrams of [PtCl2(PhSeCH2SePh)]2+ showing cis and trans isomers.</td>
<td>20</td>
</tr>
<tr>
<td>2.2: Crystal structure of [Pt(MeC{CH=CH2})3]2+.</td>
<td>21</td>
</tr>
<tr>
<td>2.3: Simplified structures of [PtMe2(Se{CH2CH2CH=CH2})2] and [Pt2Me4(μ- Se{CH2CH2CH=CH2})2].</td>
<td>22</td>
</tr>
<tr>
<td>2.4: Mononuclear and dinuclear Pt(IV) species produced by Abel et al.</td>
<td>23</td>
</tr>
<tr>
<td>2.5: Stereoview of X-ray crystal structure of [PtMe2(MeSeCH=CHMe)].</td>
<td>24</td>
</tr>
<tr>
<td>2.6: Crystal structure of [PtCl2(16]aneSe)]2+ showing up, up, down, down configuration.</td>
<td>24</td>
</tr>
<tr>
<td>2.7: 77Se{1H} NMR spectrum of [PtMe2(MeSe{CH2}3SeMe)] recorded in CH2Cl2/CDCl3 at 243 K.</td>
<td>27</td>
</tr>
<tr>
<td>2.8: 1H NMR spectrum of [PtMe2(o-C6H4{CH2SeMe2})2] recorded in CDCl3 at 298 K showing fast pyramidal inversion.</td>
<td>28</td>
</tr>
<tr>
<td>2.9: Invertomers (stereoisomers) generated by the xylyl backbone sitting out of the Me2-Pt-Se2 plane.</td>
<td>29</td>
</tr>
<tr>
<td>2.10: ES+ MS of [PtMe2I(o-C6H4(CH2SeMe2))2] in MeCN and simulated isotope pattern for [PtMe2I(o-C6H4(CH2SeMe2))2]+.</td>
<td>33</td>
</tr>
<tr>
<td>2.11: Possible invertomers of [PtMe2I(o-C6H4(CH2SeMe2))2] assuming xylyl backbone remains away from iodide to reduce steric hindrance.</td>
<td>34</td>
</tr>
<tr>
<td>2.12: Crystal structure of [PtMe2I(o-C6H4(CH2SeMe2))2].</td>
<td>35</td>
</tr>
<tr>
<td>2.13: Crystal structures of [Mo(CO)4(o-C6H4(CH2SeMe2))2] and [PtMe2I(o-C6H4(CH2SbMe2))2].</td>
<td>35</td>
</tr>
<tr>
<td>2.14: Invertomers of [PtMe2I(κ2-selenoether)].</td>
<td>36</td>
</tr>
<tr>
<td>2.15: ES+ MS of [PtMe2((16]aneSe4))PF6 in MeCN and simulated isotope patterns for [PtMe2((16]aneSe4))]+ and [PtMe2((16]aneSe4))]+.</td>
<td>39</td>
</tr>
<tr>
<td>2.16: 125Te NMR spectrum of [PtMe2I(o-C6H4(CH2TeMe2))2] recorded in CH2Cl2/CDCl3 at 243 K.</td>
<td>41</td>
</tr>
<tr>
<td>2.17: Invertomers of [(PtMe2I)3(MeTeCH2TeMe)].</td>
<td>42</td>
</tr>
<tr>
<td>2.18: Reaction scheme for oxidative addition to Pt(II) dimethyl complexes.</td>
<td>44</td>
</tr>
<tr>
<td>2.19: Summary of dimethylplatinum(II) complexes investigated in this chapter.</td>
<td>45</td>
</tr>
<tr>
<td>2.20: Summary of Pt(IV) complexes investigated in this chapter.</td>
<td>46</td>
</tr>
<tr>
<td>3.1: Some examples of mixed donor O/Se macrocycles.</td>
<td>55</td>
</tr>
<tr>
<td>3.2: Scheme for the production of [9]aneO2Se and [12]aneO2Se2.</td>
<td>56</td>
</tr>
<tr>
<td>3.3: Reaction scheme for the production of [9]aneO2Te and [18]aneO2Te2.</td>
<td>57</td>
</tr>
<tr>
<td>3.4: Production scheme for [16]aneS2Se2.</td>
<td>57</td>
</tr>
<tr>
<td>3.5: Mixed donor S/Te macrocycles.</td>
<td>58</td>
</tr>
<tr>
<td>3.6: Crystal structures of [11]aneS2Te and [12]aneS2Te.</td>
<td>58</td>
</tr>
</tbody>
</table>
3.7: Reaction scheme for initial attempt to produce OSe₂₃ macrocycles.
3.8: ⁷⁷Se{¹H} NMR spectrum of O(CH₂CH₂SeCN)₄ recorded in CDCl₃.
3.9: Reaction scheme for production of OSe₂₃ macrocycles via Na/NH₃(0) route.
3.10: ⁷⁷Se{¹H} NMR spectrum of L² recorded in CDCl₃.
3.11: ¹H NMR spectrum of L¹ recorded in CDCl₃.
3.12: ¹H NMR spectrum of L³ recorded in CDCl₃.
3.13: APCI MS of L¹ and calculated isotope pattern for C₁₆H₁₈O₃Se₂Na⁻.
3.14: Crystal structure of L¹.
3.15: Crystal structure of L².
3.17: Reaction scheme for production of L⁴ and L⁵ via NaBH₄ reduction.
3.18: ¹H NMR spectrum of L⁴ recorded in CDCl₃.
3.19: ¹H NMR spectrum of L⁵ recorded in CDCl₃.
3.20: ES⁺ MS of [Ag(L²)²]BF₄ and calculated isotope pattern for [AgC₂H₃₂O₅Se₄]⁺.
3.21: ES⁺ MS of [Cu(L¹)²]BF₄ and calculated isotope patterns for [Cu(C₁₆H₁₈O₃Se₂)₂]⁺.
3.22: Crystal structure of [PtCl₃(18]aneO₃Se₂)].
3.23: Novel O₃Se₂₃ macrocycles produced in this chapter.
3.24: Summary of metal complexes produced with novel O₃Se₂₃ macrocycles.

4.1: First known selenoether macrocycles, synthesised by Pinto et al. in 1988.
4.2: Scheme for the production of monofunctionalised [16]aneSe₄(OH).
4.3: Scheme for production of dibenzo[14]aneSe₄.
4.4: Crystal structures of the major (a) and minor (b) conformers of dibenzo[14]aneSe₄.
4.5: Scheme for the production of macrocyclic selenoethers containing naphthalene rings.
4.7: Crystal structure of [12]aneSe₃.
4.8: Catalytic macrocyclisation of 3,3-dimethylselenetane.
4.9: Di- and tri-selenacyclophanes.
4.11: Mixed donor Se/N macrocycles produced by high dilution NaBH₄ reduction.
4.13: Tripodal N₃Se₃ ligand and N₃Se₃ cryptand.
4.14: Mixed donor N₃Se₃ or N₃Te₃cryptand.
4.15: ⁷⁷Se NMR spectrum of Se{[CH₂]₃OTs}₂ in CH₂Cl₂/CDCl₃.
4.16: Attempted reaction of NCSe(CH₂)₃SeCN and Se{[CH₂]₃OTs}₂ with Na/NH₃(0).
4.17: Production scheme for L⁶ by NaBH₄ reduction.
4.18: ⁷⁷Se{¹H} NMR spectrum of L⁶ recorded in CH₂Cl₂ with an external D₂O lock.
4.19: Crystal structure of L⁶.
4.20: Crystal structure of sebc.
4.21: Production scheme for L⁸ by NaBH₄ reduction.
4.22: ⁷⁷Se{¹H} NMR spectrum of L⁸ recorded in CH₂Cl₂/CDCl₃ at 298 K.
4.23: Production scheme for L⁹ by NaBH₄ reduction.
4.24: ¹³C{¹H} NMR spectrum of L⁹ recorded in CDCl₃.
4.25: Crystal structure of L⁹.
4.26: Production scheme for L¹⁰ by NaBH₄ reduction.
4.27: ¹H NMR spectrum of L¹⁰ recorded in CDCl₃.
4.28: Summary of Se₃ macrocycle production in this chapter.
4.29: Summary of Se₃N macrocycle production in this chapter.

5.1: Scheme demonstrating the coordination modes observed in [(MoX₂(CO)₂)(16]aneSe₄)] (left) and [MX₃(CO)(sebc)] (right).
5.2: Crystal structures of [Pd([16]aneSe₄)]₂⁺ and [Pt([16]aneSe₄)]²⁺.
5.3: Crystal structure of Cu₄I₄(μ-κ²-Me₆)[12]aneSe₅₂.
5.4: View of a portion of the two-dimensional sheet adopted by [(SbBr₃)₂([16]aneSe₄)].
5.5: Crystal structures of the infinite 1-dimensional ladders adopted by [BiCl₃([8]aneSe₄)] and [BiBr₃([16]aneSe₄)].

5.6: X-Ray crystal structure of [(AsCl₃)[24]aneSe₆)] showing both exo and endo coordination.

5.7: Macrocyclic ligands used in this chapter.

5.8: ES MS⁺ of [PtMe₃L₆]⁺ and calculated isotope pattern for [PtMe₃L₆]⁺.

5.10: 77Se{¹H} NMR spectrum of [PtMe₃L⁷]I recorded in CDCl₃.

5.11: ES MS⁺ of [PtMe₃L⁸]⁺ and calculated isotope pattern for [PtMe₃L⁸]⁺.

5.12: 77Se{¹H} NMR spectrum of [PtMe₃L⁹]I recorded in CDCl₃.

5.13: 195Pt NMR spectrum of [PtMe₃L⁹]I recorded in CDCl₃.

5.14: Crystal structure of [PtMe₃L⁷]I·CHCl₃.

5.15: 1H NMR spectrum of [PtMe₃L¹⁰]I recorded in CD₃CN.

6.1: Crystal structures of [Co([18]aneS₆)]²⁺ and [Co(MeS(CH₂)₂S(CH₂)₂SMe)₂]²⁺.

6.2: Crystal structure of [CrCl₃([15]aneSe₃)].

6.3: Crystal structure of [CrCl₃([14]aneSe₄)]PF₆.

6.4: Crystal structure of [VCl₅([9]aneS₄)].

6.5: Crystal structure of [CoI₂{o-C₆H₄(CH₂SMe)₂}].

6.6: View of a portion of the infinite chain structure of [CoI₂(C(CH₃SMe)₄)].

6.7: Selenium-rich macrocycles used in this chapter.

6.8: Tanabe-Sugano diagram for d³ metal centres.
Declaration of Authorship

I, Joanna Margaret Manning

declare that the thesis entitled

Synthesis and Complexes of New Selenoether Macrocycles

and the work presented in the thesis are both my own, and have been generated by me as the result of my own original research. I confirm that:

- this work was done wholly or mainly while in candidature for a research degree at this University;
- where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- where I have consulted the published work of others, this is always clearly attributed;
- where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- I have acknowledged all main sources of help;
- where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- parts of this work have been published as:

Signed: ……………………………………………………………………………………………

Date: ……………………………………………………………………………………………
Dedication

I would like to thank a number of people who have given invaluable assistance over the course of my PhD. First and foremost my supervisor, Gill Reid, for all the help, guidance and patience she has shown me and for letting me go to a conference in Cancun. Also, thanks go to Bill Leavason for running so many multinuclear NMR spectra for me, Marek Jura, Stuart Reid and Nikos Tsoureas for help running crystal data collections, and Mike Webster for help with some of the difficult structure determinations.

Special thanks go to Hayley Smith and Matthew Tuggey, for being every PhD student’s dream: intelligent, capable project students. Thanks guys, you worked brilliantly for me.

Some blame must go to Mike Brown, for talking me into doing a PhD and thanks too, for being a shoulder to cry on when reactions went horribly wrong. I’d also like to thank all those in the Reid/Levason group over the years, for some great times in the lab, and some wonderful weekend excursions and parties.

I am indebted forever to my flatmate, Gemma Davis, for keeping me sane, during some rough times.

This work is dedicated to my parents, and family, but most of all to my grandmother. I wish you could read this, Gran. I know you’d be proud.
List of Abbreviations

Bu butyl
Me methyl
Et ethyl
Ph phenyl

cod cyclooctadiene
dmf dimethylformamide
dmso dimethylsulfoxide
nbd norbornadiene
picrate 2,4,6-trinitrophenolate
thf tetrahydrofuran

12-crown-4 1,4,7,10-tetraoxacyclododecane
15-crown-5 1,4,7,10,13-pentaoxacyclopentadecane
18-crown-6 1,4,7,10,13,16-hexaoxacyclooctadecane
[9]aneS2O 1-oxa-4,7-dithiacyclononane
[15]aneS2O3 1,4,7-trioxa-10,13-dithiacyclopentadecane
[18]aneS2O3 1,4,7-trioxa-10,13,16-trithiacycloctadecane
[9]aneS3 1,4,7-trithiacyclononane
[10]aneS3 1,4,7-trithiacyclodecane
[12]aneS3 1,4,7,10-tetraoxacyclodecane
[14]aneS4 1,4,8,11-tetraoxacyclotetradecane
[15]aneS5 1,4,7,10,13-pentathiacyclopentadecane
[18]aneS6 1,4,7,10,13,16-hexathiacycloctadecane
[9]aneO2Se 1,4-dioxa-7-selenacyclononane
[12]aneO2Se2 1,7-dioxa-4,10-diselenacyclododecane
[15]aneO2Se2 1,4,10-trioxa-7,13-diselenacyclopentadecane
[18]aneO2Se2 1,4,10,13-tetraoxa-7,16-diselenacyclooctadecane
dibenzo[18]aneO2Se4 5,6,14,15-dibenzo-1,10-dioxo-4,7,13,16-
tetraselenacycloctadecane
dibenzo[24]aneO2Se4 8,9,20,21-dibenzo-1,4,13,16-tetraoxa-7,10,19,22-
tetraselenacyclotetracosane
dibenzo[30]aneO2Se4 11,12,26,27-dibenzo-1,4,7,16,19,22-hexaoxa-10,13,25,28-
tetraselenacyclotriacontane
[16]aneS2Se2 1,5-dithia-9,13-diselenacyclohexadecane
sebc 3H-1,4,5,7-tetrahydro-2,6-benzodiselenonine
[8]aneS2 1,5-diselenacyclooctane
[8]aneS2(OH) 1,5-diselenacyclooctane-3-ol
Me₄[8]aneS2Se2 3,3,7,7-tetramethyl-1,5-diselenacyclooctane
[12]aneS3 1,5,9-triselenadodecane
Me₆[12]aneS3 3,3,7,11,11,15-hexamethyl-1,5,9-triselenadodecane
[12]aneS4 1,3,7,9-tetraselenacyclododecane
[14]aneS4 1,4,8,11-tetraselenacyclotetradecane
dibenzo[14]aneS4 6,7,13,14-dibenzo-1,5,8,12-tetraselenacyclotetradecane
[16]aneS4 1,5,9,13-tetraselenacyclohexadecane
[16]aneS4(OH) 1,5,9,13-tetraselenacyclohexadecane-3-ol
[16]aneS4(OH)₂ 1,5,9,13-tetraselenacyclohexadecane-3,11-diol
Me₆[16]aneS4 3,3,7,11,15,15-octamethyl-1,5,9,13-
tetraselenacyclohexadecane
[18]aneS6 1,3,7,9,13,15-hexaselenacyclooctadecane
[20]aneS5 1,5,9,13,17-pentaselenacyclosoane
[24]aneS6 1,5,9,13,17,21-hexaselenacyclotetracosane
<table>
<thead>
<tr>
<th>Molecular Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9]aneO₂Te</td>
<td>1,4-dioxa-7-telluracyclononane</td>
</tr>
<tr>
<td>[18]aneO₃Te₂</td>
<td>1,4,10,13-tetraoxa-7,16-ditelluracyclooctadecane</td>
</tr>
<tr>
<td>[9]aneS₂Te</td>
<td>1,4-dithia-7-telluracyclononane</td>
</tr>
<tr>
<td>[11]aneS₂Te</td>
<td>1,4-dithia-8-telluracycloundecane</td>
</tr>
<tr>
<td>[12]aneS₂Te</td>
<td>1,5-dithia-9-telluracyclododecane</td>
</tr>
<tr>
<td>[14]aneS₃Te</td>
<td>1,4,7-trithia-11-telluracyclotetradecane</td>
</tr>
<tr>
<td>[8]aneTe₂</td>
<td>1,5-ditelluracyclooctane</td>
</tr>
<tr>
<td>[12]aneTe₃</td>
<td>1,5,9-tritelluracyclododecane</td>
</tr>
<tr>
<td>Cl₆[12]aneTe₃</td>
<td>3,3,7,7,11,11-hexachloro-1,5,9-tritelluracyclododecane</td>
</tr>
</tbody>
</table>

NMR
- **d**: doublet
- **FT**: Fourier Transform
- **Hz**: Hertz
- **J**: coupling constant
- **ppm**: parts per million
- **q**: quartet
- **RT**: Room temperature
- **s**: singlet
- **t**: triplet
- **VT**: Variable temperature

MS
- **APCI**: Atmospheric pressure chemical ionisation
- **ES**: Electrospray
- **EI**: Electron impact
- **GC**: Gas chromatography

IR
- **br**: broad
- **m**: medium
- **s**: strong
- **sh**: shoulder
- **w**: weak

UV-vis
- **B**: Racah parameter
- **β**: nephelauxetic ratio
- **CT**: charge transfer
- **Dq**: ligand field splitting parameter

S
- **μ**: Bohr magneton
- **S**: total spin quantum number
Chapter 1: Introduction

1.1 – General Introduction

Selenium was discovered in 1817 by Jöns Jacob Berzelius, after he investigated the red-brown sediment deposited in chambers used in the production of sulfuric acid. Elemental selenium has two forms; one is a silvery metal which has the curious property of conducting electricity better (by a factor of 10^4) when light shines on it, and the other is a red powder which can be converted to the metallic form by heating. Sulfur has been used since ancient times, but was only postulated to be an element in 1777 by Antoine Lavoisier, and subsequently proved by Joseph Gay-Lussac and Louis-Jacques Thénard in 1809. Tellurium was discovered in 1793 by Franz Joseph Müller von Reichenstein, and is usually obtained as a grey powder by the electrolytic reduction of sodium telluride solution. Sulfur, selenium and tellurium are members of Group 16 of the Periodic Table, a group also known as the chalcogens. Table 1.1 gives some physical constants of the chalcogen elements.

Table 1.1: Comparison of physical constants of Group 16 elements.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Oxygen</th>
<th>Sulfur</th>
<th>Selenium</th>
<th>Tellurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronegativity (Pauling)</td>
<td>3.5</td>
<td>2.5</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Ionization potential (eV)</td>
<td>13.61</td>
<td>10.36</td>
<td>9.75</td>
<td>9.01</td>
</tr>
<tr>
<td>Covalent radius (Å)</td>
<td>0.66</td>
<td>1.04</td>
<td>1.17</td>
<td>1.37</td>
</tr>
<tr>
<td>Bond energy: E–C (kcal/mol) in Et₂E</td>
<td>86.5</td>
<td>69.7</td>
<td>59.9</td>
<td>56.0</td>
</tr>
<tr>
<td>Bond length E–C (Å) in Et₂E</td>
<td>1.42</td>
<td>1.82</td>
<td>1.96</td>
<td>2.12</td>
</tr>
<tr>
<td>Bond energy: E–H (kcal/mol) in H₂E</td>
<td>119</td>
<td>91</td>
<td>73</td>
<td>64</td>
</tr>
<tr>
<td>Bond length E–H (Å) in H₂E</td>
<td>0.96</td>
<td>1.35</td>
<td>1.46</td>
<td>1.69</td>
</tr>
</tbody>
</table>

The chemistry of neutral group 16 ligands, ER₂ (E = S, Se, Te), was developed rather later than that of group 15 ligands, and the heavier elements (especially Te) are still relatively little studied. They were generally thought of as malodorous and poor σ-donors. However, development of FT NMR has increased interest over the last two decades or so, as both selenium and tellurium have $I = \frac{1}{2}$ nuclei (see Table 1.2) making them highly useful analytical tools. The quadrupolar nature of 33S, together with its low abundance and receptivity mean it is not useful as a probe in organosulfur chemistry. In the last 30 years interest in group 16 ligands has greatly increased, although selenoethers and telluroethers remain less studied compared to the sulfur analogues. There have been a number of reviews summarising the current knowledge of the area, notably Blake and Schröder (Advances in Inorg. Chem., 1990), Cooper and Rawle (Structure and Bonding, 1990), Hope and Levason (Coord. Chem. Rev., 1993), Levason, Orchard and Reid (Coord. Chem. Rev., ...

Table 1.2: Comparison of NMR active isotopes of chalcogens, a – Relative to 13C.

<table>
<thead>
<tr>
<th>Element</th>
<th>Spin</th>
<th>Abundance</th>
<th>Receptivity^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur-33</td>
<td>7/2</td>
<td>0.76%</td>
<td>0.097</td>
</tr>
<tr>
<td>Selenium-77</td>
<td>1/2</td>
<td>7.58%</td>
<td>2.98</td>
</tr>
<tr>
<td>Tellurium-125</td>
<td>1/2</td>
<td>6.99%</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Indeed, there are vast number of acyclic, cyclic and macrocyclic thioether ligands in the literature, with many different methods available for their production. For example, dithioethers can be produced from reaction of the relevant dithiol with sodium ethoxide, followed by addition of MeI (e.g. MeS(CH\textsubscript{2})\textsubscript{n}SMe, n = 2, 3).9 In contrast, reaction of thiophenol with sodium followed by addition of dihaloalkane can be used to produce PhS(CH\textsubscript{2})\textsubscript{n}SPh (n = 2, 3).9 A phenylene backbone can be introduced by reaction of NaSMe (often produced from Na and Me\textsubscript{2}S\textsubscript{2} in liquid ammonia) with o-C\textsubscript{6}H\textsubscript{4}Cl\textsubscript{2} to produce the monosubstituted species o-C\textsubscript{6}H\textsubscript{4}Cl(SMe). This can then be reacted with BuLi and Me\textsubscript{2}S\textsubscript{2} to form o-C\textsubscript{6}H\textsubscript{4}(SMe)\textsubscript{2}.10 The xylyl-based ligand o-C\textsubscript{6}H\textsubscript{4}(CH\textsubscript{2}Br)\textsubscript{2} can be produced by direct reaction of o-C\textsubscript{6}H\textsubscript{4}(CH\textsubscript{2}Br)\textsubscript{2} with NaSMe. It has been shown that variation in both terminal substituent and backbone plays a significant role in governing the ligand properties in these dithioethers.11

Figure 1.1: Schemes for production of a selection of di-thioether ligands.
For selenium, however, precursors analogous to those used in thioether ligand preparations are often not readily available, for example, RSeH and H₂Se are unstable, toxic and extremely malodorous and thus are not useful synths. Alternative routes are required. Diselenoalkanes, MeSe(CH₂)nSeMe, of varying lengths (n = 1, 2, 3, 6, 12) can be produced by either reaction of MeSe Li⁺ (obtained by reaction of elemental Se with MeLi in THF at 77 K)¹² or MeSe Na⁺ (generated from Me₂Se₂ and Na in liquid ammonia) with dihaloalkanes.¹³ Reaction using the sodium salt takes two days, and while the lithium salt requires cooling to 77 K to form, the reaction with the α, ω-dihaloalkane only takes a few hours, making this the preferred route. cis-MeSeCH=CHSeMe can be produced from the lithium salt and cis-1,2-dichloroethene, but requires the reaction to be conducted in ethanol not THF and needs a molar equivalent of NaOEt.¹² Reaction of PhLi with selenium gives only moderate yields of PhSeLi; better yields are obtained by cleaving Ph₂Se₂ with Rongalite (HOCH₂SO₂Na·2H₂O) in ethanol or with LiAlH₄ in THF.¹² This can then be reacted with dihalides in the same way as the methylselenolate salt.

There are two main ways to incorporate aromatic units into the backbone of diselenoethers. RSe⁻ ions are not nucleophilic enough to react directly with o-dichloro-(or dibromo-)benzene. Instead, o-C₆H₄(SeMe)₂ can be produced by addition of Me₂Se₂ to benzyne in o-C₆H₄Cl₂ solution¹² or by cleaving polymeric (−o-SeC₆H₄Se−)ₙ with Rongalite followed by methylation.¹⁴ The polymer is produced by reaction of o-C₆H₄Br₂ and Na₂Se₂ in hot DMF.¹⁴ RSe⁻ can react with o-C₆H₄(CH₂Br)₂, however, to produce o-C₆H₄(CH₂SeMe)₂.

It is also possible to make three and four selenium containing chains, for example MeSe(CH₂)₃Se(CH₂)₃SeMe¹² and MeSe(CH₂)₃Se(CH₂)₃Se(CH₂)₃SeMe.² Tripods from a central selenium atom are not possible in the way phosphorus tripods are, but can be produced using carbon as the pivot (e.g. MeC(CH₂SeMe)₃).¹² This can be achieved by reaction of MeSeLi and MeC(CH₂Br)₃ in 6:1 molar ratio in THF.¹² The two-fold excess of MeSe⁻ is required to promote complete replacement of bromide. It is also possible to produce tetradentate ligands with four selenium containing groups from a central carbon, e.g. C(CH₂SeMe)₄.¹²,¹⁵ Figure 1.2 shows the synthetic routes for the ligands used in Chapter 2.

The xylyl based ligand o-C₆H₄(CH₂SeMe)₂ has been shown to form a number of stable complexes, despite the 7-membered chelate ring formed.¹⁶ As with thioethers, variation in terminal substituent allows ligating properties to be altered with the addition of groups which have greater or lesser electron withdrawing properties.
The chemistry of telluroethers is less well known than that of selenoethers, due to the increased sensitivity of tellurium ligands. They are malodorous and generally air-sensitive. There are also fewer known Te ligands, due to the unavailability of many of the corresponding precursors that are used in sulphur/selenium chemistry. In particular, the instability of Te-H bonds makes tellurols (RTeH) useless as synthons,\(^\text{17}\) and weak Te-C bonds mean elimination may be favoured over substitution.\(^\text{18}\) The weakness of Te-H and Te-C bonds is primarily due to the mismatch in orbital size between the diffuse 5s/5p orbitals on Te and the much smaller 1s and 2s/2p orbitals on H and C respectively. RLi (R = Me, Ph) will react with powdered tellurium in thf at 77 K to produce high yields of RTeLi.\(^\text{18}\) This contrasts with selenium, which gives only moderate yields of PhSeLi. Chains of the form RTe(CH\(_2\))\(_n\)TeR (R = Me, Ph; n = 1, 3, 6 or 10) can be formed from reaction of RTeLi with dihaloalkane at 77 K. The reactions again contrast with the selenoether syntheses, as the dihalides must be added to frozen solutions of RTeLi,\(^\text{18}\) but can be added at room temperature to RSeLi.\(^\text{12}\) Attempts to produce RTe(CH\(_2\))\(_2\)TeR or RTeCH=CHTeR result in elimination of ethene and ethyne respectively due to the stability of Te-Te bonds and the fragility of Te-C bonds, and formation of ditellurides.\(^\text{18}\) The only C\(_2\) backbone available at present is \(o\)-C\(_6\)H\(_4\)(TeMe)\(_2\), made by reaction of \(o\)-dibromobenzene and MeTeLi.\(^\text{10}\) This can be contrasted with MeSe\(^-\) and MeS\(^-\) used in the same conditions, which do not react. Thus it is clear that RTe\(^-\) is more nucleophilic than RSe\(^-\), which is in turn more nucleophilic than RS\(^-\). Attempts to make RTe(CH\(_2\))\(_n\)TeR (n = 4, 5) result in

Figure 1.2: Syntheses of selenoethers used in Chapter 2.
the formation of heterocycles as the major product. A C₄ backbone can be incorporated by reacting α,α'-dibromo-o-xylene with frozen MeTeLi, producing o-C₆H₄(CH₂TeMe)₂ in good yield.19

There are very few multidentate acyclic telluroethers known – the linear tritelluroether Te(CH₂CH₂CH₂TeR)₂ is made by reaction of RTe(CH₂)₃Cl and Na₂Te in liquid ammonia,17 and the tri- and tetradenate ligands CH₃(CH₂TeR)₃ and C(CH₂TePh)₄ can be produced from RTeLi and the appropriate bromoalkane.18 Reaction temperature must be kept low for these reactions, to reduce the competing Te-C scission elimination reactions. C(CH₂TeMe)₄ cannot be produced in this way, as reaction of MeTeLi and C(CH₂Br)₄ results in elimination of two Te-Me units to form MeTeTeMe, and production of a cyclopropane derivative, CH₂CH₂C(CH₂TeMe)₂.15,18 Figure 1.3 shows the synthetic routes for the ligands used in Chapter 2.

Figure 1.3: Syntheses of telluroethers used in Chapter 2.

1.2 – Preparation Methods for Macrocycles

In the context of this thesis, macrocycles can be defined as cyclic organic molecules with nine or more atoms, at least three of which are donor heteroatoms. The dominant factor controlling the synthesis of macrocycles is entropic.20 Generally, the final reaction step is the cyclisation, where two ends of a chain come together to create the ring forming bond (Figure 1.4). However, unless
highly preorganised or rigid systems are involved, the probability of the two ends being in close enough proximity to react is very low, and polymerisation is much more likely.

Figure 1.4: A schematic view of the cyclisation step involved in macrocycle synthesis. The filled and open circles represent mutually reactive functional groups. The first step involves the adoption of a conformation in which the two reactive groups are close to one another and in the correct orientation for reaction. Finally, the new bond is formed and the macrocycle is formed.\(^{20}\)

One widely used method to overcome this is to use high dilution conditions. To achieve this, the acyclic precursors may be added simultaneously dropwise to large quantities of solvent, or one precursor may be added dropwise to a dilute solution of another precursor to promote the statistical probability of cyclisation over polymerisation.\(^{21}\) For example, the production of \([14]\)aneS\(_4\), shown in Figure 1.5, has been shown to increase from 7.5 % yield\(^{22}\) to 55 % yield purely by increasing the dilution of the reactants.\(^ {23}\) > 90 % yield has been achieved in production of a range of cyclic selenophanes by a high dilution method (0.005 mol reactant added dropwise into 1000 cm\(^3\) solvent).\(^ {24}\) Drawbacks to this tactic include the cost of large volumes of solvents, which must often be anhydrous, the environmental cost of disposing of the solvent after the reaction and inherent difficulties in handling these quantities in the laboratory, both in terms of glassware and in achieving precision of simultaneous slow addition.

Figure 1.5: Synthesis of \([14]\)aneS\(_4\).\(^ {21}\)
In an alternative, transition metals, such as for example copper, cobalt or manganese, but most commonly nickel, can be used to bind the precursors so they are held in proximity to each other before reacting (template synthesis).20,25 The produced macrocycle must often be demetallated to release it before it can be used. Demetallation of the formed macrocycle can present problems as the macrocycle will often bind more strongly to the metal centre than the acyclic precursors (see Section 1.5 for a discussion of the Macrocyclic Effect). However, addition of excess acid to a coordinated amine containing macrocycle, or addition of a strongly competing ligand, such as CN−, for example, can displace the macrocycle and allow it to be isolated.25 Use of metal ions is less important for thioethers,21 owing to the weaker binding of sulfur compared to oxygen or nitrogen, but [9]aneS\textsubscript{3} has been produced in 60 % yield by a template reaction (Figure 1.6).26

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.6}
\caption{Template synthesis of [9]aneS\textsubscript{3}.26}
\end{figure}

One advantage of using metal ions, is that different metals can promote different ring sizes in the same reaction conditions. The diameter of the metal ion affects the macrocycle produced, but not always in predictable ways.25 For example, the oligomerisation of oxirane by BF\textsubscript{3} produces different ratios of crown ethers (Figure 1.7), with the larger metals producing the larger rings.20 High dilution reactions often can not be modified in similar ways to promote different ring sizes. However, if a macrocycle has a flexible backbone, it can accommodate a larger metal ion than expected, and in some cases a much larger macrocycle is produced than expected, as with the condensation of 2,6-diacetylpyridine with H\textsubscript{2}NCH\textsubscript{2}CHOCH\textsubscript{2}NH\textsubscript{2} in the presence of manganese (II),
which produces a tetramanganese complex of the [4+4] macrocycle, rather than the expected [2+2] macrocycle.20

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Production of crown ethers as promoted by Group 1 metal ions.20}
\end{figure}

An in-depth literature review of seleno- and telluroether macrocycles is presented in Chapters 3 (mixed chalcogen donor macrocycles) and 4 (homeletic and mixed donor N/Se, N/Te macrocycles). Figure 1.8 (below) shows the new selenoether macrocycles produced in this work.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{New selenium-rich macrocycles prepared in this work. See Chapter 3 for L1-5 and Chapter 4 for L6-10.}
\end{figure}
1.3 – Metal-Chalcogenoether Bonding

Group 16 elements have the ground state electronic configuration $n^s n^p n^d$. Murray and Hartley describe the nature of the orbitals in an in-depth review of chalcogenoether ligand metal complexes. They suggest that the s and p orbitals vary from fully hybridised on oxygen to virtually unhybridised on tellurium, with sulfur and selenium between these two extremes. It is easiest to consider the chalcogenoethers as neutral R_2E compounds with two lone pairs. As they only have two substituents, steric effects are greatly reduced compared to Group 15 ligands, however, the interdonor backbone and resulting chelate ring size will still affect the coordination of polydentates and macrocycles in the usual way. The electronic effects of the R groups are generally less important for chalcogenoethers than for phosphines or arsines.

While one lone pair is used in forming a σ-bond to a metal acceptor, there are several possibilities for the second lone pair. It may remain non-bonding and cause stereoelectronic repulsion with electron-rich metal centres, weakening the overall bond. It may form a σ-bond to a second metal centre, resulting in a R_2E bridged complex. This behaviour has been observed for all three chalcogens (S, Se, Te), in the polymeric chain $[\text{Ag}(\text{MeS}\{\text{CH}_2\}_3\text{SMe})]^+$ and in $[\{\eta^5\text{-MeC}_5\text{H}_4\text{Mn(\text{CO})}_2\}_2(\mu-\text{Me}_2\text{Se})]$, for example. In principle, it is also possible that the second lone pair could behave as a π-donor to a suitable metal d-orbital, particularly to electron poor metals, however there is little good evidence that this occurs.

The chalcogen could also behave as a π-acceptor, using either the lowest empty d-orbital (like the Chatt model for phosphines) or more likely the $E-C\sigma^*$ orbitals (like the Orpen-Connelly phosphine model). It is difficult to observe π back donation directly, as this requires comparing the E-C bond distances in crystal structures of redox pairs, but comparing the observed bond length to the sum of the covalent radii of the elements can provide an indication of π back donation. However, so far such observations in chalcogenoether complexes have been of little statistical significance. The consensus is that chalcogenoethers are weak σ-donors with little or no π component to the bonding, although it has been suggested that π-acceptor behaviour may be significant in some macrocyclic thioether complexes.

Studies on Fe(0) and Mn(I) systems with Group 16 ligands have shown that the stability and inertness of the M-L bond increases Te >> Se > S > O. This was attributed to the decreasing electronegativity of the donors down the group causing increased σ-donation. For higher oxidation states, for example Rh(III) systems the strongest donation appears to be Se > Te. This is most likely due to the spatial extension of the d-orbitals on the metal. Low valent metals will have better overlap with the large Te s-orbital than the contracted orbitals on harder, higher oxidation state metals.
1.4 – Pyramidal Inversion

As discussed above, π-bonding between chalcogenoethers and metal centres (which would place the two R groups planar with the metal-E bond) is rare. When σ-bonded to a metal centre through one lone pair, R₂E adopts a distorted tetrahedral geometry. This means that chalcogenoethers have the potential for pyramidal inversion to occur. Inversion involves neither bond cleavage nor requires the presence of an additional reagent; it is a subtle molecular rearrangement. Figure 1.9 shows one possible inversion mechanism, via a planar transition state, but alternative inversion mechanisms have also been shown to exist.³⁴

![Figure 1.9: Possible inversion mechanism involving a planar intermediate.](image)

The equivalent configurations produced by inversion are referred to as invertomers. If the configurations are mirror images of each other, and thus not super-imposable on one another, they are called enantiomers. Diastereoisomers are non-superimposable invertomers which are not related by reflection. Only non-superimposable invertomers can be distinguished from each other, and to observe individual invertomers in a system undergoing fast pyramidal inversion, the system must be cooled to reduce the energy available and hence slow the inversion relative to the appropriate NMR timescale. Once this is below the activation energy for inversion, the separate invertomers can be distinguished by VT NMR. A number of factors influence the inversion activation energy. The energy required increases down the group, so Te > Se > S. The coalescence temperatures for trans-[Pt₂(EEt₂)₂] (E = S, Se, Te)³⁵,³⁶ illustrate this effect. The presence of a coordinated metal has two major effects. Firstly, the electropositive nature of the metal decreases the s character of the non-bonding lone pair. This allows easier access to the transition state, shown in Figure 1.9, in which the inverting lone pair adopts a purely p character orbital. Secondly, (p-d)π coordination may occur between the non-bonding lone pair and the metal centre, which again stabilises the planar transition state. A study of platinum and palladium complexes by Abel et al. also investigated various other factors which lower the inversion barrier.³⁷ These include the presence of unsaturated substituents,⁶ the release of ring strain in chelating ligands in the planar transition state (-(CH₂)₂ > -(CH₂)₃ > -(CH₂)₅ > -(CH₂)₇)³⁴ and less electronegative substituents trans to the chalcogen.⁹,³⁸
In chelating bidentate acyclic chalcogenoethers there are usually three possible invertomers, shown in Figure 1.10. The DL invertomers (enantiomers) are NMR indistinguishable. If there are different ligands above and below the M-E₂ plane, however, the meso form splits into two separate forms (one with the substituents above, and one with the substituents below the metal-chalcogen plane) which are not degenerate. The nature of the backbone between chalcogens can also influence the number of invertomers in these situations, as a backbone which sits out of the M-E₂ plane will be spatially closer to one or other of any axial ligands present, resulting in different invertomers.

Figure 1.10: Diastereoisomers of a coordinated dichalcogenoether.

1.5 – Chelate and Macrocyclic Effects

Complexes with multidentate ligands are more stable than those containing the same number of equivalent monodentate ligands. This is known as the Chelate Effect, and the size of chelate stabilisation usually increases with the number of chelate rings formed during ligand coordination. The effect is also dependant on the size of the chelate rings, with 5- (most stable) and 6-membered chelate rings offering greatest stabilisation.

The thermodynamic advantage of multidentate ligand (Lₙ, n = denticity) coordination over that of the equivalent number (n) of monodentate ligands (L) can be seen by observing the equilibrium between the two systems:

\[M(L)_n + L_n \rightleftharpoons M(L_n) + n(L) \]

The equilibrium constant (K) associated with this scheme is related to the standard free energy, and therefore the enthalpy and entropy of the reaction by the equations:

\[\Delta G^\circ = -RT \ln K \]
\[\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \]

The direction of the equilibrium is thus dependant on the enthalpic and entropic contributions of the two systems. For ligands involving the same donor atoms, the strength of individual metal-
donor interactions remain relatively independent of ligand denticity and hence the enthalpy terms of each system are comparable. However, considering the entropy of the two systems, it is evident that multidentate ligand coordination leads to more free species and hence greater entropy. The net result is a more negative free energy and therefore greater stabilisation for the multidentate complex.

It is to be expected that a macrocycle of denticity n, coordinating to a metal ion will be more stable than the corresponding n-dentate open chain ligand, as more chelate rings will be formed. However, greater stabilisation is observed than would be expected for the cumulative chelate stabilisation. This is known as the Macrocyclic Effect. The basis of the thermodynamic stabilisation can be recognised by observing the equilibrium between macrocyclic coordination and that for an analogous open chain ligand of equal denticity:

$$\text{M(L}_{\text{chain}}) + \text{L}_{\text{macrocycle}} \rightleftharpoons \text{M(L}_{\text{macrocycle}}) + \text{L}_{\text{chain}}$$

The entropic contribution is no longer as obvious, as both complexes result in the same number of free species present. The entropic term now comes from the degrees of freedom possible. Open chain ligands potentially possess more rotational and vibrational degrees of freedom when uncoordinated, while the ring structure of macrocycles results in less entropic loss on coordination (as they are inherently more rigid). This increase in entropy has been observed for aza-macrocyclic ligands on coordination with Ni(II), along with a significant enthalpic effect.

The degree of preorganisation present in ligands can also influence the enthalpic contribution, which is mainly governed by solvation effects. Macrocyclic coordination shows maximum stability when there is a very good match between the macrocycle ring size and the size of the metal centre. Similarly, certain ring sizes lead to “free” conformations where the donor atoms are exo to the ring (e.g. [14]aneS$_4$) and therefore require reorganisation prior to coordination. This increases the activation energy to coordination and hence reduces the net enthalpic stabilisation. Solvation effects can also influence the effectiveness of macrocyclic coordination, however, these are only significant for hard donor macrocycles (e.g. O or N), and less important for the soft donor ligands (e.g. S or Se).

1.6 – Uses of Macrocycles

Many important natural compounds involve macrocycles, such as valinomycin, chlorophyll and the heme group in haemoglobin (Figure 1.11), and there are several metal-complexing proteins, whose properties can be studied using macrocyclic ligands which can mimic the coordination set and arrangement on a smaller scale, thus allowing greater analysis than may be possible on the natural system.
Valinomycin shows a strong selectivity towards K⁺ ions, and is part of the ion transport system in cells. This possibility of making macrocycles which are highly selective towards different ions (as mentioned briefly in Section 1.2) has also lead to applications in metal extraction from ores, offering more environmentally friendly methods than traditional pyrometallurgy. The strong binding caused by the Macrocyclic Effect (see Section 1.5) allows macrocycles to function well in chelation therapy, to remove harmful metal ions from the human body, or as imaging agents, for instance gadolinium complexes are used in Magnetic Resonance Imaging. The free Gd ion is highly toxic, and must be part of a strongly bound complex to prevent dissociation occurring. The Macrocyclic Effect can also allow the stabilisation of “unusual” oxidation states. For example, [Pt([9]aneS₃)₂]²⁺ has been shown to undergo a reversible electrochemical oxidation to a stable Pt(III) species, but [Pt([14]aneS₄)]²⁺ and [Pt([18]aneS₆)]²⁺ show no similar oxidative activity.⁴¹ The small ring macrocycle [9]aneS₃ has been shown to stabilise a range of metals in unusual oxidation states, including Pd(III) obtained from chemical oxidation or electrolysis of [Pd([9]aneS₃)₂]²⁺,⁴² Rh(II) obtained from the electrochemical reduction of [Rh([9]aneS₃)₂]³⁺,⁴³ and Au(II) obtained by reaction of [9]aneS₃ with HAuCl₄ in HBF₄.⁴⁴

1.7 – Multinuclear NMR (¹⁷⁷Se, ¹²⁵Te, ¹⁹⁵Pt)

There is only one NMR active isotope for selenium, ⁷⁷Se, but there are two NMR active isotopes of tellurium, ¹²³Te and ¹²⁵Te, both of which are I = ½. However, ¹²³Te is only 0.89% abundant and has low receptivity (0.89 relative to ¹³C), making ¹²⁵Te the only practical tellurium nucleus for NMR spectroscopy. Although ¹²⁵Te has a negative magnetogyric ratio (-8.498 x 10⁷ rad T⁻¹ s⁻¹), proton-tellurium distances are usually so great that the Nuclear Overhauser Effect is normally negligible, and standard spin-½ methods may be used for both ⁷⁷Se and ¹²⁵Te nuclei in the majority of cases.
An important feature of ^{77}Se and ^{125}Te NMR spectroscopy is that tellurium and selenium shielding run closely parallel in equivalent compounds, and thus a plot of $\delta^{125}\text{Te}$ against $\delta^{77}\text{Se}$ is linear with a gradient of $ca. 1.8$. To some extent, the great sensitivity of $\delta^{125}\text{Te}$ to electronic changes may be attributed to the larger radial expansion term for tellurium in the paramagnetic nuclear shielding equation given below (where the Q terms denote the imbalance of charge in the valance shell, and ΔE is an effective excitation energy):

$$\sigma_p = -[(<r_{5p}^{-3}>) / \Delta E] \Sigma Q$$

A similar expression exists for Se involving the mean inverse cube of the radius of the 4p orbitals. However, the ratio $<r_{5p}^{-3}>(\text{Te})/ <r_{4p}^{-3}>(\text{Se}) = ca. 1.25$, which would imply that a still unexplained factor must come from the difference in the ΔE terms.

Several reference compounds have been used in ^{77}Se and ^{125}Te NMR spectroscopy, but it is now generally accepted that Me$_2$Se and Me$_3$Te are the most suitable reference materials. It has, however, been found that the chemical shifts of Me$_2$Se and Me$_3$Te are relatively sensitive to solvent and concentration and thus all chemical shifts are reported relative to neat samples. In fact, variations of about 10 ppm for ^{77}Se and 20 ppm for ^{125}Te can occur with solvent and temperature for any resonance. ^{77}Se has a shift range of ~3000 ppm (e.g. Li(SeSiH$_3$) $\delta = -736$ ppm; Bu$_2$C-Se $\delta = 2131$ ppm), while ^{125}Te has a larger range of ~ 4000 ppm (e.g. Te(SnMe$_3$)$_2$ $\delta = -1214$ ppm; TeI$_2$ $\delta = 3219$ ppm).
Platinum has only one NMR active nucleus, ^{195}Pt, which has $I = \frac{1}{2}$, $D_e = 19.9$ and is 33.8% abundant. It also has rapid relaxation times in fairly asymmetric environments, allowing for fast pulsing rates and thus relatively short acquisition times. The most widely used reference now is aqueous 1 mol dm$^{-3}$ $[\text{PtCl}_6]^{2-}$ in D$_2$O, although older papers may quote shifts relative to Ξ Pt, (reference frequency = 21.4 MHz, $\delta [\text{PtCl}_6]^{2-} = \delta (\Xi \text{ Pt}) - 4533$). The chemical shift range for ^{195}Pt is ~12,000 ppm for example, $\delta ^{195}\text{Pt} [\text{PtF}_6]^{2-} = 7326$, and $\delta ^{195}\text{Pt} [\text{PtI}_6]^{2-} = -5120$ ppm. This large range of shifts makes it impractical to cover the whole range in a single frequency width; it is vital to make an approximation of the shift beforehand to enable the range window to be set to the correct range. Chemical shifts and coupling constants are very sensitive to both the oxidation state and ligand set around Pt ($\text{PtCl}_2^{2-} = 0$ ppm, $\text{PtCl}_4^{2-} = -1614$ ppm). The geometry of the complex also plays an important role, as cis and trans isomers can have significantly different chemical shifts ($[\text{PtCl}_2(\text{CO})(\text{PET}_3)]$ cis = -4207, trans = -3840 ppm).
Figure 1.14: Approximate range of $\delta^{195}\text{Pt}$ (relative to [PtCl$_6$]$^{2-}$) for different oxidation states.48

1.8 – Aims of this Thesis

This work aims to increase the knowledge of chalcogenoether systems, with the emphasis on macrocyclic selenoethers. To this end, Chapters 2 and 6 examine new acyclic complexes with Pt(II) and Pt(IV) (Chapter 2) and with Co(II) (Chapter 6), investigating especially the possibility of stable 7-membered chelate rings using xyllyl backbones. Chapter 2 also investigates the properties of some known selenoether macrocycles in new dimethyl Pt(II) and Pt(IV) complexes. Chapter 3 details the production of new mixed donor macrocycles of the type O_xSe_{2x} with a variety of backbones and explores complexation chemistry of these new macrocycles with some selected transition metals.

Chapter 4 investigates high yielding, multi-gram production of new Se_2N and Se_3 macrocycles. Chapters 5 and 6 deal with coordination chemistry of these new macrocycles, investigating Pt(IV) in Chapter 5, as there are a large number of known acyclic Pt(IV) selenoether complexes for comparison, and Cr(III) and V(III) in Chapter 6 as it is hoped that the macrocyclic effect will improve stability of the soft selenoethers towards the hard metals. The presence of the hard O and pyridyl N donors may also increase stability.
1.9 – References

Chapter 2: Alkyl Platinum (II) and (IV) Complexes with Acyclic Seleno- and Telluroethers and Macroyclic Selenoethers

2.1 – Introduction

There are many known Pt(II) complexes with seleno- and telluroethers, but these are mostly dihalide complexes, with some examples of homoleptic chalcogenoether co-ordination. [PtCl₂L₂] (L = RSeCH₂SeR, R = Me, Ph) can be made by reaction of K₂[PtCl₄] or [PtCl₂(MeCN)₂] with L in a 1:2 ratio. The 1:1 complexes [(PtLCl₂)ₙ] form as a by-product, but can be easily separated due to their insolubility in common solvents. The 2:1 complexes both have vibrational spectra consistent with a cis geometry in the solid state, but in solution [PtCl₂(PhSeCH₂SePh)₂] shows a mixture of cis/trans isomers (Figure 2.1), while [PtCl₂(MeSeCH₂SeMe)₂] shows only the trans isomer.

![Figure 2.1: Structural diagrams of [PtCl₂(PhSeCH₂SePh)₂] showing cis and trans isomers.](image)

Complexes of the type [PtX₂(L-L)] (X = Cl, Br, I) have been produced for a range of bidentate selenoether ligands by reaction of [PtX₂(MeCN)₂] or [PtX₄]²⁺ with the appropriate chalcogenoether (L-L = RSe(CH₂)₂SeR (R = Me, Ph), MeSeCH=CHSeMe, MeSe(CH₂)₃SeMe, o-C₆H₄(SeMe)₂). These complexes all have cis planar structures with the selenoether coordinating in a bidentate manner, are all very slightly soluble in chlorocarbons, and are more (though still poorly) soluble in dmso. Reaction of the cyclic selenoether [8]aneSe₂ with [PtCl₂(MeCN)₂] in refluxing MeCN produces [PtCl₂([8]aneSe₂)] as a poorly soluble white solid. Addition of two equivalents of TIPF₆ to [PtCl₂(MeCN)₂] and two equivalents of MeSe(CH₂)₃SeMe, o-C₆H₄(CH₂SeMe)₂ or [8]aneSe₂ generates the homoleptic complexes [Pt(L-L)₂]PF₆. Reaction of K₂[PtCl₄] in water with MeC(CH₂SeMe)₃ in EtOH yields [PtCl₂(MeC{CH₂SeMe}₃)] as a yellow solid, while a similar reaction with Se(CH₂CH₂CH₂SeMe)₂ gives only an intractable oil. Addition of NaPF₆, however, allows the isolation of [PtCl{Se{CH₂CH₂CH₂SeMe}₃}]PF₆ as a yellow crystalline solid. Both these complexes are poorly soluble. The steric constraints of MeC(CH₂SeMe)₃ prevent tridentate coordination to a square planar metal, however use of two equivalents of TIPF₆ and MeC(CH₂SeMe)₃ allows the production of [Pt(MeC{CH₂SeMe}₃)₂]PF₆ as a stable, pale yellow solid. The crystal structure of [Pt(MeC{CH₂SeMe}₃)₂]PF₆ (Figure 2.2) shows the bidentate
coordination of two selenoether tripods in a square planar geometry, with the uncoordinated arms pointing away from the platinum centre.\(^8\)

Figure 2.2: Crystal structure of \([\text{Pt(MeC(\text{CH}_2\text{SeMe})_3)}_2]^{2+}\). Ellipsoids shown at 40 % probability, H atoms omitted for clarity.\(^8\)

There is one example of a tetradequate macrocyclic selenoether in homoleptic coordination on Pt(II). Reaction of one equivalent of [16]aneSe\(_4\) with [PtCl\(_2\)(MeCN)\(_2\)] and two equivalents of TIPF\(_6\) affords [Pt([16]aneSe\(_4\)))(PF\(_6\))\(_2\) as colourless crystals. The crystal structure of this complex shows the macrocycle to adopt an *up, up, down, down* configuration.\(^5\)

A series of monodentate telluroether ligands have been reacted with [PtX\(_2\)(MeCN)\(_2\)] (X = Cl, Br, I) to produce [PtX\(_2\)\(_2\)\(_2\)] (L = TeMe\(_2\), TePh\(_2\), TePhMe).\(^9\) \(^{125}\)Te\(^{1}\)H and \(^{195}\)Pt\(^{1}\)H NMR spectroscopic studies of these complexes have shown them to be a mixture of *cis* and *trans* isomers in solution for the dichloro and dibromo complexes, but the diiodo complexes were purely the *cis* isomer in solution.\(^9\) Attempts to produce [PtCl\(_2\)\(_2\)], where L is either of the C\(_1\) linked ditelluroethers MeTeCH\(_2\)TeMe or PhTeCH\(_2\)TePh, from [PtCl\(_2\)(MeCN)\(_2\)] result in the formation of insoluble [[(PtLC\(_2\))\(_n\]], even with a large excess of ligand present.\(^2\) Reaction of [PtX\(_2\)(MeCN)\(_2\)] (X = Cl, Br) with one equivalent of ditelluroether in CH\(_2\)Cl\(_2\) produces [PtX\(_2\)\(_2\)] in good yield (L = RTe(CH\(_2\))\(_2\)TeR, R = Me, Ph);\(^9\) \(^{11}\)C\(^{6}\)H\(_4\)(TeMe)\(_2\)).\(^9\) The analogous diodo complexes were made by reaction of [Na\(_2\)PtCl\(_4\)] with NaI in EtOH, followed by addition of ditelluroether to yield [PtI\(_2\)\(_2\)].\(^9\)\(^{10}\) Even with addition of a large excess of ligand, only the 1:1 complexes were formed. In the case of the xylyl backbone ditelluroether \(^{11}\)C\(^6\)H\(_4\)(CH\(_2\)TeMe)\(_2\), only the dichloride Pt(II) complex has been reported.\(^11\) All these Pt(II) complexes with ditelluroethers are poorly soluble in chlorocarbons, and though they are more soluble in dmso, decomposition occurs in dmso solutions over time.\(^10\)

As with the analogous triselenoether, reaction of the tritelluroethers Te(CH\(_2\)CH\(_2\)CH\(_2\)TeR)\(_2\) (R = Me, Ph) with [PtCl\(_2\)(MeCN)\(_2\)] gives no identifiable products, but use of one molar equivalent of TIPF\(_6\) to abstract chloride allows production of [PtCl(\{Te(CH\(_2\)CH\(_2\)CH\(_2\)TeR\}_2)]PF\(_6\) in which the
telluroether binds to planar Pt(II) through all three donor atoms. Reaction of [PtCl₂(MeCN)₂] with two equivalents of the tridentate telluroethers MeC(CH₂TeR)₃ (R = Me, Ph) and TlPF₆ affords the homoleptic complexes [Pt(MeC(CH₂TeMe)₃)]₂(PF₆)₂ in moderate yield, wherein the tripodal telluroether binds in a bidentate fashion. [Pt(MeC(CH₂TeMe)₃)]₂(PF₆)₂ is unstable in solution, decomposing over a few hours.² Using two equivalents of TlPF₆ and ditelluroether with [PtCl₂(MeCN)₂] produces complexes of the type [Pt(MeC(CH₂TeMe)₃)]₂(PF₆)₂ (L-L = Ω-C₆H₄(TeMe)₂),¹³ RTe(CH₂)₂TeR (R = Me, Ph),¹³ o-C₆H₄(CH₂TeMe)₂).¹¹ These homoleptic complexes are more soluble than the analogous dichloride complexes.¹¹

Whilst a range of late TM halide and homoleptic seleno-/telluroether complexes have been reported, examples involving organometallic fragments are rare. The only reported examples are of Pt(II) complexes with mixed halide/methyl co-ligands are [PtXMe(MeSe(CH₂CH₂CH=CH₂)₂)] (X = Cl, Br, I).¹⁴ These were produced by refluxing [PtXMe(cod)] with excess MeSe(CH₂CH₂CH=CH₂)₂ in chloroform. After recrystallisation, the complexes were isolated as orange solids. These were produced as part of an NMR spectroscopic investigation into pyramidal inversion at chalcogen donors, and showed that selenoether complexes have a higher inversion energy than the corresponding thioether complexes.¹⁴

Figure 2.3: Simplified structures of [PtMe₂{Se(CH₂CH₂CH=CH₂)₂}] (left) and [Pt₂Me₄{μ-Se(CH₂CH₂CH=CH₂)₂}] (right).

There are only two known dimethylplatinum(II)-selenoether complexes, [PtMe₂{Se(CH₂CH₂CH=CH₂)₂}] and [Pt₂Me₄{μ-Se(CH₂CH₂CH=CH₂)₂}]. They are produced by reaction of 0.5 or 1 molar equivalents of Se(CH₂CH₂CH=CH₂)₂ with [PtMe₂(SMe₂)₂] generated in situ from [PtCl₂(SMe₂)₂] and MeLi.¹⁵ The ligand co-ordinates through both the selenium and through either one (monomer) or both (dimer) of the alkene moieties (Figure 2.3). A crystal structure has been reported for the dimer, showing the two square planar Pt moieties to be folded in towards each other at the bridging Se.¹⁵ With the analogous telluroether, Te(CH₂CH₂CH=CH₂)₂, dichloro and dibromoplatinum(II) complexes have been reported from reaction with [PtX₂(SMe₂)₂] in non-aqueous solvents at low temperature.¹⁶ These complexes are poorly soluble and unstable in solution and no alkylplatinum(II) telluroether complexes are known.

Abel and Orrell collected a large amount of data on Pd/Pt(II) halides with chalcogens whilst investigating pyramidal inversion rates.¹⁴ Abel et al. investigated Pt(IV) complexes with a range of
bidentate thio- and selenoethers in the 1980’s. With selenoether ligands, a series of Pt(IV) trimethyl halide complexes was produced, featuring both mononuclear ([PtMe$_3$X(L-L)], X = Cl, Br, I; L-L = MeSe(CH$_2$)$_n$SeMe, n = 2, 3,17,18 MeSeCH$_2$CHSeMe19) and dinuclear Pt coordination ($[(PtMe_3X)_2(MeSe(CH_2)_nSeMe)], X = Cl, Br, I, n = 0; X = Cl, Br, n = 1$.20 The complexes were made by dissolving [(PtXMe$_3$)$_4$] in chloroform, adding excess ligand and stirring at room temperature for 1-2 hours. The reaction mixture is then concentrated and light petroleum added to precipitate the products. The complexes are white or yellow crystalline solids after recrystallisation, and are stable both in air, and in solution. Excess ligand does not affect the stoichiometry of the complexes formed, with MeSe(CH$_2$)$_n$SeMe (n = 2, 3) only giving 1:1 L:Pt complexes, never 2:1 L:Pt, while the dinuclear complexes likewise never show evidence of mononuclear species.20

![Figure 2.4](image)

Figure 2.4: Mononuclear and dinuclear Pt(IV) species produced by Abel et al.17,18,20

While the principle aim of these works was the use of VT 1H NMR data to calculate inveromer populations and pyramidal inversion barriers in the mononuclear species, 13C, 77Se and 195Pt NMR data have also been reported for many of these complexes.18 VT 1H NMR spectroscopic studies found that the inversion rates in these Pt(IV) complexes are extremely fast compared to those found in selenoxides, and that the activation energy for inversion at Se is 9 – 12 kJ mol$^{-1}$ higher than in analogous S complexes. The nature of the halide ligand was found to have little to no effect on barrier energies.17 Introduction of an olefinic backbone decreases the activation energy by 9 – 15 kJ mol$^{-1}$. 19

Crystal structures have been reported for [PtMe$_3$X(MeSeCH$_2$CHSeMe)] (X = Cl, I) and illustrate the effect of the halide on the stereochemistry of the ligand. Where X = Cl, the crystal structure shows the methyl groups on the selenoether oriented towards the same side of the Me$_2$Pt-Se$_2$ as the halide, but when X = I (Figure 2.5) they are on the opposite side. This is due to the larger halide preferring the less sterically crowded conformation.19
A cationic trimethyl Pt(IV) complex has been reported, with the facultative tridentate ligand \(\text{Se(CH}_2\text{CH}_2\text{SeMe})_2 \). This was made by reaction of \([\text{PtMe}_3\text{SO}_4] \cdot 4\text{H}_2\text{O}\) and \(\text{Se(CH}_2\text{CH}_2\text{SeMe})_2 \) in acetone, followed by addition of \(\text{NaBF}_4 \) producing \([\text{PtMe}_3(\text{Se(CH}_2\text{CH}_2\text{SeMe})_2)]\text{BF}_4 \) as a white solid. NMR spectroscopy revealed the selenoether to be coordinated in a fac geometry. The only reported Pt(IV) complexes with a selenoether macrocycle are \([\text{PtX}_2([16]\text{aneSe}_4])\text{(PF}_6)_2 \) (\(\text{X} = \text{Cl}, \text{Br} \)), which are produced by oxidative addition of \(\text{X}_2 \) to the Pt(II) complex \([\text{Pt}([16]\text{aneSe}_4])\text{(PF}_6)_2 \) in \(\text{CCl}_3/\text{MeCN} \). The only previously reported Pt(IV) complexes with ditelluroether ligands are \([\text{PtMe}_3\text{I(o-C}_6\text{H}_4\{\text{TeMe}\}_2}] \) and \([\text{PtMe}_3\text{I(RTe(CH}_2)_3\text{TeR}]}\) (\(\text{R} = \text{Me}, \text{Ph} \)) made by reaction of the telluroether and \([\text{PtMe}_3\text{I}] \) in CHCl\(_3\). They have been analysed by VT multinuclear NMR with the focus of the work on pyramidal inversion barrier calculations. By changing the inverting atom from Se to Te, the pyramidal energy barrier increases by \(\sim 12 \text{ kJ mol}^{-1} \).
Pt(IV) species with seleno- and telluroether ligands. The possibility of redox behaviour in these complexes will also be investigated.

2.3 – Ligand Syntheses

The ligands used in this chapter were all made by literature methods. MeELi (E = Se, Te) is made by addition of MeLi to the elemental chalcogen in thf at 77 K. Allowing this to warm to room temperature and stirring for one hour produces a clear solution of MeELi. The saturated ligands MeSe(CH$_2$)$_n$SeMe (n = 1, 2, 3) are made by the addition of 0.5 molar equivalent of the appropriate α,ω-dihaloalkane. The xylil ligands o-C$_6$H$_4$(CH$_2$EMe)$_2$ are made in good yield from MeELi and 0.5 molar equivalent o-C$_6$H$_4$(CH$_2$Br)$_2$. The diselenoether is produced by addition of o-C$_6$H$_4$(CH$_2$Br)$_2$ at room temperature, while production of the ditelluroether requires the MeTeLi being refrozen to 77 K before addition of o-C$_6$H$_4$(CH$_2$Br)$_2$. MeTe(CH$_2$)$_3$TeMe is made similarly from reaction of refrozen MeTeLi and 0.5 molar equivalents Br(CH$_2$)$_3$Br. The ditelluromethane, MeTeCH$_2$TeMe, was produced by reaction of refrozen MeTeLi and excess CH$_2$Cl$_2$. The tripodal ligand MeC(CH$_2$SeMe)$_3$ was produced from reaction of 6 molar equivalents MeSeLi with MeC(CH$_2$Br)$_3$. [8]aneSe$_2$ and [16]aneSe$_4$ were produced by reaction of NCSe(CH$_2$)$_3$SeCN with Na in NH$_3$ at -45°C, followed by addition of Br(CH$_2$)$_3$Br. After hydrolysis and extraction with CH$_2$Cl$_2$, pure samples of the macrocycles were obtained by distillation ([8]aneSe$_2$) and subsequent column chromatography ([16]aneSe$_4$, eluent 19:1 hexane:ethyl acetate).

<table>
<thead>
<tr>
<th>Ligand</th>
<th>δ 77Se / ppm</th>
<th>δ 125Te / ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeSe(CH$_2$)$_2$SeMe</td>
<td>117</td>
<td>-</td>
</tr>
<tr>
<td>MeSe(CH$_2$)$_3$SeMe</td>
<td>121</td>
<td>-</td>
</tr>
<tr>
<td>MeSe(CH$_2$)$_3$SeMe</td>
<td>74</td>
<td>-</td>
</tr>
<tr>
<td>o-C$_6$H$_4$(CH$_2$SeMe)$_2$</td>
<td>149</td>
<td>-</td>
</tr>
<tr>
<td>MeC(CH$_2$SeMe)$_3$</td>
<td>23</td>
<td>-</td>
</tr>
<tr>
<td>[8]aneSe$_2$</td>
<td>134</td>
<td>-</td>
</tr>
<tr>
<td>[16]aneSe$_4$</td>
<td>158</td>
<td>-</td>
</tr>
<tr>
<td>MeTeCH$_2$TeMe</td>
<td>-</td>
<td>212</td>
</tr>
<tr>
<td>MeTe(CH$_2$)$_3$TeMe</td>
<td>-</td>
<td>104</td>
</tr>
<tr>
<td>o-C$_6$H$_4$(CH$_2$TeMe)$_2$</td>
<td>-</td>
<td>264</td>
</tr>
</tbody>
</table>

2.4 – Novel Dimethyl Platinum(II) Complexes

[PtMe$_2$([9]aneS$_3$)] is produced from reaction of [9]aneS$_3$ with [PtMe$_2$(cod)] in refluxing acetonitrile. [PtMe$_2$(Ph$_2$Sb(CH$_2$)$_3$SbPh$_2$)] is produced similarly from [PtMe$_2$(cod)] in toluene.
However, initial attempts to produce dimethylPt(II) selenoether complexes by refluxing a bidentate selenoether such as MeSe(CH$_2$)$_3$SeMe with [PtMe$_2$(cod)] in CHCl$_3$ showed substitution of cod by selenoethers to be difficult and yield incomplete substitution, so a more labile ligand such as Me$_2$S was required. The initial Pt(II) species [PtCl$_2$(SMe)$_2$] was produced from reaction of K$_2$PtCl$_4$ and dimethyl sulfide in distilled water. The mixture of pink and yellow precipitates was heated for ca. 30 minutes until all the precipitate was yellow.29 Successful production of this precursor was confirmed by 1H NMR spectroscopy. This compound was then reacted with two molar equivalents of MeLi in diethyl ether at low temperature. Water was added to quench the reaction, and one molar equivalent of MeSe(CH$_2$)$_3$SeMe were then added at room temperature and the two-phase reaction stirred for 2.5 hours. The precipitate was filtered off and washed with Et$_2$O, then redissolved in CH$_2$Cl$_2$, filtered and the solvent was removed in vacuo. The yellow solid thus obtained was analysed by ES$^+$ MS, 1H, 13C{1H}, 77Se{1H} and 195Pt NMR spectroscopy and microanalysis. 1H NMR spectroscopy showed two Pt-Me environments, with 2J$_{Pt,H}$ coupling indicative of Me trans Se (~84 Hz). The 3J$_{PtH}$ coupling observed on the Se-Me groups (~21 Hz) was also consistent with the ligand chelating in a cis fashion. 77Se NMR spectroscopy showed two selenium environments, both with 1J$_{Pt,Se}$ coupling, and the 195Pt NMR spectrum also showed two platinum environments. The observance of two resonances in each spectrum can be explained by the presence of two invertomers, meso and DL, as predicted from pyramidal inversion arguments (see Chapter 1). MeSe(CH$_2$)$_3$SeMe was similarly reacted with [PtCl$_2$(SMe)$_2$]. The resulting yellow solid was analysed by ES$^+$ MS, 1H, 13C{1H}, 77Se{1H} and 195Pt NMR spectroscopy and microanalysis which confirmed the formulation as planar [PtMe$_2$(MeSe(CH$_2$)$_3$SeMe)] with the selenoether chelating in a bidentate fashion. Figure 2.7 shows the 77Se NMR spectrum, showing two selenium environments at $\delta = 102$ and 114 ppm (free ligand $\delta = 74$ ppm). 1J$_{Pt,Se}$ couplings of 429 and 427 Hz respectively are also observed.
Recent work in this group has established that despite the seven-membered ring chelate, incorporation of the \textit{o}-xylyl linkage in a range of ligand types (diphosphane, distibane, ditelluroether) leads to an increased tendency towards \textit{cis}-chelation compared to aliphatic \textit{C}_4-linked analogues. These have been shown to be very effective ligands for a range of transition metal ions, for example complexes of \textit{o}-\textit{C}_6\textit{H}_4(\textit{CH}_2\textit{TeMe})_2 are known with \textit{Mn}, \textit{Mo}, \textit{W}, \textit{Pt}, \textit{Pd}, \textit{Rh}, \textit{Ru}, \textit{Os}, \textit{Cu}, and \textit{Ag}.6,11 The distibine \textit{o}-\textit{C}_6\textit{H}_4(\textit{CH}_2\textit{SbMe})_2 has also been shown to form stable alkyl \textit{Pt} complexes, with a crystal structure of [PtMe_4(\textit{o}-\textit{C}_6\textit{H}_4\{\textit{CH}_2\textit{SbMe}\}_2)] having been reported.28

[PtMe_2(\textit{o}-\textit{C}_6\textit{H}_4\{\textit{CH}_2\textit{SeMe}\}_2)] was produced in good yield from the reaction of [PtCl_2(SMe)_2], MeLi and one molar equivalent of \textit{o}-\textit{C}_6\textit{H}_4(\textit{CH}_2\textit{SeMe})_2 as detailed above. The resulting cream solid turned out to be unstable in solution in chlorinated solvents, decomposing after a few hours, and poorly soluble in non-chlorinated solvents. All of the dimethyl\textit{Pt}(II) selenoether complexes showed this instability – the solids deteriorate with significant darkening of the powders over a period of days to weeks even when stored under \textit{N}_2 in a dry glove box. Substantial sample degradation was clearly evident from the NMR spectra recorded after standing in solution for a few hours. Data quoted were therefore recorded from freshly prepared samples. The related halide complexes [PtX_2(L-L)] (X = Cl, Br, I; L-L = MeSe(\textit{CH}_2)_2SeMe, MeSe(\textit{CH}_2)_3SeMe, \textit{o}-\textit{C}_6\textit{H}_4(\textit{SeMe})_2) are all very poorly soluble in chlorocarbon solvents and acetonitrile. Data for these

\textbf{Figure 2.7:} $^{77}\text{Se}[^1\text{H}]$ NMR spectrum of [PtMe_2(MeSe\{\textit{CH}_2\}_3SeMe)] recorded in CH_2Cl_2/CDCl_3 at 243 K.
complexes was obtained from solutions in dmso. The low solubility and stability of these dimethylPt(II) complexes also hindered attempts to obtain crystal structures, as dilute solutions left to crystallise tended to decompose before crystals appeared.

Figure 2.8: 1H NMR spectrum of [PtMe$_2$(o-C$_6$H$_4$(CH$_2$SeMe)$_2$)] recorded in CDCl$_3$ at 298 K showing fast pyramidal inversion.

Figure 2.8 shows the room temperature 1H NMR spectrum of [PtMe$_2$(o-C$_6$H$_4$(CH$_2$SeMe)$_2$)]. The Pt-H coupling on methyl groups on both Pt and Se is clearly visible. These coupling constants help confirm the stereochemistry of the complex, as the values are in the range expected for PtMe trans to Se. The resonance associated with the CH$_2$ protons is observed as a broad peak, indicating rapid pyramidal inversion is occurring. Low temperature 1H NMR spectroscopy (213 K) resolved this, with a meso and DL forms of this complex clearly visible. The meso form has one δ^{77}Se resonance with 195Pt satellites ($\delta = 160.6$) and one δ^{195}Pt resonance ($\delta = -4308$), while the DL form results in two δ^{77}Se resonances of equal intensity, each with 195Pt satellites ($\delta = 169.1, 155.9$) and one δ^{195}Pt resonance ($\delta = -4316$).

Figure 2.9 shows the different invertomers possible for this complex. The d8 Pt(II) ion characteristically prefers a square planar geometry, so the Me$_2$-Pt-Se$_2$ core can be considered to be flat. The two DL forms are degenerate, and cannot be distinguished by NMR spectroscopy. The two meso forms expected are no longer degenerate, as meso 1 has the Se-Me groups on the same side of the Me-Pt-Se plane as the xylyl backbone, while meso 2 has them on opposite sides. The
form observed in the NMR spectra is most likely meso 2, as this would be less sterically crowded.

![Diagram of meso 1 and DL](image)

Figure 2.9: Invertomers (stereoisomers) generated by the xylyl backbone sitting out of the Me₂-Pt-Se₂ plane. The two DL enantiomers are superimposable and thus indistinguishable by NMR spectroscopy.

Reaction of [PtMe₂(SMe₂)₂] and the diselenomethane, MeSeCH₂SeMe, under the same conditions used previously, was investigated, in the hope that this would generate the selenoether bridged dinuclear species [Me₆Pt(μ-MeSeCH₂SeMe)₂PtMe₂]. The reaction was attempted several times, both by generating the [PtMe₂(SMe₂)₂] in situ from [PtCl₂(SMe₂)₂] and using pre-made [PtMe₂(SMe₂)₂] (see telluroether reactions below). The reaction was also attempted at low temperatures, using an ice bath. Each time the only product was a species that was very poorly soluble in chlorocarbons and which showed many overlapping peaks in ¹H NMR spectra, none of which could be firmly identified as either starting material. The only peak obtained in ⁷⁷Se{¹H} NMR spectra of any of these attempts corresponded to free ligand.

Reaction of one molar equivalent of [8]aneSe₂ in diethyl ether with [PtMe₂(SMe₂)₂] generated in situ from [PtCl₂(SMe₂)₂] as above yielded [PtMe₂[8]aneSe₂] as a beige solid. This is the first known complex of Pt(II) with a cyclic selenoether with alkyl co-ligands. This solid was only sparingly soluble in chlorocarbons and dmf, but was soluble enough to allow ¹H, ¹³C, ⁷⁷Se and ¹⁹⁵Pt NMR data to be collected. The cyclic structure of [8]aneSe₂ means that the two C₃ backbones must be either side of the Me₂PtSe₂ plane, and thus the complex is symmetrical. This eliminates the possibility of stereoisomers, and the ⁷⁷Se{¹H} NMR spectrum shows a single peak at 140.8 ppm (Figure 2.10). This is only a very small shift from uncoordinated [8]aneSe₂ (δ = 138 ppm), and might simply be due to solvent effects, but the singlet exhibits clear coupling (¹J_PtSe = 323 Hz), confirming the production of [PtMe₂[8]aneSe₂]). This is significantly lower than the corresponding dichloro species [PtCl₂[8]aneSe₂], which has ¹J_PtSe = 680 Hz (δ⁷⁷Se = 194 ppm),
and is consistent with replacement of the chloro ligands with strong σ-donor Me groups which have a much greater trans influence and hence substantially reduce the Pt–Se coupling constants. The 195Pt NMR shift for [PtMe$_2$([8]aneSe$_2$)], -4325 ppm, also reflects the incorporation of the much stronger σ-donating Me ligands (δ^{195}Pt [PtCl$_2$([8]aneSe$_2$)] = -3825 ppm).

Reaction of [16]aneSe$_4$ with either one or two molar equivalents of [PtMe$_2$(SMe)$_2$]$_2$ generated in situ from [PtCl$_2$(SMe)$_2$] as above yielded only the 1:1 species [PtMe$_2$[16]aneSe$_4$]). The yellow solid was insoluble in chlorocarbons and alcohols, and only very poorly soluble in dmso. This poor solubility of the 1:1 complex causes it to precipitate immediately from the reaction solution and probably prevents further complexation of second PtMe$_2$ unit, despite having an excess present.

Due to the poor solubility, [PtMe$_2$[16]aneSe$_4$]) was characterised by ES$^+$ mass spectrometry, microanalysis and 1H NMR spectroscopy. No further NMR data could be obtained. The 1H NMR spectrum was obtained in deuterated dmso, and showed only two resonances associated with coordinated selenoether, which would be more consistent with a 2:1 complex than the 1:1 complex, but integration against the singlet occurring at 0.48 ppm agreed with the 1:1 formulation confirmed by microanalysis. The singlet at 0.48 ppm had clear Pt–H couplings of 81 Hz which is consistent with the dimethylPt(II) complexes described above.

Table 2.2 shows the 77Se and 195Pt NMR data for the four new dimethylPt(II) seleneoether complexes that this data could be obtained for, and also for the corresponding halide complexes.3,4 It also shows the difference, $\Delta(\delta^{77}$Se), in the 77Se shift for the ligands upon chelation. This has been calculated by subtracting the shift of uncoordinated, or “free” ligand from that of the complex. An unweighted average shift has been used for complexes with two or more invertomers. It is noticeable that chelation to a Pt(II) centre leads to a positive shift in δ^{77}Se in all cases. There is a clear trend in the 77Se NMR data for the dimethyl Pt(II) complexes. As the length of the backbone between selenium atoms increases, $\Delta(\delta^{77}$Se) decreases. [PtMe$_2$(MeSe{CH$_2$}$_2$SeMe)] has $\Delta = 128.0$ ppm, while [PtMe$_2$(MeSe{CH$_2$}$_3$SeMe)] and [PtMe$_2$(o-C$_6$H$_4${CH$_2$SeMe}$_2$)] drop to 34.0 and 12.6 ppm respectively. The cyclic selenoether [8]aneSe$_2$ shows the smallest change in 77Se NMR shift, possibly due to the macrocyclic effect, as the 77Se NMR shift for [PtMe$_2$([8]aneSe$_2$)] is ~30-40 ppm higher than that of [PtMe$_2$(MeSe{CH$_2$}$_3$SeMe)] which has a very similar structure. Comparing these new dimethylPt(II) complexes with previously reported dihalide complexes [PtX$_2$(L–L)] (X = Cl, Br, I; L–L = MeSe(CH$_2$)$_n$SeMe, n = 2, 3)3 reveals that the trans substituent has a clear effect on $\Delta(\delta^{77}$Se) upon chelation. The electronegative halide ligands cause much larger shifts than the strongly σ-donating methyl ligands which have a greater trans influence.
Table 2.2: Selected NMR data for Pt(II) complexes with selenoethers. \(a = J_{(Pt,Se)}/Hz \) in parentheses. \(b \Delta = \delta(\text{complex}) - \delta(“free” \text{ ligand in relevant solvent}); \) the unweighted average of the chemical shifts of the different inveromers was used for complex. \(c = \) Spectra recorded in \((CD_3)_2SO \) at 298 K. \(d = \) Spectra recorded in \(CH_2Cl_2/CDCl_3 \) at 243 K. \(e = \) Spectra recorded in \(CH_2Cl_2/CDCl_3 \) at 193 K. \(f = \) Spectra recorded in \(D_6-dmf \) at 298 K.

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\delta^{77}\text{Se}/\text{ppm}^a)</th>
<th>(\Delta(\delta^{77}\text{Se})^b)</th>
<th>(\delta^{195}\text{Pt}/\text{ppm})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{PtCl}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>349.5 (515) 351.4 (503)</td>
<td>230.0 -3426 -3405</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>([\text{PtBr}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>364.6 (403) 369.4 (381)</td>
<td>252.6 -3832 -3812</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>([\text{PtI}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>384.4 (207) 395.1 (177)</td>
<td>275.0 -5185 -5165</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>([\text{PtMe}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>247.9 (457) 250.1 (438)</td>
<td>128.0 -4383 -4395</td>
<td>This work</td>
<td></td>
</tr>
<tr>
<td>([\text{PtCl}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>178.2 (500) 163.2 (518)</td>
<td>104.4 -3257 -3204</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>([\text{PtBr}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>171.5 (434) 162.9 (396)</td>
<td>100.9 -3659 -3616</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>([\text{PtI}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>164.7 (196) 153.7 (236)</td>
<td>92.9 -4960 -4991</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>([\text{PtMe}_2(\text{MeSe}{\text{CH}_2}_2\text{SeMe})])</td>
<td>114.0 (427) 102.1 (429)</td>
<td>34.0 -4247 -4309</td>
<td>This work</td>
<td></td>
</tr>
<tr>
<td>([\text{PtMe}_2(o-x_6\text{H}_4{\text{CH}_2\text{SeMe}}_2)])</td>
<td>169.1 (526) 160.6 (492) 155.9 (438)</td>
<td>12.6 -4308 -4316</td>
<td>This work</td>
<td></td>
</tr>
<tr>
<td>([\text{PtCl}_2([8]\text{aneSe}_2)])</td>
<td>194 (680) 56</td>
<td>-3825</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>([\text{PtMe}_2([8]\text{aneSe}_2)])</td>
<td>140.8 (323) 1.2</td>
<td>-4318</td>
<td>This work</td>
<td></td>
</tr>
</tbody>
</table>

The \(^{195}\text{Pt} \) NMR data do not show a similar, clearly defined trend, as \([\text{PtMe}_2(\text{MeSe}\{\text{CH}_2\}_2\text{SeMe})]\) shows the most negative \(\delta(^{195}\text{Pt}) \) at \(-4390\), while the other three dimethylPt(II) complexes shows more similar shifts (\(-4312\)), except for one inveromer of \([\text{PtMe}_2(\text{MeSe}\{\text{CH}_2\}_2\text{SeMe})]\) \((-4247\)). There is also a smaller difference between \(\delta(^{195}\text{Pt}) \) values for the two \([\text{Me}_2\text{Pt}(\text{MeSe}\{\text{CH}_2\}_2\text{SeMe})]\) complexes than there is between the corresponding dihalide complexes.\(^3\) Where there is comparable data, it can be seen that the \(^{195}\text{Pt} \) NMR shifts for the dimethyl complexes fall in between the dibromo and diiodo complexes, and the Pt-Se couplings fall between those for the dichloro and dibromo complexes.
Similar reactions were also attempted with the ditelluroethers MeTe(CH₂)₃TeMe and o-C₆H₄(CH₂TeMe)₂ and [PtMe₂(SMe₂)₂], generated in situ from [PtCl₂(SMe₂)₂], in diethyl ether. It was hoped that this would produce the first examples of dimethylplatinum(II) species with telluroethers. The complexes [PtX₂(L-L)] (L-L = MeTe(CH₂)₃TeMe, o-C₆H₄(TeMe)₂, o-C₆H₄(CH₂TeMe)₂) have been described previously as poorly soluble solids. The reactions with [PtMe₂(SMe₂)₂] failed to give the desired products, giving only dark brown, poorly soluble materials. This may be due to the greater sensitivity of telluroethers compared to the corresponding selenoethers.

Production of [PtX₂(µ²-SMe₂)] (X = Cl, Br) complexes failed in aqueous and non-aqueous media at room temperature, and had to be performed in non-aqueous solvents at low temperature – contrasting with production of corresponding thio/selenoether complexes. This would indicate that generating [PtMe₂(SMe₂)₂] in situ may have inhibited reaction with the telluroethers, as water is added to hydrolyse any unreacted MeLi before the ligand is added.

[PtMe₂(SMe₂)₂] was produced from reaction of [PtCl₂(SMe₂)₂] and MeLi in diethyl ether at low temperature, and isolated as a mixture of the monomer and the dimer, [(PtMe₂)(µ²-SMe₂)]₂. The integration of the ¹H NMR spectrum obtained allowed the proportions of monomer and dimer present to be determined, and the monomer/dimer mixture was used in subsequent reactions, using the correct molar ratio. Reactions were attempted with o-C₆H₄(CH₂TeMe)₂ and MeTe(CH₂)₃TeMe at room temperature in anhydrous diethyl ether, but these produced no identifiable products. Repeating the reactions at low temperature yielded orange/brown materials. The ES⁺ MS from these materials show common features consistent with diplatinum compounds involving TeMe fragments. The various isotopes of platinum and tellurium combine to produce highly characteristic patterns of peaks in MS spectra. Both materials show clusters around m/z = 943 and 667. The ¹H NMR spectrum of the material formed with MeTe(CH₂)₃TeMe shows clear evidence for Pt-Te units at δ = 0.71 and 0.59 ppm (²J_{Pt-H} = 82 Hz), but no Te-Me groups could be observed. In the ¹H NMR spectrum of the material obtained from the reaction with o-C₆H₄(CH₂TeMe)₂ no Pt-Me groups could be clearly identified. Both materials showed several peaks in ¹²⁵Te NMR spectra, but PtTe coupling could not be clearly identified. These results strongly indicate that significant Te-C bond fission occurs in these reactions, probably due to the fragility of Te-C bonds (see Chapter 1).

2.5 – Novel Trialkyl Platinum(IV) Complexes

K₂[PtCl₆] was produced in good yield by dissolving H₂[PtCl₆] in water, adding two molar equivalents of KOH and stirring overnight. The yellow precipitate was filtered off and dried thoroughly in vacuo. [PtMe₃]I was produced from reaction of Mg and MeI to form the Grignard,
which was added to K₂[PtCl₆] at low temperature. Workup yielded [PtMe₃I] as a yellow-brown solid. [PtMe₃I] actually exists as the tetrameric [PtMe₃I]₄, so the ¹H NMR spectrum shows a single methyl resonance with platinum coupling (²Jₚₚₗ = 78.2 Hz) at 1.85 ppm in C₆D₆.

[PtMe₃I] was reacted with one molar equivalent of o-C₆H₄(CH₂SeMe)₂ in refluxing chloroform for 20 hours. This produced [PtMe₃I(o-C₆H₄(CH₂SeMe)₂)] as a yellow solid in good yield, which was analysed by ES⁺ MS, ¹H, ¹³C{¹H}, ⁷⁷Se{¹H} and ¹⁹⁵Pt NMR and microanalysis. The complex was more stable in solution than the corresponding dimethylPt(II) complex. ES⁺ MS (Figure 2.10) clearly shows a cluster of peaks with the expected isotope pattern at m/z = 533, (calculated mass for [¹⁹⁵PtMe₃(o-C₆H₄(CH₂⁸₀SeMe)₂)]⁺ is 534). The ¹H NMR spectrum was broad at room temperature and difficult to interpret; cooling to 223 K allowed observation of Pt-H coupling and assignment of the peaks.

![Figure 2.10](image)

Figure 2.10: Left: ES⁺ MS of [PtMe₃I{o-C₆H₄(CH₂SeMe)₂}] in MeCN showing peak clusters corresponding to [PtMe₃{o-C₆H₄(CH₂SeMe)₂}]⁺ and [PtMe₃{o-C₆H₄(CH₂SeMe)₂}]⁺·MeCN. Right: simulated isotope pattern for [PtMe₃{o-C₆H₄(CH₂SeMe)₂}]⁺.

The ⁷⁷Se NMR spectrum (233 K) shows four selenium environments, all with ¹Jₚₛₑ coupling between 280 and 312 Hz (δ = 95.5, 97.8, 98.7, 114.0 ppm; free ligand = 149.3 ppm). This coupling is similar in magnitude to that observed on [PtMe₃I(MeSe(CH₂₃)₂SeMe)] (n = 2, 3).¹⁷ The peak at δ = 95.5 ppm is of much lower intensity than the other three, indicating that this is a minor isomer. This is most likely to be the *meso* 2 form, shown in Figure 2.11, as the steric clash between the selenium-methyl groups and the bulky iodide would probably be worse than that between the selenium-methyl groups and the xylyl backbone in *meso* 1, making this less favourable. The ¹⁹⁵Pt
NMR spectrum showed only two peaks, the minor isomer not being observed. Despite the large, 7 membered chelate ring, this complex is stable in solution, and soluble in chlorocarbons.

Figure 2.11: Possible inveromers of [PtMe₃I(o-C₆H₄{CH₂SeMe}₂)] assuming xylyl backbone remains away from iodide to reduce steric hindrance. DL enantiomers are superimposable and thus not individually distinguishable by NMR spectroscopy.

Crystals were obtained from slow evaporation of a solution of [PtMe₃I(o-C₆H₄{CH₂SeMe}₂)] in CH₂Cl₂/hexane. An X-ray structure analysis confirms a distorted octahedral coordination sphere at Pt(IV) derived from three facial Me groups, an iodo ligand and a chelating diselenoether, d(Pt–C) = 2.080(3) – 2.114(4) Å, d(Pt–Se) = 2.5530(4), 2.5629(4) Å, d(Pt1–I) = 2.7663(3) Å. The seven-membered chelate ring gives rise to a Se₁–Pt₁–Se₂ angle of 98.317(12)°, and somewhat longer Pt–Se bonds than seen in the only other reported crystal structure of a trialkyl Pt(IV) complex with bidentate selenoether coordination, [PtMe₃I(MeSeCH=CHSeMe)] (Figure 2.5 above, Pt–Se = 2.525(4), 2.532(4) Å), reflecting the considerable steric demands of the wide angle diselenoether. The selenoether adopts a DL configuration in which the SeMe substituents lie on opposite sides of the PtSe₂ plane, and the aromatic ring is oriented towards the Me ligand opposite the sterically large iodo ligand. This DL configuration can be contrasted with the meso configuration of the recently published [Mo(CO)₄(o-C₆H₄){CH₂SeMe}₂)] (Figure 2.13), in which not only are both methyl groups on the same side of the Se₂Mo plane, but are also on the same side as the xylyl backbone, even though this would seem to be sterically unfavourable. In the analogous stibine complex [PtMe₃I(o-C₆H₄{CH₂SbMe}₂)] (Figure 2.13), whilst there are now two terminal methyl groups which prevent a similar meso/DL configuration, the xylyl backbone still adopts a position away from the iodide ligand. This complex also has a similar bond angle at Pt (Sb-Pt-Sb = 95.246 (11)°). The –SeCH₂(o-C₆H₄)CH₂Se– unit can also be observed in two new crystal structures of Pt complexes, [PtMe₃L⁶]I and [PtMe₃L⁶]I, discussed in Chapter 5.
Figure 2.12: Crystal structure of \([\text{PtMe}_3\text{I}(\text{o-C}_6\text{H}_4\{\text{CH}_2\text{SeMe}\}_2)]\). H atoms omitted for clarity.

Table 2.3: Selected bond lengths and angles for \([\text{PtMe}_3\text{I}(\text{o-C}_6\text{H}_4\{\text{CH}_2\text{SeMe}\}_2)]\).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–Pt1</td>
<td>2.085(4)</td>
<td>C2–Pt1–C1</td>
<td>84.28(15)</td>
<td>C3–Pt1–Se2</td>
<td>175.67(11)</td>
</tr>
<tr>
<td>C2–Pt1</td>
<td>2.080(3)</td>
<td>C2–Pt1–C3</td>
<td>87.39(15)</td>
<td>Se1–Pt1–Se2</td>
<td>98.317(12)</td>
</tr>
<tr>
<td>C3–Pt1</td>
<td>2.114(4)</td>
<td>C1–Pt1–C3</td>
<td>88.25(16)</td>
<td>C2–Pt1–I1</td>
<td>94.58(11)</td>
</tr>
<tr>
<td>Se1–Pt1</td>
<td>2.5530(4)</td>
<td>C2–Pt1–Se1</td>
<td>172.68(11)</td>
<td>C1–Pt1–I1</td>
<td>177.53(11)</td>
</tr>
<tr>
<td>Se2–Pt1</td>
<td>2.5629(4)</td>
<td>C1–Pt1–Se1</td>
<td>95.03(11)</td>
<td>C3–Pt1–I1</td>
<td>89.51(12)</td>
</tr>
<tr>
<td>I1–Pt1</td>
<td>2.7663(3)</td>
<td>C3–Pt1–Se1</td>
<td>85.30(10)</td>
<td>Se1–Pt1–I1</td>
<td>85.815(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2–Pt1–Se2</td>
<td>88.97(11)</td>
<td>Se2–Pt1–I1</td>
<td>93.116(10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C1–Pt1–Se2</td>
<td>89.06(11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.13: Crystal structures of \([\text{Mo(CO)}_4(\text{o-C}_6\text{H}_4\{\text{CH}_2\text{SeMe}\}_2)]\)\(^3^3\) (left) and \([\text{PtMe}_3\text{I}(\text{o-C}_6\text{H}_4\{\text{CH}_2\text{SbMe}\}_2)]\)\(^2^8\) (right). Ellipsoids at 50 % probability. H atoms omitted for clarity.
It was hoped that a cationic complex with tridentate selenoether coordination might be generated with the tripodal ligand MeC(CH$_2$SeMe)$_3$. MeC(CH$_2$SeMe)$_3$ has so far only been observed to bond to Pt in a bidentate manner, either with halide co-ligands [PtCl$_2$(MeC(CH$_2$SeMe)$_3$)]$_2$ [7] or as a homoleptic complex [Pt(MeC(CH$_2$SeMe)$_3$)$_2$(PF$_6$)$_2$], but tridentate *fac* coordination has previously been observed for MeC(CH$_2$SeMe)$_3$ with a number of other metals, including [Mn(CO)$_3$L]CF$_3$SO$_3$, [8] [Rh(cod)L]PF$_6$ and [Ir(cod)L]PF$_6$, along with a homoleptic complex [Ru(L)$_2$](CF$_3$SO$_3$)$_2$. [9] MeC(CH$_2$SeMe)$_3$ was reacted in 1:1 molar ratio with [PtMe$_3$I] in refluxing chloroform. A yellow solid was produced, which was identified as [PtMe$_3$I(κ$_2$-MeC(CH$_2$SeMe)$_3$)] by electrospray MS, microanalysis and VT multinuclear NMR spectroscopy. The data are consistent with bidentate coordination of the tripod selenoether at the distorted octahedral Pt(IV) centre. However, the mixture of invertomers, together with the low symmetry of the molecule, makes it very difficult to assign the spectra in detail. There are three significant invertomers present, identified by the three peaks in the 195Pt NMR spectrum recorded at 223 K. Figure 2.14 shows the possible invertomers for bidentate coordinating selenoethers on [PtMe$_3$I]. For [PtMe$_3$I(MeSe(CH$_2$)$_3$MeSe)], where R = R$_1$ = H, the orientations of the R groups do not matter and there are only the three distinguishable invertomers shown below. However, in the case of [PtMe$_3$I(MeC(CH$_2$SeMe)$_3$)] the R groups are now inequivalent (R = Me, R$_1$ = CH$_2$SeMe) and the possible orientations of these groups generates even more non-superimposable invertomers. The 77Se NMR spectrum of [PtMe$_3$I(MeC(CH$_2$SeMe)$_3$)] shows a total of six selenium environments with Pt coupling and a further four without, making the exact nature of the invertomer populations difficult to calculate. The four environments for the Se atom in the uncoordinated arm of the tripodal ligand indicate that there may be an interaction between this Se and the bulky iodide ligand.

![Invertomers of [PtMe$_3$I(κ$_2$-selenoether)].](image)

Attempts to promote κ3 co-ordination in this complex were undertaken, both by stirring the preformed [PtMe$_3$I(κ$_2$-MeC(CH$_2$SeMe)$_3$)] in acetonitrile with TIPF$_6$, and by reaction of PtMe$_3$I,
TIPF$_6$ and MeC(CH$_2$SeMe)$_3$ in refluxing chloroform. Both methods resulted in the production of an orange/red oil. IR spectra were recorded on these oils, and were identical to the IR spectrum of [PtMe$_3$I(κ2-MeC{CH$_2$SeMe})$_3$], showing no evidence for incorporation of PF$_6^\text{-}$. This indicates that under these reaction conditions no dissociation of the iodide ligand occurred, as TIPF$_6$ would rapidly react with uncoordinated I$^-$ to produce TlI as a precipitate, removing the iodide from the reaction. NMR spectroscopic analysis also failed to show any evidence of [PtMe$_3$(MeC{CH$_2$SeMe})$_3$]$^+$, the only significant product being [PtMe$_3$I(κ2-MeC(CH$_2$SeMe)$_3$)].

Fac-[PtMe$_2$(Se{CH$_2$CH$_2$SeMe})$_3$]BF$_4$ is a stable, soluble white solid, made by reaction of [(PtMe)$_3$SO$_4$]·4H$_2$O and Se(CH$_2$CH$_2$SeMe)$_2$ in acetone, followed by addition of NaBF$_4$. However, the facultative triselenoether has greater conformational flexibility than the tripod, which is dependent on maintaining a tetrahedral geometry at the apical carbon. Thus it appears that MeC(CH$_2$SeMe)$_3$ is not well-suited to facial coordination on the small trimethyl Pt(IV) fragment.

Treatment of [PtMe$_3$I] with one molar equivalent of the cyclic selenoether [8]aneSe$_2$ in refluxing CHCl$_3$ produced a cream solid after the solvent was reduced in vacuo and addition of diethyl ether. This cream solid was analysed by electrospray MS, microanalysis and 1H, 13C{$_1^H$}, 77Se{$_1^H$} and 195Pt NMR spectroscopy. The electrospray MS show clusters of peaks with the correct m/z and isotope patterns for both [PtMe$_3$([8]aneSe$_2$)]$^+$ and [PtMe([8]aneSe$_2$)]$^+$. The coupling constants observed in the NMR spectra of [PtMe$_3$I([8]aneSe$_2$)] (2J$_{ptH}$ and 1J$_{pc}$ from the Me trans Se, and 1J$_{pSe}$) are consistently smaller than those observed for the planar [PtMe$_2$([8]aneSe$_2$)], as expected based upon the different coordination environments. The 13C{$_1^H$} NMR spectrum has four distinct CH$_2$ resonances from [8]aneSe$_2$, which are caused by the lack of axial symmetry within the complex. The 77Se{$_1^H$} NMR spectrum shows a single peak with $\delta = 65.3$ ppm and 1J$_{pSe} = 244$. This is very similar to data reported for [PtMe$_3$I(MeSe{CH$_2$},SeMe})] (Table 2.4).

[PtMe$_3$I([16]aneSe$_4$)] was obtained in similar fashion to [PtMe$_3$I([8]aneSe$_2$)] by treatment of [PtMe$_3$I] with one molar equivalent of [16]aneSe$_4$ in refluxing CHCl$_3$. The cream solid isolated was characterised by multinuclear NMR spectroscopy, electrospray MS and microanalysis. The electrospray MS showed a cluster of peaks with the correct m/z and isotope patterns for [PtMe$_3$([16]aneSe$_4$)]$^+$. The 77Se NMR spectrum shows two peaks, which are substantially to low frequency of the “free” ligand value. This is somewhat surprising, as even the resonance arising from the two uncoordinated Se atoms of the [16]aneSe$_4$ ring is some 40 ppm to low frequency of [16]aneSe$_4$ itself. This suggests that the presence of the trimethylPt(IV) fragment bound to the other two Se atoms significantly influences the electronic environment at the remote, “free” Se atoms and may suggest that the uncoordinated Se atoms lie near to the iodo ligand. The 195Pt NMR spectrum shows a singlet at -3616 ppm, which is only slightly different to [PtMe$_3$I([8]aneSe$_2$)] ($\delta =$
-3589), suggesting that total ring size is a relatively unimportant influence on the 195Pt chemical shift.

As with [PtMe$_3$I([8]aneSe$_2$)] there is a lack of axial symmetry, leading to seven CH$_2$ resonances in the 13C{1H} NMR spectrum from the macrocycle, consistent with bidentate coordination giving a six-coordinate Pt(IV) species with a vertical plane of symmetry.

[PtMe$_3$I(κ2-[16]aneSe$_4$)] was refluxed in CHCl$_3$ with one mol. equiv. of TlPF$_6$ for 2.5 hours, after which time the almost colourless solution was cannulaed from the fine yellow TlI precipitate. The solution was reduced in vacuo, and addition of diethyl ether caused a white solid to precipitate, which was collected by filtration. Analysis of this white solid showed clean abstraction of the iodo ligand, giving [PtMe$_3$([16]aneSe$_4$)]PF$_6$. This is the first example of a cationic alkyl Pt(IV) complex with macrocyclic selenoether coordination (for further new examples, see Chapter 5). Electrospray MS (Figure 2.15) shows an intense peak cluster corresponding to [PtMe$_3$([16]aneSe$_4$)]$^+$ (highest peak 725, calculated for $[^{195}$PtMe$_3$([16]ane80Se$_4$)]$^+$ 728) with a lower intensity cluster of peaks corresponding to [PtMe([16]aneSe$_4$)]$^+$, i.e. reductive loss of two Me groups. The MS data is not enough to confirm κ3-cooordination, as the iodide is displaced in the MS of the κ2-complex to give the same parent ion, [PtMe$_3$([16]aneSe$_4$)]$^+$, but a fac-octahedral Me$_3$Se$_3$ donor set around Pt is confirmed by NMR spectroscopy. The 195Pt NMR spectrum exhibits only a small change in going from a Me$_3$Se$_2$I ligand set to an Me$_3$Se$_3$ ligand set, and shows a singlet at $\delta = -3648$ ppm. The 77Se{1H} NMR spectrum for [PtMe$_3$([16]aneSe$_4$)]PF$_6$ recorded at 223 K reveals two Se environments at 70 (coordinated Se) and 138 ppm (“free” Se), showing a significant shift from those observed for [PtMe$_3$I([16]aneSe$_4$)] (116.6 and 119.5 ppm, respectively). Again both the coordinated and “free” Se are to low frequency of [16]aneSe$_4$ itself ($\delta = 158$ ppm). The shift in the “free” Se frequency is probably due to “ring-whizzling”, resulting in rapid interchange between the “free” and coordinated Se atoms. A similar mechanism has been proposed for the closely related thioether complex [PtMe$_3$(κ3-[12]aneS$_4$)]$^+$. This would also explain the broad resonances observed in the 13C{1H} and 77Se{1H} NMR spectra recorded at room temperature.
Table 2.4 shows the 77Se and 195Pt NMR data for these new [PtMe$_3$(selenoether)] complexes and data for similar, previously reported complexes. Comparing the bidentate acyclic ligands, we see that $\Delta(\delta^{77}$Se) decreases in the order MeSe(CH$_2$)$_2$SeMe $>$ MeSe(CH$_2$)$_3$SeMe $>$ σ-C$_6$H$_4$(CH$_2$SeMe)$_2$ with σ-C$_6$H$_4$(CH$_2$SeMe)$_2$ showing a coordination shift of -47.8 ppm. This trend is also observed in the dimethylPt(II) complexes in Table 2.2, although $\Delta(\delta^{77}$Se) does remain positive in these cases. $\delta^{(195}$Pt) shows the reverse trend for these Pt(IV) complexes, with [PtMe$_3$I(MeSe(CH$_2$)$_2$SeMe)] showing the most negative shift (-3598 to -3737 ppm) but whilst [PtMe$_2$(MeSe(CH$_2$)$_2$SeMe)] also showed the most negative shift of the dimethylPt(II) complexes (-4395 ppm), MeSe(CH$_2$)$_3$SeMe and σ-C$_6$H$_4$(CH$_2$SeMe)$_2$ showed very similar 195Pt shifts. [PtMe$_3$I(MeSe(CH$_2$)$_2$SeMe)], [PtMe$_3$I(κ^2-MeC(CH$_2$SeMe)$_3$)] and [PtMe$_3$I([8]aneSe$_2$)] show very similar 77Se and 195Pt NMR shifts, which is expected as the coordination sphere at Pt and the backbone between the chelating
Se atoms are the same. [PtMe₃(l₃-[16]aneSe₄)] shows significantly different ⁷⁷Se and ¹⁹⁵Pt NMR shifts, which may arise from a stronger macrocyclic effect than exhibited by [8]aneSe₂, or may be caused by the possible “ring whizzing”. More discussion of the tridentate cationic [PtMe₃([16]aneSe₄)]PF₆ can be found in Chapter 5.

Table 2.4: Selected NMR data for Pt(IV) complexes with selenoethers. a = ¹J(Pt-Se) / Hz in parentheses. b = δ(complex) – δ(free ligand); the unweighted average of the chemical shifts of the different invertomers was used for complex. Coordinated and uncoordinated Se shifts calculated separately. c = Spectra recorded in CDCl₃. d = Spectra recorded in CH₂Cl₂/CDCl₃ at 223 K. e = Chemical shift of uncoordinated Se atoms present in ligand. f = Spectra recorded in CDCl₃ at 243 K.

<table>
<thead>
<tr>
<th>Complex</th>
<th>δ⁷⁷Se/ppma</th>
<th>Δ(⁷⁷Se)b</th>
<th>δ¹⁹⁵Pt/ppm</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PtMe₃l(MeSe(CH₂)₂SeMe)]²⁻</td>
<td>177.8 (321.4)</td>
<td>58.7</td>
<td>-3598.1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>181.2 (343.9)</td>
<td></td>
<td>-3667.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>181.7 (263.7)</td>
<td></td>
<td>-3737.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>178.1 (255.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PtMe₃l(MeSe(CH₂)₃SeMe)]²⁻</td>
<td>55.2 (260.3)</td>
<td>-18.8</td>
<td>-3470.1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>52.0 (252.9)</td>
<td></td>
<td>-3541.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58.4 (240.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PtMe₃l(k²-MeC(CH₂SeMe)₃)]²⁻</td>
<td>53.0 (252)</td>
<td>21.5</td>
<td>-3446</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>51.6 (160)</td>
<td></td>
<td>-3543</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.3 (258)</td>
<td></td>
<td>-3550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.5 (252)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.4 (162)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.3 (256)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.1e</td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.0e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.0e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.3e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PtMe₃l(o-C₆H₄(CH₂SeMe)₂)]²⁻</td>
<td>114 (289)</td>
<td>-47.8</td>
<td>-3382</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>98.7 (280)</td>
<td></td>
<td>-3468</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97.8 (312)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.5 (286)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PtMe₃l([8]aneSe₂)]²⁻</td>
<td>65.3 (244)</td>
<td>-68.7</td>
<td>-3589</td>
<td>This work</td>
</tr>
<tr>
<td>[PtMe₃l(k²-[16]aneSe₄)]²⁻</td>
<td>116.6 (266)</td>
<td>-41.4</td>
<td>-3616</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>119.5e</td>
<td>-38.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[PtMe₃l(k²-[16]aneSe₄)]²⁻</td>
<td>70 (249)</td>
<td>-88</td>
<td>-3648</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>138e</td>
<td>-20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The only previously reported [PtMe3I] complexes with telluroether ligands are [PtMe3I(o-C6H4{TeMe}2)] and [PtMe3I(RTe(CH2)3TeR)] (R = Me, Ph), providing examples of 5 and 6 membered chelate rings. The success of the reaction of the o-xylyl selenoether with [PtMe3I] prompted the reaction of the corresponding telluroether. Reaction of [PtMe3I] with o-C6H4(CH2TeMe)2 in refluxing chloroform for 16 hours produced an orange solid identified as [PtMe3I(o-C6H4{CH2TeMe}2)]. The 125Te NMR spectrum (Figure 2.16) showed the presence of three invertomers in significant proportions. These presumably correspond to meso 1 and 2 and DL formed when the xylyl backbone lies on the opposite side of the Me2-Pt-Te2 plane to the bulky iodide (see Figure 2.11). The pyramidal inversion at 298 K is relatively slow in the telluroether complex compared to the selenoether, as expected (see Chapter 1).

![Figure 2.16: 125Te NMR spectrum of [PtMe3I(o-C6H4{CH2TeMe}2)] recorded in CH2Cl2/CDCl3 at 243 K.](image)

Reaction of [PtMe3I] with one equivalent of MeTeCH2TeMe in chloroform produced a dark brown solid, identified as [(PtMe3I)2(MeTeCH2TeMe)]. The NMR data collected are consistent with a diiodo-bridged species in which the telluroether also bridges between the Pt atoms, i.e. [Me3Pt(μ2-I)2(μ2-MeTeCH2TeMe)PtMe3], which leads to two non-superimposable, and therefore NMR distinguishable, invertomers which are shown in Figure 2.17. These can both be seen in the 195Pt and 125Te NMR spectra in a ratio of ~2.5:1, both showing a major peak (δ 195Pt = -3430, 125Te = 173.2 ppm) and a minor peak (δ 195Pt = -3451, 125Te = 171.1 ppm). When recorded at room temperature, the 1H NMR spectrum was broad, but cooling to 248 K allowed identification of six
different resonances from methyl groups on Pt. Four resonances would be expected, from Me \textit{trans} I and Me \textit{trans} Te on each invertomer. The telluroether ligand must cause a separation of the two Me groups \textit{trans} I, possibly by reducing the symmetry in some way. This has been observed in the thioether complex \([(\text{PtMe}_3\text{I})_2(\text{MeSCH(Me)}\text{SMe})]\), as the methyl group on the 1C linkage destroys the symmetry of the molecule, but not in \([(\text{PtMe}_3\text{I})_2(\text{MeSCH}_2\text{SMe})]\) where the Me groups \textit{trans} I are equivalent.\(^{19}\) \(^{13}\)C\{\(^1\)H\} NMR spectroscopy again had to be run at 248 K to obtain a clear spectrum, and revealed five peaks assignable to methyl groups on Pt, whereas six were expected from the \(^1\)H NMR data. Presumably, two resonances occurred at the same chemical shift. ESI\(^+\) MS did not show any peaks consistent with this species, but this is not unexpected. In the mononuclear complexes, the iodide ligand is easily displaced to allow detection of \([\text{PtMe}_3\text{L}]^+\). As the two iodide ligands are bridging between the platinum atoms, they are much harder to displace to generate a cation.

Figure 2.17: Invertomers of \([(\text{PtMe}_3\text{I})_2(\text{MeTeCH}_2\text{TeMe})]\).

The ease of formation and relatively high stability of the telluroether complexes both as solids and in solution was somewhat unexpected, as hard/soft acid/base theory would suggest that Pt(II) would form more stable complexes than Pt(IV) with soft telluroether ligands. It is probably due to highly \(\sigma\)-donating Me\(_3\) donor set surrounding the platinum and the coordinatively saturated Pt(IV) which makes oxidative addition of the Te-C bond unlikely (as does the oxidation state).

Because of the relative lack of characterised complexes, comparison of the effects of different ligand backbones for telluroethers is restricted compared to selenoethers. It can be observed that the dinuclear bridged complex \([(\text{PtMe}_3\text{I})_2(\text{MeTeCH}_2\text{TeMe})]\) has a significantly less negative \(\delta(\text{195Pt})\) than the mononuclear complexes, and that all the complexes shift \(\delta(\text{125Te})\) of the ligands in a low frequency direction. Comparison with the analogous selenoether complexes detailed in Table 2.4 shows that the selenoether complexes have less negative \(\delta(\text{195Pt})\) than the telluroethers, and that whilst \([\text{PtMe}_3\text{I}(\text{MeE}\{\text{CH}_2\}_3\text{EMe})]\) have comparable sized shifts in the ligand from “free” to coordinated (\(\Delta(\text{77Se}) = -18.8, \Delta(\text{125Te}) = -12.8\)), in the xylyl ligand complexes \([\text{PtMe}_3\text{I}(\text{o-C}_6\text{H}_4\{\text{CH}_2\text{EMe}\}_2)]\) there is a significant difference (\(\Delta(\text{77Se}) = -47.8, \Delta(\text{125Te}) = -120.3\)).
Table 2.5: Selected NMR data for Pt(IV) complexes with telluroethers. \(a = \frac{1}{2}J_{\text{Pt-Te}}\) Hz in parentheses. \(b = \delta(\text{complex}) - \delta(\text{free ligand})\); the unweighted average of the chemical shifts of the different invertomers was used for complex. \(c = \text{spectra recorded in CH}_2\text{Cl}_2/\text{CDCl}_3\) at 243 K. \(d = \text{spectra recorded in CDCl}_3\) at 303 K. \(e = \text{no } ^{77}\text{Te NMR data reported; coupling constant taken from } ^{195}\text{Pt NMR spectrum.}\)

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\delta ^{125}\text{Te}/\text{ppm})^a</th>
<th>(\Delta ^{125}\text{Te}/\text{ppm})</th>
<th>(\delta ^{195}\text{Pt}/\text{ppm})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{PtMe}_3\text{I}(\text{MeTeCH}_2\text{TeMe})]^-)</td>
<td>173.2 (713) \n171.1 (605)</td>
<td>-39.8</td>
<td>-3430 \n-3451</td>
<td>This work</td>
</tr>
<tr>
<td>([\text{PtMe}_3\text{I}(o-\text{C}_6\text{H}_4{\text{TeMe}_2}})^3)</td>
<td>e (not given) \n(699, 467) \n(521)</td>
<td>-4235 \n-4289 \n-4382</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>([\text{PtMe}_3\text{I}(\text{MeTeCH}_3\text{TeMe})]^-)</td>
<td>82.5 (571) \n92.1 (585) \n89.4 (485) \n100.6 (514)</td>
<td>-12.8</td>
<td>-4071 \n-4125 \n-4211</td>
<td>23</td>
</tr>
<tr>
<td>([\text{PtMe}_3\text{I}(o-\text{C}_6\text{H}_4{\text{CH}_2\text{TeMe}}_2)]^\circ)</td>
<td>189.5 (602) \n159.9 (618) \n114.5 (638) \n110.8 (537)</td>
<td>-120.3</td>
<td>-3968 \n-4022 \n-4119</td>
<td>This work</td>
</tr>
</tbody>
</table>

2.6 – Reductive Elimination

It has been shown that a number of Pt(IV) complexes of the type \([\text{PtMe}_3\text{I}(L–L)]\) with bidentate ligands including \(\text{Ph}_2\text{P(CH}_2\text{SePh})_2\), \(\text{R}_2\text{Sb(CH}_2\text{SbR})_2\), \(R = \text{Me, Ph}\); and \(o-\text{C}_6\text{H}_4(\text{CH}_2\text{SbMe}_2)_2\), undergo clean reductive elimination of ethane upon thermolysis, however no analysis of this kind has been carried out for Pt(IV) complexes with chalcogenoethers. As has already been observed, the positive electrospray MS of \([\text{PtMe}_3\text{I}(L)]\) (\(L = \text{MeC(CH}_2\text{SeMe})_3\), \(8\text{aneSe}_2\)) and \([\text{PtMe}_3(16\text{aneSe}_3)][\text{PF}_6]\) show peak clusters consistent with both \([\text{PtMe}_3(L–L)]^+\) and \([\text{PtMe}(L–L)]^+\). The isotope pattern for the latter of these species provides clear evidence for the species being singly charged, and this Pt(II) species is presumably formed via reductive loss of ethane from the parent cation. In order to investigate possible reductive ability in other Pt(IV) seleno- and telluroether complexes, samples of \([\text{PtMe}_3\text{I}(o-\text{C}_6\text{H}_4\{\text{CH}_2\text{EMe}\}_2)]\) (\(E = \text{Se, Te}\)) were heated to observe if reductive elimination of ethane would occur. \([\text{PtMe}_3\text{I}(o-\text{C}_6\text{H}_4\{\text{CH}_2\text{TeMe}\}_2)]\) does not melt on heating, merely decomposing at \(\sim 130^\circ\text{C}\) giving a black solid. The corresponding Pt(IV) selenoether complex melts at \(\sim 150^\circ\text{C}\) and then darkens slowly as the temperature is increased, indicating the onset of decomposition. A solid sample of this complex was heated for 1h at \(ca. 160^\circ\text{C}\) and the residue investigated by \(^1\text{H NMR spectroscopy, which revealed loss of the Pt-Me and Se-Me resonances. This shows that these species tend toward decomposition, and do not undergo clean reductive elimination under these conditions.}
2.7 – Oxidative Addition

It has been shown that [PtMe₂([9]aneS₃)] can be reacted with MeI in CH₂Cl₂ to yield the Pt(IV) complex [PtMe₃([9]aneS₃)]I in 68% yield, and [PtEt₂([9]aneS₃)] can undergo similar oxidative addition to [PtMeEt₂([9]aneS₃)]I.²⁷ In order to probe the reaction chemistry of the novel dimethylPt(II) selenoether complexes, freshly prepared solutions of [PtMe₂(o-C₆H₄(CH₂SeMe)₂)] and [PtMe₂(MeSe(CH₂)₃SeMe)] in CH₂Cl₂ were stirred overnight with excess MeI, giving light yellow solids after filtration and recrystallisation from CH₂Cl₂/hexane. The ¹H and ⁷⁷Se{¹H} NMR spectra of solutions of these products show that oxidative addition of MeI occurs cleanly, with complete conversion of the Pt(II) complexes to [PtMe₃I(o-C₆H₄(CH₂SeMe)₂)] and [PtMe₃I(MeSe(CH₂)₃SeMe)] respectively.

![Reaction scheme for oxidative addition to Pt(II) dimethyl complexes](image)

Figure 2.18: Reaction scheme for oxidative addition to Pt(II) dimethyl complexes.

2.8 - Conclusions

The first known examples of alkyl Pt(II) complexes with macrocyclic selenoethers [PtMe₂L] (L = [8]aneSe₂ and [16]aneSe₄) have been synthesised and characterised as part of a series of dimethyl Pt(II) complexes with selenoether ligands (L = MeSe(CH₂)ₙSeMe, n = 2, 3; o-C₆H₄(CH₂SeMe)₂). These complexes proved to be unstable in solutions of chlorinated solvents, and only poorly soluble in unchlorinated solvents. Similar reactions with telluroether ligands (MeTe(CH₂)₃TeMe, o-C₆H₄(CH₂TeMe)₂) produced no isolatable products. No examples of complexes exhibiting bridging ligand behaviour could be obtained, either using MeSeCH₂SeMe, or using 0.5 equivalents of [16]aneSe₄.
A new series of [PtMe$_3$I(κ^2-L-L)] complexes has been synthesised and characterised, which includes the first examples of this type with macrocyclic selenoethers (L-L = o-C$_6$H$_4$(CH$_2$EMe)$_2$, E = Se, Te; MeC(CH$_2$SeMe)$_3$; [8]aneSe$_2$ and [16]aneSe$_4$). The first bridging ditelluroether trimethylido Pt(IV) complex, [(PtMe$_3$I)$_2$(MeTeCH$_2$TeMe)] has also been characterised. The two potentially tridentate ligands MeC(CH$_2$SeMe)$_3$ and [16]aneSe$_4$ were investigated to promote κ^3 coordination. The tripodal ligand showed no evidence for κ^3 coordination, but [PtMe$_3$(\kappa^3-[16]aneSe$_4$)]PF$_6$ was isolated and characterised, which is the first cationic trialkyl Pt(IV) complex with a macrocyclic selenoether ligand, and an unusual example of κ^3-[16]aneSe$_4$ coordination.
Figure 2.20: Summary of Pt(IV) complexes investigated in this chapter.

The possibility of these new complexes exhibiting redox behaviour was examined, with reductive elimination of ethene being observed from the Pt(IV) complexes \([\text{PtMe}_3\text{I}(\text{[8]aneSe}_2)]\) and \([\text{PtMe}_3(\text{[16]aneSe}_4)][\text{PF}_6]\), yielding Pt(II) complexes. No such behaviour was observed for \([\text{PtMe}_3\text{I}(\text{o-}6\text{H}_4\text{H}_2\text{Me})_2])\) \((\text{E} = \text{Se, Te})\). Oxidative addition of MeI to the Pt(II) complexes \([\text{PtMe}_3\text{L}]\) \((\text{L} = \text{MeSe(CH}_2)_3\text{SeMe or o-}6\text{H}_4\text{H}_2\text{Me(HSeMe)}_2\)) was shown to occur cleanly to produce the Pt(IV) complexes \([\text{PtMe}_3\text{IL}]\).
2.9 – Experimental

The ligands MeE(CH₂)₃Me (E = Se, n = 1, 2, 3;* E = Te, n = 1, 2,*), o-C₆H₄(CH₂EMe)₂ (E = Se,*₆ Te¹), MeC(CH₂SeMe)₃,*²⁴ [8]aneSe₂²⁶ and [16]aneSeI²⁶ and the complexes [PtCl₂(SMe₂)₂]²⁹ and [PtMe₂(SMe₂)₂]²⁹ were prepared by literature preps.

[PtMe₂(MeSe(CH₂)₃SeMe)]: A 1.6 M solution of MeLi (0.2 cm³, 0.32 mmol) in Et₂O was slowly added to an ice-cold suspension of [PtCl₂(SMe₂)₂] (0.050 g, 0.128 mmol) in 20 cm³ dry Et₂O. After 5 min a further 0.1 cm³ MeLi (1.6 M in Et₂O, 0.16 mmol) were added and the solution was warmed to room temperature. After ca. 10 min the yellow colour disappeared and a white precipitate formed. At this stage 10 cm³ of H₂O and 1 equiv. of MeSe(CH₂)₂SeMe (0.028 g, 0.128 mmol) were added. The mixture was stirred for 2.5 h giving a cream precipitate which was filtered off and washed with Et₂O. The yellow solid was then dissolved in CH₂Cl₂ (10 cm³), filtered and the solvent was removed in vacuo. Yield 0.023 g (41%). C₇H₁₅PtSe₂ (441.2): calcd. C 16.3, H 3.7; found C 15.9, H 3.3. Electrospray MS (MeCN): found m/z = 468, 453, 426, 411; calcd. for [¹⁹⁵PtMe₂(Me₆Se(CH₂)₃SeMe)(MeCN)]⁺ m/z = 469.¹⁹⁵PtMe₂(Me₆Se(CH₂)₃SeMe)(MeCN)]⁺ 454, [¹⁹⁵PtMe₂(Me₆Se(CH₂)₃SeMe)]⁺ 428, [¹⁹⁵PtMe₂(Me₆Se(CH₂)₃SeMe)]⁺ 413.¹³C¹[H] NMR (CDCl₃, 223 K): δ = 0.72 (s, PtMe, 2JₚH = 84 Hz), 0.77 (s, PtMe, 3JₚH = 85 Hz), 2.16 (s, SeMe, 3JₚH = 22 Hz), 2.36 (s, SeMe, 3JₚH = 21 Hz), 2.55 – 3.25 (m, 4 H, SeCH₂).¹³C¹[H] NMR (CDCl₃, 223 K): δ = -12.8 (PtMe, 4JₚC = 760 Hz), -12.6 (PtMe, 735 Hz), 9.9, 11.1 (SeMe), 29.2, 29.5 (SeCH₂).³⁷Se¹[H] NMR (CDCl₃, 223 K): δ = 247.9 (major form, 4JₚSe = 457 Hz), 250.1 (minor form, 4JₚSe = 438 Hz).¹⁵⁵Pt NMR (CDCl₃, 223 K): δ = -4383 (major), -4395 (minor).

[PtMe₂(MeSe(CH₂)₃SeMe)]: Method as above using MeSe(CH₂)₂SeMe. Beige solid. Yield 64%. C₇H₁₅PtSe₂ (455.2): calcd. C 18.5, H 4.0; found C 18.6, H 4.2. Electrospray MS (MeCN): found m/z = 482, 466, 425; calcd. for [¹⁹⁵PtMe₂(Me₆Se(CH₂)₃SeMe)(MeCN)]⁺ m/z = 483, [¹⁹⁵PtMe₂(Me₆Se(CH₂)₃SeMe)(MeCN)]⁺ 468, [¹⁹⁵PtMe₂(Me₆Se(CH₂)₃SeMe)]⁺ 427.¹³C¹[H] NMR (CDCl₃, 223 K): δ = 0.51 (s, PtMe, 2JₚH = 84 Hz), 0.55 (s, PtMe, 3JₚH = 85 Hz), 2.20 (br, 2 H, CH₂CH₂CH₂), 2.31, 2.33 (s, 6 H, SeMe), 2.83, 2.99 (m, 4 H, SeCH₂).¹³C¹[H] NMR (CDCl₃, 223 K): δ = -8.9 (PtMe, 4JₚC = 749 Hz), -8.7 (PtMe, 748 Hz), 10.5, 10.9 (SeMe), 26.0, 26.7, 27.6 (CH₂).³⁷Se¹[H] NMR (CDCl₃, 223 K): δ = 114.0 (4JₚSe = 427 Hz), 102.1 (429 Hz).¹⁵⁵Pt NMR (CDCl₃, 223 K): δ = -4247 (major), -4309 (minor).

[PtMe₂(o-C₆H₄(CH₂SeMe)₂)]: Method as above using o-C₆H₄(CH₂SeMe)₂. Cream solid. Yield 56%. C₁₂H₁₆PtSe₂ (517.3): calcd. C 27.9, H 3.9; found C 28.6, H 3.7. Electrospray MS (MeCN): found m/z = 506; calcd. for [¹⁹⁵PtMe₂(o-C₆H₄(CH₂SeMe)₂)]⁺ m/z = 504.¹³C¹[H] NMR (CDCl₃, 298 K): δ = 0.34 (s, 6 H, PtMe, 2JₚH = 83 Hz, 3JₚC = 14 Hz), 2.3 (s, 6 H, SeMe, 3JₚH = 23
Hz, $^{2}J_{\text{SeH}} = 9$ Hz), 4.3 (br, 4 H, SeCH$_2$), 7.0 – 7.2 (br m, 4 H, o-C$_6$H$_4$); (213 K): $\delta = 0.23$ (s, PtMe, $^{2}J_{\text{PH}} \sim 80$ Hz), 0.25 (s, PtMe, ~ 80 Hz), 1.89, 2.21, 2.44 (s, SeMe), 3.8 - 5.0 (m, SeCH$_2$), 6.9 - 7.3 (m, 4 H, o-C$_6$H$_4$). 13C $[\text{^1H}]$ NMR (CDCl$_3$, 298 K): $\delta = -8.6$ (PtMe, $^{1}J_{\text{PC}} = 779$ Hz), 11.0 (SeMe), 29.8 (SeCH$_2$), 126.0 – 134.5 (o-C$_6$H$_4$); (193 K): $\delta = -8.8$ (PtMe, $^{1}J_{\text{PC}} = 760$ Hz), -8.3 (PtMe, 751 Hz), -7.4 (PtMe, 763 Hz), 10.3, 11.1, 13.2 (SeMe), 27.8, 28.6, 31.3 (SeCH$_2$), 127.4 – 134.6 (o-C$_6$H$_4$). 77Se $[\text{^1H}]$ NMR (CDCl$_3$, 298 K): $\delta = 171.6$ ($^{1}J_{\text{PSe}} = 520$ Hz); (193 K): $\delta = 169.1$ (526 Hz), 160.6 (492 Hz), 155.9 (438 Hz).195Pt NMR (CDCl$_3$, 298 K): $\delta = -4275$; (193 K): $\delta = -4308$, -4316.

$[\text{PtMe}_2(\text{[8]aneSe}_2)]$: Method as above using [8]aneSe$_2$. Beige solid. Yield 64%. C$_8$H$_{12}$PtSe$_2$ (467.2): calcd. C 20.6, H 3.9; found C 21.3, H 4.2. Electrospray MS (MeCN): found 494, 453; calcd. for $[^{195}\text{PtMe}([\text{8}]{\text{ane}}^{80}\text{Se}_2)(\text{MeCN})]^{+}$ m/z = 495, $[^{195}\text{PtMe}([\text{8}]{\text{ane}}^{80}\text{Se}_2)]^{+}$ 454. 1H NMR (300 MHz, CDCl$_3$, 298 K): $\delta = 0.5$ (s, $^{2}J_{\text{PH}} = 82$ Hz, 6 H, PtMe), 2.2 (m, 4 H, CH$_2$CH$_2$CH$_2$), 2.8 (m, 8 H, SeCH$_2$) ppm. 13C $[\text{^1H}]$ NMR (CDCl$_3$, 298 K): $\delta = -7.6$ ($^{1}J_{\text{PC}} = 794$ Hz, 2 C, PtMe), 24.0 (4 C, SeCH$_2$), 27.3 (2 C, CH$_2$CH$_2$CH$_2$) ppm. 77Se $[\text{^1H}]$ NMR (CDCl$_3$, 298 K): $\delta = 140.8$ ($^{1}J_{\text{PSe}} = 323$ Hz) ppm. 195Pt NMR (CH$_2$Cl$_2$/CDCl$_3$, 298 K): $\delta = -4318$ ppm.

$[\text{PtMe}_4(\text{[16]aneSe}_4)]$: Method as above using [16]aneSe$_4$. Yellow solid. Yield 61%. C$_{14}$H$_{30}$PtSe$_4$ (709.3): calcd. C 23.7, H 4.3; found C 23.1, H 4.2. Electrospray MS (MeCN): found m/z = 695; calcd. for $[^{195}\text{PtMe}([\text{16}]{\text{ane}}^{80}\text{Se}_4)]^{+}$ m/z = 700. 1H NMR (300 MHz, D$_2$-dmso, 298 K): $\delta = 0.48$ (s, $^{2}J_{\text{PH}} = 81$ Hz, 6 H, PtMe), 1.92 (m, 8 H, CH$_2$CH$_2$CH$_2$) 2.61 (t, 16 H, SeCH$_2$) ppm.

K$_2$[PtCl$_6$]: H$_2$[PtCl$_6$].6H$_2$O (5 g, 9.65 mmol) was dissolved in H$_2$O (15 cm3). KOH (1.09 g, 20 mmol) was added and the reaction stirred overnight. The yellow solid was filtered off and dried in vacuo. Yield: 3.32 g, 70%.

$[\text{PtMe}_3]$:32 Magnesium turnings (1.10 g, 45.2 mmol) in diethyl ether (20 cm3) were activated with 1,2-dibromoethane and iodine. Methyl iodide (5.0 cm3, 80 mmol) was added dropwise over 20 minutes. The resulting black suspension was stirred until all the magnesium was dissolved. The mixture was allowed to settle, filtered under N$_2$ into a dropping funnel and added slowly to an ice-cooled solution of K$_2$[PtCl$_6$] (2.0 g, 4.12 mmol) in diethyl ether (10 cm3) and benzene (40 cm3). After addition, the yellow mixture was allowed to warm to room temperature and stirred overnight. The white salts were then allowed to settle, and filtered off under N$_2$. The nearly colourless filtrate was cooled to 0°C, and ice cold acetone (5 cm3) added slowly dropwise. The dark orange mixture with black solids was opened to the air and ice cold water (25 cm3) was added, followed by 10% HCl (30 cm3). The dark solids were filtered off, and the filtrate separated. The aqueous layer was extracted with benzene (3 x 30 cm3), and the extracts combined with the organic layer. The orange
solution was dried with MgSO₄, and then taken to dryness on a rotary evaporator. The light brown solid was recrystallised from dichloromethane and acetone. Yield: 0.4106 g (27%). ¹H NMR (CDCl₃): 1.85 (s, 2J₁₉= 78.2 Hz).

[PtMe₃(o-CH₃CH₂SeMe)]: [PtMe₃] (0.0734 g, 0.2 mmol) was dissolved in hot chloroform (10 cm³). o-CH₃CH₂SeMe (0.0584 g, 0.2 mmol) in chloroform (10 cm³) was added and the mixture stirred under nitrogen for 20 hours. The solvent was reduced in vacuo, and the cream solid was precipitated by addition of diethyl ether. Yield 0.100 g (75%). C₁₃H₂₁I₄Se₂O₂: calcd. C 25.9, H 4.0, found C 26.3, H 3.8. Electrospray MS (MeCN): found 533; calculated for [¹⁹PtMe₃(o-CH₃CH₂SeMe)]⁺ 534. ¹H NMR (CDCl₃, 298 K): broad; (223 K): δ = 0.90 (s, PtMe, 2J₁₉ = 79 Hz), 1.12 (s, PtMe, 70 Hz), 1.20 (s, PtMe, 70 Hz), 1.22 (s, PtMe, 70 Hz), 1.36 (s, PtMe, 68 Hz), 2.3 (sh), 2.55, 2.6 (sh, 6 H, SeMe), 3.9 – 5.2 (m, 4 H, CH₂), 7.05 – 7.45 (m, 4 H, o-C₇H₈). ¹³C{¹H} NMR (CDCl₃, 298 K): broad; (213 K): δ = 1.8 (PtMe, 1J₂₉ = 628 Hz), 2.6 (PtMe, 622 Hz), 5.2 (PtMe, 616 Hz), 5.85 (PtMe, 624 Hz), 6.2 (PtMe, 660 Hz), 13.7, 14.5, 14.69, 14.72 (SeMe), 27.7, 28.6, 34.3 (sh), 34.6 (SeCH₂), 126.8 - 139.9 (o-C₇H₈). ⁷⁷Se{¹H} NMR (CDCl₃, 298 K): not observed; (213 K): δ = 114.0 (¹J₁₉= 289 Hz); 98.7 (280 Hz), 97.8 (312 Hz), 95.5 (286 Hz) (minor isomer). ¹⁹⁵Pt NMR (CDCl₃, 298 K): not observed; (213 K): δ = -3382, -3468 (the minor isomer is not observed).

[PtMe₃(κ²-MeC(CH₃SeMe)₃)]: Method as above using MeC(CH₃SeMe)₃. Yellow solid. Yield 63%. C₁₃H₂₁I₄PtSe₂ (718.2): calcd. C 18.4, H 3.8, found C 18.7, H 3.5. Electrospray MS (MeCN): found m/z = 591, 561; calcd. for [¹⁹⁵PtMe₃(MeC(CH₃SeMe)₃)]⁺ m/z = 594; [¹⁹⁵PtMe₃(MeC(CH₃SeMe)₃)]⁺ 564. ¹H NMR (400 MHz, CDCl₃, 298 K): very broad; (223 K): δ = 0.9 – 1.6 (overlapping resonances, PtMe, CMe), 2.0 – 3.7 (overlapping resonances, SeMe and SeCH₂). ¹³C{¹H} NMR (CDCl₃, 223 K): δ = 0.35 – 1.06 (s, PtMe trans I), 5.9 – 6.8 (s, PtMe trans Se), 7.8 – 12.4 (SeMe), 25.2 – 25.5 (MeC), 31.5 – 42.5 (SeCH₂). ⁷⁷Se{¹H} NMR (CDCl₃, 298 K): no spectrum; (223 K): δ = 53.0 (¹J₁₉ = 252 Hz), 51.6 (160 Hz), 49.3 (258 Hz), 38.5 (252 Hz), 37.4 (162 Hz), 37.3 (256 Hz), 35.1, 33.0, 29.0, 27.3 (uncoordinated Se). ⁵⁹ᵐPt NMR (CDCl₃, 223 K): δ = -3446, -3543, -3550.

[PtMe₃I(8]aneSe₂)]: Method as above using [8]aneSe₂. Cream solid. Yield 45%. C₈H₂₁I₄PtSe₂ (609.2): calcd. C 17.7, H 3.4; found C 17.8, H 3.3. Electrospray MS (MeCN): found 494, 483, 453; calcd. for [¹⁹⁵PtMe₃(8]ane²Se₂(MeCN)]⁺ 495, [¹⁹⁵PtMe₃(8]ane²Se₂)]⁺ 484, [¹⁹⁵PtMe₃(8]ane²Se₂)]⁺ 454. ¹H NMR (300 MHz, CDCl₃, 298 K): δ = 1.0 (s, 2J₁₉ = 71.8 Hz, 3 H, PtMe trans I), 1.6 (s, 2J₁₉ = 65.2 Hz, 6 H, PtMe trans Se), 2.1 – 3.4 (m, 12 H, CH₂) ppm. ¹³C{¹H} NMR (CDCl₃): δ = 3.5 (¹J₁₉ = 612 Hz, 1 C, PtMe trans I), 3.9 (¹J₁₉ = 674 Hz, 2 C, PtMe trans
Se), 20.8 (2 C), 21.4 (2 C, SeCH₂), 22.5 (1 C), 26.8 (1 C, CH₂CH₂) ppm. ^77Se[^1H] NMR (CDCl₃, 298 K): δ = 65.3 (1Jₚₜₑ = 244 Hz) ppm. ^195Pt NMR (CDCl₃): δ = −3589 ppm.

[PtMe₃(κ²-[16]aneSe₄)]: Method as above, but using [16]aneSe₄. Cream solid. Yield 59%. C₁₃H₃₉IPtSe₄, CHCl₃ (970.6): calcd. C 19.8, H 3.5; found C 19.4, H 3.8. Electrospray MS (MeCN): found 724; calcd. for [^195PtMe₃([16]ane^{80}Se₄)]⁺ 728. ^1H NMR (300 MHz, CDCl₃, 298 K): δ = 1.15 (s, 2Jₚₚₚ₂ = 71.6 Hz, 3 H, PtMe trans I), 1.55 (s, 6 H, PtMe trans Se, 2Jₚₚₚ₂ = 66.5 Hz), 2.5–3.1 (m, 24 H, CH₂) ppm. ^13C[^1H] NMR (CDCl₃, 243 K): δ = 3.7 (1Jₚₚₚ₂ = 619 Hz, 2 C, PtMe trans Se), 4.35 (1 C, PtMe trans I, 654 Hz), 22.1 (1 C), 22.7 (2 C, SeCH₂), 23.0 (2 C), 25.7 (2 C), 26.3 (2 C), 29.3 (2 C), 29.9 (1 C, CH₂) ppm. ^77Se[^1H] NMR (CDCl₃, 243 K): δ = 116.6 (1Jₚₚₑ = 266 Hz, 2 Se), 119.5 (2 Se) ppm. ^195Pt NMR (CDCl₃, 243 K): δ = −3616 ppm.

[PtMe₃(κ²-[16]aneSe₄)]PF₆; TIPF₆ (0.063 g, 0.18 mmol) was added to a solution of [PtMe₃I] (0.06 g, 0.163 mmol) and [16]aneSe₄ (0.079 g, 0.163 mmol) in CHCl₃ (8 cm³). The reaction mixture was refluxed under N₂ for 2.5 h to give a fine yellow precipitate (TlI) and an almost colourless solution which was separated via cannula. After concentrating the solution in vacuo to ca. 2 cm³, Et₂O was added to give a white solid which was collected by filtration, washed with Et₂O and dried in vacuo. Yield 0.049 g, 35%. C₁₃H₃₉IPtSe₄ (869.3): calcd. C 20.7, H 3.8, found C 21.3, H 3.7. Electrospray MS (MeCN): found 725, 695; calcd. for [^195PtMe₃([16]ane^{80}Se₄)]⁺ 728, [^195PtMe([16]ane^{80}Se₄)]⁺ 698. ^1H NMR (300 MHz, CDCl₃, 298 K): δ = 1.06 (s, 2Jₚₚₚ₂ = 61 Hz, 3 H, PtMe), 1.13 (s, 2Jₚₚₚ₂ = 66Hz, 6 H, PtMe), 1.8–3.3 (br. m, 24 H, CH₂) ppm. ^13C[^1H] NMR (CH₂Cl₂/CDCl₃, 298 K): very broad (223 K): δ = 2.4 (1Jₚₚₚ₂ = 612 Hz, 1 C, PtMe), 3.0 (1Jₚₚₚ₂ = 647 Hz, 2 C, PtMe), 22.3–29.1 (CH₂) ppm. ^77Se[^1H] NMR (CDCl₃, 298 K): no spectrum; (223 K): δ = 138 (1 Se), 70 (1Jₚₚₑ = 249 Hz, 3 Se) ppm. ^195Pt NMR (CH₂Cl₂/CDCl₃, 298 K): δ = −3648 ppm. IR (Nujol): v¹ = 840 [v(PF₆⁻)], 557 [δ(PF₆⁻)] cm⁻¹.

[PtMe₃(o-C₅H₄(CH₂TeMe₂)]: Method as above using o-C₅H₄(CH₂TeMe₂). Orange solid. Yield 60%. C₁₅H₁₃IPtTe₂½Et₂O (793.6): calcd. C 22.7, H 3.6, found C 23.1, H 3.5. Electrospray MS (MeCN): found 629; calculated for [^195PtMe₃(o-C₅H₄(CH₂^{180}TeMe₂)]⁺ 634. ^1H NMR (CDCl₃, 298 K): broad; (248 K): δ 0.85 – 1.6 PtMe, 2.1 – 3.1 TeMe, 3.9 – 5.0 (m, 4H) CH₂, 8.1 – 6.9 (m, 4H) o-C₅H₄. ^13C[^1H] NMR (CDCl₃, 298 K): broad; (243 K): δ 7.3, 6.8, 4.6, 4.3, 3.9, 2.9, 1.8 (PtMe), -5.7, -6.7, -12.4, -12.45 (TeMe), 16.9, 16.7, 12.4, 10.4 (TeCH₂), 135.3 – 126.5 (o-C₅H₄). ^125Te[^1H] NMR (CDCl₃, 243 K): δ 189.5, 1Jₚₚₑ = 602 Hz; 159.9, 1Jₚₚₑ = 618 Hz, 114.5, 1Jₚₚₑ = 638 Hz, 110.8, 1Jₚₚₑ = 537 Hz. ^195Pt NMR (CDCl₃, 298 K): not observed; (223 K): δ -3968, -4022, -4119.
[(PtMe₃I₂(MeTeCH₂TeMe)]: [PtMe₃I] (0.146 g, 0.4 mmol) was dissolved in hot chloroform (10 cm³). MeTeCH₂TeMe (0.06 g, 0.2 mmol) in chloroform (10 cm³) was added and the reaction stirred at RT for 20 hours. Solvent was removed in vacuo and the dark brown solid recrystallised from CH₂Cl₂/hexane. Yield 0.143 g (68%). ¹H NMR (400 MHz, CDCl₃, 298 K): broad; (248 K): δ = 1.06 (s, PtMe, 2JPtH = 76 Hz), 1.14 (s, PtMe, 72 Hz), 1.16 (s, PtMe, 74 Hz), 1.22 (s, PtMe, 76 Hz), 2.06 (s, PtMe, 68 Hz), 2.07 (s, PtMe, 68 Hz), 2.01, 2.18 (s, TeMe), 4.46, 4.55 (m, TeCH₂). ¹³C{¹H} NMR (CDCl₃, 298 K): broad; (243 K): δ = -18.7 (major form, TeCH₂), -16.1 (minor form, TeCH₂), -8.5 (major form, TeMe), -7.95 (minor form, TeMe), 6.55 (PtMe, 1JPtC = 670 Hz), 7.0 (PtMe, 678 Hz), 7.7 (PtMe, 600 Hz), 7.8 (PtMe, 660 Hz), 9.1 (PtMe, 607 Hz). ¹²⁵Te{¹H} NMR (CDCl₃, 243 K): δ = 173.2 (1JPtTe = 713 Hz); 171.1 (605 Hz). ¹⁹⁵Pt NMR (CDCl₃, 223 K): δ = -3430 (major), -3451 (minor).
2.10 – X-Ray Crystallography

Details of the crystallographic data collection and refinement parameters are given in Table 2.6. Yellow/orange single crystals of [PtMe$_3$I(o-C$_6$H$_4$(CH$_2$SeMe)$_2$)] were obtained by slow evaporation of a solution of the complex in CH$_2$Cl$_2$/hexane. Structure solution and refinement were routine39,40.

Selected bond lengths and angles for [PtMe$_3$I(o-C$_6$H$_4$(CH$_2$SeMe)$_2$)] are presented in Table 2.3.

Table 2.6: Crystallographic data collection and refinement parameters. $R1 = \Sigma ||F_o|| - |F_c||/\Sigma |F_o|; wR_2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4]^{1/2}$

<table>
<thead>
<tr>
<th>Complex</th>
<th>[PtMe$_3$I(o-C$_6$H$_4$(CH$_2$SeMe)$_2$)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${13}$H${23}$IPtSe$_2$</td>
</tr>
<tr>
<td>M</td>
<td>659.22</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>$C2/c$</td>
</tr>
<tr>
<td>a/\AA</td>
<td>13.3002(7)</td>
</tr>
<tr>
<td>b/\AA</td>
<td>11.6116(7)</td>
</tr>
<tr>
<td>c/\AA</td>
<td>22.5391(12)</td>
</tr>
<tr>
<td>α/\degree</td>
<td>90</td>
</tr>
<tr>
<td>β/\degree</td>
<td>102.788(2)</td>
</tr>
<tr>
<td>γ/\degree</td>
<td>90</td>
</tr>
<tr>
<td>U/\AA^3</td>
<td>3394.5(3)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>μ(Mo-Kα/ mm$^{-1}$</td>
<td>14.356</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0224</td>
</tr>
<tr>
<td>Total no. reflns.</td>
<td>10840</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>3861</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>159</td>
</tr>
<tr>
<td>$R1 [I_o > 2\sigma(I_o)]$</td>
<td>0.0196</td>
</tr>
<tr>
<td>$R1$ [all data]</td>
<td>0.0215</td>
</tr>
<tr>
<td>$wR_2 [I_o > 2\sigma(I_o)]$</td>
<td>0.0443</td>
</tr>
<tr>
<td>wR_2 [all data]</td>
<td>0.0451</td>
</tr>
</tbody>
</table>
2.11 – References

39. Sheldrick, G. M. *SHELXS-97*, program for crystal structure solution, University of Göttingen, Germany, **1997**.

40. Sheldrick, G. M. *SHELXS-97*, program for crystal structure refinement, University of Göttingen, Germany, **1997**.
Chapter 3: Selenium-Rich Selenium/Oxygen Macrocycles

3.1 – Mixed Chalcogenoether Macrocycles

A small number of mixed donor O/Se macrocycles have been reported in the literature (see Figure 3.1 for some examples). There are relatively fewer known O/Se macrocycles than O/S macrocycles, and these macrocycles generally have greater or equal numbers of O atoms to Se atoms. A number of different routes have been published, including NaBH₄ reduction of a dibromide and a diselenocyanate. For example, reaction of Br([CH₂]₂O)ₙ(CH₂)₂Br (n = 1, 2) with NCSe([CH₂]₂O)ₘ(CH₂)₂SeCN (m = 1, 2) which produces [12]aneO₂Se₂, [15]aneO₃Se₂ or [18]aneO₄Se₂. Another route is to use a selenolate precursors such as o-C₆H₄(SeK)₂, which can be reacted in refluxing thf with o-C₆H₄(Se{(CH₂)₂O}ₚ{CH₂})₂Cl (p = 1, 2, 3) to produce the benzyl-alkyl-backbone macrocycles shown in Figure 3.1. Yields of these macrocycles can be improved by generating the selenolate by reaction of o-C₆H₄(SeH)₂ with Cs₂CO₃ in dmf in situ before addition of the dichloroselenoether.

Figure 3.1: Some examples of mixed donor O/Se macrocycles.

The choice of precursor has been shown to be crucial, as can be illustrated by the preparations of [9]aneO₂Se and [12]aneO₂Se₂ shown in Figure 3.2. When the dibromoether Br(CH₂)₂O(CH₂)₂O(CH₂)₂Br and NCSe(CH₂)₂SeCN are used as the precursors, ring contraction occurs via elimination of one Se, most probably by the Na template intermediate shown. However, when the functional groups are reversed, and 1,2-dibromoethane is reacted with NCSe(CH₂)₂O(CH₂)₂O(CH₂)₂SeCN, no such elimination occurs, and the four donor macrocycle [12]aneO₂Se₂ is formed.
Figure 3.2: Scheme for the production of \[9\]aneO\(_2\)Se and \[12\]aneO\(_2\)Se\(_2\).\(^5\)

The mixed O/Te macrocycle, \[18\]aneO\(_4\)Te\(_2\) (Figure 3.3) is produced by the reaction of Na\(_2\)Te and Cl(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)Cl in liquid ammonia at -78°C. After the reaction mixture has warmed to room temperature, it is hydrolysed and extracted with CH\(_2\)Cl\(_2\), which is then removed \textit{in vacuo} to produce an orange solid. Recrystallisation of this crude material with CH\(_2\)Cl\(_2\) and diethyl ether produces \[18\]aneO\(_4\)Te\(_2\) as a yellow, slightly air sensitive solid. If the crude material is not recrystallised, but instead is passed down a silica column, elution with hexane/ethyl acetate separates \[9\]aneO\(_2\)Te as an air-sensitive yellow solid, but \[18\]aneO\(_4\)Te\(_2\) does not elute and is lost on the column.\(^7\) An analogous reaction using Na\(_2\)Se gives evidence of the production of a small amount of \[9\]aneO\(_2\)Se and \[18\]aneO\(_4\)Se\(_2\), but the yield is poor and most of the dichloroether precursor is recovered unreacted. Even raising the temperature to -33°C for the addition results in substantial amounts of unreacted Cl(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)Cl.\(^7\) In an alternate method, a dilute solution of Cl(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)O(CH\(_2\))\(_2\)Cl in EtOH was added slowly dropwise to a dilute solution of Na\(_2\)Se in EtOH, which allowed \[18\]aneO\(_4\)Se\(_2\) to be collected by recrystallisation (~ 8 % yield), and a small amount of \[9\]aneO\(_2\)Se to be distilled from the residue.\(^7\)
There are only two mixed donor S/Se macrocycles in the literature. One is a cyclopane containing two Se donors and two S donors from thiophene, made by NaBH₄ reduction of 2,5-bis(selenocyanatomethyl)thiophene and 2,5-bis(bromomethyl)thiophene. The other is [16]aneS₂Se₂ which is produced by the dropwise addition of separate solutions in dmf of Br(CH₂)Br and HS(CH₂)₃Se(CH₂)₃Se(CH₂)₃SH to a 60°C solution of Cs₂CO₃ in dmf. [16]aneS₂Se₂ is obtained in 22 % yield, and is purified by column chromatography (eluent: hexane/ethyl acetate, 250:1.5).

Figure 3.3: Reaction scheme for the production of [9]aneO₂Te and [18]aneO₄Te₂.

Figure 3.4: Production scheme for [16]aneS₂Se₂. Inset: thiophene derived Se/S macrocycle.
There are four known S/Te macrocycles, which are shown in Figure 3.5. These are produced by reaction of Na₂Te with Cl(CH₂)ₙS(CH₂)ₘS(CH₂)ₙCl (n=m=2; n=3, m=2; n=m=3) in the case of the tridentate macrocycles, and Na₂Te with Cl(CH₂)ₙS(CH₂)₂S(CH₂)₂S(CH₂)ₙCl for the tetradentate.

![Figure 3.5: Mixed donor S/Te macrocycles.](image)

All these reactions took place in liquid ammonia, with production of [11]aneS₂Te, [12]aneS₂Te and [14]aneS₃Te occurring at -78°C and purification by means of column chromatography, while [9]aneS₂Te required the addition of the dichlorothioether to be undertaken at -45°C and was isolated by recrystallisation from CH₂Cl₂ and MeOH. Crystal structures have been published for [11]aneS₂Te and [12]aneS₂Te (Figure 3.6).

![Figure 3.6: Crystal structures of [11]aneS₂Te and [12]aneS₂Te. Ellipsoids shown at 40% probability.](image)
Both the O/Te macrocycles and S/Te macrocycles are unusual in terms of telluroether chemistry in that they show examples of stable C\textsubscript{2} backbones between Te and a second donor atom. Where the second donor atom is another Te, it has been shown that the elimination of ethene is facile (see chapters 1 and 4). The stronger O-C and S-C bonds, and the absence of a second Te to form a ditelluride is sufficient to overcome the possibility of elimination.7

3.2 – Aims
The aim of this chapter is to investigate routes to mixed donor macrocycles of the type O\textsubscript{x}Se\textsubscript{2x}, and develop multi-gram yielding routes. A variety of backbones will be investigated. Complexation chemistry with some common transition metals will also be investigated.

3.3 – Production of O\textsubscript{x}Se\textsubscript{2x} Macrocycles
The first attempt at making O\textsubscript{x}Se\textsubscript{2x} macrocycles took α, α’-dиселеноцианато-о-ксилен and O(CH\textsubscript{2}CH\textsubscript{2}Br\textsubscript{2} as starting materials. It was decided to use these precursors as O(CH\textsubscript{2}CH\textsubscript{2}Br\textsubscript{2} is commercially available, and o-C\textsubscript{6}H\textsubscript{4}(CH\textsubscript{2}SeCN)\textsubscript{2} has been made and used before in our group in Southampton. It was also thought that the xylyl backbone to the diselenocyanate precursor should help promote cyclisation over polymerisation. o-C\textsubscript{6}H\textsubscript{4}(CH\textsubscript{2}SeCN)\textsubscript{2} 4 was reacted with sodium metal in liquid NH\textsubscript{3} at –78°C to generate the diselenolate anion (Figure 3.7). A solution of O(CH\textsubscript{2}CH\textsubscript{2}Br\textsubscript{2} in thf was added dropwise over several hours whilst the reaction mixture was maintained at –40°C in a cardice/acetone bath. Analysis of the crude material obtained after work-up by NMR spectroscopy showed negligible amounts of cyclised species and significant amounts of unreacted dibromoether.

This is similar to the production of [9]aneO\textsubscript{2}Se and [18]aneO\textsubscript{4}Se\textsubscript{2} which saw low reactivity between the selenolate anion and dichloroether,7 however it was hoped that the use of the dibromoether would make the reaction more favourable. Previous work in this group has led to the understanding that Se– displaces Br– more readily than Cl–, so to observe even worse reaction rates here was disappointing. The ether O atom may have a deactivating effect on the C atoms α to the Br atoms. The xylyl backbone to the diselenocyanate means that elimination reactions similar to those seen in the production of [12]aneO\textsubscript{2}Se\textsubscript{2} (Figure 3.2) are very unlikely.5
To counteract this possible deactivation it was decided to reverse the precursors, namely to try reacting o-C$_6$H$_4$(CH$_2$Br)$_2$ with O(CH$_2$CH$_2$SeCN)$_2$. To this end O(CH$_2$CH$_2$Br)$_2$ was added dropwise to a solution of KSeCN in acetone and stirred for ~12 hours. KBr was removed by filtration, and the acetone removed in vacuo. Dissolution in CH$_2$Cl$_2$ was required to allow residual KBr to be filtered off. O(CH$_2$CH$_2$SeCN)$_2$ was thus obtained in good yield as a yellow oil. Repeat preparations of this precursor showed that if left for longer periods of time stirring in acetone (e.g. two or three days), decompostition started to occur. It is vital that the solvent removal be effected promptly to maximise the yield. O(CH$_2$CH$_2$SeCN)$_2$ was characterised by 1H, 13C{1H}, and 77Se NMR, and by EIMS.

![Figure 3.8](image)

Figure 3.8: 77Se{1H} NMR spectrum of O(CH$_2$CH$_2$SeCN)$_2$ recorded in CDCl$_3$.

O(CH$_2$CH$_2$SeCN)$_2$ was reacted with sodium metal in liquid NH$_3$ at −78°C to give a light yellow solution. One molar equivalent of $α$, $α'$-dibromo-o-xylene was added dropwise as a solution in thf over a period of 3 hours, whilst the reaction was maintained at ~ −50°C. Upon complete addition, the reaction mixture was allowed to warm slowly to RT, and left overnight under flow of N$_2$ to allow the NH$_3$ to boil off. Following hydrolysis and extraction with CH$_2$Cl$_2$, the combined organics were dried over MgSO$_4$ and the solvent removed in vacuo. This yielded a crude mixture of yellow oil and off-white waxy solid. Dissolution in minimum CH$_2$Cl$_2$ followed by addition of hexane allowed recrystallisation of the solid which was filtered off and dried in vacuo. This white crystalline solid was analysed by 1H, 13C{1H}, and 77Se NMR, and by EIMS.
Figure 3.9: Reaction scheme for production of O₂Se₂ₓ macrocycles via Na/NH₃(l) route.

⁷⁷Se NMR spectrum of the white solid in CDCl₃ showed a singlet at δ = 215 ppm (Figure 3.10). This clearly indicated a single selenium containing species. ¹H and ¹³C{¹H} NMR data were also consistent with the solid being a single species, with both aromatic and CH₂ linkages present. A singlet was observed in the ¹H NMR spectrum at 4.19 ppm which is consistent with a o-C₆H₄CH₂Se linkage (c.f. 4.05 ppm in o-C₆H₄(CH₂SeMe)₂).¹¹ ⁷⁷Se-H coupling was observed on the singlet and one triplet resonance in the ¹H NMR spectrum, and on two on the resonances in the ¹³C{¹H} NMR spectrum, confirming formation of the xylyl linkage and retention of the Se(CH₂)₂O linkages.

Figure 3.10: ⁷⁷Se{¹H} NMR spectrum of L² recorded in CDCl₃.
The NMR spectra were all consistent with the white solid being a single, macrocyclic species, but could not identify the size of this macrocycle. EIMS allowed it to be identified as the [2+2] addition product (see Figure 3.9), showing a peak cluster around \(m/z = 672 \) with the correct isotope pattern for \(L^2 \) (calculated for \(C_{24}H_{32}O_{28}Se_4 = 672 \)). A peak cluster consistent with fragmentation \textit{via} loss of one xylyl linkage (\(m/z = 565 \)) was also observed.

The remaining yellow oil was dissolved in a minimum of \(CH_2Cl_2 \) and adsorbed onto a silica column. A mixture of hexane/ethyl acetate (19:1) was used as eluent as this ratio has been shown to give good separation when used with selenoether macrocycles. A first fraction of yellow solid (after drying \textit{in vacuo}) was obtained, which was analysed by EIMS, \(^1H, ^{13}C\{^1H\} \) and \(^{77}Se\{^1H\} \) NMR spectroscopy. \(^1H \) and \(^{13}C\{^1H\} \) NMR spectroscopy showed it to be a similar, macrocyclic species, while its \(^{77}Se\{^1H\} \) NMR spectrum showed a single peak at 205 ppm, showing it to be a different species to the crystallised product, \(L^2 \). Again, EIMS allowed the size to be ascertained, showing this fraction to be the [1+1] cyclisation product, \(L^1 \) (see Figure 3.9). The small ring size of \(L^1 \) explains the why the proton resonances from the Se-\(CH_2-CH_2-O \) linkage appear as distorted triplets in the \(^1H \) NMR spectrum (Figure 3.11), as there must be ring strain at the O atom preventing these protons from exchanging as freely as they do in a non-constrained system.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{3.11}
\caption{\(^1H \) NMR spectrum of \(L^1 \) recorded in CDCl\textsubscript{3}.}
\end{figure}
Increasing the ethyl acetate content of the eluent (hexane:ethyl acetate 9:1) allowed a second fraction to be obtained, which was also demonstrated by NMR spectroscopy to be a macrocyclic species. Figure 3.12 below shows the 1H NMR spectrum of this fraction run in solution of CDCl$_3$. The peak at 4.0 ppm relates to the xylyl-Se linking CH$_2$, and clearly shows $^2J_{\text{SeH}}$ coupling of 5.6 Hz. This is roughly half the size of the coupling observed on o-C$_6$H$_4$(CH$_2$SeMe)$_2$ ($^2J_{\text{SeH}} = 13$ Hz).11 The sharply defined triplets for the SeCH$_2$CH$_2$O protons indicates a greater freedom of movement, and flexibility compared to L1, showing it to be from a larger ring. The peaks at 2.7 ppm also show $^2J_{\text{SeH}}$ coupling (7 Hz), showing these to be the protons on the carbon α to Se. The complex coupling of aromatic protons doesn’t allow distinct allocation of the resonances to individual protons, as with most of these ligands, however, there are two distinct sets, for the ortho and meta pairs.

![Figure 3.12: 1H NMR spectrum of L3 recorded in CDCl$_3$.](image)

The 77Se{1H} NMR spectrum shows a single peak at 213 ppm, which is similar to that of L2, but the APCI MS shows this to be the [3+3] product, L3 (Figure 3.9). As Figure 3.13 demonstrates, the APCI MS shows a peak cluster around 1027 m/z, which corresponds to L3·Na$^+$.

63
The proton NMR spectra for these three related macrocycles are similar, but not identical, as can be seen from Table 3.1. The small, constrained ring size of \(\text{L}^1 \) has a distinct effect both on shifts and coupling patterns, but the larger \(\text{L}^2 \) and \(\text{L}^3 \) also have slightly different chemical shifts, indicating ring size to have an effect beyond that of steric constraints.

![Figure 3.13: Top: APCI MS of \(\text{L}^1 \). Bottom: calculated isotope pattern for \(\text{C}_{30}\text{H}_{18}\text{O}_{3}\text{Se}_{6}\cdot\text{Na}^+ \).](image)

<table>
<thead>
<tr>
<th>Macrocycle</th>
<th>(\delta \text{ C}_4\text{H}_4) / ppm</th>
<th>(\delta \text{ o-C}_6\text{H}_4\text{CH}_2) / ppm</th>
<th>(\delta \text{ SeCH}_2\text{CH}_2\text{O}) / ppm</th>
<th>(\delta \text{ SeCH}_2\text{CH}_2\text{O}) / ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{L}^1)</td>
<td>7.1 – 7.2</td>
<td>4.5</td>
<td>2.9</td>
<td>4.0</td>
</tr>
<tr>
<td>(\text{L}^2)</td>
<td>7.2 – 7.4</td>
<td>4.2 (6.5)</td>
<td>2.8 (6.5)</td>
<td>3.7</td>
</tr>
<tr>
<td>(\text{L}^3)</td>
<td>7.1 – 7.3</td>
<td>4.0 (5.6)</td>
<td>2.7 (7)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Crystal structures of \(\text{L}^1 \) and \(\text{L}^2 \) were obtained from crystals grown by slow evaporation of a solution of the macrocycles in \(\text{CH}_2\text{Cl}_2 \)/hexane. \(\text{L}^1 \), shown in Figure 3.14, has the O lone pairs somewhat \(\text{endo} \) to the ring, whilst the Se lone pairs are \(\text{exo} \). The Se atoms are on opposite sides of
the plane of the xylyl ring, and \(<\text{C-Se-C}\) are more acute than \(<\text{C-O-C}\), which is rather obtuse (113.1°), reflecting the constrained nature of the ring. The only other small Se containing ring which has had a crystal structure published is \([12]\text{aneSe}_3\), which has \(\text{C}_3\) linkages between the Se atoms, and consequently has greater flexibility. This can be seen in the slightly shorter C-Se bond lengths, which are between 1.923(9) and 1.963(7) Å.\(^8\)

Figure 3.14: Crystal structure of L\(^1\). H atoms omitted for clarity.

Table 3.2: Selected bond lengths and angles for L\(^1\).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se1–C1</td>
<td>1.981 (3)</td>
<td>Se2–C9</td>
<td>1.972 (3)</td>
<td>C1–Se1–C12</td>
<td>98.42 (13)</td>
</tr>
<tr>
<td>Se1–C12</td>
<td>1.965 (3)</td>
<td>O1–C10</td>
<td>1.427 (4)</td>
<td>C8–Se2–C9</td>
<td>103.47 (13)</td>
</tr>
<tr>
<td>Se2–C8</td>
<td>1.981 (3)</td>
<td>O1–C11</td>
<td>1.416 (4)</td>
<td>C10–O1–C11</td>
<td>113.1 (2)</td>
</tr>
</tbody>
</table>

L\(^2\) (Figure 3.15) is a centrosymmetric molecule with the aromatic rings coplanar and the Se based lone pairs pointing \(\text{exo}\) to the ring. Table 3.3 shows selected bond lengths and angles. \(<\text{C-Se-C}\) are again considerably more acute (ca. 100°) compared to \(<\text{C-O-C}\) (ca. 110°) which is consistent with increased p-orbital character in the Se-C bonds. The nearest comparable structure is that of dibenzo-[26]\(\text{O}_2\text{Se}_4\) (Figure 3.16) which shows Se directly bonded to a benzene ring to have a much shorter bond length (~1.918 Å) than Se bound to an aliphatic carbon. The bond angles at Se are comparable to the new structure of L\(^2\) (97.1, 100.8°).\(^6\)
Figure 3.15: Crystal structure of \(L^2 \). H atoms omitted for clarity.

Table 3.3: Selected bond lengths and angles for \(L^2 \).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se1–C7</td>
<td>1.983 (8)</td>
<td>Se2–C12</td>
<td>1.972 (8)</td>
<td>C7–Se1–C8</td>
<td>101.0 (3)</td>
</tr>
<tr>
<td>Se1–C8</td>
<td>1.936 (8)</td>
<td>O1–C9</td>
<td>1.448 (9)</td>
<td>C11–Se2–C12</td>
<td>100.3 (4)</td>
</tr>
<tr>
<td>Se2–C11</td>
<td>1.957 (8)</td>
<td>O1–C10</td>
<td>1.421 (9)</td>
<td>C9–O1–C10</td>
<td>110.9 (5)</td>
</tr>
</tbody>
</table>

Figure 3.16: Crystal structure of dibenzo-[26]O\(_2\)Se\(_4\). Ellipsoids shown at 30 % probability.\(^6\)

The small ring macrocycle [9]aneO\(_2\)Se is produced using NaBH\(_4\) as a reducing agent,\(^5\) as are the Se\(_3\) and Se\(_2\)N macrocycles described in Chapter 4. In order to assess this different reducing agent as a method of producing O\(_x\)Se\(_{2x}\) macrocycles, \(o-C_6H_4(CH_2Br)_2 \) and O(CH\(_2\)CH\(_2\)SeCN)\(_2\) were dissolved separately in anhydrous thf/EtOH and added simultaneously dropwise to an excess of NaBH\(_4\) in anhydrous thf/EtOH over 4 hours. Once addition was complete, the reaction mixture
was left stirring under \(\text{N}_2 \) at room temperature for 3 days. White inorganic salts were then filtered off, and the solvent removed \textit{in vacuo} to produce a slightly oily cream residue. This was redissolved in toluene and filtered. Again, the solvent was removed \textit{in vacuo} to yield a cream solid. \(^1\text{H} \) and \(^{13}\text{C}\{^1\text{H}\} \) NMR spectroscopy showed clean production of macrocycle, and \(^{77}\text{Se}\{^1\text{H}\} \) NMR spectroscopy showed this white solid to be purely \(\text{L}^1 \). Altering the reaction conditions from the Na/NH\(_3\) method detailed above to this NaBH\(_4\) reduction changed the yield of \(\text{L}^1 \) from 2\% to 96\%.

In view of the success of the production of \(\text{L}^1\text{-L}^3 \), the versatility of these methods were tested for aliphatic macrocycles with Br(CH\(_2\))\(_3\)Br substituted for the xylyl precursor, \(\sigma\text{-C}_6\text{H}_4\text{(CH}_2\text{Br)}\text{)}\(_2\). Reaction of O(CH\(_2\text{CH}_2\text{SeCN)}\text{)}\(_2\) with sodium metal in liquid NH\(_3\) at \(-78^\circ\text{C}\) was followed by dropwise addition of Br(CH\(_2\))\(_3\)Br in thf, whilst maintaining the reaction at \(\text{c.a.} -40^\circ\text{C}\). The reaction was left to warm gradually to room temperature, hydrolysed with degassed water and extracted with CH\(_2\text{Cl}_2\). Upon drying, the resulting mixture was analysed by multinuclear NMR spectroscopy. The spectra obtained showed a complicated mixture of products, which included both cyclic and oligomeric species (as is expected from this method of reaction) but also showed compounds with vinyl selenoether functions. There was no sign of similar vinyl functional groups in the crude mixture obtained for \(\text{L}^1\text{-L}^3 \). The vinyl species are consistent with the SeCH\(_2\text{CH}_2\text{O}\) linkages being susceptible to C-O and/or C-Se scission. As was noted in Chapter 1, attempts to form compounds of the type RTeCH\(_2\text{CH}_2\text{TeR\) results in elimination of CH\(_2\text{=CH}_2\) and formation of \(\text{R}_2\text{Te}_2\). The tetratelluroether macrocycle \([14]\text{aneSe}_4\) also readily undergoes elimination of dimethylene linkages (see Chapter 4). Recent work in this group on arsine ligands has shown that the dimethylene linked O(CH\(_2\text{CH}_2\text{AsMe})\text{)}\(_2\) readily undergoes C-O and C-As scission but this is not observed for the Ph analogue.

Column chromatography was attempted, in case the oligomeric and vinyl functionalised constituents could be removed cleanly to leave samples of pure macrocycle, but this proved not to be the case. All fractions obtained from the column were still mixtures of products, and it could not be determined if the column itself were causing further decomposition, which has been observed for \([14]\text{aneSe}_4\).
An attempt was now made using NaBH$_4$ as the reducing agent. Br(CH$_2$)$_3$Br and O(CH$_2$CH$_2$SeCN)$_2$ were dissolved separately in anhydrous thf/EtOH. The solutions were added simultaneously dropwise to excess NaBH$_4$ in anhydrous thf/EtOH over a period of ca. 2 h. The reaction mixture was then left to stir under N$_2$ for 72 h at room temperature. The resulting cloudy solution was filtered to produce a clear pale yellow solution which was concentrated in vacuo to a cloudy oil, which was redissolved in toluene, filtered, and again dried in vacuo to produce yellow-brown oil. The 77Se1H NMR spectrum of this crude mixture showed two selenium environments ($\delta = 148.0, 158.3$ ppm). The crude oil was dissolved in a minimum volume of CH$_2$Cl$_2$, adsorbed onto a silica column and eluted with hexane/ethyl acetate (19:1). The first fraction (Rf = 0.85) from the column was dried in vacuo to give a light yellow oil. This oil was analysed by EIMS, and 1H, 13C1H and 77Se1H NMR spectroscopy.

13C1H NMR spectroscopy showed four peaks, as expected for the desired macrocyclic product, with three peaks between 20-30 ppm and the fourth much higher at 70.7 ppm as would be expected for C next to ether O. The 77Se1H NMR spectrum showed a single peak at 158.3, indicating that this oil was a single species of macrocycle. EIMS confirmed this macrocyle to be the [1+1] product, L4, showing a main peak cluster around 272 (C$_7$H$_{14}$O$_8^{80}$Se$_2 = 274) and a fragment corresponding to loss of O(CH$_2$CH$_2$)$_2$ around 202 (C$_3$H$_6^{80}$Se$_2 = 202$). The 1H NMR spectrum of L4 (Figure 3.18) clearly shows the expected four proton environments. The quintet at $\delta = 2.05$ ppm and triplet at 2.96 ppm are from the C$_3$ linkages between Se atoms, and show the expected binomial coupling patterns. However, the two resonances resulting from the C$_2$ Se-O linkages exhibit
distorted triplet coupling, indicating the ring strain at the O atom is preventing H equivalency. A similar effect was observed on L₁ (Figure 3.11).

![Figure 3.18: 1H NMR spectrum of L⁴ recorded in CDCl₃.](image)

A second fraction from the column (Rf = 0.48) yielded an off-white solid when dried in vacuo, which was analysed by EIMS, and 1H, 13C{1H} and 77Se{1H} NMR spectroscopy. The 77Se{1H} NMR spectrum showed a single peak at 148 ppm, indicating this could be a second macrocyclic species. EIMS confirmed this, with a main peak cluster centred around 546 ($C_{14}H_{28}O_2^{80}Se_4 = 546$) and a fragment cluster at 424 corresponding to loss of Se(CH₂)₃. In contrast to L⁴, the 1H NMR spectrum of L⁵ shows the expected binomial distributions in all the proton environments, showing this macrocycle to be large enough for there to be no strain at the O atoms. Curiously, however, the protons on the C atoms either side of Se (on the C₂ linkage or on the C₃ linkage) have coalesced into a single resonance at $\delta = 2.73$ ppm. The resonances have all been shifted upfield from their L⁴ positions. The 13C{1H} NMR spectrum again showed four C environments, as expected, with three between 20 and 30 ppm, and one much higher at 70.6 ppm, corresponding to the C atoms next to O.
Figure 3.19: 1H NMR spectrum of L^5 recorded in CDCl₃.

Table 3.4 shows the 77Se{1H} NMR shifts for a range of mixed donor O/Se macrocycles. Whilst size of macrocycle clearly affects the 77Se{1H} NMR shifts of macrocycles with similar backbones, there is no overall trend apparent. Similarly, number of O donors, Se donors and aromatic rings also cause no quantifiable effect which might allow a method of calculating expected 77Se{1H} NMR shifts to be established.

Table 3.4: 77Se{1H} NMR spectroscopic data for mixed donor O/Se macrocycles.

<table>
<thead>
<tr>
<th>Macrocycle</th>
<th>δ 77Se / ppm</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9]aneO₂Se</td>
<td>204</td>
<td>7</td>
</tr>
<tr>
<td>L^5 ([10]aneOSe₂)</td>
<td>158</td>
<td>This work</td>
</tr>
<tr>
<td>L' (benzo-[11]OSe₂)</td>
<td>205</td>
<td>This work</td>
</tr>
<tr>
<td>[18]aneO₆Se₂</td>
<td>144</td>
<td>7</td>
</tr>
<tr>
<td>L^5 ([20]aneO₂Se₄)</td>
<td>148</td>
<td>This work</td>
</tr>
<tr>
<td>dibenzo-[18]O₆Se₄</td>
<td>278</td>
<td>6</td>
</tr>
<tr>
<td>L^5 (dibenzo-[22]O₂Se₄)</td>
<td>216</td>
<td>This work</td>
</tr>
<tr>
<td>dibenzo-[24]O₆Se₄</td>
<td>268</td>
<td>6</td>
</tr>
<tr>
<td>dibenzo[30]O₆Se₄</td>
<td>265</td>
<td>6</td>
</tr>
<tr>
<td>L^5 (tribenzo-[33]O₆Se₆)</td>
<td>213</td>
<td>This work</td>
</tr>
</tbody>
</table>

3.4 – Coordination Chemistry of O_xSe_{2x} Macrocycles

The new oxygen/selenium macrocycles L^1 and L^2 were reacted with three different transition metals (Ag(I), Cu(I) and Pt(II)) in order to probe their ligating properties. AgBF₄ was dissolved in ice-cold MeOH in a foil wrapped flask. Initial attempts to add the macrocycles directly to the MeOH solution showed them to be only very sparingly soluble in alcohols. Instead, solutions were
made of the ligands in CH$_2$Cl$_2$, which were cooled and added to the MeOH solution of AgBF$_4$. The reaction mixture was stirred for ~2 hours. The L1 reaction then had the solvent removed \textit{in vacuo} to give a brown solid, which was redissolved in MeCN and filtered to remove the brown solids, which were probably decomposed Ag salts. The filtrate was dried \textit{in vacuo} to yield a cream solid, which decomposed gradually over time (even when kept in a foil wrapped flask) and rapidly in solution. ES$^+$ MS identified the product as [Ag(L1)$_2$]BF$_4$. The L2 complex [AgL2]BF$_4$ was isolated by reducing the reaction mixture \textit{in vacuo} and filtering, which generated a cream solid. This was more stable than [Ag(L1)$_2$]BF$_4$ both as a solid and in solution, but is still somewhat light-sensitive. Figure 3.20 shows the ES$^+$ MS and calculated isotope pattern of [AgL2]BF$_4$.

![ES$^+$ MS and calculated isotope pattern](image)

Figure 3.20: Top: ES$^+$ MS of [Ag(L2)]BF$_4$. Bottom: Calculated isotope pattern for [AgC$_{24}$H$_{32}$O$_2$Se$_4$]$^+$.

71
Complexes with Cu(I) were made by dissolving \([\text{Cu(MeCN)}_4]\text{BF}_4\) in MeOH and adding a CH\(_2\)Cl\(_2\) solution of macrocycle. Two equivalents of L\(^1\) were added and the reaction stirred for 3 hours before removing the solvent \textit{in vacuo}. The resulting solid was added to CH\(_2\)Cl\(_2\), filtered and the filtrate dried \textit{in vacuo} to give a pale green solid, characterised by microanalysis, ES\(^+\) MS, IR and \(^1\)H NMR spectroscopy as \([\text{Cu(L}^1\text{)}_2]\text{BF}_4\). The ES\(^+\) MS is shown in Figure 3.21, and shows peak clusters corresponding to both \([\text{Cu(L}^1\text{)}_2]\)\(^+\) and to the complex with loss of one ligand and addition of one MeCN, \([\text{CuL}^1\text{(MeCN)}]\)\(^+\). The complex is poorly soluble in chlorocarbons, and generally somewhat unstable in solution.

![Figure 3.21](image)

\textbf{Figure 3.21:} Top: ES\(^+\) MS of \([\text{Cu(L}^1\text{)}_2]\text{BF}_4\). Bottom: Calculated isotope patterns for \([\text{Cu(C}_{12}\text{H}_{16}\text{OSe}_2)\text{(MeCN)}]\)\(^+\) (left) and \([\text{Cu(C}_{12}\text{H}_{16}\text{OSe}_2)}_2]\)\(^+\) (right).
One equivalent of L² in CH₂Cl₂ with [Cu(MeCN)₄]BF₄ in MeOH was stirred for a total of four hours. A cream-white solid precipitated from the solution after approximately one hour, and remained unchanged. This solid was a very fine powder, and was collected by decanting the solvent off. The solid was then washed with diethyl ether, and dried in vacuo. This white solid was characterised by microanalysis, ES⁺ MS, IR and ¹H NMR spectroscopy as [CuL²]BF₄. As with the silver complexes, this Cu complex was more stable than the L¹ complex. The ¹H and ¹³C{¹H} NMR spectra collected for these new silver and copper complexes are consistent with rapidly exchanging systems, which is expected for Ag(I) and Cu(I) selenoether complexes.

PtCl₂ was refluxed in MeCN until complete dissolution had occurred, generating [PtCl₂(MeCN)₂]. One molar equivalent of L¹ was added as a solution in CH₂Cl₂ and the yellow mixture stirred for overnight. The solution was then reduced in vacuo and diethyl ether added to precipitate a yellow solid, which was collected by filtration. This was identified as [PtCl₂L¹] by microanalysis, IR, ¹H and ⁷⁷Se{¹H} NMR spectroscopy. The NMR data were collected from solutions in CD₃CN, as the solid was insoluble in chlorocarbons.

A similar reaction with 0.5 equivalents of L² produced a yellow solid, characterised as [(PtCl₂)L²] by microanalysis, IR, ¹H, ⁷⁷Se{¹H} and ¹⁹⁵Pt NMR spectroscopy. As with the monomeric L¹ complex, [(PtCl₂)L²] is insoluble in chlorocarbons and poorly soluble in MeCN and acetone. In both Pt(II) complexes cis coordination is most likely, due to the steric constraints of the macrocycles, and this was confirmed by the presence of two Pt-Cl stretching vibrations in their IR spectra. It has been observed that O(CH₂CH₂SeMe)₂ requires very specific reaction conditions to promote tridentate coordination involving all three donor atoms over bidentate coordination through the two Se atoms. In light of this, it is expected that these macrocycles would preferentially bind through the Se atoms, and this is confirmed by the ⁷⁷Se{¹H} and ¹⁹⁵Pt NMR spectra. This behaviour has also been observed crystallographically for [PtCl₂([18]aneO₄Se₂)] (Figure 3.22). The poor solubility of all these new complexes prevented the growth of crystals suitable for X-ray analysis.
Figure 3.22: Crystal structure of [PtCl₂([18]aneO₄Se₂)]. Ellipsoids shown at 40 % probability, H atoms omitted for clarity.

3.5 – Conclusion

Five novel macrocycles containing a mixed O/Se donor set have been synthesised and characterised (Figure 3.23). These new macrocycles are all of the type OₓSe₂ₓ, which considerably increases the range of selenium-rich mixed donor O/Se macrocycles known. Two methods of production have been established for L₁ from the same precursors, demonstrating that reaction conditions are very important for determining preferred ring size. A NaBH₄ reduction generates only L₁ in 96 % yield, whilst using a low temperature Na/NH₃(l) reduction generates L₁-L₃ in one pot, with L₂ being the dominant product (35 % yield L₂). L₄ and L₅ are not cleanly produced by Na/NH₃(l) reduction, but can be produced by NaBH₄ reduction, with L₄ being the dominant product (71 % yield L₄, 8 % yield L₅).

Figure 3.23: Novel OₓSe₂ₓ macrocycles produced in this chapter.
A set of complexes involving L1 and L2 have been synthesised and characterised to investigate ligating properties of these new macrocycles. The Ag(I) and Cu(I) complexes involving the smaller macrocycle, L1 are less stable than the analogous complexes with L2. The Pt(II) complexes are insoluble in chlorocarbons, and show \textit{cis} coordination of the macrocycles through the Se atoms.

\textbf{Figure 3.24:} Summary of metal complexes produced with novel O\textsubscript{x}Se\textsubscript{2x} macrocycles.
3.6 – Experimental

O(CH₂CH₂SeCN)₂: KSeCN (4.17 g, 28.95 mmol) was dissolved in anhydrous acetone (100 cm³) in a three necked flask. O(CH₂CH₂Br)₂ (3.36 g, 14.47 mmol) dissolved in anhydrous acetone (70 cm³) was then added dropwise over a period of ca. 3 h and the reaction mixture was stirred overnight, giving a colourless solution and a white precipitate. The solution was then filtered to remove the KBr and concentrated to give a yellow oil. Yield: 62%. EIMS: \text{m/z} = 284 [O(CH₂CH₂-SeCN)₂]⁺. ¹H NMR (CDCl₃): δ = 3.87 (t, CH₂O, 3J_HH = 6 Hz), 3.23 (t, SeCH₂, 3J_HH = 6 Hz, 2J_Seach = 27 Hz). ¹³C{¹H} NMR (CDCl₃): δ = 102.0 (SeCN, 1J_Sec = 237 Hz), 70.2 (CH₂O), 29.8 (CH₂Se, 1J_Sec = 45 Hz). ⁷⁷Se{¹H} NMR (CDCl₃): δ = 190.4. This freshly prepared compound was used in subsequent reactions without further purification.

Preparation of L¹–L³ — Method 1: In a 1 litre round bottom flask containing anhydrous thf (100 cm³) and maintained at −78 °C (acetone/CO₂ slush), NH₃ (400 cm³) was condensed. A small piece of sodium was added and the solution turned deep blue. O(CH₂CH₂SeCN)₂ (6.0 g, 21.2 mmol) dissolved in thf (100 cm³) was then added dropwise with constant stirring. This is followed by addition of Na (1.95 g, 84.8 mmol). The reaction mixture was stirred for around 1 h to give a pale yellow mixture. A solution of o-C₆H₄(CH₂Br)₂ (5.61 g, 21.2 mmol) in thf (100 cm³) was added dropwise over 3 h with the reaction temperature maintained at between −40 to −50 °C. The reaction mixture was left at room temperature overnight to allow the NH₃ to evaporate. The mixture was hydrolysed with degassed water and extracted with CH₂Cl₂. The CH₂Cl₂ layer was then concentrated to get a yellow oil from which a white solid separates out. Recrystallisation from CH₂Cl₂/hexane yields L² as a white solid.

L²: Yield: 2.5 g, 35%. EIMS: \text{m/z} = 672 [L²⁺], 565 [L² – o-C₆H₄(CH₂)₂]⁺. Required for C₂H₅OSe₄ (668.35): C, 43.1; H, 4.8; found: C, 43.2; H, 5.2%. ¹H NMR (CDCl₃): δ = 7.25–7.38 (m, o-C₆H₄, 4H), 4.19 (s, SeCH₂, 4H, 2J_Seach = 6.5 Hz), 3.75 (t, CH₂O, 4H), 2.84 (t, CH₂CH₂Se, 4H, 2J_Seach = 6.5 Hz) ppm. ¹³C{¹H}NMR(CDCl₃): δ = 137.8 (ipso-C, o-C₆H₄), 131.3, 127.9 (aromatic C), 72.1 (OCH₂), 26.0, 25.2 (SeCH₂) ppm. ⁷⁷Se{¹H} NMR (CDCl₃): δ = 216 ppm. The filtrate was retained and concentrated to give a yellow/orange oil. The crude oil was dissolved in CH₂Cl₂ and adsorbed onto a silica column and eluted with hexane/ethyl acetate (19:1) to give first L¹ (RF (silica plate) = 0.69).

L¹: Yield: 0.13 g, 2%. Crystals of L¹ suitable for X-ray structure analysis were obtained by recrystallisation of this fraction from CH₂Cl₂/hexane. EIMS: \text{m/z} = 336 [L¹⁺]. Required for C₁₂H₁₅OSe₂ (334.17): C, 43.1; H, 4.8; found: C, 42.3; H, 5.5%. ¹H NMR (CDCl₃): δ = 7.2–7.1 (m, 4H, o-C₆H₄), 4.5 (s, 4H, SeCH₂), 4.0 (m, 4H, OCH₂), 2.9 (m, 4H, CH₂Se). ¹³C{¹H} NMR (CDCl₃): δ = 138.5 (ipso C), 131.3, 128.0 (aromatic C), 72.5 (OCH₂), 26.1, 25.2 (SeCH₂). ⁷⁷Se{¹H} NMR(CDCl₃, 300 K): δ = 205.
A second fraction, containing L$_3^3$ was eluted using hexane/ethyl acetate (9:1) (Rf (silica plate) = 0.67).

L$_2^3$: Yield: 0.15 g, 2%. APCI MS: m/z = 1027 [L$_3^3$ + Na$^+$]. 1H NMR (CDCl$_3$): δ = 7.1–7.3 (m, 12H, o-C$_6$H$_4$), 4.0 (s, 12H, SeCH$_2$), 2J$_{SeH}$ = 5.6 Hz), 3.6 (t, 12H, OCH$_2$), 2.7 (t, 12H, CH$_2$Se, 2J$_{SeH}$ = 7 Hz). 13C[1H] NMR(CDCl$_3$): δ =137.8 (ipso-C), 131.4, 127.9 (aromatic C), 71.9 (OCH$_2$), 25.7, 24.4 (SeCH$_2$). 77Se[1H] NMR (CDCl$_3$, 300 K): δ = 213.

Preparation of L$_1^1$ – Method 2: α,α-Dibromo-o-xylene (1.49 g, 5.6 mmol) and O(CH$_2$CH$_2$SeCN)$_2$ (1.59 g, 5.6 mmol) were each dissolved separately in a mixture of anhydrous thf (160 cm3) and anhydrous ethanol (40 cm3). They were added simultaneously dropwise into a flask containing NaBH$_4$ (1.5 g, excess) in a solution of anhydrous thf/ethanol (450 cm3/50 cm3) over a period of ca. 4 h. The reaction mixture was then left to stir under N$_2$ for 72 h at room temperature. The resulting cloudy solution was filtered to produce a clear pale yellow solution which was reduced under vacuum to give a cloudy oil. Toluene (250 cm3) was then added to the oil and the resulting solution filtered to remove any undissolved solids before being concentrated under reduced pressure to produce L$_1^1$ as a cream solid. Yield: 1.76 g, 96%. EIMS: m/z = 336 [L$_1^1$]+. 1H NMR(CDCl$_3$): δ = 7.3–7.1 (m, 4H, o-C$_6$H$_4$), 4.5 (s, 4H, SeCH$_2$), 4.0 (m, 4H, OCH$_2$), 2.9 (m, 4H, CH$_2$Se). 13C[1H] NMR (CDCl$_3$): δ = 138.5 (ipso-C), 131.3, 128.0 (aromatic C), 72.5 (OCH$_2$), 26.1, 25.2 (SeCH$_2$). 77Se[1H] NMR (CDCl$_3$, 300 K): δ = 205.

Preparations of L$_4^4$ and L$_5^5$: 1,3-Dibromopropane (0.308 g, 1.52 mmol) and O(CH$_2$CH$_2$SeCN)$_2$ (0.430 g, 1.52 mmol) were each dissolved in a mixture of anhydrous thf (50 cm3) and anhydrous ethanol (14 cm3). They were added simultaneously dropwise into a flask containing NaBH$_4$ (0.5 g, excess) in a solution of anhydrous thf/ethanol (320 cm3/20 cm3) over a period of ca. 2 h. The reaction mixture was then left to stir under N$_2$ for 72 h at room temperature. The resulting cloudy solution was filtered to produce a clear pale yellow solution which was concentrated under vacuum to give a cloudy oil. Toluene (150 cm3) was then added to the oil and the resulting solution filtered to remove any undissolved solids before being concentrated under reduced pressure to produce yellow-brown oil. 77Se[1H] NMR spectrum (crude mixture): δ = 148.0 (minor), 158.3 (major). The crude oil was dissolved in a minimum volume of CH$_2$Cl$_2$ and adsorbed onto a silica column and eluted with hexane/ethyl acetate (19:1) to give first L$_4^4$ (Rf (silica plate) = 0.85) as a light yellow oil.

L$_4^4$: Yield: 0.31 g, 71%. EIMS: m/z = 272 [L$_4^4$]+, 202 [L$_4^4$ – O(CH$_2$CH$_2$)$_2$]$.^+$ 1H NMR (CDCl$_3$): δ = 3.83 (m, 4H, CH$_2$O), 2.96 (t, 4H, CH$_2$Se), 2.75 (m, 4H, CH$_2$Se), 2.05 (quintet, 2H, CH$_2$CH$_2$CH$_2$). 13C[1H] NMR (CDCl$_3$): δ = 70.7 (CH$_2$O), 29.8 (CH$_2$CH$_2$CH$_2$), 23.2 (CH$_2$Se), 22.9 (CH$_2$Se). 77Se[1H] NMR (CH$_2$Cl$_2$, 300 K): δ = 158.3.
A second fraction, containing \(L^5\) was eluted using hexane/ethyl acetate (19:1) (Rf (silica plate) = 0.48) as an off-white solid.

\(L^5\): Yield: 0.08 g, 8%. EIMS: \(m/z\) 546 [\(L^5\)+], 424 [\(L^5 – \text{Se(CH}_3)_2\)]+. \(^1\)H NMR (CDCl\(_3\)): \(\delta = 3.73\) (t, 4H,CH\(_2\)), 2.73 (t, 8H,CH\(_2\)Se), 2.03 (quintet, 2H, CH\(_2\)CH\(_2\)SeH). \(^{13}\)C\(^\text{[\text{\(1\)H}]\) NMR (CDCl\(_3\)): \(\delta = 70.6\) (CH\(_2\)), 30.6 (CH\(_2\)CH\(_2\)Se), 22.9 (CH\(_2\)Se), 22.1 (CH\(_2\)Se). \(^{77}\)Se\(^{\text{[\text{\(1\)H}]\) NMR (CD\(_2\)Cl\(_2\), 300 K): \(\delta = 148.0\).

Metal complexes

[Ag(L\(^1\)]\(_2\)BF\(_4\): AgBF\(_4\) (0.029 g, 0.15 mmol) was taken up in MeOH (40 cm\(^3\)) in a foil wrapped flask in an acetone/dry ice slush bath and stirred. Two mol. equiv. of \(L^1\) (0.100 g, 0.30 mmol) in CH\(_2\)Cl\(_2\) (5 cm\(^3\)) was added, and the reaction was stirred for 3 h. Solvent was removed \textit{in vacuo} to produce a brown solid which was redissolved in MeCN and filtered to remove an insoluble brown solid. The solvent was removed \textit{in vacuo} to give a cream coloured solid which turns dark brown on standing and more rapidly in solution. Yield: 56%. Electrospray MS (MeCN): \(m/z = 777\) [Ag(L\(^1\)]\(_2\)]. \(^1\)H NMR (CD\(_3\)CN): \(\delta = 7.1\) (s, 4H, \(\alpha\)-C\(_6\)H\(_4\)), 4.1 (br \(s\), 4H, CH\(_2\)), 3.7 (br \(m\), 4H, CH\(_2\)), 2.9 (t, 4H, CH\(_2\)). IR (Nujol): \(\nu = 1049\) \(\text{v(BF}_4\) cm\(^{-1}\).

[Ag(L\(^2\)]\(_2\)BF\(_4\): To AgBF\(_4\) (0.044 g, 0.21 mmol) in MeOH (20 cm\(^3\)) in a foil-wrapped flask maintained at 0 °C (ice) was added \(L^2\) (0.119 g, 0.18 mmol) in CH\(_2\)Cl\(_2\) (5 cm\(^3\)). After stirring for 2 h the solution was concentrated \textit{in vacuo} to ca. 10 cm\(^3\), giving a white precipitate which was collected by filtration and dried \textit{in vacuo}. Yield: 48%. Electrospray MS (MeCN): \(m/z = 777\) [Ag(L\(^2\)]. Required for C\(_{24}\)H\(_{32}\)AgBF\(_4\)O\(_2\)Se\(_4\): 0.5CH\(_2\)Cl\(_2\) (905.49): C, 32.5; H, 3.7; found: C, 32.4; H, 3.2%. \(^1\)H NMR (CDCl\(_3\)): \(\delta = 7.17\) (br \(s\), aromatic CH, 8H), 3.95 (s, CH\(_2\)Se, 8H), 3.65 (\(m\), CH\(_2\)O, 8H), 3.00 (\(m\), CH\(_2\)Se, 8H) (together with a resonance due to the associated CH\(_2\)Cl\(_2\) solvate). \(^{13}\)C\(^{\text{[\text{\(1\)H}]\) NMR (CDCl\(_3\)): \(\delta = 136.59\) (\textit{ipso}-C), 131.83, 128.90 (C\(_6\)H\(_4\)), 68.14 (CH\(_2\)O), 30.11, 29.12 (CH\(_2\)Se). IR (Nujol null): \(\nu = 1066\) (br \(\nu(BF}_4\) cm\(^{-1}\).

[Cu(L\(^1\)]\(_2\)BF\(_4\): [Cu(MeCN)\(_4\)]BF\(_4\) (0.047 g, 0.15 mmol) was taken up in MeOH (40 cm\(^3\)) and stirred. Two mol. equiv. of \(L^1\) (0.100 g, 0.30 mmol) in CH\(_2\)Cl\(_2\) (5 cm\(^3\)) was added, and the reaction was stirred for 3 h. The solvent was removed \textit{in vacuo}, and the resulting solid dissolved in CH\(_2\)Cl\(_2\) (20 cm\(^3\)), filtered and the filtrate dried \textit{in vacuo} to give a pale green solid. Yield: 68%. Required for C\(_{24}\)H\(_{32}\)BCuF\(_4\)O\(_2\)Se\(_4\) (818.70): C, 35.2; H, 3.9; found: C, 34.6; H, 4.1%. Electrospray MS (MeCN): \(m/z = 733\) [Cu(L\(^1\)]\(_2\)]. 440 [Cu(L\(^1\)](MeCN)]+. \(^1\)H NMR (CDCl\(_3\)): \(\delta = 7.1–7.3\) (\(m\), \(\alpha\)-C\(_6\)H\(_4\), 4H), 4.2 (br \(s\), OCH\(_2\), 4H), 3.9 (br \(s\), SeCH\(_2\), 4H), 2.9 (br \(s\), SeCH\(_2\), 4H). IR (Nujol): \(\nu = 1060\) br \(\nu(BF}_4\) cm\(^{-1}\).
[CuL²BF₄]: [Cu(MeCN)₄]BF₄ (0.047 g, 0.149 mmol) was taken up in MeOH (40 cm³) and stirred. One mol. equiv. of L² (0.100 g, 0.149 mmol) was added, and the reaction was stirred for 1 h. A cream-white solid was formed and the stirring was continued for another 3 h. The solvent was then decanted and the solid was washed with diethyl ether and dried in vacuo to give a white solid. Yield: 71%. Required for C₂₄H₃₂BCuF₄O₂Se₄ (818.7): C, 35.2; H, 3.9; found: C, 35.9; H, 4.0%. Electrospray MS (MeCN): m/z = 733 [Cu(L²)]⁺. ¹H NMR (CDCl₃): δ = 7.15–7.30 (br m, o-C₆H₄), 3.84 (br s, CH₂Se), 3.64 (br, CH₂O), 2.90 (br s, CH₂Se). IR (Nujol mull): ν = 1060 br s ν(BF₄) cm⁻¹.

[PtCl₂L¹]: PtCl₂ (0.127 g, 0.477 mmol) was dissolved in MeCN (50 cm³). The solution was refluxed and stirred until all of the PtCl₂ dissolved giving a light yellow solution. To the solution L¹ (0.160 g, 0.477 mmol) was added. The reaction mixture was stirred overnight at room temperature. The yellow solution was reduced to ca. 5 cm³ in vacuo. Cold diethyl ether (~15 cm³) was added dropwise to precipitate a yellow solid, which was filtered off and dried in vacuo. Yield: 70%. Required for C₁₂H₁₆Cl₂OPtSe₂ (600.16): C, 24.0; H, 2.7; found: C, 24.0; H, 2.4%. ¹H NMR (CD₃CN): δ = 7.1–7.3 (br m, o-C₆H₄, 4H), 4.4 (m, CH₂, 4H), 3.9 (m, CH₂, 4H), 3.0–3.3 (br m, CH₂, 4H). ⁷⁷Se{¹H} NMR (CD₃CN): δ = 292 (¹⁹⁵Pt satellites not resolved). IR (Nujol): ν = 314, 305 ν(PtCl) cm⁻¹.

[(PtCl₂L²)]: Method as for [PtCl₂(L¹)] above but using L² in a 2:1 metal:ligand ratio. Yellow solid. Yield: 70%. Required for C₉₂H₇₂Cl₄O₂Pt₂Se₂·0.5C₄H₁₀O (1237.37): C, 25.2; H, 3.0; found: C, 25.0; H, 2.6%. ¹H NMR (D₆-acetone): δ = 7.4–7.7 (m, 8H, o-C₆H₄), 3.0–4.3 (m, CH₂, 12H) (together with resonances for the associated Et₂O solvate). ⁷⁷Se{¹H} NMR (CH₃CN/CDCl₃): δ = 292.4 (¹J_{Pss} = 383 Hz). ¹⁹⁵Pt NMR(MeCN/CDCl₃): δ = −3681. IR (Nujol mull): ν = 317 m, 306 s ν(PtCl) cm⁻¹.
3.7 – X-Ray Crystallography

Details of the crystallographic data collection and refinement parameters are given in Table 3.5. Yellow single crystals of L₁ were obtained by recrystallisation from CH₂Cl₂/hexane. Colourless crystals of L₂ were obtained by recrystallisation from CH₂Cl₂/hexane. Structure solution and refinement were routine.¹⁶,¹⁷ Selected bond lengths and angles for L₁ are presented in Table 3.2 and for L₂ are presented in Table 3.3.

Table 3.5: Crystallographic data collection and refinement parameters. \(R_1 = \Sigma |F_o| - |F_c|/\Sigma |F_o|; \ wR_2 = \left[\Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4 \right]^{1/2} \)

<table>
<thead>
<tr>
<th>Compound</th>
<th>L₁</th>
<th>L₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>(\text{C}{12}\text{H}{16}\text{OSe}_2)</td>
<td>(\text{C}{24}\text{H}{32}\text{O}_2\text{Se}_4)</td>
</tr>
<tr>
<td>M</td>
<td>334.17</td>
<td>668.34</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>(P-1)</td>
<td>(P2_1/c)</td>
</tr>
<tr>
<td>(a/Å)</td>
<td>7.9226(3)</td>
<td>9.085(3)</td>
</tr>
<tr>
<td>(b/Å)</td>
<td>7.9777(3)</td>
<td>4.824(1)</td>
</tr>
<tr>
<td>(c/Å)</td>
<td>10.1093(3)</td>
<td>28.058(7)</td>
</tr>
<tr>
<td>(\alpha/°)</td>
<td>108.105(2)</td>
<td>90</td>
</tr>
<tr>
<td>(\beta/°)</td>
<td>92.408(2)</td>
<td>95.32(2)</td>
</tr>
<tr>
<td>(\gamma/°)</td>
<td>91.037(2)</td>
<td>90</td>
</tr>
<tr>
<td>(U/Å^3)</td>
<td>606.45(4)</td>
<td>1223.0(6)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(\mu(\text{Mo-Kα})/\text{mm}^{-1})</td>
<td>6.068</td>
<td>6.018</td>
</tr>
<tr>
<td>(R_{int})</td>
<td>0.045</td>
<td>0.084</td>
</tr>
<tr>
<td>Total no. reflns.</td>
<td>13054</td>
<td>11967</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>2783</td>
<td>2802</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>(R_1 \ [I_o > 2\sigma(I_o)])</td>
<td>0.031</td>
<td>0.072</td>
</tr>
<tr>
<td>(R_1 \ [\text{all data}])</td>
<td>0.039</td>
<td>0.108</td>
</tr>
<tr>
<td>(wR_2 \ [I_o > 2\sigma(I_o)])</td>
<td>0.070</td>
<td>0.174</td>
</tr>
<tr>
<td>(wR_2 \ [\text{all data}])</td>
<td>0.073</td>
<td>0.196</td>
</tr>
</tbody>
</table>
3.8 – References

16. Sheldrick, G. M. SHELXS-97, program for crystal structure solution, University of Göttingen, Germany, **1997**.

17. Sheldrick, G. M. SHELXS-97, program for crystal structure refinement, University of Göttingen, Germany, **1997**.
Chapter 4: Novel Selenium-Rich Macrocycles

4.1 – Introduction

Whilst there are many thioether macrocycles known, and their chemistry is well defined, there are relatively few selenoether macrocycles, and even fewer telluroether macrocycles. This is due to the increased fragility of Se-C/Te-C bonds, which presents problems in finding suitable reaction conditions or precursors. For example, thiols are much easier to prepare and handle than selenols, which readily oxidise to diselenides, and tellurols, which are thermally unstable. Both selenols and tellurols are also extremely malodorous and toxic.

In 1988, Pinto et al. reported the first examples of homoleptic selenoether macrocycles in a communication and in 1989 published full details of the production of a series of macrocycles, shown in Figure 4.1 below. These were all produced using a pseudo-high dilution method. Diselenocyanate precursors (either NCS(\(\text{CH}_2\))\(_2\)SeCN or NCS(\(\text{CH}_2\))\(_3\)SeCN) were reduced by sodium in liquid ammonia to generate the diselenolate anion \textit{in situ}. Addition of the dibromoalkane reagents takes place at low temperature (-40 to -50°C) reducing the reaction rate to promote cyclisation over polymerisation, whilst maintaining sufficient solubility of the reagents in liquid NH\(_3\). Column chromatography allowed isolation of pure samples of the macrocycles in reasonable yield.

Production of C\(_1\)/C\(_3\)-linked macrocycles \([12]\text{aneSe}_4\) and \([18]\text{aneSe}_6\) occurs in low yield, with polymeric byproducts accounting for ~75 % of the starting materials. The methyl substituted macrocycles had even poorer yields. The C\(_2\)/C\(_3\)-linked \([14]\text{aneSe}_4\) was produced in higher yield, ~34 %, but significant decomposition occurred during isolation by column chromatography. It is likely that this is associated with Se-C cleavage in the C\(_2\) linkages, similar to the ethene elimination often observed for RSeCH\(_2\)CH\(_2\)SeR (see Chapter 1). The C\(_3\)-linked macrocycles, \([8]\text{aneSe}_2\), \([16]\text{aneSe}_4\) and \([24]\text{aneSe}_6\) are obtained in much better yield, >70 %, with ~40 % yield of \([16]\text{aneSe}_4\) via a “one-pot” reaction. In all case, the [2+2] cyclisation product was the highest yielding macrocycle. Attempts to produce C\(_2\)-linked \([12]\text{aneSe}_4\) using 1,2-diselenocynoethane and 1,2-dibromoethane resulted in deposition of elemental selenium and evolution of ethene.

X-ray crystal structures have been obtained for \([12]\text{aneSe}_4\), \([18]\text{aneSe}_6\), \([16]\text{aneSe}_4\), \([24]\text{aneSe}_6\) and \([14]\text{aneSe}_4\). None of the structures display intramolecular contacts, but some intermolecular associations between Se atoms were observed. All the structures display a preference for \textit{gauche} torsion angles about the Se-C bonds, with every Se-C bond in \([24]\text{aneSe}_6\) having a \textit{gauche} torsion
angle. However, [16]aneSe$_4$ adopts a quadrangular structure, rather than the structure which would allow all C-Se-C-C sequences to have gauche torsion angles.4

Figure 4.1: First known selenoether macrocycles, synthesised by Pinto et al. in 1988.3,4
Unlike amine or phosphine macrocycles, which can be easily functionalized by changing the terminal substituent on the donor atom, chalcogenoether macrocycles require functionalizing groups to be incorporated into the backbone. Hydroxyl functionalized selenoether macrocycles were reported by Pinto et al. in 1996, with [8]aneSe₂(OH) and [16]aneSe₄(OH)₂ being produced by a modification of the route shown in Figure 4.1, using NCSephOHCH₂SeCN with NaBH₄ as the reducing agent, and the reaction was carried out at room temperature. The favoured product was the [1+1] cyclisation, with [8]aneSe₂(OH) being produced in 43 % yield, while [16]aneSe₄(OH)₂ was only produced in 11 % yield. The mono-functionalised [16]aneSe₄(OH) was produced by reacting propane-1,3-biselenocyanate with 1-chloro-3-propanol to make a diol, which was subsequently tosylated. The ditosyl-diselenoether was reacted with a hydroxyl substituted diselenocyanate to generate [16]aneSe₄(OH) in 62 % yield (Figure 4.2). Both mono-functionalised macrocycles were shown to react with acroyl chloride in thf/CH₂Cl₂ to produce an acrylate ester functionalized macrocycle, which could then be polymerized to give the first polymer-bound selenoether macrocycles.

Reaction of NCSeph₂SeCN with Na/NH₃(l) followed by dropwise addition of α, α′-dibromo-o-xylene has been shown to produce the cyclic diselenoether 3H-1,4,5,7-tetrahydro-2,6-benzodiselenonine (sebc) in 80 % yield, with only trace amounts of other Se containing products. This would indicate that the more rigid structure of α, α′-dibromo-o-xylene predisposes the system to [1+1] cyclisation, a feature this thesis has attempted to exploit. The crystal structure of sebc has the lone pairs exo to the ring, and C-Se-C angles in the range 100.8 (4) – 102.6 (4)° (see Figure 4.2).

Figure 4.2: Scheme for the production of monofunctionalised [16]aneSe₄(OH).

84
4.20. It is worth noting that sebc, like [8]aneSe₂, is not technically a macrocycle, the classical definition of which requires 3 or more heteroatoms. However, given the low number of selenoether macrocycles and lack of reported coordination chemistry, they are generally classed with them in literature reviews.⁷ A number of other cyclophanes containing two Se atoms have been reported, but so far no complexation chemistry has been reported for these cyclophanes.⁸

Reduction of the polymeric phenylene diselenide, \(o-(C₆H₄Se₂)_n \) with sodium borohydride, followed by reaction with 1,2-bis((3-chloro-1-propyl)selenio)benzene has been shown to lead to dibenzo[14]aneSe₄ in 60 % yield as shown below (Figure 4.3). This reaction was carried out on a milligram scale, and produced 0.29 g of macrocycle. Attempts to make 1,2-bis((2-chloro-1-ethyl)selenio)benzene resulted in episelenonium ions forming, which decomposed via loss of ethene.⁹

\[
\begin{align*}
\text{Se} & \quad \text{NaBH}_4 \quad \text{thf/EtOH} \\
\text{SeNa} & \quad \text{Br} \quad \text{thf} \\
\text{SeNa} & \quad \text{SOCl}_2 \quad \text{CH}_2\text{Cl}_2
\end{align*}
\]

\[
\begin{align*}
\text{Se} & \quad \text{Se} \\
\text{Se} & \quad \text{Se} \\
\text{Se} & \quad \text{Se}
\end{align*}
\]

Figure 4.3: Scheme for production of dibenzo[14]aneSe₄.⁹

The crystal structure of dibenzo[14]aneSe₄ is a disordered superposition of two conformers, a (67 %) and b (33 %) as shown in Figure 4.4. The two arene rings are nearly coaxial, with the dihedral angle between the planes being only 6.0 (3)°. However, the distance between the two rings (5.05 Å) is slightly too large to form stable sandwich complexes without some structural rearrangement, although the C₃ linkages may be flexible enough to accommodate this.⁹
Chapter 4

Figure 4.4: Crystal structures of the major (a) and minor (b) conformers of dibenzo[14]aneSe₄. Ellipsoids shown at 50% probability, H atoms omitted for clarity.

A few selenoether macrocycles with naphthalene backbones have been reported. Reaction of naphtha-[1,8-cd]-1,2-diselenol with sodium borohydride generates the sodium salt, which can then be reacted with 1,3-dibromopropane. Use of stoichiometric quantities of 1,3-dibromopropane generates 3,4-dihydro-2H-naphtho[1,8-bc]-1,5-diselenocine, whilst use of a large excess results in the acyclic disubstituted product (Figure 4.5). This can then be reacted with either another equivalent of 1,3-dibromopropane to produce 9,10,20,21-tetrahydro-8H,19H-dinaphtho[1',8'-jk;1,8-bc][1,5,9,13]tetrasedencyclohexadecin, or with sodium selenide to produce 3,4,7,8-tetrahydro-2H,6H-naphtho[1,8-bc]-1,5,9-triselenocyclododecine. The crystal structure of 9,10,20,21-tetrahydro-8H,19H-dinaphtho[1',8'-jk;1,8-bc][1,5,9,13]tetrasedencyclohexadecin shows transannular contacts between the selenium atoms (3.19 and 3.17 Å) which are significantly shorter than the sum of the Van der Waals radii (4.0 Å).

Figure 4.5: Scheme for the production of macrocyclic selenoethers containing naphthalene rings.
The tridentate selenium-naphthalene macrocycle above is one of a very small number of macrocycles with odd numbers of selenium atoms. Pinto et al. described a route to Se$_3$ and Se$_5$ donor macrocycles in 1995 (Figure 4.6). These macrocycles are produced via classical high dilution, with 20 cm3 of solution of the two final reactants being added simultaneously dropwise over 20 hours to between 100-300 cm3 thf/EtOH suspension of NaBH$_4$. These reactions proceeded on the milligram scale, producing 0.175 g [12]aneSe$_3$ and 0.22 g [20]aneSe$_5$.

The crystal structure of [12]aneSe$_3$ (Figure 4.7) has no crystallographic symmetry, but does have approximate local mirror symmetry across a plane passing through Se(9) and C(3). It shows each C-Se-C-C segment to be in the preferred gauche geometry. The analogous [12]aneS$_3$ has two anti C-S-C-C segments.
The methyl-substituted selenoether macrocycles Me₄[8]aneSe₂, Me₆[12]aneSe₃ and Me₈[16]aneSe₄ have been produced by the catalytic macrocyclization of 3,3-dimethylselenetane (dmSe) by Re₂(CO)₉(dmSe) or Re₂(CO)₉(NCMe) (Figure 4.8). While sodium templating may play a role in the macrocyclic preparations discussed above, this is the only published example of selenoether macrocycles being produced by a template method using a transition metal. The crystal structures of these three macrocycles all have the gem-methyl groups exo to the ring.¹⁴

Figure 4.7: Crystal structure of [12]aneSe₃. Ellipsoids shown at 50% probability, H atoms omitted for clarity.⁹

Figure 4.8: Catalytic macrocyclisation of 3,3-dimethylselenetane.¹⁴
The triselenacyclophanes shown below (Figure 4.9) were isolated as byproducts from the production of the analogous diselenaphane. These diselenaphanes were produced in the hope that they would provide a route to meta-cyclophanes, however it was shown that selenoxide elimination in cyclophanes is much less facile than in alicyclic examples, and no significant advantage was gained over use of thiocyclophanes.²

![Figure 4.9: Di- and tri-selenacyclophanes.²](image)

While a number of mixed donor macrocycles containing tellurium have been characterised (see Chapter 3), there are only two known homoleptic macrocyclic telluroethers – [8]aneTe₂¹⁵ and [12]aneTe₃ and the hexachloride derivative Cl₆[12]aneTe₃.¹⁴ Reaction of 1,3-dibromopropane with sodium telluride, followed by addition of another equivalent of the dihalide generates [8]aneTe₂ in undisclosed yield.¹⁵ Reduction of this with Cl₂ in benzene yields the insoluble ditellurane, which upon refluxing in dmf at 160°C, gives Cl₆[12]aneTe₃. This has been reduced with thiophenol to produce 0.064 g [12]aneTe₃. Whilst the yield is exceptionally good, there is no report of the reaction being scaled up to produce practical quantities of the macrocycle.¹⁶

![Figure 4.10: Scheme for production of [8]aneTe₂ and [12]aneTe₃.¹⁵¹⁶](image)
Chapter 3 discusses the production of mixed donor macrocycles containing more than one type of chalcogen. Here, macrocycles containing mixed donor sets of the type Se/N and Te/N are considered. There have only been a small number of mixed donor Se/N macrocycles reported, and even fewer Te/N macrocycles. Hojjatie et al. have produced three Se/N macrocycles, where the nitrogen donor is part of a pyridyl ring. These are made via high dilution reactions in extremely high yield, using NaBH$_4$ to reduce either 2,6-bis(bromomethyl)pyridine with the appropriate diselenocyanate or 2,6-bis(selenocyanatomethyl)pyridine with the appropriate dibromide. These high yields are probably due to the highly pre-organised nature of the precursors used.

![Figure 4.11: Mixed donor Se/N macrocycles produced by high dilution NaBH$_4$ reduction.](image)

There are only two examples of Schiff bases with the heavier chalcogens, one with Se and one with Te (Figure 4.12). The N$_6$Se$_2$ Schiff base is made by reaction of bis(2-formylphenyl)selenide and diethylenetriamine in MeCN. The N$_4$Te$_2$ Schiff base is made via a similar reaction, using the analogous telluride and ethane-1,2-diamine. Both reactions produce the Schiff base in good yield (>80 %).

![Figure 4.12: Mixed donor Schiff base macrocycles. Left: N$_6$Se$_2$, Right: N$_4$Te$_2$.](image)

There are two examples of mixed donor N/Se cryptands, with one also having an analogous N/Te cryptand. Figure 4.13 shows the N$_3$Se$_3$ cryptand, 1-nitro-8-methyl-6,10,19-triselena-3,13,16-triazabicyclo[6.6.6]icosane, which has been produced as a coordinated ligand on Co(III). A Co(III) complex of the tripodal N$_3$Se$_3$ ligand shown in Figure 4.13 was treated with HCHO and MeNO$_2$ in
water. There are no reports indicating that the sarcophagine-like N₃Se₃ cryptand has been demetallated.

![Figure 4.13: Tripodal N₃Se₃ ligand and N₃Se₃ cryptand.](image-url)

The larger N₈E₃ cryptands (E = Se, Te) are produced by adding three equivalents of bis(2-formylphenyl) selenide/telluride in MeOH to two equivalents of N(CH₂CH₂NH₂)₃ and one equivalent of CsCl in MeOH at room temperature. The cryptands precipitate out, and are collected by filtration in good yield (Se 90 %, Te 79 %).

![Figure 4.14: Mixed donor N₈Se₃ or N₈Te₃ cryptand.](image-url)

4.2 – Aims

This chapter investigates methods of producing tridentate homoleptic selenoether macrocycles. As mentioned in Chapter 1, the small ring thioether macrocycle [9]aneS₃ has been shown to be a very effective ligand, especially to metals in unusual oxidation states. Given the better σ-donor nature
of selenium, a small ring tridentate selenoether macrocycle could be a very effective ligand, and the only known examples have only been produced on a milligram scale. Reaction methods discussed in Chapter 3 will be investigated, in the hope of producing high yielding, multi-gram routes into new Se₃ ligands. The flexibility of the high dilution NaBH₄ method will be further tested on a second donor set, Se₂N macrocycles, combining the soft Se with the harder pyridyl N donor. This will investigate whether it can be used with more flexible precursors, as opposed to the purely rigid, preorganised precursors used by Hojjatie et al.⁸

4.3 – Production of Homoleptic Se₃ Macrocycles

The first stage in the production of Se₃ macrocycles was to produce suitable precursors. The ditosylate precursor Se({CH₂}₃OTs)₂ was produced by the route described by Pinto et al. (Figure 4.6, above).¹² KSeCN was reacted with 3-bromo-1-propanol in refluxing acetone for two days. The white solid was filtered off, and the yellow solution was dried in vacuo to give a yellow oil, identified by ¹H and ¹³C{¹H} NMR spectroscopy as 3-selenocyanato-1-propanol, in 78 % yield. ⁷⁷Se{¹H} NMR spectroscopy of the neat oil with an external D₂O lock showed it to have δ = 211.1 ppm. This oil was reacted, without further purification, with sodium metal in liquid ammonia to generate the selenolate anion, to which was added one equivalent of 3-bromo-1-propanol. After hydrolysis and extraction with dichloromethane, the yellow organics were dried in vacuo to leave Se({CH₂}₃OH)₂ as a yellow oil. ¹H and ¹³C{¹H} NMR spectra agreed with the literature values. ⁷⁷Se{¹H} NMR spectroscopy of the neat oil showed complete conversion of NCSe(CH₂)₃OH, with the diol having δ = 152.1 ppm. Se({CH₂}₃OH)₂ was stirred overnight with p-toluenesulfonyl chloride in CH₂Cl₂/pyridine. After washing (hydrochloric acid, sodium hydrogencarbonate, water and brine) and drying in vacuo, a yellow oil which darkened slowly over time, was isolated. Column chromatography removed minor byproducts to leave a white solid which was identified by ¹H and ¹³C{¹H} NMR spectroscopy as Se({CH₂}₃OTs)₂. Figure 4.15 shows the ⁷⁷Se{¹H} NMR spectrum in CH₂Cl₂/CDCl₃, which shows a single peak at 150 ppm.

![Figure 4.15: ⁷⁷Se NMR spectrum of Se({CH₂}₃OTs)₂ in CH₂Cl₂/CDCl₃.](image-url)
The first reaction performed (Figure 4.16, below) was an attempt to react NCSe(CH$_2$)$_3$SeCN with Na/NH$_3$ (l) to make the selenolate dianion,4 followed by dropwise addition of Se((CH$_2$)$_3$OTs)$_2$ in anhydrous thf in an analogous reaction to that of Pinto et al. for [8]aneSe$_2$ and larger rings (Figure 4.1).4 The reaction was carefully maintained at -45°C during the three hour addition of the ditosylate precursor, then allowed to warm slowly to room temperature. After hydrolysis and extraction with dichloromethane it was hoped that the crude red-brown oil isolated would contain a mixture of [12]aneSe$_3$ and [24]aneSe$_6$.

![Figure 4.16](image)

Figure 4.16: Attempted reaction of NCSe(CH$_2$)$_3$SeCN and Se((CH$_2$)$_3$OTs)$_2$ with Na/NH$_3$ (l).

77Se{1H} NMR spectroscopy revealed that the oil contained a mixture of selenium containing products, with the dominant feature being a cluster of four peaks at ~152 ppm. [24]aneSe$_6$ has δ = 153 ppm, and it is not unreasonable that the [2+2] product would dominate (see Chapter 3). However, [24]aneSe$_6$ would show only a single peak, and previous work in this group has shown that the polymer by-products of the [8]aneSe$_2$/[16]aneSe$_4$/[24]aneSe$_6$ reaction also tend to have δ = 153 ppm. Any unreacted ditosylate would also occur around this point. More peaks were observed at 198 and 264 ppm, with a minor peak at 131 ppm, which could correspond to [12]aneSe$_3$.12 Column chromatography (eluent = hexane:ethyl acetate, 19:1) resulted in three fractions with selenium containing compounds. Both the second and third fractions contained the peak group at ~152 ppm, and the peak at 198 ppm. 1H and 13C{1H} NMR spectra showed many overlapping groups of peaks, with some aromatics being observed, indicating the presence of tosyl groups. The first fraction had three peaks in the 77Se{1H} NMR spectrum, including the peak at 131 ppm. However, as there was only a few milligrams of this fraction isolated from > 7 g Se((CH$_2$)$_3$OTs)$_2$, and this was still not pure macrocycle, it was clear that this method was not going to be practical in producing gram quantities of macrocycle, and it was not pursued further.

![Figure 4.17](image)

Figure 4.17: Production scheme for L6 by NaBH$_4$ reduction.
As shown in Chapter 3, a NaBH₄ reduction can be used to produce Se₂O macrocycles with a variety of backbones. Hojjatie et al. have also shown this route to be effective for Se/N and Se₂ cyclophanes. It was decided to investigate the possibilities of this route. Se(\{CH₂\}_₃OTs)₂ and NCS(\{CH₂\}_₃SeCN) both have flexible backbones, with no pre-organisation. As all the previous successes of using an NaBH₄ reduction have used at least one (if not two) pre-organised precursors, it was decided to test this method for Se₃ macrocycles using o-C₆H₄(\{CH₂\}_₃SeCN)₂ as this is pre-orientated to promote cyclisation over polymerisation. Initially, the reaction was attempted on a small scale. Separate solutions of Se(\{CH₂\}_₃OTs)₂ (0.101 g, 0.2 mmol) and o-C₆H₄(\{CH₂\}_₃SeCN)₂ (0.063 g, 0.2 mmol) in 18 cm³/7 cm³ anhydrous thf/EtOH were added simultaneously dropwise to a solution of 0.5 g NaBH₄ in 270 cm³/30 cm³ anhydrous thf/EtOH over two hours. The reaction mixture was then left stirring for three days. The reaction mixture was filtered, to remove white solids, and dried in vacuo. The solids gained were then redissolved in CH₂Cl₂ and again filtered, with the filtrate being dried in vacuo to yield a cream solid. This solid was characterised by ¹H, ¹³C{¹H} and ⁷⁷Se NMR spectroscopy and EI MS. ⁷⁷Se{¹H} NMR spectrum (Figure 4.18) shows two Se environments, which have surprisingly similar chemical shifts (δ = 181, 183 ppm). o-C₆H₄(\{CH₂\}_₃SeMe)₂ has a ⁷⁷Se{¹H} NMR chemical shift of 149 ppm,²⁰ while MeSe(\{CH₂\}_₃SeMe)₂ occurs at 74 ppm,²¹ and Se(\{CH₂\}_₃SeMe)₂ occurs at 73 ppm (terminal Se) and 154 ppm (central Se).²¹

![Figure 4.18: ⁷⁷Se{¹H} NMR spectrum of L₆ recorded in CH₂Cl₂ with an external D₂O lock.](image-url)
The other data collected were all consistent with production of L\(^6\), indicating that the cyclic nature of the molecule plays a large role in the chemical shifts here. The \(^1\)H NMR spectrum obtained showed peaks consistent with the desired macrocycle, comprising a singlet at \(\delta = 4.12\) ppm corresponding to the \(o\)-C\(_6\)H\(_4\)CH\(_2\) protons, a quintet at 2.17 ppm and a triplet at 3.71 ppm from the C\(_3\) linkage and a multiplet at 7.21-7.37 ppm from the aryl protons. The \(^{13}\)C\{\(^1\)H\} NMR spectrum three peaks between 128 and 137 ppm, corresponding to the aromatic carbons, and four peaks between 21 and 31 ppm corresponding to the aliphatic carbons. The El MS showed a peak cluster at \(m/z = 426\), confirming production of the \([1+1]\) macrocycle (C\(_{14}\)H\(_{20}\)^{80}Se\(_3\) = 426).

This small scale reaction had a yield of 92 %. In order to investigate producing this macrocycle on a multigram scale the reaction was repeated, with quantities of the precursors scaled up to 2.42 g Se({CH\(_2\})_3OTs\(_2\) and 1.5 g \(o\)-C\(_6\)H\(_4\)(CH\(_2\)SeCN)\(_2\) in 180 cm\(^3\)/20 cm\(^3\) anhydrous thf/EtOH being added to 1.5 g NaBH\(_4\) in 450 cm\(^3\)/50 cm\(^3\) anhydrous thf/EtOH. This is on the same scale as the preparations of Hojattie et al., but the volume of solvent in the NaBH\(_4\) solution used here is lower by half, to reduce costs and solvent removal time. Addition time was increased to 4 hours, while the reaction mixture was again left for three days stirring before work up. 1.88 g L\(^6\) was obtained (93 % yield). \(^1\)H, \(^{13}\)C\{\(^1\)H\} and \(^{77}\)Se\{\(^1\)H\} NMR spectra were the same as those collected from the product of the small scale reaction. The crystal structure (Figure 4.19) is from a crystal obtained by the slow evaporation of a saturated solution of L\(^6\) in CHCl\(_3\).

![Figure 4.19: Crystal structure of L\(^6\). H atoms omitted for clarity.](image-url)
Table 4.1: Selected bond lengths and angles for \(\text{L}^6 \).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se1–C1</td>
<td>1.960 (7)</td>
<td>Se2–C9</td>
<td>1.965 (7)</td>
<td>C1–Se1–C14</td>
<td>97.7 (3)</td>
</tr>
<tr>
<td>Se1–C14</td>
<td>1.960 (7)</td>
<td>Se3–C11</td>
<td>1.965 (7)</td>
<td>C8–Se2–C8</td>
<td>98.3 (3)</td>
</tr>
<tr>
<td>Se2–C8</td>
<td>1.982 (7)</td>
<td>Se3–C12</td>
<td>1.954 (7)</td>
<td>C11–Se3–C12</td>
<td>98.4 (3)</td>
</tr>
</tbody>
</table>

\(\text{L}^6 \) has approximate non-crystallographic two fold symmetry. Comparing the structure obtained for \(\text{L}^6 \) with that published for sebc (Figure 4.20) it can be seen that changing from a \(\text{C}_3 \) linkage between the two Se atoms in sebc to a \(-(\text{CH}_2)_3\text{Se(CH}_2)_3^- \) linkage allows \(\text{L}^6 \) to exhibit a structure in which the two Se atoms closest to the xylyl ring adopt *anti* positions, above and below the plane of the aromatic ring, rather than the *syn* positions that sebc is sterically constrained to by its single propyl backbone. This *anti* conformation is also observed in the crystal structure of \(\text{L}^1 \) (Chapter 3, Figure 3.14). The bond angle at Se3 is considerably more acute (98.4°) than that at the O atom in \(\text{L}^1 \) (113.1°), reflecting the greater flexibility imparted by the \(\text{C}_3 \) backbones, as opposed to the \(\text{C}_2 \) backbones and smaller atom in \(\text{L}^1 \).

![Crystal structure of sebc](image)

Figure 4.20: Crystal structure of sebc. Ellipsoids shown at 40 % probability.

Following the success of the production of \(\text{L}^6 \), \([12\text{aneSe}_3 \) (hereafter referred to as \(\text{L}^7 \) was produced on the larger scale in analogous fashion, from dropwise addition of separate solutions of \(\text{Se(CH}_2\text{CH}_2\text{CH}_2\text{OTs})_2 \) and \(\text{NCSe(CH}_2)_3\text{SeCN} \) in thf/EtOH to a solution of \(\text{NaBH}_4 \) in thf/EtOH. The solution isolated after filtration of the white solids was dried *in vacuo*, redissolved in \(\text{CH}_2\text{Cl}_2 \), filtered, and again dried *in vacuo* to generate 1.34 g \(\text{L}^7 \) (77 % yield). The white solid was analysed by \(^1\text{H}, ^{13}\text{C}[^1\text{H}] \) and \(^77\text{Se} \) NMR spectroscopy and the data corresponded to the literature values reported by Pinto et al.\(^{12} \) While this is a very respectable yield for a macrocycle, it is lower than
that obtained by Pinto et al. However, this reaction was on a much larger scale, and used a much faster addition rate. If the addition had proceeded at the rate used by Pinto et al. it would have taken over eight days for complete addition of the precursors. Therefore, a slower addition rate may well result in higher yields.

To introduce a C$_2$-linkage into a tridentate selenoether, an obvious target precursor was the polymeric diselenide o-(SeC$_6$H$_4$Se)$_n$, as it has been previously used to form dibenzo[14]aneSe$_4$.9 The polymer is preorganised to promote cyclisation, and has the advantage of being unable to form a diselenide via the elimination of ethene, as can readily occur with an aliphatic C$_2$ linkage between Se atoms.4 o-(SeC$_6$H$_4$Se)$_n$ is produced by reaction of elemental selenium and sodium to produce NaSeSeNa, followed by addition of 1,2-dibromobenzene in refluxing dmf.22 The initial attempt produced a red solid which appeared to be consistent with the desired polymer by IR spectroscopy. Addition of sodium borohydride in thf/EtOH caused a colour change, and dissolution, but after addition to the ditosylate precursor Se(CH$_2$CH$_2$CH$_2$OTs)$_2$ under the reaction conditions used for L6 and L7, the only selenium containing product obtained was unreacted ditosylate. A second attempt at producing the polymeric diselenide generated only a black, oily solid. The third attempt at producing this polymer used a heating mantle, with a thermometer in the reaction vessel itself, as opposed to an oil bath with temperature probe as before. This increased the certainty of the temperature of the reaction itself, and after workup 3.26 g of o-(SeC$_6$H$_4$Se)$_n$ was obtained as an orange solid.

![Figure 4.21: Production scheme for L8 by NaBH$_4$ reduction.](image)

A solution of sodium borohydride in EtOH was added slowly to 1.5 g of this orange solid suspended in thf under N$_2$. A dark red solution formed immediately, which slowly turned yellow as more NaBH$_4$ was added. Upon complete addition, the solution was stirred for 10 mins, which gave a clear yellow solution. This was transferred by cannula to a dropping funnel containing anhydrous thf/EtOH. This solution was added simultaneously dropwise with a solution of Se({CH$_2$})$_2$OTs to a solution of NaBH$_4$ in thf/EtOH in the same manner as for L6 and L7 above. Upon workup, a crude mixture was obtained which had several peaks in its 77Se{1H} NMR spectrum. The minor peak at 150 ppm corresponded to unreacted ditosylate, which was also observed in the 1H and 13C{1H} NMR spectra. Column chromatography (eluent = hexane:ethyl
acetate, 19:1) removed the ditosylate. The fraction with Rf = 0.87 still showed multiple peaks in the $^{77}\text{Se}^1\text{H}$ NMR spectrum. The ^1H NMR spectrum showed an unexpected singlet at 4 ppm with clear Se-H coupling (14 Hz). This peak would seem to correspond to a C$_1$ link between Se atoms, and comparison with the literature value for benzo-1,3-diselenol made this the most likely culprit. Unfortunately, there is no $^{77}\text{Se}^1\text{H}$ NMR data published for it, so no comparison could be made there. It is uncertain how a C$_1$ linkage would have formed, as it is highly unlikely that the C$_3$ linkage would have been attacked at C-1 to form an episelenonium ion. There was no CH$_2$Cl$_2$ present until the third washing, again making it very unlikely to have contributed to the reaction, especially as the reaction had been opened to air before this, so any unreacted selenolate would most likely have already been quenched.

In order to remove this, and other, byproducts, the oily mixture obtained from the column was distilled in a Kugelrohr apparatus at 120°C/0.01 mm Hg. A yellow oil fractionated, leaving behind a clear light yellow oil. Figure 4.22 below shows the $^{77}\text{Se}^1\text{H}$ NMR spectrum obtained from the residue, clearly showing two selenium resonances at $\delta = 292.5$ and 208.0 ppm in a roughly 2:1 ratio. The nearest comparable macrocycle would be dibenzo[14]aneSe$_4$, but no $^{77}\text{Se}^1\text{H}$ NMR data has been published for this ligand. These shifts are consistent with the high frequency shifts observed for Se adjacent to an aromatic ring (o-C$_6$H$_4$(SeMe)$_2$ = 202 ppm), and the aliphatic Se has been shifted to a higher frequency than L$_6$ (181 ppm).

![Figure 4.22: $^{77}\text{Se}^1\text{H}$ NMR spectrum of L$_8$ recorded in CH$_2$Cl$_2$/CDCl$_3$ at 298 K.](image)

4.4 – Production of Mixed Donor Se$_2$N Macrocycles

As discussed above, Hojjatie et al. have published the preparation of an Se$_2$N macrocycle, using m-C$_6$H$_4$(CH$_2$SeCN)$_2$. In order to experiment with the versatility of this route, it was decided to make the smaller ring macrocycle from o-C$_6$H$_4$(CH$_2$SeCN)$_2$. This would be a smaller ring, but both precursors are still preorganised for cyclisation, and the yield should be high. 2,6-Bis(bromomethyl)pyridine was bought from Aldrich and used without further purification. The NaBH$_4$ reduction of o-C$_6$H$_4$(CH$_2$SeCN)$_2$ and 2,6-bis(bromomethyl)pyridine was done using the same conditions as for the Se$_3$ macrocycles above, and was first undertaken on a small scale (0.2
mmol), then increased to a 5 mmol scale reaction which produced 1.94 g L9. In both cases L9 was isolated as a cream solid in \sim 94\% yield.

![Reaction diagram]

Figure 4.23: Production scheme for L9 by NaBH\textsubscript{4} reduction.

The concurrent addition of the reactants is an important factor of high dilution reactions, as it hopefully ensures that only one equivalent of each precursor is close enough to react, reducing the possibility of polymerisation. It was thought that combining the two precursor solutions into one dropping funnel might be advantageous, as ensuring the same addition rate from two separate dropping funnels by eye is quite difficult. This combined solution could be added to the NaBH\textsubscript{4} solution at a constant, slow rate, and reaction should only occur in the reducing environment of the NaBH\textsubscript{4} solution. An attempt was made to produce L9 by this technique. The solution was worked up in the same way as before. Analysis of the oily mixture obtained after the toluene dissolution and filtration showed no evidence of macrocyclic formation although 1H NMR spectroscopy also showed no clear evidence of either starting precursor. There was evidence of protonated N, but this species could not be clearly identified. This would seem to indicate that there was some reaction between the precursors in the dropping funnel, and that it was in fact important to keep them separate during the addition process.
Figure 4.24: $^{13}\text{C}[^1\text{H}]$ NMR spectrum of L^9 recorded in CDCl$_3$.

The aromatic protons on the xylyl ring and the pyridyl ring overlap in the ^1H NMR spectrum of L^9, but the triplet for the pyridyl proton *para* to the N can be clearly seen at 7.49 ppm. There are two singlets for the two CH_2 environments at 4.02 and 4.19 ppm, which can be assigned as being attached to the xylyl and pyridyl rings respectively by the clear Se-H coupling observable on the peak at 4.02 (8 Hz). Figure 4.24 shows the $^{13}\text{C}[^1\text{H}]$ NMR spectrum, which clearly shows the two aliphatic environments at 24.5 and 29.3 ppm. There are six aromatic peaks, three from the xylyl ring and three from the pyridyl ring, although the C1/2 resonance from the xylyl ring occurs at a very similar shift to the pyridyl C3 resonance (137.7 and 137.2 respectively). The $^{77}\text{Se}[^1\text{H}]$ NMR spectrum shows a single peak at 298 ppm. GC-EI MS showed its highest peak cluster around $m/z = 369$ ($C_{15}H_{15}N^8Se_2 = 369$). A crystal suitable for X-ray analysis was grown by cooling a CH$_2$Cl$_2$/hexane solution of L^9 at -18°C for several days.

Figure 4.25: Crystal structure of L^9. H atoms omitted for clarity.
Table 4.2: Selected bond lengths and angles for L9.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se1–C1</td>
<td>1.988 (7)</td>
<td>Se2–C9</td>
<td>1.957 (7)</td>
<td>C1–Se1–C15</td>
<td>96.3 (3)</td>
</tr>
<tr>
<td>Se1–C15</td>
<td>1.967 (7)</td>
<td>N1–C10</td>
<td>1.340 (9)</td>
<td>C8–Se2–C9</td>
<td>98.0 (3)</td>
</tr>
<tr>
<td>Se2–C8</td>
<td>1.992 (7)</td>
<td>N1–C14</td>
<td>1.335 (9)</td>
<td>C10–N1–C14</td>
<td>119.4 (6)</td>
</tr>
</tbody>
</table>

Again, as with L1 (Chapter 3, Figure 3.14) and L6 (Figure 4.19) the Se atoms adopt an \textit{anti} configuration, above and below the plane of the xylyl ring. The planes of the two aromatic rings are twisted with respect to each other by 31.4 (3)°. The rigidity of the pyridyl ring prevents any possible ring strain from showing at the N atom, and the angles of N1-C10-C9 and N1-C14-C15 are only slightly more acute than their ideal angle (117.2 (6) and 116.8 (6)° respectively). The bond angles at Se are very similar to those observed in L6 (Table 4.1). Thus, there appears to be relatively little ring strain in L9, despite the three bond linkage between Se atoms and N.

Figure 4.26: Production scheme for L10 by NaBH\textsubscript{4} reduction.

An attempt was made to introduce a more flexible backbone into a Se\textsubscript{2}N macrocycle. This would produce a smaller ring, similar to L4. However, the analogous reaction in Chapter 3 produced a mixture of [1+1] and [2+2] macrocycles (Figure 3.17). Here, the pyridyl precursor provides some preorganisation to the reaction, which might inhibit production of the [2+2] macrocycle. The same method was used as for L9 on the larger scale. A cream solid was obtained after work up.
Figure 4.27: 1H NMR spectrum of L10 recorded in CDCl$_3$.

The 77Se1H NMR spectrum of this solid showed a single peak, at 298.5 ppm, indicating production of a single macrocyclic species. The shift itself, however, was virtually identical to that of L9, which was not expected as 77Se NMR shifts are generally very sensitive to the backbones present, and the change from a xylyl to C$_3$ backbone was expected to cause a significant difference in frequency. A 1H NMR spectrum run on the same sample showed that this was indeed L10 (Figure 4.27). The triplet and quintuplet from the C$_3$ linkage can be clearly seen, and the aromatic region shows a much clearer pattern, with a triplet from the proton para to N, and a doublet from the meta protons. The 13C1H NMR spectrum was as expected, showing three aromatic C resonances and three aliphatic resonances, two with clear Se-C coupling (24.8 ppm, 33 Hz; 29.4 ppm, 57 Hz). GC-EI MS confirmed that this was the [1+1] product. The yield was 92 %, and there is no evidence of a [2+2] product or any ring strain in any of the spectra collected, unlike the production of L4/L5 (Chapter 3).

Table 4.3: 77Se1H NMR shifts of the tridentate macrocycles produced in this thesis.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>δ^{77}Se/ppm</th>
<th>Ligand</th>
<th>δ^{77}Se/ppm</th>
<th>Ligand</th>
<th>δ^{77}Se/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>205</td>
<td>L2</td>
<td>158.3</td>
<td>L3</td>
<td>292.5, 208.0</td>
</tr>
<tr>
<td>L6</td>
<td>183.9, 181.4</td>
<td>L7</td>
<td>131.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>298.0</td>
<td>L10</td>
<td>298.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.3 shows the $^{77}\text{Se}\{^1\text{H}\}$ NMR shifts of the tridentate macrocycles produced in this thesis, grouped by Se-Se backbone, (xylyl, propyl, benzyl) then by the third donor atom (O, Se, N). It can be seen that changing from a xylyl linkage to a propyl linkage causes a shift to lower frequency, as does having a homoleptic Se$_3$ donor set.

4.5 – Conclusions
Two novel macrocycles L6 and L8 (Figure 4.28) containing three selenium atoms have been synthesised in high yielding NaBH$_4$ reduction reactions. The reaction method suffers no loss in yield upon scaling up from milligram to multi-gram quantities, and could theoretically be scaled up further. The importance of strict temperature control over the production of the polymeric diselenide o-(SeC$_6$H$_4$Se)$_n$ has been confirmed. The known macrocycle L7 ([12]aneSe$_3$) has been shown to be impractical to produce by means of Na/NH$_3$ reduction, but has been produced on multi-gram scale in high yield by a scaled up NaBH$_4$ reduction.

![Figure 4.28: Summary of Se$_3$ macrocycle production in this chapter.](image)

The versatility in addition of different backbones for this reduction reaction has been proved by the production of Se$_2$O macrocycles (see Chapter 3) and by the production of two novel Se$_2$N
macrocycles (Figure 4.29) in high yields. The importance of keeping the solutions of precursors separate has been demonstrated. Crystal structures have been obtained of two of the novel macrocycles, L^6 and L^9.

Figure 4.29: Summary of Se$_2$N macrocycle production in this chapter.
4.6 – Experimental

NCS (CH₂)₃OH: KSeCN (31.315 g, 0.217 mol) and 3-bromo-1-propanol (19.65 cm³, 0.217 mol) were refluxed in acetone (150 cm³) for two days. The initial dark purple colour faded to give white solid and yellowish solution. The white solid was filtered off, and the solvent removed from the yellow filtrate by atmospheric distillation. The yellow oil was dried *in vacuo*. Yield: 27.85 g (78%). ⁷⁷Se{¹H} NMR (external D₂O): δ 211.1 ppm.

HO(CH₂)₃Se(CH₂)₃OH: HO(CH₂)₃SeCN (27.85 g, 0.17 mol) was dissolved in dry THF (150 cm³) and ammonia (400 cm³) condensed into the flask. Na (7.8 g, 0.34 mol) was added slowly until a clear solution was produced. 3-bromo-1-propanol (15.4 cm³, 0.17 mol) was added dropwise. The ammonia was allowed to boil off. The mixture was hydrolysed (250 cm³) and extracted with CH₂Cl₂ (3 x 200 cm³). The yellow organics were collected, dried over MgSO₄ and the solvent removed in vacuo. Yield: 22.37 g (66%). ⁷⁷Se{¹H} NMR (external D₂O): δ 152.1 ppm.

TsO(CH₂)₃Se(CH₂)₃OTs: p-Toluenesulfonyl chloride (13.22 g, 0.069 mol) in CH₂Cl₂ (200 cm³) was added to a solution of HO(CH₂)₃Se(CH₂)₃OH (6.21 g, 0.0315 mol) in CH₂Cl₂ (200 cm³) and pyridine (17 cm³). The yellow solution was stirred overnight. The solution was washed with 10% HCl (2 x 100 cm³), NaHCO₃ (2 x 100 cm³), water (250 cm³) and brine (200 cm³) and dried over MgSO₄. The solvent was removed in vacuo. Yield: 7.631 g (48%). ⁷⁷Se{¹H} NMR (external D₂O): δ 150 ppm.

L₆: Se(CH₂CH₂CH₂OTs)₂ (2.42 g, 4.78 mmol) and o-C₆H₄(CH₂SeCN)₂ (1.5 g, 4.78 mmol) were each dissolved separately in a mixture of dry thf (160 cm³) and dry ethanol (40 cm³). They were added simultaneously dropwise into a flask containing NaBH₄ (1.5 g, excess) in a solution of dry thf/ethanol (450 cm³/50 cm³) over a period of ca. 4 h. The reaction mixture was then left to stir under N₂ for 72 h at room temperature. The resulting cloudy solution was filtered to produce a clear pale yellow solution which was reduced under vacuum to give a cloudy oil. Toluene (250 cm³) was then added to the oil and the resulting solution filtered to remove any undissolved solids before being concentrated under reduced pressure to produce L₆ as a cream solid. Yield: 1.88 g, 93%. Required for C_{14}H_{20}Se₃ (425.19): C, 39.55; H, 4.74; found: C, 39.33; H, 4.84%. GC-EI MS (CH₂Cl₂): m/z = 426 [C_{14}H_{20}^{⁸⁰}Se₃]⁺. ¹H NMR (CDCl₃): δ = 2.17 (quintet, 4H), 3.71 (t, 8H), 4.12 (s, 4H xylyl C₆H₄), 7.21-7.37 (multiplet, 4H). ¹³C{¹H} NMR (CDCl₃): δ = 21.7 (quintet, 4H), 37.1 (t, 8H), 4.12 (s, 4H xylyl CH₂), 7.21-7.37 (multiplet, 4H). ⁷⁷Se{¹H} NMR (CH₂Cl₂/external D₂O): δ = 181, 183.

L₇: As above, but using Se(CH₂CH₂CH₂OTs)₂ (2.42 g, 4.78 mmol) and NCS(CH₃)₂SeCN (1.204 g, 4.78 mmol). White solid. Yield: 1.34 g, 77%. GC-EI MS (CH₂Cl₂): m/z = 364 [C₉H₁₈^{⁸⁰}Se₃]⁺. ¹H
NMR (CDCl₃): δ = 2.01 (q, 2H, CH₂CH₂CH₃), 2.67 (t, 4H SeCH₂CH₂). ¹³C{¹H} NMR (CDCl₃): δ = 21.4 (SeCH₂, ¹J_C,Se = 62 Hz), 28.4 (SeCH₂CH₂), 120.6. ⁷⁷Se{¹H} NMR (CH₃Cl₂/external D₂O): δ = 130.

Poly-o-phenylenediselenide o-(SeC₆H₄Se)ₙ²² A round bottomed flask containing freshly powdered selenium (7.9 g, 0.1 mol) and dmf (100 cm³) was heated to 110°C under N₂. Sodium metal (2.3 g, 0.1 mol) was added slowly in small pieces. Vigorous reaction occurred, leaving a dark reaction mixture. After 1 hour, the temperature was reduced to ~60°C. o-Dibromobenzene (11.8 g, 0.05 mol) in dmf (100 cm³) was added, and the temperature increased to 140°C for 40 hours. On cooling, methanol (200 cm³) was added, and the mixture poured into brine (500 cm³). The solids were filtered off and washed with water (200 cm³), sodium sulphide solution (200 cm³), water (200 cm³), and thf (200 cm³). The orange solid produced was dried in vacuo. Yield: 3.26 g, 28 %.

L⁸: o-(SeC₆H₄Se)ₙ (1.0 g, 4.0 mmol) was suspended in dry thf (50 cm³). NaBH₄ (0.65 g, excess) in dry EtOH (20 cm³) was added slowly. The yellow solution formed was transferred by cannula into a dropping funnel containing dry thf (110 cm³) and dry EtOH (20 cm³). Se(CH₂CH₂CH₂OTs)₂ (1.5 g, 4.78 mmol) was separately dissolved in dry thf (160 cm³) and dry EtOH (40 cm³). The two solutions were added simultaneously dropwise (over ca. 4 h) to a suspension of NaBH₄ (0.5 g) in dry thf (500 cm³) and dry ethanol (60 cm³) under a dinitrogen atmosphere. The reaction mixture was stirred at room temperature (60 h) and then filtered. The solvent was removed in vacuo before the residue was dissolved in toluene, filtered to remove inorganic salts and the solvent removed in vacuo. Column chromatography (eluent: ethyl acetate/hexane 1:19) on the crude oily mixture resulted in a yellow oily substance (Rf = 0.87). Kugelröhr distillation at 120°C/0.01 mm Hg led to distillation of a light yellow oil which solidified on cooling, leaving L⁸ as a more viscous yellow oil. EI MS: found m/z = 398 [L⁸⁺], 356 [L⁸ – C₆H₆⁺], 236 [o-C₆H₄Se₂⁺], 202 [Se(CH₂)₃Se⁺]. ¹H NMR (CDCl₃, 298 K): δ = 7.67 (m, o-C₆H₄, 2H), 7.19 (m, o-C₆H₄, 2H), 2.99 (m, SeCH₂, 4H), 2.62 (m, SeCH₂, 4H), 2.07 (m, CH₂CH₂CH₂, 4H). ¹³C{¹H} NMR (CDCl₃, 298 K): δ = 137.1 (C赞同, o-C₆H₄), 135.4, 128.3 (CH, o-C₆H₄), 32.9, 32.5 (both SeCH₂), 22.8 (CH₂CH₂CH₂). ⁷⁷Se{¹H} NMR (CH₃Cl₂/CDCl₃, 298 K): δ = 292.5 (2 Se), 208.0 (Se).

L⁹: 2,6-Bis(bromomethyl)pyridine (1.5 g, 5.66 mmol) and o-C₆H₄(CH₂SeCN)₂ (1.77 g, 5.66 mmol) were each dissolved separately in a mixture of dry thf (160 cm³) and dry ethanol (40 cm³). They were added simultaneously dropwise into a flask containing NaBH₄ (1.5 g, excess) in a solution of dry thf/ethanol (450 cm³/50 cm³) over a period of ca. 4 h. The reaction mixture was then left to stir under N₂ for 72 h at room temperature. The resulting cloudy solution was filtered to produce a clear pale yellow solution which was reduced under vacuum to give a cloudy oil. Toluene (250 cm³) was
then added to the oil and the resulting solution filtered to remove any undissolved solids before being concentrated under reduced pressure to produce L^9 as a cream solid. Yield: 1.94 g, 93%. GC-EI MS (CH$_2$Cl$_2$): $m/z = 369$ [C$_{15}$H$_{15}$N$_{80}$Se$_2$]$^+$. 1H NMR (CDCl$_3$): $\delta = 4.02$ (s, xylyl CH$_2$, 2J$_{H,Se} = 8$ Hz), 4.19 (s, pyridyl CH$_2$), 7.04-7.23 (overlapping m, xylyl and pyridyl protons), 7.49 (t, pyridyl H). 13C{1H} NMR (CDCl$_3$): $\delta = 24.5$ (xylyl CH$_2$), 29.3 (pyridyl CH$_2$), 120.0 (pyridyl C2, 4), 127.0 (xylyl C3, 6), 130.8 (xylyl C4, 5), 137.2 (pyridyl C3), 137.7 (xylyl C1, 2), 159.0 (pyridyl C1, 5). 77Se{1H} NMR (CH$_2$Cl$_2$/external D$_2$O): $\delta = 298$.

L^{10}: As above, but using 2,6-bis(bromomethyl)pyridine (1.5 g, 5.66 mmol) and NCSe(CH$_2$)$_3$SeCN (1.43 g, 5.66 mmol). Yield: 1.59 g, 91.5%. GC-EI MS (CH$_2$Cl$_2$): $m/z = 307$ [C$_{16}$H$_{18}$N$_{80}$Se$_2$]$^+$. 1H NMR (CDCl$_3$): $\delta = 1.41$ (q, 2H, CH$_2$CH$_2$CH$_2$), 2.85 (t, 4H SeCH$_2$CH$_2$), 3.93 (s, 4H, pyridyl CH$_2$), 7.02 (d, 2H, pyridyl protons), 7.53 (t, 1H, pyridyl proton). 13C{1H} NMR (CDCl$_3$): $\delta = 24.8$ (pyridyl CH$_2$, 1J$_{C,Se} = 33$ Hz), 29.4 (SeCH$_2$, 1J$_{C,Se} = 57$ Hz), 33.2 (SeCH$_2$CH$_2$)120.6 (pyridyl C2, 4), 138.1 (pyridyl C3), 159.0 (pyridyl C1, 5). 77Se{1H} NMR (CH$_2$Cl$_2$/external D$_2$O): $\delta = 298$.
Chapter 4

4.7 – X-Ray Crystallography

Details of the crystallographic data collection and refinement parameters are given in Table 4.4. Yellow single crystals of L6 and L9 were obtained by recrystallisation from CH\textsubscript{2}Cl\textsubscript{2}. Structure solution and refinement were routine.24,25 Selected bond lengths and angles for L6 are presented in Table 4.1 and for L9 are presented in Table 4.2.

Table 4.4: Crystallographic data collection and refinement parameters. \(R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|; \)\n\(wR_2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4]^{1/2}. \)

<table>
<thead>
<tr>
<th>Complex</th>
<th>L6</th>
<th>L9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C\textsubscript{14}H\textsubscript{20}Se\textsubscript{3}</td>
<td>C\textsubscript{15}H\textsubscript{15}NSe\textsubscript{2}</td>
</tr>
<tr>
<td>M</td>
<td>425.18</td>
<td>367.20</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>(P2_1/n)</td>
<td>(P\bar{1})</td>
</tr>
<tr>
<td>(a/\text{Å})</td>
<td>5.2820 (15)</td>
<td>8.368 (2)</td>
</tr>
<tr>
<td>(b/\text{Å})</td>
<td>15.978 (4)</td>
<td>8.925 (2)</td>
</tr>
<tr>
<td>(c/\text{Å})</td>
<td>17.597 (5)</td>
<td>9.562 (3)</td>
</tr>
<tr>
<td>(\alpha/\circ)</td>
<td>90</td>
<td>100.295 (15)</td>
</tr>
<tr>
<td>(\beta/\circ)</td>
<td>90.13 (2)</td>
<td>90.724 (10)</td>
</tr>
<tr>
<td>(\gamma/\circ)</td>
<td>90</td>
<td>105.652 (10)</td>
</tr>
<tr>
<td>(U/\text{Å}^3)</td>
<td>1485.1 (7)</td>
<td>675.2 (3)</td>
</tr>
<tr>
<td>(Z)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>(\mu(\text{Mo-K\textalpha})/ \text{mm}^{-1})</td>
<td>7.408</td>
<td>5.457</td>
</tr>
<tr>
<td>(R_{int})</td>
<td>0.065</td>
<td>0.044</td>
</tr>
<tr>
<td>Total no. reflns.</td>
<td>14618</td>
<td>11910</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>3377</td>
<td>3074</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>154</td>
<td>163</td>
</tr>
<tr>
<td>(R_1 [I_o > 2\sigma(I_o)])</td>
<td>0.060</td>
<td>0.056</td>
</tr>
<tr>
<td>(R_1 [\text{all data}])</td>
<td>0.099</td>
<td>0.078</td>
</tr>
<tr>
<td>(wR_2 [I_o > 2\sigma(I_o)])</td>
<td>0.099</td>
<td>0.151</td>
</tr>
<tr>
<td>(wR_2 [\text{all data}])</td>
<td>0.114</td>
<td>0.163</td>
</tr>
</tbody>
</table>
4.8 – References

25. Sheldrick, G. M. SHELXS-97, program for crystal structure refinement, University of Göttingen, Germany, 1997.
Chapter 5: Platinum Complexes with Selenium-Rich Macrocycles

5.1 – Introduction

As discussed in Chapter 4 there are a number (albeit small compared to sulfur) of homoleptic selenoether macrocycles known. The coordination chemistry of some of these ligands has been studied, mainly with the focus on [16]aneSe₄, and has shown a variety of coordination modes, including examples of bridging behaviour, and both endo and exo coordination.²³

[8]aneSe₂ can displace norbornadiene (nbd) or N,N,N′,N′-tetramethyl-1,3-diaminopropane (tmpa) to coordinate in a bidentate manner to Group 6 metal carbonyl complexes, [M(CO)₄([8]aneSe₂)] (M = Cr, Mo, W).⁴ Seven-coordinate Mo(II) species can be formed by reaction of [(MoBr₂(CO)₃MeCN)₂] in CH₂Cl₂ with either [16]aneSe₄ or sebc (see Chapter 4) to form [(MoX₂(CO)₃([16]aneSe₄)] or [MoX₂(CO)₃(sebc)] in high yield. Similar reaction with [Wl₂(CO)₃(MeCN)₂] yields [Wl₂(CO)₃L] (L = [16]aneSe₄ or sebc).⁴ These complexes are moderately air-sensitive, poorly soluble in both chlorocarbons and hydrocarbons, and the selenoether ligands are easily displaced in coordinating solvents. Whilst the tetradeinate selenoether macrocycle [16]aneSe₄ bridges two Mo(II) centres, with bidentate coordination to each metal (Figure 5.1), no observation of a similar bridging complex with two W(II) centres was made, even though there are two “free” Se donors available.⁴ Conformational calculations, and the low solubility of the complexes suggest that the bidentate sebc may be functioning as a bridging ligand between metal centres in polymeric structures (Figure 5.1).⁴

![Figure 5.1: Scheme demonstrating the coordination modes observed in [(MoX₂(CO)₃([16]aneSe₄)] (left) and [MX₂(CO)₃(sebc)] (right).](image)

The reaction of [16]aneSe₄ with [CrX₃(thf)₃] (X = Cl, Br) and one equivalent of TIPF₆ gives the octahedral complexes [CrX₃([16]aneSe₄)PF₆] as blue solids which are slightly soluble in organic solvents but hydrolytically unstable. Similar reactions with two equivalents of [8]aneSe₂ failed.⁵
The neutral \(\text{fac-tricarbonyl species } \left[\text{MX(CO)}_3\left(\text{8aneSe}_2\right) \right] (M = \text{Mn, Re; } X = \text{Cl, Br, I}) \) are readily formed by reaction of \([\text{MX(CO)}_3]\) with \([\text{8aneSe}_2]\) in refluxing CHCl$_3$. Similar reaction of 0.5 molar equivalents of \([\text{16aneSe}_4]\) with \([\text{MCl(CO)}_3]\) affords the dinuclear species \([\text{[MnCl(CO)}_3\text{[16aneSe}_2]\text{]}\) or the mononuclear \([\text{ReCl(CO)}_3\text{[16aneSe}_3]\text{]}\). A rare example of a cationic complex with a selenoether macrocycle is the Mn(I) species \(\text{fac-[Mn(CO)}_3(\kappa^3-\text{[16aneSe}_2])\text{CF}_3\text{SO}_3}\) which is generated by treatment of \([\text{MnCl(CO)}_3]\) with AgCF$_3$SO$_3$, followed by addition of one equivalent of \([\text{16aneSe}_4]\). The reaction of \([\text{Re}_2(\text{CO)}_9(\text{MeCN})]\) with Me$_6$[12]aneSe$_3$ yielded the complex \([\text{Re}_2(\text{CO)}_9(\text{Me}_6[12\text{aneSe}_3])\)] in 58% yield. The crystal structure of this complex has \(\kappa^1-\text{Me}_6[12\text{aneSe}_3]\) in an equatorial coordination site with staggered rotational conformations of the CO ligands on the Ru atoms.

Reaction of \([\text{Ru(dmf)}_6]\text{Cl}_3\) with 1 molar equivalent of \([\text{16aneSe}_4]\) or two molar equivalents of \([\text{8aneSe}_2]\) in refluxing EtOH yield \(\text{cis-[RuCl}_2(\text{[16aneSe}_2])\) and \(\text{cis-[RuCl}_2(\text{[8aneSe}_2])}\) respectively. \(\text{cis-[RuCl}_4(\text{[16aneSe}_3])\) can be converted to the \(\text{trans isomer by refluxing in nitromethane, while cis-[RuCl}_4(\text{[8aneSe}_2])\) shows no conversion to the \(\text{trans isomer under the same conditions. The dibromo and diiodo complexes [RuX}_2(\text{[16aneSe}_3])\) can be prepared by refluxing \([\text{Ru(dmf)}_6](\text{CF}_3\text{SO}_3)\) with \([\text{16aneSe}_4]\) and two equivalents of LiBr or NaI respectively in EtOH. \([\text{RuX}_2(\text{[16aneSe}_4])\)] was too poor to soluble to obtain \(\text{77Se NMR data, and allow isomeric characterisation, but cis-[RuBr}_2(\text{[16aneSe}_4]) was characterised, and could be converted to trans-[RuBr}_2(\text{[16aneSe}_4]) in refluxing nitromethane. \([\text{MCl(PPPh)}_3(\text{[16aneSe}_3])\)] have been prepared for \(M = \text{Ru, Os, and the redox potentials for M(II)-M(III) measured by cyclic voltammetry for all these Ru/Os complexes. With the exception of cis-[RuCl}_2(\text{[8aneSe}_2])\) which shows an irreversible oxidation} all the dichloro, dibromo and chlorophosphine complexes exhibit a reversible redox couple.

\([\text{CoX}_2(\text{[16aneSe}_3])\text{PF}_6\) (\(X = \text{Cl, Br, I}\)) are stable solids exhibiting tetradebate selenoether coordination. Although they are insoluble in chlorinated solvents, the chloro and bromo species are stable in MeNO$_2$ and MeCN, while the iodo species slowly decomposes in these solvents. They can be produced by reaction of anhydrous \([\text{CoX}_2]\) with \([\text{16aneSe}_4]\) in MeNO$_2$ solution in air, followed by addition of NH$_3$PF$_6$. UV-Vis and \(\text{77Se\{}^1\text{H}\) NMR spectroscopic analysis show the chloro and bromo species to have solely \(\text{trans geometry, whilst the iodo species exhibits both cis and trans species. The analogous reaction with \([\text{8aneSe}_2]\) fails to produce any evidence for similar Co(III) species.\)

\([\text{RhCl}_2(\text{[8aneSe}_2])\text{BF}_4\) has been prepared from \([\text{[Rh\{}(\text{CO)}_2\text{Cl})_2]\), \([\text{8aneSe}_2]\) and HBF$_4$ in aqueous acetone solution, while \(\text{MX}_3\cdot\text{3H}_2\text{O}\) (\(M = \text{Rh}, \text{Cl}; \ M = \text{Ir, X = Cl or Br); and [16aneSe}_4\) in refluxing ethanol produces \([\text{MX}_2(\text{[16aneSe}_3])\text{]}^+\). These can be isolated as microcrystalline solids.
upon addition of a counter ion such as PF$_6^-$ or BF$_4^-$. [RhBr$_2$([16]aneSe$_4$)]$^+$ can be produced from reaction of [Rh(H$_2$O)$_6$][NO$_3$], [16]aneSe$_4$ and 2 equivalents of LiBr. 77Se NMR spectroscopic studies in dmf show that these Rh(III) and Ir(III) species are a mix of cis and trans isomers in solution, while a crystal structure has been reported of trans[IrBr$_2$([16]aneSe$_4$)]BPh$_4$. 8

Reaction of NiX$_2$ (X = Cl, Br, I) with [16]aneSe$_4$ in anhydrous n-butanol generates the paramagnetic complexes [NiX$_2$([16]aneSe$_4$)], which are insoluble in chlorocarbons on MeNO$_2$, poorly soluble in MeCN and decompose in solution in dmso. They are also sensitive to moisture. 9

[8]aneSe$_2$ or sebc can be reacted with MCl$_2$ (M = Pd, Pt) in MeCN to afford the poorly soluble complexes [MCl$_2$(L)].10,11 Adding two equivalents of TIPF$_6$ and an extra equivalent of [8]aneSe$_2$ to the reaction produces [M([8]aneSe$_2$)$_2$](PF$_6$)$_2$. 10 Reaction of MCl$_2$ (M = Pd, Pt) with one equivalent of [16]aneSe$_4$ and two equivalents of TIPF$_6$ in refluxing MeCN affords the homoleptic, square planar complexes [M([16]aneSe$_4$)](PF$_6$)$_2$ (Figure 5.2). Cyclic voltammetry studies on these complexes show an irreversible reduction, but not sign of oxidative activity. 12 However, treatment of [Pt([16]aneSe$_4$)](PF$_6$)$_2$ in MeCN with either Cl$_2$ or Br$_2$ as a solution in CCl$_4$ causes oxidative addition to form the Pt(IV) complexes [PtX$_2$([16]aneSe$_4$)](PF$_6$)$_2$. Similar reactions with the Pd(II) complex were unsuccessful in preparing similar Pd(IV) complexes. 13 Pd(II) complexes with [16]aneSe$_4$ can also be prepared with two BF$_4^-$ units to balance the charge, or with one BF$_4^-$ and one non-coordinating Cl$^-$. 14

![Figure 5.2: Crystal structures of [Pd([16]aneSe$_4$)]$^{2+}$ (left) and [Pt([16]aneSe$_4$)]$^{2+}$ (right).12](image)

Reaction of [Cu(MeCN)$_4$]Y (Y = BF$_4^-$, PF$_6^-$) with two equivalents of [8]aneSe$_2$ or sebc in acetone affords the tetrahedral homoleptic complexes [Cu(L)$_2$]Y as cream or white solids. 11 The corresponding tetrahedral Ag(I) complexes [Ag(L)$_2$]BF$_4$ are produced similarly by reaction of AgBF$_4$ with two equivalents of [8]aneSe$_2$ or sebc in acetone. These silver complexes are somewhat

113
light sensitive and must be kept in the dark.11 Treatment of [AuCl(tht)] with 0.5 equivalents of [8]aneSe\textsubscript{2} or sebc in acetone affords [(AuCl\textsubscript{2}L)] as white solids. Analytical data suggest linear coordination of an AuCl fragment to each Se donor.11

[Cu([16]aneSe\textsubscript{4}(OH)\textsubscript{2})](SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2} was synthesised by addition of [16]aneSe\textsubscript{4}(OH)\textsubscript{2} in CH\textsubscript{2}Cl\textsubscript{2} to a solution of [Cu(SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2}] in CH\textsubscript{3}NO\textsubscript{2}, producing dark brown crystals. [Cu([8]aneSe\textsubscript{2}(OH))\textsubscript{2}](SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2} and [Cu([16]aneSe\textsubscript{4}(OH))](SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2} were produced in a similar way, but [Cu([16]aneSe\textsubscript{4}(OH))](SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2} was found to be unstable in CH\textsubscript{3}NO\textsubscript{2} and a mixture of the Cu(II) complex and Cu(I) [Cu([16]aneSe\textsubscript{4}(OH))](SO\textsubscript{3}CF\textsubscript{3}) was obtained. Reaction of [Cu(SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2}] with dibenzo-[14]aneSe\textsubscript{4} was unsuccessful.15 The crystal structure of [Cu([16]aneSe\textsubscript{4}(OH)\textsubscript{2})](SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2} shows the Cu(II) centre in an approximately octahedral coordination environment, with the four Se donors from the ligand coordinated equatorially and one O donor from an OH group on the ligand and one O donor from a SO\textsubscript{3}CF\textsubscript{3} ion occupying axial positions. The crystal structure of [Cu([8]aneSe\textsubscript{2}(OH)\textsubscript{2}](SO\textsubscript{3}CF\textsubscript{3})\textsubscript{2} is similar, but with both axial positions occupied by O donors from OH groups on the ligands, one O from each ligand. The Cu(I) complex [Cu([16]aneSe\textsubscript{4}(OH))](SO\textsubscript{3}CF\textsubscript{3}) has Cu in a tetrahedral environment, with only the four Se donors from the ligand coordinated.15

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.3}
\caption{Crystal structure of Cu\textsubscript{4}I\textsubscript{4}(\mu-κ2-Me\textsubscript{6}[12]aneSe\textsubscript{3})\textsubscript{2}. Each Cu\textsubscript{4}I\textsubscript{4} cluster is bound to four ligands, two donated from neighbouring clusters.6}
\end{figure}
The structure of Cu₄I₄(μ-κ²-Me₆[12]aneSe₃)₂ consists of a three-dimensional network of “cubane-like” Cu₄I₄ clusters linked by four bridging Me₆[12]aneSe₃ ligands (Figure 5.3). Each copper atom bonds to one Me₆[12]aneSe₃ and three iodide ligands, and the Me₆[12]aneSe₃ serves as a bridge to a second Cu₄I₄ cluster. In this way each Me₆[12]aneSe₃ ligand utilizes two of its three possible Se donors for coordination. The third selenium atom remains uncoordinated.⁶

Antimony halide complexes of the type [SbX₃([8]aneSe₂)] (X = Cl, Br, I) and [(SbX₃)₂([16]aneSe₄)] (X = Cl, Br, I) have been reported, but little spectroscopic data has been reported owing to poor solubility in non coordinating solvents.¹⁶ A crystal structure of [(SbBr₃)₂([16]aneSe₄)] has been published, showing a two dimensional extended structure in which the selenoether macrocycle coordinates to four separate SbBr₃ units, while each SbBr₃ unit bridges two macrocycles (Figure 5.4).¹⁷

![Figure 5.4: View of a portion of the two-dimensional sheet adopted by [(SbBr₃)₂([16]aneSe₄)].⁻¹⁷](image)

Reaction of BiX₃ (X = Cl, Br) with one molar equivalent of ligand L (L = [8]aneSe₂, [16]aneSe₄, [24]aneSe₆) yields intensely coloured solids of the form [BiX₃L]. As with the antimony species above, the bismuth complexes are all poorly soluble in non-coordinating solvents, and the selenoether macrocycles were readily displaced by coordinating solvents. Crystallographic analysis of [BiCl₃([8]aneSe₂)] and [BiBr₃([16]aneSe₄)] shows that these selenoethers form infinite one-dimensional ladder structures, in which Bi₃X₆ “rungs” are linked by the selenoether macrocycles (Figure 5.5). This contrasts with the behaviour of thioether macrocycles, which without exception form discrete molecular species with BiX₃.¹⁸
A rare example of [24]aneSe₆ coordination chemistry is the complex [(AsCl₃)₄([24]aneSe₆)]. This is also a rare example of exo and endo coordination within a single species, as crystallographic analysis (Figure 5.6) showed it to be a discrete unit, rather than a polymeric structure, like [(AsBr₃)₂([16]aneSe₄)]. The As₂Cl₆ fragment within the ring is unprecedented for thio- or selenoether macrocycles.¹⁹

Figure 5.5: Crystal structures of the infinite 1-dimensional ladders adopted by [BiCl₃([8]aneSe₂)] (left) and [BiBr₃([16]aneSe₄)] (right).¹⁸

Figure 5.6: X-Ray crystal structure of [(AsCl₃)₄([24]aneSe₆)] showing both exo and endo coordination.¹⁹
5.2 – Aims

As discussed in Chapter 2, while there are few platinum complexes with macrocyclic selenoethers there are a number of acyclic selenoether complexes. The small ring thioether macrocycle [9]aneS₃ has been shown to produce stable complexes of Pt(II) with both halide and alkyl co-ligands, and even a homoleptic complex [Pt([9]aneS₃)₂]²⁺ which has a quasi-square pyramidal structure, and can be electrochemically oxidised to a highly unusual Pt(III) complex. Pt(II) complexes of the type [PtR₂([9]aneS₃)] (R = Me, Et) can also undergo oxidative addition of MeI or EtI to form the corresponding Pt(IV) complexes. An investigation into the properties of the new Se macrocycles made in Chapter 4 with Pt would allow the coordinating abilities of these macrocycles to be compared to existing data. It was hoped that they would be capable of tridentate coordination such as has been previously observed in [PtMe₃(κ³-[16]aneSe₄)]PF₆, even though this fac coordination could not be observed with the tripodal ligand MeC(CH₂SeMe)₃ (see Chapter 2).

![Macroyclic ligands used in this chapter. See Chapter 4 for preparations.](image)

5.3 – Platinum Complexes with Tridentate Selenium-Rich Macrocycles

To start exploring the coordination chemistry of these new macrocycles, [PtCl₂(MeCN)₂] was prepared by refluxing PtCl₂ in MeCN to produce a yellow solution, which was filtered to remove any unreacted PtCl₂. A solution of L in CH₂Cl₂ was added to the filtrate, where L = L⁶–L⁸. In each case a yellow precipitate formed rapidly, which was collected by filtration, washed with CH₂Cl₂ to remove unreacted ligand and dried in vacuo. The solids were identified as planar cis[PtCl₂L] (L⁶–L⁸) by microanalysis and IR spectroscopy, but they were all very poorly soluble, which hindered attempts to obtain NMR spectroscopic data. [PtCl₂([8]aneSe₂)] has been produced by the same method, and is also poorly soluble, requiring dmf solutions to obtain NMR spectroscopic data.
[\text{PtCl}_2\text{L}^6] \text{ was just soluble enough in dmf to allow a weak } ^{195}\text{Pt NMR spectrum to be obtained, showing a peak at } -3644 \text{ ppm. } \text{[PtCl}_2(\text{[8]aneSe}_2)] \text{ has a } ^{195}\text{Pt NMR spectrum with } \delta = -3825 \text{ ppm,}^{10} \text{ while dichloro } \text{Pt(II)} \text{ complexes with acyclic selenoethers show } ^{195}\text{Pt NMR shifts in the range } -3204 \text{ to } -3479 \text{ ppm.}^{24} \text{ L}^9 \text{ was also reacted with PtCl}_2 \text{ in MeCN in the same way to investigate whether the Se}_2\text{N ligands would confer any more solubility on the system, but the resulting precipitate was just as insoluble as the Se}_3\text{ ligands. The related complex [PtCl}_2(2-\text{\{MeSeCH}\text{C}_5\text{H}_3\text{N}\}) \text{ also has very poor solubility in most solvents, but is soluble and stable in dmso solution.}^{25} \text{ An attempt was made to get NMR data from a dmso solution of [PtCl}_2\text{L}^9], but the } ^1\text{H NMR spectrum obtained only showed peaks corresponding to [PtCl}_2(\text{dmso})_2] \text{ and uncoordinated L}^9.\n
\text{Chapter 2 detailed the production of dimethylPt(II) complexes with selenoether macrocycles of the form [PtMe}_2\text{L} \text{ where L = [8]aneSe}_2 \text{ or [16]aneSe}_4, although these were very poorly soluble, with NMR spectroscopy only possible in dmf solution for [PtMe}_2[\text{[8]aneSe}_2], and [PtMe}_2[\text{[16]aneSe}_4] \text{ being even less soluble. [PtMe}_2(\text{SMe}_2)_2] \text{ was generated in situ from [PtCl}_2(\text{SMe}_2)_2] \text{ and MeLi in the same manner as in Chapter 2, and one equivalent of L}^7 \text{ was added as a solution in CH}_2\text{Cl}_2. \text{ The mixture was left stirring for two hours, then the aqueous layer separated and washed with CH}_2\text{Cl}_2. \text{ The organics were reduced in vacuo and diethyl ether added to produce a very pale yellow solid precipitate. Analysis of the solid produced showed only [PtMe}_2(\text{SMe}_2)_2] \text{ and uncoordinated L}^7. \text{ Given lack of solubility in the halide Pt(II) complexes, the ready displacement of L}^9 \text{ from Pt(II) by coordinating solvents, and the lack of reaction between alkyl Pt(II) and L}^7 \text{ this line of investigation was not pursued further.}\n
\text{As was discussed in Chapter 2, reaction of [PtMe}_3\text{I] with the selenoether macrocycles [8]aneSe}_2 \text{ or [16]aneSe}_4 \text{ in CHCl}_3 \text{ produces 1:1 octahedral complexes of the type [PtMe}_3\text{I(L-L-L)]}. \text{ In the case of [16]aneSe}_4, \text{ no evidence of a binuclear complex was observed, but with addition of a halide abstracter in the form of TIPF}_6, \text{ tridentate fac coordination could be promoted. In the case of the acyclic tridentate selenoether ligand, MeC(CH}_2\text{SeMe}_3), \text{ bidentate coordination was observed, but there was no evidence of tridentate coordination, even upon addition of a halide abstracter.}\n
\text{In order to find out whether the new macrocycles could show tridentate coordination, similar reactions with [PtMe}_3\text{I] were undertaken. It was thought that if bidentate coordination was observed, a further reaction in the presence of a halide abstracter would then be undertaken to more strongly promote tridentate coordination. [PtMe}_3\text{I] was prepared as described in Chapter 2.}\n
\text{[PtMe}_3\text{I] and L}^6 \text{ were refluxed together in CHCl}_3 \text{ overnight. The yellow solution was reduced in vacuo and diethyl ether added. An off-white solid was collected by filtration and dried in vacuo.}
Thie solid was poorly soluble in chlorocarbons, and slightly more soluble in acetonitrile. Microanalysis confirmed the formulation of this solid as the 1:1 complex \([\text{PtMe}_3\text{L}_6]\)I, as did the ES\(^+\) MS (Figure 5.8). However, neither of these techniques indicate whether the macrocycle is coordinated in a tridentate fashion with associated ionic iodide to balance the charge, or whether the macrocycle is exhibiting bidentate coordination with coordinated iodide completing an octahedral ligand set at the Pt.

![Figure 5.8: Top: ES MS\(^+\) of \([\text{PtMe}_3\text{L}_6]\)I. Bottom: calculated isotope pattern for \([\text{PtMe}_3\text{L}_6]\)\(^+\).](image)

Owing to the limited solubility of the complex, \(^1\text{H}, \text{Se}^1\text{H}\) and \(^{195}\text{Pt}\) NMR spectra were collected from a solution of \([\text{PtMe}_3\text{L}_6]\)I in MeCN/CD\(_3\)CN. A \(^{13}\text{C}^1\text{H}\) NMR spectrum was not collected, as
the MeCN solvent resonances would have masked key areas of the spectrum, including the region of the Pt-Me resonances. The $^{77}\text{Se}\{^1\text{H}\}$ NMR spectrum recorded at 298 K shows resonances at 154.6 and 88.8 ppm (2 and 1 Se respectively), both of which are shifted to low frequency of the “free” ligand (183 and 181 ppm). This shift in NMR frequency would suggest that all three Se donors are coordinated to Pt, however in [PtMe$_3$I([16]aneSe$_4$)] a shift in the frequency of the uncoordinated Se donors was observed (see Chapter 2). Pt-Se coupling could not be clearly identified on either of these resonances due to dynamic processes. Cooling the sample to 233 K led to a slight difference in the shift of the resonances (151.6, 77.9 ppm) and allowed observation of $^{1}J_{\text{PtSe}}$ coupling of 328 Hz on the resonance at 151.6 ppm. No clear Pt-Se coupling could be observed on the resonance at 77.9 ppm. The ^{195}Pt spectrum showed a single resonance both at 298 K (–3768 ppm) and at 233 K (–3791 ppm). The $^{77}\text{Se}\{^1\text{H}\}$ and ^{195}Pt NMR spectra indicate that [PtMe$_3$L$_6$]I has a single geometric configuration in solution.

The ^1H NMR spectrum showed two peaks with PtH coupling, from the three methyl groups on Pt. The peak at 0.82 ppm has $^2J_{\text{PtH}}$ coupling of 65 Hz and integration of the peaks showed this to be equivalent to 6H. This is from the two Me groups trans to the two Se donors closest to the xyllyl backbone in L6. The second peak, at 0.23 ppm is from the third Me group, and has two possibilities. In two possible complexes, this may be trans to the third Se donor of L6, or trans to an iodide donor. Previous work on similar Pt(IV) complexes with acyclic bidentate selenoether ligands by Abel et al., and the work detailed in Chapter 2, show that $^2J_{\text{PtH}}$ (Me trans I) coupling is generally ≥ 70 Hz, while $^2J_{\text{PtH}}$ (Me trans Se) coupling is usually lower. The $^2J_{\text{PtH}}$ coupling (65 Hz) shows it to be much more likely that this Me group is trans Se rather than I. The other resonances in the ^1H NMR spectrum from L6 all show complex coupling patterns, which is also consistent with the macrocycle being held rigidly fac to Pt, with one proton from each CH$_2$ now held in closer proximity to Pt than the other, causing an inequivalency in environment.
Figure 5.9: Crystal structure of [PtMe₃L₆]⁺I⁻·0.13CH₂Cl₂. H atoms omitted for clarity.

Table 5.1: Selected bond lengths and angles for [PtMe₃L₆]⁺I⁻·0.13CH₂Cl₂.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt1–C15</td>
<td>2.093 (7)</td>
<td>C15–Pt1–C16</td>
<td>87.3 (3)</td>
<td>C16–Pt1–Se3</td>
<td>89.0 (2)</td>
</tr>
<tr>
<td>Pt1–C16</td>
<td>2.079 (6)</td>
<td>C15–Pt1–C17</td>
<td>88.3 (3)</td>
<td>C17–Pt1–Se1</td>
<td>170.1 (2)</td>
</tr>
<tr>
<td>Pt1–C17</td>
<td>2.079 (7)</td>
<td>C15–Pt1–Se1</td>
<td>88.4 (2)</td>
<td>C17–Pt1–Se2</td>
<td>87.0 (2)</td>
</tr>
<tr>
<td>Pt1–Se1</td>
<td>2.5430 (7)</td>
<td>C15–Pt1–Se2</td>
<td>85.7 (2)</td>
<td>C17–Pt1–Se3</td>
<td>90.63 (19)</td>
</tr>
<tr>
<td>Pt1–Se2</td>
<td>2.5218 (7)</td>
<td>C15–Pt1–Se3</td>
<td>176.2 (2)</td>
<td>Se1–Pt1–Se2</td>
<td>101.99 (2)</td>
</tr>
<tr>
<td>Pt1–Se3</td>
<td>2.5236 (7)</td>
<td>C16–Pt1–C17</td>
<td>85.5 (3)</td>
<td>Se1–Pt1–Se3</td>
<td>92.13 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C16–Pt1–Se1</td>
<td>85.07 (19)</td>
<td>Se2–Pt1–Se3</td>
<td>97.79 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C16–Pt1–Se2</td>
<td>169.9 (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A crystal suitable for X-ray analysis was grown from a saturated solution of [PtMe₃L₆]⁺I⁻ in CH₂Cl₂, and confirms the ionic nature of the complex, and the tridentate coordination of L⁶. The Se-Pt-Se bond angles are in the range 92.13 – 101.99°, indicating that the 13-membered ring is rather large for the Pt(IV) ion. A crystal structure of the similar acyclic complex [PtMe₃I(o-C₆H₄{CH₂SeMe})₂] is discussed in Chapter 2 (Figure 2.12) and has slightly longer Pt-Se distances (2.5530 (4), 2.5629 (4) Å) than [PtMe₃L₆]⁺. This is probably due to the cationic charge on the macrocyclic complex. [PtMe₃I(o-C₆H₄{CH₂SeMe})₂] also has a slightly more acute Se-Pt-Se angle (98.317 (12) °) than the corresponding Se1-Pt-Se2 angle here (101.99°). The macrocycle itself exhibits a significant conformational change upon complexation, with Se1 and Se2 now in a mutally syn arrangement rather than the anti arrangement observed in L⁶, and the lone pairs associated with Se3 now occupying an endo configuration as opposed to exo (see Chapter 4, Figure 4.19).
The same reaction was undertaken with L⁷ being added as a solution in CHCl₃ to [PtMe₃I] in CHCl₃. The mixture was refluxed overnight, then filtered, and the filtrate dried *in vacuo* to produce a yellow solid. This was identified as [PtMe₃L⁷]I by microanalysis, ES⁺ MS, ¹H, ¹³C{¹H}, ⁷⁷Se{¹H} and ¹⁹⁵Pt NMR spectroscopy. In contrast to [PtMe₃L⁶]I, [PtMe₃L⁷]I is soluble in chlorocarbons. The *fac* tridentate coordination was much easier to identify on this ligand owing to the rotational symmetry of L⁷. The ⁷⁷Se{¹H} NMR spectrum (Figure 5.10) showed a single peak shifted upfield from “free” ligand, with clear Pt-Se coupling (286 Hz). Similarly, the Pt-Me groups exhibit a single resonance in both the ¹H and ¹³C{¹H} NMR spectra. The ¹H NMR spectrum shows both ²Jₚₘₖ and ²Jₘₑₖ coupling on the Me resonance (65 and 11 Hz respectively), while ¹³C{¹H} NMR spectrum show ¹Jₚₜₖ coupling of 308 Hz.

Figure 5.10: ⁷⁷Se{¹H} NMR spectrum of [PtMe₃L⁷]I recorded in CDCl₃.
One equivalent of \(\text{L}^8 \) was dissolved in CHCl\(_3\) and added to \([\text{PtMe}_3\text{I}]\) in CHCl\(_3\). After refluxing overnight, the reaction mixture was filtered, and the filtrate taken to dryness to yield a fawn-coloured solid, which was soluble in chlorocarbons, and analysed by microanalysis, ES\(^+\) MS, \(^1\)H, \(^{13}\)C\{\(^1\)H\}, \(^{77}\)Se\{\(^1\)H\}, and \(^{195}\)Pt NMR spectroscopy. The only significant peak cluster observed in the ES\(^+\) MS spectrum (Figure 5.11) was consistent with \([\text{PtMe}_3\text{L}^8]^{+}\). Unlike \([\text{PtMe}_3\text{I([8]aneSe}_2] \) no evidence was seen in the ES\(^+\) MS of the tridentate selenoether complexes for a Pt(II) species formed via reductive elimination (see Chapter 2). This may be due to the geometric constraints of the tridentate ligands, preventing them from binding in a tridentate fashion to a square planar metal centre. Analysis of the Pt-H coupling on the Me resonances in the \(^1\)H NMR spectrum indicated that they were all trans Se. \(^{77}\)Se\{\(^1\)H\} NMR spectroscopy revealed the expected two selenium environments, both of which showed clear Pt-Se coupling, confirming tridentate coordination. While both Se environments in \([\text{PtMe}_3\text{L}^6]\) moved to low frequency from the “free” ligand, \([\text{PtMe}_3\text{L}^8]\) showed the single Se atom between the C\(_3\) backbones to move to low frequency, while the two Se atoms on the aromatic ring shifted to a higher frequency. \([\text{PtMe}_3\text{I(MeSe\{CH}_2\}_2\text{SeMe}])\) also shows this high frequency shift,\(^{27}\) indicating that the five-membered chelate ring is more dominant than the six-membered chelate ring in determining NMR shift.
After the success of the reactions with the tridentate homoleptic selenoethers, the analogous reactions were undertaken with the Se₂N macrocycles to assess what difference the harder pyridyl N donor made to reaction chemistry. [PtMe₃I] was dissolved in CHCl₃ and one equivalent of L⁹ was added in CHCl₃. The reaction mixture was refluxed overnight, and then reduced to ~ 5 cm³ in vacuo. Addition of diethyl ether caused a yellow solid to precipitate which was collected by filtration and dried in vacuo. This solid was soluble in chlorocarbons, and was analysed by ES⁺ MS, ¹H, ¹³C{¹H}, ⁷⁷Se{¹H} and ¹⁹⁵Pt NMR spectroscopy. ⁷⁷Se{¹H} NMR spectroscopy (Figure 5.12) showed a single peak at 325.2 ppm with ¹J_PtSe coupling of 279 Hz, indicating both Se donors to be coordinated to the Pt centre. The ¹⁹⁵Pt NMR spectrum (Figure 5.13) showed a single peak at −3082 ppm, consistent with Me₃Se₂N coordination at Pt(IV), rather than Me₃Se₂I coordination, which has been shown to be −3446 to −3667 ppm for acyclic and macrocyclic selenoethers.²⁷ The Se-N-Se linkage is almost a classic pincer ligand linkage, which in the case of the more studied acyclic P-N-P or S-N-S ligands usually prefers mer coordination on metal centres. However, the linkage between the Se atoms closing the macrocycle, prevents the ligand from adopting a mer geometry. This confirmed by the ¹H NMR spectrum, which shows two resonances for Pt-Me groups (δ = 0.71, 0.94 ppm), with Pt-H coupling consistent with Me trans Se (66 Hz) and Me trans N (72 Hz).
Small single crystals of $[\text{PtMe}_3L^9]I$ were grown by slow evaporation of a solution in CHCl$_3$. The structure obtained (Figure 5.14) confirms the fac tridentate coordination. The xylyl Se-Se linkage changes in conformation from anti to syn upon coordination (see Figure 4.25), and C10 and C15 are displaced slightly further away from the pyridyl ring (~0.3 Å). The N···Se distances are scarcely affected by complexation, but the Se···Se distance decreases from 4.812 (1) to 4.087 (3) Å upon complexation. The Se-Pt-Se angle is more obtuse than the equivalent angle in $[\text{PtMe}_3L^6]I$ (101.99°), while the N-Pt-Se angles are very acute (~79°) indicating the greater strain in accommodating the smaller, more rigid pyridyl linkage as opposed to $-(\text{CH}_2)_3\text{Se}(\text{CH}_2)_3$ which is more flexible. The bulky nature of both the pyridyl and xylyl linkages present in L^9 may indicate that tridentate coordination is the only possible mode on an octahedral metal, and that displacement of the I is vital to prevent steric clash.
Figure 5.14: Crystal structure of [PtMe$_3$L$_9$]I·CHCl$_3$. H atoms omitted for clarity.

Table 5.2: Selected bond lengths and angles for [PtMe$_3$L$_9$]I·CHCl$_3$.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt1–C16</td>
<td>2.08 (2)</td>
<td>C16–Pt1–C17</td>
<td>86.7 (10)</td>
<td>C17–Pt1–Se2</td>
<td>96.9 (7)</td>
</tr>
<tr>
<td>Pt1–C17</td>
<td>2.05 (2)</td>
<td>C16–Pt1–C18</td>
<td>83.6 (10)</td>
<td>C18–Pt1–N1</td>
<td>99.4 (9)</td>
</tr>
<tr>
<td>Pt1–C18</td>
<td>2.09 (2)</td>
<td>C16–Pt1–N1</td>
<td>98.5 (8)</td>
<td>C18–Pt1–Se1</td>
<td>167.2 (7)</td>
</tr>
<tr>
<td>Pt1–N1</td>
<td>2.180 (18)</td>
<td>C16–Pt1–Se1</td>
<td>83.8 (8)</td>
<td>C18–Pt1–Se2</td>
<td>84.2 (7)</td>
</tr>
<tr>
<td>Pt1–Se1</td>
<td>2.533 (2)</td>
<td>C16–Pt1–Se2</td>
<td>167.1 (8)</td>
<td>N1–Pt1–Se1</td>
<td>79.6 (5)</td>
</tr>
<tr>
<td>Pt1–Se2</td>
<td>2.517 (3)</td>
<td>C17–Pt1–C18</td>
<td>87.2 (11)</td>
<td>N1–Pt1–Se2</td>
<td>79.3 (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C17–Pt1–N1</td>
<td>171.9 (9)</td>
<td>Se1–Pt1–Se2</td>
<td>108.05 (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C17–Pt1–Se1</td>
<td>95.0 (8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reaction of one equivalent of L$_{10}$ with [PtMe$_3$I] in refluxing CHCl$_3$ caused a yellow solid to precipitate from the reaction mixture. This solid was collected by filtration, washed with CHCl$_3$ and dried *in vacuo*. As with [PtMe$_3$L$_9$]I, this solid was extremely poorly soluble in chlorocarbons, and only slightly more soluble in MeCN, so again a 13C(1H) NMR spectrum was not obtained, and the solid was identified as [PtMe$_3$L$_{10}$]I by microanalysis, ES$^+$ MS, 1H, 77Se(1H) and 195Pt NMR spectroscopy. Figure 5.15 shows the 1H NMR spectrum, in which the resonances from the methyl groups on Pt can clearly be seen, with 2J$_{PtH}$ coupling evident. This coupling is as expected for Me trans Se (67 Hz), and trans N (72 Hz). The propyl backbone protons show broad resonances at 1.82 and 3.00 ppm, and the CH$_2$ linkage on the pyridyl ring has split into a complex pattern of peaks between 4.54 and 4.85 ppm. Again, this is probably due to spatial proximity of protons to Pt.
Chapter 5

5.4 – Conclusions

The first examples of complexes with tridentate homoleptic selenoether macrocycles and tridentate Se₂N macrocycles have been prepared and characterised. Dichloro Pt(II) complexes were prepared for L₆⁻⁸, but proved to be extremely poorly soluble. This continues a trend towards insolubility observed in Chapter 2. No evidence of dimethyl Pt(II) complexation was observed.

Reaction of [PtMe₃I] with L₆⁻¹⁰ resulted in the production of fac-coordinated, cationic Pt complexes of the type [PtMe₃L]I. This geometry is confirmed by two crystal structures, of [PtMe₃L₆]I and [PtMe₃L₉]I. The ability to displace coordinated iodide without the aid of an iodide abstractor is independent both of macrocycle ring size and donor set, and demonstrates strong coordinating properties. The nature of the linking groups also plays an important role in determining the solubility of these complexes.

Figure 5.15: ¹H NMR spectrum of [PtMe₃L¹⁰]I recorded in CD₃CN.
Chapter 5

5.5 – Experimental

[PtCl₂(L⁶ antioxidant)]: [PtCl₂] (0.063 g, 0.23 mmol) was dissolved in MeCN (20 cm³). The solution was refluxed and stirred until all of the [PtCl₂] dissolved giving a light yellow solution. To this solution, L⁶ (0.105 g, 0.23 mmol) was added in CH₂Cl₂ (10 cm³). The reaction mixture was refluxed overnight and the yellow solid precipitate was filtered, washed with CHCl₂ and dried in vacuo. Yield: 0.113 g, 72%. Required for C₁₂H₂₅CL₂PtSe₅ (691.17): C, 24.3; H, 2.9; found: C, 24.1; H, 3.1%. ¹⁹⁵Pt NMR (D₂O-dmf, 298 K); δ = -3644 (weak, due to poor solubility). IR (Nujol): 310 br (Pt–Cl) cm⁻¹.

[PtCl₂(L⁷ antioxidant)]: [PtCl₂] (0.082 g, 0.30 mmol) was refluxed in MeCN (20 cm³) for one hour. The solution was filtered to remove any unreacted PtCl₂. To the yellow filtrate, L⁷ (0.112 g, 0.30 mmol) in CH₂Cl₂ (10 cm³) was added. The reaction mixture was refluxed for 4 hours, then stirred overnight at room temperature. The yellow precipitate was filtered, washed with CHCl₃ and dried in vacuo. Yield: 0.09 g, 46%. Required for C₁₂H₁₈CL₂PtSe₅·2CHCl₃ (629.12): C, 15.2; H, 2.3; found: C, 15.2; H, 2.6 %. IR (Nujol): 314 br (Pt–Cl) cm⁻¹.

[PtCl₂(L⁸ antioxidant)]: As above, using [PtCl₂] (0.042 g, 0.158 mmol) and L⁸ (0.0629 g, 0.158 mmol). Yield: 78%. Required for C₁₂H₁₈CL₂PtSe₅·2H₂O (665.15): C, 21.2; H, 2.7; found: C, 21.5; H, 3.4%. IR (Nujol): 325, 315 (Pt–Cl) cm⁻¹.

[PtMe₃(L⁶ antioxidant)I]: L⁶ (0.122 g, 0.28 mmol) in CH₂Cl₂ (10 cm³) was added slowly to a solution of [PtMe₃I] (0.1 g, 0.27 mmol) in CH₂Cl₂ (10 cm³). The reaction mixture was refluxed overnight, yielding some pale yellow solid. The chloroform solution was concentrated in vacuo and diethyl ether added. The product was filtered off and then washed with methanol (50 cm³) and dried in vacuo giving an off-white solid. Yield: 0.19 g, 88%. Required for C₁₂H₂₉PtSe₅I (792.27): C, 25.7; H, 3.69; found: C, 25.7; H, 3.80 %. ES’ MS (CH₃CN): m/z = 665 [C₁₂H₂₉¹⁹⁵Pt⁸⁰Se₅I]⁺. ¹H NMR (CD₃CN): δ = 0.32 (s, 3H PtCH₃), ²J_{Pt–H} = 65 Hz), 0.82 (s, 6H PtCH₃), ²J_{Pt–H} = 66 Hz, ³J_{Se–H} = 11 Hz), 2.5, 2.7, 3.1, 3.2, 4.3, 4.9 (multiplets) 7.3 – 7.5 (multiplet, 4H xylyl protons). ⁷⁷Se(¹H) NMR (CD₃CN, 298 K): δ = 88.8, 154.6 (¹⁹⁵Pt satellites not resolved); (CD₃CN, 233 K): δ = 151.6 (¹J_{Pt–Se} = 328 Hz, 2Se), 77.9 (Se). ¹⁹⁵Pt NMR (CD₃CN): δ = -3768; (CD₃CN, 233 K): δ = -3791.

[PtMe₃(L⁷ antioxidant)I]: To a solution of [PtMe₃I] (0.1 g, 0.27 mmol) in CH₂Cl₂ (10 cm³) was added a solution of L⁷ (0.098 g, 0.27 mmol) in CH₂Cl₂ (10 cm³). The reaction was refluxed overnight. On cooling, the reaction mixture was filtered and the light yellow product obtained by removal of solvent from the filtrate. Yield: 0.14 g, 72%. Required for C₁₂H₂₇PtSe₅I (730.21): C, 19.7; H, 3.7. Found: C, 19.9; H 3.5%. ES’ MS (CH₃CN): m/z = 603 [C₁₂H₂₇¹⁹⁵Pt⁸⁰Se₅I]⁺. ¹H NMR (CDCl₃); δ =
0.97 (s, 9H PtCH₃, ²J_p-H = 65 Hz, ³J_s-H = 10 Hz), 2.213 (overlapping multiplets), 2.87 (overlapping multiplets), 3.59 (overlapping multiplets). ¹³C{¹H} (CDCl₃): δ = 5.1 (PtMe, ²J_p-C = 729 Hz), 24.9 (SeCH₂), 25.3 (SeCH₂CH₂). ⁷⁷Se{¹H} NMR (CDCl₃): δ = 88.8 (¹J_p-Se = 286.4 Hz). ¹⁹⁵Pt (CDCl₃): δ = −3866.

[PtMe₃(L⁸)]⁺: As above, using [PtMe₃I] (0.074 g, 0.20 mmol) and L⁸ (0.80 g, 0.20 mmol). Fawn coloured solid. Yield: 70 %. Required for C₁₃H₁₃PtSe₅CHCl₃ (764.22): C, 21.7; H, 3.0. Found: C, 21.4; H 3.1. ES⁺ MS (CH₃CN): m/z = 637 [C₁₃H₁₂₂¹⁹⁵Pt⁸₀Se₅]⁺. ¹H NMR (CDCl₃, 298 K): δ = 7.35–7.95 (m, o-C₆H₄), 2.0–3.7 (br m, CH₂, 12H), 1.38 (s, ³J_p-H = 69 Hz, 2 x PtMe, 6H), 1.23 (s, ³J_p-H = 66 Hz, PtMe, 3H). ¹³C{¹H} NMR (CDCl₃, 298 K): δ = 135.9, 132.5 (aromatic C), 32.4, 25.9, 25.8 (CH₂), 5.4 (¹J_p-C = 603 Hz, 2 x PtMe), 1.0 (¹J_p-C = 597 Hz, PtMe). ⁷⁷Se{¹H} NMR (CD₃Cl, 223 K): δ = 341.5 (¹J_p-Se = 293 Hz, 2Se), 71.8 (¹J_p-Se = 318 Hz, Se). ¹⁹⁵Pt NMR (CD₃Cl, 223 K): δ = −3674.

[PtMe₃(L⁹)]⁺: [PtMe₃I] (0.048 g, 0.13 mmol) was dissolved in CH₂Cl (10 cm³). L⁹ (0.048 g, 0.13 mmol) in CH₂Cl (10 cm³) was added. The reaction mixture was reflushed overnight. The yellow solution was reduced to ca. 5 cm³ in vacuo. Cold diethyl ether (~15 cm³) was added dropwise to precipitate a yellow solid, which was filtered off and dried in vacuo. Yield: 0.07 g, 75 %. ES⁺ MS (CH₃CN): m/z = 608 [C₁₃H₁₃₂N¹⁹⁵Pt⁸₀Se₅]⁺. ¹H NMR (CDCl₃, 298 K): δ = 7.99 (m, aromatic CH), 7.23–7.37 (m, aromatic CH), 5.25 (m, CH₂, 2H), 4.68 (m, CH₂, 2H), 4.62 (m, CH₂, 2H), 3.38 (m, CH₂, 2H), 0.94 (s, ²J_p-H = 66 Hz, 6H, 2 x PtMe), 0.71 (s, ²J_p-H = 72 Hz, 3H, PtMe). ¹³C{¹H} NMR (CDCl₃, 298 K): δ = 160.5, 140.6, 132.6, 131.5, 130.0, 126.7 (aromatic C atoms), 40.3 (pyridyl-CH₂), 28.0 (Ar-CH₂), 7.3 (¹J_p-C = 605 Hz, 2 x PtMe), 1.8 (coupling ill-defined, PtMe). ⁷⁷Se{¹H} NMR (CD₃Cl): δ = 325.2 (¹J_p-Se = 279 Hz). ¹⁹⁵Pt (CDCl₃): δ = −3082.

[PtMe₃(L¹⁰)]⁺: As above, using [PtMe₃I] (0.1 g, 0.27 mmol) and L¹⁰ (0.08 g, 0.27 mmol). The yellow precipitate formed during reaction was filtered off and washed with CHCl₃. Yield: 0.12 g, 68%. Required for C₁₃H₁₃₂N₁₉⁵Pt₂Se₂ (672.2): C, 23.2; H, 3.30; N, 2.08; found: C, 22.7; H, 3.25; N, 2.01. ES⁺ MS (CH₃CN): m/z = 546 [C₁₃H₁₂₂¹⁹⁵Pt⁸₀Se₂]⁺. ¹H NMR (CD₂CN, 298 K): δ = 7.98 (t, pyridyl, 1H), 7.59 (d, pyridyl, 2H), 4.54–4.85 (m, pyridyl-CH₂Se, 4H), 3.00 (br t, SeCH₂CH₂CH₂Se, 4H), 1.82 (br m, CH₂CH₂CH₂, 2H), 1.16 (s, ¹J_p-C = 72 Hz, 3H, PtMe), 0.98 (s, ¹J_p-C = 67 Hz, 6H, 2 x PtMe). ⁷⁷Se{¹H} NMR (CD₂CN, 233 K): δ = 288 (broad). ¹⁹⁵Pt NMR (CD₂CN, 298 K): δ = −3227 (broad); (CD₂CN, 233 K): −3250 (broad).
Chapter 5

5.6 – X-Ray Crystallography

Details of the crystallographic data collection and refinement parameters are given in Table 5.3. Colourless single crystals of \([\text{PtMe}_3(L^6)]\text{I} \cdot 0.13\text{CH}_2\text{Cl}_2\) and \([\text{PtMe}_3(L^9)]\text{I} \cdot \text{CHCl}_3\) were obtained by recrystallisation from CH₂Cl₂ and CHCl₃ respectively. Structure solution and refinement were routine.²⁸,²⁹ Selected bond lengths and angles for \([\text{PtMe}_3(L^6)]\text{I} \cdot 0.13\text{CH}_2\text{Cl}_2\) are presented in Table 5.1 and for \([\text{PtMe}_3(L^9)]\text{I} \cdot \text{CHCl}_3\) are presented in Table 5.2.

Table 5.3: Crystallographic data collection and refinement parameters. $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|; wR_2 = \Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4)^{1/2}$

<table>
<thead>
<tr>
<th>Complex</th>
<th>([\text{PtMe}_3(L^6)]\text{I} \cdot 0.13\text{CH}_2\text{Cl}_2)</th>
<th>([\text{PtMe}_3(L^9)]\text{I} \cdot \text{CHCl}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{17.13}H_{29.26}Cl_{0.26}IPtSe$_3$</td>
<td>C_{19}H_{25}Cl$_3$INPtSe$_2$</td>
</tr>
<tr>
<td>M</td>
<td>803.15</td>
<td>853.66</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space Group</td>
<td>Pbca</td>
<td>Pbca</td>
</tr>
<tr>
<td>a/Å</td>
<td>10.7267 (10)</td>
<td>12.534 (3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>25.698 (2)</td>
<td>22.046 (6)</td>
</tr>
<tr>
<td>c/Å</td>
<td>17.4365 (15)</td>
<td>17.858 (5)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>U/Å3</td>
<td>4806.4 (7)</td>
<td>4935 (2)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>μ(Mo-Kα)/ mm$^{-1}$</td>
<td>11.692</td>
<td>10.220</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.044</td>
<td>0.128</td>
</tr>
<tr>
<td>Total no. reflns.</td>
<td>24343</td>
<td>37833</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>5475</td>
<td>4832</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>209</td>
<td>247</td>
</tr>
<tr>
<td>$R1 [I_o > 2\sigma(I_o)]$</td>
<td>0.036</td>
<td>0.098</td>
</tr>
<tr>
<td>$R1$ [all data]</td>
<td>0.081</td>
<td>0.173</td>
</tr>
<tr>
<td>$wR_2 [I_o > 2\sigma(I_o)]$</td>
<td>0.044</td>
<td>0.168</td>
</tr>
<tr>
<td>wR_2 [all data]</td>
<td>0.085</td>
<td>0.205</td>
</tr>
</tbody>
</table>
5.7 – References

131

28. Sheldrick, G. M. SHELXS-97, program for crystal structure solution, University of Göttingen, Germany, **1997**.

29. Sheldrick, G. M. SHELXS-97, program for crystal structure refinement, University of Göttingen, Germany, **1997**.
Chapter 6: 3d Metals with Selenium Containing Ligands1,2

6.1 – Cobalt, Chromium and Vanadium Complexes with Thio- and Selenoether Ligands

There are only a few complexes involving cobalt halides and thio- or selenoethers, and these predominantly involve Co(III), which is unexpected as Co(III) is regarded as a hard metal. A study of Co(III) halide complexes with tetrathioethers has produced a range of complexes of the type $[\text{CoX}_2L]Y$ (X = Cl, Br, I; Y = BPh$_4$, BF$_4$; L = MeSRS(CH$_2$)$_n$SMe (R = (CH$_2$)$_2$, (CH$_2$)$_3$, o-C$_6$H$_4$), [14]aneS$_4$).6 This showed that in the case of the open chain tetrathioethers, the most stable complexes were formed where all the chelate rings were five membered. The macrocyclic complex is much more stable towards solvents than the acyclic complexes. Reaction of CoX$_2$ (X = Cl, Br, I) with MeSe(CH$_2$)$_2$SeMe and NaBPh$_4$ generates the dry air stable complexes $[\text{CoX}_2(\text{MeSe(CH$_2$)$_2$SeMe})_2]BPh$_4$\textsubscript{4}4, whilst similar reactions with MeSe(CH$_2$)$_2$SeMe and PhSe(CH$_2$)$_2$SePh produce no isolatable products.7 A set of Co(III) complexes with a selenoether macrocycle, $[\text{CoX}_2([16]aneSe$_4$)]PF$_6$ (where X = Cl, Br, I), have been produced by air oxidation of CoX$_2$ and [16]aneSe$_4$ in MeNO$_2$ followed by addition of NH$_4$PF$_6$ (see chapter 5).8

Co(II) complexes are only known for a small number of thioether ligands, and none are known for selenium or tellurium ligands. Reaction of anhydrous $[\text{CoX}_2]$ (X = Cl, Br, I) with dithioethers in dry ethanol has produced a series of Co(II) complexes of the type $[\text{Co(L-L)}_2X_2]$, where L-L = MeS(CH$_2$)$_2$SMe,9,10 EtS(CH$_2$)$_2$Se9 or PrS(CH$_2$)$_2$SPr.10 The spectroscopic data obtained on these complexes confirmed an octahedral Co environment. A decrease in stability is observed as the terminal substituent becomes more bulky, which may be due to increased solubility leading to greater susceptibility to hydrolysis. Attempted reactions using 1BuS(CH$_2$)$_2$S1Bu exhibited colour changes indicative of complex formation, but no pure samples could be obtained, whilst using PhS(CH$_2$)$_2$SPh produced no evidence of complex formation.10 Interestingly, reaction of CoCl$_2$ and MeS(CH$_2$)$_2$SMe in benzene produces a green compound which analyses as $[\text{Co(MeS(CH$_2$)$_2$SMe})_2\text{Cl}_2]$ and has bands in its electronic spectra consistent with $[\text{CoCl}_4]^{2-}$.10 $[\text{Co(MeS(CH$_2$)$_2$SMe})_2\text{Cl}_2]$ is considered to have a polymeric structure, with tetrahedral $[\text{CoCl}_4]^{2-}$ and $[\text{Co(MeS(CH$_2$)$_2$SMe})_2]^{2+}$ units wherein the Co has a distorted octahedral geometry.10

A number of Co(II) complexes with homoleptic thioether coordination have been reported. $[\text{Co(MeS(CH$_2$)$_2$S(CH$_2$)$_2$SMe})_2][\text{BF}_4]_2$,11 $[\text{Co([9]aneS$_3$})_2][\text{BF}_4]_2$12 and $[\text{Co([18]aneS$_6$})](\text{picrate})_2$11,13 all have crystal structures confirming distorted octahedral geometry about cobalt. The distortion is not uniform, however, as $[\text{Co([9]aneS$_3$})_2][\text{BF}_4]_2$ shows the axial bonds to be slightly shorter than the equatorial bonds, while $[\text{Co(MeS(CH$_2$)$_2$S(CH$_2$)$_2$SMe})_2][\text{BF}_4]_2$ and $[\text{Co([18]aneS$_6$})](\text{picrate})_2$
show the reverse. $[\text{Co}([9]\text{aneS}_3)_2]^{2+}$ and $[\text{Co}([18]\text{aneS}_6)_2]^{2+}$ also exhibit reversible oxidations to Co(III) species, with unusually high redox potentials compared to similar amine complexes.13

Figure 6.1: Crystal structures of $[\text{Co}([18]\text{aneS}_6)_2]^{2+}$ (left) and $[\text{Co}(\text{MeS} \{\text{CH}_2\}_2\text{S}\{\text{CH}_2\}_2\text{SMe})_2]^{2+}$ (right). Thermal ellipsoids at 50 % probability. H atoms omitted for clarity.11

Table 6.1: Average Co-S bond lengths for distorted octahedral homoleptic Co(II) complexes with thioether ligands.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Co-S equatorial bond length /Å</th>
<th>Co-S axial bond length /Å</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Co}(\text{MeS} {\text{CH}_2}_2\text{S}{\text{CH}_2}_2\text{SMe})_2_2$</td>
<td>2.254</td>
<td>2.607</td>
<td>11</td>
</tr>
<tr>
<td>$\text{Co}([9]\text{aneS}_3)_2_2$</td>
<td>2.361</td>
<td>2.240</td>
<td>12</td>
</tr>
<tr>
<td>$\text{Co}([18]\text{aneS}_6)_2_2$</td>
<td>2.271</td>
<td>2.479</td>
<td>11</td>
</tr>
</tbody>
</table>

A number of Cr(0) complexes with chalcogenoether ligands are known,5 but the known complexes with Cr(III) are primarily with oxygen and sulfur ligands, with very few examples containing selenoethers.3,5 Vanadium complexes with selenoethers are even less well known.5 Given the hard-soft mismatch between chromium/vanadium and selenoethers, this lack of characterised complexes is not surprising.

Reaction of $[\text{CrCl}_3(\text{thf})_3]$ with various macrocyclic ligands in dry CH\textsubscript{2}Cl\textsubscript{2} produces [CrCl\textsubscript{3}L] as pink solids in the case of crown ethers (L = 12-crown-4, 15-crown-5, 18-crown-6),14 and blue or purple solids in the case of thio- and mixed thio-oxo-macrocycles (L = [9]aneS\textsubscript{3},15 [10]aneS\textsubscript{3},15 [12]aneS\textsubscript{4},14 [15]aneS\textsubscript{5},14 [9]aneS\textsubscript{2}O,14 [15]aneS\textsubscript{2}O\textsubscript{3},14 [18]aneS\textsubscript{3}O\textsubscript{3}). $[\text{CrCl}_3(\text{thf})_3]$ can also be reacted in 2:1 ratio with hexadentate macrocycles to yield [(CrCl\textsubscript{3})(18-crown-6)]14 or [[CrCl\textsubscript{3}][([18]aneS\textsubscript{6})].15 Similarly, reaction of $[\text{VCl}_3(\text{thf})_3]$ produces [VCl\textsubscript{3}L] as pink solids (L = 12-crown-4, 15-crown-5, 18-crown-6, [12]aneS\textsubscript{4}, [9]aneS\textsubscript{2}O, [15]aneS\textsubscript{2}O\textsubscript{3}, [18]aneS\textsubscript{3}O\textsubscript{3}), or the 2:1 complex [(VCl\textsubscript{3})(18-crown-6)].14 The crown ether complexes must be prepared in rigorously
anhydrous conditions, as they will coordinate water readily, for example crystal structures of
[MCl$_3$(H$_2$O)(15-crown-5)] (M = Cr, V) have been reported. This tendency is reduced in the case of
the mixed donor macrocycles. EXAFS experiments on macrocyclic thioether complexes have shown that these complexes have longer Cr-S bonds than Cr-Cl bonds, which is consistent with a weak thioether-Cr interaction.

![Crystal structure of [CrCl$_3$([15]aneS$_5$)]. Ellipsoids at 50% probability, H atoms omitted for clarity.](image)

Chromium(III) complexes with an X$_3$Se$_3$ donor set have been produced by reaction of [CrX$_3$(thf)$_3$] (X = Cl, Br) with the triselenoethers MeC(CH$_2$SeMe)$_3$ and Se{(CH$_2$)$_3$SeMe)$_2$ in anhydrous CH$_2$Cl$_2$, yielding green powders of the type [CrX$_3$L]. IR spectroscopy appears to assign *fac* geometry to the MeC(CH$_2$SeMe)$_3$ complexes, and *mer* geometry to the Se{(CH$_2$)$_3$SeMe)$_2$ complexes. These complexes are moisture sensitive, very poorly soluble in chlorocarbons and decomposed by oxygen or nitrogen donor solvents. The reaction of [CrX$_3$(thf)$_3$] in anhydrous MeNO$_2$ with [16]aneSe$_4$ and one equivalent of TIPF$_6$ gave blue [CrX$_2$([16]aneSe$_4$)]PF$_6$, but [CrX$_2$([8]aneSe$_2$)$_2$]PF$_6$ could not be produced under similar conditions. [CrX$_2$([16]aneSe$_4$)]PF$_6$ have been assigned as the *cis* isomers, and are more soluble in organic solvents than the triselenoether complexes, but are still hydrolytically unstable. The analogous [CrCl$_2$([16]aneS$_4$)]PF$_6$ and related [CrCl$_2$([14]aneS$_4$)]PF$_6$, which are produced by the same route, have also been identified as existing as the *cis* isomers from their UV-vis spectra. This geometry has been corroborated for [CrX$_2$([14]aneS$_4$)]PF$_6$ (X = Cl, Br) by crystal structures.
The only known V(III) selenoether complexes are \([\text{VCl}_3(L-L)]\) (L-L = MeSe(CH\(_2\))\(_n\)SeMe, \(n = 2, 3\); \(\text{8BuSe(\text{CH}_2)_2\text{Se8Bu}\); \(\text{6C}_6\text{H}_4(\text{CH}_2\text{SeMe})_2\)) and \([\text{VCl}_3(\text{SeMe}_2)_2]\) which are produced by reacting \(\text{VCl}_4\) with excess selenoether in gently refluxing \(\text{CH}_2\text{Cl}_2\). Use of a 1:1 ratio of vanadium:diselenoether results in the V(IV) species \([\text{VCl}_3(L-L)]\). The V(III) complexes are insoluble in chlorocarbons and MeCN, decomposed by alcohols and moisture sensitive, although they are less readily hydrolysed than the V(IV) complexes.

Vanadium(III) complexes with an X\(_3\)S\(_3\) donor set have been produced by reaction of \([\text{VX}_3(\text{thf})_3]\) (X = Cl, Br) with \(\text{MeC(\text{CH}_2\text{SMe})}_3\); [9]aneS\(_3\) or [10]aneS\(_3\) in 1:1 ratio, giving \([\text{VX}_3L]\) complexes, or in 2:1 ratio with [18]aneS\(_6\) to give \([\text{VX}_3][\text{[18]aneS}_6]\). \([\text{VCl}_3(\text{thf})_3]\) can also be reacted with [9]aneS\(_3\) to produce \([\text{VCl}_3(\text{[9]aneS}_3)\]). The tridentate ligands are sterically constrained to produce complexes with \(\text{fac}\) geometry, while the hexadentate macrocycle complexes also have UV-vis spectra consistent with \(\text{fac}\) geometry. \([\text{VCl}_3(\text{[9]aneS}_3)\]) can also be produced by reaction of [9]aneS\(_3\) with [VCl\(_3\)(MeCN)]\(_3\) or [VCl\(_3\)(OPMe\(_2\)Ph)(PMe\(_2\)Ph)]\(_2\).
6.2 – Aims
The aims of this chapter are to investigate the coordination chemistry of selenoether ligands towards 3d metals. To this end, an investigation into Co(II) chemistry with thioether and selenoether acyclic ligands with xylyl backbones, and an investigation into the coordination of the new selenium-rich tridentate macrocycles produced in chapters 3 and 4 with Cr(III) and V(III) has been undertaken. It is hoped that the macrocyclic effect will improve stability of the soft selenoethers towards the hard metals. The presence of the hard O and pyridyl N donors may also increase stability.

6.3 – Cobalt(II) with Acyclic Thio- and Selenoether Ligands
Recently within this research group a crystal structure was obtained of [CoI₂(C{CH₂SMe})₂] (Figure 6.6)\(^1\) and an exploratory reaction of CoI₂ with \(\cdot\)-C\(_6\)H\(_4\)(CH\(_2\)SeMe)\(_2\) had crystalline deposits. [CoI₂(\(\cdot\)-C\(_6\)H\(_4\){CH₂SMe})₂] was remade, by adding \(\cdot\)-C\(_6\)H\(_4\)(CH₂SMe)\(_2\) in anhydrous CH\(_2\)Cl\(_2\) was added to CoI₂ in dry \(n\)-butanol. The reaction was undertaken in a dinitrogen atmosphere using rigorously dry solvents, reactants and glassware. A green solid was obtained after the solvent was removed \textit{in vacuo} and the solid washed with dry hexane. Microanalysis confirmed the 1:1 ratio of ligand:cobalt. Crystals were grown by addition of petroleum ether to the reaction mixture before the solvent was removed, and crystal structure obtained (Figure 6.5). This clearly shows the tetrahedral structure of the complex, with the Co experiencing \(\text{I}_2\text{S}_2\) coordination. This was somewhat unexpected, as previously reported Co(II) thioether complexes have been of the form \([\text{Co}(L-L)_2X_2]\) (X = Cl, Br, I; L-L = MeS(CH\(_2\))\(_2\)SMe, EtS(CH\(_2\))\(_2\)SEt, PrS(CH\(_2\))\(_2\)SPr) with octahedral structures.\(^9\)\(^10\)

![Crystal structure of [CoI₂(\(\cdot\)-C\(_6\)H\(_4\){CH₂SMe})₂].](image)

Figure 6.5: Crystal structure of [CoI₂(\(\cdot\)-C\(_6\)H\(_4\){CH₂SMe})₂]). H atoms omitted for clarity. Ellipsoids at 50% probability level.
Table 6.2: Selected bond lengths and angles for [CoI₂(o-C₆H₄(CH₂SMe)₂)].

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length / Å</th>
<th>Bond</th>
<th>Angle / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co1–I1</td>
<td>2.5395 (5)</td>
<td>I1–Co1–I2</td>
<td>117.727 (18)</td>
</tr>
<tr>
<td>Co1–I2</td>
<td>2.5548 (5)</td>
<td>I1–Co1–S4</td>
<td>113.29 (3)</td>
</tr>
<tr>
<td>Co1–S4</td>
<td>2.3726 (9)</td>
<td>I1–Co1–S5</td>
<td>111.65 (2)</td>
</tr>
<tr>
<td>Co1–S5</td>
<td>2.3457 (9)</td>
<td>I2–Co1–S4</td>
<td>99.88 (2)</td>
</tr>
<tr>
<td>I1–Co1</td>
<td></td>
<td>I2–Co1–S5</td>
<td>111.65 (2)</td>
</tr>
<tr>
<td>I2–Co1</td>
<td></td>
<td>S4–Co1–S5</td>
<td>107.51 (3)</td>
</tr>
</tbody>
</table>

UV-vis data was obtained on the isolated solid both as diffuse reflectance using BaSO₄ and in solution in anhydrous CH₂Cl₂. The solution UV-vis spectrum show extinction coefficients in the range 450 – 1200 cm⁻¹ dm³ mol⁻¹, which would be expected for Laporte-forbidden d-d transitions in a non-centrosymmetric environment, confirming the tetrahedral I₂S₂ coordination of [CoI₂(o-C₆H₄(CH₂SMe)₂)]. Three transitions are observed, corresponding to ³A₂ → ³T₂, ³A₂ → ³T₁ (F) and ³A₂ → ³T₁ (P).

o-C₆H₄(CH₂SMe)₂ was then reacted with one equivalent of CoBr₂ under the same conditions as for CoI₂. A turquoise solid was obtained, which was identified as [CoBr₂(o-C₆H₄(CH₂SMe)₂)] by microanalysis and UV-vis spectroscopy, which again clearly showed tetrahedral co-ordination. Production of [CoCl₂(o-C₆H₄(CH₂SMe)₂)] was attempted by an analogous route, using CoCl₂, but the blue solid observed in the reaction mixture proved to be much less stable and could not be isolated. Reaction of CoI₂ in anhydrous n-BuOH with a solution of o-C₆H₄(CH₂SeMe)₂ in anhydrous CH₂Cl₂ produced a light green solid, which was isolated by removing the solvent in vacuo and washing with anhydrous hexane. UV-vis spectroscopy again clearly showed tetrahedral co-ordination with ε mol values of 1082, 823 and 489 cm⁻¹ dm³ mol⁻¹, although the spectrum is very similar to that of [CoI₄]²⁺. The peaks are all ~ 400 cm⁻¹ lower than those in [CoI₂(o-C₆H₄(CH₂SMe)₂)], which is consistent with the desired product, as the selenoether is expected to exert a weaker ligand field than the analogous thioether. Attempts to produce [CoBr₂(o-C₆H₄(CH₂SeMe)₂)] yielded no isolatable products. This increasing instability as the halogen ligand is altered is the reverse of that observed in Co(III) complexes with MeSe(CH₂)₂SeMe, as the diiodide complex [CoI₂(MeSe(CH₂)₂SeMe)₂]BPh₄ is less stable and less soluble than its corresponding dibromo or dichloro complexes.
As work in this group has recently demonstrated that reaction of the spirocyclic thioether C(CH$_2$SMe)$_4$ with [CoI$_2$] leads to the formation of [CoI$_2$(C(CH$_2$SMe)$_4$)], which shows a rare reversible isomerisation between a polymeric structure in the solid state (shown in Figure 6.6) and discrete units in solution,1 a reaction between MeS(CH$_2$)$_3$SMe in anhydrous CH$_2$Cl$_2$ and [CoI$_2$] in anhydrous n-BuOH was attempted. It was hoped that another example of a Co(II)-thioether complex with a 6 membered chelate ring could be produced, however all attempts at this reaction produced only intractable black materials.

6.4 – Chromium(III) and Vanadium(III) Complexes with Selenium-rich Tridentate Macrocycles

[CrCl$_3$(thf)$_3$] was made by Soxhlet extraction of anhydrous CrCl$_3$ and zinc dust with thf. The extraction was run for ~15 hours, upon which time the purple solution was reduced in vacuo to yield [CrCl$_3$(thf)$_3$].23 The purple solid was handled only in a dinitrogen environment, and was stored in the glove box, as was [VCl$_3$(thf)$_3$], which was purchased from Aldrich and used without further purification. All the ligands were dried thoroughly before use, as were all solvents and glassware.
Figure 6.7: Selenium-rich macrocycles used in this chapter. See Chapters 3 (L1) and 4 (L6-L10) for preparation.

\[\text{[CrCl}_3\text{(thf)}]_3\] was dissolved in anhydrous CH\textsubscript{2}Cl\textsubscript{2}, and one equivalent of L6 was added in anhydrous CH\textsubscript{2}Cl\textsubscript{2} in a dinitrogen atmosphere. A fine precipitate formed immediately, which was collected by filtration, washed with anhydrous CH\textsubscript{2}Cl\textsubscript{2} and dried in vacuo. The purple solid was insoluble in chlorocarbons and hydrocarbons, and relatively sensitive to moisture. It was analysed by microanalysis, IR and UV-vis spectroscopy and by magnetic measurements. Microanalysis and a Nujol mull IR spectrum confirmed the presence of the macrocycle and the complete displacement of the thf, indicating the purple solid to be \([\text{CrCl}_3\text{(L}_6\text{)}]\). The IR spectrum also showed two Cr-Cl stretching bands, at 337 and 319 cm-1, which is consistent with a C\textsubscript{3v} local symmetry at Cr (a\textsubscript{1} + e).

An approximation of the magnetic moment of a complex can be calculated using the spin-only magnetic moment formula:

\[\mu = 2(S(S+1))^{1/2} \mu_B\]

where \(S\) is the total spin quantum number.22 For three unpaired electrons \(S\) is 1.5, and the expected magnetic moment is 3.87 \(\mu_B\). The magnetic susceptibility of \([\text{CrCl}_3\text{(L}_6\text{)}]\) was measured using a Johnson-Matthey magnetic balance and \(\mu_{\text{eff}}\) calculated to be 3.71 \(\mu_B\) which is consistent with a Cr(III) ion in an octahedral complex.
A diffuse reflectance UV-vis spectrum was recorded, using BaSO₄ as a dilutant, showing three bands. The Russell-Saunders ground state term for Cr³⁺ is ⁴I. In an O₆ environment, there is only one arrangement of the three electrons in the lower energy d-orbitals, so the ground state is a singlet ⁴A₂g state. Thus, three spin-allowed d-d bands are predicted for Cr(III) species, ⁴A₂g → ⁴T₂g (ν₁), ⁴A₂g → ⁴T₁g (F) (ν₂) and ⁴A₂g → ⁴T₁g (P) (ν₃), of which the latter is rarely observed as it is often obscured by intense charge-transfer bands. Reducing the symmetry from O₆ to C₃ᵥ should theoretically result in splitting of the bands, although in practice only broadening of the bands is observed usually. Owing to the geometric constraints of the ligand used, only the fac isomer is expected in [CrCl₃(L₆)]. Dq can be obtained directly from ν₁ by dividing by 10 (ΔO = 10 Dq), while the Racah parameter (B) can be extracted from the Tanabe-Sugano diagram for d³ metal centres (shown in Figure 6.8) by using the ratio of ν₂/ν₁ to obtain the ratio of ΔO/B. Table 6.3 shows the UV-vis data collected for the new complexes made in this Chapter, along with literature values for similar complexes, and are discussed below. L₃ in anhydrous CH₂Cl₂ was reacted
similarly with a solution of \([\text{CrCl}_3(\text{thf})_3]\) in anhydrous \(\text{CH}_2\text{Cl}_2\) and a deep purple solid precipitated almost immediately. The solid was collected by filtration and dried \textit{in vacuo}. IR and UV-Vis spectra collected on the purple solid were consistent with [CrCl\(_3\)(L\(^8\))].

[CrCl\(_3\)(thf)] was reacted with one equivalent of L\(^7\) under the same conditions. A colour change was observed immediately, and after reducing the solvent volume \textit{in vacuo} a green waxy solid was obtained. Washing with anhydrous hexane and heating in anhydrous CCl\(_4\) were tried, in the hope of generating a non-waxy solid, but without success. A magnetic measurement could not be obtained on this waxy solid, nor could a microanalysis. A Nujol mull IR spectrum and a diffuse reflectance UV-vis spectrum were obtained, and these were consistent with the data obtained from [CrCl\(_3\)(L\(^6\))] and [CrCl\(_3\)(L\(^8\))], allowing tentative identification of this green solid as [CrCl\(_3\)(L\(^7\))].

Table 6.3: Electronic spectroscopy data for [CrCl\(_3\)(L)]. Spectra recorded in diffuse reflectance mode using BaSO\(_4\) as a dilutant. a – B for the Cr(III) free ion = 918 cm\(^{-1}\). b – Spectra recorded in MeNO\(_2\). c – Solvent obscured band. d – no data reported.

<table>
<thead>
<tr>
<th>Complex</th>
<th>(^4!A_{2g} \rightarrow ^4!T_{2g}) /cm(^{-1})</th>
<th>(^4!A_{1g} \rightarrow ^4!T_{1g}) /cm(^{-1})</th>
<th>CT /cm(^{-1})</th>
<th>Dq /cm(^{-1})</th>
<th>B /cm(^{-1})</th>
<th>(\beta)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CrCl(_3)(L(^8))]</td>
<td>14530</td>
<td>19230</td>
<td>30300</td>
<td>1453</td>
<td>450</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>[CrCl(_3)(L(^7))]</td>
<td>14080</td>
<td>19490</td>
<td>29000</td>
<td>1410</td>
<td>530</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>[CrCl(_3)(L(^8))]</td>
<td>14180</td>
<td>19460</td>
<td>30700</td>
<td>1418</td>
<td>516</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>[CrCl(_3)(L(^7))]</td>
<td>14190</td>
<td>19920</td>
<td>29400</td>
<td>1420</td>
<td>575</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>[CrCl(_3)(L(^9))]</td>
<td>14080</td>
<td>19300</td>
<td>29400</td>
<td>1408</td>
<td>502</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>[CrCl(_3)(L(^{10}))]</td>
<td>14165</td>
<td>20020</td>
<td>30700</td>
<td>1417</td>
<td>550</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>[CrCl(_3)(MeC{CH(_2)SeMe}_3)]</td>
<td>14490</td>
<td>20500</td>
<td>27700</td>
<td>1449</td>
<td>617</td>
<td>0.67</td>
<td>16</td>
</tr>
<tr>
<td>[CrCl(_3)(Se{CH(_2)SeMe}_3)]</td>
<td>14620</td>
<td>20300</td>
<td>28900</td>
<td>1462</td>
<td>567</td>
<td>0.61</td>
<td>16</td>
</tr>
<tr>
<td>[CrCl(_3)([16]aneSe(_4))](^{+})</td>
<td>15580</td>
<td>20920</td>
<td>c</td>
<td>1558</td>
<td>511</td>
<td>0.56</td>
<td>16</td>
</tr>
<tr>
<td>[CrCl(_3)([9]aneS(_3))]</td>
<td>14450</td>
<td>20080</td>
<td>d</td>
<td>1445</td>
<td>556</td>
<td>0.61</td>
<td>15</td>
</tr>
<tr>
<td>[CrCl(_3)([10]aneS(_3))]</td>
<td>14750</td>
<td>20240</td>
<td>d</td>
<td>1473</td>
<td>590</td>
<td>0.64</td>
<td>15</td>
</tr>
<tr>
<td>([CrCl(_3)](_2)([18]aneS(_6))]</td>
<td>14450</td>
<td>19530</td>
<td>d</td>
<td>1445</td>
<td>516</td>
<td>0.56</td>
<td>15</td>
</tr>
<tr>
<td>[CrCl(_3)([14]aneS(_4))](^{+})</td>
<td>16500</td>
<td>22400</td>
<td>d</td>
<td>1650</td>
<td>536</td>
<td>0.58</td>
<td>15</td>
</tr>
<tr>
<td>[CrCl(_2)([16]aneS(_4))](^{+})</td>
<td>15820</td>
<td>21790</td>
<td>d</td>
<td>1582</td>
<td>546</td>
<td>0.59</td>
<td>15</td>
</tr>
</tbody>
</table>

[CrCl\(_3\)(thf)] was reacted similarly on anhydrous CH\(_2\)Cl\(_2\) with one equivalent of L\(^8\), which caused a grey precipitate to form. This solid was collected by filtration, dried \textit{in vacuo} and analysed by microanalysis, IR and UV-Vis spectroscopy and magnetic measurements. The IR spectrum showed three bands corresponding to Cr-Cl stretches, consistent with [CrCl\(_3\)(L\(^8\))], showing C\(_3\) local
symmetry at the Cr atom \((2a'+a'')\). The microanalysis was consistent with this formulation, and the magnetic measurement also corresponded to 3 unpaired electrons.

\([\text{CrCl}_3(\text{thf})_3]\) was reacted similarly on anhydrous \(\text{CH}_2\text{Cl}_2\) with one equivalent of \(\text{L}^{10}\), which caused a purple precipitate to form. This solid was collected by filtration, dried \textit{in vacuo} and analysed by microanalysis, IR and UV-vis spectroscopy and magnetic measurements. The magnetic measurement was the highest observed for these new complexes, being 4.01 \(\mu_B\), but this is still consistent with three unpaired electrons (3.87 \(\mu_B\)). The IR and UV-vis spectra were also consistent with octahedral Cr(III), and the microanalysis confirmed the 1:1 ligand:metal ratio of \([\text{CrCl}_3(\text{L}^{10})]\).

It was decided to also investigate the reaction of the tridentate saturated backbone Se\(_3\)O macrocycle made in Chapter 3 with Cr(III) to observe the changes in moving from the third donor being N to O. \(\text{L}^1\) was reacted with \([\text{CrCl}_3(\text{thf})_3]\) in anhydrous \(\text{CH}_2\text{Cl}_2\) in similar fashion, and a purple solid was produced, which was collected by filtration and dried \textit{in vacuo}. It was analysed by microanalysis, IR and UV-vis spectroscopy and magnetic measurements. Microanalysis confirmed the empirical formula to be \([\text{CrCl}_3(\text{L}^1)]\), while the IR spectrum showed three Cr-Cl stretches at 347, 340 and 331 cm\(^{-1}\), consistent with \(\text{C}_3\) local symmetry. The magnetic moment was consistent with three unpaired electrons.

Comparing the UV-vis spectroscopic data obtained from the new Cr(III) complexes with those for previously published complexes, it can be seen that the Racah parameter, \(B\), and nephelauxetic ratio, \(\beta\), for the homoleptic Se\(_3\) ligand complexes (\(\text{[CrCl}_3(\text{L}^5)]\): \(B = 450\) cm\(^{-1}\), \(\beta = 0.49\), \(\text{[CrCl}_3(\text{L}^7)]\): \(B = 530\) cm\(^{-1}\), \(\beta = 0.58\), \(\text{[CrCl}_3(\text{L}^9)]\): \(B = 516\) cm\(^{-1}\), \(\beta = 0.56\)) are slightly lower than those for the similar complexes with acyclic triselenoethers \(\text{[CrCl}_3(\text{MeC}\{\text{CH}_2\text{SeMe}\}_3)]\) \((B = 617\) cm\(^{-1}\), \(\beta = 0.67)\) and \(\text{[CrCl}_3(\text{Se}\{\text{CH}_2\text{SeMe}\}_2)]\) \((B = 567\) cm\(^{-1}\), \(\beta = 0.61)\) whilst being similar to the macrocyclic \(\text{[CrCl}_3([16]\text{aneSe}_4)]\)\(^+\) cation \((B = 511\) cm\(^{-1}\), \(\beta = 0.56)\).\(^{16}\) The relatively low values of \(\beta\) are consistent with covalent interactions between the soft selenium ligands and the hard metal centre. They are also slightly lower than those in complexes with similar macrocyclic thioethers, such as \(\text{[CrCl}_3(\text{[9]}\text{aneS}_3)]\) \((B = 556\) cm\(^{-1}\), \(\beta = 0.61)\) and \(\text{[CrCl}_3(\text{[10]}\text{aneS}_3)]\) \((B = 590\) cm\(^{-1}\), \(\beta = 0.64).^{15}\) The ligands containing N- and O-donor groups \((\text{L}^1, \text{L}^9\) and \(\text{L}^{10})\) lead to slightly higher values than those of the analogous homoleptic Se ligands, consistent with the presence of the harder donors. There is little change in the ligand field strength upon addition of the harder N- or O- donors, with \(Dq\) remaining similar for all the new complexes except \(\text{[CrCl}_3(\text{L}^5)]\). In general, where the donor atoms are the same, the larger ring macrocycle has a higher \(Dq\). This can also be observed with the tridentate thioether macrocycles, \(\text{[CrCl}_3(\text{[10]}\text{aneS}_3)]\) having \(Dq\) of 1473 cm\(^{-1}\) compared to the analogous \(\text{[9]}\text{aneS}_3\) complex where \(Dq\) is 1445 cm\(^{-1}\). The exception is \(\text{[CrCl}_3(\text{L}^5)]\), which has a
higher Dq than [CrCl$_3$(L5)], which may be a result of ring strain in the ligand imposed by the benzyl backbone.

Time constraints prevented a similar detailed investigation with V(III), but a few preliminary reactions were attempted using [VCl$_3$(thf)$_3$] in anhydrous CH$_2$Cl$_2$. Addition of one equivalent of L7 in anhydrous CH$_2$Cl$_2$ caused no discernable colour change after three hours, and analysis of the solids obtained after reducing the solvent in vacuo showed no reaction had occurred. A second attempt, which was left stirring overnight, also showed no reaction. A similar reaction with L8 quickly yielded a red wax which was insoluble in chlorocarbons or hydrocarbons, and decomposed rapidly in air. All attempts to obtain IR and UV-vis spectra on this red wax failed. An IR spectrum obtained by smearing the CsI plates directly with the wax (attempts to slake it with Nujol failed) showed a large water peak, and the sticky consistency prevented mixing with BaSO$_4$ or even making a thin film for UV-vis spectroscopy.

Addition of one equivalent of either L1 or L9 to [VCl$_3$(thf)$_3$] in CH$_2$Cl$_2$ caused an instant colour change to a pink or red solution respectively. Small amounts of powdery solid were isolated from both reactions. Both powders were insoluble in chlorocarbons or hydrocarbons, and again decomposed rapidly in air, which affected attempts to get microanalytical data. One attempt to get microanalytical data on [VCl$_3$(L9)] gave the composition as 30.8 % C, 3.7 % H and 2.4 % N, which is more consistent with [VCl$_3$(L9)]·(H$_2$O)$_3$ (calculated: 31.1 % C, 3.6 % H, 2.4 % N) than [VCl$_3$(L9)] (calculated: 34.3 % C, 2.8 % H, 2.7 % N). However, this does not indicate whether the red solid obtained had water present, or whether it absorbed water during the analytical process. Analysis by IR spectroscopy indicated possible formation of [VCl$_3$(L)] in both cases, as the spectra for both solids showed three bands which could correspond to V-Cl stretches, at 390, 353 and 324 cm$^{-1}$ for [VCl$_3$(L1)] and 352, 341 and 317 cm$^{-1}$ for [VCl$_3$(L9)]. These would be consistent with octahedral [VCl$_3$(L)] showing C$_s$ local symmetry at the V atom (2a$'$ + a$''$).

Table 6.4 shows the electronic spectroscopic data reported for similar thioether macrocycle complexes. Diffuse reflectance UV-vis spectra were obtained for the pink and red solids obtained from the reactions of [VCl$_3$(thf)$_3$] and L1 and L9, and qualitatively appeared to show the expected pattern of peaks for an octahedral complex. However, closer analysis of the data using the appropriate Tanabe-Sugano diagram gave values which do not appear to fit with the earlier data. It is probable that these solids were not pure samples of the desired [VCl$_3$(L)] complexes. There was insufficient time to explore the exact nature of these solids, and further study is required to fully identify them.
Table 6.4: Electronic spectroscopy data for [VCl₃(L)]. Spectra recorded in diffuse reflectance mode using BaSO₄ as a dilutant. a – B for the V(III) free ion = 861 cm⁻¹.

<table>
<thead>
<tr>
<th>Complex</th>
<th>(^{3}T_{1g} \rightarrow ^{3}T_{2g}) /cm⁻¹</th>
<th>(^{3}T_{1g} \rightarrow ^{3}T_{1g}) /cm⁻¹</th>
<th>Dq /cm⁻¹</th>
<th>B /cm⁻¹</th>
<th>(\beta)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>[VCl₃(thf)₃]</td>
<td>13300</td>
<td>19900</td>
<td>1400</td>
<td>553</td>
<td>0.64</td>
<td>19</td>
</tr>
<tr>
<td>[VCl₃(thf)₃] + L¹</td>
<td>13620</td>
<td>19000</td>
<td>1454</td>
<td>420</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>[VCl₃(thf)₃] + L⁹</td>
<td>13540</td>
<td>18270</td>
<td>1437</td>
<td>370</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>[VCl₃([9]aneS₃)]</td>
<td>18590</td>
<td>27620</td>
<td>1932</td>
<td>690</td>
<td>0.80</td>
<td>19</td>
</tr>
<tr>
<td>[VCl₃([10]aneS₃)]</td>
<td>19050</td>
<td>27700</td>
<td>2048</td>
<td>640</td>
<td>0.74</td>
<td>19</td>
</tr>
<tr>
<td>[VCl₃([12]aneS₄)]</td>
<td>12690</td>
<td>18250</td>
<td>1361</td>
<td>432</td>
<td>0.50</td>
<td>14</td>
</tr>
<tr>
<td>[(VCl₃)₂([18]aneS₆)]</td>
<td>19380</td>
<td>28010</td>
<td>2064</td>
<td>635</td>
<td>0.73</td>
<td>19</td>
</tr>
<tr>
<td>[VCl₃([9]aneS₂O)]</td>
<td>13440</td>
<td>18880</td>
<td>1436</td>
<td>420</td>
<td>0.48</td>
<td>14</td>
</tr>
</tbody>
</table>

6.5 – Conclusions

A set of new tetrahedral Co(II) complexes with a thio- or selenoether ligand with a xylyl backbone have been produced, wherein the chalcogenoether ligands all coordinated via 7 membered chelate rings. The thioether complexes are more stable than the selenoether complexes, but all the complexes are hydrolytically sensitive. Attempts to prepare tetrahedral Co(II) complexes with MeS(CH₂)₃SMe, to provide a six-membered chelate ring yielded black intractable materials.

A new series of Cr(III) complexes with small ring Se-rich macrocycles have been characterised. The complexes are hydrolytically sensitive and insoluble to chlorocarbon and hydrocarbon solvents, but have been analysed by UV-vis and IR spectroscopy, and by their magnetic moments. They have been shown to be softer donors than similar thioether macrocycles, as expected. An exploratory number of reactions were attempted with V(III), and showed these complexes to be less stable than the Cr(III) analogues. No examples of homoleptic Se₃ coordination on V(III) could be verified, but some Se₂O and Se₂N coordination was observed.
6.6 – Experimental

[CoI₂(o-C₆H₄(CH₂SMe)₂)]: [CoI₂] (0.156 g, 0.5 mmol) was dissolved in anhydrous n-BuOH (5 cm³). o-C₆H₄(CH₂SMe)₂ (0.099 g, 0.5 mmol) in anhydrous CH₂Cl₂ (5 cm³) was added, and the reaction stirred for 5 hours at room temperature. Solvent was removed from the green solid in vacuo, and the solid was washed with anhydrous hexane. Yield: 0.143 g (54 %). Required for C₁₀H₁₄CoI₂S₂: C, 23.5; H, 2.76. Found: C, 23.6; H, 2.77 %. UV-vis (solid, BaSO₄): 12900, 14080, 15150, 25970 cm⁻¹; (solution, CH₂Cl₂): (ε₉₅₀ mol⁻¹ cm⁻¹ dm³ mol⁻¹) 13060 (1160), 14240 (818), 15200 (415) cm⁻¹.

[CoBr₂(o-C₆H₄(CH₂SMe)₂)]: Method as above using [CoBr₂]. Turquoise solid. Yield 75 %. Required for C₁₀H₁₄CoBr₂S₂: 1/3BuOH: C, 30.8; H, 4.0. Found: C, 30.6; H, 3.4 %. UV-vis (solid, BaSO₄): 13800, 14930, 15920 cm⁻¹; (solution, CH₂Cl₂): (ε₉₅₀ mol⁻¹ cm⁻¹ dm³ mol⁻¹) 13790 (327), 15310 (368), 16420 (204) cm⁻¹.

[CoI₂(o-C₆H₄(CH₂SeMe)₂)]: Method as above using [CoI₂] and o-C₆H₄(CH₂SeMe)₂. Green solid. Yield 61 %. UV-vis (solid, BaSO₄): 12440, 13740, 14740 cm⁻¹; (solution, CH₂Cl₂): (ε₉₅₀ mol⁻¹ cm⁻¹ dm³ mol⁻¹) 12660 (1068), 13890 (823), 14880 (489) cm⁻¹.

[CrCl₃(L₆)]: [CrCl₃(thf)₃] (0.1 g, 0.27 mmol) was dissolved in 5 cm³ anhydrous CH₂Cl₂. A solution of L₆ (0.115 g, 0.27 mmol) in anhydrous CH₂Cl₂ (5 cm³) was added, and the solution stirred for 30 mins. A purple precipitate formed almost immediately. The solvent was reduced in vacuo and the precipitate collected by filtration. Yield: 0.078 g, 68 %. Required for C₁₂H₂₀Cl₃CrSe₂: C, 28.8; H, 3.5. Found: C, 28.3; H, 4.5%. IR (Nujol, cm⁻¹): 337, 319 (Cr–Cl). UV-vis (solid, BaSO₄): 14530, 19230, 30300 cm⁻¹. μeff = 3.71 μB.

[CrCl₃(L₇)]: As above using L₆. Green wax. Yield: 43 %. UV-vis (solid, BaSO₄): 14080, 19490, 29000 cm⁻¹. IR (Nujol, cm⁻¹): 326 (Cr–Cl).

[CrCl₃(L₈)]: As above using L₆. Purple solid. Yield: 49 %. UV-vis (solid, BaSO₄): 14180, 19460, ~30700 cm⁻¹. IR (Nujol, cm⁻¹): 346, 320 (Cr–Cl).

[CrCl₃(L₉)]: As above using L₆. Purple solid. Yield: 52%. Required for C₁₂H₁₆Cl₃CrOSe₄: C, 29.3; H, 3.3. Found: C, 29.3; H, 3.6%. UV-vis (solid, BaSO₄): 14200, 19880, 29400 cm⁻¹. IR (Nujol, cm⁻¹): 347, 340, 331 (Cr–Cl). μeff = 3.56 μB.

146
[CrCl₃(L⁹)]: As above using L⁹. Grey solid. Yield: 70%. Required for C₁₅H₁₅Cl₃CrNSe₂·1/3CH₂Cl₂: C, 33.2; H, 2.9; N, 2.5. Found: C, 33.1; H, 3.7; N, 3.1%. UV-vis (solid, BaSO₄): 14705, 21050, 29070 cm⁻¹. IR (Nujol, cm⁻¹): 355, 344, 326(sh) (Cr–Cl). μₑffective = 3.66 μB.

[CrCl₃(L¹⁰)]: As above using L¹⁰. Yield: 48%. Required for C₁₀H₁₃Cl₃CrNSe₂: C, 25.9; H, 2.8; N, 3.0. Found: C, 25.8; H, 3.0; N, 3.0%. UV-vis (solid, BaSO₄): 14165, 20020, 30700 cm⁻¹. IR (Nujol, cm⁻¹): 357, 333(br) (Cr–Cl). μₑffective = 4.01 μB.
6.7 – X-Ray Crystallography

Details of the crystallographic data collection and refinement parameters are given in Table 6.5. Green single crystals of [CoI₂{o-C₆H₄(CH₂SMe)₂}] were obtained by addition of petroleum ether to the reaction mixture. Structure solution and refinement were routine.²⁶,²⁷ Selected bond lengths and angles for [CoI₂{o-C₆H₄(CH₂SMe)₂}] are presented in Table 6.2.

Table 6.5: Crystallographic data collection and refinement parameters. $R1 = \sum ||F_o|| - |F_c||/\Sigma |F_o|$; $wR_2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma wF_o^4]^{1/2}$

<table>
<thead>
<tr>
<th>Complex</th>
<th>[CoI₂{o-C₆H₄(CH₂SMe)₂}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₁₀H₁₄CoI₂S₂</td>
</tr>
<tr>
<td>M</td>
<td>511.06</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>P 2₁/n</td>
</tr>
<tr>
<td>a/Å</td>
<td>8.3478(3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>15.4660(6)</td>
</tr>
<tr>
<td>c/Å</td>
<td>11.6952(4)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>91.913(2)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
</tr>
<tr>
<td>U/Å³</td>
<td>1509.09(10)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>μ(Mo-Kα)/ mm⁻¹</td>
<td>5.476</td>
</tr>
<tr>
<td>Rint</td>
<td>0.0506</td>
</tr>
<tr>
<td>Total no. reflns.</td>
<td>24660</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>3490</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>138</td>
</tr>
<tr>
<td>$R1 [I_o > 2σ(I_o)]$</td>
<td>0.0278</td>
</tr>
<tr>
<td>$R1$ [all data]</td>
<td>0.0432</td>
</tr>
<tr>
<td>$wR_2 [I_o > 2σ(I_o)]$</td>
<td>0.0673</td>
</tr>
<tr>
<td>wR_2 [all data]</td>
<td>0.0755</td>
</tr>
</tbody>
</table>
Chapter 6

6.8 – References

27. Sheldrick, G. M. SHELXS-97, program for crystal structure refinement, University of Göttingen, Germany, 1997.
Appendix – Spectroscopic Equipment

Infrared spectra were recorded as Nujol mulls between CsI discs using a Perkin-Elmer 983G spectrometer over the range 4000–200 cm\(^{-1}\). \(^1\)H and \(^{13}\)C\{\(^1\)H\} NMR spectra were recorded using a Bruker AV300 spectrometer at 298 K unless otherwise stated and are referenced to tetramethylsilane. \(^{77}\)Se\{\(^1\)H\}, \(^{125}\)Te\{\(^1\)H\} and \(^{195}\)Pt NMR spectra were recorded using a Bruker DPX400 spectrometer operating at 76.3, 126.3 or 85.7 MHz respectively and are referenced to external neat Me\(_2\)Se, external neat Me\(_2\)Te and 1 mol dm\(^{-3}\) Na\(_2\)[PtCl\(_6\)] respectively. Mass spectra were run by electron impact on a VG-70-SE Normal geometry double focusing spectrometer, GCEI using a ThermoQuest TraceMS, positive ion electrospray (MeCN solution) or APCI using a VG Biotech platform. UV-visible spectra were recorded either in diffuse reflectance mode with BaSO\(_4\) as a dilutant or in absorption mode as solutions in CH\(_2\)Cl\(_2\) using a Perkin Elmer Lambda 19 spectrometer. Magnetic measurements used a Johnson-Matthey magnetic balance, with samples loaded in the glove box. Microanalyses were undertaken by the University of Strathclyde microanalytical service or Medac Ltd. X-Ray data collection used a Nonius Kappa CCD diffractometer (T = 120 K) and with graphite-monomochromated Mo-K\(_\alpha\) X-radiation (\(\lambda = 0.71073\) Å).

Chemicals and solvents were used as purchased from Aldrich unless otherwise stated. Anhydrous solvents were dried and distilled before use according to normal practices.