An investigation into the molecular recognition and
sensing of anions, especially of alkylcarbamates and
related species
An investigation into the molecular recognition and
sensing of anions, especially of alkylcarbamates and
related species
This thesis reports the synthesis and study of the anion recognition properties of a variety of synthetic organic and inorganic receptors. A series of known anion receptors containing a common urea and varying alkyl and aryl substituents have been investigated for their ability to bind the alkylcarbamate portion of two alkylammonium-alkylcarbamate salts and the CO2 adduct of a cyclic amidine, in an investigation into novel CO2 fixation strategies. Chemical shift changes were used to observe relative binding strengths for interactions between the alkylcarbamate and the receptors in DMSO-d6. The results show that it is possible to bind the alkylcarbamate anion in the presence of the primary alkylammonium cation, when a receptor of sufficient strength is employed. The strength of this interaction was increased when 18-crown-6 was added, which acts as a receptor for the alkylammonium cation. The CO2 adduct of the cyclic amidine, (1,4,5,6, tetrahydropyrimidine) was shown to have the strongest interactions with the receptor series. Several Schiff-base and urea containing receptors have been synthesised and assessed for anion complexation properties in solution using 1H NMR in DMSO-d6 : water mixtures. These are selective for acetate, benzoate and dihydrogen phosphate over chloride and hydrogen sulfate, and exhibit a mixture of 1:1 and 2:1, (guest:host), binding stoichiometries in several cases. Zinc(II) and cobalt(II) chloride complexes of one of this series were synthesised. The cobalt(II)chloride complex was observed to be a stark colorimetric indicator for chloride and dihydrogen phosphate. A number of isophthalamide derivatives containing activated NH and / or CH protons have been synthesised and assessed for anion complexation solution using 1H NMR in DMSOd6. Their interactions with fluoride, chloride and bromide were investigated, which demonstrate a significant contribution from the activated CH protons
Edwards, Peter R.
aaa0f75a-0fd5-490a-ba73-a420189e4695
22 June 2010
Edwards, Peter R.
aaa0f75a-0fd5-490a-ba73-a420189e4695
Grossel, M.C.
403bf3ff-6364-44e9-ab46-52d84c6f0d56
Edwards, Peter R.
(2010)
An investigation into the molecular recognition and
sensing of anions, especially of alkylcarbamates and
related species.
University of Southampton, School of Chemistry, Doctoral Thesis, 234pp.
Record type:
Thesis
(Doctoral)
Abstract
This thesis reports the synthesis and study of the anion recognition properties of a variety of synthetic organic and inorganic receptors. A series of known anion receptors containing a common urea and varying alkyl and aryl substituents have been investigated for their ability to bind the alkylcarbamate portion of two alkylammonium-alkylcarbamate salts and the CO2 adduct of a cyclic amidine, in an investigation into novel CO2 fixation strategies. Chemical shift changes were used to observe relative binding strengths for interactions between the alkylcarbamate and the receptors in DMSO-d6. The results show that it is possible to bind the alkylcarbamate anion in the presence of the primary alkylammonium cation, when a receptor of sufficient strength is employed. The strength of this interaction was increased when 18-crown-6 was added, which acts as a receptor for the alkylammonium cation. The CO2 adduct of the cyclic amidine, (1,4,5,6, tetrahydropyrimidine) was shown to have the strongest interactions with the receptor series. Several Schiff-base and urea containing receptors have been synthesised and assessed for anion complexation properties in solution using 1H NMR in DMSO-d6 : water mixtures. These are selective for acetate, benzoate and dihydrogen phosphate over chloride and hydrogen sulfate, and exhibit a mixture of 1:1 and 2:1, (guest:host), binding stoichiometries in several cases. Zinc(II) and cobalt(II) chloride complexes of one of this series were synthesised. The cobalt(II)chloride complex was observed to be a stark colorimetric indicator for chloride and dihydrogen phosphate. A number of isophthalamide derivatives containing activated NH and / or CH protons have been synthesised and assessed for anion complexation solution using 1H NMR in DMSOd6. Their interactions with fluoride, chloride and bromide were investigated, which demonstrate a significant contribution from the activated CH protons
Text
Peter_Edwards_Thesis_.pdf
- Other
More information
Published date: 22 June 2010
Organisations:
University of Southampton
Identifiers
Local EPrints ID: 173961
URI: http://eprints.soton.ac.uk/id/eprint/173961
PURE UUID: c84dde87-c182-4e1a-863e-76a63d8907c3
Catalogue record
Date deposited: 19 May 2011 12:50
Last modified: 14 Mar 2024 02:36
Export record
Contributors
Author:
Peter R. Edwards
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics