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A COMPARATIVE STUDY OF PtCo/C ALLOYS AND Pt/C AS CATHODE 

CATALYSTS FOR FUEL CELL APPLICATIONS 
 

 

By Sarah Louise Burton 

 

Commercialisation of fuel cells for automotive applications requires catalysts with both 

improved activity, particularly for the cathodic oxygen reduction reaction (ORR), and 

stability over commercial platinum only catalysts. This requires a detailed 

understanding of both desirable catalyst structure and mechanistic activity. In this work 

a comparative study is made between commercial Pt/C catalysts and developmental 

PtCo/C catalysts, with the aim of increasing understanding of the desirable 

characteristics of improved activity and stability demonstrated for PtCo catalysts. 

 

To explore the origins of activity and stability enhancement for Pt3Co/C catalysts over 

Pt/C, the mechanisms of catalyst deactivation have been investigated. In addition, four 

new PtCo3/C catalyst materials have been prepared and evaluated for ORR activity 

before and after activation by electrochemical dealloying. Structural changes occurring 

during these processes have been characterised using cyclic voltammetry, Transmission 

Electron Microscopy (TEM) and X-ray absorption spectroscopy (XAS). 

 

XAS has also been used to explore the relationship between catalyst activity and 

structure. This has been achieved by building and validating a specially adapted fuel 

cell, enabling study of fuel cell catalysts in situ under realistic operating conditions. 

Findings from time resolved potential step experiments with 12 s and 0.1 s time 

resolution will be presented for catalysts operating at OCV and under load with oxygen 

cathode gas. In addition, studies have been conducted with nitrogen cathode feed gas to 

investigate the effect of potential and temperature on the processes of oxide formation 

and removal on both Pt/C and PtCo/C catalysts.  
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Chapter 1. Introduction 

 

Since their first demonstration in 1839 by Grove, (1, 2), fuel cells have been 

investigated as a potential alternative power generation method (3). The desire to reduce 

emissions, preserve finite resources and maintain energy security has resulted in 

extensive investment and research into fuel cell technologies in recent years (3-5). A 

number of different fuel cell types exist with varying power output and applications. A 

summary is provided in Table 1. Fuel cell applications are wide ranging and provide an 

alternative to batteries, the internal combustion engine, and may be used to provide 

stationary power on both a domestic and commercial scale (3-6).  

 

Table 1. Summary of fuel cell systems, reactions and applications. From ref. (3) 

Fuel cell 

type 

Anode reaction 

Cathode reaction 

Overall reaction 

Operating 

temperature 

and power 

Applications
 

 

Proton 

exchange 

membrane 

(PEMFC) 

H2 →  2H
+
 + 2e

- 

O2 + 4H
+
 + 4e

-
 → 2H2O 

2H2 + O2→ 2H2O 

30-100 °C 

1-100 kW 

1
st
 space 

vehicles, 

automotive, 

portable and 

Combined 

heat / power 

Alkaline 

(AFC) 

2H2 + 4OH
-
 →  4H2O + 4e

-
 

O2 + 4e
-
  + 2H2O → 4OH

- 

2H2 + O2→ 2H2O 

50-200 °C 

1-10 kW 

Apollo space 

missions 

vehicles 

Direct 

Methanol 

(DMFC) 

CH3OH + H2O→  6H
+
 + 6e

-
 + CO2 

3/2O2 + 6H
+
 + 6e

-
 → 3H2O 

CH3OH + 3/2O2→ 2H2O+ CO2 

20-90 °C 

1-100 W 

Portable 

power 

Phosphoric 

acid 

(PAFC) 

H2 →  2H
+
 + 2e

-
 

O2 + 4H
+
 + 4e

-
 → 2H2O 

2H2 + O2→ 2H2O 

~220 °C 

10 kW- 1 MW 

Combined 

heat / power 

Molten 

carbonate 

(MCFC) 

2H2 + 2CO3
2-

 →  2H2O + 2CO2 + 4e
- 

O2 + 2CO2 + 4e
-
 → 2CO3

2- 

H2 + 1/2O2 + CO2 →  H2O + CO2 

~650 °C 

0.1-10 MW 

Combined 

heat / power 

Solid 

oxide 

(SOFC) 

2H2 + 2O
2-

 → 2H2O + 4e
- 

O2 + 4e
-
 → 2O

2- 

2H2 + O2→ 2H2O 

500-1000 °C 

1 kW-10 MW 

Combined 

heat / power 
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Fuel cells are electrochemical devices capable of producing electricity via the 

electrochemical reaction of a fuel (hydrogen) and an oxidant (oxygen) in the presence of 

a catalyst. The electrochemical reactions for each fuel cell type are shown in Table 1. 

Key advantages of fuel cells over other alternative power supplies include; high 

efficiency (Phosphoric acid fuel cells available today, generate electricity at more than 

40% efficiency (4)), faster recharging than batteries, potential for zero emissions (when 

renewable sources are used to generate hydrogen (3, 4)), and few or no moving parts 

leading to quiet operation, this is of particular importance in portable and domestic 

power applications (3).  

 

Proton exchange membrane fuel cells (PEMFCs) are the focus of this work and 

therefore the following discussion will be limited to this type of fuel cell system. For a 

more detailed overview of the other fuel cells summarised in Table 1 the reader is 

referred to the following texts (3, 5, 7-12).  

 

1. Proton exchange membrane fuel cells (PEMFCs) 

PEMFCs were first developed by General Electric in the United States in the 1960s for 

use by NASA on their first manned space vehicles, The Gemini spacecraft (3). Today 

PEMFCs are currently the best candidates for automotive use (3, 5, 13). This is due to: 

zero emissions at point of use enabling emission reduction since the only by-product is 

water, low temperature operation allowing rapid start-up, the lack of corrosive fluid 

hazards associated with other fuel cells and batteries, the compact, thin cell design and 

that the cell can work in any orientation (3, 13). 

 

The electrolyte in PEMFCs is a solid ion conducting polymer. An example and industry 

standard is Nafion®, a registered trademark of Dupont which was developed in 1967 

(3). The polymer consists of a hydrophobic polytetrafluoroethylene (PTFE) backbone 

that is sulphonated with side chains ending in SO3
-
 H

+
. The ionic nature of the sulphonic 

acid group makes it highly hydrophilic. The differences in hydrophobicity of the 

backbone and side groups lead to self assembly of the polymer resulting in hydrated 

regions in which H
+
 are weakly bound. This enables proton conduction through the 

membrane.  For efficient fuel cell operation in addition to good proton conductivity, the 

membrane must also be electronically insulating to prevent a short circuit, prevent 
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mixing of reactant gases and be both mechanically and chemically durable (3, 14). 

Since 1967 several variants of Nafion® have been produced and other proton exchange 

membranes have been developed to decrease cost, improve proton conductivity, 

resistance to chemical attack, mechanical durability and to enable operation at higher 

temperatures ( > 80 °C) (14-17). 

 

The anode and cathode electrodes are positioned either side of the proton exchange 

membrane to form the membrane electrode assembly (MEA), often referred to as a 

single cell. For research purposes single cells are commonly used for evaluating MEA 

components, however for application, a single MEA will provide insufficient voltage so 

several are combined in series in a fuel cell stack to achieve the desired power output. A 

schematic of a fuel cell membrane electrode assembly (MEA) is shown in Figure 1. 

  

 

Figure 1. Schematic representation of a fuel cell membrane electrode assembly 

(note that components are not drawn to scale)  

 

The reactant gases diffuse through a gas diffusion layer before reaching the catalyst 

layer where reaction occurs. On the anode hydrogen is oxidised to protons and 

electrons. The electrons pass through the external circuit where useful work can be 

performed, while the protons pass through the proton exchange membrane to the 

cathode side. At the cathode oxygen is reduced to water. (See Table 1 for 

electrochemical reactions). The gas diffusion layer (GDL), as the name suggests, 

transports reactant gases to the catalyst particles. GDLs are typically a carbon paper 

Carbon Paper Gas 

Diffusion layer 

 

Proton Exchange Membrane 

ANODE  CATHODE 

 2e
-
 

2H
+
 

O2 

H2O 

H2 

Pt Catalyst Layer 

Microporous Layer 

Carbon Paper Gas 

Diffusion Layer 

 

Pt Catalyst Layer 

Microporous Layer  
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(e.g. Toray™) or cloth that is highly conducting and is often PTFE coated to facilitate 

water management (3). The gas diffusion layers used in this work are coated with a 

microporous carbon baselayer. This layer is also conductive, improves water handling 

and enables efficient adhesion of the catalyst layer to the GDL. The catalyst layer is 

prepared by forming a mixture the catalyst powder with a soluble version of the 

electrolyte (ionomer) to improve connectivity. The mixture is then coated either directly 

onto the membrane or the GDL. 

 

The catalysts used in PEMFCs are normally platinum based and these materials are the 

subject of this work. Platinum catalysts will be discussed in detail in this and subsequent 

chapters with particular focus on the catalyst used at the cathode. Commercially 

available and developmental catalysts on both the anode and cathode contain platinum 

nanoparticles dispersed on high surface area carbon supports, to give high surface areas 

for reaction. Depending on the fuel source and power requirements, additional elements 

may be added to the catalyst to improve activity (18). On the anode, tolerance to 

impurities such as CO in the hydrogen stream may be required, therefore Ru is 

commonly added (19), while on the cathode, as will be discussed, addition of extra 

metals can improve activity. It should be noted that non-platinum catalysts are also 

under investigation for PEMFC applications, primarily to reduce cost. A review of 

non-platinum catalysts for fuel cell applications was provided by Wang in 2005 (20). 

Examples include: non-platinum precious metal containing catalysts, pyrolized metal 

porphyrins and non-precious metal heteroatomic polymer electrocatalysts (21). To 

compete with platinum catalysts these materials must exhibit sufficient activity and 

stability, but as yet have not proved competitive (18), so will not be discussed further. 

 

2. PEMFC commercialisation challenges 

Despite the most recent (2009) fuel cell Industry Review (6) reporting a 50% increase in 

the volume of fuel cell shipments from 2007 to 2008, (mainly as a result of the 

emerging the portable and stationary markets), with substantial growth anticipated over 

the next five years, significant challenges still need to be overcome before fuel cells can 

compete with existing technologies. This is particularly significant for automotive 

applications where improved efficiency, performance, lifetime, and cost for all fuel cell 

system components, including balance of plant, are required. In addition the issues 
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associated with range, hydrogen infrastructure, storage, operation under wide ranging 

temperature conditions and size and weight of systems need to be addressed (5). 

Addressing these challenges forms the basis for much of the current fuel cell research 

with targets being defined by the European, Japanese and US fuel cell funding bodies 

(22-24).  

 

2.1 The requirement for more active catalysts 

The theoretical open circuit voltage, E
0
, for a fuel cell undergoing the two electron 

reaction of hydrogen and oxygen to form water, Equation 1, may be calculated using 

Equation 2. Where F is the Faraday constant (96485 C mol
-1

) and fG∆  is the molar 

Gibbs free energy change occurring on formation of the product water from the 

hydrogen and oxygen reactants as described in Equation 3.  

 

H2 + ½ O2        H2O       Equation 1 

 

F

G
E

f

2

0 ∆−
=          Equation 2 

 

( ) ( ) ( )
222 2

1
OfHf

OHff GGGG ∆−∆−∆=∆      Equation 3 

 

The Gibbs free energy terms in Equation 3 vary depending on the change in the molar 

enthalpy of formation, fH∆ , of X (where X is H2, O2 or H2O ), the entropy, fS∆ , 

associated with the formation of X, and temperature, T , according to Equation 4.  

 

( ) ( ) ( )XfXfXf STHG ∆−∆=∆       Equation 4 

 

Values for fH  and fS  at 25 °C, reported in reference (3), are tabulated in Table 2. 

Using Equation 4 and substituting into Equation 3, a value for fG∆  of -237.2 kJ mol
-1

 

may be calculated (3). Using Equation 2 this gives a value of 1.23 V as the theoretical 

reversible open circuit voltage of the fuel cell assuming pure hydrogen and oxygen are 

used at standard pressure (3).  
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Table 2. Values of fH  and fS  at 25 °C, for the hydrogen fuel cell at standard 

pressure (0.1 MPa). From ref. (3) 

X fH  / J mol
-1

 fS  / J mol
-1

 K
-1

 

H2O (l) -285,838 70.05 

H2 (g) 0 130.59 

O2 (g) 0 205.14 

 

Using the same process it can be shown that the theoretical cell voltage is ~1.2 V for 

fuel cells operating up to temperatures of 100 °C at standard pressure using pure 

reactants. It should be noted however, that the pressure and concentration of the 

reactants affects the voltage. This relationship is described according to the Nernst 

equation, which can be given in many forms. For example, if the pressures of the 

reactants and products are given in bar and the water product is in the form of steam the 

Nernst equation may be written as in Equation 5. Where 0E  is the cell voltage at 

standard pressure and temperature and with pure reactants, R , the molar gas constant 

and XP the partial pressure of X. 

 













 ×
+=

OH

OH

P

PP

F

RT
EE

2

22

2
1

0 ln
2

      Equation 5 

 

It can be shown that decreasing the partial pressure of the reactants will decrease the 

cell voltage, while increasing the concentration of the reactants, for example using pure 

oxygen instead of air, or increasing the system pressure will increase the cell voltage. 

For low temperature fuel cells the voltage gains observed with increasing pressure or 

concentration are underestimated by the Nernst equation. This is because increasing the 

pressure and concentration also reduces the voltage losses observed in real systems by 

improving occupancy of the catalytic sites (3).  

 

In operational fuel cell systems, the measured potential under typical operating 

conditions is typically 300-400 mV less than the theoretical potential (3, 18, 25). The 

cause of the potential drop or overpotential, η ,  defined as the difference in the 

measured potential and the theoretical potential, Equation 6, is due to four major 
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irreversibilities, namely: Activation losses, fuel crossover, ohmic losses and mass 

transport losses (3, 18).   

 

0EE −=η          Equation 6 

 

The activation losses are a consequence of the poor kinetics occurring at the surface of 

the electrodes.  The kinetics of electrochemical reactions, such as those occurring on the 

anode and cathode fuel cell electrodes, are described by the Butler Volmer equation, 

given in Equation 13, below (26-28). The Butler-Volmer equation is derived from 

Transition State theory by consideration of the kinetics of an electrochemical reaction, 

such as that shown in Equation 7, where fk  and bk  are the rates of the forward 

(reduction-cathodic) and backward (oxidation-anodic) reactions respectively.  

 

           fk  

[ ]Ox  + n  e
-    

     [ ]dRe        Equation 7 

            bk    

 

At an electrode surface the current is produced from the reactants that reach the surface 

of the electrode and lose or gain electrons. The magnitude of the current depends on the 

number of electrons, n , the electrode area, the rate that species reach the electrode 

surface and react, bfk , , and the reactant concentrations, [ ]Ox and [ ]dRe . The net current 

that flows is the current generated from both the forward and reverse reactions (anodic 

currents are defined as negative and cathodic currents positive in this illustration). The 

current density, i , (current per unit area) is therefore described by Equation 8.  

 

[ ] [ ]dnFkOxnFki bf Re−=        Equation 8 

 

The rate of forward and backwards reactions are given the Arrenhius equation and 

Transition State theory (Equation 9 and Equation 10), where 0K is a constant associated 

with the forward or backward reaction, that includes the chemical component of the 

Gibbs free energy of the transition state. The exponential term refers to the electrical 

component of the Gibbs free energy of the transition state, where α is the charge 
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transfer coefficient. α  is typically between 0.1 and 0.5 for most materials, is associated 

with the electrode material properties and depends on the symmetry of the transition 

state (27).  The sum of the charge transfer coefficients for the oxidation and reduction 

reactions is equal to unity. 

 








 −
=

RT

Fn
Kk

ff

ηα
exp

,0  Reduction-cathodic    Equation 9 

 

[ ]







 −
=

RT

Fn
Kk bb

ηα1
exp,0  Oxidation-anodic    Equation 10 

 

Insertion of Equation 9 and Equation 10 into Equation 8 gives Equation 11. 

 

[ ] [ ] [ ]







 −
−






 −
=

RT

Fn
dnFK

RT

Fn
OxnFKi bf

ηαηα 1
expReexp ,0,0   Equation 11 

 

When the electrode is in equilibrium, the overpotential and external current are both 

zero. In this condition, the exchange current density, 0i , is defined as the current 

flowing equally in both directions (Equation 12). The larger 0i the faster the reaction 

occurs.  

 

[ ] [ ]dnFKOxnFKi
bf Re

,0,00 ==       Equation 12 

 

After substituting for the exchange current density the final form of the current density 

is Equation 13, which is called the Bulter-Volmer equation.  

 

[ ]















 −
−






 −
=

RT

Fn

RT

Fn
ii

ηαηα 1
expexp0       Equation 13 

 Reduction  oxidation 

 

The equation may be simplified by considering the situation far from equilibrium, 

where the magnitude of the overpotential is large. In this situation either the term 

associated with the anodic or cathodic process becomes dominant and the corresponding 

opposite reaction may be neglected (approximated to be equal to zero). Applying this 
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simplification, rearranging and taking logs gives Tafel equations for the anodic and 

cathodic reactions as described in Equation 14 and Equation 15.  

 

[ ]
RT

Fn
ii

3.2

1
loglog 01010

ηα−
+=   Oxidation-anodic    Equation 14 

 

RT

Fn
ii

3.2
loglog 01010

ηα
−=   Reduction-cathodic   Equation 15 

 

It can be seen from the Tafel equations that the overpotential approximates to straight 

line when plotted vs. the log of the current density, i , (mA cm
-2

). The point at which the 

best fit line intercepts the current density axis corresponds to the exchange current 

density, 0i  and the charge transfer coefficient and number of electrons transferred in the 

reaction determine the gradient or Tafel slope. This behaviour was observed and 

reported by Tafel in 1905 and later was demonstrated to have a theoretical basis in the 

form of the Butler-Volmer equation (27). 

 

Increasing 0i  will result in a decrease of the over potential from activation loss. 0i  may 

be increased by: increasing the temperature, (improving turnover on catalytic sites), 

increasing the reactant concentration and increasing the pressure (improving site 

occupancy and increasing the theoretical potential as previously described), increasing 

the surface area (increasing the number of sites), and by using a more effective catalyst 

(lowering the activation barrier for reaction).  

 

It is the cathodic oxygen reduction reaction (ORR) that is largely responsible for the 

activation loss observed for hydrogen fuel cells (25). This activation loss accounts for 

the most significant proportion of the deviation of the cell voltage loss from theoretical 

values when compared to fuel crossover, resistive and mass transport losses since these 

losses can be minimised and controlled by optimising experimental parameters. For this 

reason, a key research target is to develop more active catalysts for the ORR that have 

improved durability. Improved activity would enable increased performance or maintain 

equivalent performance while allowing a decrease in metal loading and therefore cost. 

In addition improved durability would extend operational lifetimes (18).  
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2.2 The ORR 

The ORR is a multi electron reaction, the kinetics and mechanism of which are 

influenced by both the electrocatalyst and the electrolyte. In acid electrolyte, a general 

consensus exists that the overall reaction may proceed by two pathways (29), either by: 

the direct reduction pathway forming water, Equation 16, or by indirect reduction, 

Equation 17, in which hydrogen peroxide is generated. The hydrogen peroxide may 

then be further electrochemically reduced to water (Equation 18) or undergo chemical 

decomposition (Equation 19).  

 

O2 + 4H
+
 + 4e

-
 → 2H2O  =OHOE

22 /
0  1.23 V   Equation 16 

 

O2 + 2H
+
 + 2e

-
 → H2O2  =OHOE

22 /
0  0.67 V   Equation 17 

 

followed by a further reduction via 

H2O2 + 2H
+
 + 2e

-
 → 2H2O  =OHOE

22 /
0  1.77 V   Equation 18 

 

or a chemical decomposition via 

2H2O2  → 2H2O + O2        Equation 19 

 

Extensive experimental (25, 30-50) and theoretical studies (35, 36, 50-59) have been, 

and continue to be, performed to try to understand which pathway is followed and the 

mechanistic steps. The rotating ring-disk electrode is commonly employed to provide 

evidence for the two pathways (34, 44, 60, 61). Depending on the electrode material, 

oxygen reduction may proceed via either pathway. The direct four electron pathway 

appears to be predominate on noble metal catalysts, such as Pt, while on carbon, Au and 

most oxide-covered metals, such as Ni and Co the predominant pathway is via hydrogen 

peroxide formation (29).  

 

When considering more detailed mechanistic steps for the ORR many possible models 

for the reaction pathways have been described (29) and the exact mechanism is subject 

to much debate. These models consider the adsorption of O2, formation of 

intermediates, electron transfer steps, decomposition and desorption of products and the 

associated kinetics. A commonly reported reaction scheme for the ORR is shown in 
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Figure 2 (32, 46). This is a simplified version of the model proposed by Wroblowa et al. 

(62), in which O2ads is formed from adsorption of O2 onto the electrode surface in the 

first step.  After adsorption the direct or indirect pathways can be followed as previously 

described in Equation 16-19 with rate constants k1 through k4. The rate determining step 

has been reported to be the first electron transfer from the O2 ads (41). k5 is the rate 

constant for the desorption of peroxide from the electrode surface. The peroxide may 

reabsorb and react or diffuse away from the electrode. In the fuel cell this reduces 

efficiency compared to the four electron route and decomposition of peroxide in the 

PEMFC can have detrimental effect of the integrity of the membrane (46).  

 

 

Figure 2. Example of a proposed oxygen reduction reaction pathway (32) 

 

The orientation of the O2 molecule during adsorption onto the metal surface has been 

proposed to alter the mechanistic pathway for ORR. Three models for oxygen 

adsorption modes and corresponding ORR pathways have been proposed by 

Yeager et al. (63) and are illustrated in Figure 3 (29). The Griffiths model involves 

edge-wise adsorption. In this synergic bonding interaction electron donation occurs 

from π orbitals on di-oxygen to empty d orbitals on the metal and back donation occurs 

from the metal to the empty π
*
 orbitals of O2. This weakens the O-O bond and 

depending on the strength of the interaction may lead to dissociative adsorption of O2 

with simultaneous proton addition and an increase in the oxidation state of the metal as 

represented in pathway I. The catalyst is subsequently regenerated by reduction and 

formation of H2O.  If end on adsorption occurs through a single bond to the metal with 

partial charge transfer (Pauling model), an associative pathway via superoxide and 

peroxide intermediates is thought to be followed, as shown in pathway II. This can 

result in both the four electron product, H2O or H2O2 via two electron reduction. The 

O2 ads H2O2 ads 

k5 k4 

H2O2  

O2 H2O 

k3 
k2 

k1 
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third mode of binding is described by the bridge model where oxygen is adsorbed 

across two metal sites. As for pathway I, dissociation can occur and the four electron 

pathway forming H2O is followed as shown in pathway 3.   

 

              

Griffiths model              Pathway      

 O     OH            4e
-           

 

M
Z
     M

Z+2    
M

Z
 + 2H2O       I 

 O  2H
+
    OH           4H

+ 

 

 

Pauling model          M
Z
 +H2O2     

                     2e
-   

  2H
+
 

M
Z 

O     M 
Z + 1  

O      M
 Z + 2   

O      
 

     O           O
-
           O

=       
II

 

                4 e
- 
    4H

+
    

   M
Z
 + 2H2O 

 

Bridge model 

M
Z 

 O  M
Z+1 

OH        4e
-  

M
Z 

        + 2H2O     III 

 O 2H
+
 M

Z+1 
OH        4H

+ 
M

Z 

M
Z
 

 

Figure 3.  Models for adsorbed oxygen and corresponding reaction pathways 

for oxygen reduction. (29) 

 

It is evident from Figure 3 that both the geometric and electronic properties of the 

catalyst are important factors in allowing favourable binding of reactants and 

subsequent reaction. An electronic effect arises due to differences in local electronic 

structure at the surface leading to different interactions with adsorbates/blocking species 

and intermediates (64). During interaction of an adsorbate with a transition metal, the sp 
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band of the transition metal causes a lowering and broadening of the adsorbate levels 

and the strong interaction of the d-band results in formation of bonding and antibonding 

orbitals (65). The Fermi energy, filling, d-band centre and width of the metal d-band all 

play an important role in enabling orbital overlap. Going across the periodic table from 

left to right increases filling of the d-band. This results in a decreasing width of the 

d-band and the position of the d-band centre shifting to lower energy. When the d-band 

is completely filled a further decrease in energy is observed as the d-band effectively 

becomes a core level. Going down a series from 3d to 5d results in broadening of the 

d-band due to increased orbital size and overlap (65).  A high lying d-band results in a 

stronger chemisorption interaction with an adsorbate (64). If the electronic 

configuration of the metal leads to the antibonding orbital of the adsorbate lying below 

the metal Fermi level dissociation will occur. It is noted that this may result in a strong 

stabilisation effect of the dissociated state that may in turn prevent subsequent reaction. 

For optimum activity this implies a balance is required in the adsorption of reactants 

and formation of intermediates and the ability to dissociate products (65). 

 

The surface geometry of the metal providing different configurations to the molecule for 

bonding is described as a purely geometric effect (64), for example a different 

crystallographic face or step site will induce a different geometric effect. The electronic 

and geometric effects are often difficult to separate since different geometries of the site 

(step vs. close packed) alter the position of the d-band (steps have higher-lying d-states 

than close packed surfaces) and simultaneously present different binding configurations 

to the adsorbate (64). 

 

2.2.1 Platinum catalysts 

For optimum catalytic activity, a catalyst must be selective for the reaction of interest 

since activity is governed by a balance between adsorption energies of reactive 

intermediates and surface coverage by spectator (blocking) species (44, 65). The 

catalyst should enable bond breaking and intermediate formation, without interacting so 

strongly with intermediates as to prevent further reaction and block adsorption sites 

(Sabatier’s principle) (65).  In addition the number of sites available for reaction and the 

turn over frequency of each site (kinetics), must be maximised.  
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Compared to other noble metals, platinum shows the highest turn over frequency, reacts 

mainly via the four electron pathway and therefore has a comparably low overpotential 

(29). For these reasons platinum is used as a cathode catalyst for fuel cell applications. 

To further optimise activity, the platinum is typically dispersed on a high surface area 

carbon to increase the metal surface area and therefore number of sites for reaction. 

However, ever decreasing particle size does not necessarily correlate with maximum 

specific activity (rate per unit area), as shown in studies by Kinoshita (29, 66). In these 

studies it was demonstrated that a particle size effect was involved for the ORR due to 

the structure sensitivity of the reaction.  

 

Assuming a cubooctahedral model for platinum crystallites with (1 1 1) and (1 1 0) 

faces and edge and corner sites, Kinoshita calculated the effect of particle size on the 

distribution of surface atoms of each type, normalised to both the total number of atoms 

(mass average) and the number of surface atoms (surface average). The maximum mass 

averaged distribution was found to occur at 2 nm and 3.5 nm diameter on the (1 1 1) and 

(1 1 0) faces respectively, the surface averaged distribution was found to decrease with 

decreasing particle size on both faces, and the number of corner and edge sites 

decreases with increasing particle size (29, 66). These calculated results showed good 

correlation with mass and specific activity results reported in the literature by Ross and 

Settler, and Peuckert et al. for platinum catalysts (66). In assuming that the edge and 

corner sites were not active for reaction, Kinoshita concluded that that no benefit in 

mass or specific activity could be obtained by decreasing particle size below the limit of 

2 nm (29).  

 

Contrary to the work of Kinoshita, the results of others showed no clear evidence of the 

maximum in mass activity with particle size (29, 45) for example Yamamoto et al.  

recently published (67) ORR activity results for colloidal platinum particles of < 2 nm 

containing only 12, 28 and 60 platinum atoms. A 13 fold activity enhancement over a 

commercially available 2.5 nm diameter Pt/C catalyst was reported for the smallest 

particle size in RDE measurements. However, a direct comparison with a non-carbon 

supported 2.5 nm diameter catalyst prepared by the same route was not made. It is 

therefore not possible to tell if the activity enhancement is solely a consequence of the 

particle size, or a consequence of the differences in the oxygen diffusion properties of 

the carbon supported catalyst layer on the RDE disk.  
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Studies on platinum single crystals by Marković et al. (32) showed structure sensitivity 

by differences in the order of activity for the ORR on different Pt(h k l) crystal faces, in 

different electrolytes. In HClO4 activity increases in the sequence Pt(1 0 0) < Pt(1 1 1) < 

Pt(1 1 0) while in  H2SO4 all crystallite faces are less active and a different order of 

activity is observed where  Pt(1 1 1) << Pt(1 0 0) < Pt(1 1 0). This is due to the strong 

anion adsorption of the (bi)sulphate anion that is thought to block the adsorption of O2 

in the first step of the ORR (32). For the Pt(1 1 1) face, the symmetry match for 

(bi)sulphate binding is most favoured and accounts for the significant deactivation of 

this face. Competitive binding of other species has also been reported to reduce the 

activity for ORR (32), with the adsorption of oxygen containing species, such as OH, 

surface oxide and water molecules playing an important role in the deactivation process 

(38). It has been shown that oxide covered surfaces exhibit different Tafel slopes and 

lower reaction rates than oxide free surfaces (31, 32, 35, 38). The difference in the Tafel 

slope (60 mV/decade oxide covered vs 120 mV/decade oxide free) may either be a 

consequence of a change in the charge transfer coefficient,α , or if α  remains the same, 

then the change in Tafel slope may arise from a change in the number of electrons 

transferred in the limiting step of the reaction mechanism.  It has also been reported that 

the adsorption of OH (45, 46, 68), and Cl
-
 (42, 49) also limits the kinetics and coverage 

of these species is important. When considering the possible binding modes for O2 in 

Figure 3, it can be seen how site blocking by OH and other competitive binding species 

could result in a change of reaction pathway by reducing the number of sites available 

for bridge binding. 

 

2.2.2 Strategies for improving activity 

To improve the activity of platinum for the ORR a number of strategies have been 

reported. It has been demonstrated, in both phosphoric acid fuel cells  and more recently 

in PEMFCs (69), that activity may be increased by alloying platinum with secondary 

metal (M) forming mixed Pt-M nanoalloys that may either be random or ordered (70, 

71).  Equally, ternary systems have also been studied (69). A wide variety of metals 

have been used as the alloying components including; Fe, Ni, Ir, V, Cr, Mn, Ti, Cu, and 

Co and a range of atomic compositions have been used (37, 69, 72-80). 
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More recently the use of alternative bimetallic architectures has been shown to improve 

activity and depending on M and the preparation route, these structures can enable an 

additional cost reduction, by allowing more efficient use of the platinum within the 

particle. All examples form a core shell type structure with an outer platinum shell 

surrounding an M containing core. Three different preparation routes have been 

reported to achieve this structure. In the first instance, it was shown that platinum could 

undergo surface segregation to form a shell or ‘skin’ around the M core (43, 44, 56, 81, 

82). Next, based on d-band centre trends, it was shown that a layer of platinum 

deposited as an overlayer on a metal with different lattice constant could result in stress 

or strain in the platinum overlayer and change the catalytic activity (47, 65). Depositing 

platinum onto a surface with a larger lattice constant, pulls the platinum atoms apart, 

decreasing the average coordination number and d-orbital overlap and consequently the 

d-band narrows. To maintain the degree of filling, the centre of the band moves up in 

energy (65). This, as previously mentioned, will increase the binding interaction with an 

adsorbate.  This effect was demonstrated for deposition of a platinum monolayer onto a 

single crystals of M (50, 61) and later for dispersed particles where platinum was 

deposited as an overlayer onto a preformed core using under potential deposition 

methods, forming so called ‘core shell’ particles (47, 70, 71, 83, 84). The third method 

to form the platinum shell is to chemically leach or electrochemically dealloy to remove 

M from the outerlayers of a preformed PtM material (81, 85-92). In these works M 

includes: Ni (50, 56, 73) , Co, Ti, V (44, 56, 81) Cu, (85-92) and equally ternary metal 

systems have also been reported (93-95).  

 

In parallel, there has been a recent focus in preparing catalysts to maximise favourable 

geometries to enhance activity. To this end platinum nanoparticles of different shapes 

and sizes have been synthesised. The wide range of possible nanostructures have been 

recently reviewed by Peng and Yang (70) and include: cubes, tetrahedrons, tripods, 

cubooctahedron, nanorods, wires and tubes. In addition, nanostructured thin film 

catalysts prepared by sputter deposition of platinum on organic whiskers by 3M 

company (96-99) have been shown to result in defined crystal face orientations (96). 

These geometries are now also being combined with the desirable properties seen for 

PtX containing materials in attempts to further improve activity. 
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The improvements in activity for PtM materials have been attributed and or correlated 

to various changes caused by alloying/interaction of M including: 

 

1. The effect of Pt-Pt interatomic distance: Alloying with elements smaller than 

platinum results in lattice contraction, which in turn corresponds with an increase 

in electrocatalytic activity. Jalan and Taylor (100, 101) proposed this effect was 

attributed to the smaller Pt-Pt interatomic bond distances resulting in more 

favourable sites that enhance the dissociative adsorption of oxygen. This view is 

supported by Mukerjee et al. who correlated Pt-Pt bond length (or d-band 

vacancy) measured during XAS studies with ORR activity (33). 

 

2. The proportion of low index planes: Alloying is also known to increase the 

proportion of the more reactive, low index crystal planes of platinum compared to 

pure platinum. This may in part due to a particle size effect since alloys are often 

larger than high surface area platinum catalysts due to the high temperature heat 

treatment required for formation (48, 75). 

 

3. Inhibition of OHads and oxide formation: Alloying or use of bimetallic catalysts 

has been shown to inhibit OHads anion adsorption on platinum. This has been 

observed experimentally in cyclic voltammograms  (25, 38, 40, 41, 44, 50, 102) 

and during X-ray absorption Spectroscopy studies (33, 35, 103). The delayed 

onset of OHads (and oxide) thus reduces the amount of competitive binding that 

occurs, keeps the surface oxide free over a larger potential window and therefore 

more sites are available for ORR (50, 102). It has also been suggested that if OH 

preferentially binds to X, then Pt sites are less likely to be blocked (47). 

 

4. Surface roughening: Other studies (80, 104) suggest that surface roughening of 

alloys occurs as a result of leaching of the secondary metal leaving Raney surfaces 

with higher surface area and hence higher activity.  

 

5. Alloying atoms involved in the ORR: It is been suggested that alloying elements 

such as Cr can act as a redox mediator facilitating the ORR (80). 
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6. Electronic effects: Alloying with different metals results in changes in electronic 

structure of the Pt 5d-band vacancy (33). The position of the d-band centre effects 

the ability of the metal to bind desired (O2) species, generate intermediates and 

also effects the subsequent release of intermediates from the surface (58, 59). The 

degree of filling of the d-bands is also important as this interaction determines the 

adsorption strength of oxygenated intermediate species and facilitates their 

conversion to final products. The coupling of the d-metal states and competing 

adsorbates (OHads) must also be considered. Several experimental and modelling 

studies (33, 58, 61), including recent work by Markovic et al. (44, 56) have shown 

Pt alloy and bimetallic catalysts exhibit a ‘Volcano-type’ behaviour with an 

optimum electronic structure correlating to optimum activity. This is shown in 

Figure 4 where the d-band centre is correlated with activity. Compared to 

polycrystalline platinum the alloys have a lower d-band centre. This leads to a 

weaker interaction with adsorbates. On the left hand side of the volcano the rate is 

limited by insufficient adsorption of O2 due to the low lying d-states, while on the 

right hand side desorption of products limits the reaction (44). An optimum is 

observed were sufficient adsoption of reactants and desorption of products occurs. 

As previously mentioned, the effects of stress and strain also alter the electronic 

configuration, which in turn modifies activity (47, 65). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Relationships between the catalytic properties and electronic 

structure of Pt3M alloys [adapted from reference (44)] 
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2.3. Stability of ORR catalysts  

As well as demonstrating enhanced activity, new candidate cathode catalyst materials 

must meet demanding durability targets. Catalysts must survive repeated potential 

cycling and exposure to high potentials (105). This can result in corrosion of the carbon 

support (13, 106-109) and loss of electrochemically active metal area (ECA) (13, 110-

113), which may in turn lead to loss in fuel cell performance. When compared to 

platinum alone PtCo, PtNi and PtFe catalysts have been reported to be more stable to 

platinum electrochemical area loss (72, 73, 76, 77, 114, 115). The improved stability 

has been attributed to the fact the second metal helps anchor the platinum to the carbon 

support and the larger particle size of alloy catalysts (13, 77). The use of alloys and 

bimetallics however, has lead to additional stability considerations regarding the 

additional metal/s. Base metals are known to undergo indirect reduction of oxygen 

forming peroxide, which can lead to membrane degradation (46). In addition, leaching 

of the alloying metal under operating conditions has been observed in both PEMFCs 

(13, 76, 114) and DMFCs (116) resulting in loss of the alloying activity benefit over 

time. More detailed discussions regarding these mechanisms and the impact of activity 

loss will be presented in Chapter 3. 

 

3. Project Aims and Objectives 

This chapter highlights poor cathode performance and catalyst stability as major factors 

limiting fuel cell commercialisation. Bimetallic and alloy catalysts have been identified 

as a means of improving both activity and stability. The numerous theories for the 

observed activity enhancements have been described. The aim of this work is to test 

these theories by comparison of a Pt/C catalyst, typical of commercially available 

materials, with a series of PtCo/C catalysts, with a view to gaining an increased 

understanding of desirable catalytic features for enhanced ORR activity.  A range of 

techniques will be used to characterise catalyst structure including: X-ray absorption 

spectroscopy (XAS), X-ray diffraction (XRD), Transmission Electron Microscopy 

(TEM) and Cyclic Voltammetry. Correlation of catalyst structural properties will be 

made to both catalytic activity and durability. Catalyst performance and stability will be 

assessed using cyclic voltammetry and polarisation measurements. 
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Deactivation of platinum and bimetallic catalysts occurs over time. By understanding 

the processes that cause deactivation, favourable catalytic activity and stability 

properties may be identified.  Chapter 3 aims to study catalyst deactivation by 

quantifying metal leaching, accessing the impact of leaching on catalyst structure and 

probing the mechanisms of performance loss during stability tests. 

 

In chapters 4 and 5, the relationship between cathode catalyst activity and structure is 

explored using X-ray absorption spectroscopy (XAS) to provide element specific 

information on the arrangement of atoms and their nearest neighbours (117, 118). 

Although XAS studies of catalyst powders and electrodes (119-122) have proved 

instructive, the optimum environment for characterisation is in situ under realistic fuel 

cell operating conditions, now known as operando studies. The design and operation of 

a fuel cell to enable operando XAS measurements to be conducted on the cathode will 

be presented, together with findings from investigation into the mechanism of oxide 

growth and removal during potential steps, and catalyst structure during the ORR.   

 

Favourable geometric effects are claimed to explain the activity enhancement of 

electrochemical dealloyed PtCu3/C catalysts that have been demonstrated to meet 

automotive targets (87). In light of these results, chapter 6 presents the preparation, 

characterisation and activity of electrochemically dealloyed PtCo3/C catalysts. 

 

Overall conclusions will be provided in chapter 7, with the differences observed in this 

work between PtCo alloys and platinum discussed in relation to literature theories for 

activity enhancement. 
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Chapter 2. Experimental Methods and Techniques 

The theoretical and practical aspects of the catalyst preparation and testing by 

electrochemical and spectroscopic techniques used in this work will be discussed in this 

chapter.  

 

1. Catalysts under investigation, reagents and materials 

The carbon supported catalyst materials used in this work include; Pt/C reference 

materials, PtCo/C and Pd/C catalysts. Assay compositions, mean crystallite sizes 

determined by XRD and the chapters where the catalysts have been used are reported in 

Table 1.  

 

 Table 1. Catalysts used in this study 

Catalyst Chapter Assay composition / wt % 
XRD mean 

crystallite size / nm
 

60%Pt/C 3,4,5 57 % Pt 2 

40%Pt/C 3, 4,5,6 38.2 % Pt 2.2 

40%Pt/C 600 °C 3,4 42.8% Pt 4.7 

40%Pt/C 900 °C 3,4,5,6 40.9 % Pt 5.0 

40%Pt/C 1000 °C 3,4 40.0 % Pt 7.7 

40%Pt/C 1000 °C II 4 - 5.6 

40%Pt/C 1200 °C 3,4 41.4 % Pt 15.6 

40% Pt3Co/C 600 °C 3 41.7 % Pt, 4.3 % Co 3.6 

40% Pt3Co/C 1000 °C 

3,6 

4,5 

3 

39.5 % Pt, 4.02 % Co batch 1 

40.6 % Pt, 4.04 % Co batch 2 

41.9 % Pt, 4.2 % Co batch 3 

5.9 batch 1 

5.8 batch 2 

5.0 batch 3 

40% Pt3Co/C 1000 °C Acid leached 3,4,5,6 40.5 % Pt, 3.12 % Co 5.9 

40% Pt3Co/C 1200 °C Acid leached 3 42.7 % Pt, 4.11 % Co 12.9 

40% Pt3Co/C 900 °C 3 38.5 % Pt, 3.96 % Co 3.7 

40% Pt3Co/C 1200 °C 3 39.8 % Pt, 4.08 % Co 12.6 

Catalyst 1 

PtCo3/C 600 °C 
6 22.4 % Pt, 19.4 % Co amorphous 

Catalyst 2 

PtCo3/C 950 °C 
6 23.3 % Pt, 20.2 % Co 16 and 3.3 

Catalyst 3 

PtCo3/C 600 °C Acid leached 
6 27.4 % Pt, 1.38 % Co 2.2 

Catalyst 4 

PtCo3/C 950 °C Acid leached 
6 27.8 % Pt, 3.31 % Co 2.4 

10% Pd/C 4, 5 10.26 % Pd - 

 

 

A list of the reagents and materials, excluding catalysts, used in this work and source 

information is shown in Table 2.  
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Table 2. Reagent and materials used in this study 

Reagent/material 

Category 
Reagent/material description Reagent/material Supplier/Source 

Metal salts 
K2PtCl4 

CoCl2.6H2O 

Johnson Matthey 

Alfa Aesar 

Carbon 
Ketjen 

Graphite for cell plates 

Akzo Nobel 

Ralph Coidan Limited 

Gas Diffusion 

Layer 

TGPH60 with carbon microporous 

layer at 0.4 mg C cm-2 
Johnson Matthey Fuel Cells Ltd. 

Ionomer (aq)  Nafion® Dupont 

Acid (l) H2SO4 VW International Limited 

Base (l) NaOH Fluka 

Electrolyte (s) 

(Perfluorinated 

membranes) 

Flemion® SH-30 (30 µm) 

Nafion® 115 (127 µm) 

NRE211CS (25 µm chemically 

stabilised) 

V3 (Johnson Matthey proprietary 

30 µm membrane) 

Asahi Glass 

Dupont 

Dupont 

 

Johnson Matthey Fuel Cells Ltd. 

 

Electrolyte (l) H2SO4 VW International Limited 

Gases 

H2, N2, O2 Cylinders for use during 

XAS measurements 

H2, N2, O2, Ar, CO for 

electrochemical testing 

BOC/Air products 

 

Johnson Matthey Technology Centre in house 

electrolyser (H2 and O2), BOC/Air products 

Electrodes 40% Pt/C Anode electrodes Johnson Matthey Fuel Cells Ltd. 

Catalysts and inks 60% Pt/C Johnson Matthey Fuel Cells Ltd. 

 

 

1.1 Catalyst preparation and characterisation 

The Pt/C and Pt3Co/C catalysts used in this study were prepared by Dr. B.R.C. 

Theobald, Johnson Matthey, using proprietary methods that have previously been 

described (1-3). Briefly, the carbon is slurried in weakly basic water before addition of 

the metal salts. On complete deposition of the metal, the metal was reduced either by 

chemical methods or by heat treatment. Different heat treatment temperatures and 

conditions have been used to provide Pt/C catalyst with a range of particle sizes. 

Alloying of the Pt3Co catalysts was confirmed by the presence of a Pt3Co phase using 

XRD analysis with a BrukerAXS D-500 Diffractometer. Where applicable chemical 

acid leaching was conducted in 0.5 M H2SO4, 80 ºC for 24 hrs. The Pt and Co content 

of the resulting leachate was determined using ICP-MS.  

 

With guidance from Dr. B.R.C. Theobald and E. Christian, Johnson Matthey, four new 

PtCo3/C catalysts have also been prepared. Chapter 6. These materials were based on 

the PtCu/C catalysts reported by Strasser et al. (4-10) that were shown to have enhanced 

activity after an electrochemical de-alloying procedure. PtCo3/C catalysts were 
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synthesised as to target the Pt25M75 composition reported by Strasser et al.. However, 

instead of using the reported route of impregnation, the PtCo catalysts were prepared 

using the proprietary co-deposition route (1-3). The carbon (36 g) was slurried in water 

at elevated temperature before stepwise addition of 32.11g K2PtCl4 and 54.88 g 

CoCl2.6H2O metal salts. The pH was maintained by addition of NaOH facilitating the 

complete deposition of the metal as described by Equation 1 and Equation 2 (11). The 

approximate total volume in the reaction flask was 7.4 L. After deposition the catalyst 

was separated by filtration, washed and dried. The dried catalyst weight was 74.70 g. 

 

K2PtCl4 + 2NaOH  →   PtO.H2O + 2NaCl +2KCl    Equation 1

     

CoCl2 + 2NaOH   →  Co(OH)2 + 2NaCl     Equation 2 

 

The catalyst was then annealed at 600 and 950 °C in 5% H2/N2 to form two precursor 

materials with a nominal composition of 23.6 wt% Pt / 21.4 wt% Co/C (Pt25:Co75 

atomic). NB. To prevent combustion, the reduced precursor materials must be carefully 

exposed to air using an evacuation and air bleed method to achieve controlled 

passivation. 10 g of each precursor materials were chemically acid leached with 250 ml 

of 0.5 M H2SO4 for 24 hrs in a 3-neck 500 ml flask equipped with a magnetic stirrer, 

reflux condenser and thermometer. After acid addition the suspension was heated to 

80 °C. After 24 hrs at ~80 °C the heating was switched off and the suspension was 

allowed to cool to ~50 °C. The suspension was filtered using a Buchner funnel and 

vacuum. The dark pink filtrate was collected and submitted for metal assay and the solid 

was washed copiously until the washings were pH neutral. The washed material was 

sucked dry on the filter before transferring to a drying oven and dried overnight at 

105 °C in air. The leaching procedure was repeated until the leachate was colourless by 

visual inspection. The Pt and Co content of the resulting leachate was determined using 

ICP-MS. The new materials were characterised by assay, CO chemisorption, XRD and 

TEM and were subsequently electrochemically de-alloyed as described in section 2.2.4. 

 

1.2 Sample preparation 

To enable electrochemical characterisation and testing the catalyst powders were made 

into inks by addition of aqueous ionomer (Nafion®). Typically 125 wt % Nafion® was 
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added with respect to the wt% carbon in the catalyst. To achieve optimum mixing, inks 

were processed either by using a Silverson mixer or a Speedy Mixer DAC150 FVZ-K 

with ceramic processing beads. Depending on the coating technique that was to be 

employed for fabricating electrodes from the ink, the ink solids were reduced by 

addition of deionised water. Typically solid fractions of 10% were required for hand 

painted and spray coated electrodes while inks with a solid content of up to 28% were 

used for fabricating screen printed electrodes. To enable fuel cell testing the 

corresponding anode and cathode electrode layers were fabricated into MEAs. 

 

1.2.1 Electrode fabrication 

Electrodes were fabricated by hand painting, screen-printing or spray coating an 

aqueous nafion ink of the catalyst of interest onto a gas diffusion layer (GDL, Toray 

TGPH-60 carbon paper coated with a microporous carbon layer). The fabrication 

method used depended on both the electrode area and the required catalyst loading.  

 

Hand painting was used for small areas, < 8 cm
2
 and low loadings, typically 

0.3-0.5 mgPt cm
-2

. Using a paintbrush the ink was applied evenly to pre-cut carbon fibre 

paper that was larger than the required test electrode area. A larger area was used as 

catalyst applied on edges sometimes exhibits poor adhesion and can become uneven in 

this region. Before addition of the first coat of ink 35% IPA/H2O was sprayed onto the 

microporous layer to ensure good wetting. Thin coats of ink were added with drying on 

a hotplate at 90 °C between each addition. The electrode was rotated before addition of 

each subsequent layer to ensure an even coating. Addition continued until the desired 

loading was reached. The metal loading was calculated using Equation 3. The electrodes 

used in the electrochemical tests were cut from the larger painted areas.  

 

)(cm area  Electrode

cat.in Pt  % layer  driedin   cat. %  (g) ink weight
)cm(g loadingPt  

2

2-

Pt

××
=  Equation 3 

 

Screen printing or spray coating were used for fabrication of electrodes with larger areas 

(up to 500 cm
2
). For MEA activity testing typically a loading of 0.2 - 0.4 mgPtcm

-2
 was 

used on the anode and cathode. For these relatively low loadings screen printing was 

used. The catalyst ink is smoothly spread across a mesh screen covering the IPA wetted 
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gas diffusion layer. The loading can be varied by changing the mesh size used. After 

application the catalyst layers were allowed to dry in air. The loading was calculated 

using Equation 3. For some tests catalyst coated membranes (CCM) were used. These 

were prepared by screen printing onto clean PTFE instead of gas diffusion layer. 

 

For preparing electrodes with either thick catalyst layers (0.24 mgPdcm
-2

) and / or high 

loadings > 1.5 mgPtcm
-2

 enough catalyst can not be physical applied via the screen 

printing method due mesh size limitations. In this instance spray coating is used. This 

technique applied the catalyst ink to the gas diffusion layer as a fine spray. The ink is 

forced though a fine nozzle using compressed air. This can be achieved using a hand 

held spray gun or more sophisticatedly, using a Johnson Matthey built automatic 

spraying rig in which the gun position is fixed at a constant height above the GDL. 

Spray overlap is optimised and the GDL heated from below to allow contact drying. 

Addition of more layers occurs until the desired loading is reached. Loadings were 

calculated as previously described. In this instance IPA spraying prior to catalyst 

coating is not required.  

 

1.2.2 MEA fabrication 

MEAs were fabricated by accurately aligning pre-cut anode and cathode electrodes (or 

PTFE layers in the case of CCM fabrication) on either side of a proton conducting 

membrane. The resultant assembly was placed between filter paper, PTFE sheets and 

Titanium pressing plates, as shown in Figure 1, before hot pressing for 2 minutes.  The 

assembly was then cooled to < 60 °C under pressure before removal from the press and 

allowing cooling to room temperature. The pressing conditions varied depending on the 

membrane used. Membrane substrate assembles (MSA) for gas humidification in the 

XAS transmission cell were made by hot pressing Nafion 115 membrane to Toray 

carbon fibre paper. The typical conditions used for bonding were 150-180 °C and 

200-400 psi sample pressure. 
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Figure 1.  Arrangement of components used during MEA fabrication 

 

2. Electrochemical characterisation and testing 

Detailed understanding of the electrocatalysis reactions occurring on catalyst materials 

is critical to development and commercialisation of fuel cells. Electrochemical 

techniques are therefore a central component of this work. Both potential sweep and 

potential stepping and potential hold experiments have been employed to characterise 

surface processes providing mechanistic insight, to determine active metal areas, and 

catalytic activity and to study catalyst degradation and stability. Testing has been 

conducted in both liquid electrolyte and MEA environments. 

 

2.1 Electrochemical testing in liquid electrolyte 

Cyclic voltammetry has been used to study fuel cell catalyst materials in liquid 

electrolyte. Cyclic voltammetry allows the characterisation of redox processes occurring 

at electrode solution interfaces for both homogeneous and heterogeneous reactions. A 

three electrode set-up was used comprising of a working electrode (the electrode at 

which the reaction of interest occurs), a counter electrode (the electrode that undergoes 

the charge balancing reaction to that occurring on the working electrode), and a 

reference electrode (used to define zero volts within the system). By convention the 

absolute potential of 0.0 V is defined by the standard hydrogen electrode (SHE). 

Equation 4.  

 

Pt (s)  H3O
+
 (a =1)  H2  (1013.25 mbar) 298 K    Equation 4 

 

For practical reasons the reference electrode used in this work for studying reaction in 

acid environment is a Pd (s)  H2SO4 (1 M)  H2 at a range of temperatures, (analogous to 
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the reversible hydrogen electrode RHE where Pt is used instead of Pd). All potentials 

are reported vs. the Pd/H reference electrode (+ 5 mV vs. RHE (12)). The electrodes are 

immersed in a solvent to provide a media for diffusional mass transport of reactants to 

and products away from the electrode surface. To ensure efficient ion conductivity and 

low internal resistance (iR) drop a highly conducting supporting electrolyte is required. 

In this work the solvent system used was water and the supporting electrolyte H2SO4 at 

1 M concentration. The electrolyte was purged with inert gas, N2 or Ar, to exclude O2 

before and during voltammetry experiments. The electrodes and electrolyte are 

contained within a jacketed electrochemical cell designed to minimise resistance (iR 

drop). Figure 2 shows a schematic representation of the electrochemical cell used in this 

work. The cell has a low volume of electrolyte (100 ml) to allow detection of dissolved 

species during testing by electrolyte sampling and measurement by ICP-MS. See 

section 2.1.2. The working electrode used was made by attaching a clip made from Au 

wire to catalyst coated carbon fibre paper electrode (section 1.2.1). The catalyst coated 

side faced up, parallel to the reference and counter electrodes that were each contained 

inside individual electrolyte filled fritted compartments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Schematic representation of the electrochemical cell used for testing 

fuel cell catalysts 
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The electrodes are connected to a potentiostat to form an electrical circuit. The 

potentiostat used in this work was an EcoChemie  PGSTAT 30 Autolab. The 

potentiostat controls the experiment, ensuring the current flow through the reference 

electrode is zero and holds the potential of the working electrode constant with respect 

to a reference electrode by controlling the current flowing through the counter electrode. 

If the current between the working and reference electrodes is zero then the iR drop is 

also zero and the potential of the working electrode versus the reference may be 

measured. 

 

During cyclic voltammetry experiments the potential of the working electrode is swept 

linearly between two limits and the current response recorded by the potentiostat. The 

important variables are the starting potential, the potential limits and the sweep rate. 

 

The current response is characteristic of the oxidative, reductive and capacitive 

processes occurring at the working electrode solution interface, and is sweep rate 

dependent. The focus of this work is the study of heterogeneous reactions of fuel cell 

catalyst materials therefore the following discussion will be limited to the study of 

absorbed species on electrode surfaces. In this instance the current response is governed 

by the number of electrons transferred in the reaction and the number and type of active 

sites on the electrode surface. This is clearly illustrated in the cyclic voltammetry 

profiles of Pt single crystals where each absorption site (111, 100, step and terrace sites) 

gives rise to a unique current response both in terms of onset potential and peak shape 

(13). Peak position is a measure of the adsorption strength. Strongly bound species 

require higher potentials for removal from the electrode surface. For heterogeneous 

systems the peak current density is directly proportional to scan rate and the charge 

required to oxidise an absorbed layer is equal to the area under the redox peak 

associated with that process. This peak area is independent of scan rate and therefore 

integration of peak area provides a useful measure of electroactive surface area. 

 

In this work polycrystalline Pt and Pt based catalysts have been studied, all these 

materials display characteristic features corresponding to the electrochemical processes 

occurring at the Pt : solution interface. These features are shown in Figure 3 for a 

polycrystalline Pt/C electrode undergoing a potential sweep from 0.05 V to 1.4 V and 

back to 0.05 V vs. Pd/H in 1M H2SO4 supporting electrolyte at 80 °C.   
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Figure 3. Cyclic voltammogram of a polycrystalline Pt/C electrode at 10 mVs
-1

 

in 1 M H2SO4 supporting electrolyte at 80 °C 

 

The voltammetry profile may be split into three regions a) the hydrogen region, b) The 

double layer region and c) the oxide region. The electrochemical processes occurring in 

each of these regions will now be discussed. 

 

The hydrogen region contains two pairs of peaks. These peaks are assigned to 

absorption/desorption of hydrogen on the platinum surface described by Equation 5. 

The shape of the individual cathodic/anodic peaks arises due to progressive vacant site 

filling/emptying during the adsorption/desorption process until a maximum/minimum is 

reached and no further current flows (apart from the double layer a charging current). 

The reversible nature of the adsorption/desorption processes leads to the adsorption and 

corresponding desorption peak occurring at very similar potentials. Compared to 

platinum single crystal data the peaks are broader as the voltammetric response 

corresponds to the superposition of the numerous different adsorption sites on 

polycrystalline Pt/C. The two pairs of peaks occur at different overpotentials, 

corresponding to different Pt-H bond energies. Considering the desorption peaks 

(anodic scan) we observe peak 1 at low overpotentials  ~0.10 V vs. Pd/H indicating that 
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the bound hydrogen atom is easily removed. This feature is known as the weakly bound 

hydrogen. Peak 2, at higher overpotenitals ~ 0.25 V vs. Pd/H, corresponds to strongly 

bound hydrogen.  

 

Pt + H3O
+
 + e

-
       Pt-Hads + H2O     Equation 5

     

For platinum, the adsorption of hydrogen obeys the Langmuir isotherm, consequently 

the maximum coverage is a monolayer (14).  The area under the adsorption peaks, 

(Charge associated with the peak in the cathodic scan), corrected for the double layer 

contribution can therefore be used to determine the electrochemical Pt surface area 

(EPSA in cm
2

Pt cm
-2

geo). As described in Equation 6. 

 

)Area(cm)cm (CdensityCharge

(C)Charge
)cm (cm

22-

2-

geo

2

Pt
×

=EPSA    Equation 6 

 

The measured charge (C) is converted to a surface area using the charge density  

(µC cm
-2

) of Pt and normalised by the area of the electrode under test (cm
2

geometric). The 

theoretical charge density of a material for a one electron process on a fcc crystal (hkl) 

face is the product of the number of atoms in one square centimetre of this face and the 

charge of one electron. The number of atoms per square centimetre N(hkl) depends on the 

interatomic distance a (in cm) which is 2.776x10
-8

 cm for Pt and the crystallographic 

plane. This leads to three values of charge density for Pt associated with each 

crystallographic face (111 = 240 µC cm
-2

, 100 = 208 µC cm
-2

, 110 = 147 µC cm
-2

) (15, 

16). Due to the polycrystalline nature of the catalyst materials studied, this work uses 

the commonly reported value of 210 µC cm
-2 

for the charge density of polycrystalline 

platinum (17, 18). The EPSA value is converted to an ElectroChemical Surface Area, in 

m
2

Pt gPt
-1

 using Equation 7 to enable direct comparison of different catalyst materials 

tested with different electrode loadings. 

 

10)cm (mgLoading

)cm (cm
)g (m

2-

-2

geo

2

Pt1-

Pt

2

Pt
×

=
EPSA

ECA        Equation 7 
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Close to the thermodynamic potential of 0 V hydrogen evolution occurs. Equation 8. 

This process is facilitated by the adsorption of hydrogen on the Pt surface. The 

mechanistic steps are described in Equation 9 and Equation 10 (19).  

 

2H
+
 + e

- 
→ H2 ↑ E = 0.0 V        Equation 8 

 

H
+
 + Pt + e

-
 → Pt-Hads         Equation 9 

 

2Pt-Hads → 2Pt + H2 ↑              Equation 10 

 

The current response in region b), known as the double layer region, is dominated by 

the charging current at the electrode/electrolyte interface. In this region, unlike regions 

a) and c), no Faradaic electron transfer processes occur at the electrode/solution 

interface. The current response is a consequence of the change in surface charge on the 

electrode i.e. double layer charging of both the Pt surface and, dominating the response, 

the carbon support. For a Pt wire the double layer region is found to extend to higher 

potentials (up to ~0.6 V), however, in the voltammogram of Pt/C shown in Figure 3 a 

redox feature is observed at ~0.5 V vs. Pd/H. This feature is not present in the 

voltammetry of a Pt wire and is therefore assigned to redox processes occurring on the 

carbon support (quinone/hydroquinone redox couple (20)). This feature is observed for 

all carbon supported catalysts used in this work.  

 

Region c is where platinum oxidation/reduction and oxygen evolution occurs. Unlike 

the reversible adsorption of hydrogen onto the Pt surface, oxide formation is an 

irreversible process as shown by the shape of the peaks in the anodic scan and high 

overpotentials required to remove the Pt oxide in the cathodic scan. This hysteresis 

suggests that a form of irreversible structural change occurs during the anodic sweep 

resulting in a more stable surface. The mechanism of oxide formation is still under 

debate with several mechanistic pathways proposed (21). A general consensus exists 

where Pt-OHads forms at low overpotentials (< 0.8  V vs. RHE) followed by Pt-O and 

PtO2 formation at higher potentials. At potentials corresponding to a critical surface 

coverage of oxygen species (~ 1.0 V vs. RHE) the formation of subsurface oxygen 

species occurs and leads to the hysteresis observed. This process, first proposed by 

Reddy et al. in 1968, is known as place exchange (14).  A more detailed discussion on 
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proposed oxide formation and removal mechanisms can be found in chapter 5.  In 

addition to oxide formation the other voltammetric feature in the anodic scan of region c 

is the steep increase in anodic current at ~1.23 V. This corresponds to the onset of 

oxygen evolution, where water is oxidised to molecular oxygen. Equation 11.  

 

2H2O  → 4H
+
 + 4 e

-
 + O2 ↑  E˚ = 1.23 V    Equation 11 

 

The adsorption of CO on Pt surfaces has also been used as a means of measuring the 

electroactive surface area. In the CO oxidation experiment the Pt/C electrode is exposed 

to CO saturated electrolyte at 0.125 V vs. Pd/H. While still under potential control the 

electrolyte was subsequently saturated with N2 before 3 x cyclic voltammetry sweeps 

were performed. Scan 1 starts anodically from 0.125 V to 1.0 V, the sweep is reversed 

and the cathodic response recorded from 1.0 V to 0.05 V.   
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Figure 4.  CO Oxidation voltammetry a polycrystalline Pt/C electrode at 

10 mV s
-1

 in 1M H2SO4 supporting electrolyte at 80 °C. Scan 1 

dashed line, solid line scan 2, shaded area corresponds to the 

oxidation of CO according to Equation 12 
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Figure 4 shows the cyclic voltammetry profile. CO adsorption on Pt blocks the sites 

used for Pt-H adsorption and, therefore, no features are observed in the hydrogen region 

in the first anodic scan. The oxidation feature with onset at ~0.5 V vs. Pd/H (shaded 

area) corresponds to CO oxidation to CO2 as described in Equation 12. The charge 

associated with this two electron process can be used to determine the electrochemical 

surface area as described in Equation 6 and Equation 7. The charge density value used 

in this instance is doubled from 210 µC cm
-2

 to 420 µC cm
-2

 to account for additional 

transfer of electrons. At 0.8 V all CO is oxidised from the catalyst surface and therefore 

the characteristic Pt features previously described are observed in the voltammetry in 

subsequent scans. 

 

Pt-CO + H2O → Pt + CO2 + 2H
+
 + 2 e

-
     Equation 12 

 

2.1.1 Working electrode sample preparation 

Before testing, the large area catalyst coated electrodes (see section 1.2.1) were cut into 

circular 1.0 cm
2
 or 3.14 cm

2
 buttons, heat treated at 177 °C in air and fully flooded.  

Initially wetting of the electrodes was conducted by boiling in acidified deionised water, 

however, significant leaching was found to occur for base metals such as Co. To 

minimise leaching subsequent testing used a vacuum filling technique to ensure the 

electrode was fully wetted before testing. The electrode was placed in a beaker of 

deionised water and prevented from floating. The beaker was then transferred to a 

Struers Epovac to allow evacuation. Evacuation of the beaker to 200 mbar caused air 

trapped within the electrode to be replaced by water, fully flooding the electrode 

without the need to use an acidic environment. It will be made clear in each chapter 

where wetting was achieved by acid boiling or vacuum filling. 

 

2.1.2 Stability testing procedure 

The stability of the catalyst to repeated potential cycling in 1M H2SO4 between either 

0.6 - 1.0 V or 0.6 - 1.2 V vs. Pd/H at 50 mVs
-1

 was investigated by periodic ECA 

measurement and electrolyte sampling. 5 ml of electrolyte was removed after 0, 50, 150, 

250, 500, 750 & 1000 cycles and analysed for Pt and Co content by ICP-MS analysis. 

The total electrolyte volume was kept constant by replenishment with fresh electrolyte. 
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Experiments reported in Chapter 3 were run in duplicate on each catalyst with the same 

trends in changes in voltammetry, ECA loss and metal loss observed for each repeat. No 

repeat measurements were performed on the catalyst studied in Chapter 6. 

   

2.1.3 Window opening procedure 

A potential window opening test was conducted to investigate the ability of the catalyst 

to grow and remove oxide at 80 °C. A cyclic voltammogram was run between 0.01-

0.6 V vs. Pd/H at 10 mV s
-1

, then repeated with 0.1 V incremental increases in upper 

potential limit up to 1.4 V. This experiment was also conducted after the 0.6-1.2 V 

cycling experiment to investigate the effect of cycling on the catalyst. Repeat testing 

was not conducted. 

 

2.2 Electrochemical testing in MEAs 

In addition to the electrochemical testing in liquid electrolyte the fuel cell catalyst 

materials have also been characterised within the MEA environment under fuel cell 

operating conditions. The catalytic activity of the oxygen reduction reaction has been 

measured for 49 cm
2
 active area MEAs using Johnson Matthey single cell test stands 

and at synchrotron sources with simultaneous collection of X-ray absorption data in a 

specially designed fuel cell with 12.56 cm
2
 active area MEAs. A detailed discussion on 

the cell design can be found in chapter 4.  Catalyst stability has also been investigated 

within the MEA environment and an electrochemical de-alloying cycling protocol used 

to activate Co rich catalysts in situ. 

 

2.2.1 Oxygen reduction reaction activity measurement 

Measurement of catalytic activity for the oxygen reduction reaction was conducted to 

evaluate catalyst materials with respect to commercial targets by determining the 

difference in the thermodynamic cell voltage (~1.23 V) and the measured cell voltage 

(oxygen polarisation). In this work oxygen polarization measurements have been 

conducted both potentiostatically (A potential is applied to the electrode and the current 

measured after a fixed time period) and galvanostatically (A current is applied and the 

potential is measured after a fixed time period) depending on the test equipment used. In 
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this work deviation from the theoretical cell voltage as a consequence of activation 

losses on the cathode is of particular interest. 

 

To determine the cathode activation losses from the measured cell performance and 

allow direct comparison between catalyst materials the other losses within the system, 

such as anode activation, resistance and mass transport losses, must be accounted and 

compensated for (22). This is achieved by use of appropriate anode catalyst materials 

and, test conditions and making suitable measurements to quantify the losses.  

 

When Pt/C is used as the hydrogen oxidation catalyst for anode electrodes the kinetics 

of hydrogen electrooxidation are very facile. Due to these rapid kinetics Gasteiger et al. 

report that Pt loadings as low as 0.05 mg Pt cm
-2

 on the anode may be used without the 

need to compensate the measured cell performance for contributions from anode 

polarisation (23).   The loss associated with the oxidation current generated by fuel 

crossover via diffusion through the membrane (hydrogen crossover) can be 

compensated for by addition of the current measured when the N2 purged cathode 

compartment at 0.5 V with respect to the H2 purged anode compartment to the cell 

current density to give Jcorr / mA cm
-2

. 

 

Ohmic losses associated with the conductivity of protons through the membrane and 

electronic contact resistances between plate and MEA components (iR drop) may be 

determined by using the potentiostat to perform current interrupt measurements. The 

current at a given cell voltage is briefly (1 ms) switched off and the potential monitored 

during the relaxation to OCV. A characteristic response is observed, a sharp increase in 

voltage occurs at short times corresponding to removal of the ohmic contribution Vr 

followed by a slower decay corresponding to the capacitive component of the circuit Va. 

During the polarisation tests the current interrupt measurement is performed for each 

applied voltage value and Vr is measured, knowing the current at the applied cell 

potential and the cell active area, a resistance value in Ohm cm
2
 is determined. This 

value is then used to correct the applied voltage at each current density for resistance 

within the cell.  

 

Mass transport losses corresponding to the access of reactant to and products away from 

catalyst active sites are only significant at high current densities so may be neglected 
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when using pure oxygen and conducting experiments in the kinetic region as done in 

this work. After correction of all the losses described this leaves the corrected cell 

performance giving a measure of the activation loss for the oxygen reduction reaction 

on the cathode. To allow direct comparison between different MEA samples typically 

the performance values are correct for the mass of platinum on the electrode to give a 

mass activity (A mgPt
-1

) or by correction of catalyst ECA to give a specific activity 

(A cmPt
-2

). 

 

2.2.2 49 cm
2
 single cell testing procedure  

Measurement of catalytic activity for the oxygen reduction reaction was conducted on 

cathode catalysts in 49 cm
2
 active area MEAs. MEAs were fabricated with cathode and 

anode loadings of 0.2-0.4 mgPt cm
-2

 and Flemion® SH-30 membrane as described in 

section 1.2.2.  Single cell testing was performed in 50 cm
2

 hardware at 100% RH using 

external contact humidifiers. After initial safety tests, to ensure the integrity of the fuel 

cell assembly to gas leaks, samples were conditioned in the single cell for at least 8 hrs 

on H2/Air at 80 °C, 150 kPaabs and ≥ 0.5 Acm
-2

. Oxygen polarization measurements 

were conducted galvanostatically using a 15 minute hold equilibration time after each 

incremental current increase from 0.05 to 1.5 A cm
-2

. Temperature and pressures were 

80 °C and 150 kPaabs  and gas stoichiometries were 2:10 H2:O2 for oxygen polarization. 

In addition oxygen polarizations were also conducted at 270 kPaabs from 1.5 to 

0.05 A cm
-2

 with a 3 minute equilibration time. Membrane resistance was measured at 

each current density using the current interrupt technique, and measured currents were 

corrected for H2 crossover, measured in situ for each MEA at 270 kPaabs. Specific 

activity at 900 mV at the different pressures was also determined by correcting for 

cathode Pt surface area measured in situ based on CO oxidation voltammetry. CO area 

was measured at 80 °C in the MEA by poisoning the cathode with CO at 0.15 V (vs. 

anode), purging with N2 at 0.15 V, then cycling from 0.15 to 1.0 V and integrating the 

area of the CO peak, using a correction factor of 420 µC cm
-2

. Typically experiments 

were run in duplicate on each catalyst. An error of ± 5 mV determined from multiple 

measurements on standard samples is typical, therefore differences in performance of 

> 5 mV should be considered significant. 
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2.2.3 Electrochemical de-alloying 

An electrochemical dealloying process similar to that described by Strasser et al. (4-10) 

was used on the PtCo3 catalysts. A 49 cm
2
 catalyst coated membrane (CCM) was 

fabricated and loaded into the test cell. The beginning of life performance was measured 

at 270 kPaabs before the cathode was electrochemically cycled from 0.5-1.0 V at 

100 mV s
-1

 1000 times. The CCM was then removed from the cell and place in 1 M 

H2SO4 overnight. The CCM was then washing by boiling in 1 M H2SO4 for 3 hrs in an 

attempted to remove dissolved Co from the membrane. The CCM was then allowed to 

cool in the acid overnight before removing from the acid and rinsing in 2 x ~250 ml of 

deionised water. The washings were combined and the Co and Pt content measured by 

ICP-MS. The washed MEA was then refabricated before de-alloyed performance testing 

was conducted at 270 kPaabs. In addition to the four PtCo catalysts a Pt standard catalyst 

was also tested for comparative purposes and a PtCo catalyst was also tested without the 

cycling step to ascertain whether the de-alloying procedure is required for performance 

enhancement. In all cases no duplicate measurements were conducted. Results are 

discussed in chapter 6. 

 

2.2.4 12.56 cm
2
 transmission XAS cell testing  

In this work a fuel cell to enable time resolved operando XAS studies of cathode 

catalysts has been designed to allow catalyst structure to be probed during operation. 

The cell design is discussed in Chapter 4. Here the MEA testing procedure is reported. 

Measurement of catalytic activity for the oxygen reduction reaction and potential step 

and potential hold experiments to study catalyst structure under operating conditions 

and oxide growth and removal were conducted on cathode catalysts in 12.56 cm
2
 active 

area MEAs. In evaluating the new cell design catalyst loadings of 0.4 mgPt cm
-2

 were 

used. For the operando XAS experiments loadings of 2.0 mgPt cm
-2

 or higher were used 

at the cathode to give sufficient absorbance for transmission EXAFS of sufficient signal 

to noise (24). To provide an X-ray transparent anode, 10% Pd/C at 0.24 mgPd cm
-2

, was 

used. MEAs were fabricated by positioning two centimetre diameter circular anode and 

cathode electrodes on either side of a Nafion 115 membrane and hot pressing according 

to the procedure described in section 1.1.2.  MEAs of the catalyst of interest were 

loaded into the cell and the cell was connected to a gas control box and water bath. The 

integrity of the cell to gas and water leaks was determined. The cell was heated to 65 °C 
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and incoming gases humidified by MSAs and use of a circulating waterbath at 80 °C set 

point. H2 at 140 or 60 ml min
-1

 and N2 or O2 or air at 60 ml min
-1

 was flowed to the 

anode and cathode respectively. At 0.5 A cm
-2 

with H2 and O2, the flows correspond to 

stoichiometry 3.2 and 2.7 respectively. The gas was supplied to the cell and the cell 

pressure was maintained at 10 psi for activity testing. The cell potential was controlled 

using a PGSTAT 30 Autolab with 10/20 A Booster. For activity measurement the MEA 

was conditioned potentiostatically by cycling the cathode ten times to and from 0.95 V 

to 0.6 V with a 0.05 V increment and 5 s stabilisation at each potential. The cell was 

then held at 0.6 V for 150 s before oxygen polarisation curves were measured 

potentiostatically from 0.95 V to 0.6 V and back to 0.95 V with a 0.025 V increment 

and 30 s stabilisation time. The iR resistance was determined from current interrupt 

measurements. During cell validation duplicate MEAs were tested of each catalyst type, 

a typical error of ± 5 mV was observed between samples. 

 

In addition to activity measurement, potential stepping and potential holding 

experiments have been conducted under N2 (half cell) and O2 (fuel cell) atmospheres 

with simultaneous collection of X-ray absorption spectra to investigate the effect of 

applied potential on catalyst structure. Chapters 4 and 5. The voltage time profile of a 

combined potential stepping and holding experiment where the potential is stepped from 

1.25 V to 1.0 V and back to 1.25 V after a potential hold at 1.0 V for 10 s is show in 

Figure 5.  During the potential steps the voltage of the working electrode is rapidly, 

(ideally instantaneously), changed. The current response is recorded with time 

(chronoamperometry). The current corresponds to both the double layer charging and 

also the electrochemical Faradic processes occurring at the electrode electrolyte 

interface. N2 potential step experiments were conducted from 0.125 V to a range of 

upper potential limits and back to 0.125 V at 35 and 65°C before exposure of the 

cathode to oxygen. O2 potential stepping experiments were conducted after MEA 

conditioning (previously described) from OCV to at range of applied potentials from 0.9 

to 0.6 V and back to OCV. Typically duplicate measurements for each potential step 

experiment were made on individual MEAs and as beamtime allocation allowed repeat 

measurements were made on MEAs of the same catalyst. The gas flows, cell pressures 

and hold duration times varied. The exact experimental conditions used will be made 

clear within individual results chapters.    
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Figure 5. Potential time profile of a potentiostatic stepping experiment from 

0.125 V to 1.0 V and back to 0.125 V 

 

 

3. X-Ray Absorption Spectroscopy 

X-ray absorption spectroscopy (XAS) has been shown to be a powerful technique for 

providing electronic and structural information. The oxidation state, orbital occupancy 

and local coordination (numbers and identity of neighbours) of the absorbing atom may 

be determined by analysis of both the X-ray Absorption Near Edge Structure (XANES) 

and Extended X-ray Absorption Fine structure (EXAFS) (25).  For these reasons XAS 

has been increasingly applied to the study of fuel cell catalysts. (24, 26-37). The 

theoretical basis of X-ray absorption spectroscopy, including data processing and the 

experimental methods will be discussed.  

 

3.1 Theory 

XAS provides element specific information about the local environment of an atom by 

excitation of core electrons within the atom by X-ray radiation, typically from a 

synchrotron source. X-ray interaction with a sample results in the intensity of the 

transmitted photons It being altered compared to the intensity of the incident photons I0 

according the Beer Lambert equation, Equation 13, where x is the sample thickness and 

µ , the X-ray absorption coefficient.  
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µx = log(I0/It)         Equation 13 

 

Figure 6 shows a typical XAS spectrum through an absorption edge. The observed 

absorption, µx, above the pre-edge region is a consequence of sample irradiation by 

photons with energies corresponding to quantised transitions from core levels (s, p) to 

vacant states of appropriate symmetry (according to Fermi’s golden rule) and, at 

energies approximately 50 eV higher than the absorption edge, electron ejection from 

core levels into the continuum via the photoelectric effect. The structure observed 

within the spectra corresponds to electron transitions within the atom (XANES) and the 

superposition of the interference patterns of outgoing photoelectrons (viewed as 

spherical waves) and the electron density surrounding the absorbing atom (EXAFS). 

The EXAFS region can extend up to 1000 eV past the edge. The spectrum is therefore 

representative of the local electronic environment of, and surrounding the absorbing 

atom. 
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Figure 6. XAS Spectrum of Pt/C in H2 atmosphere at the Pt LIII edge showing: 

a) pre-edge region, b) edge and XANES region, c) EXAFS region 
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In this work XAS at the Pt LIII edge and Co K edge absorption edges has been used to 

study catalysts containing Pt and Co. The Co K adsorption edge (at 7.709 keV) arises 

from transitions from the 1s1/2 core states. The Pt LIII adsorption edge (at 11.564 keV), 

shown in Figure 6, arises from transitions from the 2p3/2 core states. A characteristic 

feature of the Pt LIII adsorption edge spectrum is the enhanced X-ray adsorption or 

“white line”. This features arises as a consequence of the symmetry allowed transitions 

(∆ J = 0 ± 1) into vacant 5d states that have J = 5/2 character (38). Lytle et al. have 

shown that the intensity of the peak at the LIII absorption edge is proportional to the d-

electron vacancies (39, 40), while Mansour et al. (38) have demonstrated a quantitative 

method for determining the number of unoccupied d-electron states in Pt from both LII 

and LIII X-ray absorption edge spectra. Such information on the electronic configuration 

of atoms can provided insight into the bonding interactions during catalytic reactions. 

 

Interpretation of the EXAFS region of the X-ray absorption spectrum gives structural 

information about atoms of type j, such as the coordination number, Nj, and the 

distance, Rj, from the absorber atom. This information is extracted from the data by 

fitting the EXAFS function )(kχ , Equation 14, to the EXAFS equation, Equation 15. 
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Where µ0 is the smoothly varying portion of µ past the edge and corresponds to the 

absorption coefficient of a free atom, Fj(k) is the magnitude of the backscattering from 

atom j, δj(k) is the backscattering phase shift resulting from scattering off atom j, S0 is 

the amplitude reduction factor and reflects multielectron effects and central atom shake-

up and shake-off due to the relaxation process after photoionization, 
222 jke σ−
 accounts 

for the finite lifetime of the excited state, σj
2 is the relative mean squared disorder along 

the distance between the absorbing atom and atom j due to thermal and static motions, 

and λ is the mean free path of the electron. 

 

Equation 15 is derived by considering interaction of the outgoing photoelectron wave, 

with wave vector k, with the electron density of neighboring atoms. Interactions 

produce backscattered waves that may interfere either constructively or destructively 

with the outgoing wave. The final state wavefunction is a superposition of all the 

outgoing and backscattered waves from each co-ordination shell j. This gives rise to the 

oscillations observed above the absorption edge. The oscillations are unique to the 

absorber environment since the number and type of neighbour atoms and their distance 

from the absorber atom will modulate both the amplitude (Equation 16) and phase 

(Equation 17) of the final state wavefunction.  

 

To allow fitting to Equation 15 the following general procedure is used. Firstly the raw 

data must be converted to an energy scale in eV from a position of the monochromator 

in mdeg. At this stage several spectra may be combined to improve signal to noise. Next 

the data is subjected to determination of the zero point of the energy E0, normalization 

and background subtraction. The zero point of the energy scale is set to be the point of 

inflection in the absorption edge. This allows the energy of the incident photon, Ehv, to 

be converted to k-space (Å
-1

) as described in Equation 18: 
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Background subtraction removes both the variation in the absorbance with energy 

caused by the other atoms in the sample and the smooth variation in µ0 past the 

absorption edge. The data is then normalized, placing the measured spectra on a per 

absorber atom basis. 
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The oscillatory EXAFS component is then isolated. The EXAFS )(kχ data may then be 

fitted to the EXAFS equation (Equation 15) using fitting software such as EXCURV98, 

a least squares fitting programme based on curved-wave theory, using a Z + 1 2p core 

hole approximation (41).  

 

In this work 3 different types of XAS experiments have been conducted at two different 

synchrotron sources leading to differing requirements for data manipulation. The 

experiments and the data fitting methods employed will now be described along with an 

example of how the data was processed for a Pt/C catalyst. 

 

3.2 XAS measurements on MEAs 

XAS measurements were made on MEAs using a specially design XAS fuel cell to 

enable operando measurements. (Chapter 4) All measurements were made in 

transmission mode as the MEA underwent potential steps in different gas atmospheres 

(section 2.2.5). XAS data was collected on two different timescales and therefore 

required two different optical modes. Conventional point-by-point scanning of the 

energy range by a Si (111) single crystal monochromator on station 9.3 at the SRS 

Daresbury laboratory, Warrington, England, allowed XAS scans to be collected with a 

10 s scan duration followed by a 2 s delay to allow the position of the monochromator 

to change before the next scan commenced. For data collection at faster timescales 

Energy Dispersive EXAFS (EDE) was used. In this technique a ‘bent’ monochromator 

is used to instantaneously illuminate the sample with a focussed X-ray beam containing 

the desired spread of energies. Data acquisition on the milli second time scale is 

therefore possible (42, 43). EDE experiments were conducted on beamline ID24 at the 

ESRF, Grenoble, France. To achieve synchronisation potentiostat triggering was used to 

commence the XAS data acquisition. The optical set-up allowed collection of a XAS 

spectrum every 6.6 ms, 15 spectra were summed to give a data set every 0.1 s.  

 

Data collected at the SRS was analysed according the following procedure. The 

experimentally measured XAS data were analysed using the Daresbury suite of 

analysis programs after energy calibration using the 1
st

 maximum of the derivative of 

the corresponding Pt foil internal standard spectra. The corrected absorption spectra for 

XANES analysis were processed using EXBROOK. The zero point of the energy scale 
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was taken to be the point of inflection in the absorption edge. The pre-edge region was 

fitted by a straight line and extrapolated to zero energy. A polynomial spline was fitted 

to the non-oscillatory component of the post-edge region and was extrapolated back to 

zero energy. The difference between the extrapolated values was taken to be the step 

height and the spectrum was normalised to this value. For EXAFS analysis EXSPLINE 

was used to remove the background from the corrected data to ensure reproducible 

removal for all spectra. The EXAFS components, χ(k), were then isolated from the 

absorption spectra and subsequently analysed using EXCURV98.  

 

The energy calibration of EDE collected at the ESRF was conducted using the XOP 2.3 

software (44) by reference with Pt foil data collected both during the EDE experiments 

and during scanning experiments at the SRS Daresbury UK. Data handling and 

cropping was completed using the xmult software (45) developed by Norman Binstead. 

No background subtraction was applied to the data. 

 

3.3 XAS measurements on catalyst powder and electrodes 

XAS measurements were performed on both catalyst powders, in pellet form by mixture 

with boronitride, and on electrode samples of new catalyst materials and catalysts that 

had undergone electrochemical cycling. The samples were mounted in a gas treatment 

cell, that was a simplified version of a design that previously been described (25, 27, 

46) enabling operation at only ambient temperature. The cell design enabled data 

collection in both transmission and fluorescence mode and in a hydrogen atmosphere. 

Typically three scans of 5 minute duration were recorded for each sample, however, 

depending the sample concentration and data quality more scans were run as required. 

Measurement in a hydrogen atmosphere required the pre-loaded sample to be exposed 

to flowing hydrogen for at least 30 minutes at atmospheric pressure before the cell was 

sealed for data collection.  

  

The XAS data were collected at the SRS Daresbury laboratory, Warrington, England 

using station 9.3. In addition, data collection of some samples discussed in this thesis 

was conducted by other members of the research group on stations 7.1 (Co K edge), 

16.5 (Pt LIII edge). The XAS data were analysed using the Daresbury suite of analysis 

programmes: EXCALIB for energy calibration and scan summation, EXBROOK for E0 
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determination, normalisation and background subtraction and EXCURV98 for EXAFS 

fitting. 

 

3.4 Example of data processing for Pt/C 

The method of data processing to allow determination of E0, normalization and 

background subtraction using EXBROOK will now be demonstrated for an example 

spectrum of Pt/C. This method was used during analysis of catalyst powders and 

electrodes. Figure 7 shows the energy calibrated output file from EXCALIB for a Pt/C 

catalyst, initialized in EXBROOK. The zero point of the energy scale is set to be the 

point of inflection in the absorption edge (taken from the maximum in the first 

derivative), as shown in Figure 8.  

 

 
Figure 7. Energy calibrated output file from EXCALIB for a Pt/C catalyst 
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Figure 8.    E0 determination 

 

 

Next, the pre-edge region is fitted to a quadratic equation and subtracted from the data 

as shown in Figure 9.  Figure 10 shows the XANES plotting. In this step the XANES 

region (from 50 eV before to 100 eV after the edge) is plotted with the spectrum 

normalised to give an edge jump of 1.  

 

 
Figure 9.  Fitting and subtraction of pre-edge region 
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Figure 10.  XANES plotting and normalisation 

 

To allow background removal, the EXAFS region > 40 eV past the adsorption edge is 

isolated then the background removal is optimized such that a smooth post-edge 

background is applied to the pre-edge subtracted spectrum. The post-edge background 

spectrum should be a smooth line such that the EXAFS oscillations are not removed. In 

addition the corresponding Chi plot (EXAFS in k-space) should show equal amplitude 

above and below the x-axis and the Fourier transform of the EXAFS should be 

optimised such that the peak height below 2 Å is minimised and the 1
st
 peak > 2 Å is 

maximised. The optimum post-edge fitting for the Pt/C catalyst is shown in Figure 11 

Following background removal the data may be fitted using EXCURV. Using 

EXCURV, coordination shells are added sequentially to build a structural model, the 

coordination numbers, distances, Debye-Waller factors are automatically refined by the 

software. The software then generates values and errors of fitted parameters, Chi and FT 

plots and also provides an indication of fit quality (REXAFS). If shell addition resulted in 

an error larger than the parameter or addition of additional shells did not significantly 

improve REXAFS (> 2 unit improvement) the shell was removed from the fitting model. 

REXAFS values and fitting errors for each parameter are reported in individual chapters. 
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Figure 11. Optimised post-edge background removal of the pre-edge subtracted 

spectrum a) and corresponding Chi b) and FT plots c) 

a) 

b) 

c) 
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4. Characterisation of catalyst materials 

In addition to electrochemical methods and XAS the following techniques have been 

used to characterise the catalyst materials used in this study. With the exception of CO 

chemisorption, scientists in the Johnson Matthey analytical department performed the 

measurements.  

 

4.1 XRD 

The XRD uses Bragg diffraction to determine the crystal lattice parameters of a 

specimen. In a collimated X-ray beam a crystalline material gives rise to reflections at 

specific angles depending on the geometry and spacing of the lattice. The pattern of 

peaks obtained can be matched against a library of standards to determine the phases 

present. Alloying can be detected by shifting of peaks from the position of the pure 

material and crystallite size can be determined from the peak broadening. In this work 

XRD analysis with a BrukerAXS D-500 Diffractometer was used to determine the 

phases present in the catalyst and the crystallite sizes of these materials. 

 

4.2 Transmission Electron Microscopy (TEM) and Electron Probe 

Micro Analysis (EPMA) 

Transmission Electron Microscopy (TEM) is a high magnification imaging technique 

allowing the observation of features of nearly atomic size. An electron beam is directed 

through a thin specimen and the image is focused and magnified by a series of electron 

lenses. Both bright and dark field optical arrangements can be used to optimise the 

contrast in the image. Elemental analysis of the sample is achieved using an energy-

dispersive X-ray (EDAX) detector. In addition particle size analysis can be performed. 

In this work samples were studied using a Tecnai F20 Transmission Electron 

Microscope. TEM analysis was performed on powder samples, electrode samples pre 

and post electrochemical cycling and MEAs. The sample preparation for electrode 

samples required the catalyst to be scraped off the electrode to give a powder. The 

powder was then deposited onto a holey carbon film supported by a copper grid. 

Catalyst powders were also deposited onto a holey carbon film supported by a copper 

grid before analysis. The sample preparation for MEAs required incasing the MEA in 

resin and microtone slicing to produce a cross section. In addition to TEM, Electron 
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Probe Micro Analysis (EPMA) studies were also conducted on MEAs using a Cameca 

SX51N Electron Probe Micro Analyser. This technique, like EDAX, uses X-ray 

fluorescence to determine the elemental compositions within the sample. 

 

4.3 Inductively Coupled Plasma - Mass Spectrometry ICP-MS 

ICP-MS combines the use of an argon plasma and quadropole mass spectrometer to 

allow the identification and concentration of elements in samples to be determined. ICP-

MS was used to quantify the amount of platinum and base metal leaching occurring 

during chemical leaching and the electrochemical testing. Samples were analysed using 

a Perkin Elmer Elan 6100DRC ICP-MS using ppb level Pt and Co standards matrix 

matched to the ten times diluted electrolyte samples.  

 

4.4 CO Chemisorption 

The metal surface area of the catalysts were measured by CO chemisorption assuming a 

one to one binding ratio of CO to Pt and that no adsorption of CO onto Co occurs. 

Samples were reduced in 100% H2 at 50°C for 30 minutes prior to measurement. CO 

was added to the sample, and the volumetric uptake of CO was measured and converted 

to a metal area. 
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Chapter 3. Deactivation of Pt3Co 

Some of the results presented in this chapter were previously presented in ECS 

Transactions manuscripts in 2007 (1, 2). 

1. Introduction 

The activity and stability of Pt3Co/C alloy catalysts reported in the literature and 

experiments that were conducted on Johnson Matthey materials prior to commencing 

this work, in which the author was involved, will be described in the introduction 

(sections 1.1 to 1.3) to provide the background as to why the work in this chapter was 

conducted. In light of these results, the mechanisms of activity loss in Pt3Co/C alloy 

systems have been investigated by accelerated durability testing in liquid electrolyte 

using a cell designed to enable quantification of dissolved species. By combining 

electrochemical, TEM and XAS results, the origins for the observed activity 

enhancement of Pt3Co/C alloys over Pt/C catalysts and mechanisms that account for the 

deactivation of these materials will be proposed. 

 

1.1 Activity and stability of PtCo alloy catalysts 

To meet automotive targets for fuel cell operation, cathode catalysts must 

demonstrate both enhanced activity and stability over the current commercially 

available platinum catalysts (3). The activity requirements have recently been defined 

by the US Department of Energy (DoE) (4). For economically viable automotive 

application cathode catalysts must show a mass activity of 0.44 A mg
-1

Pt at 900 mV and 

150 kPaabs when operated using oxygen. This corresponds to 3-4 times the activity 

shown by the current state-of-the-art monometallic carbon supported platinum catalysts.  

 

PtCo alloys have been demonstrated to show an activity benefit over commercial Pt/C 

catalysts, both historically in phosphoric acid fuel cells (PAFCs) (5) and, more recently, 

in PEMFCs. In RDE experiments , Paulus et al. (6) showed a 1.3 to 3 times mass 

activity benefit for carbon supported PtCo alloys over a Pt/C catalyst in 0.1 M HClO4 at 

60 °C with a comparable particle diameter, and a 2 times mass times activity benefit 

was reported by Colón-Mercado and Popov (7) and Chen et al. (8). Enhanced 

performance for PtCo/C catalysts has also been demonstrated in MEA tests by Mathias 

et al. (9) and Yu et al. (10) in 2005. At the same time PtCo alloys were under 
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investigation at Johnson Matthey, with activity and stability results for 40% Pt3Co/C 

catalysts with a range of particle sizes being reported in 2006 (11, 12). A significant 

performance enhancement of around 25 mV in the kinetic region was observed over Pt 

and annealed Pt reference catalysts.  Figure 1 shows that this 25 mV enhancement is 

translated to a two times mass activity benefit over Pt only catalysts irrespective of 

particle size, which is inversely proportional to the CO area. It was also demonstrated 

that the observed mass activity benefit for Pt3Co/C could be exploited as a cost 

reduction; equivalent performance was obtained for a Pt3Co/C cathode catalyst with 

nearly half the loading of a Pt/C cathode (0.25 vs. 0.4 mgPt cm
-2

) (11).  
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Figure 1. Oxygen reduction mass activity at 900 mV, as a function of in situ 

MEA Pt area for a series of Pt3Co/C and Pt/C catalysts using O2 feed 

at 270 kPa (11) 

 

Until 2004, improving the beginning of life (BOL) catalytic performance was a major 

focus in the fuel cell literature with fewer publications considering PEMFC degradation 

and durability. Since then, the issue of degradation and durability has become a key area 

of fuel cell research and durability targets have been set by the US, Japanese and 

European fuel cell funding bodies (13). In addition to enhanced BOL activity, catalysts 

must also retain activity for more than the 5000 hrs lifetime of the automotive fuel cell 
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stack (equivalent to 150,000 driven miles) to allow direct comparison with the 

durability and reliability of current automotive engines (4). In this time 30,000 start up / 

shut down cycles and 300,000 large voltage transients (caused by load cycling leading 

to a change in cell potential) during operation of the fuel cell stack are expected. Under 

these conditions the catalyst will repeatedly experience high voltages (up to 1.4 V) and 

large voltage transients (for example a load change may result in voltage step change 

from 0.7 V to 0.9 V), both of which can significantly impact catalytic activity by 

reducing the active surface area. Idle and start up / shut down conditions have been 

equated to an accelerated potentiostatic hold test of 100 hrs at 1.2 V and suggested 

targets of < 40% of the initial mass activity and ECA lost over 300,000 large voltage 

transients with a low activity degradation rate of < 3 µV hr
-1

 have been proposed by the 

DoE for these tests (4, 13). 

 

In terms of electrochemical area stability PtCo alloys have shown significant 

improvement over platinum only catalysts under potentiostatic hold and cycling regimes 

(7, 9-12, 14). Work by Yu et al. (10) showed that a Pt3Co alloy maintained superior 

mass activity compared to platinum over 2400 cycles from 0.87-1.2 V vs. RHE and 

application of accelerated durability tests by Popov et al. (7) comparing a 20% Pt/C and 

a 20% Pt3Co/C alloy showed enhanced catalyst particle stability upon addition of the 

alloying element. The stability of two Johnson Matthey Pt3Co/C catalysts to voltage 

cycles were studied in both the MEA and in liquid electrolyte environments (11, 12). It 

was found that in the MEA, the Pt/C catalyst lost surface area and mass and specific 

activity after 1000 cycles, while the PtCo alloy catalysts retained surface area and at 

least a two times mass activity benefit (at 900 mV and 230 kPa), over platinum during 

10,000 voltage cycles from 0.6-1.0 V. (Note these experiments were conducted using 

different cell hardware and experimental conditions, including lower pressure, to those 

in Figure 1, leading to lower absolute performance values than those previously shown 

in Figure 1) During the cycling experiment, the activity of one PtCo alloy increased 

after 3000 cycles from 0.26 A mg
-1

Pt to 0.46 A mg
-1

Pt , then the performance decreased 

to 0.37 A mg
-1

Pt after 10,000 voltage cycles. The second PtCo alloy tested showed the 

same trend in activity. The activity increased from 0.34 A mg
-1

Pt to 0.36 A mg
-1

Pt  up to 

3000 cycles then the activity decreased to 0.30 A mg
-1

Pt  at the end of the cycling test. 

The same surface area loss trends were observed during cycles in liquid electrolyte, 

however, degradation rates were found to be accelerated compared to MEA testing. The 
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test that was conducted, was a prerequisite to the results presented in this chapter. The 

Johnson Matthey Pt3Co/C and Pt/C catalysts were electrochemically cycled as electrode 

layers 10,000 times at 50 mV s
-1

 from 0.6-1.0 V in 1 M H2SO4 at 80 ºC (11). The 

change in hydrogen adsorption area and the cyclic voltammetric profile for each catalyst 

with cycle number is presented in Figure 2.  
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Figure 2. Changes in electrochemical area as a function of cycle number for Pt 

and Pt3Co catalysts in N2 purged 1M H2SO4, 80 ºC, cycling 0.6-1.0 V 

vs. Pd/H at 50 mV s
-1

 (11) and corresponding CV profiles (previously 

unpublished). Arrows indicate trend with increasing cycle number 

 

A large decrease in surface area (~60%) was found for the Pt/C catalyst during the 

course of cycling, and very little change was found for the Pt3Co alloy. With cycles the 

voltammetry of the Pt/C catalyst showed the features in the hydrogen region becoming 

more well defined and less broad, indicating formation of more well-defined surface 

sites, which is consistent with the formation of larger platinum crystallites. A decrease 

in the magnitude of current in the Faradaic regions of the voltammetry was also 

observed, which is consistent with the surface area loss. The voltammetry of the Pt3Co 

catalyst showed a slight sharpening of hydrogen features, but no change in the Pt-H 

absorption area or position of the oxide reduction peak was found during the cycling. 
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Post mortem TEM on samples cycled in 1 M H2SO4 showed little change in the size or 

morphology of the Pt3Co alloy particles, but significant particle growth and 

agglomeration was found for the cycled Pt electrode, along with areas of bare carbon 

support implying some dissolution or detachment of catalyst particles had occurred. The 

1 M H2SO4 solutions used were analysed at the end of testing to determine the levels of 

dissolved Pt and Co, but the amounts could not be quantified due to the low 

concentrations of metals present. It was known from this work and that of Popov et al. 

and Yu et al. that the rapid performance decay for the Pt/C catalysts was accompanied 

by surface area loss (7, 10-12). For PtCo alloys deactivation and loss of fuel cell 

performance also occurred, but over longer times (7, 10-12), despite the observed low 

surface area losses under potentiostatic cycling regimes. This indicated other factors 

were influencing deactivation of PtCo alloy catalysts. 

 

1.2 Mechanisms of catalyst deactivation 

In 2007, fuel cell durability and degradation literature including: durability testing 

methods, performance losses associated with operating conditions, and losses associated 

with MEA components (membranes, electrocatalysts, catalyst supports and GDLs), was 

extensively reviewed by Borup et al. (13). Similarly a review of the impact of 

accelerated stress tests was conducted in 2009 Zang et al. (15). All but performance 

losses associated with the durability and degradation of electrocatalysts fall beyond the 

scope of this work. Processes that cause performance loss via catalyst degradation can 

be grouped into two general areas, either processes that result in loss of or modify the 

electrochemically active surface area (reducing the number of sites available for 

reaction or changing the nature of active sites), or by processes that change the mass 

transport properties of the MEA and therefore hinder the transportation of reactants to 

and products away from the active sites. 

 

1.2.1 Mechanisms of electroactive surface area loss 

The Pourbaix diagram for platinum (16) shows that Pt electrocatalysts are 

thermodynamically unstable in the fuel cell operational window. This instability with 

time leads to performance loss. A comprehensive discussion of the instability of Pt/C 

electrocatalysts in MEAs may be found in a recent paper by Ferreira et al. (17) and 
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review by Shao-Horn et al., (18), in which platinum surface area losses have been 

grouped into three different processes, based on experimental evidence. 

 

i) Platinum particle agglomeration triggered by corrosion of the carbon support. 

This is significant under start/stop conditions where catalysts are exposed to 

high potentials, but is not limited to potentiostatic hold conditions. Online mass 

spectrometry measurements by Ball et al. and Maass  et al. also report evidence 

for carbon support oxidation occurring during potential cycling (12, 19).  

 

ii) Platinum dissolution and redeposition as a nanoscale Ostwald-ripening process; 

smaller platinum particles dissolve in the ionomer phase and redeposit on larger 

platinum particles that are separated by a few nanometers. This dissolution may 

be electrochemical, Equation 1, or chemical via platinum oxide film formation. 

Equation 2 and Equation 3 (17). 

 

Electrochemical platinum dissolution       Pt(s) → Pt
2+

(aq) + 2e
-
(aq)

 
Equation 1

  

Chemical dissolution  

Step 1   Pt(s) + H2O(l)  →  PtO(s) + 2H
+

(aq)
 
+ 2e

-
(aq)   Equation 2 

Step 2   PtO(s) + 2H
+

(aq)  →  Pt
2+

(aq) + H2O(l)  (slow)   Equation 3 

 

These two processes have been used in the kinetic modelling work of Darling 

and Meyers (20) to describe oxidation and dissolution of platinum in PEMFCs. 

They assumed platinum dissolution is determined by potential, particle size and 

fraction of the surface covered by oxide. In the model, which also allows 

redeposition of platinum, the oxide layer can protect the platinum from 

dissolution. However, the kinetics of oxide formation are slow relative to the 

rate of electrochemical dissolution. Rapid changes in potential can therefore 

leave unprotected platinum subject to electrochemical dissolution before the 

protective surface oxide can form.  

 

iii) Coalescence of platinum nanoparticles via nanocrystallite migration on the 

carbon support. This is a micrometre-scale diffusion process, where dissolved 
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platinum ions diffuse towards the anode and are reduced from the anode in 

regions of low potential (17). 

 

Experimental evidence for mechanisms ii) and iii) have been provided using post 

mortem electron probe microanalysis (EPMA) and TEM of MEAs. Post mortem EPMA 

results reported by Yu et al. (10) and Bi et al. (21) showed that platinum migrated into 

the membrane forming a band of particles parallel to the catalyst layer, and TEM 

evidence from Guilminot et al. (22) and Yasuda et al. (23) indicated that the Pt particles 

in the membrane did not originate from migration of particles from the catalyst layer, 

but instead were the consequence of nucleation and atomic growth of the particles 

following reduction (by H2 from the anode) of the dissolved Pt species (Pt 
z+

 where z = 

2,4). The position of the band of Pt particles was shown by Bi et al. to be correlated 

with the position of the hydrogen front from crossover from the anode which resulted in 

a low potential (reducing) environment in the membrane (21). TEM results of a post 

cycled Pt/C catalyst, as shown in Figure 3, was also reported by Johnson Matthey (11). 

The cycled MEA reveals clear evidence of Pt dissolution on the cathode, migration and 

precipitation in the membrane. The Pt crystallites within the membrane were up to 

90 nm across (see Figure 3(b)). TEM also revealed Pt particle growth within the catalyst 

layer from 2 nm average diameter particles for the uncycled catalyst to 5-9 nm for the 

post cycled sample.  

 

Cross-section EPMA measurements on the Johnson Matthey cycled samples showed 

leaching of Co into the membrane for MEAs containing PtCo/C cathodes (11). An 

example EPMA cross section image of a Pt3Co/C catalyst after operation is shown in 

Figure 4. The line scan clearly shows the presence of Co within the membrane. Co 

leaching was also reported by Yu et al. (10) and others have also reported leaching of 

alloying metals under operating conditions in both PEM fuel cells (7, 10, 11, 24) and in 

direct methanol fuel cell (DMFC) environments (25). In situ metal leaching of this type 

can degrade catalytic performance by modifying the nature of active sites and the 

changing the mass transport properties of the MEA. 

 



Chapter 3.  Deactivation of Pt3Co  

  65 

 

 

 

Figure 3. TEM cross sectional image of a Pt/C cathode cycled 10,000 times 

under N2 from 0.6-1.0 V vs. Pt/H2 anode membrane catalyst layer 

interface region (a) overview (b) interface detail from marked area 

(11) 
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Figure 4. Electron probe micro analysis on a MEA cross-section after 

operation a) line scan analysis showing the distribution of Pt and Co 

within the MEA from cathode side to anode side the corresponding 

MEA cross section is shown in b)  

 

1.2.2 Performance loss induced by changes in mass transport  

The strong affinity of metal cations for the sulphonic acid groups in PFSA 

membrane/ionomer results in the likely exchange of metal cations (including dissolved 

Pt species) with the membrane bound protons.  This would result in a loss in fuel cell 

performance by decreasing membrane/ionomer conductivity (H
+ 

transport through the 

membrane), reducing water content by dehydrating the membrane, and/or suppressing 

oxygen reduction kinetics by decreasing oxygen content in the ionomer film (3). In 

addition, dissolved metal ions in the membrane may facilitate membrane degradation 

and, therefore, performance degradation by increasing chemical radical attack, 

mechanically weakening the membrane and increasing the chance of pinholing, 

increasing H2 crossover, and/or shorting (3, 26). Also, precipitated platinum in the 

membrane has been reported to increase peroxide radical formation leading to 

membrane degradation (27, 28). 

 

It has also been reported that platinum alloy catalysts have a tendency to flood more 

easily than platinum catalysts under air and at high current densities, reducing MEA 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 

- 500 0 500 1000 1500 2000 2500 
X- ray Counts 

Pt
Co (x5) 

ANODE 

MEMBRANE 

CATHODE 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 

- 500 0 500 1000 1500 2000 2500 
X- ray Counts 

Pt
Co (x5) 

ANODE 

MEMBRANE 

CATHODE 

Distance 
/ µm 

a) b) 



Chapter 3.  Deactivation of Pt3Co  

  67 

performance. This phenomenon was attributed to the hydrophilic nature of the hydrous 

oxides formed on the base metal surface of the catalyst particles (3). It has been 

suggested by Gasteiger et al. that a pre-leaching treatment of the alloy catalyst could be 

beneficial, since readily leached base metal could be removed preventing mass transport 

issues within the MEA (3).   

 

Change or loss of the carbon support structure, via partial or total electrochemical 

oxidation of carbon functionalities is the other major mechanism that has been shown 

lead to performance degradation by changing the mass transport properties of the MEA 

(13, 15).  

 

1.3 Aims of this work  

Previous work (11, 12), conducted on Johnson Matthey materials, has shown that 

performance degradation can occur as a consequence of electrochemical cycling. The 

aim of the work presented in this chapter is to understand the mechanisms of activity 

loss in Pt/C and Pt3Co/C and to study the effect of chemical acid leaching on the 

activity of Pt3Co/C catalysts. In light of the good stability trend correlation between 

liquid electrolyte testing and MEA cycling tests, the observed acceleration of 

degradation in liquid electrolyte, and the difficulty associated with quantification of the 

amount of Co removed within the MEA environment, the investigation reported here 

was conducted in liquid electrolyte. An electrochemical cell with a smaller electrolyte 

volume than the cell previously reported (11) (100 ml vs. 250 ml) was used to allow 

improved quantification of dissolved species by ICP-MS analysis. Results of an 

accelerated cycling protocol to two different upper potential limits will be presented for 

Pt and Pt3Co alloy catalysts. In addition, changes in catalyst morphology post cycling 

will be investigated by TEM. To understand the cause of deactivation for post cycled 

catalysts and to characterise chemically acid leached catalysts, XAS measurements at 

the Pt LIII and Co K edges will be presented to determine the effect of Co removal on 

catalyst structure. Changes associated with ability of the catalyst to grow and remove 

oxide pre- and post-cycling and the effects of acid leaching on oxide growth will also be 

discussed. By combining these results an insight into the different mechanisms that 

result in loss of Pt3Co/C alloy activity and stability will be provided. 
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2. Experimental detail 

The Pt/C and PtCo/C catalysts used in this study, and the tests that were conducted are 

detailed in Table 1, together with a summary of the catalyst particle sizes determined 

from XRD. All catalysts were prepared and characterised as described in Chapter 2 1.1. 

Electrodes of the catalysts were fabricated by screen printing (Chapter 2 1.2) at loadings 

of 0.4-0.6 mgPt cm
-2

.  

 

Table 1. Summary of Catalysts and testing conducted 

Testing conducted 

Catalyst MEA 

activity 

Stability 0.6-1.0 V 

and 0.6-1.2 V 

Window 

Opening 
XAS 

XRD mean 

crystallite size / 

nm
 

60%Pt/C - Yes Yes - 2 

40%Pt/C Yes - - - 2.2 

40%Pt/C 600 °C Yes - - Yes 4.7 

40%Pt/C 900 °C - Yes - - 5.0 

40%Pt/C 1000 °C Yes 1.2 V only  Yes 7.7 

40%Pt/C 1200 °C Yes - - - 15.6 

40% Pt3Co/C 600 °C Yes - - - 3.6 

40% Pt3Co/C 1000 °C Yes Yes Yes 
Yes 

batch 1 

5.9 batch 1 and 

5.0 batch 2 

40% Pt3Co/C 1000 °C 

Acid leached 
Yes - Yes Yes 5.9 

40% Pt3Co/C 1200 °C  

Acid leached 
Yes - - - 12.9 

40% Pt3Co/C 900 °C Yes - - - 3.7 

40% Pt3Co/C 1200 °C Yes Yes - - 12.6 

 

MEAs of the catalysts were fabricated with Flemion® SH-30 membrane and 40% Pt/C 

anode (Chapter 2 section 1.2.2), and MEA activity measurements were performed as 

described in Chapter 2 section 2.2.  

 

The catalysts were subjected to stability testing in liquid electrolyte (Chapter 2 section 

2.1). The 3.14 cm
2
 working electrode button of the catalyst of interest was fully flooded 

by boiling in acidified water prior to testing. The boiling solution was analysed for Pt 

and Co by ICP-MS. The stabilities of Pt/C and Pt3Co/C alloy catalysts under different 

cycling regimes were investigated using a 100 ml volume three-electrode 

electrochemical cell (Chapter 2, Figure 2.) potentiostatically controlled with an Eco 

Chemie Autolab PGSTAT 20 potentiostat. A Pd/H reference, platinum mesh/wire 

counter, each contained in a fritted compartment, and 1 M H2SO4 supporting electrolyte 

were used in all experiments. The jacketed cell was operated at a constant temperature 

of 80 ºC maintained by use of a circulating water bath. The 0.6-1.0 V and 0.6-1.2 V vs. 
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Pd/H at 50 mV s
-1

 stability test procedures (Chapter 2 section 2.1.2) and window 

opening (Chapter 2 section 2.1.3) procedure were performed. Determination of the 

catalyst electrochemical surface area was conducted at both the beginning and end of 

each test using the charge associated with Hads or oxidation of an adsorbed monolayer of 

CO to CO2. Analysis of dissolved species (ppb quantities) in the electrolyte during the 

stability test procedure was conducted by ICP-MS. For the 60% Pt/C catalyst, the 

electrolyte was replaced after 250 and 500 cycles to keep the levels of Pt in solution 

< 500 ppb so that saturation, limiting further dissolution, did not occur. The stability test 

was conducted in duplicate under each regime for each catalyst while the window 

opening procedure was only conducted once. TEM analysis of the pre and post cycled 

electrodes was conducted as described in Chapter 2 section 4.2.  

 

XAS data was obtained for both powder samples (fresh catalyst) and post cycled 

electrodes using the gas treatment cell and spectra were collected in both air and H2 

atmospheres (Chapter 2 3.3). Measurements were conducted on stations 7.1, 16.5 and 

9.3 at the SRS Daresbury laboratory, which operated at 2.0 GeV ring energy and 

100-250 mA ring current. Spectra were obtained at the Pt LIII edge and Co K edge. All 

the powder samples (fresh catalyst) spectra were collected in October 2006, in 

transmission mode by other members of Prof. Russell’s research group using samples 

that I supplied. I was present during the beamtime in June 2007 and June 2008, when 

the spectra of the electrode button samples were obtained in fluorescence mode. I 

completed all of the XAS data analysis using the methods described in Chapter 2 

section 3.3. Briefly, individual scans for each sample were summed and XANES spectra 

were acquired after pre-edge subtraction. The background was then removed to obtain 

EXAFS spectra and the data were fitted to a three, four, five or six shell model, as 

appropriate. In the instances where oxygen neighbours were present an additional shell 

was added to the model as shown:  

 

Structural Models used at the Pt LIII edge: 

Four/Three shell: Pt-Pt1  Pt-Co  Pt-Pt2 Pt-Pt3 or     Pt-Pt1  Pt-Pt2  Pt-Pt3 

Five/Four shell:   Pt-Pt1  Pt-Co  Pt-Pt2 Pt-O   Pt-Pt3   or   Pt-O   Pt-Pt1   Pt-Pt2    Pt-Pt3 

Structural Models used at the Co K edge: 

Five shell: Co-Pt1 Co-Co Co-Pt2 Co-Pt3 Co-Pt-Pt 

Six shell:  Co-Pt1 Co-Co Co-Pt2 Co-Pt3 Co-O Co-Pt-Pt 
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3. Results  

3.1 Effect of chemical acid leaching on the activity of Pt3Co/C 

The effect of Co removal on the activities of the Pt3Co/C catalysts were investigated in 

light of the cycle stability results that indicated a correlation between activity and Co 

removal (11, 12). A chemical acid leaching treatment (Chapter 2 1.1) was performed on 

two 40% Pt3Co/C catalysts to remove Co from the catalysts. The chemical leaching 

treatment removed 13% of the Co from the 12.9 nm catalyst and 27% of the Co from 

the 5.9 nm catalyst (by ICP-MS).  

 

XRD analysis (Figure 5) showed no change in crystallite size on leaching and only a 

small change in lattice parameter (3.848 to 3.856 Å) suggesting that Co remained within 

the bulk of the particles or that the Co that was removed was not originally present as 

part of the crystalline component of the catalysts. As compared to pure Pt (3.911 Å 

(29)) the acid leached catalyst retains a contacted lattice parameter. 
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Figure 5. XRD patterns for 40% Pt3Co/C a) before and b) after acid leaching. 

(Black line – catalyst trace, Blue line – experimentally determined 

reference pattern for the carbon support, Diffraction pattern bars: 

Red– Cubic Platinum Cobalt Pt3Co ICDD data base PDF No. 

29-0499)   

 

The MEA performance of the leached catalysts was measured and the results are 

presented in Figure 6. It has been reported by Gasteiger et al. (3) and others (8) that the 

mass activity of a chemically acid leached PtCo/C alloy catalyst was 2.5 times that of a 

platinum reference catalyst. The mass activities at 900 mV measured for PtCo/C and 

Pt/C catalysts with a range of particle sizes are shown in Figure 6, together with the 

mass activity of the acid leached PtCo alloys. It can be seen that acid leaching of the 

catalysts results in loss of the activity benefit observed for the as-prepared alloys. 

Contrary to the reports of others (3, 8) the activity of the acid leached PtCo alloys show 

comparable performance to that expected for a platinum catalyst of comparable particle 

size.  

a) 

b) 
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Figure 6. Mass activity on O2 at 900 mV, as a function of in situ MEA Pt area 

for a series of Pt3Co and Pt catalysts.  Lines show the trend in 

performance with electrochemical area and arrows show the effect 

of chemical acid leaching on performance (2) 

 

3.1 Characterisation of as prepared catalysts by cyclic voltammetry 

Figure 7 shows a comparison plot of the cyclic voltammetry of the 60% Pt/C, 

40% Pt3Co/C and acid leached 40% Pt3Co/C catalysts with an upper potential limit of 

1.0 V normalised to the platinum loading of each electrode. A clear shift in the position 

for the hydrogen adsorption/desorption features is observed for the alloy catalysts 

compared to that of the Pt catalyst. This shift is consistent across repeat measurements 

and is considered to be significant. Differences are also observed in the oxide removal 

peak positions and the double layer region, where all catalysts show a redox feature 

associated with oxidation/reduction of the carbon support. For the alloys this feature is 

consistently observed at high potentials than for the Pt/C catalyst. It has been reported 

by others, (30-33), that the onset of OHads requires higher overpotentials on alloys 

compared to platinum. In contrast, in Figure 7 the onset of oxide formation appears to 

be very similar for all three catalysts, at approximately 0.7 V. However it is noted that 
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the redox feature associated with carbon support makes it difficult to determine the 

onset of oxide formation for the catalysts. 
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Figure 7.  Comparison plot of 60% Pt/C, 40% Pt3Co/C and 40% Pt3Co/C acid 

leached catalysts at 1.0 V vs. Pd/H upper potential limit in 

1 M H2SO4 at 80 °C at 10 mV s
-1

 

 

The beginning of life window opening cyclic voltammetry profiles to a range of upper 

potential limits for the 60% Pt/C, 40% Pt3Co/C and 40% Pt3Co/C acid leached catalyst 

electrodes are shown in Figure 8. As the potential of the upper limit is increased the 

voltammetry profiles of all catalysts exhibit increased oxide formation. At potentials 

> 1.2 V a sharp increase in current was found for all the catalysts, corresponding to 

oxygen evolution. The irreversibility of the oxide formation is seen in the increasing 

overpotential required to remove the oxide in on the cathodic sweep. The oxide removal 

peak positions, charges associated with Hads and oxide removal for each catalyst are 

summarised in Table 2. The oxide growth per unit area of the catalysts at each upper 

potential limit was determined by normalising the oxide removal charge to the hydrogen 

adsorption charge. The 40% Pt3Co/C and 40% Pt3Co/C acid leached catalysts were 

found to have grown more oxide at a given potential than 60% Pt/C. A higher coverage 

of adsorbed oxygen species on PtCo relative to bulk Pt has also been reported by Chen 

et al. (8).  The oxide removal peak position was found to occur at a lower overpotentials 

(higher measured potentials) for the alloy catalysts, despite the fact that they have more 

oxide per unit area than the 60% Pt/C catalyst. 
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Figure 8.  Cyclic voltammetry of the as prepared 60% Pt/C, 40% Pt3Co/C and 

40% Pt3Co/C acid leached catalysts to a range of upper potential 

limits vs. Pd/H in 1 M H2SO4 at 80 °C at 10 mV s
-1

. The CVs were 

collected sequentially, starting for cycles between 0.05 and 0.6 V and 

increasing to 0.05 to 1.4 V in 0.1 V increments 
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Table 2. Electrochemical parameters taken from CVs in Figure 8 

Catalyst Upper 

limit / 

V 

Oxide 

reduction 

peak position 

/ V vs. Pd/H 

Oxide 

removal 

charge / C 

x 10
2 

Hads charge 

/ C 

x 10
2 

ECA / 

 m
2
 gPt

-1
 

Oxide 

removal 

charge / 

Hads charge 

0.6 - - 17.5  66 - 

0.7 - - 19.0  72 - 

0.8 - - 18.1  69 - 

0.9 0.802 3.59  18.2  69 0.20 

1.0 0.798 12.9  18.6  71 0.69 

1.1 0.793 24.8  18.7  71 1.32 

1.2 0.783 32.9  18.6  70 1.77 

1.3 0.765 39.8  18.4  70 2.17 

 

 

 

 

60% Pt/C 

1.4 0.745 44.9  17.5  66 2.57 

0.6 - - 6.83  22 - 

0.7 - - 6.59  21 - 

0.8 - - 6.91  22 - 

0.9 0.800 2.47  6.99  22 0.35 

1.0 0.805 68.8  6.98  22 0.99 

1.1 0.813 14.1  7.25  23 1.94 

1.2 0.803 20.0  7.62  24 2.63 

1.3 0.784 24.0  7.94  25 3.02 

 

 

 

 

40% Pt3Co/C  

1.4 0.765 27.6  8.43  27 3.27 

0.6 - - 6.54  21 - 

0.7 - - 6.53  21 - 

0.8 - - 6.87  22 - 

0.9 0.800 1.54  7.33  24 0.21 

1.0 0.808 6.83  7.80  25 0.88  

1.1 0.813 13.6  8.38  27 1.63 

1.2 0.799 22.4  8.57  28 2.61 

1.3 0.782 27.6  8.79  28 3.14 

 

 

 

40% Pt3Co/C  

Acid leached 

1.4 0.762 31.5  9.22  30 3.42 

 

3.2 The effect of potential cycling on the stability of 60% Pt/C 

The 60% catalyst was cycled between 0.6-1.0 V for 1000 cycles and the CO oxidation 

voltammetry were obtained periodically. Using a fresh sample, the procedure was 

repeated for cycles between 0.6-1.2 V. The electrochemical areas calculated from the 

charge associated with CO oxidation during both cycling regimes are tabulated in Table 

3. As can be seen during the 0.6-1.0 V cycling test 53 % of the initial ECA was lost. 

Cycling from 0.6-1.2 V was found to be more damaging resulting in 75 % ECA loss. In 

both tests, the ECA was progressively lost throughout the test with the rate of ECA loss 

slowing with cycle number. For 0.6-1.2 V cycling, during the first 50 cycles the ECA 

loss rate was 0.4 ECA units (m
2
 g

-1
Pt) per cycle, from 50 to 250 cycles the rate of loss 

decreased to 0.1 ECA units per cycle and between 500 and 1000 cycles 0.012 ECA 

units were lost per cycle.  
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Table 3. Changes in electrochemical surface area during cycling of 60% Pt/C  

Cycling 

regime 

Pt loading / 

mgPt cm
-2 

Cycle No. Oxide reduction 

peak position 

 / V vs. Pd/H 

CO 

oxidation 

charge / C 

 

CO ECA 

Surface 

area 

/ m
2
 gPt

-1 

% ECA 

loss 

0 0.798 3.05 x 10
-1

 72 0 

50 0.800 2.69 x 10
-1

 64 12 

250 0.807 2.12 x 10
-1

 50 31 

500 0.807 1.84 x 10
-1

 43 40 

0.6-1.0 V 

 

0.32 

1000 0.809 1.44 x 10
-1

 34 53 

0 0.796 4.67 x 10
-1

 72 0 

50 0.805 3.36 x 10
-1

 52 28 

250 0.808 2.08 x 10
-1

 32 55 

500 0.811 1.54 x 10
-1

 24 67 

0.6-1.2 V 

 

0.49 

1000 0.815 1.17 x 10
-1

 18 75 

 

The effect of cycling between 0.6-1.2 V on the CO oxidation voltammetry is shown in 

Figure 9. As cycle number increases the magnitude of the current across the 

voltammogram decreases and both the CO oxidation onset potential and peak shift to 

lower overpotentials, while the shift in the onset is small ~15 mV, this trend was 

consistently observed during repeat testing and is therefore thought to be significant. 

This indicates that as the catalyst is cycled it becomes easier to oxidise adsorbed CO on 

the surface. In addition a decrease in the potential window for CO oxidation is observed 

along with development of a shoulder on the high overpotential end of the CO oxidation 

peak. It has been shown by Maillard et al. that the CO oxidation peak is sensitive to the 

particle size distribution. The peak shape was shown to be broad and symmetrical for Pt 

nanoparticles with narrow particle size distribution consisting of catalyst particles less 

than 3 nm, as seen at the start of the cycling experiment. In addition, Maillard et al. 

showed that wider particle size distributions consisting of larger particles exhibit a 

narrower oxidation peak potential window with a tail at high overpotenials and such 

distributions require a lower overpotential for CO oxidation (34), as was observed for in 

the voltammetry post cycling. The voltammetry is therefore consistent with cycling 

causing an increase in average particle size and a wider particle size distribution. A shift 

to lower overpotentials (higher measured potentials) is also seen in the oxide reduction 

peak potential with increasing cycle number, but no change in position of the hydrogen 

adsorption/desorption features or significant change in the onset of oxide formation is 

observed in Figure 9. The same observations, but to a lesser extent, are seen in the 

voltammetry for the 0.6-1.0 V cycling for this catalyst. 
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Figure 9. The effect of number of cycles from 0.6-1.2 V vs. Pd/H on the CO 

oxidation voltammetry of 60% Pt/C at 10 mV s
-1

 in 1 M H2SO4 at 

80 ºC. Arrows indicate trend with increasing cycle number. Inset 

expanded CO oxidation peak 

 

 

To investigate the mechanism of ECA loss TEM images, Figure 10, were obtained and 

the particle size distributions were measured, Figure 11, for the as prepared and post-

cycled electrodes. In comparison to the as prepared catalyst, which had particle sizes 

between 2-6 nm, the particle sizes of the post cycled catalysts were much larger. The 

particle size distributions remained symmetrical, but shifted to larger sizes and became 

broader with the increased upper cycling potential limit.  The TEM evidence is, 

therefore, consistent with the CO oxidation voltammetry. 
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Figure 10. TEM images of a) as prepared 60% Pt/C b) 60% Pt/C post 0.6-1.0 V 

cycling and c) 60% Pt/C post 0.6-1.2 V cycling 

 

 
 

 

Figure 11. Particle size analysis of 60% Pt/C pre and post cycling. Total 

number of particles measured: fresh 156, post 0.6-1.0 V cycling 118 

and post 0.6-1.2 V cycling 88 
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To investigate platinum dissolution the amount of platinum in the electrolyte was 

determined as a function of cycle number by ICP-MS, ppb quantities of platinum were 

found in the electrolyte.  Figure 12 shows the variation in the amount of platinum 

measured in the electrolyte as a % of platinum within the catalyst for each cycling 

regime based on data from one test. 1% of the platinum in the catalyst was found to 

have dissolved into the electrolyte after cycling 1000 times from 0.6-1.0 V, while 

cycling from 0.6-1.2 V resulted in more platinum dissolution with a concentration in 

solution equivalent to removal of 10% of platinum in the catalyst after 750 cycles. 

Repeat testing also showed the % Pt loss. A linear increase in dissolved platinum with 

cycle number was observed in both cycling experiments. This is in good agreement with 

recent work by Ota et al. (35) where a linear consumption of Pt wire was observed 

during potential cycling to a range of upper potential limits up to 1.8 V. Pt dissolution 

studies using Pt/C electrodes by Myers et al. (36) also show a linear trend in dissolution 

of Pt during 0.9 V potentiostatic hold tests. It is known that metal dissolution often 

increases ECA by formation of Raney surfaces, however, in this instance a decrease in 

ECA is observed. This may occur if the dissolution of Pt into the electrolyte occurs 

from the smallest platinum particles (largest contributors to the ECA area), as the TEM 

evidence suggests. 
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Figure 12. Effect of cycling on platinum dissolution for 60% Pt/C  
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3.3 The effect of potential cycling on the stability of Pt3Co/C  

The effect of the potential cycling regime on the stability of a Pt3Co/C alloy was also 

investigated. Electrochemical areas calculated from the charge associated with CO 

oxidation during both cycling regimes are tabulated in Table 4.  

Table 4. Changes in electrochemical surface area during cycling of 40% Pt3Co/C 

1000 °C /C 

Cycling 

regime 

Pt loading / 

mgPt cm
-2 

Cycle No. Oxide reduction 

peak position 

 / V vs. Pd/H 

CO 

oxidation 

charge / C 

CO ECA 

Surface 

area 

/ m
2
 gPt

-1 

% ECA 

loss 

0 0.812 2.03 x 10
-1

 31 0 

50 0.797 2.12 x 10
-1

 33 0 

250 0.802 2.14 x 10
-1

 33 0 

500 0.799 2.06 x 10
-1

 32 0 

0.6-1.0 V 

 

0.49 

1000 0.809 1.96 x 10
-1

 30 3 

0 0.826 2.51 x 10
-1

 34 0 

50 0.814 2.58 x 10
-1

 35 0 

250 0.808 2.41 x 10
-1

 33 4 

500 0.805 2.14 x 10
-1

 29 15 

0.6-1.2 V 

 

0.56 

1000 0.808 1.87 x 10
-1

 25 25 

 

For both tests the ECA was found to increase slightly to a maximum after 50 cycles 

then decrease during the remaining part of the test. The alloy was found to be more 

stable than 60% Pt/C, losing 3% ECA in the 0.6-1.0 V cycling and 25% in the 0.6-1.2 V 

cycling. ECA loss was shown in the CO oxidation voltammetry by a decrease in charge. 

In both the cycling regimes the CO oxidation peak shifted to higher overpotentials and 

sharpened after the first 50 cycles, then no further shift was observed. The oxide 

reduction peak position showed little change in position during the 0.6-1.0 V cycling 

test and shifted to ~20 mV to higher overpotentials during the 0.6-1.2 V cycling test. 

Figure 13 shows the CO oxidation voltammetry during the 0.6-1.0 V cycling test and 

Figure 14 shows the CO oxidation voltammetry during the 0.6-1.2 V cycling test. The 

same shift in CO oxidation peak was observed for batch 2 of the 40% Pt3Co/C with 

5 nm particle size during 0.6-1.2 V cycling but little change in The oxide reduction peak 

position was observed for this catalyst (see Figure 27).  

 

TEM shows that the relatively large 4-12 nm particles in the fresh catalyst are little 

changed by cycling,  

Figure 15, with the exception that the smallest particles that are lost from the particle 

size distribution in Figure 16. 
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Figure 13. The effect of number of cycles from 0.6-1.0 V vs. Pd/H on the CO 

oxidation voltammetry of Pt3Co/C at 10 mV s
-1

 in 1 M H2SO4 at 

80 ºC. Arrows indicate trend with increasing cycle number. Inset 

expanded CO oxidation peak 
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Figure 14.  The effect of number of cycles from 0.6-1.2 V vs. Pd/H on the CO 

oxidation voltammetry of Pt3Co/C at 10 mV s
-1

 in 1 M H2SO4 at 80 ºC. Arrows 

indicate trend with increasing cycle number. Inset expanded CO oxidation peak
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Figure 15. TEM images of a) as prepared Pt3Co/C b) Pt3Co/C post 0.6-1.0 V 

cycling and c) Pt3Co/C post 0.6-1.2 V cycling 

 

 

 

Figure 16. Particle size analysis of Pt3Co/C pre and post cycling. Total number 

of particles measured: fresh 325, post 0.6-1.0 V cycling 258 and post 

0.6-1.2 V cycling 237 
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ECA loss by platinum dissolution into the electrolyte was confirmed by ICP-MS and 

found to be potential dependent, as reported by Myers et al. (36). The equivalent of 

< 1% platinum from the catalyst was found in the electrolyte after 0.6-1.0 V cycling 

while 4% platinum from the catalyst was found in the electrolyte after 0.6-1.2 V cycling 

as shown in Figure 17. 
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Figure 17.  Correlation of dissolved metal and ECA loss for Pt3Co/C alloy. 

Green line denotes the cycle number where the onset of ECA loss 

occurs for each cycling regime and the corresponding % Co loss (7% 

Co loss in both cases) 

 

The Pourbaix diagram for Co shows that in the potential and pH region of both the 

electrode acidic boiling pretreatment and cycling test cobalt is soluble (37). Therefore 

any Co removed from the catalyst will not be redeposited as Co metal and will remain 

in the electrolyte. Using ICP-MS Co loss was found to occur during both the electrode 

wetting pretreatment (18% Co removed from the catalyst) and further Co was removed 

during cycling. Most Co was removed during the first 50 cycles with the rate of loss 

slowing with increasing cycle number. This initial loss of Co from the particle may be 

responsible for the ECA increase seen in the voltammetry, as removal of surface Co 

may expose underlying platinum (surface roughening). After 1000 0.6-1.2 V cycles a 
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further 18% of the Co from the catalyst was found to be dissolved in the electrolyte. The 

amount of base metal loss was found to be lower, only 8%, in the 0.6-1.0 V cycling test. 

However, in both cases a critical Co loss of 25% (18% from pre treatment + 7% from 

cycling) correlates with the point at which ECA loss is observed as shown by the green 

line in Figure 17.  Repeat testing on the smaller particle sized batch 2 40% Pt3Co/C 

catalyst showed the same trend on onset of ECA loss and the same % Pt and Co loss 

with cycles but increased ECA loss (see Figure 28). 

 

In addition, oxide formation and removal after the 0.6-1.2 V cycling study was 

investigated using cyclic voltammetry. The cyclic voltammetric profiles to a range of 

upper limits (window opening CVs) are shown in Figure 18 and the oxide removal peak 

positions, charges associated with Hads, oxide growth and removal for each catalyst are 

summarised in Table 5. Comparing with the data presented in Table 2, it can be seen 

that cycling results in a change in both the amount of oxide grown per unit area and the 

position of the oxide removal peak. After cycling the 40% Pt3Co/C alloy less oxide is 

formed per unit area and the oxide removal peak occurs at a lower overpotential when 

compared to the as prepared and the acid leached 40% Pt3Co/C catalysts.  
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Figure 18. Cyclic voltammetry profiles of 40% Pt3Co/C at 10 mV s
-1 

post 

cycling at a range of upper potential limits vs. Pd/H in 1 M H2SO4 at 

80 °C. The CVs were collected sequentially, starting for cycles 

between 0.05 and 0.6 V and increasing to 0.05 to 1.4 V in 0.1 V 

increments 
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Table 5. Electrochemical parameters taken from CVs in Figure 18 

Catalyst Upper 

limit / 

V 

Oxide 

reduction 

peak position 

/ V vs. Pd/H 

Oxide 

removal 

charge / C 

x 10
2 

Hads charge 

/ C 

x 10
2 

ECA / 

m
2
 gPt

-1
 

Oxide 

removal 

charge / 

Hads charge 

0.6 - - 6.93  22 - 

0.7 - - 6.79  21 - 

0.8 - - 6.52  21 - 

0.9 0.802 1.57  6.79  21 0.23 

1.0 0.807 57.9  6.66  21 0.87 

1.1 0.824 99.3  6.90  22 1.44 

1.2 0.820 14.4  7.06  22 2.03 

1.3 0.807 18.1  7.10  22 2.55 

 

 

 

40% Pt3Co/C 

post 1000 

0.6-1.2 V 

cycles 

 

1.4 0.787 20.1  7.45  24 2.69 

 

3.4 XAS characterisation of 40% Pt3Co/C pre and post cycling and 

post chemical acid leaching 

 

XAS has been used to investigate the effect of both electrochemical cycling and 

chemical acid leaching in 0.5 M H2SO4 on the structure of the Pt3Co/C alloy. For 

comparative purposes two Pt/C catalysts (4.7 nm and 7.7 nm) were also studied. The chi 

and Fourier transform plots for all catalysts in air and H2 at both the Pt LIII and Co K 

edges are shown in Figure 19 to Figure 23. The fits for all catalysts were in good 

agreement with the experimental data, with all fits having REXAFS values < 30 at the 

Pt LIII edge. The fit quality at the Co K edge was good (REXAFS values < 32) for the 

powder samples however, a lower quality fit was obtained for the post cycled electrodes 

especially in H2, for this reason analysis will focus on the data obtained in air. The 

lower quality fits for the electrode samples are likely to be the consequence of the low 

concentration of Co in these samples due to the low electrode loading used in the 

experiment.  The corresponding parameters obtained by fitting the data are detailed in 

Table 6 and Table 7. 
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Figure 19.  k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for 40% Pt3Co/C catalyst at the Pt LIII 

and Co K edge in H2 and air  
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Figure 20. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for 40% Pt3Co/C acid leached catalyst 

at the Pt LIII and Co K edge in H2 and air 
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Figure 21. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for 40% Pt3Co/C catalyst post 0.6-1.0 V 

cycling at the Pt LIII and Co K edge in H2 and air 
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Figure 22. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for 40% Pt3Co/C catalyst post 0.6-1.2 V 

cycling at the Pt LIII and Co K edge in H2 and air 
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Figure 23.  k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for the 40% Pt/C 4.7 nm and 7.7 nm 

catalysts at the Pt LIII in H2 and air 
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Table 6. Structural parameters for Pt3Co/C alloy and Pt/C catalysts obtained by 

fitting the Pt LIII and Co K edges EXAFS data in Air.  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1 5.9 (± 0.7) 2.72 (± 0.01) 0.011 (± 0.001) 

Pt-Co 1.2 (± 0.4) 2.68 (± 0.04) 0.010 (± 0.001) 

Pt-Pt2 0.6 (± 0.3) 3.85 (± 0.13) 0.004 (± 0.002) 

Pt-O  0.9 (± 0.3) 2.03 (± 0.04) 0.034 (± 0.007) 

Pt LIII 
40% Pt3Co/C 

1000 °C  

Pt-Pt3 5.3 (± 1.6) 4.73 (± 0.08) 0.014 (± 0.002) 

- 13.2 

(± 0.6) 

14.8 

 

Co-Pt1 4.0 (± 0.1) 2.70 (± 0.01) 0.012 (± 0.001) 

Co-Co 0.8 (± 0.2) 2.67 (± 0.02) 0.011 (± 0.001) 

Co-Pt2 1.5 (± 0.9) 3.91 (± 0.04) 0.016 (± 0.002) 

Co-Pt3 3.7 (± 0.8) 4.72 (± 0.01) 0.007 (± 0.002) 

Co-O 1.0 (± 0.2) 1.99 (± 0.02) 0.020 (± 0.007) 

Co K 
40% Pt3Co/C 

1000 °C 

Co-Pt-Pt 4.0 (± 0.1) 5.51 (± 0.02) 0.010 (± 0.003) 

- 4.7 

(± 1.0) 
31.5 

Pt-Pt1 5.9 (± 0.3) 2.73 (± 0.01) 0.012 (± 0.001) 

Pt-Co 1.1 (± 0.3) 2.68 (± 0.01) 0.010 (± 0.001) 

Pt-Pt2 0.8 (± 0.2) 3.85 (± 0.01) 0.004 (± 0.002) 

Pt-O  1.1 (± 0.2) 2.02 (± 0.02) 0.032 (± 0.006) 

Pt LIII 

40% Pt3Co/C 

1000 °C acid 

leached 

 
Pt-Pt3 5.2 (± 0.9) 4.73 (± 0.01) 0.014 (± 0.002) 

-15.0 

(± 0.6) 
16.2 

Co-Pt1 4.8 (± 0.4) 2.70 (± 0.01) 0.013 (± 0.001) 

Co-Co 1.1 (± 0.2) 2.65 (± 0.02) 0.007 (± 0.003) 

Co-Pt2 2.1 (± 1.1) 3.92 (± 0.03) 0.018 (± 0.008) 

Co-Pt3 5.9 (± 0.9) 4.72 (± 0.01) 0.006 (± 0.002) 

Co-O 0.5 (± 0.3) 2.03 (± 0.05) 0.011 (± 0.009) 

Co K 

40% Pt3Co/C 

1000 °C acid 

leached 

 

Co-Pt-Pt 4.8 (± 0.4) 5.53 (± 0.02) 0.011 (± 0.002) 

- 6.6 

(± 1.0) 
27.2 

Pt-Pt1 4.7 (± 0.4) 2.73 (± 0.01) 0.011 (± 0.001) 

Pt-Co 1.1 (± 0.2) 2.69 (± 0.01) 0.011 (± 0.002) 

Pt-Pt2 2.0 (± 0.7) 3.90 (± 0.01) 0.012 (± 0.004) 

Pt-O  0.5 (± 0.2) 2.01 (± 0.04) 0.012 (± 0.009) 

Pt LIII 

40% Pt3Co/C 

1000 °C post 

0.6-1.0 V 

cycling 

 Pt-Pt3 3.7 (± 1.2) 4.75 (± 0.02) 0.011 (± 0.003) 

-13.5 

(± 1.2) 
29.1 

Co-Pt1 7.0 (± 0.1) 2.71 (± 0.01) 0.012 (± 0.001) 

Co-Co 1.0 (± 0.3) 2.66 (± 0.02) 0.010 (± 0.003) 

Co-Pt2 1.8 (± 1.6) 3.98 (± 0.05) 0.014 (± 0.010) 

Co-Pt3 5.5 (± 1.4) 4.72 (± 0.01) 0.006 (± 0.002) 

Co-O 1.1 (± 0.4) 2.09 (± 0.03) 0.022 (± 0.014) 

Co K 

40% Pt3Co/C 

1000 °C post 

0.6-1.0 V 

cycling 

 
Co-Pt-Pt 7.0 (± 0.1) 5.53 (± 0.02) 0.014 (± 0.003) 

- 6.7 

(± 1.0) 
30.8 

Pt-Pt1 5.3 (± 0.3) 2.75 (± 0.01) 0.011 (± 0.001) 

Pt-Co 1.0 (± 0.2) 2.70 (± 0.01) 0.010 (± 0.002) 

Pt-Pt2 0.8 (± 0.2) 3.91 (± 0.01) 0.002 (± 0.002) 

Pt-O  0.7 (± 0.3) 2.05 (± 0.05) 0.039 (± 0.018) 

Pt LIII 

40% Pt3Co/C 

1000 °C post 

0.6-1.2 V 

cycling 

 Pt-Pt3 8.3 (± 1.6) 4.77 (± 0.01) 0.017 (± 0.002) 

-14.4 

(± 0.9) 
25.6 

Co-Pt1 6.9 (± 0.9) 2.71 (± 0.01) 0.012 (± 0.002) 

Co-Co 1.2 (± 0.4) 2.65 (± 0.02) 0.010 (± 0.005) 

Co-Pt2 2.7 (± 2.0) 3.87 (± 0.05) 0.017 (± 0.010) 

Co-Pt3 6.3 (± 1.8) 4.74 (± 0.02) 0.007 (± 0.003) 

Co-O 1.2 (± 0.6) 2.08 (± 0.04) 0.025 (± 0.025) 

Co K 

40% Pt3Co/C 

1000 °C post 

0.6-1.2 V 

cycling 

 
Co-Pt-Pt 6.6 (± 0.9) 5.53 (± 0.02) 0.012 (± 0.003) 

- 7.0 

(± 1.4) 
39.2 

Pt-O 1.3 (± 0.1) 2.01 (± 0.01) 0.023 (± 0.004) 

Pt-Pt1 6.3 (± 0.2) 2.76 (± 0.01) 0.012 (± 0.001) 

Pt-Pt2 3.2 (± 0.7) 3.90 (± 0.01) 0.018 (± 0.003) 
Pt LIII Pt/C 4.7 nm 

Pt-Pt3 4.1 (± 0.8) 4.80 (± 0.01) 0.011 (± 0.001) 

-13.4 

(± 0.6) 
22.4 

Pt-O 0.4 (± 0.2) 1.96 (± 0.06) 0.021 (± 0.017) 

Pt-Pt1 8.8 (± 0.3) 2.76 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 4.7 (± 0.9) 3.90 (± 0.01) 0.010 (± 0.002) 
Pt LIII Pt/C 7.7 nm 

Pt-Pt3 6.3 (± 1.0) 4.80 (± 0.01) 0.002 (± 0.001) 

-13.1 

(± 0.7) 
23.0 
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Table 7. Structural parameters for Pt3Co/C alloy and Pt/C catalysts obtained by 

fitting the Pt LIII and Co K edges EXAFS data in H2.  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1  7.2 (± 0.3) 2.72 (± 0.01) 0.011 (± 0.001) 

Pt-Co 1.7 (± 0.2) 2.68 (± 0.01) 0.012 (± 0.001) 

Pt-Pt2 2.0 (± 0.4) 3.86 (± 0.01) 0.010 (± 0.001) 
Pt LIII 

40% Pt3Co/C 

1000 °C 

Pt-Pt3 5.3 (± 0.9) 4.73 (± 0.01) 0.011 (± 0.002) 

-13.5 

(± 0.6) 
16.2 

Co-Pt1  6.0 (± 0.1) 2.71 (± 0.01) 0.014 (± 0.001) 

Co-Co 0.6 (± 0.1) 2.67 (± 0.02) 0.010 (± 0.003) 

Co-Pt2 2.6 (± 1.1) 3.89 (± 0.03) 0.019 (± 0.006) 

Co-Pt3 2.8 (± 0.6) 4.73 (± 0.01) 0.006 (± 0.010) 

Co-O 0.5 (± 0.2) 2.05 (± 0.03) 0.010 (± 0.009) 

Co K 
40% Pt3Co/C 

1000 °C 

Co-Pt-Pt 6.0 (± 0.1) 5.52 (± 0.01) 0.018 (± 0.003) 

-4.5  

(± 0.7) 
30.0 

Pt-Pt1  7.1 (± 0.7)  2.73 (± 0.01) 0.011 (± 0.001) 

Pt-Co 1.6 (± 0.2) 2.68 (± 0.01) 0.013 (± 0.002) 

Pt-Pt2 2.0 (± 0.4) 3.86 (± 0.01) 0.010 (± 0.002) 
Pt LIII 

40% Pt3Co/C 

1000 °C acid 

leached 

 Pt-Pt3 5.2 (± 0.9) 4.73 (± 0.01) 0.011 (± 0.002) 

-11.3 

(± 0.7) 
16.1 

Co-Pt1  5.4 (± 0.5) 2.71 (± 0.01) 0.014 (± 0.001) 

Co-Co 1.0 (± 0.2) 2.66 (± 0.01) 0.006 (± 0.002) 

Co-Pt2 2.1 (± 1.3) 3.92 (± 0.04) 0.017 (± 0.008) 

Co-Pt3 5.9 (± 0.9) 4.73 (± 0.01) 0.005 (± 0.001) 

Co-O 0.5 (± 0.2) 2.07 (± 0.04) 0.007 (± 0.008) 

Co K 

40% Pt3Co/C 

1000 °C acid 

leached 

 

Co-Pt-Pt 5.4 (± 0.5) 5.53 (± 0.01) 0.013 (± 0.002) 

-6.4  

(± 1.0) 
26.5 

Pt-Pt1 6.7 (± 0.4) 2.74 (± 0.01) 0.012 (± 0.001) 

Pt-Co 0.8 (± 0.2) 2.68 (± 0.01) 0.010 (± 0.003) 

Pt-Pt2 2.1 (± 0.5) 3.89 (± 0.01) 0.010 (± 0.002) 
Pt LIII 

40% Pt3Co/C 

1000 °C post 

0.6-1.0 V 

cycling Pt-Pt3 3.0 (± 1.2) 4.74 (± 0.01) 0.012 (± 0.002) 

-12.4 

(± 0.9) 

23.8 

 

Co-Pt1 6.4 (± 1.0) 2.72 (± 0.01) 0.009 (± 0.001) 

Co-Co 1.4 (± 0.8) 2.64 (± 0.04) 0.016 (± 0.009) 

Co-Pt2 1.5 (± 1.0) 3.98 (± 0.04) 0.003 (± 0.007) 

Co-Pt3 6.8 (± 2.2) 4.73 (± 0.02) 0.005 (± 0.003) 

Co K 

40% Pt3Co/C 

1000 °C post 

0.6-1.0 V 

cycling 

 Co-Pt-Pt 6.4 (± 1.0) 5.56 (± 0.03) 0.013 (± 0.002) 

-7.1 

(± 1.5) 

50.1 

 

Pt-Pt1 7.6 (± 0.4) 2.74 (± 0.01) 0.012 (± 0.001) 

Pt-Co 0.8 (± 0.3) 2.69 (± 0.02) 0.013 (± 0.001) 

Pt-Pt2 2.2 (± 0.5) 3.87 (± 0.01) 0.010 (± 0.002) 
Pt LIII 

40% Pt3Co/C 

1000 °C post 

0.6-1.2 V 

cycling Pt-Pt3 6.1 (± 1.2) 4.75 (± 0.01) 0.011 (± 0.002) 

-11.7 

(± 0.9) 
23.9 

Co-Pt1 6.0 (± 0.1) 2.68 (± 0.01) 0.010 (± 0.003) 

Co-Co 1.5 (± 0.9) 2.67 (± 0.04) 0.015 (± 0.014) 

Co-Pt2 3.2 (± 1.2) 3.94 (± 0.02) 0.002 (± 0.003) 

Co-Pt3 3.3 (± 2.8) 4.71 (± 0.05) 0.005 (± 0.008) 

Co K 

40% Pt3Co/C 

1000 °C post 

0.6-1.2 V 

cycling 

 Co-Pt-Pt 6.0 (± 0.1) 5.48 (± 0.04) 0.012 (± 0.006) 

-4.5 

(± 2.0) 

62.7 

 

Pt-Pt1  8.6 (± 0.3) 2.76 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 2.9 (± 0.6) 3.90 (± 0.01) 0.011 (± 0.002) Pt LIII Pt/C 4.7 nm 

Pt-Pt3 5.7 (± 1.1) 4.79 (± 0.01) 0.011 (± 0.002) 

-11.9 

(± 0.6) 
22.5 

Pt-Pt1  9.5 (± 0.3) 2.76 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 3.8 (± 0.9) 3.91 (± 0.01) 0.011 (± 0.002) Pt LIII Pt/C 7.7 nm 

Pt-Pt3 7.4 (± 1.4) 4.79 (± 0.01) 0.011 (± 0.002) 

-12.4 

(± 0.7) 
25.5 
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The coordination numbers of the metal neighbours provides useful information when 

considering the degree of segregation within the catalyst particles. For a completely 

mixed particle with no segregation, the ratio of Pt to Co coordination numbers (NPt/Co) 

would be equal to the atomic ratio. In the case of the 40% Pt3Co/C catalysts NPt/Co will 

equal 3 if there is no segregation. Using the fitted EXAFS parameters in Table 7 NPt/Co 

for this catalyst is 4.2 ± 0.5 as shown in Equation 4: 

 

5.02.4
2.07.1

3.02.7
±=

±

±
        Equation 4 

 

This value is close to the atomic ratio, indicating a high degree of alloying. However, 

the deviation from the atomic ratio of 3 suggests that there is some degree of 

segregation within the structure. This is expected since it is known that heat treatments 

such as those used to form alloys result in Pt skin formation (33) (segregation of Pt to 

the surface).  After acid leaching NPt/Co is the same within the fitting error, 4.4 ± 0.9, 

indicating that acid leaching does change the bulk alloying of the particles. After 

electrochemical cycling to 1.0 V and 1.2 V NPt/Co increases significantly to 8.4 ± 0.6 and 

9.5 ± 0.7 respectively. This indicates the cycling significantly changes the particle 

composition, increasing the proportion of Pt within the structure. At the Pt LIII edge all 

catalysts are fully reduced under H2 while at the Co K edge Co-O neighbours are 

present for both the Pt3Co/C and acid leached Pt3Co/C catalysts indicating that a 

fraction of Co remains oxidized. This could either be Co at the particle surface or a 

separate Co oxide phase on the carbon support. It is noted that the post cycled catalysts 

are fully reduced. 

 

Figure 24 shows the effect of cycling and acid leaching on the Pt-Pt bond length 

obtained from the fits. Compared to the as prepared Pt3Co/C alloy, electrochemical 

cycling results in an increase in Pt-Pt bond length to values more similar to that seen for 

the Pt/C catalysts. No change in the Pt-Pt bond length is observed following chemical 

acid leaching and little change in the Pt-Co bond length is observed upon cycling or 

leaching, however the fitting error increased post-cycling, reflecting the reduced Pt-Co 

coordination number.  
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Figure 24.  The effect of cycling and acid leaching on the fitted bond lengths for 

Pt3Co/C with comparison to Pt/C in H2 

 

A summary of the first shell coordination numbers in both H2 and air at the Pt LIII edge 

is shown in Figure 25. In H2, chemical leaching does not change the number of Pt-Pt or 

Pt-Co neighbours. This is in agreement with XRD analysis of the fresh and leached 

catalysts that showed little change in lattice parameter, indicating that the bulk alloy 

structure was retained and therefore it is concluded that acid leaching primarily affected 

the surface of the particle. However, electrochemical cycling results in a decrease in the 

Pt-Co coordination, which is in contrast to the ICP-MS results that showed that both 

leaching and cycling to 1.0 V remove similar amounts of Co. This suggests that Co 

removal by electrochemical cycling affects catalyst structure differently to Co removal 

by chemical leaching. Cycling to 1.0 V or 1.2 V does not change the Pt-Co coordination 

number despite more Co being removed when cycling to 1.2 V as indicated by the ICP-

MS data. A slight increase in Pt-Pt coordination number is observed after 0.6-1.2 V 

cycling, which may be related to either Co removal or some particle size growth. All 

catalysts are oxidised in air atmosphere as indicated by the presence of Pt-O neighbours 

and a reduction in the Pt-Pt coordination number. Post-cycling fewer Pt-O neighbours 

can be fitted, this is possibly the consequence of particle growth during cycling as fewer 

Pt-O neighbours are present on the larger particle sized Pt catalyst. A decrease in Pt-Pt 
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coordination in air compared to H2 atmosphere is observed for all catalysts as a 

consequence of the presence of Pt-O neighbours.  
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Figure 25.  Summary of the fitted coordination number of first shell neighbours 

at the Pt LIII edge 

 

 

At the Co K edge in H2 both the 40% Pt3Co/C and acid leached catalysts are not fully 

reduced, however, for the post cycled samples the addition of oxygen neighbours did 

not improve the fit. In air Co-O neighbours could be fitted for all catalysts indicating 

that after leaching or cycling Co is present at / or sufficiently near the surface of the 

catalyst to enable oxidation. Within the error of the fit, acid leaching or electrochemical 

cycling did not change the number of Co-Co neighbours or Co-Co bond length. Acid 

leaching halved the number of Co-O neighbours indicating removal of surface or 

unalloyed Co, however, electrochemical cycling did not change the number of Co-O 

neighbours fitted and the Co-O bond length showed an increase. In contrast to the Pt LIII 

edge data the number of Co-Pt neighbours increased slightly after chemical leaching 

and significantly after electrochemical cycling as shown in Figure 26. This result 

indicates that leaching and cycling both change the Co distribution within the sample 

and the effect is more significant after cycling. 
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Figure 26. Summary of the fitted coordination number of first shell neighbours 

at the Co K edge in air 

 

3.5 The effect of particle size on cycle stability 

To determine if the increased ECA stability observed for the 40% Pt3Co/C alloy is a 

consequence of alloying or merely the result of increased particle size, the stability tests 

from 0.6-1.0 V and 0.6-1.2 V were also conducted on a range of Pt/C and Pt3Co/C alloy 

catalysts with different particle sizes, as detailed in Table 1. For each catalyst tested, the 

cyclic voltammetric profiles with cycle number are shown in Figure 27. Similar trends 

to those previously discussed are observed. A summary of the ECA loss and % metal 

removed during cycles is shown in Table 8. 

 

Table 8. Summary of ECA loss and % metal removed during cycles 

Catalyst XRD mean 

crystallite 

size / nm 

Cycling 

regime 

% ECA loss after 

1000 cycles 

%Pt 

removed
 

%Co 

removed 

0.6-1.0 V 14 < 1 - 40%Pt/C 900 °C  5.0 

0.6-1.2 V 44 7.3 - 

40%Pt/C 1000 °C  7.7 0.6-1.2 V 11 4 - 

40% Pt3Co/C 1000 °C 5.0 0.6-1.2 V 27 4 38 

40% Pt3Co/C 1200 °C 12.6 0.6-1.2 V 0 5 18 
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Figure 27. The effect of number of cycles from 0.6-1.0 V and 0.6-1.2 V vs. Pd/H 

on the CO oxidation voltammetry of Pt/C and Pt3Co/C catalysts with 

a range of particle sizes at 10 mV s
-1

 in 1 M H2SO4 at 80 ºC. Arrows 

indicate trend with increasing cycle number  

 

 

The % ECA loss after 1000 cycles was determined from the voltammetry for each 

catalyst and was used to demonstrate the effect of particle size on ECA stability for each 

cycling regime (Figure 28). The results obtained demonstrate that particle size alone 

cannot account for the increased stability benefit observed for 40% Pt3Co/C alloy over 

60% Pt/C (2 nm). It was found that if the catalyst particles were large enough, the ECA 

stability could be dramatically improved even for Pt/C. However, for a given particle 

size, the corresponding alloy catalysts were more stable, indicating an additional 
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alloying benefit. ICP-MS analysis of the electrolyte was conducted on samples cycled to 

1.2 V. Results indicate that sacrificial removal of the base metal retains ECA for alloys, 

however, once a critical level of base metal is removed from the catalyst the enhanced 

catalyst stability is removed. The Pt3Co/C catalyst that did not exhibit ECA loss during 

the 0.6-1.2 V cycling (12.6 nm particle size), lost 24% Co. 

 

Figure 28 also illustrates the effect of the upper potential limit on catalyst stability. For 

both Pt and Pt3Co/C alloy catalysts the 0.6-1.2 V cycling was found to be more 

aggressive than cycling from 0.6-1.0 V. 
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Figure 28.  The effect of particle size on the %ECA lost during 0.6-1.0 V and 

0.6-1.2 V cycles for Pt/C and Pt3Co/C alloy catalysts 

 

 

4. Discussion 

4.1 Mechanisms of surface area loss for Pt/C and Pt3Co/C 

Under both electrochemical cycling regimes 40% Pt3Co/C was found to be more stable 

than 60% Pt/C (2 nm), although in all tests some electrochemical surface area loss has 

been observed.  Evidenced by the cyclic voltammetry, TEM and ICP-MS results, the 

dominant mechanisms for the observed ECA loss during cycling for 60% Pt/C (2 nm) 

and 40% Pt3Co/C are different. 



Chapter 3.  Deactivation of Pt3Co  

  100 

For 60% Pt/C (2 nm) the ECA loss, progressive change in overpotential of the CO 

oxidation peak and the appearance of the shoulder at higher overpotentials with 

increasing cycle number indicate that the catalyst particles grow throughout the test. 

The slowing rate of ECA loss observed with cycle number suggests that the ECA loss 

mechanism is more damaging to small particles. This is supported by the TEM particle 

size analysis, where under both cycling regimes, the smaller particles in the fresh 

catalyst are lost and larger particles form. The change in the particle size distribution of 

the catalyst post-cycling is to increase the % of large particles with a decrease in the 

relative fraction of small particles and a broadening of the size distribution. It has been 

reported that if coalescence were the mechanism of ECA loss, a log normal distribution 

with an overall increase in average particle size would be expected as particles close 

together sinter together to form larger particles (13). Since this is not observed in the 

TEM images reported in this work, the dominant mechanism for the ECA loss is not 

considered to be the result of coalescence. 

 

To understand the experimental observations, the processes occurring in both cycling 

regimes are considered. During cycling, an oxide layer is repeatedly grown and 

removed. The proportion of Pt atoms as oxide (as opposed to metal) is higher for small 

particles than larger ones and for particles cycled to the higher potential limit. During 

the formation of platinum oxide, it is known that (16, 20, 22, 35, 36, 38, 39) soluble Pt
z+

 

species can form from either direct electrochemical oxidation of Pt (s) or by chemical 

dissolution from the platinum oxide layer. Evidence for dissolved platinum was found 

in this work by analysis of the electrolyte during the cycling tests. A mechanism for 

particle growth can therefore be proposed in which the anodic sweep oxidises platinum 

and dissolved Pt
z+

 species are formed, but before the dissolved ions are able to diffuse 

away from particles the potential is swept cathodically and Pt
z+

 is reduced to platinum 

metal which deposits on a neighbouring particle. Repeated cycling would result in a 

progressive increase in particle size. Small particles would be expected to be lost in 

preference to larger ones, in good agreement with predictions of Darling’s model (20) 

and higher potential limits would be more damaging. This mechanism is described in 

the literature as the Ostwald-ripening process (17) and is reported (13, 17) to give the 

observed change in particle size distribution and voltammetry as observed in this work. 

If this were the sole mechanism of ECA loss it can be calculated that a spherical 2 nm 

platinum particle would need to grow to 10 nm to account for an 80% ECA loss. Whilst 
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this result is in good agreement with the TEM particle size analysis, it should be noted 

that the assumption of spherical particles is inconsistent with the TEM images post 

cycling. It is therefore concluded that for Pt/C Ostwald ripening is a dominant 

mechanism accounting of ECA loss during cycling for 60% Pt/C. 

 

However, ICP-MS results confirm that not all dissolved Pt is redeposited by Ostwald 

ripening. Some dissolved Pt is lost to the electroyte and is therefore no longer able to 

contribute to the measured ECA. Dissolution of Pt into the electrolyte is most 

significant when cycling to 1.2 V. After 750 cycles to 1.2 V a concentration in solution 

equivalent to removal of 10% of platinum in the catalyst was measured. Compared to 

the MEA environment where dissolved Pt
z+

 can migrate and be reduced in the 

membrane (10, 11, 17, 18, 21-23, 40), no subsequent reduction and deposition of 

dissolved Pt can occur in this experiment. The larger electrolyte volume and 

concentration gradient in the liquid cell may account for the observation that cycling in 

liquid electrolyte accelerates the ECA loss compared to the MEA environment as 

dissolution and migration can occur more readily.  

 

In contrast, the cyclic voltammetry and TEM of the Pt3Co/C alloy showed little 

evidence that ECA loss via the Ostwald-ripening mechanism was a dominant process. 

The particle size distribution was relatively unchanged by cycling with only the smallest 

particles being lost. Post 1.2 V cycling a slight shift in the whole distribution to larger 

particle size is observed, but without significant broadening of the distribution. It is 

therefore difficult to separate ECA loss via Ostwald-ripening and by coalescence.  

 

Dissolution of Pt was also found for the Pt3Co/C catalyst and, therefore, accounts for a 

proportion of the observed ECA loss. Compared with 60% Pt/C, half as much Pt 

dissolution occurred for the Pt3Co alloy during 0.6-1.2 V cycling. Compared to a similar 

particle sized Pt/C catalyst, the amount of Pt dissolution is similar to but still lower for 

the alloy. Both the increased size of the alloy particles and the addition of the base metal 

are thought to enhance the stability of alloy catalysts over platinum only materials (3, 

28, 29). Significantly, dissolution of Co occurred during cycling of the Pt3Co/C alloy. In 

both cycling regimes a correlation between the initiation of ECA loss and loss of a 

critical fraction (25%) of the Co was observed.  The 12.7 nm Pt3Co/C catalyst that did 

not exhibit ECA loss during the 0.6-1.2 V cycling, lost 24% Co. This evidence suggests 
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that Co is sacrificially lost in preference to Pt, helping maintain ECA and that Co loss 

from the surface may explain the observed small increase in ECA at start of cycling test.  

 

For both Pt and Pt3Co/C alloy catalysts 0.6-1.2 V cycling is found to be more aggressive 

than cycling from 0.6-1.0 V. This is thought to be due to the different amounts of oxide 

grown at 1.0 V vs. 1.2 V. Analysis of the oxide growth per unit Hads area from  

Figure 8 shows that approximately 2.5 times more oxide is grown at 1.2 V than that 

grown at 1.0 V. The time spent at high potentials is also increased during cycles to 

1.2 V and it is also known that the place exchange mechanism becomes more significant 

at higher potentials (36) causing particle disruption. All these factors influence the 

dissolution of Pt and therefore increase ECA loss. The fact that more Co dissolution is 

observed when cycling to high potentials is also thought to be a consequence of these 

factors facilitating Co moving to the particle surface where exposure to acid will result 

in dissolution. 

 

4.2 Comparison of chemical acid leaching and electrochemical cycling 

Activity measurements on the Pt3Co/C alloy catalyst after cycling (11, 12) and chemical 

leaching have shown a performance decrease that is thought to correlate with Co 

removal from the catalyst. Chemical leaching and 0.6-1.0 V and 0.6-1.2 V 

electrochemical cycling removed 25 %, 26% and 36% Co from the catalyst, 

respectively. 

 

The effect of acid leaching and 0.6-1.2 V electrochemical cycling on the cyclic 

voltammetry of the 40% Pt3Co/C catalyst were investigated in this work. Figure 29 

summaries the oxide formation of the PtCo alloy catalysts at a range of upper potential 

limits. The corresponding data for the 2 nm 60% Pt/C catalyst is also shown for 

comparison. It can be seen that acid leaching the catalyst decreases the amount of oxide 

formation at potentials up to 1.0 V, then at higher upper potential limits, leaching has 

little effect on the oxide formation compared to the as prepared 40% Pt3Co/C catalyst. 

However, electrochemical cycling from 0.6-1.2 V is found to reduce the extent of oxide 

formation at all potentials. The extent of oxide formation after cycling was found to be 

similar to that observed for the 60% Pt/C catalyst. This result indicates that 

electrochemical cycling results in formation of a surface with platinum like properties, 
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while acid leaching partially removes the alloy characteristic of increased oxide 

formation per unit electrochemical area compared to Pt/C. This result is consistent with 

less Co removal from the alloy after acid leaching compared to 0.6-1.2 V cycling.  
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Figure 29. Summary of extent of oxide formation with increasing upper 

potential limit determined from cycling voltammograms of 

60% Pt/C, 40% Pt3Co/C, as prepared, acid leaching and post 

0.6-1.2 V electrochemical cycling 

 

From XAS analysis both electrochemical cycling and acid leaching were shown to 

change the structure of the catalyst. At the Pt LIII edge no significant variations in the 

EXAFS parameters were found upon acid leaching, indicating that any Co removed was 

only from the surface layers. This result was consistent with XRD analysis. At the Co K 

edge acid leaching resulted in a halving of the Co-O neighbors as compared to the as 

prepared catalyst, indicating Co removal from the outer most layers of the particle. The 

presence of some Co-O neighbours suggests either a catalyst structure that still has 

exposed Co at the surface, or dissolved Co in oxidised form remains tapped within the 

electrode structure, or that the particle structure is such that the Co within the particle 

may be oxidised. In contrast EXAFS analysis at the Pt LIII edge showed the average 

Pt-Pt bond length increased to more Pt like values and a decrease in the Pt-Co 

coordination number occurred at the after electrochemical cycling. After 0.6-1.2 V 
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cycling an increase in the Pt-Pt coordination number also occurred. This indicates that 

cycling results in a more dramatic change in catalyst structure with removal of Co 

disrupting a larger proportion of the particle. This effect was most pronounced during 

cycles to the higher upper potential limit of 1.2 V, correlating with the increased Co 

dissolution and place exchange under these conditions. At the Co K edge, 

electrochemical cycling was shown not to alter the number of Co-O neighbours 

indicating, as for acid leaching, that the cycled catalyst structure still has exposed Co at 

the surface, or dissolved Co in oxidised form remains tapped within the electrode 

structure, or the particle structure is such that the Co within the particle may be 

oxidised. In addition, cycling was found to give a large increase in Co-Pt neighbours 

when compared to the as prepared catalyst. This indicates cycling causes a 

rearrangement of the catalyst structure.  

 

In recent work by Chen et al. (8) a percolated structure for an acid leached Pt3Co/C 

catalyst has been proposed based on characterization by high resolution TEM and 

aberration-corrected high-angle annular dark-field scanning transmission microscopy, 

XAS and XRD. It is thought that the dissolution of Co is not confined near the surface 

and on average, near surface regions are Pt-rich relative to the particle interior. The 

percolated structure is shown in Figure 30 and it can be seen that this structure differs 

from a core shell structure since the Pt-enriched regions can extend from surface regions 

into the particle core.  
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Figure 30.  Percolated structure of Pt3Co/C acid leached adapted from ref (8) 
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The formation of a percolated structure would allow the presence of oxidised Co within 

the catalyst structure as observed for the acid leached and electrochemically cycled 

40% Pt3Co/C catalysts studied in this work. However, the presence of trapped Co within 

the electrode structure cannot be discounted and it is thought that electrochemical 

cycling will also modify the catalyst structure due to place exchange and the possibility 

of Oswald ripening occurring under these conditions.    

 

The observed structural changes compared to the as prepared 40% Pt3Co/C catalyst, 

may therefore help explain the activity loss observed for Pt3Co/C alloy catalysts post 

cycling and leaching. These results strongly indicate that Co within the outmost layers 

is a requirement for enhanced activity over platinum only catalysts. It has been proposed 

that one of the primary effects of the alloying element is to modify the electronic 

properties of platinum, which in turn leads to enhanced activity (8, 41, 42). It is 

therefore possible that sufficient removal of the alloying element can remove the 

beneficial change in electronic properties and hence the activity returns to that of 

platinum only catalyst as observed in this work upon acid leaching. Measurement of the 

d-band centre of Pt/C, for reference, and the PtCo/C alloys before and after acid 

leaching and electrochemical cycling would be required to verify this proposal. A 

method by which this may be achieved is to conduct XAS measurements of the 

catalysts on both the Pt LII and LIII edges and use the method demonstrated by Mansour 

et al. (43) for determining the number of unoccupied d-electron states. 

 

5. Conclusions 

The stability of Pt/C and Pt3Co/C alloy catalysts under 0.6-1.0 and 0.6-1.2 V 

potentiostatic cycling regimes has been investigated. Cycling to higher upper potential 

limits was found to be more damaging to the catalyst particles. Significant ECA area 

loss was observed for the 2 nm Pt/C catalyst while the 5 nm Pt3Co/C alloy displayed 

enhanced stability. The mechanisms of ECA loss were found to be different for the two 

materials. For 60% Pt/C the Ostwald-ripening mechanism could account for a 

significant proportion of ECA loss observed, however, evidence of platinum dissolution 

into the electrolyte was also found. For 40% Pt3Co/C ECA loss occurred via dissolution. 

ECA loss via Ostwald-ripening or coalescence occurred, but the mechanism could not 

be distinguished. Enhanced ECA stability was correlated to increasing particle size for 



Chapter 3.  Deactivation of Pt3Co  

  106 

both Pt and PtCo alloy catalysts. At a given particle size PtCo alloy catalysts were 

shown to be more stable than Pt/C catalysts indicating an additional alloying benefit. 

Potential dependent Co dissolution from 40% Pt3Co/C occurred during cycling. Loss of 

critical levels of Co, defined the onset of Pt ECA loss. Co loss by chemical leaching and 

cycling has been shown to result in different catalyst structures despite similar amounts 

of Co removal. Cycling disrupts more of the catalyst structure with more dramatic 

effects observed for the high potential limit. Leaching and cycling are thought to 

remove Co from within the outer most layers of the catalyst particle and the presence of 

sufficient Co in this position seems critical to maintaining activity enhancement over 

Pt/C.  
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Chapter 4. Probing the structure of Operating Fuel 

Cell Cathode Catalysts Using XAS – Part I 

 

Some of the results presented in this chapter were previously presented in ECS 

Transactions, 16 (2) 1395-1401 (2008) (1). 

1. Introduction 

Fuel cell catalyst development increasingly relies on the ability to prepare structured 

nanoparticles of platinum and platinum alloys. Specific arrangements of surface and 

bulk atoms are necessary to optimise catalytic activity and selectivity (2-5). 

Determination of the detailed structure of catalyst particles is therefore essential to 

understand the relationship between structure and catalytic activity and to identify the 

optimum particle structure.  

 

X-ray absorption spectroscopy (XAS) has been shown to be a powerful technique for 

providing electronic and structural information such as the oxidation state and local 

coordination (numbers and identity of neighbours) of the absorbing atom.  For these 

reasons XAS has been increasingly applied to the study of fuel cell catalysts. Studies 

have been reported using three different in situ environments; (i) of catalyst powders in 

gas treatment cells (2, 3), (ii) of electrode layers in three electrode electrochemical cells 

with liquid electrolyte (4-6) and (iii) of membrane electrode assemblies (MEAs) 

mounted in fuel cells (7-11). Whilst the first two environments provide useful 

information for characterising fuel cell catalysts, the optimum in situ environment to 

enable correlation of catalytic activity with structural insights provided by XAS is as an 

MEA under realistic fuel cell operating conditions (7, 9), know as operando studies.  

 

To enable XAS in an operating fuel cell, some unavoidable modifications of the cell 

design are required. Such modifications include replacing standard MEA components 

with elements that do not absorb the X-rays or removing interfering elements from the 

electrode in the region of the window. The detrimental absorption of the graphite flow 

field plates must also be addressed. These modifications can result in deviation from 

real world fuel cell operation. For example, in order to achieve sufficient signal in 

transmission mode relatively high catalyst loadings, on the order of 1-2 mgPt cm
-2

, need 
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to be used, as demonstrated by the work of Viswanathan et al. (11) and Roth et al. (8). 

These high loadings result in thick catalyst layers and can lead to poor utilisation of the 

catalyst. More realistic catalyst loadings (0.8 mgPt cm
-2

) were used by Wiltshire et al. 

(9) who used fluorescence detection. Wiltshire et al. also reduced the graphite flow field 

plate thickness to less than half of that used in the transmission experiments of 

Viswanathan et al. and Roth et al. Recent work by Witkowska et al., who reported a 

cell designed for both fluorescence and transmission XAS at low energy edges, e.g. the 

Co K edge,  demonstrates the advantage of further reducing the graphite absorption (7, 

12). However, data acquisition times of 1 hr were required and therefore only steady 

state information was obtained. To achieve optimum catalyst activity pressurised fuel 

cell systems are commonly used, however, the in situ designs previously described all 

operate at atmospheric or low pressures. 

 

This work aims to explore the relationship between fuel cell cathode catalyst activity 

and structure using X-ray absorption spectroscopy (XAS) to provide element specific 

information on the arrangement of atoms and their nearest neighbours (13, 14). To 

achieve this aim an operando XAS fuel cell system has been designed that enables 

transmission XAS measurements to be conducted on cathode catalysts operating at 

10 psig. Validation of the cell design for measuring catalytic activity and findings for 

Pt/C and Pt3Co/C catalysts during time resolved potential step measurements using 

XAS data acquisition times of 12 s will be presented. 

 

1.1. Designing a Fuel Cell to enable time resolved operando XAS 

studies of cathode catalysts 

Current conventional fuel cell design incorporates key features that enable optimum 

performance to be achieved from fuel cell catalyst materials. Typically an MEA is 

compressed between two solid, highly conducting graphite flow field plates that 

transport reactant gases to and product water away from the MEA. Cells generally 

operate at elevated pressures (e.g. 150 kPaabs) and temperatures, (80 °C with current 

research focusing on increasing the temperature of operation to 120 °C to improve 

performance and system efficiency). Sufficient reactant gas stoichiometries are required 

and gases are often humidified in order to help hydrate the MEA and therefore decrease 

resistive losses of the proton exchange membrane. Sufficient cell compression is needed 
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to minimise electronic contact resistances between the bipolar plates and gas diffusion 

media and between the gas diffusion media and catalyst layers, however, the 

compression used needs to be optimal to prevent damage of the MEA components that 

may result in restricted gas/water access or pinholing of the membrane resulting in a cell 

short circuit. 

 

State of the art commercial MEAs often use thin membranes (~25 µm) to lessen 

resistive losses. Pt/C is used as the hydrogen oxidation catalyst for anode electrodes 

since the kinetics of hydrogen electrooxidation are very facile on Pt. Due to these rapid 

kinetics Gasteiger et al. report that Pt loadings as low as 0.05 mgPt cm
-2

 on the anode 

may be used without the need to compensate the measured cell performance for 

contributions from anode polarisation (15).  On the cathode Pt/C or carbon supported Pt 

alloy catalysts are used with loadings in the region of 0.4 mgPt cm
-2

. In addition, careful 

optimisation of the catalyst layer structure and global MEA structure is required to 

attain optimum cell performance. The exact structures required are still a source of 

much research and depend strongly on the cell operating conditions. 

 

Despite the aforementioned engineering and materials solutions, voltage losses in the 

fuel cell are still observed and need to be corrected for when reporting catalyst activity. 

These include hydrogen crossover, ohmic losses associated with the conductivity of 

protons through the membrane and electronic contact resistances between plate and 

MEA components, and mass transport losses. The corrected cell performance is, thus, a 

measure of the activation loss attributed to the poor activity of Pt for the oxygen 

reduction reaction on the cathode. 

 

In this work a fuel cell to enable time resolved operando XAS studies of cathode 

catalysts has been designed to allow catalyst structure to be probed during operation. 

Ideally the cell would include all the beneficial engineering and materials properties of 

the conventional fuel cell described above so that the studies probe a realistic 

representation of the catalyst under typical operating conditions. The fuel cell design for 

this work was based on the research group’s cell used for fluorescence XAS 

investigations conducted at elevated temperatures and ambient pressures (9). The cell 

active area is 12.57 cm
2
. To enable XAS to be collected in transmission mode the cell 

needed modification to include thinned graphite windows on both the anode and 
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cathode sides of the cell. In addition it was found that the window dimensions needed to 

be reduced from 60 mm x 40 mm (in the fluorescence cell and version I transmission 

cell design) to 16 mm x 6 mm in the version II transmission cell. To further improve the 

structural rigidity of the cell, the thickness of the perspex end plates was also doubled. 

These modifications were found to provide improved electrical contact and MEA 

compression in the region of the X-ray window. A gas control box was also added to the 

system to enable operation at elevated pressures with regulated gas flows. Unlike 

experiments conducted with the fluorescence cell design, the additional gas control 

systems enabled 100% H2 feed gas to be used at the anode during experiments 

facilitating reduced anode polarisation. The transmission XAS cell (version II) is shown 

in Figure 1. Technical drawings of the cell may be found in the Electronic Appendix. 

 

Figure 1.  XAS transmission Fuel cell. (A) Anode side (B) Cathode side (C) Cell 

connected to gas control box (D) Side view (E) Humidifiers (F) 

Graphite flow field plate with thinned 16 mm x 6 mm window on 

anode and cathode sides and water heating channel (version II) 
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As for conventional fuel cells, the transmission XAS cell operates at elevated pressure 

(10 psi) and elevated temperature (65 °C, maximum temperature obtainable using a 

circulating water bath to pump hot water through the water channel in the graphite 

plate). The MEA is compressed between two graphite flow field plates surrounded by 

perspex compression plates using six threaded screws. The incoming reactant gases are 

humidified by flowing over a membrane substrate assembly (MSA) that is in contact 

with hot water. Gas flow rates of 60 ml min
-1

 on both the anode and cathode were 

chosen to provide sufficient stoichiometry for reaction. However, unlike conventional 

fuel cells the operando XAS cell also has to allow time resolved X-ray Absorption 

Spectroscopy data to be collected. The cell therefore has to incorporate a low 

absorbance X-ray path and have the catalyst of interest in sufficient concentration to 

obtain a high signal to noise response. These XAS requirements lead to some 

unavoidable modifications of the conventional fuel cell design. 

 

To incorporate a low absorbance X-ray pathway the humidifiers were attached to the 

cell so as to be out of the way of the incoming beam. Standard MEA components such 

as a Pt/C anode contain interfering elements, therefore either the Pt had to be removed 

from the electrode in the region of the window, the approach taken by Roth et al. (8), or 

the anode catalyst had to be replaced with a non-interfering element such as Pd/C. Due 

to possible problems with current distribution in the region of the window caused by 

removing Pt in this area a Pd/C anode was used for all operando XAS measurements. 

The detrimental absorption of the graphite flow field plates was also addressed. This 

was achieved by thinning to form graphite windows 16 mm x 6 mm and 1.5 mm thick 

on both the anode and cathode sides of the cell. This same approach was used by 

Viswanathan et al. (11) and Roth et al. (8), however, in the XAS Transmission cell the 

total graphite thickness was further reduced by 1 mm to reduce graphite absorbance. For 

operando experiments conducted at the Co K edge and to obtain sufficient data quality 

at ms time resolution the plate design was modified further (version III) to completely 

remove the graphite from the window area and the resultant hole was sealed with 

Kapton film to form a gas and water tight seal (see section 4.4 and Chapter 5). 

 

In order to achieve sufficient signal in transmission mode relatively high catalyst 

loadings need to be used (8, 11), loadings of 2.0-3.3 mgPt cm
-2

 were used in these 
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experiments. These high loadings result in thick catalyst layers that have a very different 

structure to the conventional 0.4 mgPt cm
-2

 layers.  

 

The other main way in which the operando XAS cell differs from conventional designs 

is that the thin membranes typically used in conventional cells were not able to be used 

as problems were encountered with sealing the cell quickly and easily as is required 

when conducting experiments on the beamline, therefore a thicker membrane Nafion 

115 (125 µm) was used. In light of these modifications away from conventional fuel cell 

designs, the Transmission XAS fuel cell has been evaluated to determine if the 

operando studies will probe a realistic representation of the catalyst under typical 

operating conditions. 

 

2. Validation of Cell design 
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Figure 2. iR free fuel cell mass activity performance of MEAs with 40% Pt/C 

and 40% Pt3Co/C cathodes with 0.4 mgPt cm
-2

 loading and 

0.4 mgPt cm
-2

 40% Pt/C anodes in the transmission XAS cell. For 

comparison the mass activity of a 2.0 mgPt cm
-2

 60% Pt/C MEA, with 

10 % Pd/C anode as used in the operando XAS measurements is also 

plotted (open squares). All MEAs were prepared with Nafion 115 

and tested with H2 anode gas and O2 cathode gas at 60 ml min
-1

, 

10 psig, 65 ºC 
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The cell design was validated by conducting activity measurements using both Pt/C and 

Pt3Co/C catalysts. The experimental procedure used is described in Chapter 2 section 

2.2.5. The iR and hydrogen crossover corrected activities of Pt/C only and Pt3Co/C 

alloy catalysts at 0.4 mgPt cm
-2

 tested in the XAS transmission fuel cell are shown in 

Figure 2. 

 

The Pt3Co alloy shows a two times improvement in activity at 900 mV over the Pt 

catalyst at the same mass loading. This trend is in good agreement with MEA activity 

that has previously been reported for these catalysts tested in fuel cells of more 

conventional design (16). However, the absolute activity values obtained for the 

catalysts in the XAS transmission cell are lower by a factor of two compared to the 

reported values. This discrepancy may be accounted for by differences in testing 

conditions between the two systems such as lower operating temperature and less 

efficient humidification in the transmission XAS cell. The measured cell resistance for 

the 0.4 mgPt cm
-2

 MEAs using the current interrupt technique is on average 0.2 Ω cm
-2

. 

This value is two times higher than for more conventional cells using equivalent MEAs. 

Pressure sensitive paper has shown that the compression of the assembled XAS 

transmission cell is less efficient in the region of the thinned graphite transmission 

windows compared to conventional solid plate designs. This is thought to be the 

significant factor contributing to the higher measured cell resistance. 

 

To consider the effect of the increased Pt loading (and layer thickness) required for 

operando XAS measurement an MEA comparable to those to be used at the synchrotron 

was also tested. The MEA contained 2.0 mgPt cm
-2

 Pt/C cathode and a 10 % Pd/C 

anode. The iR corrected mass activity is also shown in Figure 2. Despite the increased 

thickness of the catalyst layer and the Pd/C anode, the iR corrected mass activity is 

comparable to the thinner 0.4 mgPt cm
-2

 loaded Pt/C MEA in the kinetic region 

> 0.85 V. At lower potentials, corresponding to higher currents, poorer correlation due 

to increased mass transport with the thicker layer is observed. This may be a catalyst 

utilisation effect. At these higher currents, the additional polarisation due to the anode 

will also become more important and is not corrected for here. This, in addition to the 

layer thickness may help explain the deviation observed at higher current densities. The 

measured cell resistance of the thicker layer was comparable to the low loaded layer. 

These results demonstrate that the XAS transmission cell design allows the same 
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catalytic trends to be observed as in conventional fuel cells and that the requirement to 

use thicker catalyst layers and the Pd anode for XAS measurements does not adversely 

affect the catalyst utilisation in the kinetic region (the main region of interest for study 

of the ORR in this work) under these operating conditions. Assuming the same results 

can be obtained at the synchrotron the structural parameters obtained from XAS 

measures can be considered representative of the catalyst operating under realistic fuel 

cell conditions. 

 

3. Experimental 

3.1 Catalyst preparation, characterisation and MEA fabrication 

60% Pt/C (2.0 mgPt cm
-2

), 40% Pt/C (2.4 mgPt cm
-2

), 10% Pd/C (0.24 mgPd cm
-2

), 

40% Pt3Co/C (3.3 mgPt cm
-2

)  and 40% Pt3Co/C acid leached (3.3 mgPt cm
-2

) catalysts 

were prepared and characterised as described in Chapter 2 section 1.1. Electrodes at 

0.4 mgPt cm
-2

 used in cell validation were prepared by screen printing (with some layers 

sourced from Johnson Matthey Fuel Cells, Swindon) while high loaded layers used in 

XAS measurements were prepared by spray coating as described in Chapter 2 section 

1.1.2. MEAs were fabricated by positioning four centimetre diameter circular anode and 

cathode electrodes on either side of a Nafion 115 membrane and hot pressing as detailed 

in Chapter 2 section 2.2.5. 

3.2 XAS data collection and analysis during electrochemical 

measurements 

 

Figure 3. Experimental set-up showing transmission fuel cell on station 9.3 
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The cell potential was controlled using an Eco chemie Autolab PGSTAT 30 in 

conjunction with an Eco chemie 10 Amp Booster during electrochemical measurements. 

The cell was heated to 65 °C and incoming gases humidified by use of MSAs and a 

circulating waterbath set at 80 °C. All oxygen polarisation curves and potential step 

measurements to and from 0.125 V or OCV, were conducted at 10 psi with 60 ml min
-1

 

H2 at the anode and N2 or O2 at the cathode regulated by use of the gas control box. 

 

All X-ray data were collected on station 9.3 at Daresbury Laboratory, Warrington, 

UK. The ring is operated at 2.0 GeV energy and 100–250 mA ring current. XAS 

measurements were conducted at the Pt LIII edge (11.564 keV) using a double crystal 

Si(111) monochromator. The experimental set-up for operando XAS measurements is 

shown in Figure 3. During testing the fuel cell was operated as previously described 

with H2 anode gas and N2 or O2 cathode gas. The cell was situated between two 

ionization chambers I0 and I. A Pt foil monitor spectrum was also simultaneously 

recorded as an internal standard for energy calibration using a third ion chamber. XAS 

data was acquired as a function of time following potential steps. During the time 

resolved experiments in nitrogen the cathode potential was held at 0.125 V for the 

duration of ten XAS scans before the potential was stepped to 0.6, 0.7, 0.8, 0.9 or 1.0 V 

vs. the Pd/C anode in H2. The potential was held at the upper limit for 25 XAS scans 

before a potential step back to 0.125 V. The duration of each XAS scan was 10 s with a 

total of 12 s between scans to allow for the changes in position of the monochromator. 

Similarly time resolved experiments with oxygen at the cathode were conducted from 

OCV (typically 1.1 V) to 0.9, 0.8, 0.7 and 0.6 V to back to OCV to investigate the effect 

of applied voltage and therefore load drawn from cell on the catalyst structure. The 

experimentally measured XAS data were analysed using the Daresbury suite of analysis 

programs as described in Chapter 2 section 3.2. The EXAFS data was theoretically 

fitted to a two shell model for Pt/C and three shell model for Pt3Co/C to acquire the 

number of neighbours, bond distances, Debye-Waller factors and Ef. In the instances 

where oxygen neighbours were present an additional shell was added to the model. The 

four models used are described below: 

 

Structural Models used at the Pt LIII edge for Pt/C and Pt3Co/C catalysts: 

Two/Three shell: Pt-Pt1 Pt-Pt2  or  Pt-Pt1 Pt-O Pt-Pt2  

Three/Four shell: Pt-Pt1 Pt-Co Pt-Pt2 or Pt-Pt1 Pt-Co Pt-Pt2 Pt-O   
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3.3 XAS data collection of Pt/C powder samples 

To consider the effect of particle size on EXAFS fitting parameters, a series of Pt/C 

catalysts with a range of particle sizes from 2 nm to 15.9 nm were studied. The catalysts 

were derived from the same 2 nm average particle diameter precursor catalyst by heat 

treatment (Chapter 2 section 1). The catalysts were studied as powders using the gas 

treatment cell in hydrogen and oxygen atmospheres (Chapter 2 section 3.3). All X-ray 

data were conducted on station 9.3 at the SRS Daresbury laboratory, Warrington, 

England at the Pt LIII edge. The ring is operated with 2.0 GeV energy and 100 -250 mA 

ring current. All samples were run in October 2006 in transmission mode by other 

members of Prof. Russell’s research group. The XAS data were analysed by the author 

using the Daresbury suite of analysis programmes: EXCALIB, EXBROOK & 

EXCURV98. Individual scans for each sample were summed and XANES spectra were 

acquired after pre-edge subtraction. The data then underwent background removal 

before the EXAFS data was theoretically fitted to a three shell model to acquire the 

number of Pt neighbours, bond distances, Debye-Waller factors and Ef. In the instances 

where oxygen neighbours were present a fourth shell was added to the model as shown 

below. 

 

Theoretical Models used at the Pt LIII edge: 

Three/Four shell: Pt-Pt1 Pt-Pt2 Pt-Pt3 or Pt-O  Pt-Pt1 Pt-Pt2 Pt-Pt3 

 

4. Results of operando XAS Experiments 

4.1 Structural characterisation of 60% Pt/C and 40% Pt3Co/C during 

time resolved potential steps under nitrogen by operando XAS  

Structural characterisation of 60% Pt/C and 40% Pt3Co/C during time resolved potential 

steps under nitrogen atmosphere was conducted to determine if this additional 

information could help explain the enhanced stability of PtCo alloys vs. Pt during 

potential cycles and potential holds under nitrogen atmosphere. In addition, structural 

characterisation was used to test the theory that the reason for enhanced activity for the 

ORR of alloys over Pt is a consequence of alloys exhibiting a delayed onset in OH / 

oxide formation (17, 18).  
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The XANES (X-ray absorption near edge structure) or white line region of the Pt LIII 

adsorption edge provides information regarding the d-electron occupancy of the metal 

particles. The XANES spectra at each applied potential under N2 feed to the cathode 

were collected for 60% Pt/C and 40% Pt3Co/C. The energy scales of the spectra were 

aligned by calibration to the Pt foil spectra collected simultaneously. No significant 

edge shifts were found, indicating that no global oxidation state change occurred at the 

applied potentials studied. The effects of the applied potential were further investigated 

by comparing the white line intensity at each applied cell potential. The intensities were 

normalised by dividing by the white line intensity at 0.125 V and the results are plotted 

in Figure 4 as a function of the potential.  
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Figure 4. White line intensity at applied cell potential normalised to the white 

line intensity at 0.125 V for 60% Pt/C and 40% Pt3Co/C in the 

transmission fuel cell at 65 °C at the Pt LIII edge with N2 fed to 

cathode 

 

Increasing the potential in 0.1 V increments from 0.6 V to 1.0 V, results in a progressive 

increase in white line intensity for the 60% Pt/C catalyst. This increase starts to occur at 

0.6 V but is most significant at higher potentials in agreement with the increasing oxide 

formation seen in the cyclic voltammogram as shown in Figure 5.  
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The white line intensity (area) corresponds to vacancies in the d-electron band of the 

metal and, therefore, greater white line intensity indicates less metallic / more oxide 

character of the metal particles (13, 19).  Such an increase in white line intensity with 

increasing potential has previously been observed for Pt/C as electrode layers in three 

electrode electrochemical cells with liquid electrolyte (20-22) and was similarly 

attributed to oxide formation. In comparison, the white line intensity for the 

40% Pt3Co/C alloy catalyst showed a smaller overall increase in white line intensity as a 

function of potential, with no change in intensity at 0.6 V. This is reflective of less 

oxide growth for the alloy catalyst and the shift in the onset of OH/oxide formation to 

higher overpotentials as seen in the cyclic voltammetry in Figure 5. Compared to the 

60% Pt/C catalyst, a higher overpotential is required for oxide formation for the alloy 

catalyst.  
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Figure 5. Cyclic voltammetry of 60% Pt/C (2.0 mgPt cm
-2

) and 40% PtCo/C 

(3.3 mgPt cm
-2

) measured in half cell mode in the XAS transmission 

fuel cell 

 

The extent of platinum oxide formation with applied potential was also investigated for 

60% Pt/C and 40% Pt3Co/C under nitrogen atmosphere by analysis of the EXAFS 

(Extended X-ray absorption fine structure) region of the spectra collected during time 

resolved potential step experiments. Data were acquired as a function of time following 

potential steps from 0.125 V to 0.6, 0.7, 0.8, 0.9 or 1.0 V and back to 0.125 V. The data 
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were analysed and the fit parameters determined at given times during the potential 

stepping experiments. The fit parameters at 0.125 V (time = 0 s) and at the end of the 

upper potential limit hold (time = 384 s) are given in Table 1 for 60% Pt/C, and Table 2 

for 40% Pt3Co/C catalysts. Figure 6 shows the corresponding EXAFS data and 

theoretical fits for the 60% Pt/C catalyst and Figure 7 shows the data for the 

40% Pt3Co/C catalyst. 

 

Table 1. Structural parameters for 60% Pt/C in the XAS transmission fuel cell at  

0.125 V (time = 0 s) and at time = 384 s at range of upper potential limits in N2. 

Catalyst 

Applied 

potential 

(V) 

Absorber 

neighbour 
N R (Å) 2σ2 (Å2) 

Ef 

(eV) 

REXAFS 

(%) 

Pt-Pt1 7.9 (± 0.7) 2.75 (± 0.01) 0.012 (± 0.001) 
0.125 

Pt-Pt2 2.3 (± 1.2) 3.89 (± 0.03) 0.008 (± 0.005) 

-12.1 

(± 1.3) 
41.3 

Pt-Pt1 7.6 (± 0.7) 2.74 (± 0.01) 0.012 (± 0.001) 
0.6 

Pt-Pt2 1.4 (± 0.9) 3.84 (± 0.04) 0.008 (± 0.006) 

-11.8 

(± 1.3) 
41.8 

Pt-Pt1 6.8 (± 0.6) 2.74 (± 0.01) 0.012 (± 0.001) 

Pt-O 0.6 (± 0.6) 2.07 (± 0.12) 0.047 (± 0.055) 
 

0.7 
Pt-Pt2 1.9 (± 1.0) 3.90 (± 0.03) 0.008 (± 0.005) 

-12.2 

(± 1.5) 
44.1 

Pt-Pt1 6.7 (± 0.7) 2.74 (± 0.01) 0.013 (± 0.001) 

Pt-O 0.7 (± 0.4) 2.02 (± 0.07) 0.025 (± 0.025) 0.8 

Pt-Pt2 2.3 (± 1.2) 3.88 (± 0.03) 0.009 (± 0.005) 

-11.1 

(± 1.5) 
42.6 

Pt-Pt1 7.0 (± 0.7) 2.75 (± 0.01) 0.013 (± 0.001) 

Pt-O 0.9 (± 0.5) 2.02 (± 0.05) 0.030 (± 0.022) 
 

0.9 
Pt-Pt2 2.5 (± 1.2) 3.89 (± 0.04) 0.010 (± 0.005) 

-12.1 

(± 1.4) 
44.3 

Pt-Pt1 6.1 (± 0.7) 2.75 (± 0.01) 0.013 (± 0.001) 

Pt-O 1.1 (± 0.3) 2.01 (± 0.04) 0.018 (± 0.011) 

60% Pt/C 

 

1.0 
Pt-Pt2 2.0 (± 1.1) 3.89 (± 0.03) 0.009 (± 0.006) 

-11.5 

(± 1.6) 
46.5 

 

Table 2. Structural parameters for 40%Pt3Co/C in the XAS transmission fuel cell 

at 0.125 V (time = 0 s) and at time = 384 s at range of upper potential limits in N2. 

Catalyst 

Applied 

potential 

(V) 

Absorber 

neighbour 
N R (Å) 2σ2 (Å2) 

Ef 

(eV) 

REXAFS 

(%) 

Pt-Pt1 7.5 (± 0.6) 2.72 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.6 (± 0.3) 2.69 (± 0.01) 0.011 (± 0.003) 
 

0.125 
Pt-Pt2 2.4 (± 1.1) 3.86 (± 0.03) 0.013 (± 0.005) 

-12.2 

(± 0.9) 
30.7 

Pt-Pt1 7.1 (± 0.7) 2.72 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.6 (± 0.3) 2.68 (± 0.01) 0.011 (± 0.003) 
 

0.6 
Pt-Pt2 2.6 (± 1.3) 3.86 (± 0.03) 0.015 (± 0.006) 

-12.1 

(± 1.0) 
32.7 

Pt-Pt1 7.2 (± 0.7) 2.72 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.6 (± 0.3) 2.69 (± 0.01) 0.011 (± 0.003) 
 

0.7 
Pt-Pt2 2.6 (± 1.4) 3.86 (± 0.04) 0.017 (± 0.007) 

-12.7 

(± 0.9) 
33.0 

Pt-Pt1 7.5 (± 0.6) 2.72 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.6 (± 0.3) 2.69 (± 0.01) 0.012 (± 0.003) 
 

0.8 
Pt-Pt2 2.5 (± 1.2) 3.86 (± 0.03) 0.017 (± 0.007) 

-12.3 

(± 0.9) 
31.1 

Pt-Pt1 7.1 (± 0.6) 2.73 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.5 (± 0.3) 2.68 (± 0.01) 0.012 (± 0.003) 

Pt-Pt2 3.0 (± 1.5) 3.87 (± 0.03) 0.017 (± 0.007) 

 

0.9 

Pt-O 0.4 (± 0.2) 2.04 (± 0.06) 0.015 (± 0.019) 

-12.3 

(± 0.9) 
30.3 

Pt-Pt1 6.8 (± 0.7) 2.72 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.6 (± 0.4) 2.68 (± 0.01) 0.012 (± 0.003) 

Pt-Pt2 3.3 (± 1.6) 3.85 (± 0.03) 0.018 (± 0.007) 

40% 

Pt3Co/C 

 

1.0 

Pt-O 0.5 (± 0.2) 2.00 (± 0.06) 0.018 (± 0.020) 

-12.2 

(± 1.0) 
32.9 
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Figure 6.  k
2
  weighted experimental a) EXAFS (black) and theoretical fit (red) 

plot and corresponding b) Fourier transforms for 60% Pt/C in the 

transmission XAS fuel cell at a range of applied potentials (Half cell) 
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Figure 7. k
2
  weighted experimental a) EXAFS (black) and theoretical fit (red) 

plot and corresponding b) Fourier transforms for 40% Pt3Co/C in 

the transmission XAS fuel cell at a range of applied potentials (Half 

cell) 
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For both catalysts coordination numbers determined in the XAS transmission cell are in 

good agreement with the coordination numbers determined from powder sample 

measurements in H2 atmosphere. The agreement is less well aligned with the samples in 

air atmosphere since the extent of the oxidation in the two environments is different (see 

Figure 10, for 2 nm Pt/C and Chapter 3, Tables 6 and 7 for 40% Pt3Co/C alloy.) The 

% errors associated with the fit are higher in the transmission XAS cell than for the 

powder samples with the overall REXAFS value (< 47 transmission fuel cell, < 32 powder 

samples). Considering the shorter scan duration and lower signal to noise ratio of the 

data obtained, the theoretical fits for all catalysts were in good agreement with the 

experimental data. 

 

Reported bond lengths for Pt-O bonds are 2.3 Å for Pt-OHH, 2.2 Å for Pt-OH, and 

2.0 Å for Pt-O with adsorbed atomic oxygen and Pt-O in platinum oxides. Longer Pt-O 

bonds corresponding to place exchanged Pt-O have also been reported to occur at 3.1 

and 3.5 Å (22).  The fitted bond lengths of Pt-O in this work are all comparable within 

the error of the fit as 2.0 Å, suggesting adsorbed atomic oxygen and Pt-O in platinum 

oxides. However, it is noted that the error of some fits is large meaning that it is not 

possible distinguish between Pt-OH and Pt-O formation during oxidation. 

 

The first shell Pt-Pt and Pt-O coordination numbers as a function of time for each of the 

cell potential steps for the 60% Pt/C catalyst are shown in Figure 8. While the errors 

associated with the fitting of individual data points are large (9-12%), this error is 

consistent across all data points, and therefore, general trends in the coordination 

numbers with the upper potential limit during potential steps can be interpreted. At the 

start of the experiment (at 0.125 V) the catalyst is fully reduced. Upon stepping to 0.6 V 

the catalyst remains reduced with no / little change in both the N(Pt-Pt) and N(Pt-O) 

coordination numbers being observed. However, stepping to higher potentials results in 

a progressive increase in Pt-O neighbours up to a maximum of 1.2 ± 0.4 for the 1.0 V 

step. This trend is in good agreement with the increase in white line intensity observed 

in the XANES analysis. A corresponding decrease in the Pt-Pt neighbours is also 

observed, indicating that Pt oxide formation disrupts the Pt-Pt bonding in the metal 

nano particle. This disruption is most significant at 1.0 V and is larger than the fitting 

error. The extent of disruption of the Pt-Pt shell is indicative of the thickness of the 

oxide layer. If a cuboctahedral particle shape is assumed a Pt-Pt coordination number of 
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8.0 (at 0.125 V) corresponds to 3.2 complete shells, whilst a coordination number of 6.0 

(at 1.0 V) corresponds to 2.2 shells (23), indicating that oxide formation disrupts 1 shell, 

or the outer monolayer of surface atoms. This observation may be explained by the 

place exchange mechanism, where Pt–O is known to penetrate into the particle (24). 
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Figure 8. Variation in the 1
st
 shell fitting parameters for 60% Pt/C during 

potential step from 0.125 V to 0.6, 0.7, 0.8, 0.9 and 1.0 V and back to 

0.125 V in N2 

 

The rates of oxide formation and removal have been studied by several authors using 

energy dispersive EXAFS (EDE) (13, 23, 25, 26). In a study similar to that reported 

here, Allen et al. showed that complete reduction of oxide, equivalent to 2 shells 

thickness, (by assumption of a cuboctahedral particle shape (23) N(Pt-Pt) =  9.75 (5.3 

shells) at 0.1 V and 8.25 (3.3 shells) at 1.2 V), was achieved within 100 s of stepping 

the potential of a Pt/C catalyst from 1.2 V to 0.1 V (10). Figure 8 shows that upon 

stepping the potential from the upper limit back to 0.125 V loss of the Pt-O neighbours 

and recovery of the Pt-Pt neighbours occurs within 20 s. The shorter time reported in 

the current study may be attributed the thinner oxide layer at 1.0 V than 1.2 V.  

 

However, to enable further comment on the relative rates of oxide formation and 

removal improved time resolution is required, ideally on the sub second time scales 

reported in very recent work by Imai et al. (22), using energy dispersive XAS. In this 
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work EXAFS data was obtained during the oxidation of Pt/C during a potential step 

from 0.4 to 1.4 V vs. RHE in liquid electrolyte.   

 

The first shell Pt-Pt, Pt-Co and Pt-O coordination numbers as a function of time and the 

cell potential for the 40% Pt3Co/C catalyst are shown in Figure 9. Irrespective of the 

applied potential the Pt-Co coordination number remained unchanged at 1.5 ± 0.5. Pt-O 

neighbours were only found at potentials ≥ 0.9 V and the maximum Pt-O coordination 

number fitted at 1.0 V was 0.5 ± 0.2, in good agreement with the smaller increase 

observed in the white line intensity at this potential compared to the 60% Pt/C catalyst. 

A corresponding small decrease (0.7 units) in the Pt-Pt coordination occurs at 1.0 V, 

however, this change is comparable to the error of the fitting. 
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Figure 9. Variation in the 1st shell fitting parameters for 40% Pt3Co/C during 

potential step from 0.125 V to 0.6, 0.7, 0.8, 0.9 and 1.0 V and back to 

0.125 V in N2  

 

Compared to the 60% Pt/C catalyst the Pt3Co/C catalyst required a higher overpotential 

for Pt-O neighbours to be fitted (onset in oxygen bond formation) during the potential 

step, and showed less particle disruption and fewer Pt-O bonds at the same applied 

potential. Less particle disruption at a given potential helps to explain the increased 

stability of the alloy catalyst over 2 nm Pt/C and at face value these results seem to 

support the theory that alloys are more active than Pt due to the delayed onset and 
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reduced extent of oxide formation. However, it is noted that the XAS parameters 

represent the per atom average coordination of all the platinum atoms in the sample and, 

therefore, consideration of the particle size of the catalyst is important. 

4.2 The effect of particle size on XAS parameters  

As stated previously, Pt LIII XAS provides the per atom average coordination 

environment of all the platinum atoms in the sample. The bulk to surface ratio of the 

material under investigation will, therefore, affect the coordination numbers and also the 

sensitivity for detection of species present at the surface layers of the particle.  

 

To illustrate the effect of particle size and therefore bulk to surface ratio on the EXAFS 

fitting parameters a series of Pt/C catalysts with a range of particle sizes were studied 

under air and hydrogen using the gas treatment cell. Full tabulation of the theoretical 

fitting and Chi and FT plots are shown in the Electronic appendix and the data for the 

4.7 nm and 7.7 nm diameter particle sizes were previously shown in Chapter 3. The data 

were fitted to a three shell model under hydrogen with a fourth Pt-O shell in air. The 

quality of the fits were high for R ≤ 4.5 Å, with the goodness of fit parameter in the 

range 21.6 ≤ REXAFS ≤ 29.9.  

 

Figure 10 shows the effect of particle size (measured by XRD) on the first shell Pt-Pt 

and Pt-O coordination numbers in hydrogen (reduced) and air (as prepared) 

atmospheres. In hydrogen no Pt-O neighbours were measured so all catalysts are 

considered to be fully reduced. In air all but the largest particle size Pt catalyst have 

Pt-O neighbours. Larger particles have greater Pt-Pt coordination numbers and, in air, 

the lower Pt-O coordination number. This is a consequence of the increasing bulk to 

surface ratio with increasing particle size and/or a decrease in the extent of the oxidation 

of the particle. It is noted that once a critical particle size has been reached (> 4 nm) 

further increase in particle size does not significantly increase the number of Pt-Pt 1
st 

shell neighbours. The same trend is observed for both the Pt-Pt 2
nd 

and 3
rd

 shells. 

However, the error associated with the fitting of these shells is greater so differences 

between catalysts are not as significant. In air compared to hydrogen the absolute Pt-Pt 

coordination number is lower. This effect is most significant for the smaller particles 

and as discussed previously, is attributed to the presence of a surface oxide that disrupts 

the Pt crystallite structure. No Pt-O neighbours were required to fit the data for the 
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largest particle size Pt catalyst in air, and, within the error, there is no change in Pt-Pt 1
st
 

shell neighbours compared to hydrogen atmosphere for this catalyst. This indicates that 

any surface oxide formed is not extensive enough to disrupt the structure of the 

crystallite.  

 

The effect of particle size on the first shell Pt-Pt and Pt-O coordination numbers were 

modelled for a cuboctahedral particle by Benfield (23). Equation 1 shows the formulae 

for calculating the mean first-nearest-neighbour coordination number N1 of atoms in a 

cuboctahedral cluster geometry (23). N1 has been determined for particle sizes from 

0.276 nm ( m =1, shell, 1 atom) to 21.8 nm ( m = 40 shells, 205479 atoms) and the 

predicted values are plotted in Figure 10.  The theoretical number of Pt-O neighbours 

has been determined from calculation of the proportion of atoms in the particle that are 

surface atoms at each particle size, assuming one oxygen will bind to each surface Pt 

atom. These results are also shown in Figure 10. 
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Figure 10.  Effect of particle size on the Pt-Pt and Pt-O first shell coordination 

number of a series of Pt/C catalysts in hydrogen and air atmospheres 
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Comparison of the Benfield theoretical model to the fitting of the experimental EXAFS 

parameters plotted against the mean crystallite size determined by XRD, shows good 

agreement of the general trends for Pt-Pt and Pt-O coordination. However, in all cases 

the Pt-Pt1 coordination number determined from the EXAFS is less than the Benfield 

model and the Pt-O coordination number is larger for the smallest particle sizes. These 

discrepancies may arise from deviation of the real catalyst from the assumptions of the 

Benfield model and the XRD measurement. It is unlikely that the catalysts are perfectly 

cuboctohedral as assumed in the theoretical model. The Benfield model does not allow 

for any ad-atoms or distortion of the shape that are likely to be present on the real 

catalysts. In addition the real catalysts have a distribution of particle sizes that will skew 

N1. It should also be noted that the EXAFS parameters are plotted versus the mean 

crystallite size determined from XRD measurement. Due to the nature of this 

measurement technique, the mean crystallite size can be skewed by larger particles in 

the catalyst particle size distribution and particles without long range order will not be 

observed. The experimental data will therefore also have an error in the x-axis that is 

unknown. This error may also help account for some of the differences observed 

between the coordination numbers determined experimentally and those predicted using 

the Benfield model.  

 

With regard to the sensitivity to detection of species present at the surface of the 

particle, decreased sensitivity is most significant for larger particles. This is a 

consequence of the higher bulk to surface ratio and is illustrated in the air data for the 

largest particle size catalyst in Figure 10. In this work this factor needs to be considered 

when fitting Pt-O neighbours. It is noted that for the Pt3Co/ C alloy the error associated 

with the low Pt-O coordination number decreases the certainty that oxygen bonds are 

formed compared to the small particle size Pt/C catalyst with a higher Pt-O coordination 

number and comparable error. 

 

To overcome the surface sensitivity limitation of XAS, a technique known as the ∆µ 

technique has been applied in the literature to enable differences in surface structure to 

be observed (6, 25, 26). The technique analyses the difference XAS spectrum of the 

material before and after a change to the surface and relies on the fact that the imposed 

change affects only the surface layer of the material. In the consideration of the 
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potential stepping experiments conducted here it is noted that a change in the average 

Pt-Pt coordination occurs upon oxide formation disrupting the bulk of the particle. It is 

therefore inappropriate to apply the ∆µ technique to this work. 

 

In light of the limitations of the XAS methods as described above, differences observed 

in the onset of Pt-O bond formation and number of Pt-O neighbours at an applied 

potential between the 2 nm 60% Pt/C catalyst and the 5 nm 40% Pt3Co/C catalyst 

described in section 4.1 need to be treated with caution. A fairer comparison would be 

to study a Pt/C and Pt3Co/C alloy catalyst with comparable particle sizes. Attempts to 

do this included making a smaller particle size Pt3Co/C catalyst. However, this proved 

unsuccessful due to the lower temperature firing used to limit particle growth resulting 

in a non-alloyed phase and poorly active catalyst. Instead a larger particle sized (5 nm) 

40% Pt/C catalyst was studied. 

 

4.3 Operando time resolved XAS of 40% Pt/C (5 nm)  

The cyclic voltammetry profile of the 5 nm 40% Pt/C catalyst is shown in Figure 11 

together with the profiles of the 60% Pt/C 2 nm catalyst and the 5 nm Pt3Co/C alloy. 
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Figure 11. Cyclic voltammetry of 40% Pt/C 5 nm (2.4 mgPt cm
-2

) measured in 

half cell mode in the XAS transmission fuel cell. Voltammetry of 

60% Pt/C (2.0 mgPt cm
-2

) and 40% PtCo/C (3.3 mgPt cm
-2

) is shown 

for comparison 
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The shift to lower current observed for the 5 nm Pt/C catalyst is due to reduced 

hydrogen crossover in this MEA compared to the MEAs for the other catalyst samples. 

It can be seen that the onset of OH/oxide formation seen in the cyclic voltammetry is 

similar for the 5 nm Pt/C catalyst and the alloy. 

 

XAS data were collected for a 40% Pt/C (5 nm) catalyst electrode as a function of time 

following potential steps under nitrogen atmosphere to allow direct comparison with the 

40% Pt3Co/C alloy. Due to problems with data collection the upper potential limit was 

only 0.9 V rather than 1.0 V. 
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Figure 12. White line intensity at applied cell potential normalised to the white 

line intensity at 0.125 V for 60% Pt/C (2nm), 40% Pt/C (5nm) and 

40% Pt3Co/C in the transmission fuel cell at 65 °C at the Pt LIII edge 

with N2 fed to cathode 

 

 

XAS data were collected following potential steps and the white line intensities at the 

start potential (0.125 V) and at the end of the step to the upper potential limit were 

measured as described previously for the other catalysts. The normalised white line 

intensities are reported in Figure 12. The change in white line intensity and the onset of 

OH/oxide formation seen in the cyclic voltammetry (Figure 11) of the 40% Pt/C 5 nm 

catalyst is comparable to that observed for Pt3Co/C alloy, with both these larger particle 
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size catalysts exhibiting a smaller change in white line intensity at all potentials 

compared to the 2 nm 60 % Pt/C. This result suggests less oxidation of the larger 

particles occurs at a given potential as seen for the powder samples.  

 

Analysis of the EXAFS region of the spectra collected during time resolved potential 

step experiments was conducted and the fit parameters determined at given times during 

the potential stepping experiments. The fit parameters at 0.125 V (time = 0 s) and at the 

end of the upper potential limit hold (time = 384 s) are given in Table 3. The 

corresponding EXAFS data and theoretical fits are shown in Figure 13. As observed 

with the powder samples, increasing the catalyst particle size from 2 to 5 nm results in 

an increase in the Pt-Pt1 coordination number. The REXAFS fit quality for the 5 nm Pt/C 

catalyst was comparable to the other catalysts studied in the transmission cell.  

 

 

Table 3. Structural parameters for 40% Pt/C in the XAS transmission fuel cell at  

0.125 V (time = 0 s) and at time = 384 s at range of upper potential limits in N2. 

Catalyst 

Applied 

potential 

(V) 

Absorber 

neighbour 
N R (Å) 2σ2 (Å2) 

Ef 

(eV) 

REXAFS 

(%) 

Pt-Pt1 8.6 (± 0.4) 2.75 (± 0.01) 0.011 (± 0.001)  

0.125 Pt-Pt2 2.4 (± 1.1) 3.91 (± 0.03) 0.012 (± 0.005) 

-11.4 

(± 0.8) 
32.4 

Pt-Pt1 8.4 (± 0.5) 2.75 (± 0.01) 0.011 (± 0.001)  

0.6 Pt-Pt2 2.5 (± 1.1) 3.90 (± 0.03) 0.012 (± 0.005) 

-11.7 

(± 0.9) 
33.2 

Pt-Pt1 8.4 (± 0.5) 2.75 (± 0.01) 0.011 (± 0.001)  

0.7 Pt-Pt2 3.3 (± 1.4) 3.93 (± 0.03) 0.014 (± 0.005) 

-12.2 

(± 0.9) 
32.9 

Pt-Pt1 8.5 (± 0.5) 2.76 (± 0.01) 0.012 (± 0.001) 

Pt-O 0.5 (± 0.4) 2.05 (± 0.09) 0.038 (± 0.040) 
 

0.8 
Pt-Pt2 3.8 (± 1.5) 3.92 (± 0.01) 0.016 (± 0.005) 

-11.4 

(± 0.9) 
33.7 

Pt-Pt1 8.1 (± 0.5) 2.76 (± 0.01) 0.012 (± 0.001) 

Pt-O 0.4 (± 0.2) 2.01 (± 0.06) 0.021 (± 0.028) 

40% Pt/C 

5 nm 

 

0.9 
Pt-Pt2 3.3 (± 1.3) 3.92 (± 0.03) 0.015 (± 0.006) 

-11.9 

(± 0.9) 
33.7 
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Figure 13. k
2
  weighted experimental a) EXAFS (black) and theoretical fit (red) 

plot and corresponding b) Fourier transforms for 40% Pt/C in the 

transmission XAS fuel cell at a range of applied potentials (Half cell) 

 

 

A summary of the first shell Pt-Pt and Pt-O coordination numbers and corresponding 

cell potentials with time for 40% Pt/C are shown Figure 14. At potentials < 0.8 V the 

catalyst was reduced. Addition of oxygen neighbours to the fitting for the 0.8 V 
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potential step data gave a small improvement to the fit quality, but the error associated 

with the fit was high (e.g. Pt-O 0.5 ± 0.4), at 0.9 V the 5 nm Pt/C and PtCo/C alloy 

showed the same Pt-O coordination numbers and associated errors. Since the fit quality 

showed no improvement with addition of oxygen neighbours until 0.9 V for the alloy, 

the data suggest that the Pt3Co/C catalyst remains oxide free over a wider potential 

range than the 5 nm Pt/C catalyst. However the evidence is not strongly compelling 

since the decreased surface sensitivity as a result of particle size could also account for 

the differences in the XAS results.   

 

 

Figure 14 also shows the 5 nm Pt/C catalyst to exhibit a comparable decrease in the 

Pt-Pt coordination number on oxide formation to the Pt3Co/C alloy indicating some 

particle disruption on oxide formation. As for the alloy the extent of disruption is 

significantly less compared to that seen for the 2 nm Pt/C catalyst. As discussed 

previously this helps explain why the larger particle size catalysts are more stable. 

However, the EXAFS characterisation does not provide further evidence for the 

enhance stability of the alloy over a comparable particle sized Pt catalyst.  
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Figure 14.  Variation in the first shell fitting parameters for 40% Pt/C during 

potential step from 0.125 V to 0.6, 0.7, 0.8, 0.9 and back to 0.125 V in 

N2  
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As for the other materials studied, the time resolution of these experiments was found to 

be insufficient to all comment on the rates of oxide formation and removal. 

4.4 Potential steps under fuel cell (oxygen) conditions  

The time resolved potential step measurements, with XAS data collection, were also 

conducted with O2 feed to the cathode to obtain structural information about the 

catalysts at OCV (~1.1 V) and during operation under load as the cathode underwent 

oxygen reduction. In this case the applied potential was stepped from OCV to 0.9, 0.8, 

0.7, 0.6 V and back to OCV and the oxygen reduction current was recorded with time. 

 

The arrows in Figure 15 show the 400 mV applied potential window studied and 

corresponding uncorrected performance curves for the three cathode catalysts. It is 

noted that the performance of the 2 nm Pt/C catalyst during the validation experiment is 

higher than the performance of the same catalyst at the synchrotron. The uncorrected 

performance of the 5 nm Pt/C and Pt3Co/C catalysts are lower than the 2 nm Pt/C 

catalyst. These observations will be further discussed in section 4.4.1.  
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Figure 15. Polarisation curves for 2 nm 60% Pt/C, 5 nm 40% Pt/C and 

40% Pt3Co/C alloy collected during operando XAS experiments. 

Arrows illustrate the applied potentials used to study catalyst 

structure by XAS during the ORR. For comparison the validation 

test data for the 2 nm Pt catalyst is shown 
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Both the XANES and EXAFS data were obtained and analysed for all three catalyst 

materials. In all cases the maximum white line intensity occurred at OCV. The change 

in whiteline intensity as a consequence of drawing load from the cell is shown in Figure 

16. The white line intensity at each applied potential was normalised to the intensity at 

OCV. Upon applying a potential of 0.9 V to the cell, a decrease in intensity is observed 

similar in magnitude (0.01) to that seen in recent work by Witkowska et al. during 

in situ fuel cell measurements at room temperature and atmospheric pressure for a 

PtCo/C catalyst (12). The 60% Pt/C catalyst shows a further decrease in intensity with 

increasing load, again with similar magnitude of change to that reported by 

Witkowska et al. However, in contrast to this work, the white line intensity of the 

40% Pt3Co/C and 5 nm Pt/C catalysts remained very similar irrespective of applied 

potential and therefore current drawn from the fuel cell. It is noted that in all cases the 

change in white line intensity is very small compared to the changes observed under N2 

(half cell conditions). 
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Figure 16.  Variation white line intensity at applied cell potential normalised to 

the white line intensity at OCV for 60% Pt/C (2 nm), 40% Pt/C 

(5 nm) and 40% Pt3Co/C in the transmission fuel cell at 65 °C at the 

Pt LIII edge with O2 fed to cathode 

 

 

The structural parameters obtained from fitting of the EXAFS data at OCV, 0.9 and 

0.6 V applied for the three catalysts are tabulated in Table 4 and the corresponding 

EXAFS data and theoretical fits are shown in Figures 16-18. In the FT plots in 
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Figure 16 a large peak is observed at 1 Å, this is likely to be due to non-optimal 

background subtraction. Differences observed in Figures 17 and 18 between the OCV 

data and the 0.6 V and 0.9 V data arise due to the OCV data only being shown for one 

data set (0.9 V or 0.6 V) and the fact that within individual data sets the same 

background was applied, however, between data sets the background subtraction was 

similar but not identical. In all different data sets EXAFS analysis showed that Pt-O 

neighbours are present at all potentials during the potential step experiment and that the 

Pt-O bond length was similar to that seen under N2 atmosphere, indicating that the oxide 

species formed in N2 are indistinguishable from those formed in O2 atmosphere and 

during the ORR. In agreement with the XANES analysis the EXAFS structural 

parameters (Pt-Pt and Pt-O co ordination numbers and bond lengths) did not change 

significantly irrespective of the applied voltage / current drawn from the cell. Further 

discussion on the fitting parameters and comparison of the effect of atmosphere will be 

provided in section 4.2.2  

 

Table 4. Structural parameters for 2 nm and 5 nm Pt/C catalysts and the Pt3Co/C 

alloy in the XAS transmission fuel cell during fuel cell operation (O2). 

Catalyst 

Applied 

potential 

(V) 

Absorber 

neighbour 
N R (Å) 2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1 5.4 (± 0.7) 2.74 (± 0.01) 0.012 (± 0.002) 

Pt-O 1.1 (± 0.3) 1.98 (± 0.03) 0.008 (± 0.007) 
0 

(OCV) 
Pt-Pt2 0.9 (± 0.6) 3.87 (± 0.03) 0.003 (± 0.006) 

-10.4 

(± 1.9) 
49.7 

Pt-Pt1 5.6 (± 0.6) 2.74 (± 0.01) 0.013 (± 0.001) 

Pt-O 1.0 (± 0.3) 2.00 (± 0.04) 0.018 (± 0.012) 0.9 

Pt-Pt2 1.3 (± 0.9) 3.88 (± 0.04) 0.007 (± 0.007) 

-10.9 

(± 1.8) 
46.2 

Pt-Pt1 5.8 (± 0.7) 2.74 (± 0.01) 0.013 (± 0.002) 

Pt-O 0.9 (± 0.3) 1.98 (± 0.04) 0.012 (± 0.011) 

60% Pt/C 

2 nm 

0.6 

 
Pt-Pt2 1.2 (± 0.7) 3.86 (± 0.03) 0.003 (± 0.005) 

-11.1 

(± 1.8) 
52.2 

Pt-Pt1 6.5 (± 0.7) 2.72 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.6 (± 0.4) 2.68 (± 0.02) 0.012 (± 0.003) 

Pt-Pt2 2.5 (± 1.0) 3.86 (± 0.02) 0.012 (± 0.004) 

0 

(OCV) 

 
Pt-O 0.6 (± 0.2) 2.00 (± 0.04) 0.016 (± 0.014) 

-11.3 

(± 1.0) 
32.7 

Pt-Pt1 6.6 (± 0.7) 2.73 (± 0.01) 0.014 (± 0.001) 

Pt-Co 1.5 (± 0.3) 2.68 (± 0.01) 0.011 (± 0.003) 

Pt-Pt2 3.0 (± 1.3) 3.86 (± 0.02) 0.016 (± 0.006) 

0.9 

 

Pt-O 0.7 (± 0.3) 2.00 (± 0.04) 0.023 (± 0.017) 

-11.5 

(± 1.0) 
32.1 

Pt-Pt1 7.0 (± 0.6) 2.73 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.4 (± 0.3) 2.68 (± 0.02) 0.013 (± 0.003) 

Pt-Pt2 2.5 (± 1.3) 3.86 (± 0.03) 0.017 (± 0.007) 

40% 

Pt3Co/C 

 

0.6 

Pt-O 0.7 (± 0.3) 2.00 (± 0.04) 0.024 (± 0.016) 

-12.5 

(± 0.9) 
32.0 

Pt-Pt1 7.5 (± 0.5) 2.76 (± 0.01) 0.011 (± 0.001) 

Pt-O 0.5 (± 0.2) 2.02 (± 0.04) 0.010 (± 0.012) 
0 

(OCV) 
Pt-Pt2 3.4 (± 1.6) 3.93 (± 0.03) 0.018 (± 0.008) 

-11.8 

(± 1.0) 
36.0 

Pt-Pt1 7.9 (± 0.5) 2.76 (± 0.01) 0.012 (± 0.001) 

Pt-O 0.6 (± 0.2) 1.99 (± 0.05) 0.018 (± 0.015) 

 

0.9 

 Pt-Pt2 3.1 (± 1.3) 3.92 (± 0.03) 0.014 (± 0.005) 

-11.4 

(± 1.0) 
32.6 

Pt-Pt1 7.6 (± 0.5) 2.75 (± 0.01) 0.011 (± 0.001) 

Pt-O 0.5 (± 0.2) 2.00 (± 0.05) 0.015 (± 0.015) 

40% Pt/C 

5 nm 

 

0.6 

Pt-Pt2 2.7 (± 1.4) 3.92 (± 0.03) 0.015 (± 0.007) 

-10.9 

(± 1.0) 
33.7 
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Figure 17 k
2
  weighted experimental a) EXAFS (black) and theoretical fit (red) 

plot and corresponding b) Fourier transforms for 60% Pt/C in the 

transmission XAS fuel cell at a range of applied potentials (Fuel cell) 
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Figure 18. k
2
  weighted experimental a) EXAFS (black) and theoretical fit (red) 

plot and corresponding b) Fourier transforms for 40% Pt3Co/C in 

the transmission XAS fuel cell at a range of applied potentials (Fuel 

cell) 
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Figure 19. k
2
 weighted experimental a) EXAFS (black) and theoretical fit (red) 

plot and corresponding b) Fourier transforms for 40% Pt/C in the 

transmission XAS fuel cell at a range of applied potentials (Fuel cell) 
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4.4.1 Cell performance during XAS experiments  

To validate the premise that structural parameters obtained during XAS measurements 

are representative of the fuel cell operating under realistic conditions, the cell 

performance was measured during the XAS measurements in O2. These tests were 

performed after the potential stepping experiments under nitrogen atmosphere were 

conducted. The cell resistance was measured at an applied potential of 0.8 V and was 

found to be 2.5 - 3 times (0.5-0.6 Ω cm
-2

) higher than that observed during the 

validation experiments described in section 2. This increase is thought to be a 

consequence of the long periods (up to 6 hrs) under drying conditions during the N2 

potential hold testing conducted at the beamline. This explains the observed lower 

performance seen in Figure 15.  Validation testing did not consider the impact of the N2 

atmosphere testing times on catalyst performance. In addition due to the limited time 

available for synchrotron experiments it was impractical (and thought unnecessary) to 

condition the MEA for more than the ten potentiostatic conditioning cycles described in 

Chapter 2 section 2.2.5. (which may have been in error). 

 

The measured cell voltage was corrected using the measured cell resistance at 0.8 V.  

The very high resistance meant that rather than obtaining data over a true cathode 

potential range of 0.6 to 0.9 V, the data was only obtained over cathode potentials of 

approximately 0.82 V to 0.92 V. It is perhaps not surprising then that no structural 

change is observed in the XAS measurements as a function of the load. The 

corresponding iR correction for the data collected under N2 was ≤ 20 mV as the currents 

were much smaller, therefore a larger potential window was able to be studied. 

 

To check the performance of all catalysts during XAS measurements an oxygen 

polarisation curve was obtained using the conditioning procedure.  The uncorrected cell 

voltage data is shown in Figure 15. To obtain the cathode performance the data was 

corrected for the measured resistance at 0.8 V and the hydrogen crossover of 

~13 mA cm
-2

 (this is ten times higher than in validation experiments. See Chapter 5 for 

possible explanation). The anode polarisation could not be accounted for as it was not 

measured under the operating conditions at the beamline, but the same anode was used 

in all cases and validation experiments showed that the Pd/C anode did not result in 

deviation in performance from the Pt/C anode in the kinetic region (Figure 2). Figure 20 
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shows the corrected performance for all catalysts and a comparison with the 

performance obtained of the 60% Pt/C MEA during the validation experiments. 
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Figure 20.  iR free fuel cell mass activity performance at the synchrotron of 

MEAs with 60% Pt/C, 40% Pt/C and 40% Pt3Co/C cathodes with 

2.0, 2.4 and 3.3 mgPt cm
-2

 loading respectively. For comparison the 

mass activity of a 60% Pt/C MEA tested in the validation 

experiments is shown. All MEAs were prepared with the same 10% 

Pd/C anode, Nafion 115 and tested with H2 anode gas and O2 

cathode gas at 60 ml min
-1

, 10 psi, 65 ºC 

 

 

Figure 20 shows that the expected performance was not achieved at the synchrotron for 

all MEAs. The 60% Pt/C 2 nm MEA has higher performance than the validation test, 

the 40% Pt/C 5 nm MEA shows comparable performance to the validation test, but 

lower performance than the 2 nm Pt/C catalyst tested under more comparable conditions 

at the synchrotron. From the results presented in Chapter 3, Figure 1, it is expected that 

the mass activity of these two catalysts should be the same. The difference between the 

2 nm Pt/C MEAs is likely to be the consequence of the very high resistance measured at 

the synchrotron and the data generated at the synchrotron using the conditioning scans 

rather than the full polarisation with longer equilibration times (see Chapter 2 section 

2.2.4).  
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Figure 20 also shows that the 40% Pt3Co/C alloy catalyst does not retain the expected 

two times mass activity benefit over the Pt/C catalysts and has lower performance than 

all the Pt only MEAs. It is also noted that despite no applied anode polarisation 

correction all synchrotron tested MEAs show non linear Tafel behaviour at high mass 

activities (high current densities) indicating over correction of the voltage. This over 

correction arises from only having one resistance value at 0.8 V to correct data at all 

potentials. While valid at low currents close to 0.8 V the correction factor is too high at 

high currents, since under these conditions increased water generation occurring at the 

cathode is likely to improve layer and membrane hydration and consequently decrease 

the cell resistance. The poorer performance of the 5 nm Pt/C and Pt3Co/C alloy at the 

synchrotron is thought to be a layer thickness effect. The layer thickness of the 5 nm 

Pt/C catalyst is significantly thicker than for the 60% Pt/C catalyst due to both 

difference in carbon content of the catalyst and the absolute metal loading on the 

electrode (2.4 mgPt cm
-2

). For the alloy even higher loadings were used to enable Co K 

edge measurement (section 4.4). The very low performance of the Pt3Co/C alloy 

catalyst suggests there is poor utilisation of the catalyst layer and parts of the catalyst 

are not active for oxygen reduction, the same is true, but to a lesser extent, for the 5 nm 

Pt/C catalyst.  

 

4.4.2 The effect of atmosphere on catalyst structure 

Figure 21 compares the EXAFS first shell fitting parameters obtained for 60% Pt/C 

(2 nm) at OCV as a function of iR free cathode potential under both half cell (N2) and 

fuel cell (O2) conditions. The corresponding applied potentials are 0.8 V and 0.9 V 

under nitrogen and 0.6 and 0.9 V under oxygen. The iR free cathode potential has been 

calculated using the resistance value measured at 0.8 V. Under the drying conditions 

used during half cell testing this correction factor is thought to be a representative way 

of determining the cathode potential and, due to the low currents correction has little 

impact on the cathode potential. As discussed in section 4.4.1, under fuel cell conditions 

the 0.8 V correction factor is valid for high potentials, but is an overcorrection at low 

applied potentials/high current densities. It is therefore noted the oxygen data at 0.6 V 

applied, ~0.85 iR free, is best compared to the nitrogen data at ~0.8 V. 
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For 60% Pt/C (2 nm) during oxygen reduction a decrease in the Pt-Pt first shell 

coordination number occurs compared to the catalyst at a comparable potential under 

half cell conditions. Interestingly a similar number of Pt-O neighbours are present in 

both environments, although the Pt-Pt coordination numbers are different. This 

observation suggests a variation in the morphology (shape) of the particles in the 

presence of O2. It has been suggested by Teliska et al. (28) that the chemisorption of 

atomic oxygen causes the platinum particles to become flatter, though this was thought 

unlikely by Teliska et al.. A flattening of the particles in oxygen vs. nitrogen 

atmosphere is a possible structural that would fit the observed differences in this work.  
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Figure 21.  The effect of cell conditions on the first shell neighbours at 

comparable iR free cathode potentials for 60% Pt/C (2 nm) 

 

 

The corresponding plots for the 5 nm 40% Pt/C catalyst and 40% Pt3Co/C alloy are 

shown in Figure 22 and Figure 23.  Similar Pt-Pt, Pt-O and Pt-Co co ordination numbers 

are observed in both cell environments. A small decrease in Pt-Pt neighbours is 

observed in O2 for Pt/C at ~0.8 V but no change is observed at ~0.9 V. No observable 

changes in the structures of 5 nm Pt/C and the PtCo/C alloy were found with variation 

of either the cell potential or environment.   
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Figure 22. The effect of cell conditions on the first shell neighbours at 

comparable iR free cathode potentials for 40% Pt/C (5 nm)  
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Figure 23. The effect of cell conditions on the first shell neighbours at 

comparable iR free cathode potentials for 40% Pt3Co/C 
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4.5 Co K edge Experiments 

To enable full characterisation of the PtCo/C alloy catalyst and to study the effect of 

acid leaching on catalyst structure during fuel cell operation XAS data collection at the 

Co K edge (7.709 keV) is desirable. Operando measurements at the Co K edge with the 

version II plate design used for Pt LIII edge experiments proved impossible in both 

transmission and fluorescence modes even with the beam signal optimised to maximum 

through the ionisation chambers. However, if the MEA was tested ex-situ a reasonable 

edge jump and signal was obtained. This indicated that the graphite plates were too 

thick were blocking the X-rays at this edge. To counter this problem, the graphite plate 

was completely removed from the beam path by drilling a hole 3 mm x 3 mm square 

hole though the plate into the flow field channel. To ensure a gas and watertight seal a 

kapton window (with low X-ray absorbance) was glued into a recess made in each 

graphite plate. A graphite insert was positioned over the recess to ensure optimum cell 

compression. The new plate design (version III) is shown in Figure 24. 

 

 

 

 

 

 

 

 

Figure 24. EXAFS transmission fuel cell plate version III (A) Anode plate 

showing recess and kapton window (B) Cathode plate flow field view 

(C) Anode plate with graphite insert (D) Cathode plate with graphite 

insert 

 

 

Whilst the design modification facilitated XAS measurement, complete removal of the 

graphite plate in the region of the window may have some unavoidable implications for 

the MEA. In this region electrical contact is removed, gas may by-pass the window area 

/ part of the MEA and water may build up during testing. These factors will all affect 

catalyst utilisation and may explain why the MEA performance of a 0.4 mgPt cm
-2 

Pt/C 

MEA is lower with the version III design than the version II design as shown in Figure 

25. In addition the cell resistance was higher for the version III design. This is likely to 

A B C D 
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be due to the lack of compression in the window region. The same trends were also 

observed for the PtCo/C alloy catalyst. 
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Figure 25. Comparison of fuel cell performance in Version II EXAFS 

transmission cell and Version III transmission cell for MEA: Anode 

Pt/C, cathode Pt/C, Nafion 115 tested in duplicated with H2 anode 

gas O2 cathode gas at 60 ml min
-1

, 10 psi, 65 °C 

 

 

Co K edge XAS data were collected for both the Pt3Co/C alloy and the acid leached 

Pt3Co/C using MEAs with a Pt loading of 3.3 mgpt cm
-2

 and corresponding Co loading 

of ≤ 1.1 mgCo cm
-2

. Despite the new plate design the XAS data quality during the short 

acquisition times of the potential stepping experiments was insufficient to obtain 

analysable EXAFS data. Example spectra are shown in Figure 26. It can be seen that the 

edge jump in the raw data is small (0.4) with little definition in the EXAFS region. The 

edge jump is less than half that measured for both samples at the Pt LIII edge during 

operando experiments and for powder samples at the Co K edge. In addition, it can be 

seen that both the Chi and Fourier transform plots are noisy. Attempts to fit the data 

resulted in poor fit values, with REXAFS > 58. For the acid leached samples the lower Co 

concentration resulted in a further decrease in data quality. The results of these 
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experiments are therefore not presented and no comment on the effect of acid leaching 

on the catalyst structure under operating conditions can be provided. Possible ways of 

obtaining this information will be discussed in Chapter 5, section 5.  
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Figure 26.  Example Co K edge data for 40% Pt3Co/C at 1.1 mgCo cm
-2

 a) XAS 

spectrum b) Chi plot and c) Fourier transform plot  
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5. Conclusions 

A fuel cell capable of allowing operando XAS of fuel cell cathode catalysts operating 

under realistic conditions has been successfully validated. In validation experiments 

with low loaded MEAs the activity benefit of a Pt3Co/C alloy catalyst over Pt/C was 

observed as expected from experiments using fuel cells of more conventional design. 

Operando XAS experiments performed at the Pt LIII adsorption edge in transmission 

mode have been conducted for a 60% Pt/C, 40% Pt3Co/C cathode catalysts and 40% 

Pt/C with comparable particle size to the alloy.  Structural information from XAS has 

been correlated to catalyst performance in nitrogen and oxygen. For 60% Pt/C XANES 

and EXAFS analysis show that under nitrogen the extent of oxide coverage increases 

with increasing potential up to 1.0 V. EXAFS analysis shows a corresponding decrease 

in Pt-Pt coordination corresponding to particle disruption by oxide growth. In 

comparison, the alloy catalyst required a higher overpotential before the onset in oxide 

formation under nitrogen and fewer Pt-O neighbours at each applied potential. The lack 

of structural change was found to be a consequence of particle size and insensitivity to 

the surface changes of the XAS technique compared to the electrochemical 

measurement. 

 

To enable direct comparison between Pt/C and the Pt3Co/C alloy a Pt/C catalyst with 

comparable particle size to the alloy catalyst was also studied. Under N2 both catalysts 

required an applied potential of > 0.8 V before Pt-O neighbours could be fitted, with the 

alloy requiring potentials of 0.9 V. The increase in the potential at which oxides are 

formed has been previously invoked as an explanation for the enhanced activities of 

alloys for the ORR (17, 18). However, evidence of this effect from the XAS 

experiments is not strongly compelling in this work, due to the large fitting errors 

observed and the decreased surface sensitivity for detection of surface species for these 

larger particle sized catalysts. Unlike the small particle size 60% Pt/C catalyst little 

disruption to the particle structure occurs on oxide formation at 1.0 V. This may in part 

help explain the increased stability observed for the larger particle materials as reported 

in Chapter 3.   

 

For all catalysts no change in coordination number was observed under oxygen at OCV 

or during oxygen reduction at applied potentials down to 0.6 V. For the 2 nm 60% Pt/C 

catalyst the same number of Pt-O neighbours and a lower Pt-Pt first shell coordination 
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number is observed in oxygen compared to nitrogen at the same iR free cathode 

potential. This was attributed to a difference in particle morphology between the active 

state whilst undergoing oxygen reduction and the oxidised state at similar potentials 

under nitrogen. No strong evidence for the same effect was observed for the 5 nm 40% 

Pt/C and 40% Pt3Co/C catalyst within the fitting errors.  

 

The high resistance values measured during XAS measurements result in a perturbation 

(~100 mV) in cathode potential under oxygen.  Analysis of catalytic performance 

during operando XAS measurements highlights possible catalyst utilisation issues, 

likely to be a consequence of the thick layers used, especially for the 5 nm Pt/C and 

40% Pt3Co/C catalysts. This means the catalysts are not behaving as expected in a 

conventional fuel cell and brings into question how representative the XAS fitting 

parameters are of the catalyst operating under idealised, realistic fuel cell conditions. 

Proposed methods / modifications to the experimental design to overcome these 

problems will be discussed in Chapter 5. 

 

In all cases the time scale of the potential stepping experiments did not allow the 

processes of oxide formation and removal to be measured at intermediate points. To 

achieve greater time resolution a different experimental approach was required. The 

results obtained using this approach are described in Chapter 5.  
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Chapter 5. Probing the structure of Operating Fuel 

Cell Cathode Catalysts Using XAS – Part II 

1. Introduction 

In Chapter 4, results of XAS investigations using the transmission XAS fuel cell were 

reported. Scanning EXAFS was used, with a 10 s scan duration followed by a 2 s delay 

to allow the position of the monochromator to be reset before the next scan commenced. 

This Quick EXAFS experiment retains the point-by-point data acquisition of 

conventional scanning EXAFS, whilst improving the time resolution by optimisation of 

the speed of movement of the monochromator (1). While changes in catalyst structure 

from unreduced to oxidised were observed, the scanning nature of the experiment gave 

insufficient time resolution to study the intermediate steps in the oxide formation and 

removal process. Equally, mechanistic insight into the oxygen reduction reaction could 

not be obtained. Such studies require the time resolution to be further improved. 

 

Improved time resolution can be achieved using Energy Dispersive EXAFS (EDE). 

EDE uses a ‘bent’ monochromator to instantaneously illuminate the sample with a 

focussed X-ray beam containing the desired spread of energies. Data acquisition on the 

millisecond time scale is therefore possible (1, 2). Using EDE with a 10 s time 

resolution, Allen et al. conducted an in situ experiment to follow Pt oxide formation 

during a potential step from 0.1 V to 1.2 V with N2 feed to the cathode. Pt oxide 

removal was also studied by stepping the potential back to 0.1 V (3). Analysis of the 

XANES white line intensity and EXAFS allowed quantification of the rates of oxide 

formation and removal. In addition, the authors were able to propose a model of oxide 

formation for small particles that differed to that occurring on bulk electrodes and 

showed that restructuring of the Pt particles occurs during oxide formation and removal 

(3). 

 

Understanding the mechanism of oxide growth on platinum achieved by potential 

cycling or potentiostatic holding is important, since it is well established that an oxide 

film on the surface can affect the mechanism and kinetics of surface processes (4). The 

presence of an oxide can have several effects, including: altering the thermodynamics of 

the reaction at the double layer; changing the electronic properties of the metal surface; 



Chapter 5     Operando XAS -II 

    153 

inhibiting charge transfer; and influencing the adsorption behaviour of reaction 

intermediates and/or products at the catalyst surface, potentially causing a site blocking 

effect (4). All of these factors have implications for the ORR (5, 6). 

 

The mechanism for oxide formation is still under debate, with several mechanistic 

pathways proposed (4). From cyclic voltammetry, a general consensus exists where 

Pt-OHads forms at low overpotentials (~ 0.8 V vs. RHE), followed by Pt-O and PtO2 

formation at higher potentials. At potentials corresponding to a critical surface coverage 

of oxygen species (~ 1.0 V vs. RHE), the formation of subsurface oxygen species occurs 

and leads to the hysteresis observed in the voltammetry of Pt. This process, first 

proposed by Reddy et al. in 1968, is known as place exchange (7).  Conway et al. 

proposed a model of oxide film formation in which the first step requires OH to adsorb 

on the Pt surface. OH is generated via oxidation of water molecules. Subsequently place 

exchange occurs, forming a subsurface HO-Pt quasi-3D lattice that deprotonates to form 

Pt-O (8, 9). Based on electrochemical quartz crystal microbalance data, this mechanism 

was questioned by Birss et al., since no mass change corresponding to OHads or 

deprotonation was observed in their work (4, 10). AC voltammetry measurements by 

Harrington et al. also did not find evidence for the electrosorption of OH and instead a 

mechanism in which a direct two electron oxidation of Pt by reaction with a water 

molecule was proposed (11). More recently, based on cyclic voltammetry, 

electrochemical quartz crystal nanobalance and Auger electron spectroscopy 

measurements, Jerkiewicz et al. also concluded OHads was not involved in the 

mechanism of oxide growth (4, 12).  A mechanism was proposed in which the first step 

involved the direct electro-adsorption of a water molecule resulting in a chemisorbed 

oxygen on the Pt surface and release of two hydrated protons. In a subsequent step in a 

quasi-3D lattice was formed comprising of Pt
2+ 

and O
2-

 through the place exchange 

process (4, 12). 

 

The layer thickness or quantity of oxide, q, per cm
2
 of oxide films grown on Pt as a 

function of time at an applied potential, has been shown to follow logarithmic growth 

laws (5, 8, 12-14).  Studies show that increasing potential, time at a given potential, and 

temperature all lead to increased layer thickness (5, 8, 12-14). In the work of Conway et 

al. (8) and Jerkiewicz et al. (12), q is determined by integration of the current associated 

with the removal of the oxide film grown during a given time period, t, at given 
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potential and temperature. Plots of q vs. log t or q-1 vs. log t have been shown to 

demonstrate linear dependence over a given thickness range (8, 12). Jerkiewicz et al. 

demonstrated that logarithmic growth is followed for up to one monolayer oxide 

thickness and inverse-logarithmic growth for thicker oxide films (12).  

 

In this Chapter, findings from operando studies of a 2 nm diameter 60% Pt/C fuel cell 

catalyst using EDE are reported. In this work, significantly improved time resolution is 

used to provide mechanistic insight and structural characterisation during the oxidation 

and reduction of the Pt particles at a range of upper potential limits with N2 feed. In 

addition, the Pt catalyst was studied during fuel cell operation with O2 feed. A 

40% PtCo/C and a 40% Pt/C catalyst with comparable particle size were also studied as 

was the effect of temperature on the rate of oxide formation and removal by conducting 

the experiments at a cell temperature of 35 °C and 65 °C.  

 

2. Experimental 

The MEAs studied were identical to those described in Chapter 4, section 3. The cell 

design and gas delivery system used was identical to that which has previously been 

described in Chapter 4. The version III plate design was used (see Chapter 4, Figure 18) 

to eliminate the interfering graphite absorbance, thereby improving the signal to noise 

ratio. The cell potential was controlled using an Eco Chemie Autolab PGSTAT 30 in 

conjunction with an Eco Chemie 20 Amp Booster. Measurements were conducted at 

cell temperatures of 65 °C and 35 °C. In both cases the incoming gases were humidified 

by use of MSAs and a circulating water bath set at 85 °C. Where measurements were 

conducted at 35 °C, the water circulation by-passed the water channels in the cell. Such 

low temperature measurements were conducted following failure of one of the graphite 

plates that make up the cell body during the experimental run at the ESRF. Potential 

step experiments in fuel cell mode were conducted at 10 psi with 60 ml min
-1

 H2 at the 

anode and O2 at the cathode. During potential stepping experiments in half cell mode, 

the cell operating conditions were: 60 ml min
-1

 H2 at the anode with no applied 

pressure, and 60 ml min
-1

 N2 at the cathode at 5 psi. As in the case of the lower 

temperature measurements mentioned above, these conditions differ from those reported 

in Chapter 4 and were used due to the plate failure. 
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2.1 XAS data collection and analysis 

Experiments were conducted on beamline ID24 at the ESRF, Grenoble. The 

experimental set-up on the beamline is shown in Figure 1and Figure 2. Use of the EDE 

monochromator allowed collection of a XAS spectrum every 6.6 ms. To improve data 

quality, 15 spectra were summed giving a data set every 0.1 s. Oxide formation and 

removal were studied at the cathode under N2 during potential steps from 0.125 V to 

0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 and 1.4 V and back to 0.125 V vs. H2 anode. In 

addition, the fuel cell was operated with O2 at the cathode and the ORR studied during a 

potential step from OCV to 0.9 V and 0.6 V applied, followed by relaxation to OCV. To 

achieve reproducible timings, the XAS detector was triggered by the potentiostat. XAS 

spectra were recorded at the Pt LIII edge over an energy range of 11400-12330 eV 

(calibrated using a Pt foil reference from scanning XAS, see Chapter 2, section 2.3). 

Due to the nature of the EDXAS set-up, it is not possible to simultaneously record a Pt 

foil reference spectra for energy calibration. The sample stage must be moved to the foil 

position and a separate measurement made. Pt foil spectra were recorded every few 

experiments or ~ every 30 minutes, whichever was sooner. 

 

Again, due to the nature of the EDXAS set-up, I0 is also not simultaneously recoded 

before each measurement. The stage was therefore moved to obtain either I0 using a 

dummy cell or I0 with the beam just passing through air to allow a background 

calibration. The I0 cell was fabricated from a Pd/C-only MEA sandwiched between two 

sheets of Kapton film to simulate the absorbance of the MEA without platinum. In 

addition, an air path I0, (I0 air) was also used. It was found that a better calibration was 

achieved using I0 air (this is likely to be due to sample inhomogeneity in both the I0 cell 

and the actual MEA under test) and therefore I0 air was measured at the start of every 

experiment and was used for calibration. 
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Figure 1.  Schematic view of the optical layout of the Energy Dispersive X-ray 

Absorption Spectroscopy beamline ID24 at the ESRF (15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Photograph of experimental set-up on ID24 at the ESRF  
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4. Results of operando energy dispersive XAS experiments 

The use of EDE compared to scanning XAS results in increased complexity when 

studying fuel cell catalysts. Ideally the bent crystal of the monochromator will result in 

a very small focussed spot on the sample. In reality this spot is large enough (~10 µm 

diameter) that the various X-ray energies each sample slightly different areas of the 

sample (2). The sample must therefore exhibit a high degree of spatial homogenetity 

over, as a minimum, the dimension of the focused beam for good quality data (1). The 

highly dispersed nature of the Pt nanoparticles supported on carbon, and the non-

uniform carbon fibre and membrane components of the MEA, leads to some observable 

spatial inhomogeneity. The quality of the data was also compromised by the fact that 

the monochromator on ID24 is not well suited to study the Pt LIII edge, which is at the 

lower end of the bandwidth allowed. Together with the problems associated with 

sample inhomogenatity, this meant that only the XANES region of the spectra were of 

sufficient quality for analysis. 

 

4.1 Half cell potential stepping experiments N2 atmosphere 

4.1.1 60% Pt/C 2nm 

The EDE data was converted from detector position to an energy scale by calibration to 

a platinum foil reference collected both during the EDE experiments that had been 

energy calibrated using a platinum foil spectrum collected during scanning XAS 

experiments at the SRS Daresbury UK. No background correction was applied to the 

raw data but the data was cropped to isolate the XANES region. The Pt LIII XANES 

spectra for the 2 nm 60% Pt/C catalyst are plotted as a function of time following a 

potential step from 0.125 V to 1.2 V and back to 0.125 V at 65 °C in Figure 3. As can 

be clearly seen the white line intensity (peak maximum at 11564 eV) increases on 

stepping to 1.2 V and then falls back upon returning to 0.125 V. As can be seen in 

Figure 3, the time resolution of this work is sufficient to allow the changes in XANES 

intensity to be observed in real time. As discussed previously, the increased white line 

accompanies formation of the surface oxide and the return to the starting condition, 

removal of this oxide. The feature at 11580 eV also changes during the potential step. 

As the potential is increased, this peak decreases in intensity. When the potential is 

returned to 0.125 V, the peak intensity increases to a similar magnitude to that before 



Chapter 5     Operando XAS -II 

    158 

the potential stepping event. It is also noted that no change in edge position, and 

therefore no change in global oxidation state (bulk oxidation of the metal nanoparticles), 

occurs during the potential step and, therefore, the oxide appears to be restricted to the 

surface. 
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Figure 3.  Pt LIII edge XANES spectrum of 60% Pt/C obtained operando in the 

XAS fuel cell undergoing a potential step from 0.125 V to 1.2 V at 

20 s and back to 0.125 V at 80 s under N2 at 65 °C 

 

To allow comparison between experiments with different upper potential limits, the 

magnitude of the white line intensity change has been calculated with respect to time. 

This was achieved by subtracting the intensity of the pre edge region (at 11540 eV) 

from the maximum of the white line (at 11564 eV) for each scan, followed by 

normalising to the average intensity of the first 100 data points (10 s worth of data at 

0.125 V) to give a normalised white line intensity (I). The changes in normalised white 

line intensity with time for potential stepping experiments at 65 °C from 0.6 to 1.2 V are 

shown in Figure 4. An increase in white line intensity is observed after stepping to 

potentials greater than 0.9 V, and the magnitude of the white line change increases with 

increasing upper potential limit. This corresponds to the formation of more Pt-O bonds 

(greater oxide coverage) at higher potential. Such an increase in white line intensity 

with increasing potential has previously been observed for Pt/C as electrode layers in 
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liquid electrolyte filled electrochemical cells in the literature (16-18) and in Chapter 4. 

In Chapter 4, section 4.1, the observed increase in white line intensity occurred at 

potentials greater than 0.7 V for this MEA, which is 0.2 V lower than in the EDXAS 

measurements. Possible reasons for these differences will be outlined later in this 

chapter. 
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Figure 4.  Variation in white line intensity for 60% Pt/C following potential 

steps from 0.125 V to a range of upper potential limits at 20 s and 

back to 0.125 V at 80 s under N2 at 65 °C (blue lines denote times of 

the potential steps).  Exponential fitting of the experimental data is 

shown (red lines) 

 

Unlike the scanning XAS experiments conducted at the SRS, the use of EDE in this 

work has allowed sufficient time resolution to be able to follow, in real time, the 
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white line response due to changes in applied potential. These changes correspond to 

both platinum oxide growth (white line increase) and platinum oxide removal (white 

line decrease) for the potential steps to and from 1.0 V and 1.2 V. 

 

To determine the rates of white line intensity change, the data have been fitted to an 

exponential function, Equation 1, in which Ii and If are respectively the initial and final 

values of I, t is time (in seconds) and τ is the time constant. In this work, the potential 

steps result in a sudden shift from the steady state defined by the experimental 

conditions, 1/ τ may therefore be considered as a relaxation time defining the change in 

the white line intensity as a consequence of the perturbation on the system. A larger 1/ τ 

value corresponds to a faster change in white line intensity, i.e. a more rapid formation 

or removal of oxide on platinum.  

 

I = If – (If - Ii)exp(-t/τ)       Equation 1 

 

This treatment has been previously reported by Nagai et al. (19) for changes in white 

line intensity corresponding to changes in particle size (sintering/redispersion) for 

Pt/Al2O3 and Pt/CeZrY mixed oxide catalysts. In this case the perturbation to the system 

was caused by changing the temperature and 1/ τ was defined as the speed of the Pt 

redispersion.  

 

In this work an increase in the white line intensity occurred as soon as the potential was 

stepped to the upper potential limit, therefore the data were fitted from 20 s to 80 s 

corresponding to the time period when the potential was held at the upper limit. The 

potential step down to 0.125 V was fitted from 81 s to the end of the experiment. This 

start point was chosen because, after the potential step occurred, there was a delay of 1 s 

before the decrease in white line intensity commenced. The fitting results are shown as 

the red lines in Figure 4. The 1/τ values from the fitting of the white line increase and 

decrease are reported in Table 1. The increase in white line intensity shows no 

dependence on potential while the corresponding decrease in white line intensity was 

found to be potential dependent and occurred significantly faster than the white line 

increase (4.6 time faster when stepping back from 1.2 V and 5.9 times faster when 

stepping back from 1.0 V). 

 



Chapter 5     Operando XAS -II 

    161 

Table 1. Fitted relaxation times for changes in the while line intensity for 

60 % Pt/C 2 nm undergoing potential steps at 65 °C 
Potential Step 1/τ / s

-1
 

0.125 V to 1.0 V 0.08 ± 0.003 

0.125 V to 1.2 V 0.08 ± 0.003 

1.0 V to 0.125 V 0.46 ± 0.03 

1.0 V to 0.125 V 0.35 ± 0.01 

 

These results suggest oxide growth and removal occur by different mechanisms, in 

agreement with the irreversibility observed in the cyclic voltammetry (7). The slow rate 

and potential independence of oxide growth suggests this process is mass transport 

limited, while for oxide removal the increased removal rate with increased potential 

indicates that the process is limited by kinetics of the chemical reaction step, not mass 

transport. In very recent work by Imai et al. (18), the oxidation of Pt/C during a 

potential step from 0.4 to 1.4 V vs. RHE in liquid electrolyte by EDXAS with 0.9 s time 

resolution was reported. In this work EXAFS data was obtained and it is reported that 

with time, formation of different oxide species occur. In the first 30 s after the potential 

step a Pt-O bond attributed to either Pt-OH  or Pt-OHH is seen to increase and then by 

50 s, decrease in conjunction with formation of a bond assigned to Pt-O in 2 or 3D 

oxides formed by place exchange. It is also widely reported that the extent of place 

exchange is greater at higher potentials (7, 8, 12). It is therefore probable that the 

catalyst structure formed after the 60 s 1.0 V hold is different to the structure after the 

60 s 1.2 V hold. It is also noted that the quantity or extent of platinum oxidation also 

increases with increasing upper potential limit. The differences observed in the removal 

rate may therefore be the consequence of different species undergoing the reaction.  

 

The time lag of 1 s observed before the white line intensity change occurs during the 

reduction reaction has not previously been reported and is only seen here as a 

consequence of the improved time resolution obtained in this work. The delay implies 

that another process occurs before reduction of the oxide can commence. Since no delay 

is observed for oxide growth on a reduced Pt surface, it is postulated that the oxide 

covered Pt catalyst requires a longer time to charge than the reduced surface, and hence 

the effect of the applied potential does not occur instantaneously. This theory can not be 

corroborated with the current measured during the potential steps, since the time taken 

to reach the maximum current value after the potential is applied is the same for the 

reduced and oxidised surfaces. An alternative explanation for a time lag before removal, 

as proposed by Allen et al., is that a gross rearrangement of the particle structure is 
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required before the reduction process can commence (3). Without the corresponding 

EXAFS information obtained simultaneously, it is not possible to comment if a 

structural change accounts for the time delay. 

 

The effect of temperature on oxide formation and removal rates was also studied for the 

2 nm 60% Pt/C catalyst by repeating the half cell potential stepping experiments at a 

cell temperature of 35 °C, using a new MEA. As at 65 °C, the intensity of white line 

was found to track the changes in the applied potential. The changes observed in the 

normalised white line intensity (I) with time during potential steps at 35 °C are shown in 

Figure 5. At 35 °C, an increase in the white line intensity occurs at all potentials greater 

than 0.7 V. With increasing upper potential limit, an increase in the magnitude of the 

white line change is observed. These results are in good agreement with the data 

collected at the SRS at 65 °C (detailed in Chapter 4), but as shown earlier at 65 °C in 

the EDXAS measurements, no change in white line intensity was observed until a 

potential of 1.0 V. This difference is thought to arise due to effects of the X-ray beam 

combined with the effect of temperature on the membrane.  

 

The greater intensity of the X-ray beam and the small focal spot size at the ESRF was 

found to cause degradation of the Nafion membrane with time. Increases in white line 

intensity upon stepping the potential to the higher values were observed initially, but 

when repeat measurements were made some time later, the catalyst remained in the 

reduced state. When the beam spot position was moved to a different area of the sample 

which had not previously been exposed to the beam, the expected white line changes 

were once again observed. This apparent deactivation of regions of the catalyst seemed 

to occur more rapidly if the catalyst was operated at higher temperature. Under these 

conditions the measured (global) hydrogen crossover was also found to be higher. 

Accordingly it is proposed that degradation of the membrane by the X-ray beam 

resulted in localized thinning or even pinholing of the membrane, thereby exposing the 

cathode catalyst in the exposed region to much greater hydrogen crossover. This in turn 

suppresses the oxidation of Pt and therefore, although globally the catalyst was still 

responding to changes in potential, it remained reduced in the observation area. At 

65 °C, data were collected for the 0.6 to 0.9 V potential steps sequentially before 

moving to a new region of the membrane for each of the 1.0 V and 1.2 V experiments. 

It is therefore possible that the 0.8 V and 0.9 V data is suffering from membrane 
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degradation and consequently not showing the same response observed at the lower 

temperature or at the SRS. Once the membrane degradation problem was identified, the 

beam was not left on the sample between measurements to try to preserve membrane 

integrity. The number of repeat measurements was increased to try to ensure that the 

response of the catalyst was not changing with time. However, it should be noted that it 

is not possible to know the amount of hydrogen crossover occurring in the measurement 

region during any measurement, or the extent to which the observed response of the 

white line may have been perturbed by hydrogen crossover.  
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Figure 5. Variation in white line intensity for 60% Pt/C following potential 

steps from 0.125 V to a range of upper potential limits at 20 s and 

back to 0.125 V at 140 s under N2 at 35 °C (blue lines denote times of 

the potential steps).  Exponential fitting of the experimental data is 

shown (red lines)  
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The variation in white line intensities following potential steps at 35 °C are shown in 

Figure 5 together with the fitting using Equation 1 (red lines). The fitted 1/τ values for 

the white line increase and decrease (oxide formation and removal), with applied 

potential are shown in Figure 6 along with the values at 65 °C. No effect of temperature 

on the rate of change of the white line is observed. This may be a consequence of 

hydrogen crossover dominating or limiting the oxidation and removal processes. 

 

As can be seen in Figure 6 the results obtained at 35 °C are consistent with those at 

65 °C. The 1/τ value for the white line increase (oxide formation) is potential 

independent, whilst the value for white line decrease (oxide removal) is potential 

dependent. The higher the upper potential limit, the slower the rate of oxide removal. 

Across the potential range, oxide removal occurs between four and six times faster than 

oxide growth. 
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Figure 6. Effect of temperature on rate of change of white line intensity for 

2 nm Pt/C undergoing potential steps under half cell conditions  

 

4.1.2 40% Pt3Co/C and 5 nm Pt/C 

As in Chapter 4, 40% Pt3Co/C and a 40% Pt/C catalysts of comparable particle size to 

the alloy were also studied to enable consideration of the effect of alloying on oxide 

formation and removal. The changes in white line intensity during the potential steps 
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and exponential fitting at the two temperatures are shown in Figure 7a/b and Figure 8a/b 

for the 40% Pt3Co/C alloy and 40% Pt/C catalyst respectively. As for the 2 nm 60% 

Pt/C catalyst, the potential at which changes in the white line intensity occurred was 

lower at 35 °C than at 65 °C, for both catalysts. As in Chapter 4, the alloy and 

comparable particle size platinum catalyst showed very similar changes in white line 

response. Both catalysts exhibited an increase in white line intensity at potentials of 

0.9 V or higher at 35 °C, and 1.1 V or higher at 65 °C. The higher the upper potential 

limit, the greater the extent of white line change observed.  
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Figure 7a. Variation in white line intensity for 40% Pt3Co/C following potential 

steps from 0.125 V to a range of upper potential limits at 65 °C (blue 

lines denote time of the potential steps).  Exponential fitting of the 

experimental data is shown (red lines)  
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Figure 7b. Variation in white line intensity for 40% Pt3Co/C following potential 

steps from 0.125 V to a range of upper potential limits at 35 °C (blue 

lines denote time of the potential steps).  Exponential fitting of the 

experimental data is shown (red lines)  
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Figure 8a. Variation in white line intensity for 5 nm 40% Pt/C following 

potential steps from 0.125 V to a range of upper potential limits at 

65 °C (blue lines denote times of the potential steps).  Exponential 

fitting of the experimental data is shown (red lines)  
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Figure 8b.  Variation in white line intensity for 5 nm 40% Pt/C following 

potential steps from 0.125 V to a range of upper potential limits at 

35 °C (blue lines denote times of the potential steps).  Exponential 

fitting of the experimental data is shown (red lines)  

 

As observed for the 2 nm Pt/C catalyst, the 1/τ values obtained for the white line 

decrease (oxide removal) are greater than those for oxide formation and at lower 

temperature, as shown in Figure 9. The faster relaxation time constants (1/τ) obtained at 

lower temperature are attributed to the decrease in the hydrogen crossover at lower 
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temperature. Due to the uncertainty about the integrity of the membrane during the tests, 

and the impact on the extent of oxide formation and removal, it is not considered 

appropriate to draw conclusions about differences between the PtCo/C alloy and Pt/C 

catalysts. 
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Figure 9. Effect of temperature on rate of change of white line intensity for 

a) 40% PtCo/C and b) 5 nm 40% Pt/C undergoing potential steps 

half cell  

 

 

4.2 XAS characterisation during the ORR 

The XANES was also collected during potential steps under fuel cell operating 

conditions with oxygen at the cathode. The potential was stepped from OCV (~1.1 V) to 

0.9 V (applied) after a 5 s OCV hold, then the applied potential removed after a further 

60 s and the cell allowed to relax to OCV. The same experiment was conducted with a 

potential step to 0.6 V (applied). The XANES spectrum and oxygen reduction current 

were recorded for each potential stepping event for 2 nm 60% Pt/C. This experiment 

was not conducted with the other catalysts due to safety concerns, after it was realised 

that the X-ray beam was causing membrane degradation and therefore significantly 

increasing the risk of cell fire. 
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Figure 10.  Variation in white line intensity for 2 nm 60% Pt/C following 

potential steps from OCV to a) 0.6 V and b) 0.9 V applied at 65 °C 

The corresponding oxygen reduction current is shown (red lines) 

 

The white line intensity responses normalised to the first 40 data points at OCV, during 

the potential stepping experiments from OCV to 0.6 V and 0.9 V (applied) are shown in 

Figure 10 a) and b). As expected, a larger oxygen reduction current is drawn from the 

cell when 0.6 V is applied to the cell compared to 0.9 V. The applied potentials of 0.9 V 

and 0.6 V correspond to cathode potentials of approximately 0.95 V and 0.85 V, after 

correction is made for the measured membrane resistance at 0.8 V, as previously 

described in Chapter 4. It is noted that, the observed changes in the normalised white 

line intensity are less than that observed during the half cell experiments under nitrogen 

atmosphere.  
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During the 0.9 V potential stepping experiment, application of the applied potential at 

5 s results in a spike in the current corresponding to double layer charging. This current 

decays to a steady state value, corresponding to the oxygen reduction current. At 65 s 

the applied potential is removed and the system relaxes to OCV. Double layer charging 

is observed in the current response and within 10 s the cell voltage has returned to OCV 

and the measured current, now indicative of the hydrogen crossover current, is the same 

as it was before the potential stepping event. Throughout the experiment the white line 

intensity does not change significantly and therefore it is concluded that the number of 

Pt-O species are comparable at OCV and when a small current is drawn at a potential 

near the OCV. At 100 s a decrease in intensity is seen, which is also seen for the 0.6 V 

experiment.  

 

During the 0.6 V potential stepping experiment, significantly more current (4-5 times) is 

drawn from the cell than at 0.9 V. The oxygen reduction current increases with time at 

0.6 V. This is likely to be the consequence of improved hydration of the catalyst layer 

due to formation of water during ORR. After 50 s the rate of increase of current slows 

and approaches a stable value. Unlike the 0.9 V test, potential stepping to 0.6 V results 

in a change in white line intensity. Compared to potential stepping events in N2, this 

change is small. As the potential of 0.6 V is applied to the cell, the white line intensity 

rapidly decreases. Decreasing white line intensity correlates to the Pt having higher d 

electron occupancy, and therefore fewer bonds to oxygen, than at OCV. A possible 

explanation for this trend is that bound / surface absorbed oxygen species undergo 

reduction before repopulation with dissociated gas phase O2 can occur. With time, under 

increasing load, the white line intensity increases towards the OCV intensity but 

remains at a value less than at OCV. This suggests that as ORR continues more of the Pt 

electron density is donated / used during the ORR.  This could be the consequence of 

better hydration increasing the catalyst utilisation and / or number of Pt-O bonding 

interactions. The changes in white line intensity tracks the changes in ORR current. 

When the rate of increase in white line intensity occurs most rapidly the change in ORR 

current also occurs most rapidly, in addition, when the white line intensity appears to 

stabilise the current also stabilises. 

 

When the applied potential was removed, the potential returned to > 1.0 V within 5 s. 

For the remainder of the experiment, the potential continued to increase towards the 
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OCV value. After the applied potential is removed, the current response becomes 

positive, corresponding to double layer charging. The current then decays to the 

hydrogen crossover value 10 s after the applied potential was removed. Within the same 

time frame, the white line intensity increases to that of OCV and continues to increase 

to a maximum value. A decrease in intensity is then observed, starting around 100 s, 

and by the end of the experiment the intensity approaches that at the start of the 

experiment. It is postulated that these changes may be associated with the hydration of 

the catalyst layer and / or population of the catalyst with oxide species (OHads, Oads and 

place exchange O to form the oxide) at the OCV. After a prolonged period undergoing 

ORR, the wetted catalyst layer is more readily oxidised. With time at OCV, the catalyst 

layer drys out, and correspondingly the system returns to a similar state to that at the 

start of the potential stepping event.   

 

5. Discussion and future directions 

5.1 Oxide formation and removal 

The timescale of the energy dispersive measurements has allowed changes in the 

electronic configuration of platinum, tracked by changes in white line intensity, to be 

followed during both Pt-O bond forming reactions and during reduction of these oxide 

species. By applying Equation 1 to the normalised white line intensity during the 

oxidative and reductive potential steps, the rate of change in white line intensity and 

therefore speeds of both oxide formation and removal have been determined.  

 

In agreement with the literature (16, 17), a larger white line change, corresponding to 

more oxide formation, occurred at higher potential when the cell was operating with 

nitrogen feed to the cathode. Due to the effect of hydrogen crossover, the reported effect 

of temperature on oxide formation could not be confirmed. Changes in white line 

intensity, corresponding to oxide formation, have also been reported by Allen et al. An 

initial rapid change was observed, followed by relatively slow change (3). This is in 

good agreement with this work.  In the work of Allen et al., the oxidation kinetics were 

fitted to a logarithmic function (3), however, a rate of oxide growth was not reported 

and therefore a comparison of their results with this work is not possible. 

 



Chapter 5     Operando XAS -II 

    173 

The rates of oxide removal were determined by Allen et al. by fitting a single 

exponential function (3), as in this work. The rates reported in this work are a factor of 

ten faster than those reported by Allen et al. This difference is attributed to a 

combination of the following factors. Firstly, the duration of the potential is hold at the 

upper limit is significantly longer in the experiments by Allen et al. and the operating 

temperature is higher (300 s hold at 1.2 V at 80 °C vs. 60 s hold at 65 °C in this work). 

Due to the nature of the oxide growth process, the Pt catalyst will have a thicker oxide 

layer after the longer hold time at increased temperature (5, 8, 12-14). This may 

influence the rate of oxide removal, since it has been demonstrated as shown in Figure 6 

that the removal rates decrease when more oxide is grown and when more place 

exchange occurs. In addition, in the work of Allen et al., the data is fitted from the 

change in the potential to the end of the experiment (300 s). In this work the reduction 

process is fitted over a shorter time frame. This is due to the observed time lag between 

the potential step and the response of the white line intensity, a shorter experiment 

duration, and significantly more data points at short times. All of these factors will 

impact on the observed rate. It is also noted that the loading of Pt on the carbon support, 

carbon type, Nafion content, layer fabrication techniques, platinum loading, cell 

hardware and conditions in the two experiments differ. These factors can affect catalyst 

layer thickness, hydration and utilisation, with the cathode layers of Allen et al. thought 

to be significantly thicker than those used in this work (20). The Pt oxidation process 

under half cell conditions is thought to be initiated by reaction with water (7, 8, 12), and 

the electrical conductivity of the layer is also affected by hydration, therefore the water 

content of the layer will also affect the observed rate. Another difference is that the 

anode catalyst used by Allen et al. contains Pt. The white line response observed is 

therefore the superposition of the reactions occurring on both the anode and cathode. 

Finally, the exact form of the exponential fitting applied by Allen et al. is not reported, 

therefore, it is unclear if the kinetic information obtained is directly comparable. 

 

5.2 Towards more realistic Fuel Cell operation – Cell modifications 

The transmission cell design used in this work has enabled XAS to be measured on fuel 

cell catalysts during fuel cell operation. In Chapter 4, EXAFS analysis allowed changes 

in catalyst structure to be observed, while in Chapter 5, improved time resolution 

enabled the rates of oxide formation and removal to be studied. 
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The opposing requirements for high quality XAS data and optimum, realistic fuel cell 

performance, have been highlighted in this work. This conflict has resulted in the study 

of a narrow potential window on the cathode and uncertainty about the catalyst 

utilisation for the thicker catalyst layers. In light of these results, a number of possible 

design modifications will now be discussed and evaluated for: improving the scope of 

data obtainable; the effect on data quality; and whether study of the catalyst under more 

realistic fuel cell operating conditions can be achieved.  

 

Design modifications that result in a reduction in the cell performance losses would 

significantly improve the scope of data obtainable (larger potential window probed on 

the cathode), and allow study of the catalysts under more realistic operation. With the 

current cell design, cell resistance is a major source of performance loss with resistances 

measured using the current interrupt method being up to five times higher in the non-

ideal test conditions at the synchrotron than for conventional cell designs. 

 

Improving the cell compression should reduce cell resistance. This is difficult to achieve 

in the window region where XAS measurements are conducted, since the thinning or 

complete removal of the graphite flow field plate on both sides of the cell results in 

nothing for the MEA to be compressed against. Some improvement may be obtained if 

the area immediately surrounding the thinned region is compressed more efficiently, for 

example by improving the screw fixings, moving them closer to the window region, or 

by using a bladder system that uses compressed air to hydraulically press the plates 

together. This type of system is used in conventional fuel cell designs and typically is 

found to provide more even compression across the MEAs than screw fixings, however, 

for an XAS cell it would require modification such that it does not block the X-ray 

pathway.  

 

Reducing the intrinsic resistance of the membrane would also reduce cell resistance. 

This may be achieved by reducing the thickness of the Nafion membrane. This however 

is not preferable, since it is now known that the X-ray beam can damage the membrane 

causing ‘pin holing’, causing a safety risk. Also from a practical view point, achieving 

rapid cell assembly without gas leakage, a key requirement for efficient time usage on 

the beamline, is significantly easier if thicker membranes are used. An alternative would 

be to use a membrane with a lower EW than Nafion 115 (1100 g mol
-1

 of SO3
-
) and 
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hence higher conductivity, but with comparable thickness. One possible alternative 

would be to use Flemion T with an EW of 1000 g mol
-1

 of SO3
-
. This has the same 

thickness as Nafion 115, (~120 µm), but marginally higher conductivity of 79 vs. 

71 mS cm
-1

 (21). To improve conductivity further would require in-house casting of 

lower EW ionomers to the desired thickness. While physically possible, these 

membranes are not commercially available or very representative of the types of 

membranes typically used in fuel cell applications. On balance, changing the membrane 

is not viable for these types of experiments.  

 

Improving the flow of electrons through the catalyst layer can also reduce the cell 

resistance. One way this may be achieved is by reducing catalyst layer thickness. The 

use of thinner layers on the anode is viable if the wt% of Pd on carbon is increased. 

Doubling the wt% Pd to 20% from 10% would reduce the anode layer thickness by half. 

Increasing the wt% Pd further is also synthetically possible without having a 

detrimental effect on the catalyst dispersion using in-house preparation methods at 

Johnson Matthey. Due to the requirement for high sample concentrations, the scope to 

reduce layer thickness on the cathode is limited. It may be possible to increase the wt% 

of the catalyst as described above, and to support the catalyst on an alternative carbon 

support that has different packing properties and results in a thinner layer structure. 

However, changing the carbon support will also have a knock on effect on other 

parameters that may be detrimental to fuel cell performance, including the catalyst 

preparation, dispersion, and water handling of the catalyst layer.  Thinner layers will 

also help improve the water handling properties of the MEA (layer + membrane) that 

will in turn help to decrease the cell resistance.     

  

The hydration of the catalyst layers and membrane are key contributors to both cell 

resistance and catalyst utilisation. If the catalyst is not in good electrical contact because 

the layer is dry, then the active sites of the catalyst can become isolated and therefore 

effectively switched off. This is thought to be the reason why the PtCo alloy catalyst 

and large particle size Pt catalyst do not show the expected catalytic performance in the 

operando XAS cell. The water flux in the cell is controlled by the amount of water 

generated in the catalyst layer during the ORR, and also by externally added water from 

the humidification of the incoming gas streams. The current humidification system uses 

MSAs. The active area of the MSAs is smaller than the MEA active area, and they do 
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not give any control over the % humidity and are therefore non-ideal. The humidifers 

are made from PTFE that acts as a ‘heat sink’, decreasing the overall cell temperature.  

 

The humidification system could be improved by increasing the MSA active area and 

changing the material(s) they are made from, or ideally by using a more sophisticated 

design. Designs typically used in more conventional fuel cells have the incoming gases 

bubbled through heated water, and the water temperature and residence time of the gas 

results in a tuneable humidification system. Such a system would need to be removed 

from the incoming X-ray beam, and if the humidified gas needs to be piped to the cell 

then any pipework would need to be sufficiently lagged or heated to prevent any cold 

spots where liquid water could condense and accumulate. A careful balance of the 

amount of water supplied to the fuel cell would need to be considered. If the layer were 

to become too wet, mass transport losses by flooding would become significant, and 

liquid water accumulation in the window region would cause noise in the XAS data, 

while the system running too dry may result in utilisation issues. A tuneable 

humidification system would enable an optimum balance to be achieved, and would 

also allow the effect of % humidity on the catalyst structure to be studied. 

 

The anode polarisation is also a significant factor in reducing the potential window on 

the cathode that can be studied. This loss may be reduced by increasing the number of 

active sites for hydrogen oxidation, but as previously discussed, simply increasing the 

catalyst loading would be detrimental in terms of layer thickness effects. It would 

therefore be preferable to increase the wt% Pd/C used on the anode as the loading may 

be increased without increasing layer thickness. Increasing the cell temperature may 

also increase reaction rate, reduce the anode polarisation, and improve the cathode cell 

performance. This would be viable if an alternative humidification system is employed 

that did not act as a heat sink, and if an alterative heating system was added to the cell 

such as cartridge heaters/pads. As with the other modifications, these heaters must not 

block the incoming or outgoing X-ray pathway. Another option would be to consider 

using an alternative catalyst to Pd on the anode that has improved hydrogen oxidation 

kinetics. An alternative is to use Pt as in conventional fuel cell systems. However, Pt on 

the anode would interfere with the Pt signal that is being collected on the cathode, so 

could only be used if the Pt was removed from the anode in the region that is being 

studied. This has been done by others (22), but problems with current distribution in the 
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region of the window caused by removing Pt in this area have been described (23). A 

solution would be to fabricate an anode layer that contained Pd/C in the window region 

and Pt/C covering the rest of the active area. 

 

Another significant issue, both in terms of deactivation of the catalyst under test and 

safety, is hydrogen crossover as a consequence of operational temperature and 

membrane failure during exposure to the X-ray beam. This issue was particularly 

problematic during the EDXAS experiments at the ESRF where a small focal spot size 

and high flux beam were used. In light of the damage caused to the membrane, only 

limited testing under O2 was conducted and the degradation resulted in uncertainty in 

the amount and rate of oxide formation/removal. In order to reduce / remove this issue 

the exposure time of the membrane in the beam must be limited and the focal spot size 

could be increased therefore decreasing the beam intensity. Using a thicker membrane 

would also be beneficial in terms of reducing hydrogen crossover and reducing pin 

holing, however, thicker membranes would lead to increased CI resistance and would 

move the MEA structure still further from conventional MEA systems. 

 

Other factors that would improve the cell performance include: increasing the cell 

temperature (as previously discussed); increasing the O2 partial pressure (by increasing 

the cell pressure); and eliminating any contaminates that would poison the catalyst. The 

pressure used during the testing is not unrealistic for conventional fuel cell systems and 

safety concerns as a consequence of gas leakage for the drilled pates would be more 

significant at higher pressures. Also the chance of poisoning in the current system is 

very low, since high purity gases are used (99.99%) and DI water is used in the cell. 

Therefore the gas purity and pressure conditions used in this work are both reasonable 

and realistic. 

 

The major deviation from realistic fuel cell operation with the current cell design is the 

need to use high catalyst loadings on the cathode in order to be able to obtain sufficient 

signal to noise in the XAS data. A solution would be to use fluorescence detection as in 

the research group’s previous cell design (24). In these experiments, catalyst loadings 

of 0.4 mgPt cm
-2

 were used, in line with typical loadings used in conventional fuel cell 

research.  Fluorescence detection would allow realistic loadings, and therefore 

significantly reduce the performance losses and increase the potential window over 
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which the cathode can be studied. However, conducting the time resolved potential 

stepping experiments with fluorescence detection would prove challenging with the 

current beamline technology. In addition, the geometry of the window in the fuel cell 

would need to be altered to obtain the maximum solid angle possible for detection of the 

entire XAS energy range. For the energy dispersive experiments, obtaining the time 

resolution achieved in this work is currently not possible (2). This is because the beam 

needs to be spatially resolved for fluorescence detection. To achieve this an approach 

developed by Pascarelli (25) (1999) known as ‘Turbo EXAFS’ uses a moving slit to 

scan across the broad band of energies provided by the dispersive monochromator. In 

recent work on the Pt LIII edge, a time resolution of ~1 s and 6 s was achieved, however 

only XANES has been achieved on this timescale (2, 19, 26). Further developments are 

required before fluorescence may be used to study these systems with sub-second time 

resolution. Until this time, the inherent problem of requiring high catalyst loadings 

when combining the fuel cell with time resolved XAS will persist.  

 

5.3 Challenges of studying Pt/C and Pt3Co/C using operando XAS 

A key objective of this work was to study and compare both Pt/C and PtCo/C catalysts. 

To synthetically achieve alloying, high temperatures are required which in turn results 

in a large particle size for alloys vs. Pt/C.  The scope of the data obtainable for alloys 

was therefore reduced, since XAS probes the per-atom average and alloys, due to the 

larger particle size, have a higher bulk to surface ratio than Pt/C. Consequently, the 

surface sensitivity of the XAS technique was reduced and the % error associated with 

the fitting of the Pt-O neighbours was high. To try to allow direct comparison between 

the alloy and Pt/C, a heat treated Pt catalyst was used with similar particle size to the 

alloy. Within the error associated with the experimental fitting, both the alloy and Pt 

catalysts behaved the same way during the potential stepping experiments with 12 s 

time resolution. It is uncertain if the alloy and heat treated Pt catalyst genuinely behave 

the same way or if any differences are masked by the averaging nature of the technique. 

This is an intrinsic problem with using XAS to study large particle sized catalysts and is 

a key finding from this work. Improving the XAS data quality would decrease the 

EXAFS fitting errors and would help to mitigate this problem, and may also allow 

improved differentiation between large particle Pt and PtCo alloys.  

 



Chapter 5     Operando XAS -II 

    179 

In addition to optimal data fitting, improving the XAS data quality would also increase 

the scope of the data obtainable. Increasing the signal to noise ratio sufficiently would 

allow the study of low energy edges such as Co K-edge, and improved beamline set-up 

would allow the acquisition of EXAFS data for the energy dispersive experiments 

conducted at the ESRF, Grenoble. Improvements in signal to noise ratio could be 

achieved by increasing the XAS scan duration or by combining multiple scans, however 

this decreases the time resolution of the data.  Further removing interfering elements 

from the X-ray pathway would also maximise the XAS signal. Some benefit may be 

achieved by using thinner gas diffusion layers and membranes in the MEA, however the 

layers used in this work are representative of commercial MEA components, so this 

option is not preferred.  Decreasing the catalyst layer thickness would remove 

interfering carbon absorbance from the catalyst support. One way to achieve this would 

be to use lower loaded electrodes, however, this would also reduce the concentration of 

metal on the electrode, magnifying the polarisation of the anode and decreasing the 

concentration of the absorbing metal (Pt or Co) on the cathode hence reducing the XAS 

signal. A more effective way to decrease carbon absorbance and layer thickness is to 

increase the wt% metal in the catalyst layer. This would decrease the wt% C while 

increasing the wt% metal in the catalyst. On the cathode, this would have the additional 

benefit of increasing the XAS signal by increasing the Pt and Co concentration. On the 

anode, this approach would decrease the carbon absorbance, but overall prove to be 

detrimental due to the difference in absorption coefficient at the Pt LIII edge for carbon 

and Pd (C = 1.455 cm
2
 g

-1
 Pd = 76.53 cm

2
 g

-1
). A 1% decrease in C absorbance would 

correspond to ~50% increase in Pd absorbance. On the anode, decreasing the Pd 

absorbance would be more beneficial, however this is not viable due to the anode 

activation issue. 

 

Only XANES information was obtainable from the energy dispersive experiments 

conducted at the ESRF Grenoble. This was related to the nature of how the EDE 

experiment is conducted, the monochromator, and the non-homogeneous nature of the 

MEA samples. Newton (26) has shown for Pd catalysts that defocusing the beam 

averages over more of the local non-uniformities within the sample, and using a 

reference that mimics the sample closely can improve the obtainable data range 

significantly and remove structure due to polychromator glitches and scattering of 

support materials. In this work an MEA containing no Pt was used as a reference, 
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however, due to poor homogeneity and mismatch between the reference MEA and test 

MEA, the data quality was found to be worse using the reference MEA than using air 

alone. Increasing the focal spot size further is also not possible at this beamline due to 

the nature of the optics available.  

 

The XAS detector also limits the spatial resolution and measurable energy range. In this 

work a state of the art FReLoN camera was used on the most modern beamline 

available, therefore in this respect the best possible quality XAS data was obtained. It 

should be noted however, that this beamline is not optimised for the types of 

experiments undertaken (2). In the future a new purpose built beamline (I20 XAS3) at 

the Diamond light source will become available (late 2009/early 2010) and by late 2010 

will be operational for operando time-resolved X-ray spectroscopy studies (27). This 

beamline will employ the latest technology in optics and detector systems, including 

new Si and Ge based ‘XSTRIP’ detectors, (28, 29). This detector system should not 

only improve the spectral resolution, and hence XAS quality, but will also allow access 

to even faster time resolution.  

 

6. Conclusions 

In this work, energy dispersive XAS has been used to probe the oxidation and reduction 

of Pt/C under N2 and during ORR. The time resolution was sufficient to allow 

calculation of the rate of oxide growth and removal. Oxide removal occurred faster than 

growth, indicative of a different mechanism. During the ORR, a change in Pt electronic 

configuration occurs compared to OCV when significant load is drawn from the cell. 

The strong correlation in current response and white line intensity provided insight into 

the electronic configuration of Pt and mechanistic insight into the ORR.  

 

Significantly, prolonged exposure to the X-ray beam was found to degrade the 

membrane, preventing oxidation of the catalyst in the region of degradation. This is 

thought to be the consequence of increased hydrogen crossover forming a reducing 

environment in the observation area. Uncertainty about the extent of hydrogen 

crossover, and amount and rate of oxide formation prevented comparison between Pt 

and alloy catalyst materials. 
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Chapter 6. Activation of PtCo3 

1. Introduction 

To enable economically viable commercialisation of proton exchange membrane fuel 

cells (PEMFCs) for automotive applications, more active catalysts are required. 

Candidate materials must demonstrate a four times activity benefit over commercial Pt 

materials in operational MEAs allowing sufficient reduction in Pt loading and therefore 

cost (1). The application of electrochemical dealloying to modify catalyst surface 

properties as an effective method for synthesising active fuel cell catalysts was first 

presented in 2007 by Strasser et al., at the 212
th

 meeting of the Electrochemical Society 

(2-4) and as a communication in the Journal of the American Chemical Society (5). This 

modern electrochemical method, and those used to modify catalyst surfaces by addition 

of Pt monolayers, are based on the ancient methods of surface metal galvanic 

displacement and surface metal depletion gilding. Pre-Columbian goldsmiths modified 

the surface properties and changed the appearance of cheap metal alloys to make them 

appear as if they consisted of pure gold (4, 6). Surface metal galvanic displacement 

resulted in a uniform coating of a thin layer of gold on top of copper sheets by treatment 

in heated baths of gold salts. 

 

Over the past decade, a modern galvanic displacement method has been applied to fuel 

cell catalysts in which platinum monolayers have been coated on non-platinum core 

materials, via galvanic displacement of a layer of Cu surface atoms to form catalysts 

with a core shell structure also known as Pt monolayer catalysts (7-10). These materials 

have been demonstrated to decrease cost by replacing platinum in the centre of the 

particles with a cheaper core. In addition, the underlying core material can influence the 

electronic and geometric properties of the platinum overlayer, resulting in activity 

enhancement for the ORR over pure platinum materials. This class of materials 

represents a promising approach to development of new fuel cell cathode materials and 

is the topic of much current research (6, 10).  

 

The method of surface metal depletion gilding is an alternative method for creating an 

enriched outer layer. Historically, bimetallic ingots of Cu and Au were repeatedly 

annealed and pickled to first increase the surface composition with Cu and subsequently 

deplete Cu from the surface by chemical dissolution. The modern take on this method 
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presented by Strasser et al. selectively dissolves Cu from PtCu bimetallic compounds 

until a multi-layer Pt-rich shell forms. This is achieved using voltammetric dealloying 

of the catalyst, in which the catalyst is repeatedly electrochemically cycled to high (up 

to 1.2 V vs. RHE) potentials inducing Cu dissolution (4, 6). 

 

Catalysts were prepared by Strasser’s group by impregnating a pre-formed 30% Pt/C 

catalyst with Cu to yield Pt75Cu25, Pt50Cu50 and Pt25Cu75 alloy precursors after annealing 

at 600, 800 and 950 ºC (4, 6, 11). The Pt75Cu25 catalysts exhibited a single alloy phase 

by XRD while the Pt50Cu50 exhibited at least two bimetallic alloy phases when annealed 

at 600 ºC and was found to be single phase at 950 ºC. XRD showed all Pt25Cu75 

materials to be multiphase, with the 600 ºC material containing unalloyed Cu. Generally 

the higher the annealing temperature the better alloyed the catalyst. The catalysts were 

then studied as thin films on a graphite rotating disc electrode. The as prepared 

materials exhibited voltammetry features assigned to Cu at the surface of the catalyst, 

including suppressed hydride features and anodic peaks assigned to Cu (~0.3 V vs. 

RHE) and Cu atoms on Pt at higher potentials (~0.3-0.7 V vs. RHE) (2, 4-6).  After 

application of the dealloying procedure of 200 cycles from 0.05 to 1.2 V at 500 mV s
-1

, 

all materials lost the features assigned to Cu and a displayed a voltammetric profile 

equivalent to that of pure platinum. After dealloying, the composition of the selected 

catalysts was determined and the oxygen reduction activity measured (4, 6, 11). Results 

are detailed in Table 1.   

 

Table 1. Comparison of nominal and final compositions and dealloyed ORR 

activities at 900 mV vs. RHE of PtCu catalysts. Reproduced from (6). 

Catalyst Nominal 

Composition 

at.% 

Pt          Cu 

Annealing 

Temperature 

/ ºC 

Pt mass 

activity 

/ A mgPt
-1 

Specific 

activity 

/ µA cmPt
-2 

Surface 

area 

/ m
2
 gPt

-1
 

Composition 

after dealloying 

 at.% 

Pt            Cu 

1 25 75 600 0.53 644 89 79 21 

2 25 75 950 0.35 788 45 80 20 

3 50 50 600 0.51 596 86 - - 

4 50 50 950 0.11 428 27 - - 

5 75 25 600 0.27 360 75 86 14 

6 75 25 950 0.03 234 13 81 19 

 

Catalysts 1, 2 and 3 in Table 1 showed a four to five times activity improvement over a 

pure Pt catalyst, meeting the DoE activity requirements. Catalyst 5 shows the previously 

reported up to 3 times activity benefit for Pt3X catalysts, while a lower activity than Pt 
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is reported for catalyst 6. The compositions of catalysts 1, 2 and 6 are very similar after 

dealloying, however, the catalytic mass and specific activities are dramatically different.  

 

The authors attribute the high activity of the dealloyed Pt25Cu75 catalysts to the catalyst 

structure formed upon dealloying. The origin of enhanced ORR activity is not induced 

by an increased surface area (Raney catalysts), but is thought to be due to modified 

geometric and electronic properties of the Pt-enriched nanoparticle shell analogous to 

the core shell/Pt monolayer catalysts previously discussed (6). It is hypothesised that 

enhanced activity is the result of a reduced Pt-Pt distance near the particle surface, 

stabilised by the lattice of the contracted core (12). Evidence for a core shell structure 

has recently been confirmed by anomalous small angle X-ray scattering experiments (6, 

13). 

 

In addition to demonstration of activity enhancement using rotating disc measurements, 

Strasser et al. have also demonstrated up to a four fold activity enhancement over 

platinum in MEAs after application of a dealloying and washing procedure to exchange 

Cu
+2

 ions adhered to the –SO3
-
 groups in the electrolyte matrix (3, 13, 14). An ex situ 

chemically leached catalyst with very similar composition showed enhanced activity 

over Pt, but a lower mass activity than the in situ dealloyed catalyst (3).  

 

As described in Chapter 3, the presence of leached base metals within the MEA 

structure can have severe and detrimental effects on catalytic performance. The 

dealloying procedure results in significant quantities of dissolved Cu within the MEA, 

and is therefore a concern. In 2009, Strasser et al. sought to address this issue by using a 

combined scanning electron microscope/electron probe microanalysis study of in situ 

voltammetric dealloying in MEAs (14). Cu was found to readily leach on ink 

manufacture. After in situ dealloying at 100 mV s
-1

 from 0.5-1.0 V for up to 300 cycles, 

large amounts of Cu were observed in the membrane and some Cu had migrated to the 

anode layer. The consequence on performance was stated to be catastrophic. After ion 

exchange by MEA disassembly, washing in 1 M H2SO4 at 80 ºC for 1 hr followed by 

repeated washing in DI water and MEA drying, the Cu content in the MEA was reduced 

and the activity benefit realised (14). 
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1.1 Aims of this work 

In light of the results of Strasser et al., preparation and characterisation of a Co version 

of the electrochemically dealloyed catalyst was undertaken. Co was chosen as the base 

metal as good activity has previously been observed for the Pt75Co25 alloy. Co is also 

known to readily leach, so should easily be dealloyed using the electrochemical 

dealloying approach. This material was subsequently tested for activity and comparison 

made to conventionally prepared PtCo alloys and the literature values reported for PtCu 

systems. XAS measurements were also conducted to investigate relationships between 

activity and structure. 

 

2. Experimental Detail 

2.1 Catalyst precursor preparation and characterisation 

Two PtCo3/C precursor catalysts with nominal atomic composition Pt25Co75/C have 

been prepared by annealing at 600 and 950 °C in H2/N2. Samples of each of the two 

precursor materials were repeatedly chemically acid leached to give two further 

materials. The Pt and Co content of the resulting leachate was determined using 

ICP-MS.  A detailed description of the catalyst preparation can be found in Chapter 2 

section 1.1. XAS characterisation was conducted on the precursor catalysts and the 

catalysts formed after each stage of the acid leaching to study the effect of chemical 

dealloying on catalyst structure. XAS was collected on the powder samples using the 

gas treatment cell at the SRS Daresbury laboratory station 9.3 at the Pt LIII and Co K 

edge. The XAS data analysis using the methods described in Chapter 2 section 3.3. 

Briefly, individual scans for each sample were summed and XANES spectra were 

acquired after pre-edge subtraction. The background was then removed to obtain 

EXAFS spectra and the data were fitted to the structural models shown:  

 

Structural Models used at the Pt LIII edge: 

Four shell:  Pt-Pt1  Pt-Co   Pt-Pt2 Pt-Pt3/Pt-Co2  

Five shell:  Pt-Pt1  Pt-Co   Pt-Pt2 Pt-Pt3   Pt-O     

Structural Models used at the Co K edge: 

Two shell: Co-Co1    Co-Pt1        

Five shell:  Co-Co1    Co-Pt1      Co-O    Co-Co2   Co-Pt2  
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The four new catalyst materials were also characterised by assay, CO chemisorption, 

XRD and TEM, as described in Chapter 2 section 4. 

 

2.2 Electrochemical Dealloying 

The catalysts were fabricated into electrode layers by screen printing/brush coating at 

0.4 mgPt cm
-2

 loading. Electrodes were vacuum filled before electrochemical dealloying 

of the four catalyst materials was conducted ex situ in the liquid electrolyte, by 

application of the stability testing procedure from 0.6-1.0 V and 0.6-1.2 V (Chapter 2 

section 2.1.2). Cyclic voltammetry, ICP-MS and TEM were used to characterise 

structural changes occurring. In addition, electrochemical dealloying was conducted in 

situ within the MEA. Two different cell hardware designs were required to enable 

catalyst coated membrane (CCM) removal and washing. A CCM at ~0.2 mgPt cm
-2

 

loading of the PtCo3/C catalysts at the cathode and 0.1 mgPt cm
-2

 Pt/C anode loading and 

V3 membrane was fabricated and a BOL performance test conducted using one cell 

hardware. The catalyst was dealloyed according to the procedure in Chapter 2, section 

2.2.4. The CCM was then boiled in 1 M H2SO4 and washed in water before performance 

testing in alternative cell hardware to consider the effect of dealloying on catalytic 

activity. 

  

For comparative purposes 40% Pt3Co/C and Pt/C catalysts were also studied.  

 

All data in this chapter is based on a one off batch of synthesised catalyst and no repeat 

characterisation, XAS or electrochemical measurements were performed. 
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3. Results 

3.1 Preparation and characterisation of PtCo3/C catalysts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Preparation summary of four new PtCo catalysts 

 

A summary of the catalyst preparation method and the assay results for the four catalyst 

materials is shown in Figure 1. ICP-MS analysis of the filtrate obtained after the 

co-deposition of Pt and Co to form the precursor indicated complete deposition 

occurred during the preparation. Catalyst 1 was prepared by annealing the PtCo (25:75) 

precursor at 600 °C and Catalyst 2 prepared by annealing at 950 °C. Catalysts 3 and 4 

were prepared by acid leaching Catalysts 1 and 2. 

 

During the acid leaching experiments, addition of the 500 ml 0.5 M H2SO4 to 10 g of 

Catalysts 1 and 2 at room temperature resulted in gas evolution and an immediate 

colour change of the solution to purple/pink indicating that Co is readily lost from the 

catalyst on reaction with acid according to Equation 1. 

   

K2PtCl4 + CoCl.6H2O 
Precursor 

23.6% Pt/21.4% Co/C 

(Nominal Pt25:Co75 atomic) 

Catalyst 1. (Pt25:Co75) 

22.4% Pt/19.4% Co/C 

 

Catalyst 2. (Pt25:Co75) 

23.4% Pt/20.2% Co/C 

600 °C H2/N2 950 °C H2/N2 

Catalyst 3. (Pt86:Co14) 

27.4% Pt /1.38% Co/C 

 

Catalyst 4. (Pt71:Co29) 

27.8% Pt/3.31% Co/C 

3 x Acid leach 

0.5 M H2SO4 

Colourless 

filtrate 

4 x Acid leach 

0.5 M H2SO4 

Colourless 

filtrate 
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Co + 2H
+
 → Co

2+
 + H2 (g)       Equation 1 

 

Repeated acid leaching was undertaken until no pink colouration persisted after the 

24 hr leaching experiment. After each successive leach, ICP-MS analysis of the leachate 

was performed to quantify the amount of Pt and Co removed from the catalyst. 

Negligible loss of Pt occurred during leaching, however, significant amounts of Co 

were removed from both catalysts. Calculation based on the assay of Catalysts 1 and 2 

and the ICP-MS results for each successive loss equates to 100 % removal of Co from 

Catalyst 1 to form Catalyst 3 and 86.6 % removal from Catalyst 2 to form Catalyst 4. 

Based on the assay results detailed in Figure 1, these figures are known to be an 

overestimate of Co removal. This discrepancy is likely to be due to the loss of catalyst 

during the filtering and drying process, however the ICP-MS trends are consistent with 

the assay results. Co is more readily lost from Catalyst 1 in three successive leaches 

than from Catalyst 2 after four acid leaching experiments. This is probably because 

Catalyst 1 is less well alloyed and has a higher surface area and proportion of smaller 

particles than Catalyst 2. 

 

XRD and TEM analysis were performed on the four catalyst materials. The degree of 

alloying and the particle size was determined by the Johnson Matthey analytical 

department.  
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Figure 2. XRD patterns for Catalysts 1, 2, 3 and 4. (Black line – catalyst trace, 

Blue line – carbon trace, Diffraction pattern bars: Green – Cubic Platinum Cobalt 

Pt3Co, Blue – Cubic Platinum, Red – Cubic Cobalt  

Catalyst 2 

Catalyst 3 

Catalyst 4 
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Figure 2 shows the XRD diffraction patterns for Catalysts 1, 2, 3 and 4. The low 

temperature annealing used to make Catalyst 1 results in the catalyst being mainly 

amorphous with two poorly crystalline cubic phases identified as Co and Pt3Co, 

however, no exact match to the ICDD data base (release 2003) values were possible. 

This is thought to be due to the crystalline phases not being fully formed. The 

non-crystalline nature of Catalyst 1 meant that lattice parameter and crystallite size 

information could not be calculated. Annealing at the higher temperature of 950 °C to 

form Catalyst 2 gave a material with two alloyed phases: one major Pt rich phase, 

similar but not an exact match to document data (15) for Pt3Co (which gave a lattice 

parameter of a = 3.668Å); and a trace amount of a Co rich PtCo phase close in lattice 

parameters to cubic cobalt (Co, PDF No 00-015-0806).  A trace (< 4%) amount of 

amorphous material was also observed. 

 

After acid leaching to form Catalysts 3 and 4, XRD analysis showed both catalysts to be 

mainly composed of a poorly crystalline cubic phase close in lattice parameters to 

platinum cobalt (Pt3Co PDF No 00-029-0499). The observed pattern is slightly shifted 

from the documented data, and slightly shift compared to each other. This is most likely 

due to the stoichometric differences known from the assay results.  A minor amount of 

amorphous material is also present in for both catalysts. 

 

The lattice parameters and crystallite sizes were calculated for Catalysts 2-4 using 

Reitveld analysis. All particle size information is summarised in Table 2, and Figure 3 

shows the correlation between the XRD determined lattice parameter and the atomic 

%Pt for Catalysts 2-4 determined from catalyst assay. Acid leaching Catalyst 2 results 

in loss of the two phases to form one more Pt rich phase. Catalyst 3 is also single phase 

and is further enriched in Pt than Catalyst 4, in agreement with increased Co removal 

upon leaching. For comparison, the change in XRD lattice parameter with Pt 

composition from the literature (16) is shown. The lattice parameters determined for 

Catalysts 2-4 show good agreement with this trend. 
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Figure 3. Correlation of assay composition and XRD lattice parameter for 

Catalysts 2-4 and literature (16) Co, PtCo and Pt catalysts 

 

Catalyst particle sizes and compositional information was also determined using TEM. 

Figure 4 shows TEM images for all of the catalysts consist of both large and small 

particles and compositional analysis from EDAX line scan shows good correlation with 

XRD phase assignment. 



Chapter 6.  Activation of PtCo3 

  193 

 

 

Figure 4.   TEM images of Catalysts 1, 2, 3 and 4. 50 nm scale bar 
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Particle size distributions and compositions are summarised in Table 2. The effect of 

annealing temperature and leaching is clearly shown to alter the catalyst morphology.  

In agreement with XRD analysis, Catalyst 1 showed no evidence of alloying. EDAX 

and particle size analysis showed the catalyst is comprised of Co rich particles of 

30-50 nm diameter and unalloyed Pt and Co particles of 1.5-2.5 nm diameter. The 

higher temperature annealing to form Catalyst 2 resulted in Co rich particles of 

20-40 nm diameter and Pt rich particles of 5-8 nm diameter. Acid leaching Catalyst 1 to 

form Catalyst 3 resulted in the loss of the largest Co rich particles, resulting in Catalyst 

3 exhibiting 20 nm diameter PtCo particles with varying PtCo composition and 

1.4-3.0 nm diameter particles with uniform PtCo composition. Acid leaching Catalyst 2 

to form Catalyst 4 gave a distribution of particles 20-80 and 4-6 nm in diameter, all with 

a uniform PtCo composition. 

 

Table 2. XRD and TEM particle sizes and CO chemisorption results for Catalysts 

1-4  

Catalyst 

Composition 

Wt. % 

   Pt         Co 

TEM composition and 

particle size
 

XRD 

mean 

crystallite 

size / nm
 

Surface area 

/ m
2
 gPt

-1
 

(dispersion ) 

Composition 

At. % 

  Pt         Co 

1 

600 ºC 
22.4 19.4 

Co rich particles: 30-50 nm 

Unalloyed Pt+Co: 1.5-2.5 nm 

Not 

determined 
97 (39%) 25 75 

2 

950 ºC 
23.3 20.2 

Co rich particles: 20-40 nm 

Pt rich particles: 5-8 nm 
16 and 3.3  25 (10%) 25 75 

3 

600 ºC 
27.4 1.38 

Varying composition Pt&Co 

particles: 20 nm 

Uniform composition Pt&Co 

particles: 1.4-3.0 nm 

2.2  74 (30%) 86 14 

4 

950 ºC 
27.8 3.31 

Uniform composition Pt&Co 

particles: 20-80 and 

4-6 nm 

2.4  50 (21%) 71 29 

 

 

Particle size information for each catalyst determined by XRD and TEM is shown in 

Table 2, together with the catalyst surface areas determined by CO chemisorption. For 

Catalyst 2 there is a mismatch between the XRD and TEM particle sizes, with the XRD 

mean crystallite sizes being lower that those observed in the particle size distribution 

measured by TEM. The same trend is seen for Catalyst 4. Good agreement between the 

XRD and TEM particle size information is observed for the smaller particle sizes for 

Catalysts 3 However, the presence of two separate particle size distributions and the 

very large particles in Catalysts 3 and 4 are not evident from the XRD analysis.  
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The platinum surface area and dispersion of the catalysts were measured by CO 

chemisorption, assuming a one to one binding configuration of CO to Pt and no 

adsorption of CO on Co. Results are shown in Table 2. Catalyst 1 has a relatively high 

platinum surface area of 97 m
2
 gPt

-1
 and dispersion of 39%, indicating that significant 

amounts of the Pt in the catalyst are accessible at the surface of the particles. This is 

consistent with the presence of ~2 nm diameter particles in this catalyst. Increasing the 

annealing temperature for Catalyst 2 results in a decrease in surface area and dispersion 

compared to Catalyst 1. This is due to increased particle size of the smallest particles 

compared to Catalyst 1. The improved alloying at higher temperature may also enable a 

redistribution of metal within the particle, e.g. surface segregation. After leaching 

Catalyst 1 to form Catalyst 3, the surface area and dispersion decreases. This suggests, 

as a consequence of the leaching, that fewer Pt atoms are now accessible at the surface. 

This could occur if Pt was lost from the particles by dissolution. ICP-MS results show 

some dissolution occurs, but at low levels. Interestingly, the opposite trend is observed 

after acid leaching Catalyst 2 where a doubling of the surface area and dispersion occurs 

for Catalyst 4. This would indicate that leaching results in exposure of more Pt at the 

surface and or an increase in surface to bulk ratio of Pt. This would occur if Co is 

removed from both the small and larger particles upon leaching and is consistent with 

the compositional analysis from both XRD and TEM. This enrichment of the particles 

with Pt on removal of base metal is analogous to the effect described by Strasser et al. 

for high activity, dealloyed PtCu particles. However, the observed increase in surface 

area may also indicate the formation of a Raney surface. 

 

3.2 XAS characterisation of the effect of chemical acid leaching 

Assay, XRD and TEM have shown repeated chemical acid leaching of Catalysts 1 and 2 

to form Catalysts 3 and 4 results in loss of Co. For both catalysts, most Co was removed 

during the first leaching experiment (~90% and ~75% of Co in the catalyst removed for 

Catalysts 1 and 2 respectively from ICP-MS analysis), then the amount of Co removed 

with each successive leach decreased. The concentration of Co removed during the 

second leach was fifty times less for Catalyst 1 and eight times less for Catalyst 2. This 

was further reduced by four times and three times for the third leaching experiment, and 
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the final leaching experiment for Catalyst 2 still removed some Co, but the amount was 

two times lower that that removed in the previous leaching experiment. This trend 

suggests initially it is easy to remove Co that is either not well alloyed or at the particle 

surface, then removing Co from deeper within the particle is more difficult. To 

investigate this hypothesis, XAS at the Pt LIII and Co K edges was measured on catalyst 

powders recovered after each successive leaching experiment. 

 

Figure 5 and Figure 6 show the chi and Fourier transform plots at the Pt LIII edge for the 

acid leaching of Catalyst 1 to form Catalyst 3 in hydrogen and air atmospheres. The 

corresponding data for acid leaching Catalyst 2 to form Catalyst 4 is shown in Figure 7 

and Figure 8. The chi and Fourier transform plots for Catalysts 1-4 at the Co K edge in 

hydrogen and air atmospheres is shown in Figure 9 and Figure 10. It is noted that the 

spikes observed in the data at k ~ 11.3 Å
-1

 are an artifact of the monochromator. The 

theoretical fitting results for both leaching experiments at both edge and atmospheres 

are detailed in Table 3 to Table 6.  

 

The theoretical fits for the acid leaching of Catalyst 2 to form Catalyst 4 were in general 

in good agreement with the experimental data, REXAFS < 38. However, the fit quality for 

the acid leaching of Catalyst 1 to form Catalyst 3 showed a poorer fit quality especially 

in air atmosphere and notably a very poor fitting was achieved for Catalyst 1 at the Co 

K edge in hydrogen REXAFS = 60.  The poor fit quality may be both a combination of a 

very non homogeneous sample composition and/or noise associated with a poor 

formation of the pellet and the requirement for longer scan duration. Unfortunately 

repeat measurements were unable to be completed during the timescale of this work to 

clarify the reason for poor fit quality.  
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 Figure 5. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for sequential acid leaching of Catalyst 

1 to for Catalyst 3 at the Pt LIII in H2 
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Figure 6. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for sequential acid leaching of Catalyst 

1 to for Catalyst 3 at the Pt LIII in air 



Chapter 6.  Activation of PtCo3 

  199 

4 6 8 10 12 14

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 2 4 6 8 10

0

2

4

6

8

10

12

o

k
2
 C

h
i 
(K

)

k / A
-1

o

Catalyst 2: Pt L
III
 edge H

2
 atmosphere

F
T

 k
2
 C

h
i 
(K

)

R / A

 Data
 Fit

 

4 6 8 10 12 14

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

o

k
2
 C

h
i 
(K

)

k / A
-1

o

Catalyst 2. 1x acid leached: Pt L
III
 edge H

2
 atmosphere

F
T

 k
2
 C

h
i 
(K

)

R / A

 Data
 Fit

 

4 6 8 10 12 14

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

o

k
2
 C

h
i 
(K

)

k / A
-1

o

Catalyst 2. 2x acid leached: Pt L
III
 edge H

2
 atmosphere

F
T

 k
2
 C

h
i 
(K

)

R / A

 Data
 Fit

 

4 6 8 10 12 14

-1.0

-0.5

0.0

0.5

1.0

1.5

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

o

k
2
 C

h
i 
(K

)

k / A
-1

o

Catalyst 2. 3x acid leached: Pt L
III
 edge H

2
 atmosphere

F
T

 k
2
 C

h
i 
(K

)

R / A

 Data
 Fit

 



Chapter 6.  Activation of PtCo3 

  200 

4 6 8 10 12 14

-1.0

-0.5

0.0

0.5

1.0

1.5

0 2 4 6 8 10

0

2

4

6

8

o

k
2
 C

h
i 
(K

)

k / A
-1

o

Catalyst 4: Pt L
III
 edge H

2
 atmosphere

F
T

 k
2
 C

h
i 
(K

)

R / A

 Data
 Fit

 

Figure 7. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for sequential acid leaching of Catalyst 

2 to for Catalyst 4 at the Pt LIII in H2 
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Figure 8. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for sequential acid leaching of Catalyst 

2 to for Catalyst 4 at the Pt LIII in air 
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Figure 9. k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for Catalysts 1-4 at the Co K edge in H2 
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Figure 10.  k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for Catalysts 1-4 at the Co K edge in air 
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Table 3. Structural parameters obtained by fitting the Pt LIII and Co K edges 

EXAFS data in H2 for Catalyst 1 during sequential acid leaching to form Catalyst 3  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1 3.4 (± 0.4) 2.73 (± 0.01) 0.012 (± 0.001) 

Pt-Co 2.2 (± 0.2) 2.59 (± 0.01) 0.012 (± 0.001) 

Pt-Pt2 2.3 (± 1.2) 3.90 (± 0.03) 0.010 (± 0.004) 
Pt LIII Catalyst 1  

Pt-Co2  1.1 (± 0.8) 4.00 (± 0.05) 0.008 (± 0.009) 

- 9.7 

(± 1.5) 

31.4 

 

Co-Co 4.4 (± 0.5) 2.53 (± 0.01) 0.013 (± 0.002) 
Co K Catalyst 1 

Co-Pt1 2.0 (± 0.9) 2.80 (± 0.02) 0.008 (± 0.003) 

- 10.2 

(± 2.7) 
60.0 

Pt-Pt1 3.6 (± 0.5) 2.74 (± 0.01) 0.012 (± 0.001) 

Pt-Co 0.8 (± 0.3) 2.63 (± 0.03) 0.013 (± 0.004) 

Pt-Pt2 1.3 (± 0.6) 3.88 (± 0.03) 0.006 (± 0.003) 
Pt LIII 

Catalyst 1 

after 1 x acid 

leach 

 Pt-Pt3 4.0 (± 1.5) 4.76 (± 0.02) 0.010 (± 0.003) 

- 10.3 

(± 2.2) 

36.8 

 

Pt-Pt1 3.5 (± 0.4) 2.72 (± 0.01) 0.013 (± 0.001) 

Pt-Co 1.0 (± 0.2) 2.60 (± 0.02) 0.015 (± 0.003) 

Pt-Pt2 1.3 (± 0.6) 3.88 (± 0.03) 0.009 (± 0.004) 
Pt LIII 

Catalyst 1 

after 2 x acid 

leach 

 Pt-Pt3 2.4 (± 1.0) 4.74 (± 0.03) 0.010 (± 0.004) 

- 9.2 

(± 1.7) 

34.9 

 

Pt-Pt1 5.1 (± 0.4) 2.74 (± 0.01) 0.012 (± 0.001) 

Pt-Co 0.7 (± 0.2) 2.61 (± 0.03) 0.016 (± 0.005) 

Pt-Pt2 1.7 (± 0.7) 3.89 (± 0.02) 0.009 (± 0.003) 
Pt LIII 

Catalyst 1 

after 3 x acid 

leach = 

Catalyst 3 Pt-Pt3 4.0 (± 1.3) 4.75 (± 0.02) 0.009 (± 0.002) 

- 10.8 

(± 1.5) 

31.0 

 

Co-Co1 2.2 (± 0.4) 2.59 (± 0.02) 0.011 (± 0.002) 

Co-Pt1 3.0 (± 0.7) 2.67 (± 0.02) 0.012 (± 0.002) 

Co-O 0.7 (± 0.4) 2.03 (± 0.04) 0.008 (± 0.011) 

Co-Co2 2.2 (± 1.1) 4.07 (± 0.04) 0.007 (± 0.006) 

Co K 

Catalyst 1 

after 3 x acid 

leach = 

Catalyst 3 
Co-Pt2 2.9 (± 1.4) 3.94 (± 0.03) 0.008 (± 0.006) 

- 2.9 

(± 2.2) 

47.5 
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Table 4. Structural parameters obtained by fitting the Pt LIII and Co K edges 

EXAFS data in Air for Catalyst 1 during sequential acid leaching to form Catalyst 3  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1 0.7 (± 0.6) 2.64 (± 0.04) 0.014 (± 0.009) 

Pt-Co 1.9 (± 0.3) 2.57 (± 0.02) 0.012 (± 0.002) 

Pt-Pt2 2.0 (± 1.3) 3.89 (± 0.03) 0.006 (± 0.005) 

Pt-Pt3 1.2 (± 0.8) 3.98 (± 0.04) 0.005 (± 0.007) 

Pt LIII Catalyst 1  

Pt-O 0.8 (± 0.2) 1.97 (± 0.03) 0.004 (± 0.004) 

- 8.3 

(± 2.9) 

43.9 

 

Co-Co1 3.1 (± 0.2) 2.52 (± 0.01) 0.013 (± 0.001) 

Co-Pt1 0.8 (± 0.5) 2.66 (± 0.04) 0.015 (± 0.009) 

Co-O 0.7 (± 0.2) 2.00 (± 0.03) 0.011 (± 0.009) 

Co-Co2 2.4 (± 0.6) 3.97 (± 0.02) 0.008 (± 0.004) 

Co K Catalyst 1 

Co-Pt2 1.1 (± 0.3) 3.83 (± 0.02) 0.002 (± 0.002) 

- 9.6 

(± 1.5) 

38.8 

 

Pt-Pt1 1.8 (± 0.4) 2.71 (± 0.02) 0.011 (± 0.002) 

Pt-Co 0.8 (± 0.2) 2.61 (± 0.03) 0.012 (± 0.004) 

Pt-Pt2 1.3 (± 0.8) 3.89 (± 0.04) 0.006 (± 0.004) 

Pt-Pt3 2.6 (± 1.4) 4.75 (± 0.04) 0.007 (± 0.003) 

Pt LIII 

Catalyst 1 

after 1 x acid 

leach 

 
Pt-O 0.8 (± 0.2) 1.99 (± 0.04) 0.005 (± 0.004) 

- 10.9 

(± 3.2) 

43.7 

 

Pt-Pt1 1.9 (± 0.5) 2.75 (± 0.02) 0.012 (± 0.003) 

Pt-Co 0.8 (± 0.2) 2.61 (± 0.03) 0.011 (± 0.004) 

Pt-Pt2 1.4 (± 0.9) 3.91 (± 0.04) 0.008 (± 0.005) 

Pt-Pt3 2.5 (± 1.1) 4.76 (± 0.03) 0.006 (± 0.003) 

Pt LIII 

Catalyst 1 

after 2 x acid 

leach 

 
Pt-O 0.7 (± 0.2) 2.00 (± 0.03) 0.005 (± 0.004) 

- 12.8 

(± 3.0) 

44.7 

 

Pt-Pt1 2.0 (± 0.4) 2.72 (± 0.01) 0.011 (± 0.002) 

Pt-Co 0.8 (± 0.2) 2.63 (± 0.02) 0.011 (± 0.003) 

Pt-Pt2 0.8 (± 0.4) 3.91 (± 0.03) 0.007 (± 0.005) 

Pt-Pt3 2.1 (± 0.9) 4.77 (± 0.03) 0.009 (± 0.003) 

Pt LIII 

Catalyst 1 

after 3 x acid 

leach = 

Catalyst 3 

 Pt-O 1.2 (± 0.1) 2.01 (± 0.02) 0.010 (± 0.003) 

- 13.3 

(± 2.0) 

33.4 

 

Co-Co1 2.0 (± 0.4) 2.60 (± 0.02) 0.011 (± 0.003) 

Co-Pt1 3.4 (± 0.8) 2.66 (± 0.02) 0.012 (± 0.002) 

Co-O 0.9 (± 0.4) 2.01 (± 0.04) 0.008 (± 0.008) 

Co-Co2 2.7 (± 0.2) 4.04 (± 0.03) 0.006 (± 0.006) 

Co K 

Catalyst 1 

after 3 x acid 

leach = 

Catalyst 3 
Co-Pt2 4.3 (± 1.6) 3.93 (± 0.02) 0.007 (± 0.003) 

- 4.3 

(± 2.2) 

51.6 
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Table 5. Structural parameters obtained by fitting the Pt LIII and Co K edges 

EXAFS data in H2 for Catalyst 2 during sequential acid leaching to form Catalyst 4  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1 2.4 (± 0.5) 2.69 (± 0.01) 0.012 (± 0.002) 

Pt-Co1 3.9 (± 0.3) 2.60 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 3.9 (± 1.5) 3.91 (± 0.03) 0.008 (± 0.003) 
Pt LIII Catalyst 2  

Pt-Co2 2.6 (± 1.1) 4.03 (± 0.03) 0.008 (± 0.005) 

- 12.2 

(± 1.2) 
23.1 

Co-Co1 3.4 (± 0.2) 2.52 (± 0.01) 0.013 (± 0.001) 

Co-Pt1 1.1 (± 0.3) 2.62 (± 0.02) 0.010 (± 0.002) 

Co-O 0.6 (± 0.2) 2.02 (± 0.03) 0.015 (± 0.010) 

Co-Co2 2.4 (± 0.7) 3.95 (± 0.03) 0.013 (± 0.006) 

Co K Catalyst 2 

Co-Pt2 1.7 (± 1.0) 3.80 (± 0.04) 0.010 (± 0.005) 

- 3.7 

(± 1.3) 
30.4 

Pt-Pt1 3.8 (± 0.4) 2.72 (± 0.01) 0.012 (± 0.001) 

Pt-Co1 1.9 (± 0.2) 2.63 (± 0.01) 0.012 (± 0.001) 

Pt-Pt2 0.7 (± 0.4) 3.89 (± 0.03) 0.006 (± 0.004) 
Pt LIII 

Catalyst 2 

after 1 x acid 

leach 

 Pt-Pt3 3.1 (± 1.0) 4.73 (± 0.02) 0.009 (± 0.002) 

- 11.8 

(± 4.3) 
26.3 

Pt-Pt1 4.5 (± 0.4) 2.72 (± 0.01) 0.012 (± 0.001) 

Pt-Co1 1.5 (± 0.2) 2.63 (± 0.01) 0.013 (± 0.002) 

Pt-Pt2 1.4 (± 0.6) 3.89 (± 0.02) 0.011 (± 0.004) 
Pt LIII 

Catalyst 2 

after 2 x acid 

leach 

 Pt-Pt3 3.0 (± 1.0) 4.75 (± 0.02) 0.011 (± 0.003) 

- 12.0 

(± 1.2) 
26.4 

Pt-Pt1 4.6 (± 0.5) 2.73 (± 0.01) 0.012 (± 0.001) 

Pt-Co1 1.1 (± 0.3) 2.62 (± 0.02) 0.014 (± 0.003) 

Pt-Pt2 1.8 (± 0.6) 3.89 (± 0.02) 0.007 (± 0.003) 
Pt LIII 

Catalyst 2 

after 3 x acid 

leach  

 Pt-Pt3 3.8 (± 1.1) 4.75 (± 0.02) 0.008 (± 0.002) 

- 10.9 

(± 1.6) 
32.6 

Pt-Pt1 4.2 (± 0.6) 2.72 (± 0.01) 0.012 (± 0.001) 

Pt-Co1 1.0 (± 0.3) 2.62 (± 0.03) 0.016 (± 0.005) 

Pt-Pt2 2.0 (± 0.9) 3.87 (± 0.03) 0.008 (± 0.003) 
Pt LIII 

Catalyst 2 

after 4 x acid 

leach = 

Catalyst 4 Pt-Pt3 3.8 (± 1.5) 4.75 (± 0.03) 0.008 (± 0.003) 

- 10.6 

(± 2.0) 
37.2 

Co-Co1 2.6 (± 0.2) 2.52 (± 0.01) 0.014 (± 0.001) 

Co-Pt1 1.9 (± 0.3) 2.65 (± 0.01) 0.010 (± 0.001) 

Co-O 0.4 (± 0.2) 1.99 (± 0.04) 0.008 (± 0.008) 

Co-Co2 1.6 (± 0.7) 3.94 (± 0.03) 0.013 (± 0.007) 

Co K 

Catalyst 2 

after 4 x acid 

leach = 

Catalyst 4 

 Co-Pt2 1.7 (± 0.7) 3.82 (± 0.03) 0.009 (± 0.005) 

- 1.7 

(± 1.3) 
32.2 
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Table 6. Structural parameters for obtained by fitting the Pt LIII and Co K edges 

EXAFS data in Air for Catalyst 2 during sequential acid leaching to form Catalyst 4  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1 1.8 (± 0.6) 2.66 (± 0.02) 0.012 (± 0.003) 

Pt-Co1 3.6 (± 0.3) 2.59 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 2.8 (± 1.3) 3.90 (± 0.03) 0.007 (± 0.004) 
Pt LIII Catalyst 2  

Pt-Co2 2.3 (± 1.0) 4.02 (± 0.03) 0.008 (± 0.006) 

- 11.3 

(± 1.5) 
26.7 

Co-Co1 3.3 (± 0.2) 2.52 (± 0.01) 0.014 (± 0.001) 

Co-Pt1 0.8 (± 0.3) 2.59 (± 0.02) 0.010 (± 0.003) 

Co-O 0.5 (± 0.2) 1.98 (± 0.03) 0.009 (± 0.008) 

Co-Co2 2.4 (± 0.7) 3.96 (± 0.03) 0.013 (± 0.005) 

Co K Catalyst 2 

Co-Pt2 1.2 (± 0.8) 3.80 (± 0.04) 0.007 (± 0.005) 

- 4.4 

(± 1.4) 
32.4 

Pt-Pt1 1.5 (± 0.5) 2.70 (± 0.02) 0.012 (± 0.003) 

Pt-Co 1.6 (± 0.3) 2.61 (± 0.02) 0.011 (± 0.002) 

Pt-Pt2 1.6 (± 1.0) 3.90 (± 0.04) 0.007 (± 0.004) 

Pt-Pt3 2.5 (± 1.6) 4.75 (± 0.04) 0.008 (± 0.004) 

Pt LIII 

Catalyst 2 

after 1 x acid 

leach 

Pt-O 0.7 (± 0.2) 1.99 (± 0.04) 0.007 (± 0.006) 

- 10.8 

(± 2.5) 
38.3 

Pt-Pt1 2.7 (± 0.4) 2.69 (± 0.01) 0.011 (± 0.001) 

Pt-Co 1.0 (± 0.2) 2.60 (± 0.02) 0.012 (± 0.003) 

Pt-Pt2 1.1 (± 0.7) 3.86 (± 0.04) 0.007 (± 0.004) 

Pt-Pt3 1.8 (± 1.2) 4.76 (± 0.04) 0.007 (± 0.004) 

Pt LIII 

Catalyst 2 

after 2 x acid 

leach 

Pt-O 0.7 (± 0.2) 1.99 (± 0.03) 0.006 (± 0.004) 

- 10.7 

(± 2.5) 
32.7 

Pt-Pt1 2.2 (± 0.4) 2.71 (± 0.01) 0.012 (± 0.002) 

Pt-Co 1.0 (± 0.2) 2.62 (± 0.02) 0.011 (± 0.002) 

Pt-Pt2 0.4 (± 0.4) 3.90 (± 0.06) 0.006 (± 0.008) 

Pt-Pt3 1.5 (± 0.8) 4.76 (± 0.03) 0.007 (± 0.004) 

Pt LIII 

Catalyst 2 

after 3 x acid 

leach  

Pt-O 0.7 (± 0.1) 2.00 (± 0.02) 0.005 (± 0.003) 

- 13.2 

(± 2.0) 
31.8 

Pt-Pt1 2.0 (± 0.5) 2.72 (± 0.02) 0.013 (± 0.002) 

Pt-Co 0.9 (± 0.2) 2.62 (± 0.02) 0.011 (± 0.003) 

Pt-Pt2 1.1 (± 0.8) 3.90 (± 0.04) 0.009 (± 0.005) 

Pt-Pt3 2.0 (± 1.3) 4.75 (± 0.04) 0.008 (± 0.004) 

Pt LIII 

Catalyst 2 

after 4 x acid 

leach = 

Catalyst 4 
Pt-O 0.8 (± 0.2) 2.00 (± 0.03) 0.007 (± 0.005) 

- 12.2 

(± 3.0) 
38.4 

Co-Co1 2.4 (± 0.2) 2.53 (± 0.01) 0.014 (± 0.001) 

Co-Pt1 2.0 (± 0.3) 2.63 (± 0.01) 0.010 (± 0.001) 

Co-O 0.6 (± 0.2) 1.96 (± 0.02) 0.011 (± 0.007) 

Co-Co2 1.2 (± 0.6) 3.97 (± 0.05) 0.017 (± 0.013) 

Co K 

Catalyst 2 

after 4 x acid 

leach = 

Catalyst 4 
Co-Pt2 0.7 (± 0.6) 3.78 (± 0.03) 0.007 (± 0.005) 

- 3.5 

(± 1.6) 
30.1 
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Despite the poor quality of fit in some cases, the over all trends observed in the XAS 

data show Co loss during leaching. The change in first shell coordination number at the 

Pt LIII edge with leaching in hydrogen atmosphere are shown in Figure 11 for acid 

leaching of Catalyst 1 and Figure 12 for the acid leaching of Catalyst 2. A similar trend 

is observed in air but the associated errors are larger. In good agreement with the 

ICP-MS results, the largest loss of Co occurs during the first leach. With subsequent 

acid leaching the removal of Co decreases as shown by a smaller change in the Pt-Co 

coordination number. For the acid leaching of Catalyst 1 to form Catalyst 3 (Figure 11) 

a significant reduction in Pt-Co neighbours occurs after 1 x acid leach and there after 

further acid leaching results in little change in the Pt-Co coordination number. When 

considering the Pt-Pt coordination number little change is observed until after third 

leach to form Catalyst 3 when an increase in Pt-Pt neighbours is observed. At the Co K 

edge a poor fit quality is observed for Catalyst 1 however, a general trend showing a 

reduction in Co-Co neighbours and an increase in Co-Pt neighbours post leaching is 

observed in both hydrogen and air. It is also noted that the Co-Co bond distance are 

shorter (~2.53 Å) than those observed for the Pt3Co alloy reported in Chapter 3 

(~2.67 Å) and that the bond length increases slightly (~2.60 Å) after acid leaching. 

These results suggest that acid leaching readily removes large amounts of Co without 

have significant impact of the regions of the sample containing Pt. This is likely to be 

due to removal of Co from unalloyed particles and is in good agreement with both 

findings from XRD and TEM.  

 

Figure 12 shows the effect of acid leaching Catalyst 2 to form Catalyst 4. In this 

instance a progressive decrease in Pt-Co neighbours occurs with each leach. The largest 

decrease occurs after 1x acid leach then with each subsequent leach a smaller decrease 

in Pt-Co coordination number occurs. This is in good agreement with the ICP-MS 

results. Correspondingly the Pt-Pt coordination number increases with each sequential 

leaching experiment. This indicates that the acid leaching removes Co that is associated 

with Pt atoms.  At the Co K edge a decrease in Co-Co coordination number is observed 

after leaching, however the Co-Co bond length remains similar (~2.52-2.53 Å). These 

observations may be the consequence of the improved alloying at the increased 

temperature used to form Catalyst 2. 
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Figure 11. Summary of the fitted coordination number of first shell neighbours 

during sequential acid leaching of Catalyst 1 to form Catalyst 3 at 

the Pt LIII edge in H2 
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Figure 12. Summary of the fitted coordination number of first shell neighbours 

during sequential acid leaching of Catalyst 2 to form Catalyst 4 at 

the Pt LIII edge in H2 
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3.3 Electrochemcial dealloying 

3.3.1 Ex situ liquid electrolyte experiments 

Catalysts 1-4 were electrochemically dealloyed by cycling from 0.6-1.0 V and 

0.6-1.2 V. The upper potential limits of 1.0 and 1.2 V were chosen to match those 

reported by Strasser et al. (4, 6, 14) and to allow direct comparison with the results 

obtained for Pt3Co/C catalysts discussed in Chapter 3. Conducting the dealloying in 

liquid electrolyte also enabled both Co and Pt dissolution to be monitored.   
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Figure 13.  CO oxidation voltammetry of Catalyst 1 during 0.6-1.2 V cycling 

 

The BOL ECA areas for Catalysts 1-4 were determined from the BOL CO oxidation 

voltammetry as 81, 44, 75, 57 m
2

Pt g
-1

Pt respectively. This trend is in good agreement 

with the metals areas determined by CO chemisorption. Cyclic voltammetry was used to 

follow changes occurring to the catalyst during potential cycling. For all catalysts, as the 

cycle number increases, the magnitude of the current across the voltammogram 

decreases and the hydrogen adsorption/desorption peaks become more well defined. 

This effect is more significant during 0.6-1.2 V cycling. An example CO oxidation 

voltammogram for Catalyst 1 during the 0.6-1.2 V cycling regime is shown in Figure 

13. For all catalysts except Catalyst 3, the CO oxidation peak sharpens and the onset 
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shifts to higher overpotentials, indicating that as the catalyst is cycled it becomes harder 

to oxidise adsorbed CO on the surface. For Catalyst 3, the peak sharpening is observed, 

however the CO oxidation onset does not change during the test.   
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Figure 14.  %ECA loss with cycle no. for Catalysts 1-4 during a) 0.6-1.0V and 

b) 0.6-1.2 V cycles 

 

The % ECA loss for Catalysts 1-4 with cycle number during both cycling regimes 

determined from the CO oxidation voltammetry is shown in Figure 14. All catalysts 

exhibited ECA loss with 0.6-1.2 V cycling resulting in greater ECA loss for all 

catalysts. In both cycling regimes, the same ECA trends are observed. Catalysts 1 and 3 

(low temperature annealed as prepared and leached) were found to be least stable, with 

Catalyst 1 losing slightly more ECA over 1000 cycles. Catalysts 2 and 4 (high 

temperature annealed as prepared and leached) were significantly more stable than 

Catalysts 1 and 3 and had very similar ECA loss during cycles. The increased stability 

of Catalysts 2 and 4 is thought mainly to be a consequence of the larger particle size of 

the smallest particles in the catalyst compared to Catalyst 1 and 3 (See Table 2). In 

addition, the improved alloying at higher temperature may also contribute to the 

enhanced stability. For both catalyst pairs (1 & 3, and 2 & 4), the Co content of the 

catalyst does not significantly affect the ECA stability. This observation can be 

explained by considering the %Co removed from the catalyst with cycle, as shown in 

Figure 15. 
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Figure 15.  %Co removed with cycle no. for Catalysts 1-4 during a) 0.6-1.0 V 

and b) 0.6-1.2 V cycles 

 

For Catalysts 1 and 2 (low and high temperature annealed as prepared), before any 

cycling has occurred, significant quantities of Co have been leached from the catalysts 

into the electrolyte. This leaching occurred when the electrode buttons were placed into 

the hot acid (80 °C) and during the equilibration period whilst degassing occurred (~20 

minutes) before any electrochemical measurements were run. The amounts of Co 

removed into the solution at this stage are represented in Figure 15 by the “load” data 

point. The electrolyte sample taken at “0 cycles” was after the BOL cyclic voltammetry 

and CO oxidation voltammetry was conducted. In all cases, an increase in Co removed 

is observed indicating the initial voltammetry characterisation causes some Co loss. 

Before electrochemical cycling, the Co content of the catalyst pairs are therefore very 

similar. It is therefore not surprising that the ECA loss trends for both sets of materials 

are also similar. For Catalysts 1 and 2, electrochemical cycling does not significantly 

further increase the amount of Co found in solution, in fact a slight decrease is 

observed. This is likely to be the consequence of a dilution effect when sampled 

electrolyte is replaced by fresh acid throughout the test. 

 

Cycling results in increasing Co loss for both Catalysts 3 and 4 (acid leached) with more 

Co removal from Catalyst 4 under both cycling regimes. This may be the consequence 

of Catalyst 4 having a higher initial Co content than Catalyst 3. Co loss is observed to 



Chapter 6.  Activation of PtCo3 

  213 

be potential dependent, with more Co removal occurring at the higher upper potential 

limit. As discussed in Chapter 3, this is likely to be a consequence of increased place 

exchange at higher potentials, facilitating Co removal. 

 

Pt dissolution into the electrolyte with cycles was also observed. After 1000 0.6-1.0 V 

cycles, ≤ 1.3 %Pt in the catalysts was removed. Cycling to 1.2 V resulted in increased Pt 

dissolution with 6, 14, 9 and 10% loss for Catalyst 1-4 respectively. Unexpectedly, 

more dissolution occurred from the larger particle sized Catalysts 2 and 4, both of 

which, lost less ECA. This suggests the dominant mechanisms of ECA loss for the 

catalyst pairs may differ. To consider ECA loss mechanisms and to study structural 

changes occurring as a consequence of electrochemical dealloying, TEM analysis of the 

cycled electrodes was performed.  

 

Bright field and High Angle Annular Dark Field (HAADF z-contrast) images for 

Catalysts 1-4 post 0.6-1.0 V and 0.6-1.2 V cycling are shown in Figure 16. 

Electrochemical cycling caused a change in the catalyst particle size distribution, 

composition and structure. The very large Co rich particles present in some of the 

catalysts before cycling (especially Catalyst 1) were not present after cycling, with all 

catalysts now exhibiting a mono modal particle size distribution. The average particle 

sizes of Catalysts 1 and 3 increased after cycling, with loss of the particles under 2.5 nm 

leaving post cycled samples with a 2.5-4.0 nm particle size range after 0.6-1.0 V cycling 

and 5-8 nm range after 0.6-1.2 V cycling.  Ostwald ripening of the catalyst particles 

therefore accounts for a significant proportion of ECA loss for Catalysts 1 and 3. For 

Catalyst 2, electrochemical cycling from 0.6-1.0V or 0.6-1.2 V did not change the 

particle size distribution. A slight increase in particle size was seen for Catalyst 4, with 

the distribution increasing from 4-6 nm in the as prepared catalyst to 5-6 nm post 

0.6-1.0 V cycling and 6-7 nm post 0.6-1.2 V cycling. This small shift in particle size 

distribution indicates Ostwald ripening occurs but is not a dominant mechanism of ECA 

loss. For Catalysts 2 and 4 (high temperature annealed and acid leached), cycling to 

both 1.0 V and 1.2 V resulted in the formation of a core shell type structure, denoted by 

particles in the HAADF images of Figure 16 having a bright outer ring around a darker 

centre. Catalyst 3 (low temperature annealed and acid leached) showed core shell 

formation only after the more aggressive 1.2 V cycling regime where Co dissolution 

levels were increased.   
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Figure 16.  Bright Field and High Angle Annular Dark Field (HAADF) TEM 

images for Catalysts 1-4 after a) 0.6-1.0 V and b) 0.6-1.2 V cycling 
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EDAX line scan analysis across the particles of post cycled Catalyst 1 and Catalyst 3 

after 0.6-1.0 V cycling showed no variation of the Pt and Co distribution across the 

particle diameter. For the other samples, EDAX line scan analysis across the particles 

clearly shows an enrichment of the Pt signal at the edge of the particles and background 

levels of Co, while in the centre of the particles a high Co signal is observed with a 

corresponding depletion in Pt signal. A representative EDAX analysis of two particles 

with core shell structure for Catalyst 3 after 1.2 V cycling is shown in Figure 17. The Pt 

shell thickness was also measured, by hand, directly from the TEM images by the 

author, using Digital Micrograph software. The thickness of the Pt shell of the 17 nm 

diameter particle in Figure 17 was 6 nm. This shell thickness corresponds to 71% of the 

particle radius. Assuming a metallic Pt radius of 0.138 nm (17) and that the thickness of 

one Pt layer is equal the diameter of a Pt atom, the core shell particle has a Pt shell 

21-22 Pt layers thick.  
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Figure 17.  HAADF TEM image and EDAX line scan analysis of core shell 

particles in Catalyst 3 after 0.6-1.2 V cycling 
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The thickness of the Pt shells were also determined for a selection of particles, with a 

range of particle sizes, in images 3b), 4a) and 4b) Figure 16. Results are plotted in 

Figure 18. It can be seen that the ex situ dealloying procedure has produced core shell 

particles with a multi-layer Pt shell structure. With increasing particle size, a thicker Pt 

shell is formed. On average, the Pt shell thickness of particles in Catalyst 3 after 

0.6-1.2 V cycling was 73% of the particle radius. For Catalyst 4 after cycling from 

0.6-1.0 V, the average shell thickness equates to 61% of the particle radius. Cycling to 

the higher upper potential limit of 1.2 V results in an increase in the average shell 

thickness to 79% of the particle radius. This is consistent with a higher % Co removal 

during 0.6-1.2 V cycling. In addition to Co leaching, the Pt shell formation may arise 

due to re-precipitation of dissolved Pt species as a consequence of cycling. At higher 

upper potentials more dissolution and particle growth is observed that may in turn lead 

to the observed thicker Pt shells.  
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Figure 18. Measured Pt shell thickness for selected core shell particles in 

images 3b), 4a) and 4b) Figure 16 
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The TEM results demonstrate that the dealloying procedure results in catalyst particles 

with a multi-layer, Pt-rich shell and bimetallic cores. This structure for PtCu systems 

has been reported to have enhanced activity for the ORR (6). A reason proposed for 

activity enhancement is the retention of the contracted lattice of Pt despite removal of 

the base metal (12), for the Pt25Cu75/C catalyst reported in Table 1 the d-spacing is 

reported to be 2.09-2.21 Å (11) and from the atomic composition the lattice parameter is 

3.697 Å (16).To probe if the contracted lattice is present in the shell of the PtCo core 

shell structures, high resolution TEM was attempted on selected particles and fringes 

were obtained. Figure 19 shows a representative HRTEM image. The d-spacings 

measured from the TEM image are consistent with platinum. Further, there was no 

indication of a change in the d-spacing in the centre of the particle despite the observed 

lattice contraction seen by XRD of the fresh catalysts. This may indicate that the 

orientation of the cobalt core was unsuitable for this imaging technique or that the 

d-spacing of Pt and PtCo are too similar to be able to distinguish them using this 

technique. 
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Figure 19.  High resolution TEM image of Catalyst 4 after 0.6-1.2 V cycling 
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3.3.2 In situ dealloying in MEAs 

The beginning of life performances at 270 kPaabs of CCMs prepared from Catalysts 1-4 

and a comparable 30% Pt/C catalyst at similar Pt loading (0.1-0.2 mgPt cm
-2

) are shown 

in Figure 20.  
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Figure 20. BOL iR free fuel cell mass activity performance of CCMs with 

Catalysts 1-4 cathodes with  0.1-0.2 mgPt cm
-2

 loading and Pt/C, 

0.1 mgPt cm
-2

 anodes. All CCMs were prepared with V3 membrane 

and tested in the Mark 4 cell at 100% RH, 80 °C, 270 kPaabs. For 

comparison the mass activity of 30% Pt/C is shown 

 

Catalysts 2 and 3 have comparable performance to the Pt/C catalyst at BOL. Catalyst 1 

has significantly poorer performance than the Pt/C catalyst. The sample was unable to 

support the current ranges used in the standard conditioning procedures and automated 

polarisation measurements. The oxygen polarisation was therefore run manually over a 

reduced current range. This poor performance is characteristic of insufficient active sites 

for reaction and / or mass transport limitations and is likely to be the consequence of the 

significant amounts of unalloyed Co in the sample leaching under operation. The 

highest performance (a three fold improvement over the Pt/C catalyst at 900 mV) is 

observed for Catalyst 4. In both cases, the chemical acid leaching treatment to form 
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Catalysts 3 and 4 significantly improves the catalytic performance compared to the 

unleached precursor material. After BOL performance testing, the CCMs were 

electrochemically cycled according to the procedure in Chapter 2, section 2.2.4. 

 

During the dealloying procedure, changes to the catalyst were monitored by cyclic 

voltammetry. In all cases, no significant change to the voltammetry profile was 

observed, indicating that the cycling procedure does not cause any significant 

electrochemical area change that would be indicative of Raney surface formation or Pt 

dissolution and sintering. After dealloying, the CCM was removed from the cell and 

acid washed according to the procedure in Chapter 2, section 2.2.3. The acidified 

washings were analysed by ICP-MS for Pt and Co content. Dealloying and washing was 

found to remove 0.6-0.8% Pt from Catalysts 2-4 based on the cathode loading, while 

1.3% of the Pt was removed from the CCM of Catalyst 1. Catalyst 1 also showed very 

high levels of Co removal, calculation suggested all of the Co in the layer was removed 

by dealloying and washing. This very easy loss of Co from the catalyst particles into the 

MEA structure helps explain the very poor performance observed for this catalyst at 

BOL. Co was also removed from the other catalysts. 65% Co was removed from 

Catalyst 2. Less Co was removed from the better alloyed, lower Co containing catalysts. 

2.4% was removed from Catalyst 3 and 4.8 % from Catalyst 4. Compared to the ex situ 

dealloying experiments, less Co was removed over 1000 in situ cycles (except for 

Catalyst 1), however the same Co stability trends for the catalysts were observed. This 

result is in line with ex situ cycling being more aggressive than in situ MEA cycling, as 

previously discussed in Chapter 3. It is possible therefore that the core shell structures 

observed after ex situ cycling were not formed during in situ dealloying. 

 

The activity of Catalysts 1-4 after de-alloying and acid washing are shown in Figure 21. 

For comparative purposes, the activity of Catalyst 4 and a Pt/C catalyst that underwent 

the same acid washing and refabrication procedure but no electrochemical cycling are 

shown. After dealloying, all catalysts show increased performance vs. the washed Pt/C 

catalyst. Catalyst 3 showed a two fold improvement at 900 mV, while Catalysts 1 and 2 

showed a three fold improvement. The highest performance benefit of 3.2 times that 

observed for Pt/C was observed for Catalyst 4. To check if the activity enhancements 

observed after the dealloying and washing procedure were a consequence of the 

electrochemical cycling, Catalyst 4 was tested after only undergoing the washing 
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procedure. Comparing Catalyst 4 washed and dealloyed, an activity enhancement is 

observed after de-alloying. At 900 mV this equates to a 20% increase. This suggests 

that the dealloying procedure is required to ‘activate’ the catalyst, as reported by 

Strasser et al (4, 6). ICP-MS analysis of the acid washings indicates the activity benefit 

is likely to be the result of the two fold increase in Co removed from the CCM as a 

consequence of dealloying, compared to washing alone. It is unknown if this Co 

removal corresponds to core shell formation or if all the dealloyed Co in the MEA has 

been removed by the acid washing procedure. It is therefore unclear if the optimum 

catalytic activity has been measured. To confirm this, post mortem analysis of the MEA 

by TEM cross section and EMPA cross sectional mapping would be required. 
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Figure 21. iR free fuel cell mass activity performance after in situ dealloying of 

CCMs with Catalysts 1-4 cathodes with  0.1-0.2 mgPt cm
-2

 loading 

and Pt/C, 0.1 mgPt cm
-2

 anodes. All CCMs were prepared with 

V3 membrane and tested in the Generic Screener Cell at 100% RH, 

80 °C, 270 kPaabs. For comparison the mass activity of 30% Pt/C and 

Catalyst 4 that had undergone the washing procedure are shown 
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4. Discussion 

4.1 Activation of Pt3Co 

The BOL activity of PtCo3/C was found to be platinum like or, where significant 

quantities of unalloyed Co were present, poorer than platinum. Co removal via chemical 

acid leaching, was found to improve performance. In situ dealloying resulted in further 

catalyst activation.  

 

30% Pt/C
 W

ashed

Catalyst 1
 Dealloyed

Catalyst 2
 Dealloyed

Catalyst 3
 Dealloyed

Catalys
t 4

 Dealloyed

Catalyst 4
 W

ashed

40% Pt/C
 Standard

40% PtC
o (3

:1) /C
 

PtCu*

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 

N
o
rm

a
lis

e
d
 M

a
s
s 

a
ct

iv
ity

 a
t 
9
0
0
 m

V

 Normalised to Washed 30% Pt/C 0.16 mg
Pt

 cm
-2

 Normalised to 40% Pt/C Standard 0.4 mg
Pt

 cm
-2

 

Figure 22.  Mass activity performance at 900 mV comparison of dealloyed 

Catalysts 1-4 (PtCo3) with Pt3Co and literature dealloyed PtCu3 

catalysts (14) * PtCu activities normalised to reported low loading 

30% Pt/C and high loading 45%Pt/C values 

 

Figure 22 summarises the mass activity enhancements observed for the PtCo3 derived 

materials. Activities were normalised to both a 30% Pt/C catalyst at the same metal 

loading, that had undergone the same acid washing procedure as the PtCo3 derived 

materials, and a standard 40% Pt/C catalyst, at the higher metal loading of 

0.4 mgPt cm
-2

, fabricated as a conventional MEA. For comparison a Pt3Co/C alloy at 

0.4 mgPt cm
-2

 loading fabricated as a conventional MEA is shown, as are the results for 
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the dealloyed PtCu system reported by Strasser et al. (14). Normalised activities have 

been used to enable comparison of the PtCo systems with PtCu systems reported in the 

literature that have been tested in different cell hardware and under differing operating 

conditions.  The PtCu results have been normalised to the activity values reported by 

Strasser et al. for a 30% Pt/C MEA at comparable loading and a 45% Pt/C standard 

MEA at 0.3 mgPt cm
-2

 (14). 

 

Compared to both Pt/C catalysts in MEA tests, all the dealloyed materials show activity 

enhancement with Catalyst 3 showing the lowest performance, Catalyst 1 and 2 having 

comparable performance and Catalyst 4 the highest performance. The activity 

enhancement observed is more modest when comparing to the 40% Pt/C standard 0.4 

mgPt cm
-2 

MEA than the 30%Pt/C MEA that had also undergone the same washing 

procedure and was at a comparable loading to the dealloyed catalysts. This may be the 

consequence of the differences in the catalyst composition and layer thickness (mass 

transport and water management properties) of this MEA and the fact that the MEA has 

not undergone the mechanically stressful dealloying, washing and refabrication process. 

Compared to the Pt3Co/C alloy Catalyst 3 showed lower activity, Catalysts 1 and 2 have 

comparable activity and Catalyst 4 shows a modest activity enhancement. As for the 

PtCu systems, dealloying the PtCo systems results in a performance enhancement, but 

the magnitude of the enhancement is less for PtCo than that reported for PtCu. In 

comparison with the normalised values for the PtCu system, the best performance from 

Catalyst 4 corresponds to 80% of the reported activity of the PtCu catalyst. Numerous 

reasons may be speculated for the lower activity observed for PtCo than PtCu. The 

XRD lattice parameters observed by Strasser et al. for Pt25Cu75 systems are 3.697Å (11, 

16). This value is lower than those observed for the PtCo catalysts (Figure 3) (3.828 and 

3.876 Å), meaning less contraction of the Pt lattice occurs in the PtCo systems, which in 

turn, may be less favourable for the ORR. In addition, HRTEM does not show evidence 

for the geometric effect described by Strasser et al., however, a lattice contraction 

cannot be confirmed for the core of the particle, indicating that the resolution of the 

technique may be insufficient to observe this effect. Non-optimum precursor catalyst or 

core shell formation may also explain lower activity. TEM results on the ex situ 

dealloyed samples show core shell structure formation. Due to the differences in ECA 

loss and %Co removal observed in the liquid electrolyte and MEA environments, it is 

not known if the desired core shell structure was formed during in situ dealloying. In 
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addition, it has not been demonstrated that the washing procedure has removed all 

dissolved Co from the MEA structure, therefore Co contamination within the MEA 

leading to mass transport issues cannot be discounted. Equally, the non-optimised layer 

structure used in the MEA may also mean the maximum activity benefit for the PtCo 

has not been observed. Further optimisation experiments are required to determine if the 

activity measured for the dealloyed PtCo systems represents the maximum activity 

obtainable and if dealloyed PtCo catalysts are intrinsically less active than PtCu 

systems. 

 

5. Conclusions 

Four new PtCo catalysts have been prepared and characterised, and the effects of 

dealloying using chemical acid leaching and electrochemical cycling on catalyst 

structure and activity have been studied. Catalyst 1 was prepared by annealing a 

PtCo3/C precursor at 600 °C and Catalyst 2 prepared by annealing at 950 °C. Catalysts 3 

and 4 were prepared by acid leaching Catalysts 1 and 2 respectively. The low 

temperature firing used to make Catalyst 1 resulted in an unalloyed material with both 

large and small particles, while firing at 950 °C to form Catalyst 2 gives two alloyed 

phases, one Pt rich and one Co rich. Again two particle size distributions are observed 

by TEM. After successive acid leaching, both Catalyst 3 and 4 are single phase. Acid 

leaching removed different amounts of Co from the precursors. Catalyst 3 lost more Co 

than Catalyst 4 in fewer acid leaching experiments, as a consequence of the poorer 

alloying observed for the precursor Catalyst 1 compared to the better alloyed Catalyst 2. 

The resultant composition of the leached catalysts is similar to PtCo 3:1 alloys that have 

been previously tested and have been found to show enhanced activity for ORR over Pt 

only catalysts, however unlike the PtCo 3:1 alloys the new materials all have both large 

and small particles from TEM. 

 

At BOL only Catalyst 4 showed enhanced activity over Pt/C. After dealloying, all new 

catalysts showed activity enhancement over Pt/C, with Catalysts 1 and 2 having 

comparable activity to a PtCo 3:1 alloy. Catalyst 4 showed enhanced activity over a 

PtCo 3:1 alloy, however, the activity benefit observed was lower than that reported by 

Strasser et al. for dealloyed PtCu systems that have been reported to meet DoE activity 

targets. TEM analysis after ex situ dealloying showed electrochemical cycling resulted 
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in formation of catalyst particles with core shell structure. It is not known if the same 

structures are formed during in situ dealloying experiments, however in situ 

electrochemical dealloying was found to remove more Co compared to acid washing 

alone and was required for catalyst activation. 

 

Preparation of dealloyed catalysts in situ resulted in the highest catalytic activity, 

however the dealloying process is known to contaminate the MEA with significant 

quantities of base metal. This has been show to lead to poor catalytic performance (very 

low BOL performance for Catalyst 1 and catastrophic activity loss after dealloying (14) 

reported by Strasser et al.). Chemical acid leaching followed by in situ dealloying of 

PtCo3 has been shown to lead to a modest activity enhancement over a conventional 

Pt3Co/C alloy, however, the complex methodology of the dealloying and washing 

process is impractical for large scale applications making these materials less 

commercially attractive. Only if the dealloyed materials are found to retain the activity 

enhancement during long term activity and durability tests, or if improved synthesis 

methods could lead to improved performance, would a dealloyed PtCo3/C system be a 

viable candidate material for fuel cell applications. 
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Chapter 7. Conclusions 

 

The aim of this work was to compare a Pt/C catalyst, typical of commercially available 

materials, with a series of PtxCoy/C catalysts, with a view to gaining an increased 

understanding of the desirable catalytic features that result in enhanced ORR activity 

and increased stability that have previously been reported for PtCo/C catalysts. 

Proposed explanations of the activity enhancement observed for platinum alloys over 

platinum only catalysts include both geometric and electronic effects such as: the effect 

of Pt-Pt interatomic distance (1, 2), the proportion of low index planes (3, 4), inhibition 

of OHads and oxide formation (5-10), surface roughening (11, 12), the alloying atoms 

being involved in the ORR (12) and electronic effects resulting in changing the 

electronic structure of the Pt 5d-band (13-16). Evidence for these effects seen in this 

work will now be discussed together with proposed reasons for the enhanced stability of 

PtCo/C catalysts.  

 

To explore the origins of activity and stability enhancement for Pt3Co/C catalysts over 

Pt/C, the mechanisms of catalyst deactivation were investigated. Loss of catalytic 

performance has been observed for both Pt/C and Pt3Co/C alloy catalysts as a 

consequence of electrochemical cycling between the reduced and oxidised states and, in 

this work, it has been shown that ex situ acid leaching of the Pt3Co/C alloy also resulted 

in loss of the alloying activity benefit leaving the leached catalyst with comparable 

activity to that observed for a platinum only catalysts of similar particle size.  

 

Characterisation of the as prepared materials by XRD and XAS showed alloy formation 

for the Pt3Co/C catalyst and a decreased Pt-Pt interatomic distance compared to Pt/C, 

meaning that both the geometric and electronic properties of the Pt/C and Pt3Co/C 

catalysts differ. For the acid leached Pt3Co/C catalyst no change in the XRD lattice 

parameter or increase in the Pt-Pt interatomic bond distance was observed despite the 

catalyst being less active. This result indicates that either these factors are not critical to 

the catalytic activity or more likely, that the XRD and XAS techniques provide 

information on the bulk structure such that the relatively small changes in the surface as 

a consequence of acid leaching are not detected. For catalysts however, it is the 

properties of the near surface that will dominate the observed catalytic activity. 
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Cyclic voltammetry of the as prepared catalysts found no evidence of a delayed onset 

(shift to more positive potentials) in OHads/oxide formation for the Pt3Co/C catalyst 

compared to Pt/C, as has previously been proposed as an explanation of the observed 

activity enhancement (9, 10). However, differences were observed between the 

catalysts. More oxide per unit catalyst surface area was formed at a given upper 

potential limit on Pt3Co/C compared to Pt/C but this oxide was removed at a lower 

overpotential. Under fuel cell operation at a given potential the alloy catalyst may 

therefore have more catalytic sites available for the ORR or the oxygen species on those 

sites may be more readily removed when compared to Pt/C. This proposal was 

investigated using operando XAS and will be discussed further later. After 

electrochemical cycling or acid leaching of the Pt3Co/C catalyst, the oxide formation 

and removal properties of the alloy became more similar to that of a platinum only 

catalyst, with the largest changes observed after electrochemical cycling from 0.6-1.2 V 

1000 times. 

 

Electrochemical cycling to a higher upper potential limit was found to result in more 

electrochemical area loss for both Pt/C and Pt3Co/C alloy catalysts. In the fuel cell this 

would correspond to fewer sites remaining available for reaction and, therefore, a 

decrease in catalytic activity. Larger particles were found to be more stable to 

electrochemical area loss under potentiostatic cycling regimes than smaller particles, 

with the Pt3Co/C catalysts exhibiting an additional alloying benefit at a given particle 

size. From operando XAS measurements, catalysts with larger particles have been 

demonstrated to experience less particle disruption upon oxide formation. This effect is 

thought to help prevent ECA loss since fewer atoms within the particle are subject to 

dissolution. The additional stability seen for the Pt3Co/C catalyst is thought to be the 

consequence of sacrificial leaching of the Co (evidenced by ICP-MS of the electrolyte 

and changes in Pt-Co and Co-Co coordination number from XAS measurements) 

helping maintain platinum electrochemical area during cycling. In fact, a slight increase 

in ECA was observed initially for the Pt3Co/C catalysts during cycling and in 

electrochemical cycling experiments in the MEA (conducted prior to this work (17, 18)) 

an initial activity increase was also observed. It is proposed that the ECA increase (and 

therefore performance increase) is a consequence of removal of surface Co leaving 

either a more roughened platinum surface or platinum skin surface. A measurement of 
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the surface composition following this initial conditioning phase, such as XPS or LEIS 

or perhaps ASAXS (19, 20) is required to provide further conformation. Subsequent 

cycling removes larger quantities of Co and correspondingly ECA loss and performance 

loss occurs. It was found that removal of a critical percentage of Co (25%) from the 

catalysts resulted in the onset of ECA loss.    

 

Changes in the catalyst structure as a consequence of electrochemical cycling were 

studied by cyclic voltammetry, TEM and in the case of the Pt3Co/C, XAS was 

conducted pre- and post cycling. Electrochemical area loss mechanisms were found to 

differ for Pt/C 2 nm and Pt3Co/C. The mechanisms of Ostwald ripening and Pt 

dissolution were found to result in ECA loss for the 2 nm Pt/C catalysts while the 

Pt3Co/C catalyst was found to be more stable with the ECA loss observed 

corresponding to either Ostwald ripening or coalescence of catalyst particles and Pt and 

Co dissolution. XAS of the catalyst post cycling also showed a change in catalyst 

structure. Co removal was observed and this process resulted in disruption of a larger 

proportion of the catalyst particle compared to ex situ acid leaching of the catalyst 

despite similar amounts of Co removal. This increased disruption was attributed to the 

cycling facilitating the rearrangement of atoms via oxide formation, place exchange and 

the possibility of Ostwald ripening occurring under these conditions. For both acid 

leached and electrochemically cycled Pt3Co/C catalysts formation of a percolated 

structure would fit the XAS observation that the Co had O neighbours, however, the 

presence of dissolved Co oxide trapped within the porous electrode structure can not be 

discounted. The observed structural changes (Co removal from the outer most layers of 

the catalyst particle) compared to the as prepared Pt3Co/C catalyst, may therefore help 

explain the activity loss observed for the Pt3Co/C catalyst post cycling or acid leaching. 

These results strongly indicate that reterntion of sufficient Co at or near the surface of 

the catalyst particles appears to be critical to maintaining the activity enhanced over 

platinum only catalysts. To further understand this requirement experiments could be 

conducted to determine how the removal of Co by acid leaching and electrochemical 

cycling affects the electronic properties of the catalyst. It is suspected that removal of 

Co results in loss of the desirable Pt 5d-band properties that occur as a consequence of 

alloying. This proposal could be tested by conducting XAS measurements of the 

catalysts on both the Pt LII and LIII edges and determining the number of unoccupied 

d-electron states. Alternatively computational modelling of the catalysts could be used. 
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To further explore the origins of the activity and stability enhancement observed for the 

Pt3Co/C catalysts over Pt/C, the relationship between catalyst activity and structure has 

been studied by conducting XAS on the catalysts operating in the fuel cell environment. 

To enable the operando studies to be conducted a specially adapted fuel cell was built 

and validated. The cell design enabled the catalysts to be studied during time resolved 

potential step experiments with 12 s and 0.1 s time resolution. The catalysts were 

studied with nitrogen cathode feed gas to investigate the effect of potential and 

temperature on the processes of oxide formation and removal and during operation at 

OCV and under load with oxygen as the cathode feed gas. 

 

The data obtained with 12 s time resolution, whilst of sufficient quality to determine the 

extent of oxide formation as a function of potential, did not provide enough detail to 

discriminate between Pt-OHads and Pt-O formation during the oxidation of the catalyst 

particles. Higher overpotentials were required to form an oxide on the 40% Pt3Co/C 

catalyst as evidenced by both the cyclic voltammetry of the MEA and the XAS results, 

compared to the 60% Pt/C 2 nm catalyst. However, for the XAS results, this effect was 

more likely to be a consequence of larger Pt3Co/C particle size, which made the XAS 

spectra relatively insensitive to surface oxide formation. When comparing the 

40% Pt3Co/C catalyst to a Pt/C catalyst of comparable particle size little difference was 

observed, with only a 0.1 V difference being found. In all cases the time scale of the 

potential stepping experiments did not allow the processes of oxide formation and 

removal to be measured at intermediate points. To achieve greater time resolution 

energy dispersive XAS experiments were conducted. 

 

Potential stepping experiments under nitrogen conducted with 0.1 s time resolution 

enabled study of changes in the white line intensity corresponding to oxide formation 

and removal in real time. It was not possible however, to obtain EXAFS data at this 

time resolution due to sample in-homogeneity and beam line constraints. The effect of 

upper potential limit and temperature were investigated for 60% Pt/C 2 nm, 40% Pt/C 

5 nm and the 40% Pt3Co/C catalyst. Fitting of the normalised while line intensity for 

each potential step allowed the relaxation constants for oxide formation and removal to 

be determined. For all catalysts oxide removal occurred faster than growth, indicating a 

different mechanism. For 60% Pt/C (2 nm) the rate of oxide formation was found to be 
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potential independent, while oxide removal was found to be potential dependent, with a 

slower rate after potential holds at higher upper potential limits. The potential 

dependence correlates with increased oxide formation at higher potentials.  In addition, 

during oxide removal, a 1 s delay was observed before the white line intensity decrease 

commenced. To understand the origins of this observation and to allow further comment 

on the processes of oxide formation and removal EXAFS analysis is required to 

characterise any structural changes occurring during the experiment.   

 

Significantly, prolonged exposure to the X-ray beam was found to degrade the 

membrane, preventing oxidation of the catalyst during the 0.1 s EDXAS measurements. 

The membrane degradation (thinning/pinholing) increased hydrogen crossover in the 

observation area. Uncertainty about the extent of hydrogen crossover, and the amount 

and rate of oxide formation prevented comparison between platinum and alloy catalyst 

materials. In addition, the effect of temperature on the oxide formation and removal 

processes could not easily be studied due to differences in the amount of hydrogen 

crossover with temperature.  

  

The membrane degradation issue also prevented study of the 40% Pt3Co/C catalyst with 

oxygen feed, however, the effect of fuel cell operation under two different loads was 

investigated for the 60 % Pt/C catalyst. Compared to the experiments with 12 s time 

resolution where no change in the EXAFS fitting parameters were observed, the 

improved time resolution of the energy dispersive XAS experiment allowed changes in 

the platinum electronic configuration to be observed. On application of the 0.6 V 

applied potential (representing a significant load) a decrease in white line intensity was 

observed. This change was attributed to bound / surface absorbed oxygen species 

undergoing reduction before repopulation with dissociated gas phase O2 can occur. 

Other changes in white line response were thought to correlate to changes in hydration 

of the MEA.  

 

The 5 nm Pt/C and 40% Pt3Co/C catalysts were also studied during fuel cell operation 

using XAS with 12 s time resolution. However, as for the 60% Pt/C catalyst, no change 

in coordination number was observed under oxygen at OCV or during oxygen reduction 

at applied potentials down to an applied potential of 0.6 V. The high resistance of the 

cell meant that this 0.6 V only represented a ~100 mV perturbation of the actual cathode 
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potential.  Analysis of catalytic performance during operando XAS measurements 

highlights possible catalyst utilisation issues, likely to be a consequence of the thick 

layers used, especially for the 5 nm Pt/C and 40% Pt3Co/C catalysts. This means that 

under operation the catalysts are not behaving as expected in a conventional fuel cell 

and brings into question how representative the XAS fitting parameters are of the 

catalyst operating under idealised, realistic fuel cell conditions. Proposed methods / 

modifications to the experimental design to overcome these problems were discussed in 

Chapter 5. 

 

To meet targets for automotive applications a further increase in activity over that of the 

40% Pt3Co/C catalysts is required. Electrochemical dealloyed PtCu3/C catalysts have 

recently been shown to meet these activity targets (19). In light of this, four new 

PtCo3/C catalyst materials were prepared and evaluated for ORR activity before and 

after activation by electrochemical dealloying. Catalyst 1 was prepared by annealing a 

PtCo3/C precursor at 600 °C and Catalyst 2 prepared by annealing at 950 °C. Catalysts 3 

and 4 were prepared by acid leaching Catalysts 1 and 2. The resultant composition of 

the leached catalysts is similar to PtCo 3:1 alloys previously found to show enhanced 

activity for ORR over Pt only catalysts however XAS analysis of the catalysts showed 

the materials exhibited a different structure. Unlike the 40% Pt3Co/C catalysts, the 

activity of the PtCo3/C catalysts increased after acid leaching/washing and 

electrochemical cycling. Acid leaching was found to remove significant quantities of Co 

from the catalyst including unalloyed material. It was shown that although acid leaching 

of the catalysts resulted in an increased activity compared to the as prepared materials, 

the maximum activity was obtained after the electrochemical dealloying procedure. 

After dealloying, Catalyst 4 showed a modest activity enhancement over a PtCo 3:1 

alloy, however, the activity benefit observed was lower than that reported by Strasser et 

al. for dealloyed PtCu systems (19). 

 

The ex situ dealloying procedure used was the same as the electrochemical cycling 

procedure used to study catalyst deactivation of the 40% Pt3Co/C catalyst. Differences 

in the starting compositions of the PtCo3/C catalyst materials the cycling resulted in a 

different particle structure compared to the cycled 40% Pt3Co/C catalyst. For all 

catalysts except Catalyst 1 (low temperature annealed PtCo3/C) TEM analysis after 

ex situ dealloying showed that electrochemical cycling resulted in formation of catalyst 
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particles with core shell structure. The thickness of the outer platinum shell increased 

after cycling to the higher upper potential limit of 1.2 V and the shell was found to be 

thicker for particles of larger diameter. XAS experiments were not conducted on the 

dealloyed catalysts. However, TEM line scan analysis showed that no Co remained 

within the outer most layers of the catalyst particles. Assuming a similar structure is 

formed in the MEA dealloying test, it is interesting to note that the catalysts exhibit 

increased activity for the ORR compared to Pt/C, while for the PtCo 3:1 alloys Co 

removal from the outer layers results in loss of the activity benefit. The activity benefit 

observed for dealloyed materials is proposed by Strasser et al. (21) to be the 

consequence of the result of a reduced Pt-Pt distance near the particle surface, stabilised 

by the lattice of the contracted core. In this work, no evidence for this geometric effect 

could be observed using HRTEM. 

 

It is not known if the same core shell structures were formed during in situ dealloying 

experiments where the activity of the catalyst was measured, however, based on the 

knowledge that cycling in liquid electrolyte accelerates changes in catalyst structure 

compared to the MEA environment it is possible that the same structures were not 

formed. This may be a possible reason why the observed activity enhancement of the 

dealloyed PtCo3/C catalysts was less than those reported by Strasser et al. (19) for 

dealloyed PtCu systems. Other reasons including less favourable lattice contraction 

were discussed in Chapter 6. 

 

The effect of Co contamination in the MEA has been shown to detrimentally affect 

performance and raises concerns over the long term use of base metal containing 

catalysts in fuel cell MEAs. Co loss has been shown to occur for both the PtCo 3:1 

catalyst, with Co loss also initiating ECA loss.  For the 1:3 systems loss of large 

quantities of base metal into the MEA is required for activation. Removing Co from the 

MEA has been demonstrated by washing the MEA, however, it is not known if all 

contamination was removed or if further Co loss under longer term operation will occur 

and remove the activity benefit.  

 

To meet targets for automotive applications this study has shown that larger particles 

are required for enhanced stability and that alloying can improve both activity and 

stability to ECA loss. The activity enhancement of the alloy catalysts evidenced in this 
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work are the consequence of the alloying element (Co) favourably perturbing both the 

geometric and electronic properties of the platinum catalyst. To maintain catalytic 

activity, it has been shown that improved retention of the alloying metal in the active 

catalyst is required both to retain activity and to prevent MEA contamination. In 

addition, to enable commercialisation a further increase in activity or reduction in 

platinum content is required. 
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k
2
 weighted experimental chi data (black) and theoretical fit (red) 

plot and k
2
 weighted experimental Fourier transform data (black) 

and theoretical fit (red) plot for the 40% Pt/C 2.0 nm, 5.6 nm and 

15.6 nm catalysts at the Pt LIII in H2 and air 

 

 

 

 

 

 

Structural parameters Pt/C catalysts obtained by fitting the Pt LIII EXAFS data in 

Air.  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-O 1.7 (± 0.1) 2.01 (± 0.01) 0.006 (± 0.001) 

Pt-Pt1 3.1 (± 0.3) 2.75 (± 0.01) 0.017 (± 0.001) Pt LIII Pt/C 2.0 nm 

Pt-Pt2 9.4 (± 1.8) 3.89 (± 0.02) 0.047 (± 0.007) 

-15.4 

(± 0.7) 
29.9 

Pt-O 3.0 (± 0.1) 1.98 (± 0.04) 0.012 (± 0.001) 

Pt-Pt1 8.5 (± 0.2) 2.76 (± 0.01) 0.012 (± 0.001) 

Pt-Pt2 4.7 (± 0.9) 3.90 (± 0.01) 0.017 (± 0.002) 
Pt LIII Pt/C 5.6 nm 

Pt-Pt3 5.9 (± 0.9) 4.79 (± 0.01) 0.011 (± 0.001) 

-13.0 

(± 0.6) 
21.7 

Pt-Pt1 9.5 (± 0.3) 2.76 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 3.4 (± 0.8) 3.91 (± 0.01) 0.012 (± 0.002) Pt LIII Pt/C 15.6 nm 

Pt-Pt3 7.5 (± 1.2) 4.80 (± 0.01) 0.011 (± 0.001) 

-12.2 

(± 0.6) 
25.0 

 

 



 

Structural parameters for Pt/C catalysts obtained by fitting the Pt LIII EXAFS data 

in H2.  

Edge Catalyst 
Absorber 

neighbour 
N R (Å)  2σ2 (Å2) 

Ef 

(eV) 

Rexafs 

(%) 

Pt-Pt1 7.4 (± 0.2) 2.76 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 2.2 (± 0.5) 3.90 (± 0.01) 0.012 (± 0.002) Pt LIII Pt/C 2.0 nm 

Pt-Pt3 4.1 (± 1.0) 4.79 (± 0.01) 0.012 (± 0.002) 

-11.7 

(± 0.6) 
21.6 

Pt-Pt1 9.5 (± 0.3) 2.76 (± 0.01) 0.011 (± 0.001) 

Pt-Pt2 3.8 (± 0.9) 3.90 (± 0.01) 0.012 (± 0.002) Pt LIII Pt/C 5.6 nm 

Pt-Pt3 7.4 (± 1.3) 4.79 (± 0.01) 0.011 (± 0.002) 

-12.4 

(± 0.7) 
24.3 

Pt-Pt1 9.7 (± 0.3) 2.76 (± 0.01) 0.010 (± 0.001) 

Pt-Pt2 3.9 (± 0.9) 3.91 (± 0.01) 0.011 (± 0.002) Pt LIII Pt/C 15.6 nm 

Pt-Pt3 7.8 (± 1.4) 4.80 (± 0.01) 0.012 (± 0.002) 

-12.4 

(± 0.7) 
26.3 



Plan and side views of the graphite plates and compression plates for 

both the anode (2 & 4) and cathode (1&3) sides of the cell. Version II 

design. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


