The University of Southampton
University of Southampton Institutional Repository

Ab initio calculations on the X (2)B1 and A (2)A1 states of AsH2, and Franck-Condon simulation, including anharmonicity, of the A(0,0,0)-X single vibronic level emission spectrum of AsH2

Ab initio calculations on the X (2)B1 and A (2)A1 states of AsH2, and Franck-Condon simulation, including anharmonicity, of the A(0,0,0)-X single vibronic level emission spectrum of AsH2
Ab initio calculations on the X (2)B1 and A (2)A1 states of AsH2, and Franck-Condon simulation, including anharmonicity, of the A(0,0,0)-X single vibronic level emission spectrum of AsH2
Restricted-spin coupled-cluster single-double plus perturbative triple excitation {RCCSD(T)} calculations were carried out on the X (2)B(1) and A (2)A(1) states of AsH(2) employing the fully relativistic small-core effective core potential (ECP10MDF) for As and basis sets of up to the augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality. Minimum-energy geometrical parameters and relative electronic energies were evaluated, including contributions from extrapolation to the complete basis set limit and from outer core correlation of the As 3d(10) electrons employing additional tight 4d3f2g2h functions designed for As. In addition, simplified, explicitly correlated CCSD(T)-F12 calculations were also performed employing different atomic orbital basis sets of up to aug-cc-pVQZ quality, and associated complementary auxiliary and density-fitting basis sets. The best theoretical estimate of the relative electronic energy of the A (2)A(1) state of AsH(2) relative to the X (2)B(1) state including zero-point energy correction (T(0)) is 19,954(32) cm(-1), which agrees very well with available experimental T(0) values of 19,909.4531(18) and 19,909.4910(17) cm(-1) obtained from recent laser induced fluorescence and cavity ringdown absorption spectroscopic studies. In addition, potential energy functions (PEFs) of the X (2)B(1) and A (2)A(1) states of AsH(2) were computed at different RCCSD(T) and CCSD(T)-F12 levels. These PEFs were used in variational calculations of anharmonic vibrational wave functions, which were then utilized to calculate Franck-Condon factors (FCFs) between these two states, using a method which includes allowance for anharmonicity and Duschinsky rotation. The A(0,0,0)-X single vibronic level (SVL) emission spectrum of AsH(2) was simulated using these computed FCFs. Comparison between simulated and available experimental vibrationally resolved spectra of the A(0,0,0)-X SVL emission of AsH(2), which consist essentially of the bending (2(n)) series, suggests that there is a significant loss in intensity in the low emission energy region of the experimental spectrum
0021-9606
234309-[12pp]
Dyke, John M.
46393b45-6694-46f3-af20-d7369d26199f
Lee, Edmond P.F.
f47c6d5d-2d1f-4f03-a3ff-03658812d80b
Mok, Daniel K.W.
49a4e516-0e71-4f59-a3ec-bd607b47ef33
CHAU, F.T.
2dfdd3c2-3c2e-4cd9-8237-8a1a556eb550
Dyke, John M.
46393b45-6694-46f3-af20-d7369d26199f
Lee, Edmond P.F.
f47c6d5d-2d1f-4f03-a3ff-03658812d80b
Mok, Daniel K.W.
49a4e516-0e71-4f59-a3ec-bd607b47ef33
CHAU, F.T.
2dfdd3c2-3c2e-4cd9-8237-8a1a556eb550

Dyke, John M., Lee, Edmond P.F., Mok, Daniel K.W. and CHAU, F.T. (2010) Ab initio calculations on the X (2)B1 and A (2)A1 states of AsH2, and Franck-Condon simulation, including anharmonicity, of the A(0,0,0)-X single vibronic level emission spectrum of AsH2. Journal of Chemical Physics, 132 (23), 234309-[12pp]. (doi:10.1063/1.3442748). (PMID:20572707)

Record type: Article

Abstract

Restricted-spin coupled-cluster single-double plus perturbative triple excitation {RCCSD(T)} calculations were carried out on the X (2)B(1) and A (2)A(1) states of AsH(2) employing the fully relativistic small-core effective core potential (ECP10MDF) for As and basis sets of up to the augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality. Minimum-energy geometrical parameters and relative electronic energies were evaluated, including contributions from extrapolation to the complete basis set limit and from outer core correlation of the As 3d(10) electrons employing additional tight 4d3f2g2h functions designed for As. In addition, simplified, explicitly correlated CCSD(T)-F12 calculations were also performed employing different atomic orbital basis sets of up to aug-cc-pVQZ quality, and associated complementary auxiliary and density-fitting basis sets. The best theoretical estimate of the relative electronic energy of the A (2)A(1) state of AsH(2) relative to the X (2)B(1) state including zero-point energy correction (T(0)) is 19,954(32) cm(-1), which agrees very well with available experimental T(0) values of 19,909.4531(18) and 19,909.4910(17) cm(-1) obtained from recent laser induced fluorescence and cavity ringdown absorption spectroscopic studies. In addition, potential energy functions (PEFs) of the X (2)B(1) and A (2)A(1) states of AsH(2) were computed at different RCCSD(T) and CCSD(T)-F12 levels. These PEFs were used in variational calculations of anharmonic vibrational wave functions, which were then utilized to calculate Franck-Condon factors (FCFs) between these two states, using a method which includes allowance for anharmonicity and Duschinsky rotation. The A(0,0,0)-X single vibronic level (SVL) emission spectrum of AsH(2) was simulated using these computed FCFs. Comparison between simulated and available experimental vibrationally resolved spectra of the A(0,0,0)-X SVL emission of AsH(2), which consist essentially of the bending (2(n)) series, suggests that there is a significant loss in intensity in the low emission energy region of the experimental spectrum

This record has no associated files available for download.

More information

Published date: June 2010
Organisations: Chemistry

Identifiers

Local EPrints ID: 174157
URI: http://eprints.soton.ac.uk/id/eprint/174157
ISSN: 0021-9606
PURE UUID: 112669d4-2d21-47d9-bcb5-f223565e6e2c
ORCID for John M. Dyke: ORCID iD orcid.org/0000-0002-9808-303X

Catalogue record

Date deposited: 11 Feb 2011 09:14
Last modified: 15 Mar 2024 02:35

Export record

Altmetrics

Contributors

Author: John M. Dyke ORCID iD
Author: Edmond P.F. Lee
Author: Daniel K.W. Mok
Author: F.T. CHAU

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×