The Schools Malaria Project

Robert Gledhill, Sarah Kent, Brian Hudson, Jonathan W. Essex and
Jeremy G. Frey

School of Chemistry, University of Southampton

Abstract

The Schools Malaria Project (http://emalaria.soton.ac.uk/) brings together
school students with university researchers in the hunt for a new anti-
malaria drug. Malaria Kills a child every thirty seconds, and 40% of the
world’s population lives in countries where the disease is endemic.
Resistance to existing drugs is increasing and there is a growing need for

new compounds.

This challenge is being offered to school students who

will use a distributed drug search and selection system via a web interface
to design potential drugs. The project will display the results of the trials in
an accessible manner, giving students an opportunity for discussion and
debate both with peers and with university contacts.

Fig 1. Female Anopheles Gambiae
mosquito - a malaria vector

1. Introduction

It is generally acknowledged that the public
reputation of science is poor. Science is
perceived as boring, hard and irrelevant to
people’s lives. The numbers of pupils
choosing science courses in schools are
falling, school science teaching can be
uninspiring and the decline is numbers is
worrying for the science community and
society at large. To address this difficulty,
we have, as part of a project jointly
supported by EPSRC (CombeChem) and
JISC (e-Malaria), developed an educational
tool targeted at drug design for malaria.
Diseases such as malaria, while being
unprofitable to “big pharma”, make good
choices for academic outreach projects.

The e-Malaria project is about using e-
science techniques and technology to make
modern chemical ideas and practice
available to a much wider audience of less
experienced scientific investigators: school
students, the investigators of the future. It
also serves as a device to connect school
students with active researchers; a virtual
organisation for scientific research.

A target protein was chosen, DHFR, which
is an enzyme involved in the regulation of
DNA transcription, and for which there are

known differences in action between the
malaria parasite and humans. A crystal
structure of DHFR provides a guide for the
structure of the active site in the enzyme; we
wish to assess the ability of a chosen small
drug molecule to bind to this. This is known
as a docking study.

An integrated software environment
combining web design, database
development, and distributed computing has
been developed. The software is aimed at A-
level students of chemistry; the students are
asked to design chemical compounds using a
sketchpad that they can then submit for
docking against a known malaria target. The
score from their docked structure may then
be used, together with molecular graphics, to
further refine their potential drug. This
software teaches the elements of molecular
structure and intermolecular forces, with the
added driver of targeting a serious illness.
Further development of this project through
the South Eastern Science Learning Centre
based at Southampton is planned. At a
system level, software to be used by school
students has to be designed differently from
one to be used by university researchers. It
must also be robust and the project has taken
this on board and presents valuable lessons
in how to achieve the secure integration of
industrial strength programs into a ‘free’
outreach environment.

We ouselves have learned many important
lessons about what is achievable using the
new methods of web based systems design,
and how to go about doing these things
effectively. Most of what we have done boils
down to plumbing together already-existing
applications using already-existing standards
and constructing a robust and intuitive web

based interface to hide the warren of piping

behind. Some detailed notes on what we

have learned are given at the end of this
report, but the main points are:

+ Complex systems can be constructed
using software on different machines
using simple HTML communications
protocols.

« Using Javascript, Java applets, CSS and
CGI scripting it is possible to construct
functional, elegant and intuitive user
interfaces to complex systems. The only
caveat to this is the need to work around
problems in one particular web browser.

1.1 Description of Website Features

On first entering the site the user sees an
introduction page containing a picture of a
mosquito, a few paragraphs about the
disease and this project, a few links and a
list of system requirements for taking part
in the project (Currently tested on Windows
(IE and Firefox), Linux (Firefox and
Konqueror) and Apple (Safari)).

The site has been designed so that anyone
with a web connection can access the
teaching material we have prepared without
needing an account. A series of links to the
teaching material is shown in the navigation
bar, sorted under three headings: the
project, malaria, and chemistry.

From the point of view of the pupil the drug
design workflow can be thought of as
having eight stages, as shown in Figure 2.

1. Create new molecule
2. Molecule editor
3. QM optimisation

4. View structure

5. Jmol based viewer

6. Dock molecule

7. View results

8. Jmol based viewer

=

Fig 2. Schematic of Emalaria
user workflow.

When a student starts, the molecule table
screen will show the 'create new molecule'
icon (1), along with a dialogue explaining
what is going on and prompting them to
click on the icon. Doing this will take them
to the molecule editing page (2), where they
can construct a molecule through freehand
drawing, or by using a library of pre-made
molecule fragments. On submitting their

molecule from this page, the molecule is
entered into the system along with a
geometry optimisation/energy minimisation
job. Clicking the activate button (3) puts the
job into a queue for execution. When
compute resource becomes available a two
stage minimisation process is run to obtain a
reasonable three dimensional structure for
the molecule along with electronic point
charges. Once finished, the results are
entered into the molecule database alongside
the initial 2d structure entered by the
student. The user is then prompted to
examine the calculated 3d structure and
charge distribution (4,5), and then activate a
docking job (6). Docking in this context
means finding an energetically good
geometric fit for the molecule in the active
site of the target enzyme. After docking has
finished, the best structure obtained is
inserted into a results table on the same page
as the molecule table. The wuser is
encouraged to look at the energy numbers
obtained from the docking calculation and
then click on the view icon (7) to examine the
results in a 3d display application (8).

On our present hardware, a QM optimisation
job takes from a few seconds to 2 minutes to
complete, and docking jobs generally take up
to around 5 minutes.

The 2d molecule editing application was
created from client side Javascript and the
SDA labs Java molecular editor applet
[ACD2005]. It contains just enough tools to
get the job done with little extraneous
content, and is also free for us to use on the
site. It interacts well with the Javascript
code in place on the page, and creating the
application was reasonably straightforward.

A pair of 3d molecule viewing applications,
for 2d/3d minimised and 3d docked
structures, was created based on the open
source Jmol [Sourceforge2005] molecular
viewing Java applet. This proved clean and
simple to work with and it was quick and
straightforward to construct the applications.

2. System Description

2.1 Hardware Used

e-Malaria depends on a number of
components sited on different machines
working together in a seamless manner. The
web server and the primary database are
sited on a dual Xeon machine, 'Green', with
approximately 1 terabyte of RAID disk space;
a second similar machine, 'Purple’, has been
set aside for the United Devices subsystem
which manages the multiple remote
machines that perform the docking jobs. A

further pair of machines have also been set
aside for local execution of docking and
quantum mechanics jobs. Finally, (at the
time of writing), a low-powered workstation
PC has been put in place to act as a firewall.
Further computing power for running
docking jobs will be made available from the
University's Science Learning Centre
[Southampton2004]. This system is shown
in Figure 3.

I

, paga.tpl | I S ’ 1
_modules | _FCGI module) [‘M

[cun)

(united Devices Giient |
University Network - (ﬂipllmlsemf
| GOLD module —‘ e
% 4 babel | | molopt
Windows dacking client o || Pkl i)

University Firewall |

(

- "Ip (mopacesz.exe|
Tocal linux firewall 8 2

'HENGE' Linux QM client

Linux UD sarver
‘Purple’

\' dcu:ker-b.pi‘—

#" Apache \\‘
_ Webserver

(goldadmin N I .
United Devices System

Linux webserver @ y com——
"GREEN' S ,,.J ~ Statlc content ™,

(accoun wipl]

/" Static content ™,
including JS =
- _glient side code

DE (MySGL)
e

runtime.pl

Fig? Schematic bl(;ck diagram of the

= [including GOLD)
~._UDmodule .~

DB (IBM DB2)

Emalaria system. Labelled square
brackets indicate opportunities for
application- and machine-level
parallelisation.

There are two main problems with the
above architecture:

1. I/O bandwidth is limited to 100Mbit/sec
by the network cards in the firewall

2. Only one machine (the webserver) is
made externally visible; the UD server
cannot be accessed by external
machines.

There are plans to upgrade the firewall and
make the UD server visible once security
concerns have been satisfied.

2.2 Firewall

The e-Malaria project requires a server that
is visible outside Southampton University's
firewall. This obviously creates a potential
security hazard. To make any machine
available to the outside, University
regulations require its managers to take
responsibility for any security issues. To
protect against certain types of breaches it
was decided to implement an internal
firewall solely for the projects' server.

While the University's firewall will protect
us from the bulk of the service scanning
attacks taking place over the internet, what
it cannot protect us from is errors or
omissions in the security of the publicly

exposed software running on the server
machine. Of particular worry are the Apache
web server, the database and, critically, the
CGI programs operating the various public
services provided on the server. Even with
the most dedicated patching regime, the
possibility of the machine being
compromised remotely cannot be ignored. If
this were to happen, not only would the data
and programs on the machine be at risk
(hazardous to the projects), but much more
importantly, the machine could be used as a
base for further attacks on other machines
within the University firewall. To mitigate
the risk of a compromised machine being
used as a springboard for launching attacks
on other University machines it was decided
to put a firewall into place to block
connections and traffic outbound from the
server. The specified traffic is allowed
through this firewall in either direction.

2.3 Database

MySQL was chosen for the database, largely
because it was already required for another
part of the Combechem project.

3. Quantum Mechanics Jobs

Users of e-Malaria construct their molecules
in a 2d graphical editor. Unfortunately, the
editor has no means for constraining the
bond lengths, element types or bond-orders
of the molecules entered, or deriving three
dimensional structures from it. Molecules
created thus need considerable checking and
modification before they can be used for
docking purposes. This preparatory phase,
though in reality consisting of many separate
stages, is referred to as the 'QM optimiser"
throughout this paper.

The QM optimiser is implemented in a client-
server fashion; one or more instances of the
client script running on a remote Linux
machine poll the webserver machine with
requests for jobs. All network traffic is
performed using the HTTP protocol as
implemented in the 'curl' application. If no
job is received from the server, the client will
wait for a set period before polling again. If
the server does not respond to the request,
the client will retry a set number of times
before pausing in 'standby' mode for an hour.
The client code has been written in such a
way that multiple servers may be polled by
the same script; this is to facilitate
reusability, it being a straightforward task to
add other servers to the system and so
providing a valuable service to other
Combechem projects. Any errors which
occur during the optimisation process are

communicated back to the server through
the same type of web request transfer as a
normal result. This is illustrated in Figure 4.

i) (Inspecti
> I
Datubase g :
[QM Optimisation

[Displacement [MM Optimisation|

Fig 4. The QM optimisation process

On completion of a successful download,
the first processing step is protonation; an
open source program called 'OpenBabel'
[OB2005] is used to do this. After the
molecule has been protonated, we would
ideally like to move straight on to the QM
calculation to determine the accurate
geometry. Unfortunately we cannot do this
because the QM software packages
available to us cannot optimise a structure
from the simple topology data created by
our editor application. To fix this problem,
a program was written to do a rough
geometric optimisation using a simple
molecular mechanics force field; a
reasonable molecular structure is needed
for QM optimisation. This program is called
'‘molopt'. Molopt is a C program written for
the e-Malaria project to solve the
optimisation problem described above. It
also performs a variety of error checks and
calculations on the initial molecule
configuration—verifying the chemical
'sanity’ of the user's molecule.

Before the optimisation is performed, the
coordinates of the molecule are displaced
by a small random distance to remove
degeneracy problems for molecules whose
atoms are all at the origin (null
coordinates). This allows the optimiser to
generate structures for molecules for which
the user only has topology information, such
as an INCHI code. Although not needed for
the purposes of e-Malaria, this may make
the code useful for other projects within the
Combechem programme.

A more accurate geometry opimisation
using a QM package is then performed.
During the early development of the
software, the program Gaussian 98 was
used, for which the university has a site
licence. This licence explicitly forbids
providing any sort of service that makes
use of their software, though, and so
another program had to be found before
rollout. After much searching and trial and
error, a version of MOPAC was obtained

which compiles correctly under Linux.
Several other MOPAC versions had been
tried, but these met problems with modern
FORTRAN compilers. Early versions of
MOPAC were in the public domain, but the
software was eventually acquired by Fujitsu
corporation. Although they still own the
legal rights to use it, their development work
on it has ceased and apparently no-one in the
company is currently responsible for, or
contactable about, its licensing. In the light
of this we were obliged to obtain an updated,
but working copy of the last public domain
version of the software. Our modular
approach to design means that if we were to
create further systems based on e-Malaria for
internal use, we would be able to substitute
Gaussian seamlessly where licensing permits.

After MOPAC has finished, the topology of
the structure it has produced is compared
against that of the original structure, to
check for the molecule breaking apart.

4. Docking Jobs

Docking calculations have been implemented
using the GOLD software package
generously provided for the project by the
Cambridge Crystallographic Data center
[CCDC2005]. In order to obtain a license for
this software, we needed to keep it secure
from theft. To do this we used the United
Devices (UD) platform.

4.1 United Devices

UD [UnitedDevices2005] produce software
for managing large scale distributed
computation systems. The company has its
origins in the pharmaceutical software
industry, and their platform is particularly
well suited for drug docking calculations.

Their platform follows a client server model.
Although it is possible to build a server
system comprised of multiple machines,
communicating with each other through web
services, this was deemed unnecessary for
our relatively small scale operation. Instead,
the UD software, along with the IBM DB2
database and Apache server that come with
it, were installed on the dual Xeon server,
'Purple’. The system is fairly resource
hungry, and little else could profitably be run
on Purple.

The client part of UD can be obtained for
both Linux and Windows systems. Earlier in
the project we experimented with the Linux
client, but eventually dropped it in favour of
a purely Windows based system. A standard
Windows installer executable with the IP
address of the server built into it was

produced; after installation this client
repeatedly polls the server requesting jobs.
All transactions are done using standard
HTTPS (web services). The first time a
docking job is sent to the client, a copy of
the GOLD executable tailored for execution
in the UD environment is sent along with it.
Subsequent jobs use the cached copy. To
maximise the security of the system, the
executables we are using are
cryptographically signed by the UD system
to verify their authenticity.

4.2 Polling Scripts

A pair of scripts were written to obtain jobs
from Green and submit them to the UD
system running on Purple. The first script
is quite similar to the optimiser client in its
functioning (and was indeed based on it); its
purpose is to poll Green for jobs and submit
them to the UD system using the tool which
comes with the UD/GOLD package. The
second script periodically polls the UD
system for the results of any jobs that have
been done. When results are ready, they
are extracted wusing the UD/GOLD
submission/retrieval tool and examined.

UD allows for jobs to have names, and the
name given to each job reflects the ID of the
molecule in Green's database; this is how
the two docking scripts keep track of the
jobs. When a job is retrieved, it is extracted
into an appropriately named directory and
the retrieval script checks for any errors
that have occurred. If the error is chemical
in nature, the error code sent back to the
user will reflect this, asking them to check
for any unusual or nonstandard functional
groups; otherwise, if the problem
encountered was a systems error, the error
message returned to the user suggests that
the system may be under heavy load (a
likely cause of such errors) and suggests
that they resubmit the job at another time.

If the GOLD job has run without problem,
the file is returned to the server.

5. Lessons Learned

There now follows a discussion of some of
the lessons we have learned in creating the
e-Malaria system.

5.1 Shift to Client Side Processing

When first creating the site it was decided,
without much critical thought, to construct
the pages using very similar techniques to
most other web sites. The page headers
and footers containing information about
the user would be constructed on the fly by

a CGI script, while the sidebar and document
content would be added by the server itself,
as directed by Server Side Include (SSI)
directives issued by the CGI. Complex
content requiring information from the
database would be constructed by CGI
modules included from the master script.

Following this approach the navigation bar
content for each page of the site, as seen by
each user type, was originally generated as a
large set of partial HTML files to be included
by the server. A script was written to build
these files automatically and place them into
a directory structure calculable by the CGI.
It was found after a while that this
constructor script required considerable
maintenance and was prone to error. To fix
this, a client side constructor script was put
into place, containing all the data on user
permissions and page titles to construct a
navigation sidebar at page view time. This
had several interesting features:

1. The script did not change between pages,
and so could be cached on the remote
browser, reducing load on the server.

2. It provided a single point of maintenance
and reduced the complexity of the server
scripts.

3. It created no security disadvantage: even
though the script could be downloaded
and the names of pages to which the user
does not have access rights to determined,
a constructed request for such pages
would still be turned away by the server
through the cookie based authentication /
authorisation system.

These advantages were noted. When it came
time to create the account administration
system, it was decided that its user interface
would be implemented in Javascript on the
client. A request for an administration page

from the server returns a web page
containing a series of script include
statements, a Javascript data structure

containing a verbatim copy of the relevant
information from the database, and finally a
call to a function in one of the included
scripts to render the page. No HTML beyond
the standard header and footer bars is
created by the server.

The user interface to the administration tools
is a complex application with buttons for
creating, modifying and deleting accounts,
checking username and password fields,
displaying the changes to be made in an
intuitive fashion, and relaying the necessary
instructions to the server once the user
actions the changes. Multiple changes can
be made to tables of users or groups in the

system; the totality of these changes can be
seen by the user before they action them in
a single transaction.

It would have been a long-winded
programming task to construct such a
system were server contact to be required
after every user action, and the
maintenance of state at each stage would
make it very complicated. Also, the need
for server contact would make the system
much slower, and unwieldy to work with
from the user's point of view.

Detailed testing and evaluation of the site
was done some time after the account
administration was completed. Many
recommendations were made from this,
with much of the criticism being directed at
the 'molecule table' page. This latter was,
at the time, a table containing text,
graphics, hyperlinks and tooltips created
entirely on the server. The improvements
requested included amongst other things
the following:

- Help texts, beyond the tooltips, should be
available on the same page, removing the
need for students to flip between pages.
Ideally these should be context sensitive.

+ Help texts should be illustrated where
necessary.

« It should be possible to control how many
elements are displayed in the table to
make the page quicker to navigate
around.

« The tooltips did not work consistently
across all target browsers.

- The tooltip display within the browser
was outside of the designer's control, and
the tiny fonts used by default would
cause problems for users with visual
problems. New tooltips would have to be
implemented independently of the
browser's built-in mechanism.

+ Confirmation should be sought before
deleting molecule entries.

« On copying a molecule, a new name
should be requested for the copy.

- The page should automatically update
itself every few seconds when a job was
running, but not otherwise to limit load
on the server.

« A workaround was required for the poor
handling of PNG images in one
commonly used web browser.

+ A workaround was required for the poor
handling of CSS in the same browser.

It thus became clear that a major overhaul of
the molecule table rendering was required,
and that the new engine would need to be
much more complicated than what was then
in place. The success we had had building
the complex administration tools with client-
side scripting led us to attempt the molecule
table rebuild using the same methods.

The script had to build the interactive
molecule table screen and implement
context-sensitive help, CSS-defined tooltips,
popup alerts and (queries, automatic
intelligent updating and workarounds for
browser foibles. From the outset this was a
much more ambitious project than the
administration screens had been.

In the event, with the experience gained from
the administration scripts, the
implementation went quickly and smoothly,
apart from the fixing of the mentioned
browser problems which took considerable
time. The results exceeded the expectations
of the designers.

Looking at this in the round, then, a clear
lesson can be drawn:

Complex web applications are easier to
design, maintain, test, secure and deploy if
they are constructed from small secure
server side scripts which simply pull the
relevant, authorised data out of a database
and ship it to the client, along with a
Javascript program which takes care of
drawing the page and handling the user
interface entirely in the browser.

5.2 File Formats and Dispatch: One Point
of Contact

Over the course of development, e-Malaria
has had many different formats for storing
and transmitting molecule information. As
the system developed at the start, file
conversions and storage into/retrieval from
the database were performed in many
different places, and it started to become
difficult to keep track of. In particular, it
started to become difficult to track down
errors caused by information loss, as
illustrated in Figure 5.

Eventually the decision was taken to move
most of these disparate conversions and
database interactions to a single master
service. This would provide one point of
contact for information retrieval and
submission, and would handle all necessary
file conversions itself. All interaction with
this program would be through standard
HTTP methods (GET/POST requests). By
doing it this way, we reduced the complexity
of the system and broadened its scope; the

potential for extending and reusing this
element of the code is fairly high. Some
changes would make it better still, though.

T
L Secript | Y
Database

“(Script } - i =

=
‘Dalﬂbase‘ {
~ NG - - i
{ c S \Sﬂ\'lce“
/k crip ‘] (
L
G

]
Script
(S

—
| Script)

| Seript |

(ot)
Fig 5. The system has changed from
having many scripts (blue squares)
interacting with the database (white
cylinder) to having them speak to a
master service (yellow square) which
speaks to it alone.

In particular, the internal file format used
was developed on the fly, and took the form
of a simple space-separated column file
containing all the information we needed to
store without any self-describing properties.
While developing the molecule viewing
application it became clear that CML was
going to be necessary to communicate
partial charges to the Jmol applet. Our
initial expectations were that the use of this
XML-based file format would take a very
large amount of complex programming
work. As it turned out, however, the
conversion from the internal molecule
format to CML could be accomplished using
just four (admittedly complex) Perl regular
expressions, operating on the file as a
whole. This was far less painful than had
been expected. Although reading and
interpreting a completely general CML
format file would be an involved job,
reading and writing files which used just a
narrowly defined subset of the format (used
consistently within the scope of an
application suite) would require very little
effort. While writing less than general code
for CML would lose some compatibility,
most of the benefits of the XML/CML
approach would be retained, such as self-
description and readability by truly
standards-compliant applications, and also
extensibility and future-proofing.

If the project were started again, just such a
narrowly defined subset of XML/CML would
be used internally for data storage. The
space efficiency of the format can be raised
to quite a high value using appropriate
types of tags, and if space were still a
problem, compression is a simple and
effective solution.

5.3 Cascading Stylesheets,
and the DOM

Cascading style sheets (CSS) were used to
obtain a high degree of presentational
consistency across the site, and also to gain
the ability to apply multiple styles to the site
if necessary - for the purposes of making the
site usable by students with dyslexia or other
disabilities. Ideally, the flexibility of this
feature of modern web browsers should also
enable the designer to produce significant
amounts of interactivity with a very low code
content, i.e. very little presentation-related
Javascript. Some Javascript was always
going to be necessary to create the site and
its interactive pages if server load was to be
minimised, but at the start of the project, as
described above, it was assumed that there
would be relatively little of it. @ Where
Javascript was necessary, it was to be written
in a consistently standards compliant fashion,
such that it would work on any standards
compliant browser.

This strategy proved to be somewhat
idealistic. While CSS works extremely well in
most browsers and can greatly simplify the
creation of complex web-based wuser
interfaces such as the ones in this project,
there is a major problem with using it in real-
world systems: the most common web
browser on Windows-based PC machines has

Javascript

an inconsistent implementation of the
standard, and workarounds for its foibles
were required in several places.

Unfortunately we have no choice but to
support this system and make allowances for
it, and this somewhat limited what it was
worthwhile attempting in terms of web
design.

To work around some of these limitations, a
greater use of Javascript was required than
originally planned. Although this is an
excellent language, use of some of the more
advanced features of the browser in a
standards-compliant fashion (through the
Document Object Model) proved too
complicated to be worth the effort.

5.4 Dyslexic Friendly Design

One of the original project aims was to create
a website that would be usable by children
with dyslexia. We consulted with the special
needs teaching unit at the University, who
provided us with a long list of design
guidelines for the site. The graphical design
of the site was implemented using CSS in a
flexible manner. The original plan was to
create two stylesheets for the site, one for
users with dyslexia and one for those
without. This was working under the tacit

assumption that the dyslexic friendly styling
would, while usable for those with this
condition, be visually unattractive.

As it turned out that the dyslexic design,
although unusual, is both usable by all users
and visually appealing. We decided to make
it the default style for all users.

In general, the design considerations we
were given could very easily be applied to
all website designs. The results would
improve presentation and structure for all
users, regardless of whether or not they
have dyslexia. This really comes down to
making full use of the new design
possibilities electronic hypertext media has
to offer.

6. Conclusion

e-Malaria has established that it is possible
for a small team of designers, programmers
and teaching specialists to construct a
complicated learning environment in a
relatively short time frame. Modern,
scriptable, plugin enabled web browsers,
and the standards which unite them (for the
most part) make available a rich
environment for composing an interactive
multimedia user interface. Furthermore,
the tools they make available to content
designers allow for the tailoring of a site for
users who have special needs with relatively
little effort.

From the outset it was clear that the e-
Malaria system was going to be a very, very
complicated undertaking. This complexity
derives from the requirements of uniting
software from many disparate sources,
working on many different computers.
Furthermore, some of the software used
was or is still in a pre-release development
state. In this paper we have described
some of our methods for dealing with this
complexity using modern web-based design
methods.

Sitting behind the web-based user interface,
the tools made available by webservers
have extended their usefulness far beyond
their original application sphere. To
paraphrase Larry Wall, designer of the 'Perl'
language, communications media differ not
so much in what they make possible, but in
what they make easy. In this project we
have found that web based communications
methods remove most of the back-breaking
'detail work' of intermachine

communication, such as connection initiation
/ tracking, multithreading, security, etc.
leaving the programmer to get straight into
the problem they are actually trying to solve.
By consistent use of web interfaces,
reusability is also facilitated.

As the designers of this project, we feel that
this sort of combination of advanced browser
technology and advanced server technology
is what the early visionaries and pioneers of
the World Wide Web had in mind. Though
today there is far less attention paid to
developments in this sphere by the
conventional media, and the wild-eyed
evangelism of the late twentieth century has
evaporated, development work has continued
at breakneck pace. Now, finally, all this hard
work in designing standards for uniting
computers and people throught complex
multimedia applications is starting to pay off.

Finally, it must be mentioned that this
project would not have been possible without
the availability of good quality, free and open
source software. We would like to
acknowledge Professor Tim Clark at the
University of Erlangen for his assistance with
MOPAC, CCDC for kindly allowing us to use
their GOLD molecular docking software, and
to all of the developers who have worked on
the free and open source software we have
made use of in this project.

References
[Southampton2005]
http://emalaria.soton.ac.uk

[Essex2005]
http://www.soton.ac.uk/~chemphys/jessex

[Tai2004] Kaihsu Tai, et al. (2004)
BioSimGrid: towards a worldwide repository
for biomolecular simulations. Org. Biomol.
Chemistry 2:3219-3221,

http://www.biosimgrid.org
[ACD2005] http://www.acdlabs.com

[Sourceforge2005]
http://jmol.sourceforge.net

[Southampton2004]
http://www.soton.ac.uk/Press/PressReleases

Name,4929,en.php
http://www.sciencelearningcentres.org.uk
[UnitedDevices2005] http://www.ud.com
[CCDC2005] http://www.ccdc.cam.ac.uk
[OB2005] http://openbabel.sourceforge.net

