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Abstract

Packet level measurement is now critical to many aspects of broad-

band networking, e.g. for guaranteeing Service Level Agreements, facili-

tating measurement-based admission control algorithms, and performing

network tomography. Because it is often impossible to measure all the

data passing across a network, the most widely used method of measure-

ment works by injecting probe packets. The probes provide samples of

the packet loss and delay, and from these samples the loss and delay per-

formance of the traffic as a whole can be deduced. However measuring

performance like this is prone to errors. Recent work has shown that

some of these errors are minimized by using a gamma renewal process

as the optimal pattern for the time instants at which to inject probes.

This leaves the best rate at which to inject probes as the key unsolved

problem, and we address this here by using the statistical principles of

the Design of Experiments. The experimental design approach allows us
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to treat packet level measurements as numerical experiments that can be

designed optimally. Modelling the overflow of buffers as a 2-state Markov

chain, we deduce the system’s likelihood function, and from this we de-

velop a technique (using the Fisher information matrix) to determine the

upper-bound on the optimal rate of probing. A generalization of this

method accounts for the effect of the probed observations interfering with

the experiment. Our numerical results focus on VoIP traffic, allowing us

to show how this methodology would be used in practice. One application

of this is in measurement-based admission control algorithms, where our

technique can be used to provide an upper-bound on the rate at which

probes should be injected to monitor the loss performance of the target

network, prior to making an admit / don’t admit decision.

1 Introduction

Simulation and analysis are routinely used to aid the design of broadband packet

networks. However, when in operation packet level measurement is critical to

ensure that the desired performance metrics are being achieved. Examples of

the uses of packet level measurement include guaranteeing Service Level Agree-

ments (SLAs), and facilitating measurement based admission control[13] and

network tomography (including end-to-end measurements to infer specific re-

source congestion [19]).

Many UK measurement research projects have focused on the technological

aspects of measurement. UKLight/MASTs, 46PaQ and ESLEA looked at mon-

itoring in IP WAN packet networks and concentrated on the challenges arising

from the scale of the technology itself: bandwidth in Gbps, large networks and

storage space, and complex inter-working of protocols and algorithms. Con-

siderable recent work also concentrated on developing measurement techniques,

e.g. [15], [23], and [14]. However, much of the basic technology is now ma-
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ture and is described in textbooks, e.g. [5], [4]. The research focus has now

shifted to the evaluation and the performance of measurement techniques, and

the optimisation of their operation.

The most common technique for monitoring packet level performance uses

the injection of probe packets. Probing packet-level measurements, often called

active measurement, infers the overall traffic performance from the loss and de-

lay of the probe packets. This involves the sampling of stochastic processes,

where the sampling is constrained by the resources available (primarily band-

width). Whatever the precise nature of the algorithm:

• sending packets into an already congested network increases the conges-

tion;

• any measurement may be altered by performing it, [17], [21], and it is hard

to know in advance at what rate and at what times the probe packets

should be injected into the network [18];

• the accuracy of the overall performance inferred is subject to significant

errors [9].

There is a growing awareness of the significance of these errors, e.g. see the

presentation by Filsfils, [7], (a Cisco Systems engineer) at a Cisco hosted sym-

posium on Measuring Internet Quality. Filsfils reports that the magnitude of

the measurement error is very poorly understood, and that simple approaches

to improving it are still focused on straightforward adaptations of existing ideas.

Despite a wide variety of measurement tools having been reported in the liter-

ature, “. . . there has been very little analysis of the accuracy of these tools or

their impact on the network . . . ” (quoted from [24] SIGCOMM05).

Related to the problem addressed in this paper, and widely examined in

the literature, are the challenges associated with accurate flow-sampling. In
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[10] the authors develop a flow-sampling method (concentrating on stationary

queue models) for the distribution of the number of packets per flow, and the

spectral density of the packet arrival process. Earlier related work can be found

in [6].

More closely related to the work we present here is research on measur-

ing packet delays via probing, and some papers report the level of accuracy

achieved using probing, e.g. in [22] and [25]. At the ACM SIGMETRICS’05,

Roughan [17] investigated the inaccuracies caused by correlations between suc-

cessive probes and derived fundamental limitations. A series of recent papers by

Schormans et al., has also explored the potential inaccuracy inherent in packet

level measurement, [22], [26], [25], [9], [12], [20], [9]. It has been discovered that

even for simple buffering scenarios there are practical load limits beyond which

measurement accuracy degrades very rapidly. These load limits are likely to

be within the normal operating specification of packet networks, e.g. 70% load

on a VoIP access link. Results show that significant levels of expected absolute

error are found in sampled results, even for a very simple network. For exam-

ple, mean delays measured in a VoIP access link have been found to exhibit an

absolute error that can rise to hundreds of msecs when a link at around 80%

utilisation is probed over a busy hour. It has been found that absolute error

in measured mean delay increases with the number of end-to-end links, load

and traffic burstiness, and is generally (approximately) inversely proportional

to bandwidth.

Compared with measuring mean delays, it is much harder to measure packet

loss probability or delay jitter, as these are associated with “rare events”, e.g.

the queue level reaching the limit (in the case of loss). Prior work has evaluated

the packet loss behaviour over the Internet, e.g. [24] and [16], and in [27] probed

measurements were used to establish packet loss characteristics in wide area
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networks via three different aspects of loss rate. In [24] the authors reported that

simply increasing the packet probing rate is an unsatisfactory way to attempt

to increase the accuracy of measured results, as the probe stream will interfere

with the data traffic, skewing the results (this was also found earlier in [21]).

In [22] queueing analysis was used to show that, for a tail-drop queue, probes

would need to be of very similar length to the user packets or else the measured

loss probabilities could easily be in error by many orders of magnitude. One of

the significant results of the work reported in [9] is that the burstiness of the loss

process also has a critical effect, causing any measurement process to require

far more samples than would be expected from a naive calculation based only

on the target loss probability. In this paper we focus on loss probing as there

has already been significantly more research on probing delays (mean delays in

particular).

In [9] a formula was developed that gives the number of probes required to

achieve a given (pre-chosen) level of accuracy when measuring the packet loss

probability. While [9] evaluated the number of probe packets required, the best

pattern by which to inject these probes was investigated in [2] and [3]. The

key discovery was that traditional Poisson sampling is not always optimal, and

a more general class of distributions (gamma renewal processes) minimizes the

mean square error in the sampled estimator. So, together [9], [2] and [3] provide

the number of probes required and the best pattern for probe injection. This

leaves the optimal probing rate as a salient unsolved question, and in this paper

we address this.

Uniquely, we address the problems of probing the packet loss probability by

using the statistical principles of the Design of Experiments (DOE). DOE allows

us to approach measurement as a numerical experiment that can be designed

optimally. Following [9], we model the network essentially by concentrating on
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a low bandwidth access link; see Figure 1. This ignores the core network where

loss is generally much lower.

[Figure 1 about here.]

Following [9], we also model the buffer as a 2 state Markov chain. In sec-

tion 2 we demonstrate how to analyze the overflow state of a buffer using this

Markov chain approach, deduce the likelihood function, and hence the Fisher

information matrix. In section 3 we present results which show the best design

for the experiment for different values of input parameters, and demonstrate

the usefulness of this approach in section 4 with a VoIP example. The main

value of our analysis is to evaluate the best probing rate. When this ideal rate is

combined with the required number of samples, it gives the total time required

to probe results with the required level of accuracy.

In section 5 we show what happens when we take into account the effect

of active probing (observations interfering with the experiment). Finally, we

conclude in section 6 and present some ideas for extensions to the work.

2 Methodology and Derivation

During periods of significant load, packet queues in buffers will grow, and de-

cline, in size. Eventually a long enough period of growth will result in packet

loss due to buffer overflow. A generic period of such behaviour is represented

in Figure 2. A fully detailed representation of such a queue evolution would

require a finite, ergodic Markov chain with (N + 1) states. In such a model,

state s represents s packets in the buffer, and N would be the maximum number

of packets the buffer can hold (N + 1 such states are required in the Markov

chain as there is a state 0 representing the buffer being empty). This is shown

in Figure 3. In practice this would amount to a very large number of states
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around which to design probing experiments optimally.

[Figure 2 about here.]

[Figure 3 about here.]

However, earlier work, [9], has shown that this full Markov chain represen-

tation can be reduced to a much simpler 2-state model. In the 2-state model

we either have spare capacity in the buffer and are therefore in the non-overflow

state (state 0), or we have no spare buffer capacity and are in the overflow state

(state 1). This is also shown in Figure 3. Figure 4 maps the 2-state Markov

chain model against the evolution of the queue state against time.

[Figure 4 about here.]

The relationship of the work in this paper to the earlier work in [9] is as

follows. In [9] the authors measured the effectiveness of packet probing for loss

probability through the analysis of the variance associated with the packet loss

process. This allowed the prediction of the number of probes by using sampling

theory (which relates the number of samples required to the variance). So the

analysis in [9] was not able to address the question of the rate at which the

probes should be injected; only the required number of probes was determined.

In contrast the work reported in this paper is aimed at determining an upper

bound on the optimal probing rate. This is particularly important in cases

where the loss probability needs to be determined in near real-time, i.e. ideally

by injecting probes as quickly as possible, for example in certain measurement

based admission control systems.

Figure 5 illustrates the final step in the modelling process and shows the

sequence of probes against the simplified representation of the buffer (as a 2-

state Markov chain). For simplicity we use a discrete time base; however, since
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the size of a time slot can be arbitrarily small, this approach can be as precise

as required.

[Figure 5 about here.]

The 2-state Markov chain model has transition matrix

P =







1 − p p

r 1 − r






.

As shown in figure 4, p is the rate at which the buffer moves into the overflow

state (state 1 in the Markov chain model), and r is the rate at which the buffer

moves out of the overflow state, back into state 0 in the Markov chain model.

The stationary distribution such that πP = π is π =







r
p+r

p
p+r






.

We assume that we can find an estimator of the unknown θ =







p

r






, which

is at least asymptotically unbiased and of minimum variance. We observe the

chain every k-th period, for integer k; so for k = 1 we observe every period,

k = 2 every second period, and so on.

We observe the chain at time 0, and we allow a further fixed number of

observations, T , of the chain (at times k,2k,3k,. . . ,Tk), so we have T + 1 obser-

vations in all; we thus obtain an observation y for the chain, where y is a vector

of length T + 1. We take the likelihood function L(θ|y), differentiate it twice

and take the expectation to get the Fisher information matrix1. The derivation

is shown in Appendix A. We find that the Fisher information matrix is

1We here use the Fisher information matrix, rather than any other measure of information,
for example Shannon information. The two forms can be related, see e.g. [11]
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I(p, r) =
1

p + r







1
p
− 1

(p+r) + Tr
p

+ Tr
1−p

−1
(p+r)

−1
(p+r)

1
r
− 1

(p+r) + Tp
r

+ Tp
1−r






.

We can then find the Cramér-Rao Lower Bound (CRLB)2 from the inverse

of the Fisher information Matrix, I−1(p, r). Now, we wish to compare the infor-

mation in the experiment in which we look at every realisation of the Markov

chain (k = 1) with that in the experiment in which we look at every second

realisation of the chain (k = 2).

We observe that the 2-step transition matrix for the chain is:

P (2) = P 2 =







(1 − p)2 + pr (1 − p)p + p(1 − r)

r(1 − p) + (1 − r)r rp + (1 − r)2






.

We can reparameterize this as

P (2) =







(1 − p∗) p∗

r∗ (1 − r∗)







where p∗ = (1−p)p+p(1−r) and r∗ = r(1−p)+(1−r)r. We can then form the

Fisher information matrix by following the method in Appendix A and compare

Ik=2(p, r) with Ik=1(p, r).

This can be extended to k > 2 to give the k-step chain transition probabili-

ties: the matrix of probabilities that the network will change between overflow

and non-overflow states in k time periods.

The engineering value of this is as follows: the value of k we determine in

this way is the best value of the interval between packet probes (measured in

2The CRLB of any scalar function of θ is a lower bound for the variance for any unbiased
estimator of that function of θ.
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integer steps of time); i.e. it is the reciprocal of the optimal probing rate. When

we apply this approach to a realistic scenario (VoIP in the chosen example

in this paper) it becomes clear that in many practical situations optimality

can equally be achieved by setting k larger than a value determined by this

approach. This means that other issues, e.g. the desire to minimize the probing

rate, can determine the actual decision on the probing rate chosen in practice,

while still maintaining a rate that optimizes the use of a fixed number of probes

to accurately sample the packet loss probability.

3 Results

To best estimate the parameters p and r, and hence the overflow probability, we

need to correctly choose our input parameter k, the time between our observa-

tions. We need to decide what criteria are important to us in deciding whether

one k is better than another. Here we are estimating both of p and r, so we

choose the D-criterion, the determinant of the information matrix. Maximizing

the D-criterion allows us to maximise the generalised variance when estimating

p and r together [1]. The k which produces the highest value of this D-criterion

is our optimal k (an optimal design point). The same methodology could be

applied to any other optimality criterion.

We present as Table 1, for T = 10 and different values of p and r, the ratio

of determinants for the k = 1 case to the k = 2 case. A value greater than 1

implies that the k = 1 experiment is better, for that value of p and r and this

criterion. At values of p + r = 1, denoted ‘-’ in the table, it is interesting to

note that the D-criterion for the k = 2 case is zero; we get no information in

performing the k = 2 experiment.

[Table 1 about here.]
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Table 1 shows that for some values of p and r, the k = 2 case is better; so

for a fixed number of samples, it may be better to sample the chain every other

time period rather than every time.

We can continue this procedure, and, for any p, r, T , find the best value of

k at which to perform the experiment3. We tabulate this as Table 2 for T=5.

[Table 2 about here.]

In Appendix B, we show that we can find effective estimators that get close

to the CRLB for moderate sample sizes.

4 Example: VoIP

The optimal design depends on unknown values of p and r, and so prior knowl-

edge must be used to be able to find an optimal design. These values are not

naturally specified in the form we have described in section 2 for networks. We

must derive or approximate them from information we do know. We present an

example of how to obtain prior estimates of p and r, and apply the statistical

theory of design of experiments to detecting overflow in a VoIP buffer.

Here we use previous work [9] which showed that the overflow periods can

be well approximated as exponentially distributed periods, with mean number

of packets µp =
h2TonAp

(C−Ap)2 , where Ap is the mean packet arrival rate and C is

the capacity of the network, both in packets per second, and Ton is the mean

duration of periods of activity of individual VoIP sources. We let NCycle be

the number of packets which are generated in one overflow period and one

non-overflow period together. We note that NCycle ≈
µp

PLP
where PLP is the

proportion of lost packets in the buffer, and can be known from standards, or

calculated (per [9]).

3Earlier work (e.g. [9]) has shown that the time between transitions may be very large,
particularly with a large buffer. Hence, for example, probing through a whole busy hour may
require T to be of the order of 10.
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From the stationary distribution π =







r
p+r

p
p+r






we can approximate

p

p + r
Ncycle = µp,

r

p + r
Ncycle = Ncycle − µp,

and we can find p and r by solving these simultaneous equations.

We assume throughout that we have N = 100 packet voice sources, produc-

ing packets of size 47 bytes at a rate of h = 170 packets per second when active,

into a buffer of size X = 100 packets. A standard On-Off VoIP traffic source

model has mean ON time of 0.96 seconds, and mean OFF time 1.69 seconds,

giving an activity factor of 0.362. Other recently published models have slight

variations to these. As the actual values are not significant to our analysis,

we assume a simple starting point of Ton = Toff = 6 sec (so load is fixed at

ρ = 0.5), and then vary the capacity, C.

We assume that our number of probes, T , is 300, and that we can probe at

intervals of k seconds, k = 1, 2, . . .4. We vary the bandwidth in order to find

the optimal probing rate k and present the results as Table 3.

[Table 3 about here.]

As the bandwidth is increased so the load is reduced and the analysis of [9]

indicates that the number of probes required goes down dramatically. However

the analysis presented here indicates that the probing rate should also go down.

This means that the naive conclusion of [9], that you can simply measure much

faster at lower loads, is not correct: the optimal probing rate and the number of

probes should be taken together to determine the total time required to measure

4We have assumed a minimum probing interval of 1 second as Cisco IPQoS probing rate
is 1 probe per second
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the packet loss probability accurately. The technique developed in this paper,

taken together with the analysis provided in [9], yields the lower bound on the

total time required to measure the loss probability

5 Observations interfering with the experiment

In a real network, we gather information on the state of the overflow by in-

troducing probe packets into the network and noting whether or not they are

received by a monitoring device within a pre-determined time. We assume that

this probe procedure occurs without error, and the state indicated by each probe

packet we introduce to the network is one experimental unit.

By performing the experiment, and introducing probe packets into the net-

work, we introduce more data into the network, and the network is more likely

to become congested and reach capacity (state 1); in other words we interfere

with the experiment. In this section, we model this interference in a general

way by assuming that the transition matrix of the Markov chain becomes

Pδ,ǫ =







1 − p − δ p + δ

r − ǫ 1 − r + ǫ







in the time period after we perform the experiment, and as before P0,0 = P in a

time period after no experiment is performed. δ and ǫ are two non-negative con-

stants particular to the network and the probing procedure used, which model

the additional time spent in overflow (state 1) as a result of the introduction of

packet probes.

As in the non-interfering case, we compare the D-criterion (the determinant

of the information matrix) for varying k. We first form the two step transition
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matrix of the Markov chain as:

P (2) = Pδ,ǫP =







(1−p−δ)(1−p)+(p+δ)r (1−p−δ)p+(p+δ)(1−r)

(r−ǫ)(1−p)+(1−r+ǫ)r (r−ǫ)p+(1−r+ǫ)(1−r)







and more generally

P (k) = Pδ,ǫP
k−1.

The determinant for the k = 1 case is now I(p+δ, r−ǫ) and the determinant

for the k = 2 case is now I(p∗δ , r
∗
ǫ ) where p∗δ is the (1,2) element of P (2) and

r∗ǫ is the (2,1) element of P (2). We can take the determinants to calculate the

D-criterion and use this to compare designs.

As an example, Table 4 shows the best value of k to take for T = 5, δ =

0.03, ǫ = 0.01. This table can be compared with the table of best k obtained

without penalty for doing the experiment (Table 2). A difference in values in

the table is observable, here even for small δ and ǫ; for some values of p and r,

e.g. p = 0.55, r = 0.05, the optimal probing rate changes when we account for

interference.

[Table 4 about here.]

6 Conclusions

Accurate packet level measurements are critical to the proper functioning of

broadband packet networks. Recent work has determined that the optimal

pattern for probes is not as a Poisson process, but as a gamma renewal process.

However the best rate at which to inject probes remained an unsolved problem,

which we have addressed in this paper by using the principles of the statistical

DOE. DOE has here allowed us to find a method to determine an upper bound

on the optimal probing rate, and a generalization of this has accounted for the
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effect of the probed observations interfering with the experiment.

Numerical results have been generated for a realistic networking scenario: a

multiplex of standard VoIP traffic sources feeding a finite buffer in which the

packet loss probability has to be determined by packet probing. A very clear

pattern has emerged. As the bandwidth is increased so the load is reduced

and the analysis of [9] indicates that the number of probes required goes down

dramatically. However the analysis presented here indicates that the probing

rate should also go down. This means that the naive conclusion of [9], that

you can simply measure much faster at lower loads, is not correct: the optimal

probing rate and the number of probes should be taken together to determine

the total time required to measure the packet loss probability accurately. The

technique developed in this paper, taken together with the analysis provided

in [9], yields the lower bound on the total time required to measure the loss

probability.

One potential application is in measurement based admission control, where

our work can be used to provide an upper-bound on the rate at which probes

should be injected to monitor the loss performance of the target network, prior

to making an admit / don’t admit decision.
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A Obtaining the Information Matrix

We have a Markov chain with transition matrix,

P =







1 − p p

r 1 − r







depending on unknown parameter θ =







p

r






. We assume that the chain has been

running for a suitably long period such that the start state is random. Thus

the probability distribution of the response at time zero, Y0, is the stationary

distribution π =







r
p+r

p
p+r






. For a realisation of the chain y, we calculate the

likelihood as

L(θ|y) = P (Y0 = y0, Y1 = y1, ..., YT = yT )

= P (Y0 = y0)P (Y1 = y1|Y0 = Y0) . . . P (YT = yT |YT−1 = yT−1, . . . , Y0 = Y0),
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which by the Markov Principle simplifies to

L(θ|y) = P (Y0 = y0)P (Y1 = y1|Y0 = y0)...P (YT = yT |YT−1 = yT−1)

= P (Y0 = y0)

T−1
∏

j=0

P (Yj+1 = yj+1|Yj = yj)

=
y0p + (1 − y0)r

p + r

T−1
∏

j=0

hj,j+1,

where hj,j+1 = (1−yj)[yj+1p+(1−yj+1)(1−p)]+yj [yj+1(1− r)+(1−yj+1)r].

Taking logarithms:

log(L(θ|y)) = log[y0p + (1 − y0)r] − log(p + r) +
T−1
∑

j=0

log hj,j+1,

where we must assume that 0 < p < 1, 0 < r < 1. Differentiating gives:

∂ log(L(θ|y))

∂p
=

y0

y0p + (1 − y0)r
−

1

p + r

+
T−1
∑

j=0

(1 − yj)yj+1 − (1 − yj)(1 − yj+1)

hj,j+1
(1)

and differentiating again gives

∂2 log(L(θ|y))

∂p2

=
−(y0)

2

(y0p + (1 − y0)r)2
+

1

(p + r)2
−

T−1
∑

j=0

((1 − yj)yj+1 − (1 − yj)(1 − yj+1))
2

h2
j,j+1

=
−(y0)

2

(y0p + (1 − y0)r)2
+

1

(p + r)2
−

T−1
∑

j=0

(1 − yj)
2(2yj+1 − 1)

h2
j,j+1

2

.

Now y0 = 0 or 1 so (y0)
2 = y0. Similarly yj = 0 or 1 and so (1−yj)

2 = (1−yj)

and yj+1 = 0 or 1, so (2yj+1 − 1) = ±1. Therefore
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∂2log(L(θ|y))

∂p2
=

−y0

(y0p + (1 − y0)r)2
+

1

(p + r)2
−

T−1
∑

j=0

(1 − yj)

h2
j,j+1

.

When yj = 1,1 − yj = 0 and the final term on the RHS is zero, so we can

simplify h2
j,j+1 so that the expression becomes

∂2log(L(θ|y))

∂p2
=

−y0

p2
+

1

(p + r)2
−

T−1
∑

j=0

(1 − yj)

{(1 − yj)[yj+1p + (1 − yj+1)(1 − p)]}2
.

For a random Y, taking expectations:

E

[

∂2log(L(θ|Y))

∂p2

]

= −
E(Y0)

p2
+

1

(p + r)2
−

T−1
∑

j=0

E

[

(1 − Yj)

{(1 − Yj)[Yj+1p + (1 − Yj+1)(1 − p)]}2

]

=
( −p

p+r
)

p2
+

1

(p + r)2
− TE

[

(1 − Y0)

{(1 − Y0)[Y1p + (1 − Y1)(1 − p)]}2

]

=
( −p

p+r
)

p2
+

1

(p + r)2
− T [P (Y0 = 0, Y1 = 1)

1

(1 − p)2
+ P (Y0 = 0, Y1 = 0)

1

p2

+ P (Y0 = 1, Y1 = 0)0 + P (Y0 = 1, Y1 = 1)0]

=
( −p

p+r
)

p2
+

1

(p + r)2
− T

r

p + r

[

1

(1 − p)2
(1 − p) +

1

p2
p

]

=
−1

p(p + r)
+

1

(p + r)2
−

Tr

p + r

(

1

p
+

1

1 − p

)

.

Using (1) we can find:

∂2log(L(θ|y))

∂p∂r
= −

(y0)(1 − y0)

(y0p + (1 − y0)r)2
+

1

(p + r)2

−

T−1
∑

j=0

(1 − yj)(2yj+1 − 1) − yj(1 − 2yj+1)

h2
j,j+1

and it is clear that yj(1 − yj) = 0, so this simplifies to
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∂2log(L(θ|y))

∂p∂r
=

1

(p + r)2
.

Using symmetry in p and r, we can find the Fisher information matrix5

I(p, r) =







E(−∂2log(L(θ|Y))
∂p2 ) E(−∂2log(L(θ|Y))

∂p∂r
)

E(−∂2log(L(θ|Y))
∂p∂r

) E(−∂2log(L(θ|Y))
∂r2 )







=
1

p + r







1
p
− 1

(p+r) + Tr
p

+ Tr
1−p

−1
(p+r)

−1
(p+r)

1
r
− 1

(p+r) + Tp
r

+ Tp
1−r






.

B Attaining the Cramer-Rao Lower Bound

We have shown how to find the optimal value for k, assuming that we have

a minimum variance unbiased estimator, and here we demonstrate that doing

this is useful, and that we can in practice find estimators for p and r with a

variances that are close to the CRLB, the minimum variance obtainable for

unbiased estimators.

We know that the variance of any unbiased estimator is bounded below by

the CRLB. We generally want to find information about a network as quickly

as we can, so we are usually interested in sampling over a small time period, i.e.

for small values of T, and we need to show that we can obtain an estimator of

θ which comes close to this lower bound.

We can simplify the differentiated likelihood equations (see (1) in Appendix

A) to give

∂ log(L(θ|y))

∂p
=

y0

p
−

1

p + r
+

T−1
∑

j=0

(1 − yj)(2yj+1 − 1)

yj+1p + (1 − yj+1)(1 − p)
. (2)

5Strictly, we must show first that
R ∂2L(θ|y))

∂p2
dy =

R ∂2L(θ|y))

∂r2
dy = 0 to use the Fisher

information in this form. We can use a symmetry argument, or prove from first principles.
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If, for data y of length T + 1, we let a be the number of transitions from 0 to 0

(the number of times 0 follows 0), b the number from 0 to 1, c the number from

1 to 0, and d the number from 1 to 1, then we let







a b

c d






be a count of the

transitions of the Markov chain. Clearly then, we can express (2) as

∂ log(L(θ|y))

∂p
=

y0

p
−

1

p + r
−

a

1 − p
+

b

p
. (3)

Then p̃ = b
a+b

, is an unbiased estimator of p: conditioning on the chain

being in state 0, which occurs a + b times, it leaves each time with probability

p, and this happens b times. Similarly r̃ = c
c+d

is an unbiased estimator of r.

Another approach would be to use the maximum likelihood estimators. Set-

ting (3) and the equivalent differentiated log likelihood equation for r equal to

zero we get the following estimators:

y0 + b

p̂
−

1

p̂ + r̂
−

a

1 − p̂
= 0,

1 − y0 + c

r̂
−

1

p̂ + r̂
−

d

1 − r̂
= 0.

We can rearrange this and simplify to get:

p̂2[−b − y0 + 1 − a] + p̂[(b + y0)(1 − r̂) − 1 − ar̂] + (b + y0)r̂ = 0

r̂2[−c + y0 − d] + r̂[(c + 1 − y0)(1 − p̂) − 1 − dp̂] + (c + 1 − y0)p̂ = 0,

a pair of simultaneous quadratic equations in p̂ and r̂. We can find a solution for

p̂ simply in terms of r̂, and vice versa, and we find that these solutions converge

quickly given an appropriate start-point (e.g p̂ = 0.5). It is clear that two

quadratic curves with negative second derivative can only meet at two points,

and we always in practice find one point where 0 < p̂ < 1, and 0 < r̂ < 1, so we
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do find a unique solution. Maximum likelihood theory tells us that the variance

of θ̂ is asymptotically equal to the CRLB.

We simulated 1000 realisations of the Markov chain for fixed T=10 to com-

pare the estimators, and in order to demonstrate their effectiveness for small

T. The results are shown in tables 5 and 6. Experimentally by simulation, we

find that the MLEs p̂ and r̂ are biased, although as they are MLEs they are

asymptotically unbiased and must also converge to the CRLB, and indeed we

find this as we increase T. It is interesting to note that the biased estimator

p̂ tends to have a smaller bias and variance than p̃, presumably as it also uses

the value of y0 to provide a better estimate. However, the overall difference is

minimal. 6

[Table 5 about here.]

[Table 6 about here.]

One problem occurs when calculating both estimators p̂ and p̃ where each tran-

sition in the chain starts entirely in one state (either 0 or 1) for the whole of

the period in which we are sampling. So if a + b = 0 or c + d = 0, we gather

no inference for p or r respectively. We can deal with this when simulating our

experiment by ignoring this particular simulation and re-sampling. Another

method would be to assign a random value between zero and one to the ines-

timable parameter, or to base its value on some prior belief. The probability of

realising such a chain decreases rapidly as T increases, so this is not a major

problem in practice.7 We use the first method here, which adds to the bias of

the estimators.

6If less bias is desired, we could use a bootstrapping technique to remove bias. However
this may increase the variance of the estimators.

7This problem has been considered by Gani [8], who notes some difficulties in obtaining
maximum likelihood estimators for Markov chains, and presents sufficient and necessary con-
ditions for the existence of an MLE. However, this only applies to Markov chains that have
one parameter, and is not directly applicable here.
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In summary, we have shown that we can find two effective estimators that

get close to the CRLB for moderate sample sizes.
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Figure 1: Overview of model
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Figure 2: Generic behaviour of Markov chain model
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Figure 3: Full N+1 state model
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Figure 4: Mapping the 2-state Markov chain model against queue state evolution
over time
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Figure 5: Sequence of probes in simplified buffer representation
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Table 1: Comparing k=1 with k=2 for fixed T=10
p/r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.42 0.47 0.56 0.70 0.97 1.56 3.38 15.11 -
0.2 0.47 0.58 0.77 1.12 1.90 4.31 19.03 - 47.79
0.3 0.56 0.77 1.16 2.05 4.74 20.71 - 35.83 18.2
0.4 0.70 1.12 2.05 4.87 21.38 - 32.29 12.27 11.61
0.5 0.97 1.90 4.74 21.38 - 31.04 10.59 7.47 9.22
0.6 1.56 4.31 20.71 - 31.05 10.17 6.44 5.96 8.52
0.7 3.38 19.03 - 32.29 10.59 6.44 5.35 5.76 9.01
0.8 15.11 - 35.83 12.27 7.48 5.96 5.76 6.78 11.14
0.9 - 47.79 18.28 11.61 9.22 8.53 9.02 11.15 18.25
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Table 2: Best value of k for T=5
p/r 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.05 10 7 6 4 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1
0.1 7 5 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1
0.15 6 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
0.2 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.25 4 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
0.3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.35 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.45 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.55 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.65 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Capacity
(Mbps)

Values of D Criterion for k = 1, 2, . . . , 10 Optimal k

3.4 378.72, 667.03, 867.01, 985.62, 1033.50,
1023.64, 969.99, 886.32, 785.11, 676.87

k=5

3.6 49.77, 71.38, 72.68, 61.69, 45.57, 29.78, 17.43,
9.28, 4.57, 2.12

k=3

3.8 27.64, 33.94, 28.84, 19.63, 10.90, 4.92, 1.84,
0.59, 0.17, 0.05

k=2

4.0 21.84, 23.54, 17.31, 10.05, 4.60, 1.59, 0.41,
0.09, 0.02, 0.00

k=2

4.2 19.77, 18.86, 12.23, 6.29, 2.56, 0.75, 0.15, 0.02,
0.00, 0.00

k=1

Table 3: Optimal k for increasing capacity in VoIP
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Table 4: T = 5: Best value of k for varying p and r with penalties for performing
experiment
p/r 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.05 10 8 6 5 4 3 3 3 2 2 2 2 1 1 1 1 1 1 1
0.1 7 5 4 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1
0.15 5 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
0.2 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.25 4 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.35 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.45 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.65 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.95 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5: Accuracy and precision of the simple estimators, p̃, r̃
p r (bias(p̃))2 var(p̃) CRLB(p) (bias(r̃))2 var(r̃) CRLB(r)

0.2 0.2 0.0050 0.076 0.027 0.0023 0.062 0.027
0.2 0.4 0.0021 0.045 0.018 0.0011 0.107 0.076
0.2 0.6 0.0005 0.026 0.016 0.0001 0.121 0.105
0.2 0.8 0.0003 0.026 0.014 0.0052 0.132 0.085
0.4 0.2 0.0034 0.110 0.076 0.0010 0.040 0.018
0.4 0.4 0.0031 0.059 0.045 0.0045 0.060 0.045
0.4 0.6 0.0011 0.046 0.036 0.0026 0.065 0.060
0.4 0.8 0.0006 0.040 0.032 0.0002 0.052 0.048
0.6 0.2 0.0006 0.115 0.105 0.0012 0.032 0.016
0.6 0.4 0.0030 0.067 0.060 0.0016 0.042 0.036
0.6 0.6 0.0004 0.047 0.046 0.0018 0.047 0.046
0.6 0.8 0.0009 0.042 0.040 0.0016 0.031 0.037
0.8 0.2 0.0011 0.115 0.085 0.0004 0.025 0.014
0.8 0.4 0.0012 0.043 0.048 0.0008 0.041 0.032
0.8 0.6 0.0014 0.031 0.037 0.0010 0.043 0.040
0.8 0.8 0.0004 0.029 0.032 0.0006 0.027 0.032
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Table 6: Accuracy and precision of the maximum likelihood estimators, p̂, r̂
p r (bias(p̂))2 var(p̂) CRLB(p) (bias(r̂))2 var(r̂) CRLB(r)

0.2 0.2 0.0050 0.071 0.027 0.0026 0.057 0.027
0.2 0.4 0.0016 0.042 0.018 0.0018 0.102 0.076
0.2 0.6 0.0004 0.025 0.016 0.0002 0.120 0.105
0.2 0.8 0.0002 0.026 0.014 0.0049 0.131 0.085
0.4 0.2 0.0036 0.106 0.076 0.0011 0.036 0.018
0.4 0.4 0.0028 0.057 0.045 0.0046 0.058 0.045
0.4 0.6 0.0012 0.046 0.036 0.0029 0.064 0.060
0.4 0.8 0.0006 0.039 0.032 0.0003 0.049 0.048
0.6 0.2 0.0007 0.112 0.105 0.0012 0.030 0.016
0.6 0.4 0.0035 0.065 0.060 0.0015 0.041 0.036
0.6 0.6 0.0005 0.047 0.046 0.0018 0.046 0.046
0.6 0.8 0.0010 0.041 0.040 0.0016 0.031 0.037
0.8 0.2 0.0010 0.114 0.085 0.0005 0.024 0.014
0.8 0.4 0.0012 0.043 0.048 0.0008 0.039 0.032
0.8 0.6 0.0013 0.031 0.037 0.0012 0.042 0.040
0.8 0.8 0.0004 0.028 0.032 0.0006 0.027 0.032
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