The University of Southampton
University of Southampton Institutional Repository

Micro- and nano-scale tribo-corrosion of cast CoCrMo

Micro- and nano-scale tribo-corrosion of cast CoCrMo
Micro- and nano-scale tribo-corrosion of cast CoCrMo
Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.
biotribology, wear mechanisms
1023-8883
525-533
Sun, D.
ccee3ca1-d1bb-46a7-b0a9-438700125b89
Wharton, J.A.
965a38fd-d2bc-4a19-a08c-2d4e036aa96b
Wood, R.J.K.
d9523d31-41a8-459a-8831-70e29ffe8a73
Sun, D.
ccee3ca1-d1bb-46a7-b0a9-438700125b89
Wharton, J.A.
965a38fd-d2bc-4a19-a08c-2d4e036aa96b
Wood, R.J.K.
d9523d31-41a8-459a-8831-70e29ffe8a73

Sun, D., Wharton, J.A. and Wood, R.J.K. (2011) Micro- and nano-scale tribo-corrosion of cast CoCrMo. Tribology Letters, 41 (3), 525-533. (doi:10.1007/s11249-011-9757-y).

Record type: Article

Abstract

Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.

This record has no associated files available for download.

More information

Published date: 24 January 2011
Keywords: biotribology, wear mechanisms
Organisations: Engineering Sciences

Identifiers

Local EPrints ID: 174635
URI: http://eprints.soton.ac.uk/id/eprint/174635
ISSN: 1023-8883
PURE UUID: c6133b66-fc56-45da-a705-fcfcdf741052
ORCID for J.A. Wharton: ORCID iD orcid.org/0000-0002-3439-017X
ORCID for R.J.K. Wood: ORCID iD orcid.org/0000-0003-0681-9239

Catalogue record

Date deposited: 15 Feb 2011 13:41
Last modified: 14 Mar 2024 02:41

Export record

Altmetrics

Contributors

Author: D. Sun
Author: J.A. Wharton ORCID iD
Author: R.J.K. Wood ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×