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Nomenclature1

A cross-sectional area, constant
e, E dilatation, Young’s modulus
G shear modulus
i, j indices
I second moment of area
J integral related to Saint-Venant flexure function
L length of beam
m mode number
n normal, integer, order in q
q mπ/L for a standing wave, wavenumber for a travelling wave
u, v, w displacement components
x, y, z Cartesian coordinates
t, T time, kinetic energy
U strain energy
γ shear angle
χ Saint-Venant flexure function
κ shear coefficient
λ Lamé constant
ν Poisson’s ratio
ρ density
σ, τ direct, shearing stress
ω radian frequency
ψ cross-sectional rotation
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1. Introduction3

Timoshenko beam theory (TBT) provides shear deformation and rotatory inertia corrections4

to the classic Euler–Bernoulli theory [1]; it predicts the natural frequency of bending vibrations5

for long beams with remarkable accuracy if one employs the “best” value for the shear coefficient,6

κ. Exact elastodynamic theory is available for beams of circular cross-section (Pochammer–7

Chree theory, see Love [2], article 202) and the thin (plane stress) rectangular section [3], and for8

these cases the best coefficients are κ = 6(1+ν)2/(7+12ν+4ν2) and κ = 5(1+ν)/(6+5ν), respec-9

tively, where ν is Poisson’s ratio of the material. In turn, procedures have been developed for the10

general cross-section which lead to an expression for the best κ in terms of the Saint-Venant flex-11

ure function, and which provide the above values when applied to these cross-sections. Stephen12

and Levinson [4, 5] based their methods upon the static stress distribution for a beam subjected13

to gravity loading, rather than the tip loading assumed in the method proposed by Cowper [6].14

More recently, Hutchinson [7] employed the Hellinger–Reissner variational principle to construct15

a beam theory of Timoshenko type, which incorporated an expression for the shear coefficient16

that was demonstrated to be equivalent to this best coefficient in the Discussion and Closure17

section of Ref. [7]. Hutchinson [8] provided further results for thin-walled beams.18

Despite these successes, all these works rely on ad hoc physical assumptions and are therefore19

sometimes queried. It would be of some advantage to be able to dispense with these assumptions,20
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insightful though they are, and derive the shear coefficient for an arbitrary cross-section mathe-21

matically, and in the process reveal what approximations are in fact employed and therefore what22

the corrections are. In the present work, we consider standing waves in a beam of length L that23

is simply-supported (this restriction can be relaxed; see the end of Section 8.1); the governing24

elastodynamic equations are expanded as a power series in q = mπ/L, the integer m being the25

mode order; displacements, stress components and frequencies are calculated for each power as26

necessary. The natural frequency is then expressed, for long thin beams (L large, q small) as a27

power series in q:28

ω2 = A4q4 + A6q6 + . . . , (1)

in which symmetry only allows even powers of q. (All such series are meant to be asymptotic,29

not necessarily convergent; this is after all what is needed in applications with a fixed number of30

terms and q → 0.) Euler–Bernoulli theory implies that the leading term is q4 and in fact gives31

the value of A4. The key in the present discussion is A6, and the strategy is to compute it in two32

different ways and compare the result.33

In Section 2, TBT is reviewed, and rendered into the form (1). The resultant A6 ≡ AT
6 (κ) of34

course depends on κ.35

Then we proceed with an alternate solution, by simply expanding the problem in powers of q,36

without relying on any physical assumptions or introducing any shear coefficient. The governing37

equations are set up in Section 3 and solved order by order in Section 4. The result is used to38

evaluate the strain energy U in Section 5 and the kinetic energy T in Section 6. The eigenvalue39

ω2 is given by the Rayleigh quotient Q = U/T , which is evaluated in Section 7, giving a formula40

for A6 that does not contain κ. Comparison with AT
6 (κ) then yields κ. The key result in (52)41

turns out to be identical with the canonical expression given by Stephen [4] and Stephen and42

Levinson [5] for an arbitrary cross-section, thus settling any possible controversy [9] that might43

remain. A discussion is given in Section 8 and a brief conclusion is given in Section 9.44

2. Timoshenko beam theory45

We consider standing waves in a uniform, isotropic simply-supported beam of arbitrary cross-46

section and length L; the axial coordinate is z, and transverse vibration takes place in the xz-plane.47

Euler–Bernoulli theory considers just the transverse displacement u(z, t) and the curvature of the48

centre line. TBT expresses the centre line slope in terms of the cross-sectional rotation ψ(z, t)49

and a centre-line shear angle γ(z, t) = ψ(z, t) + ∂u(z, t)/∂z; the latter is related to the shear force50

by a shear coefficient κ. Within this approximation, the coupled equations of free vibration may51

be written as52

κAG
∂

∂z

(
ψ +

∂u
∂z

)
= ρA

∂2u
∂t2 , (2a)

κAG
(
ψ +

∂u
∂z

)
− EIyy

∂2ψ

∂z2 = −ρIyy
∂2ψ

∂t2 . (2b)

Elimination of ψ leads to a single 4th-order differential equation in both space and time53
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EIyy
∂4u
∂z4 + ρA

∂2u
∂t2 − ρIyy

(
1 +

E
κG

)
∂4u
∂z2∂t2 +

ρ2Iyy

κG
∂4u
∂t4 = 0 . (3)

For a simply-supported beam the mode shape is sinusoidal in both space and time, so write54

u ∝ sin qz sinωt , (4)

where q = mπ/L is the wavenumber for mode m. The standing wave can be regarded as two55

superposed travelling waves, and strictly speaking the term “wavenumber” refers to the latter.56

Equivalently, one can also work with travelling waves, and use a complex notation, e.g. exp [i(qz−57

ωt)], but for the present paper, the more physical notation of real variables will be used instead.58

One then has59

EIyyq4 − ρAω2 − ρIyy

(
1 +

E
κG

)
q2ω2 +

ρ2Iyy

κG
ω4 = 0 . (5)

Now the Euler–Bernoulli frequency ωEB is defined by the first two terms in the above, that is,60

ω2
EB =

(
EIyy/ρA

)
q4 , (6)

and it is convenient to embed this frequency into (5): divide throughout by EIyyq4 to give61

1 −
(
ω

ωEB

)2

−

(
1 +

E
κG

) Iyy

A
q2

(
ω

ωEB

)2

+
EI2

yy

κA2G
q4

(
ω

ωEB

)4

= 0 . (7)

For long wavelengths, set all powers of q in (7) equal to zero, which leads to ω = ωEB. As the62

wavelength becomes shorter, that is q becomes larger, so (ω/ωEB) also becomes less than unity63

and one ignores the final term in (7), to give64

(
ω

ωEB

)2

=

[
1 +

(
1 +

E
κG

) Iyy

A
q2

]−1

. (8)

Using (6) for ω2
EB and employing the binomial expansion on the right-hand side of (8), one gets65

ω2 =
EIyy

ρA
q4

[
1 −

(
1 +

E
κG

) Iyy

A
q2

]
+ O(q8) , (9)

which gives66

AT
4 =

EIyy

ρA
, (10a)

AT
6 = −

EIyy

ρA

(
1 +

E
κG

) Iyy

A
, (10b)

67

where the superscript T denotes that these come from TBT; AT
4 merely expresses classical Euler–68

Bernoulli theory, while AT
6 (κ) will allow κ to be determined, if A6 can be found in an independent69

way — which will be the task of the rest of this paper.70
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3. Expansion of governing equations71

This Section takes the fundamental equations of elastodynamics as applied to flexural vibra-72

tions, and simply performs an expansion in powers of q, with no other assumptions. The aim73

is to obtain (1) and in particular evaluate A6 without ever introducing κ. This straightforward if74

apparently tedious task is made much easier by two important observations.75

First, the expression (1) may suggest the need to do a daunting 6th-order calculation in q.76

However, A4 and A6 can be evaluated if the eigenfunction is known up to 3rd order (see Subsec-77

tion 4.5). The ability to bypass the 4th-, 5th- and 6th-order eigenfunctions may appear somewhat78

fortuitous, but in fact exemplifies a general theorem [10]: if the eigenfunction is known with an79

error of O(qN) (here N = 4), and this is used in a Rayleigh quotient, then the eigenvalue can be80

evaluated with an error of O(q2N).81

Second, symmetry of the system under z → −z, q → −q implies that (1) involves only even82

powers of q, and more importantly, that the eigenfunctions are either even or odd in q, so that83

half the terms vanish.84

3.1. Equations of motion85

Assume displacements of the form86

u(x, y, z, t) = ū(x, y) sin qz sinωt , (11a)
v(x, y, z, t) = v̄(x, y) sin qz sinωt , (11b)
w(x, y, z, t) = w̄(x, y) cos qz sinωt , (11c)

87

where it is noticed that (u, v) and w are out of phase in z by a quarter cycle. The functions ū, v̄88

and w̄ are then expanded in powers of q. Symmetry implies that (u, v,w) must be odd in q, so ū89

and v̄ are even while w̄ is odd in q:90

ū = u0 + u2q2 + . . . , (12a)
v̄ = v0 + v2q2 + . . . , (12b)
w̄ = w1q + w3q3 + . . . . (12c)

91

Terms beyond those shown are not necessary for our purpose. The dilatation is likewise expanded92

e ≡
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= ē(x, y) sin qz sinωt , (13a)

ē =

(
∂u0

∂x
+
∂v0

∂y

)
+

(
∂u2

∂x
+
∂v2

∂y
− w1

)
q2 + . . . , (13b)

93

where ē is even in q.94

The Navier equations are three of the type95
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(λ + G)
∂e
∂x

+ G∇2u = ρ
∂2u
∂t2 , (14)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Substituting the displacement (12)–(13) and the natural96

frequency according to (1), one then finds97

(λ+G)
[
∂2

∂x2

(
u0+u2q2+ . . .

)
+

∂2

∂x∂y

(
v0+v2q2+ . . .

)
−
∂

∂x
(w1q+ . . .) q

]
+ G

[(
∂2

∂x2 +
∂2

∂y2

) (
u0+u2q2+ . . .

)
−

(
u0+u2q2+ . . .

)
q2 + . . .

]
+ ρ

(
u0+u2q2+ . . .

) (
A4q4+A6q6 + . . .

)
= 0 , (15a)

(λ+G)
[
∂2

∂x∂y

(
u0+u2q2+ . . .

)
+
∂2

∂y2

(
v0+v2q2+ . . .

)
−
∂

∂y
(w1q+ . . .) q

]
+ G

[(
∂2

∂x2 +
∂2

∂y2

) (
v0+v2q2+ . . .

)
−

(
v0+v2q2+ . . .

)
q2 + . . .

]
+ ρ

(
v0+v2q2+ . . .

) (
A4q4+A6q6 + . . .

)
= 0 , (15b)

(λ+G)q
[
∂

∂x

(
u0+u2q2+ . . .

)
+
∂

∂y

(
v0+v2q2+ . . .

)
− (w1q+ . . .) q

]
+ G

[(
∂2

∂x2 +
∂2

∂y2

)
(w1q+ . . .) − (w1q+ . . .) q2 + . . .

]
+ ρ (w1q+ . . .)

(
A4q4+A6q6 + . . .

)
= 0 , (15c)

98

which are to be solved order by order in q; even orders involve only (15a) and (15b), and odd99

orders only (15c).100

3.2. Boundary conditions101

The boundary conditions of zero traction are102

σx cos(x,n) + τxy cos(y,n) = 0 , (16a)
τxy cos(x,n) + σy cos(y,n) = 0 , (16b)
τxz cos(x,n) + τyz cos(y,n) = 0 , (16c)

103

where σi, i = x, y, z are the direct stresses and τi j are the shear stresses; they also have a z- and104

t-dependence that can be factored out:105

σi(x, y, z, t) = σ̄i(x, y) sin qz sinωt , i = x, y, z , (17a)
τxy(x, y, z, t) = τ̄xy(x, y) sin qz sinωt , (17b)
τiz(x, y, z, t) = τ̄iz(x, y) cos qz sinωt , i = x, y . (17c)
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The direct and shear stress components are given in terms of the strains by106

σ̄x = λē + 2G (∂ū/∂x) , (18a)
σ̄y = λē + 2G (∂v̄/∂y) , (18b)
σ̄z = λē − 2Gw̄q , (18c)
τ̄xy = G (∂ū/∂y + ∂v̄/∂x) , (18d)
τ̄xz = G (ūq + ∂w̄/∂x) , (18e)
τ̄yz = G (v̄q + ∂w̄/∂y) . (18f)

In more detail,107

σ̄x = λē + 2G
[
(∂u0/∂x) + (∂u2/∂x) q2 + . . .

]
, (19a)

σ̄y = λē + 2G
[
(∂v0/∂y) + (∂v2/∂y) q2 + . . .

]
, (19b)

σ̄z = λē − 2G
[
w1q2 + w3q4 + . . .

]
, (19c)

τ̄xy = G
[
(∂u0/∂y+∂v0/∂x) + (∂u2/∂y+∂v2/∂x) q2 + . . .

]
, (19d)

τ̄xz = G
[
(u0+∂w1/∂x) q + . . .

]
, (19e)

τ̄yz = G
[
(v0+∂w1/∂y) q + . . .

]
. (19f)

108

We will also find it convenient to write these components as109

σ̄i = σ(0)
i + σ(2)

i q2 + . . . , i = x, y, z , (20a)

τ̄xy = τ(0)
xy + τ(2)

xy q2 + . . . , (20b)

τ̄iz = τ(1)
iz q + τ(3)

iz q3 + . . . , i = x, y . (20c)

in which all terms with the wrong symmetry in q have been dropped. (If these were kept at this110

point, we would simply find, upon calculation order-by-order, that they in fact vanish.)111

4. Order-by-order solution112

In this Section, we solve the equations of motion (15) subject to the boundary conditions113

(16), order by order.114

4.1. Zeroth order115

Suppose, as a matter of convention, that the lowest-order displacement is in the x-direction,116

with the normalization set to unity. (Otherwise, all amplitudes will carry a factor u0 and all117

energies a factor u2
0, which will in the end cancel in Q = U/T .) Thus118

u0 = 1 , v0 = 0 , (21)

with w0 = 0 already assumed in (12). It is obvious that the equations of motion (15) are satisfied,119

and since all stress components are zero to this order, the boundary conditions (16) are obviously120

satisfied as well.121

7



4.2. First order122

The solution is obviously123

w1 = −x , (22)

with u1 = v1 = 0 already assumed in (12). The Navier equations (15) are satisfied, and124

τ(1)
xz = G (u0 + ∂w1/∂x) = 0 , (23)

by (21) and (22). All other stress components are obviously zero as well. Again, the boundary125

conditions need not be considered. For later reference, it is important to note that the stresses126

therefore start at O(q2), and hence the strain energy at O(q4).127

4.3. Second order128

The solution is129

u2 = ν(y2 − x2)/2 , v2 = −νxy , (24)

with w2 = 0 already assumed in (12). The only non-zero stress is130

σ(2)
z = Ex . (25)

This is equivalent to the Euler–Bernoulli stress distribution.131

4.4. Third order132

For the third order, we only need to determine w3, since symmetry dictates u3 = v3 = 0. Only133

(15c) needs to be considered, and this reduces to134

∇2w3 = −2x , (26)

where henceforth and without danger of confusion ∇2 stands for the two-dimension Laplacian:135

∇2 = ∂2/∂x2 + ∂2/∂y2. Guided by Love [2], set136

w3 = −
(
χ + xy2

)
, (27)

so that137

∇2χ = 0 . (28)

To determine the boundary condition on χ, we first note that the two non-zero 3rd-order138

stresses are139
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τ(3)
xz = G (u2 + ∂w3/∂x) = −G

[
∂χ/∂x + νx2/2 + (1−ν/2)y2

]
, (29a)

τ(3)
yz = G (v2 + ∂w3/∂y) = −G

[
∂χ/∂y + (2+ν)xy

]
. (29b)

140

We only need to consider (16c), which reduces to141

[
∂χ

∂x
+
ν

2
x2+

(
1−

ν

2

)
y2

]
cos(x,n) +

[
∂χ

∂y
+ (2+ν) y2

]
cos(y,n) = 0 . (30)

But142

∂χ

∂x
cos(x,n) +

∂χ

∂y
cos(y,n) =

∂χ

∂x
dx
dn

+
∂χ

∂y
dy
dn

=
dχ
dn

, (31)

so that (30) becomes143

dχ
dn

= −

[
ν

2
x2 +

(
1−

ν

2

)
y2

]
cos(x,n) − (2+ν) xy cos(y,n) . (32)

Thus χ is determined by the differential equation (28) together with the Neumann boundary144

condition (32), and is seen to be nothing other than the Saint-Venant flexure function; see Ref. [2],145

Chapter XV.146

4.5. Higher orders147

As far as the eigenvalue to O(q6) is concerned, the 4th- and higher-order eigenfunctions will148

cancel when put into the Rayleigh quotient. This “miraculous” cancellation is best understood149

in a general context [10]. But the upshot for the present purpose is that these higher-order eigen-150

functions need not be evaluated.151

5. Strain energy152

In terms of the stress components, the strain energy of the beam is given by Ref. [11], article153

90:154

U =
L
2

∫∫ [
1

2E

(
σ̄2

x+σ̄
2
y+σ̄2

z

)
−
ν

E

(
σ̄xσ̄y+σ̄yσ̄z+σ̄zσ̄x

)
+

1
2G

(
τ̄2

xy+τ̄
2
yz+τ̄

2
zx

)]
dxdy , (33)

in which a trivial integration over z has been carried out. Denote155

U = U0 + U2q2 + . . . (34)
9



5.1. Zeroth order156

This will involve terms such as τ(0)
xy

2 through to σ(0)
z

2, as well as terms such as σ(0)
x σ(0)

y , but157

since all zeroth-order stress components are zero, one immediately has U0 = 0.158

5.2. First order159

This will involve terms such as 2τ(0)
xy τ

(1)
xy through to 2σ(0)

z σ(1)
z , as well as terms such as160

σ(0)
x σ(1)

y + σ(1)
x σ(0)

y , but since all zeroth-order and first-order stress components are zero, one161

immediately has U1 = 0.162

5.3. Second order163

This will involve terms such as τ(1)
xy

2 + 2τ(0)
xy τ

(2)
xy through to σ(1)

z
2 + 2σ(0)

z σ(2)
z , as well as terms164

such as σ(0)
x σ(2)

y +σ(1)
x σ(1)

y +σ(2)
x σ(0)

y ; again all zeroth-order and first-order stress components are165

zero, and one immediately has U2 = 0.166

5.4. Third order167

This will involve terms such as 2τ(0)
xy τ

(3)
xy + 2τ(1)

xy τ
(2)
xy through to 2σ(0)

z σ(3)
z + 2σ(1)

z σ(2)
z , as well168

as terms such as σ(0)
x σ(3)

y + σ(1)
x σ(2)

y + σ(2)
x σ(1)

y + σ(3)
x σ(0)

y . Again one immediately has U3 = 0.169

5.5. Fourth order170

This will involve terms such as τ(2)
xy

2+2τ(0)
xy τ

(4)
xy +2τ(1)

xy τ
(3)
xy through toσ(2)

z
2+2σ(0)

z σ(4)
z +2σ(1)

z σ(3)
z ,171

as well as terms such as σ(0)
x σ(4)

y + σ(1)
x σ(3)

y + σ(2)
x σ(2)

y + σ(3)
x σ(1)

y + σ(4)
x σ(0)

y . The only non-zero172

contributor is173

σ(2)
z = Ex , (35)

and one finds174

U4 = EIyyL/4 . (36)

5.6. Fifth order175

This involves terms such as 2τ(0)
xy τ

(5)
xy + 2τ(1)

xy τ
(4)
xy + 2τ(2)

xy τ
(3)
xy through to 2σ(0)

z σ(5)
z + 2σ(1)

z σ(4)
z +176

2σ(2)
z σ(3)

z , as well as terms such as σ(0)
x σ(5)

y + σ(1)
x σ(4)

y + σ(2)
x σ(3)

y + σ(3)
x σ(2)

y + σ(4)
x σ(1)

y + σ(5)
x σ(0)

y .177

The only possible contributors come from the second- and third-order stresses, but since there is178

no product involving σ(2)
z and τ(3)

xz or τ(3)
yz , one immediately has U5 = 0. This result (and the same179

for U1 and U3) is anticipated since the strain energy must be even in q.180

10



5.7. Sixth order181

At this level, there are a variety of terms which do contribute; these are τ(3)
xz

2 and τ(3)
yz

2, which182

are straightforward, and also 2σ(4)
z σ(2)

z , σ(4)
x σ(2)

z and σ(4)
y σ(2)

z . This suggests that one must deter-183

mine the direct stress components σ(4)
i , i = x, y, z, but in fact one only needs a knowledge of w3.184

In terms of the displacement components, one has185

σ(4)
x = λe(4) + 2G

∂u4

∂x
, (37a)

σ(4)
y = λe(4) + 2G

∂v4

∂y
, (37b)

σ(4)
z = λe(4) − 2Gw3 , (37c)

186

where187

e(4) =
∂u4

∂x
+
∂v4

∂y
− w3 . (38)

The relevant expression in the integrand in U is188

1
2E

(
2σ(4)

z σ(2)
z

)
−
ν

E

(
σ(4)

y σ(2)
z + σ(2)

y σ(4)
z

)
, (39)

which reduces to189

−σ(2)
z w3 , (40)

where w3 comes from the last term in (19c) and all reference to eigenfunctions beyond 3rd order190

has disappeared. One then finds191

U6 =
EL
2

[
J1 +

1
4(1+ν)

J2

]
≡

EL
2

J , (41)

in terms of two integrals with dimensions of (length)6 defined in terms of the Saint-Venant flexure192

function:193

J1 =

∫∫
x
(
χ + xy2

)
dxdy , (42a)

J2 =

∫∫ 
[
∂χ

∂x
+
ν

2
x2 +

(
1 −

ν

2

)
y2

]2

+

[
∂χ

∂y
+ (2 + ν) xy

]2
 dxdy . (42b)

194
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6. Kinetic energy195

The Rayleigh quotient Q (see next Section) is essentially the ratio of the strain energy U to196

the kinetic energy T . (This term is used as a shorthand. The kinetic energy is actually ω2T .)197

Since U starts with q4 and we want Q only to q6, it suffices to calculate T to just q2. Now we198

have199

T =
ρL
4

∫∫ (
ū2 + v̄2 + w̄2

)
dxdy , (43)

where again the trivial integration over z has been carried out. The integrand is200

(
u0 + u2q2 + . . .

)2
+

(
v0 + v2q2 + . . .

)2
+

(
w1q + w3q3

)2
. (44)

The integral of u2
0 provides the q0 term, while w2

1 + 2u0u2 provides the q2 term, and one finds201

T = T0 + T2q2 + . . . , (45)

where202

T0 =
ρAL

4
, (46a)

T2 =
ρL
4

[
Iyy + ν

(
Ixx − Iyy

)]
. (46b)

203

7. Rayleigh quotient204

It is well known that the eigenvalue ω2 is given by the Rayleigh quotient [12]205

ω2 = Q ≡
U
T

=
U4q4 + U6q6 + . . .

T0 + T2q2 + . . .
, (47)

where U and T are evaluated for the corresponding eigenfunction; from this one finds the coeffi-206

cients defined by (1) as207

A4 =
U4

T0
=

EIyy

ρA
, (48a)

A6 =
U6

T0
−

U4T2

T 2
0

=
E
ρA2

{
2AJ − Iyy

[
Iyy + ν

(
Ixx − Iyy

)]}
, (48b)

208

so that compared with (10b), we find209
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κ =
−2(1+ν)I2

yy

2AJ1 + AJ2/ [2(1 + ν)] + νIyy

(
Iyy − Ixx

) . (49)

This expression is similar but not identical to that given by Hutchinson [7]. But using an identity210

presented in the Discussion of Ref. [7], we have211

J2 = νJ3 − 2(1 + ν)J1 , (50)

where212

J3 =

∫∫ {[
x2−y2

2

] [
∂χ

∂x
+
ν

2
x2+

(
1 −

ν

2

)
y2

]
+ xy

[
∂χ

∂y
+ (2 + ν) xy

]}
dxdy . (51)

Thus we can finally render (49) into213

κ =
−4(1 + ν)2I2

yy

2(1 + ν)AJ1 + νAJ3 + 2ν(1 + ν)Iyy

(
Iyy − Ixx

) . (52)

In this form, κ agrees exactly with the expression for the shear coefficient presented in Ref. [4, 5],214

thus proving the latter without having to resort to the physical assumption of TBT.215

8. Discussion216

8.1. General remarks217

Our derivation relies on a single approximation, namely that the wavelength is long, i.e. q is218

small, so that a power series in q makes sense. There is no need to guess, on physical grounds,219

what degrees of freedom must be kept. In fact, the new variable γ in TBT emerges automatically,220

in the following way. First, the centre line of the beam tilts by an angle (dropping common221

time-dependent factors from (11))222

∂u
∂z

= qū cos qz

= q
(
u0 + u2q2 + . . .

)
cos qz . (53)

On the other hand, the cross-sectional plane tilts by an angle223

ψ =
∂w
∂x

=
∂w̄
∂x

cos qz

=

(
∂w1

∂x
q +

∂w3

∂x
q3 + . . .

)
cos qz . (54)
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The centre line and the cross-sectional plane will therefore deviate from orthogonality by an224

angle225

γ = ψ +
∂u
∂z

=

[(
u0 +

∂w1

∂x

)
q +

(
u2 +

∂w3

∂x

)
q3 + . . .

]
cos qz . (55)

Our solution, with no assumptions, shows that the first bracket is zero — recovering the key226

insight and assumption γ = 0 in Euler–Bernoulli theory. The next bracket is not zero, so γ must227

be kept for shorter wavelengths, and moreover its effect is captured once w3 is evaluated, without228

the need to introduce any parameters.229

In principle, the expansion in q can be continued and is formally exact, although the evalua-230

tion of u4, v4,w5, . . . is impossible in practice — with two important exceptions to be discussed231

below. But some general features of the expansion can be noted. First, purely on dimensional232

grounds, each successive term in (1) has an extra power of (qa)2, where a is a typical transverse233

dimension of the beam, i.e., A2n ∼ (E/ρa2)(qa)2n. Second, we do not expect TBT to reproduce234

the next order exactly, i.e., AT
8 , A8, since for shorter wavelengths, the vibration must be de-235

scribed by more than two variables u(z, t), ψ(z, t) at each z — as can be demonstrated in simple236

cases (see below). These remarks, taken together, imply that TBT, though highly accurate when237

qa � 1, cannot be expected to work when qa ∼ 1, since the A8q8 . . . terms become important238

and cannot be reproduced correctly.239

The discussion in this paper refers to a simply-supported beam, i.e., hinged-hinged end con-240

ditions, but this restriction is unnecessary, since other conditions, e.g., guided-guided or guided-241

hinged, can be regarded as portions of a multi-span hinged-hinged beam [13].242

It should also be mentioned that our “best” choice of κ is obtained by matching the q6 term in243

the dispersion relation of the lowest branch (the one without nodes in the cross-sectional plane),244

and is of course the optimal one for using TBT to describe oscillations of this type — which are245

the ones most commonly encountered in engineering practice. If one were interested in other246

types of oscillations, for example the higher branches, other choices may be more appropriate.247

8.2. Solvable examples and possible generalizations248

In two cases, the expansion in q can actually be carried out to very high orders. A brief249

discussion is given here, principally to illustrate the qualitative remarks above in a precise setting.250

First consider flexural vibrations in a hypothetical world of two dimensions, say xz. The251

partial differential equations in Sections 3 and 4 become ordinary differential equations in x.252

Moreover, on dimensional grounds, the nth order eigenfunction must go as (qa)n(x/a)k, with253

k ≤ n to ensure regularity when a → 0; thus it must be a polynomial in x of maximum order254

n. The differential equation can be cast into algebraic recursion relations for the polynomial255

coefficients. With these simplifications, the solution can be carried out to many orders.256

Next consider longitudinal vibrations in a circular cylinder. Using cylindrical coordinates257

(r, θ, z) and factoring out the trivial θ-dependence, one again obtains an ordinary differential258

equation (though of a slightly more complicated form) in r and for the same dimensional reason,259

the solution is again a polynomial in r, which likewise can be found to very high orders.260

We have solved both of these cases in powers of q to 20 orders. The coefficients in the poly-261

nomials turn out to be rational functions of ν, involving powers up to ν3n−3; though complicated,262
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these can be obtained using algebraic software packages. If one seeks only numerical values for263

a specific value of ν, the computation is much simpler. The results, which can also be checked264

against exact solutions available in these cases [14] confirm the qualitative features discussed in265

the last Subsection.266

Incidentally, an extension of the two-dimensional problem is a thin plates of thickness h,267

which may be treated in a manner similar to that given in the present paper, to provide a derivation268

of the “best” value of κ for the Mindlin theory of thin plates [15]. That study will be given269

elsewhere.270

8.3. Using the Rayleigh quotient271

The present paper makes use of the Rayleigh quotient, which has the advantage [10] of giving272

the 6th-order eigenvalue A6 from the 3rd-order eigenfunction w3. Two other nice features should273

be mentioned as well. First, using any approximate eigenfunction to evaluate U and T , and274

hence Q, guarantees positivity. In contrast, the approximation ω2 = A4q4 + A6q6 goes negative275

for qa = O(1). Second, again on physical grounds, one expects ω2/q2 → constant as q → ∞276

(finite phase velocity). This property is also nicely guaranteed for the Rayleigh quotient, since U277

involves two extra powers of q compared to T . Because of these properties, the Rayleigh quotient278

is often accurate over a wider range of qa. For longitudinal vibrations in a circular cylinder, this279

method leads to ∼ 5% accuracy up to qa ∼ 2.5, namely a cylinder with diameter larger than its280

length — almost a “disk” rather than a “rod”.281

9. Conclusion282

In conclusion, the simple and straightforward strategy of expanding in powers of q provides283

an alternative method to evaluate the shear coefficient κ that is systematic and unambiguous. The284

expansion, formally exact when carried out to all orders, also provides a wider perspective to285

view TBT: (a) with the “best” value for κ, it gives the next O((qa)2) correction to the classical286

Euler–Bernoulli theory, but (b) it is itself unlikely to be accurate when qa ∼ 1.287
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