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ABSTRACT 
 

The UNESCO Institute for Statistics has initiated a programme to collect data on the level of 
literacy of adults in developing countries. This will involve conducting small-scale surveys in 
a few countries that will consist of giving interviewees aged 15+ a test to measure their 
literacy score. One of the main objectives of these surveys is to obtain summary measures of 
literacy levels in small geographical areas for which only very small samples would be 
available, thus requiring the use of model based small area estimation methods. 
 
Available methods are not suitable, however, for this kind of data due to the mixed 
distribution of the literacy scores in developing countries. This distribution has a large peak at 
zero, i.e., a large proportion of adults that are illiterate, and juxtaposed to this peak is an 
approximately bell-shaped distribution of the non-zero scores measured for the rest of the 
sample. 
 
In this paper we develop a two part three-level model that is suitable for this kind of data and 
show how to obtain the small area measures and their variances, or compute confidence 
intervals, based on this model. The proposed method is illustrated using simulated data and 
data obtained from a similar literacy survey conducted in Cambodia. 
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Small Area Estimation under a Two-Part Random Effects Model 
with Application to Estimation of Literacy in Developing Countries 
Danny Pfeffermann, Bénédicte Terryn, Fernando Moura 

Abstract  

The UNESCO Institute for Statistics has initiated a programme to collect data on the literacy skills of 
adults in developing countries. This involves conducting small-scale surveys in a few countries, which 
consist of administering interviewees aged 15+ a test to measure their literacy score. One objective of 
this programme is to obtain summary measures of literacy levels in geographical areas for which only 
very small samples would be available, thus requiring the use of model based small area estimation 
methods. 

Available methods are not suitable, however, for this kind of data due to the mixed distribution of the 
literacy scores in developing countries. This distribution has a large peak at zero, i.e., a large 
proportion of adults that are illiterate, and juxtaposed to this peak is an approximately bell-shaped 
distribution of the non-zero scores measured for the rest of the sample. 

In this presentation we will develop a two-part three-level model that is suitable for this kind of data 
and show how to obtain the small area measures and their variances, or compute confidence intervals, 
based on this model. The proposed method will be illustrated using simulated data and data obtained 
from a literacy survey conducted in Cambodia.  
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1 Introduction 

We consider the distribution of scores obtained from literacy tests administered to adults in a 
household survey. In most developing countries, where many people cannot read or write, this is not a 
standard distribution. Typically, it consists of a large peak at zero, juxtaposed to a continuous 
distribution for the non-zero scores, as observed, for example, in a literacy survey carried out in 
Cambodia in 1999 (see Figure 1 below).  

In this paper we discuss ways of producing literacy estimates for areas with small samples under such 
a mixed distribution. This kind of mixed distribution has not been considered before in the small area 
estimation literature. The proposed model consists of two parts. The first part is a logistic model used 
to predict the probability of a positive score. The second part is a standard model (linear model with 
normal error terms in our application) used to predict a non-zero score. Both models include individual 
and area level covariates as well as random effects that account for variations not explained by the 
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covariates. The model accounts for correlations between the corresponding random effects of the two 
parts. The model is fitted by application of Markov Chain Monte Carlo (MCMC) simulations.  

The two-part model is applied to data collected as part of a national literacy household survey carried 
out in Cambodia in 1999, known as the ‘Assessment of the Functional Literacy Levels of the Adult 
Population’. The performance of the proposed model is tested by simulating data sets that mimic the 
Cambodia data. The use of simulations also enables us to compare the results of fitting the full model 
with the results obtained when fitting the two parts of the model separately, without accounting for the 
correlations between the random effects in the two parts. Another comparison of interest is to results 
obtained when ignoring the special nature of the data and fitting the linear part to the whole data, 
ignoring the problem of many zero scores. 

Figure 1. Histogram of literacy scores in a national literacy survey in 
Cambodia, 1999 
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2 Model and small area predictors 

Let Y define the response value (literacy test score in our application) and R the covariate variables and 

random effects. Then, 

( | , 0) Pr( 0 | )E Y R r Y Y R r+ = > > = ( | , 0)Pr( 0| )E Y R r Y Y R r= = > > =     (1) 

since ( | , 0) 0E Y R r Y= = = . For the small area estimation application considered in this paper we 
consider a nested 3 level model with districts of residence defining the first level, villages defining the 
second level and individuals defining the third level. For individual k residing in village j of district i , 
we have therefore the relationship, 

( | ) ( | , 0)Pr( 0| )ijk ijk ijk ijk ijk ijk ijkE y r r E y r r y y r r= = = > > =       (2) 

In what follows we model the two parts in the right hand side of (2). For individuals with positive 
responses we assume the familiar ‘linear mixed model’, 

| , 0 'ijk ijk ijk ijk i ij ijky r y x u vβ ε> = + + + ; 2 2 2~ (0, ) ; ~ (0, ) ; ~ (0, )i u ij v ijku N v N N εσ σ ε σ  (3) 

where ijkx  represents individual and area level values of the covariates, iu  is a random district effect 
and ijv  is a nested random village effect. The random effects and the residual terms ijkε  are assumed to 

be mutually independent. Notice that by (3),  

( | , 0)ijk ijk ijkE y r y >  'ijk i ijx u vβ= + +          (3’) 
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The random effects account for the variation of the individual responses not explained by the 
covariates. Alternatively, they define the correlations holding between the responses of individuals 
residing in the same village, or individuals residing in the same district but in different villages.  

2 2 2 2 2

2 2 2 2
' ' '

( ) /( ) if ', '

( , ) /( ) if ', '
0 if '

u v u v

ijk i j k u u v

j j k k

Corr Y Y i i j j
i i

ε

ε

σ σ σ σ σ

σ σ σ σ

⎧ + + + = ≠
⎪

= + + = ≠⎨
⎪ ≠⎩

      (4) 

For the probabilities of positive responses (second part of (2)) we assume the ‘generalized linear 
mixed model’,  

* *
* *

* *

exp ( ' )
Pr ( 0| , , )

1 exp ( ' )
ijk i ij

ijk ijk i ij ijk
ijk i ij

x u v
Y x u v p

x u v
γ
γ
+ +

> = =
+ + +

; * 2 * 2
* *~ (0, ) ; ~ (0, )i u ij vu N v Nσ σ   (5) 

implying, ( ) log
1

ijk
ijk

ijk

p
logit p

p
= =

−
* *'ijk i ijx u vγ + + . Here again *

iu  and *
ijv  represent random 

district and village effects not accounted for by the covariates.  

The proposed model permits nonzero correlations between the district random effects in the two parts, 
and similarly for the village random effects. This is a reasonable assumption since it can be expected 
that for given values of the covariates, an individual residing in an area characterized by high literacy 
scores will have a higher probability of a positive score than an individual residing in an area with low 
scores. See Figures 2 and 3 below for some supporting evidence from data in Cambodia. (The 
correlations are 0.35 for villages and 0.38 for districts.) The correlations are modelled by assuming, 

*
* 2

|
| ~ ( , )i i u i u u

u u N K u σ  ; *
* 2

|
| ~ ( , )ij ij v ij v v

v v N K v σ  (6) 

Let iU  define the population of first level i  of size iN . The small area parameters of interest are the 

means, iijkiUkji NyY /,∑ ∈= , which in the case of the survey in Cambodia are the true district means 

of the literacy scores. Notice that the means are computed over all the individuals in the area, 
including individuals with zero scores. Under the model defined by (2), the means can be predicted as,  

]}ˆ)0,(ˆ[{1ˆ
,, ijkijkijkijkiskjijkiskj

i
i pYrYEy

N
Y ×>+= ∑∑ ∉∈       (7) 

where is  defines the sample from first level (district) i . By (3) and (5), the predictor in (7) takes the 

form, 
* *

, , * *

ˆ ˆ ˆexp ( ' )1ˆ ˆ ˆ ˆ[ ( ) ]
ˆ ˆ ˆ1 exp ( ' )i i

ijk i ij
i j k s ijk j k s ijk i ij

i ijk i ij

x u v
Y y x u v

N x u v
γ

β
γ∈ ∉

+ +
= + + + ×

+ + +∑ ∑      (8) 

with * *ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,i i i iju v u vβ γ  defining appropriate sample estimates (see next section).  
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Figure 2. Proportion literate by average 
score for districts in center of Cambodia, 

1999 survey 
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Figure 3. Proportion literate by average 
score for villages in center of Cambodia, 

1999 survey 
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3 Inference 

The use of the small area predictors defined by (8) requires estimating the fixed parameters 
2 2 2( , , , )u v εβ σ σ σ  of the linear part (Equation 3), the fixed parameters * *

2 2
| |

( , , , , )u v u u v v
K Kγ σ σ  of the 

logistic part (Equations 5, 6), and predicting the random effects * *{( , ; , )}ij i ij i iju v u vλ = . Methods for 

estimating the fixed and random effects when fitting linear mixed models or generalized linear mixed 
models alone have been developed over the last two decades under both the frequentist and the 
Bayesian paradigms. The use of these methods permits also the computation of estimators of the mean 
square error (MSE) of the small area predictors that account for parameter estimation to correct order; 
see the recent book of Rao (2003) for a thorough review and discussion. However, the two-part model 
defined by (2)-(6) has not been considered in the literature in the context of small area estimation and 
in what follows we describe briefly a few possibilities of fitting this model.  

Likelihood based inference 

Define, 1ijkΙ =  if 0ijkY > , 0ijkΙ =  if 0ijkY = , and denote ( , , )ijk ijk i ijr x u v= , * * *( , , )ijk ijk i ijr x u v= . For 

given vectors
*,ijk ijkr r , the likelihood for the two-part model takes the form, 

(1 )

, ,

( ) ( | 0) (1 )ijk ijk ijk
ijk ijk ijk ijk

i j k s

L p f y y pΙ Ι −Ι

∈

= > −∏         (9) 

with ijkp  and ( | 0)ijk ijkf y y >  defined by (5) and (3) respectively and is s= ∪  denoting the sample 

from all the areas. The use of this likelihood for inference is, however, problematic because the 

random effects * *{( , ; , )}ij i ij i iju v u vλ = are in fact unobservable random variables. One possibility, 

therefore, is to integrate the likelihood over the joint (normal) distribution of the random effects as 

defined by (3) and (6), and maximize the integrated likelihood with respect to the fixed parameters 
2 2 2( , , , )u v εβ σ σ σ  and * *

2 2
| |

( , , , , )u v u u v v
K Kγ σ σ . The integrated likelihood is 
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(1 )
0

, ,

( ) ( | 0) (1 ) ( )ijk ijk ijk
ijk ijk ijk ijk ij ij

i j k s

L p f y y p g dλ λΙ Ι −Ι

∈

= > −∏∫ . Olsen and Schafer (2001) consider a similar 

two-part model for fitting longitudinal data. The authors approximate the integrated likelihood by a 

high order multivariate Laplace approximation (Raudenbush et al. 2000), and calculate empirical 

Bayes predictors of the random effects by use of importance sampling (Tanner, 1996), setting the 

fixed parameters at their maximum likelihood estimates. The application of this procedure, however, is 

complicated computationally and the MSE estimators of the small area predictors obtained this way 

fail to account for the variation induced by estimating the fixed parameters. The contribution of fixed 

parameter estimation to the total MSE can not be ignored in general, unless the number of sampled 

areas is large. 

Separate model fitting:  

The idea here is to fit the two parts of the model separately and then combine the estimates for 
computing the small area predictors in (8). As mentioned earlier, the fitting of the separate parts has 
been researched extensively in the literature over the last 2 decades and computer software is now 
readily available, particularly for linear mixed models. See Rao (2003) for a short review. Note that 
extra care should be taken when computing MSE estimators of correct order.  

The use of separate model fitting has, however, the disadvantage of not lending itself to simple 
computations of the coefficients ( , )u vK K  (Equation 6), and it is not clear how to account for the 
existing correlations between the two data sets for enhancing the efficiency of the small area 
predictors. Notice also that by ignoring the correlations between the random effects of the two parts of 
the model, the estimated MSE of the small area predictors are imprecise.  

Bayesian inference 

The use of Bayesian methods requires specification of prior distributions for all the fixed parameters 
underlying the two-part model, but with the aid of Markov Chain Monte Carlo (MCMC) simulations 
the use of this approach permits sampling from the posterior distribution of the fixed parameters and 
the random effects, and hence from the posterior distribution of the small area means, given the data. 
Thus, the MCMC algorithm yields the whole posterior distribution of the small area means of interest, 
and hence correct MSE (posterior variance) estimators or confidence (credibility) intervals can be 
computed. Computer software is available to perform all the necessary computations but it should be 
noted that with complex models the computations can be very intensive and time consuming.  

For the empirical study of this article we followed the Bayesian approach using the WinBUGS 
software (Spiegelhalter et al. 2003), which implements the MCMC algorithm with the Gibbs sampler 
(Gelfand and Smith, 1990). The Gibbs sampler samples alternately from the conditional posterior 
distribution of each of the fixed and random parameters (random effects), given the data and the 
remaining parameters. It defines a Markov chain which, under some regularity conditions converges to 
the joint posterior distribution of all the model parameters. Thus, at the end of the sampling process 
(upon convergence), the algorithm produces a (single) realization of each of the fixed and random 
parameters from their corresponding posterior distribution given the data, and hence a single 
realization from the posterior distribution of each small area value 
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* *

, , * *

exp ( ' )1 [ ( ) ]
1 exp ( ' )i i

ijk i ij
i j k s ijk j k s ijk i ij

i ijk i ij

x u v
y x u v

N x u v
γ

θ β
γ∈ ∉

+ +
= + + + ×

+ + +∑ ∑  (compare with (8)). Repeating the 

same sampling process independently a large number of times yields an approximation to the posterior 
distribution of each of the values iθ . The true small area mean, iY , can then be predicted by averaging 
the sampled values iθ  in all the chains. (The average estimates the posterior expectation of the small 

area mean, see also the comment below.)  

The MSE is estimated by computing the empirical variance of the sampled values from the posterior 
distribution of the means iY . The sampled values are obtained by first predicting the individual 
nonsampled measurements ijky  and then computing the means 

]ˆ[1ˆ
,, ijkiskjijkiskj

i
i yy

N
Y ∑∑ ∉∈ += . The predictors ˆijky  are computed by randomly drawing 

from their posterior distribution, i.e., 

ˆ ( )ijk ijk i ij ijk ijky x u vβ ε= + + + ×Ι% %%% %            (10) 

where, 1ijkΙ =%  with probability ijkp%  and 0ijkΙ =%  with probability (1 )ijkp− % , 
* *

* *

exp ( ' )
1 exp ( ' )

ijk i ij
ijk

ijk i ij

x u v
p

x u v
γ
γ
+ +

=
+ + +

% % %
%

% % %
. Notice that each of the fixed and random effects used for the prediction 

of the measurements ijky  (denoted by “~”) is a random draw from its posterior distribution. 

Confidence (credibility) intervals with coverage rates of (1 )α−  are defined by the / 2α  and 
(1 / 2)α−  level quantiles of the empirical posterior distribution of the iY (the distribution of the 

sampled values ˆ
iY ).  

In practice, the use of parallel chains for producing independent realizations is often too time 
consuming, in which case the samples can be generated from a single long chain or a few chains, but 
selecting only every rth sampled value (after convergence), thus reducing as much as possible the 
dependencies existing between adjacent sampled values.  

Comment: The posterior mean of iY  could also be estimated by simply averaging the sampled values 
ˆ
iY  from its posterior distribution. Notice, however, that these values contain also the sums 

,
ˆ /

i
ijk ij k s

Nε
∉∑  for which the posterior mean is zero, so that the use of this procedure adds some 

extra noise to the estimation of the posterior mean if the number of MCMC simulations is not 
sufficiently large (depending also on the posterior variance of the ijkε ). 

4 Empirical Results 

We use data from the 1999 survey, ‘Assessment of the Functional Literacy Levels of the Adult 
Population’ in Cambodia for the empirical illustrations. This is a household survey that had 6548 
adults being interviewed and administered a literacy test consisting of 20 tasks in the Khmer language, 
with scores ranging from 0 to 100 (see Figure 1 in the introduction). It used a stratified multi-stage 
sampling design with the strata defined by the 24 provinces that comprise the country. Within each of 
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the provinces half of the districts were selected, then within each district 2 communes were selected 
and within each commune, 3 villages were selected (with a few exceptions). Finally, households were 
selected in each village and one adult sampled from each household, altering according to age and sex. 
The sampling scheme at each stage was systematic sampling. The number of households selected in 
each village was constant for all the sampled villages belonging to the same province. The province 
total sample sizes were allocated proportionally to the population province sizes.  

In what follows the small areas of interest are the country districts, with sample sizes varying between 
0 (no sample) in 88 of the districts to almost 150 in the districts of the capital city. Twenty one 
districts had sample sizes less than 20, and another 16 districts had sample sizes between 41 and 60. 
The data analyzed for this study refer to the 50 rural districts in provinces located in the center of the 
country. The total sample size is n=4028.  

Table 1 shows the results obtained when fitting the logistic model alone to this data set, with and 
without random effects for districts and villages. The dependent variable ijkΙ  takes the value 1 if 

0ijky >  and takes the value 0 otherwise, see Equation (5). Table 2 shows the results of fitting the 

linear model to individuals with positive scores alone, again with and without the inclusion of random 
effects. These two models have been fitted using the MLwiN software (Goldstein, 2003). This 
software computes maximum likelihood estimators of the fixed parameters and empirical best linear 
unbiased predictors (EBLUP) of the random effects for linear mixed models, and predictive quasi 
likelihood estimators (PQL) of the fixed parameters and random effects for generalized linear mixed 
models. (Other estimation procedures are also available.) The regressor variables in the two models 
have been chosen by application of some standard model selection procedures, without the inclusion 
of the random effects. All the variables except those referring to age, education and household size are 
dummy variables taking the value 1 when the variable definition is satisfied.  

Table 1. Model parameters and standard errors (S.E.) when fitting logistic part alone 

  Without random effects With random effects 

Variables  Coefficient S.E. Coefficient S.E. 

Constant -4.80 0.44 -6.48 0.58 
No school, attended literacy prog.  2.07 0.21 2.44 0.27 
Education  1.75 0.09 2.16 0.12 
Education2 -0.11 0.01 -0.13 0.01 
Helped by interviewer 1.09 0.11 2.00 0.17 
Living in a remote area  -0.56 0.21 -0.32 0.49(*) 

Gender (1 for female) -0.63 0.11 -0.59 0.14 
Having low income -0.39 0.11 -0.35 0.14 
Age 0.11 0.02 0.14 0.02 
Age2  -0.001 0.000 -0.002 0.000 
Random effects    Variance S.E. 
Between district   1.28 0.34 
Between villages   0.86 0.19 

(*) not significant 
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Table 2. Model parameters and standard errors (S.E.) when fitting linear part alone 

  
Without random effects With random effects 

Variables Coefficient S.E. Coefficient S.E. 

Constant 5.85 4.18 6.90 4.00 
Civil servant and professional 10.71 2.14 13.91 1.89 
Education 6.64 0.59 7.28 0.53 
Education2 -0.19 0.05 -0.24 0.05 
Low income  -3.15 0.94 -2.61 0.88 
Gender (1 for female) -2.52 0.92 -1.60 0.81 
Number of adults in household 1.23 0.31 0.94 0.29 
Age 1.04 0.18 0.84 0.16 
Age2 -0.013 0.002 -0.010 0.002 
Random effects   Variance  S.E. 
Between district   66.31 16.72 
Between villages   66.58 10.45 
Individual level   322.03 10.12 

 

The main results emerging from the two tables can be summarized as follows: inclusion of the random 
effects in the two models changes the values of the coefficients, more so in the linear part, but not to 
the extent of changing their signs. The variances of the random effects when included in the model are 
highly significant, indicating their contribution to explaining the variation of the scores. Finally, we 
note the interesting outcome that in the logistic case the standard errors of the estimated coefficients 
when including the random effects in the model are always larger or equal than the corresponding 
standard errors when fitting the model without them, and that it is the other way around in the linear 
case. We don’t have a clear explanation to this outcome. 

How well do the models fit the data? As noticed from the two tables, all the coefficients except for one 
in Table 1 are significant (based on standard t-tests), with and without the inclusion of the random 
effects, and likewise the variances of the random effects. Other variables considered for inclusion in 
the two models were found to be nonsignificant. The value of R-square for the linear model without 
the random effects is 0.302. As a further diagnostic for the logistic model we show in Figure 4 a 
scatter plot of the observed proportions of ‘ones’ (positive scores) against the average of the predicted 
probabilities of ones in groups of 50 individuals defined by the ordered values of the predicted 
probabilities. The predicted probabilities, ˆ ijkp , were computed under the model with random effects. 

The plotted values are almost on a straight line, showing a good fit. Figure 5 shows a histogram of the 
estimated standardized individual errors, ˆˆ ˆ ˆˆ ˆˆ / ( ) ( ' ) / ( )ijk ijk ijk ijk ijk i ij ijkz SD y x u v SDε ε β ε= = − − − , 

when fitting the linear model with random effects to the individuals with scores 0ijky > . Although 

not a ‘perfect’ bell shape, the histogram does not signal severe divergence from a normal distribution.  
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Figure 4. Observed and predicted probabilities 
of positive scores, logistic model 
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Figure 5. Histogram of standardized 
residuals, linear model 
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5 Simulation Study 

The purpose of the simulation experiment is to study the effectiveness of the two-part model for 
producing small area predictors and measures of the associated prediction errors, and to compare the 
results with results obtained when fitting the two parts of the model separately ignoring the 
correlations between the corresponding random effects in the two parts, and with the results obtained 
when fitting a linear mixed model to the whole sample ignoring the accumulation of zero scores. To 
this end, we generated 300 populations of size 4,028 (the same size as the original data set analyzed in 
Section 4), and 300 corresponding samples of size 750, using a two-part model but with fewer 
regressors than in Tables 1 and 2. In the logistic part we included 4 regressors: ‘number of years at 
school’, ‘attendance of a literacy programme’, ‘helped by the interviewer’ and ‘having low income’. In 
the linear part we included 5 regressors: ‘number of years at school’, ‘gender’, ‘number of adults in the 
household’, ‘age’, and ‘age2’. In order to specify sampled values of the regressor variables, we 
sampled at random 750 individuals from the data set considered in Section 4, and the observed 
regressor values were then used for all the 300 samples. New random effects and errors were 
generated for every simulation using the model defined by (3) and (6), and added to the fixed effects 

'ijkx γ  and 'ijkx β  in the logistic and the linear parts for every sampled and nonsampled population 

unit. The correlations between the random effects of the logistic and the linear parts were set to 0.26 
for the district random effects and 0.41 for the village random effects. See Table 3 for the other 
parameter values used for generating the data. Individual scores ijky  were generated by performing 

Bernoulli trials with probabilities Pr( 1)ijk ijkpΙ = =  as defined by the logistic model in (5), and in the 
case of a ‘one’, generating a score from the model (3). The district means of the y -values in the 
population (zero and nonzero scores) were taken as the true district means. The samples contained 
individuals from all the 50 districts, with 11 districts having samples of size 1 10dn≤ ≤ , 29 districts 
having samples of size 11 20dn≤ ≤ , and the remaining 10 districts having samples of size 
21 30dn≤ ≤ . The use of Bayesian estimators requires specifying prior distributions for all the hyper-

parameters. We used normal priors with large variances for the elements of the vector 
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coefficients ,β γ , and uniform priors for the standard deviations underlying the two parts of the model 
and the coefficients uK  and vK  (Equation 6).  

We encountered unexpectedly severe computation problems when fitting the two-part model with 
WinBUGS, accounting for both district random effects and village random effects. The sampled 
values generated by the Gibbs sampler were found to be strongly correlated even at very high lags, 
(over 1000 for the village random effects and the correlation between the village random effects in the 
two parts, and still over 500 when tightening the prior distributions), which required extremely long 
chains to obtain sufficient data for inference. We also couldn’t verify convergence of some of the 
posterior distributions. This made it impossible to perform a full scale simulation study and we 
therefore fitted the two-part model with only district level effects, despite generating the data with 
village random effects as well. (The predictors of the linear part remain unbiased even when ignoring 
the village effects. This is not true for the logistic part but the bias is small.) We are presently 
investigating ways of overcoming these computational difficulties. For fitting the models with the 
district random effects we generated chains of length 20,000, discarded the first 10,000 sampled 
values as “burn in”, and then thinned the chains by taking every 20th sample. This resulted in having 
500 sampled values from the posterior distribution of each of the fixed and random parameter values 
and hence 500 sampled values from the posterior distribution of each of the district means.  

The results of the simulation study are shown in Table 3 and Figures 4-6. Table 3 shows the mean 
estimates of the model parameters and the standard deviations of the means over the 300 simulations, 
as obtained when fitting three different models to the sample data: A- the two-part model that accounts 
for the correlation between the district random effects in the two parts (denoted “+ Corr.” in the table), 
B- the two part model that ignores the correlation between the district random effects, i.e., when fitting 
the two parts of the model separately (denoted “– Corr.” in the table), and C- the linear mixed model 
defined by (3) but fitted to all the y-values including the zero scores. This model ignores the 
accumulation of zero scores but in order to make it more comparable to the fitting of the two part 
models, we included in this model all the regressors appearing in either the logistic part or the linear 
part of the two-part model. For comparability reasons we fitted all the three models using the 
WinBUGS software (thus following the Bayesian paradigm), but it should be noted that fitting the 
models B and C using MLwiN that is much simpler and faster yields very similar results.  

We first discuss the results obtained when fitting the two-part model with or without accounting for 
the correlation between the district random effects in the two parts (Models A and B). As can be 
observed from the table, the mean estimates of the regression coefficients in the two parts of the model 
and the standard deviations of the means are very close under the two models, and the mean estimates 
are generally close to the corresponding true coefficients, indicating lack of appreciable bias. Note, 
however, that some of the differences between the mean estimates and the true values are significant, 
despite being small, which could be explained by the fact that the fitted models do not account for 
village effects. The estimates of the variances of the random effects are again close under the two two-
part models, but they cannot be compared directly to the true values, since the models fitted included 
only district random effects. Nonetheless, for the linear part the sum of the three true variances and the 
sum of the two estimated variances under the two models are similar, and the ratio of the variance of 
the district random effects to the residual variance is likewise preserved. For the logistic part the 
estimated variance is lower by 12% than the sum of the two true variances. Finally, we mention that 
the correlation between the district random effects in the two parts of the model is estimated with no 
bias, but the standard deviation of the estimates is quite high, ( 0.01 300 0.17× = ). 
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Table 3. Means and standard deviations (S.D.) of means of estimators of model parameters 
under three models. 300 simulations  

  Simulation mean 
Standard deviation of  

simulation mean 

 True 
value 

Model 
+Corr. 

Model  
- Corr.  

Linear 
model 

Model + 
Corr. 

Model  
- Corr.  

Linear 
model 

Fixed effects - linear part 
Intercept 8.45 9.48 9.97 -14.48 0.44 0.44 0.91

1β  4.93 4.89 4.85 8.50 0.02 0.02 0.49
2β  1.26 1.24 1.24 1.07 0.02 0.02 0.06
3β  -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00
4β  0.59 0.52 0.51 .040 0.04 0.04 0.04
5β  -1.33 -1.43 -1.43 -2.88 0.11 0.11 0.20

Fixed effects - logistic part 
Intercept -4.04 -3.90 -3.88 0.03 0.03 

1γ  1.62 1.58 1.57 0.01 0.01 
2γ  1.84 1.78 1.77 11.53 0.02 0.02 0.68
3γ  2.41 2.33 2.31 4.46 0.03 0.03 0.32
4γ  -0.31 -0.29 -0.29 -1.19 0.02 0.02 0.13

Variances - linear part 
Districts 86.03 95.23 97.41 100.22 1.92 1.92 6.06
Villages 31.85   
Residual 327.28 355.75 354.99 539.29 1.46 1.67 31.20

Variances - logistic part 
Districts 2.09 2.50 2.43 0.05 0.05 

Villages 0.74   
 Correlations  

Districts 0.26 0.26 0.01  
Villages 0.41   

 

Turning to the fitting of the linear mixed model (Model C), the mean estimates of all the coefficients 
are far away from the true coefficients, which of course is not surprising given that the data were 
generated from a two-part model, but interestingly enough, the signs of the slope coefficients are 
preserved. 

Figures 6 and 7 show the bias and root mean square error (RMSE) when predicting the true district 
means under the three models. Let ˆ r

dY  represent any of the three predictors for a given district d as 
obtained in simulation r, and denote by r

dY  the corresponding true district mean. The bias and RMSE 
are defined as, 

300 300 2 1/ 2
1 1

ˆ ˆ( ) / 300 ; [ ( ) / 300]r r r r
d d d d d dr r

Bias Y Y RMSE Y Y
= =

= − = −∑ ∑      (11) 

  



84 METHODOLOGY AND SOFTWARE FOR COMPLEX MODELS 

MAXIMISING DATA VALUE. DATA USE & RE-USE 

Figure 6. Prediction bias 
300 simulations  
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Figure 7. Prediction RMSE 
300 simulations 
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Evidently, fitting the linear mixed model without accounting for the accumulation of zero scores 
(Model C) yields appreciable biases, irrespective of the sample size. In some districts the absolute 
biases translate into relative biases of up to 15%. On the other hand, fitting the two-part model A or B, 
yields basically unbiased predictors. Fitting the linear mixed model yields also larger RMSEs, 
particularly for districts with small sample sizes, but the increase in RMSE compared to the other two 
models is not as big as in the case of the bias. This outcome is easily explained by the fact that the 
variances of the prediction errors are much smaller in the case of the linear mixed model, which is a 
much simpler model with fewer estimated parameters.  

Finally, Figure 8 shows the percentage of times that 95% confidence (credibility) intervals produced 
under the three models cover the true district means. (See Section 3 for the construction of the 
confidence interval boundaries when using MCMC simulations.) The prominent result emerging from 
this Figure is that fitting the linear mixed model ignoring the accumulation of zeroes yields for almost 
all the districts confidence intervals with lower coverage rates than the nominal 95% rate, with 
particularly low coverage for districts with small sample sizes. On the other hand, the fittings of the 
two-part models yield confidence intervals with coverage rates that are close to the nominal 95% rate. 
In fact, except for one district where fitting the two parts separately yields a coverage rate of 90%, for 
all the other districts the rates are always between 92% and 97%. There seems to be little difference in 
the performance of the two two-part models, but we mention that accounting for the correlation 
between the district random effects in the two parts yields better coverage rates in 28 out of the 50 
districts, whereas fitting the two parts separately yields better coverage rates in only 14 districts. In the 
remaining 8 districts the coverage rates obtained under the two models are the same. 
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Figure 8. Percentage of confidence intervals covering the true mean 
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6 Summary 

The most important message emerging from this paper is that ignoring the accumulation of zeroes and 
fitting a linear mixed model can result in biased predictors and undercoverage of confidence intervals. 
Clearly, the magnitude of the bias and the undercoverage depends on the percentage of zero scores. 
Fitting a two-part model to such data yields unbiased predictors and confidence intervals with 
acceptable coverage rates. Fitting the full two-part model, accounting for the correlations between the 
random effects of the two parts is, in principle, the best choice, but it improved the predictions in our 
simulation study very marginally, which is probably explained by the low correlation of , * 0.26u uρ =  

used for generating the population data.  

In this study we used MCMC simulations for fitting the models and computing the small area 
predictors and their variances, but as mentioned in Section 3, the use of this approach requires 
specifying prior distributions, which could affect the inference particularly with a small number of 
sampled areas. The other problem with the use of MCMC simulations is that it is extremely computing 
intensive. As mentioned earlier, we are presently investigating ways of overcoming the computation 
problems that we encountered with the use of the WinBUGS program. Another extension of the 
present study is to fit the full two part model following the frequency approach, using either MLwiN 
(Goldstein, 2003) or the aML software (Lillard and Panis, 2003).  
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