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Abstract

The frequently used approach to the comparison of two linear regression models is
to use the partial F test. It is pointed out in this paper that the partial F test
has in fact a naturally associated two-sided simultaneous confidence band, which
is much more informative than the test itself. But this confidence band is over
the entire range of all the covariates. As regression models are true or of interest
often only over a restricted region of the covariates, the part of this confidence band
outside this region is therefore useless and to ensure 1 − α simultaneous coverage
probability is therefore wasteful of resources. It is proposed that a narrower and
hence more efficient confidence band over a restricted region of the covariates should
be used. The critical constant required in the construction of this confidence band
can be calculated by Monte Carlo simulation. While this two-sided confidence band
is suitable for two-sided comparisons of two linear regression models, a more efficient
one-sided confidence band can be constructed in a similar way if one is only interested
in assessing whether the mean response of one regression model is higher (or lower)
than that of the other in the region. The methodologies are illustrated with two
examples.

Keywords: Confidence bands; Linear regression; Multiple comparisons; Simultaneous
inference; Statistical simulation.



1 Introduction

Suppose two linear regression models are given by

Yi = Xibi + ei, i = 1, 2

where Yi = (yi,1, · · · , yi,ni
)T is a vector of observations, Xi is a ni × (p + 1) full

column-rank design matrix with the first column given by (1, · · · , 1)T and the lth
(2 ≤ l ≤ p + 1) column given by (xi,1,l−1, · · · , xi,ni,l−1)

T , bi = (bi,0, · · · , bi,p)
T is a

vector of unknown coefficients, and ei = (ei,1, · · · , ei,ni
)T is a vector of random errors

with all the {ei,j : j = 1, · · · , ni, i = 1, 2} being iid N(0, σ2) random variables, where
σ2 is an unknown parameter. Here Y1 and Y2 are two groups of observations that
depend on the same p covariates x1, · · · , xp via the classical linear regression model.
The two groups may be two gender groups or two treatments etc.

The problem of comparing two linear regression models can be met in many
research fields. As an example, Kleinbaum et al. (1998) consider how systolic blood
pressure (Y ) changes with the covariate age (x1). From the data they have collected
(Kleinbaum et al., 1998, pages 49 and 192) it is clear that the relationship between
Y and x1 can be reasonably described by a linear regression model of Y on x1 for
both the Female and Male gender groups. What they are interested in is whether
the two linear regression models for Female and Male are the same, and whether the
females tend to have a lower blood pressure than males of the same age.

The frequently used approach to this problem of comparing two linear regres-
sion models is to use the partial F test to test the hypotheses

H0 : b1 = b2 against Ha : b1 6= b2 (1.1)

The inferences that can be drawn from this test are that if H0 is rejected then the
two regression models are deemed to be different, and that if H0 is not rejected
then there is not sufficient statistical evidence to conclude that the two regression
models are different. But no tangible information on the magnitude of the difference
between the two models is provided by this approach of hypotheses testing, whether
H0 is rejected or not. For instance, the partial F test for the blood pressure example
results in a P -value smaller than 0.00001 (Kleinbaum et al., 1998, pages 327-330),
and so there is a strong statistical indication that the two regression models are
different. But no measurement is provided on how different these two regression
models are.

The first purpose of this paper is to provide a two-sided simultaneous confi-
dence band associated naturally with the partial F test of (1.1), so that the partial F
test can be interpreted more intuitively via this simultaneous confidence band. The
hypotheses (1.1) can in fact be tested by using this confidence band: the acceptance
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or rejection of H0 is according to whether or not the Y = 0 line lies completely inside
the confidence band. The advantage of this confidence band approach over the par-
tial F test is that it provides information on the magnitude of the difference between
the two regression models, whether or not H0 is rejected. This is discussed in Section
2. This confidence band is over the entire range (−∞,∞) of each covariate however.
As a linear regression model is true or of interest often only over a restricted region
of the covariates, the part of the confidence band outside this restricted region is
useless for inference. It is therefore unnecessary to guarantee the 1−α simultaneous
coverage probability over the entire range of each covariate. Furthermore, inferences
deduced from the confidence band outside the restricted region, such as the rejection
of H0, may not be valid since the assumed model may be wrong outside the restricted
region. This calls for the construction of a 1− α simultaneous confidence band only
over this restricted region of the covariates. This confidence band is narrower and
so allows sharper inferences than the confidence band associated with the partial
F test. This is discussed in Section 3 and forms the second purpose of this paper.
These confidence bands are two-sided and suitable for two-sided inferences: whether
the two regression models are the same or not (either higher or lower). In many
applications, the interest is to assess whether the mean response of one regression
model is higher than that of the other, e.g. whether males tend to have higher blood
pressure than females in the blood pressure example. Section 4 focuses on one-sided
confidence bands which is pertinent for one-sided inferences. This is the third pur-
pose of this paper. Some concluding remarks are contained in Section 5. Finally the
Appendix provides some mathematical details.

2 Partial F test from a confidence band viewpoint

The partial F test can be implemented by defining a dummy variable

z =

{
1 if y is from the model 1
0 if y is from the model 2

and setting up an overall model for the aggregated data from the two individual
models as

y = xTc1 + zxTc2 + e (2.1)

where xT = (1, x1, · · · , xp), c1 = b2 and c2 = b1 − b2. This overall model implies
the two individual models:

y = xT (c1 + c2) + e = xTb1 + e

for a y from the individual model 1, and

y = xTc1 + e = xTb2 + e (2.2)
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for a y from the individual model 2. Now testing the hypotheses (1.1) of the coinci-
dence of the individual models 1 and 2 is the same as testing

H0 : c2 = b1 − b2 = 0 against Ha : c2 6= 0

for the overall model (2.1). This can be carried out by using the partial F test: H0

is rejected if and only if the test statistic

[Regression SS of model (2.1)− Regression SS of model (2.2)] /(p + 1)

MS residual of model (2.1)

is larger than fα
p+1,ν , the upper α point of an F distribution with p + 1 and ν =

n1 + n2 − 2(p + 1) degrees of freedom. This can be found in most text books on
multiple linear regression models; see e.g. Kleinbaum et al. (1998).

On the other hand, to compare the two regression models it is certainly use-
ful to construct a simultaneous confidence band for the difference between the two
models

xTb1 − xTb2 = (1, x1, · · · , xp)b1 − (1, x1, · · · , xp)b2

over the entire range {xl ∈ (−∞,∞) for l = 1, · · · , p} of the covariates. Since
XT

i Xi is assumed to be non-singular, the least squares estimator of bi is given by
b̂i = (XT

i Xi)
−1XT

i Yi, i = 1, 2. Let σ̂2 denote the pooled error mean square, which is
simply the mean square residual of the model (2.1). Then σ̂2 is independent of the
b̂i’s and has the distribution σ2χ2

ν/ν where ν = n1 +n2−2(p+1). So the variance of
xT b̂1− xT b̂2 is given by σ2xT ∆x, where ∆ = (XT

1 X1)
−1 + (XT

2 X2)
−1. We therefore

construct the following simultaneous confidence band

xTb1 − xTb2 ∈ xT b̂1 − xT b̂2 ± cσ̂
√

xT ∆x ,

∀ xl ∈ (−∞,∞) for l = 1, · · · , p
(2.3)

where c is the critical constant chosen so that the simultaneous coverage probability
of this confidence band is equal to 1 − α. It is pointed out in the Appendix that

c =
√

(p + 1)fα
p+1,ν .

From the confidence band (2.3) it is clear that if H0 is true, i.e. the two
regression models are the same, then with probability 1 − α the zero line xT0 lies
inside the confidence band for the entire range. Hence an exact size α test of H0 is
to

reject H0 if and only if xT0 is outside the band for at least one x. (2.4)

It is shown in the Appendix that this test is in fact the same as the partial F test,
i.e. xT0 is outside the band for at least one x if and only if the partial F test
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rejects H0. So the partial F test can be regarded simply as a side product of the
confidence band (2.3). But of course the confidence band provides information on
the magnitude of the difference between the two regression models at each point x,
which is not available from the partial F test.

Figure 1. Several two-sided confidence bands for xT (bF − bM)
for the blood pressure example
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For the blood pressure example, several 99% confidence bands for xT (bF−bM)
are depicted in Figure 1. In this case, the critical constant of the band (2.3) is

given by c =
√

2f 0.01
2,65 = 3.146, and the section of the band over the observed range

17 ≤ age ≤ 47 is given by the highest and lowest curves in Figure 1. It is clear
from this band that H0 is rejected (at α = 0.01) since the zero line is not included
in the band for any 21.3 ≤ x1 = age ≤ 47. Furthermore one can infer from the band
that females tend to have significantly lower blood pressure than males at all the
ages between 21.3 and 47, since the upper curve of the band lies below the zero line
for 21.3 ≤ x1 ≤ 47. This inference cannot be made from the partial F test. This
illustrates the advantage of using the confidence band (2.3) instead of the partial F
test.

Note however the section of the confidence band (2.3) over −∞ < x1 ≤ 0
is useless as the covariate, age, cannot take a negative value and hence the linear
regression model of Y on x1 cannot be true over −∞ < x1 ≤ 0. More seriously, H0
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should not be rejected simply because the zero line is outside this confidence band
for an x1 ∈ (−∞, 0]. But the partial F test cannot tell whether this may indeed
be the reason for the rejection of H0. This highlights an inherent drawback of the
partial F test and therefore the need to construct confidence bands over a restricted
region of the covariates, which is the focus of the next section.

3 Confidence bands over a restricted region

Comparison of two regression models over the entire range of the x is seldom of inter-
est. One reason is that a covariate may only take values in a restricted range. Even
if a covariate may take values in the entire range (−∞,∞), a linear regression model
is seldom suitable for the entire range of the covariate. For example, the covariate,
age, in the blood pressure example cannot take a negative value. Furthermore, it is
inconceivable that a straight line regression model of blood pressure on age holds for
all ages. So a simultaneous confidence band over a suitable restricted region of the
covariates, e.g. the observed region of the covariates, is more sensible. The added
incentive is that a confidence band over a restricted region is narrower and hence
allows sharper inferences than the confidence band over the entire range. In this
section we consider the construction of simultaneous confidence bands over a given
rectangular region xl ∈ [al, bl], −∞ < al ≤ bl < ∞, l = 1, · · · , p.

We construct the following simultaneous confidence band

xTb1 − xTb2 ∈ xT b̂1 − xT b̂2 ± cσ̂
√

xT ∆x ,

∀ xl ∈ [al, bl] for l = 1, · · · , p.
(3.1)

The central question is how the critical constant c can be determined so that the
simultaneous confidence level of this band is equal to 1− α. The confidence level of
the band (3.1) is given by P{T < c} where

T = sup
xl∈[al,bl],l=1,···,p

|xT [(b̂1 − b1)− (b̂2 − b2)]|
σ̂
√

xT ∆x
. (3.2)

Furthermore, T is a pivotal random quantity whose distribution does not depend on
the unknown parameters b1,b2 and σ. So the critical value c can be determined if
the distribution of T can be found. While it is clearly difficult to derive a closed
form formula for the distribution of T in this general setting, the method of Liu,
Jamshidian and Zhang (2004) can be used to efficiently simulate a T . So one can
simulate a sufficiently large number, R say, replicates of the random variable T , and
set the [(1−α)R]th largest simulated value as the critical constant c. A geometrical
representation of T , which is central to the simulation of T and also relevant to
establishing some assertions of Section 2, is given in the Appendix.
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As pointed out in Section 2, for the extreme case of al = −∞ and bl = ∞ for

l = 1, · · · , p, the critical constant c is given by
√

(p + 1)fα
p+1,ν . On the other hand

if al = bl for l = 1, · · · , p then the critical constant c is given by t1−α/2
ν , the 1− α/2

percentile of a t distribution with ν degrees of freedom.

As in Section 2, it is clear that the confidence band (3.1) can be used to test
the hypotheses (1.1) in the following way: reject H0 if and only if

sup
xl∈[al,bl],l=1,···,p

|xT (b̂1 − b̂2)|
σ̂
√

xT ∆x
> c

or equivalently

xT0 is outside the band (3.1) for at least one x in the restricted region. (3.3)

Figure 2. Critical value c of the band (3.1) as a function of b1

with a1 = 17 for the blood pressure example
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For the blood pressure example, if the 99% confidence band over the observed
range of 17 ≤age≤ 47 is required, then c = 2.969 with standard error 0.003 based
on R = 1, 000, 000 simulations. This confidence band is given in Figure 1 by the
two curves just inside the two curves of the band (2.3). This band is about 6%
narrower than the confidence band (2.3) over the range 17 ≤ x1 ≤ 47 and so more

6



informative. The band (3.1) can be substantially narrower than the band (2.3)
if the range a1 ≤ x1 ≤ b1 is narrow enough. In Figure 2, the curve shows how
the 99% critical value c of the band (3.1) changes with 17 ≤ b1 ≤ 47 while fixing
a1 = 17. The level line gives the 99% critical value c = 3.146 for the band (2.3).
The lowest point of the curve gives the critical constant c = t0.995

64 = 2.654 of the
band (3.1) for the extreme case of b1 = a1, which is in fact the critical constant of
the 99% pointwise t confidence interval. This pointwise t confidence band is given
by the two middle curves in Figure 1. Note, however, the pointwise confidence band
can be used to make inferences about the regression models at only one x1 which
should be selected before observing the data. On the other hand, the simultaneous
confidence band (3.1) can be used to make inferences about the regression models
at any point in the restricted region, and the probability that all the inferences are
correct simultaneously is at least 1− α.

To emphasize that the methodologies of this paper are applicable to any
number of covariates, we give another example with p = 2 covariates. In the aerobic
fitness data from the SAS/STAT User’s Guide (1990, p. 1443), the oxygen consump-
tion (OC) in ml per kg body weight per minute was measured for 31 individuals. The
covariates of interest are age and run pulse which is the heart rate while running
(at the time the oxygen consumption rate was measured).

It is well known that lack of fitness increases the risk of heart illness. Gardner
et al. (1996) studied the risk prediction from the time to run 1.5 miles in a study
of 391 cases of heart illness in marine recruits. A recruit unable to run 1.5 miles in
12 minutes had eight times the risk of heart illness in basic training as did one with
a faster run time. So we use the threshold value 12 minutes on the time to run 1.5
miles also provided in the aerobic fitness data to divide the 31 individuals into two
groups: the first with less than 12 minutes to run 1.5 miles, and the second with
more than 12 minutes to run 1.5 miles. We are interested whether the two groups
have different OC rate over some range of the covariates age and run pulse.

Figure 3 is approximately here

The 99% critical constant of the confidence band (2.3) is given by c =√
3f 0.01

3,25 = 3.745; the confidence band is depicted by the two outside curviplanes in
Figure 3. For the comparison of the two groups over the observed range 38 ≤ age ≤
57 and 146 ≤ run pulse ≤ 186, the 99% critical constant of the confidence band (3.1)
is given by c = 3.689, which is only marginally smaller than the c = 3.745. However,
if one is interested in the comparison of the two groups over the range 38 ≤ age ≤ 45
and 160 ≤ run pulse ≤ 186, where 45 and 160 are the commonly known midage
and intermediate pulse rate respectively, then the 99% critical constant of the con-
fidence band (3.1) is given by c = 3.401. This confidence band is depicted by the
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two inner curviplanes in Figure 3. Even though both the band (3.1) and the F band
(2.3) are not significant from Figure 3 , the band (3.1) is about 9% narrower and so
allows sharper inferences than the band (2.3) over the range 38 ≤ age ≤ 45 and
160 ≤ run pulse ≤ 186.

4 One-sided Confidence bands

The confidence bands (2.3) and (3.1) are suitable for two-sided inferences. If one is
only interested in assessing whether one linear regression model has a lower mean
response than another linear regression model, such as whether the females tend to
have lower blood pressure than the same-age males over certain age range, one-sided
confidence bands are more pertinent. We consider an upper confidence band of the
form

xTb1 − xTb2 ≤ xT b̂1 − xT b̂2 + cσ̂
√

xT ∆x ,

∀ xl ∈ [al, bl] for l = 1, · · · , p.
(4.1)

The critical constant c can again be determined by simulation similar to the two-
sided case so that the simultaneous confidence level of this band is equal to 1−α; the
Appendix provides more details on this. From the confidence band (4.1), one can
infer whether the mean response of model 1, xTb1, is lower than the mean response of
model 2, xTb2, in only some parts or over the whole region of xl ∈ [al, bl], l = 1, · · · , p.
Note that a lower confidence band can be considered in a similar way and uses the
same critical constant c as the upper confidence band (4.1).

For the special case of al = −∞ and bl = ∞ for l = 1, · · · , p, it can be shown
by using a result of Hochberg and Quade (1975, Lemma) that the critical constant
c is the solution to the equation

1

2
F (c2/(p + 1); p + 1, ν) +

1

2
F (c2/p; p, ν) = 1− α

where F (·; m, ν) is the cumulative distribution function of a central F -variate with
m and ν degrees of freedom. For the case of al = bl for l = 1, · · · , p, the critical
constant c is given by t1−α

ν , the 1− α percentile of a t distribution with ν degrees of
freedom. This corresponds to the pointwise one-sided t confidence band.

For the blood pressure example over the observed region of x1 ∈ [17, 47], the
99% level critical constant is calculated to be c = 2.711 based on 1,000,000 replica-
tions. The critical constant of Hochberg and Quade’s (1995) 99% upper confidence
band over the entire range is calculated to be 2.973. For the pointwise upper band,
the critical constant is given by t0.99

65 = 2.385. These three upper bands are depicted
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in Figure 4. Hochberg and Quade’s band is given by the highest curve, the band (4.1)
is given by the middle curve, and the pointwise band is given by the lowest curve.
Again, the pointwise band can be used to make inferences only at one pre-specified
point x1 and so is not very useful. The band (4.1) is always below and so more
informative than Hochberg and Quade’s band in the restricted region. The band
(4.1) is also always below the upper curve of the two-sided band (3.1) and so more
informative than the band (3.1) for one-sided inferences. For example, the upper
band allows one to infer that the female blood pressure tends to be lower than the
male blood pressure for any 17 ≤ age ≤ 47, while the two-sided band allows one to
infer that the female blood pressure tends to be lower than the male blood pressure
for 19.1 ≤ age ≤ 47. The curve in Figure 5 shows how the 99% critical constant c
of band (4.1) changes with 17 ≤ b1 ≤ 47 while fixing a1 = 17. The level line gives
the critical constant c = 2.973 of the Hochberg and Quade’s band.

Figure 4. Several 99% upper bands on xT (bF − bM)
for the blood pressure example
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Figure 5. Critical value c of the band (4.1) as a function of b1

with a1 = 17 for the blood pressure example
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For the aerobic fitness data, it is a common belief that fitter individuals tend
to have a larger OC rate than less fit individuals. So one may be interested to
known to what extent the data supports this common belief. One-sided inference is
appropriate in this case. The 99% critical constant of the lower confidence band over
the whole range −∞ < age < ∞ and −∞ < run pulse < ∞ is given by c = 3.583,
and the lower confidence band is depicted by the lower curviplane in Figure 6. As
this plane lies completely below the zero plane from Figure 6, there is no statistical
evidence that the fitter group tend to have a larger OC rate than the less fit group for
any age and run pulse. However if one is only interested in the one-sided comparison
of the two groups over the range 38 ≤ age ≤ 45 and 160 ≤ run pulse ≤ 186, then the
99% critical constant of the lower confidence band is given by c = 3.125. This lower
confidence band is depicted by the upper curviplane in Figure 6. Since this plane
passes through the zero plane in a small area about age = 45 and run pulse = 175
(inside the range 38 ≤ age ≤ 45 and 160 ≤ run pulse ≤ 186), one can infer that the
fitter group do tend to have a larger OC rate than the less fit group in this small
area of age and run pulse, which is a statistically significant result.

Figure 6 is approximately here
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5 Conclusions

It is proposed in this paper to use confidence bands for the comparisons of two
linear regression models. It is pointed out that the usual partial F test has in fact
a naturally associated confidence band, which is much more informative than the
test itself. But this confidence band is over the entire range of all the covariates.
As regression models are true or of interest often only over a restricted region of
the covariates, the part of this confidence band outside this region is useless and
to guarantee an overall 1 − α confidence level is wasteful of resources. A narrower
and hence more efficient confidence band is constructed over a restricted region of
the covariates. While these confidence bands are suitable for two-sided comparisons
of two linear regression models, more efficient one-sided confidence bands can be
constructed in a similar way if one is only interested in assessing whether the mean
response of one model is higher than that of the other.

It is worth emphasizing that the limits al and bl on the covariates may be
chosen in various ways. In standard clinical studies the values of the important
covariates (such as age, blood pressure, etc.) are pre-defined by a set of inclu-
sion/exclusion criteria; patients are randomized into the study only if they satisfy
the inclusion criteria. Similarly, in survey studies, the range of the important co-
variates is fixed in advance as well, e.g., when considering risk factors for children
the covariate age is usually constrained to lie within two thresholds. In these cases
it may be natural to choose the pre-defined thresholds as al and bl. On the other
hand, sometimes one may be interested in the comparison of two regression models
over a region that is only part of region specified by the pre-specified thresholds. In
this case the region specified by al and bl should be smaller than the experimental
region, which is determined by the pre-defined thresholds, to reflect the interest of
statistical inference. Even if pre-specified thresholds or clear-cut region of interest for
statistical inference are not available, natural boundaries may still be available and
should be used for sharper inferences: e.g., it is reasonable to assume 0 < age < 100,
50 < rest pulse < 100, and so on. So long as the choices of al and bl are not
dependent on the random observations Y, the confidence level 1− α is valid.

Finally, for the comparisons of more than two linear regression models, Spurrier
(1999, 2002), Liu, et al. (2004), and Bhargava and Spurrier (2004) proposed various
confidence bands. Note however the partial F test for this case does not have a
naturally associated set of confidence bands, and so the comparison of more than
two linear regression models is characteristically different from the comparison of
two linear regression models.

Acknowledgements: We would like to thank the Associate Editor and two
referees for critical and helpful comments.
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Appendix
In this appendix, we first provide a geometric representation of T in (3.2)

which is central to the method of simulating T in Liu et al. (2004). It is then used
to show that the partial F test can actually be deduced from the confidence band
(2.3).

Note that the partial F test can be expressed as

reject H0 if and only if
(b̂1 − b̂2)

T ∆−1(b̂1 − b̂2)

(p + 1)σ̂2
> fα

p+1,ν ; (A1)

see Scheffé (1959) for details.

Also note that there exists a (p+1)× (p+1) non-singular matrix P such that

(XT
1 X1)

−1 + (XT
2 X2)

−1 = P T P.

Let Z = (P T )−1(b̂1−b1− b̂2 +b2)/σ then Z is a p+1 dimensional standard normal
random vector independent of σ̂. Hence T is given by

T = sup
xl∈(al,bl),l=1,···,p

|(Px)TZ|
(σ̂/σ)

√
(Px)T (Px)

=
‖ Z ‖
(σ̂/σ)

Q, (A2)

where

Q = sup
xl∈(al,bl),l=1,···,p

|(Px)TZ|
‖ Px ‖‖ Z ‖ = sup

v∈V

|vTZ|
‖ v ‖‖ Z ‖ (A3)

where

V = {Px : xl ∈ (al, bl), l = 1, · · · , p}
= {p0 + x1p1 + · · ·+ xppp : xl ∈ (al, bl), l = 1, · · · , p}.

with P = (p0,p1, · · · ,pp).

To simulate a T from (A2), the key is to calculate Q in (A3) which involves
the maximization of a p-variate function over a hyper-rectangle region. Note that
vTZ/(‖ v ‖‖ Z ‖) is simply the cosine of the angle between v and Z. In order to
find Q one only needs to find the smallest angle between either Z and v or −Z and
v while v varies in the cone V . Liu, et al. (2004) gave an efficient method for the
computation of Q.

For the band (2.3), the cone V is the p dimensional hyper-plane that passes
through p0. So Q is equal to one for each given Z and hence T =‖ Z ‖ /(σ̂/σ). By
noting that

T 2/(p + 1) =
‖ Z ‖2 /(p + 1)

(σ̂/σ)2
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has an F distribution with degrees of freedom p + 1 and ν, the critical constant c

for the band (2.3) is clearly given by
√

(p + 1)fα
p+1,ν . Furthermore, by noting that

Z = (P T )−1(b̂1 − b1 − b̂2 + b2)/σ, we have

T 2

(p + 1)
=

‖ Z ‖2 /(p + 1)

(σ̂/σ)2

=
(b̂1 − b1 − b̂2 + b2)

T ∆−1(b̂1 − b1 − b̂2 + b2)

(p + 1)σ̂2
.

(A4)

From the derivation it is clear that the algebraic equation (A4) holds for any b1

and b2, and so for b1 = b2 = 0 in particular. Now note that the zero line xT0 lies
inside the band (2.3) if and only if T 2/(p + 1) ≤ fα

p+1,ν with b1 = b2 = 0 in T . This
observation and (A4) with b1 = b2 = 0 imply that the zero regression line xT0 lies
inside the band (2.3) if and only if

(b̂1 − b̂2)
T ∆−1(b̂1 − b̂2)

(p + 1)σ̂2
≤ fα

p+1,ν .

Hence the partial F test is the same as the test (2.4).

For the one-sided confidence band (4.1), its simultaneous confidence level is
given by P{U < c} where

U = sup
xl∈(al,bl),l=1,···,p

xT [(b̂1 − b1)− (b̂2 − b2)]

σ̂
√

xT ∆x

= sup
xl∈(al,bl),l=1,···,p

(Px)TZ

(σ̂/σ)
√

(Px)T (Px)

=
‖ Z ‖
(σ̂/σ)

sup
v∈V

vTZ

‖ v ‖‖ Z ‖ .

The last superiem can be found in a similar but simpler way as for Q in (A3), since
one only needs to find the smallest angle between Z and v while v varies in the cone
V .
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