The University of Southampton
University of Southampton Institutional Repository

Global patterns and predictions of seafloor biomass using random forests

Global patterns and predictions of seafloor biomass using random forests
Global patterns and predictions of seafloor biomass using random forests
A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.
1932-6203
e15323
Wei, Chih-Lin
a624eaa3-a5a1-4e26-8294-4108fe807a36
Rowe, Gilbert T.
11e8f2e4-91e0-40a7-8472-91e7807d7f8d
Escobar-Briones, Elva
5fc998d9-eec7-48bb-a9f2-aa8e2d11e87e
Boetius, Antje
7d9c9e50-85b5-4f14-a07c-18957419a015
Soltwedel, Thomas
cd07d4d3-e7df-4a77-a35e-aec0752cceb0
Caley, M. Julian
c498aef3-660f-4cb8-8fb7-ed044fe2a5a0
Soliman, Yousria
e00740aa-b13b-4f4f-8897-b5ecd32a3fdb
Huettmann, Falk
a169363b-c909-44a2-a7c4-0806e9fc8854
Qu, Fangyuan
8ca46fc3-d7fd-4dbc-a6fb-d1af5de25e32
Yu, Zishan
6474bd31-b407-408c-a932-905997a1b267
Pitcher, C. Roland
ee65b88c-59d9-4379-b8bf-ea836d649ec5
Haedrich, Richard L.
e7664f84-bd17-401d-8d6d-47245073c874
Wicksten, Mary K.
9a6eef21-2eb4-4401-8cec-71d9c5fc9469
Rex, Michael A.
cf7e7db3-cfe6-4700-bb08-3cd2e8467866
Baguley, Jeffrey G.
9d8db1dc-ee55-44a3-931c-9a0faf4dd6fa
Sharma, Jyotsna
38be8dea-ece9-4da1-a56d-1b1113e4b3d2
Danovaro, Roberto
4447c73e-a846-4964-81b6-219e02ff3b20
MacDonald, Ian R.
04f558d4-d969-40ab-8511-9b070be5e4d8
Nunnally, Clifton C.
082f1127-7c76-407c-97eb-1867342cfa0d
Deming, Jody W.
b8f70742-3fbe-45b2-aba7-41b482a7ff96
Montagna, Paul
be3de487-ad78-463c-8905-11db4d1c80bf
Lévesque, Mélanie
2cce1baf-a9b4-427c-87a6-54c5b64dfef7
Weslawski, Jan Marcin
2148632f-bc0a-4b74-b9cd-c9a89189441d
Wlodarska-Kowalczuk, Maria
f72e40ce-2f7d-4e0f-91d5-9a0b377dd5e5
Ingole, Baban S.
6ac42c2b-54d5-407d-b5de-f6fb5c7e1fbf
Bett, Brian J.
61342990-13be-45ae-9f5c-9540114335d9
Billett, David S.M.
aab439e2-c839-4cd2-815c-3d401e0468db
Yool, Andrew
882aeb0d-dda0-405e-844c-65b68cce5017
Bluhm, Bodil A.
7cdfe108-5b55-4f1a-afee-73157ad037e7
Iken, Katrin
0a4183e6-b476-47f3-a59b-a2eb31b75a1f
Narayanaswamy, Bhavani E.
fcecfc2f-1db0-4786-a379-78411de47a3d
Wei, Chih-Lin
a624eaa3-a5a1-4e26-8294-4108fe807a36
Rowe, Gilbert T.
11e8f2e4-91e0-40a7-8472-91e7807d7f8d
Escobar-Briones, Elva
5fc998d9-eec7-48bb-a9f2-aa8e2d11e87e
Boetius, Antje
7d9c9e50-85b5-4f14-a07c-18957419a015
Soltwedel, Thomas
cd07d4d3-e7df-4a77-a35e-aec0752cceb0
Caley, M. Julian
c498aef3-660f-4cb8-8fb7-ed044fe2a5a0
Soliman, Yousria
e00740aa-b13b-4f4f-8897-b5ecd32a3fdb
Huettmann, Falk
a169363b-c909-44a2-a7c4-0806e9fc8854
Qu, Fangyuan
8ca46fc3-d7fd-4dbc-a6fb-d1af5de25e32
Yu, Zishan
6474bd31-b407-408c-a932-905997a1b267
Pitcher, C. Roland
ee65b88c-59d9-4379-b8bf-ea836d649ec5
Haedrich, Richard L.
e7664f84-bd17-401d-8d6d-47245073c874
Wicksten, Mary K.
9a6eef21-2eb4-4401-8cec-71d9c5fc9469
Rex, Michael A.
cf7e7db3-cfe6-4700-bb08-3cd2e8467866
Baguley, Jeffrey G.
9d8db1dc-ee55-44a3-931c-9a0faf4dd6fa
Sharma, Jyotsna
38be8dea-ece9-4da1-a56d-1b1113e4b3d2
Danovaro, Roberto
4447c73e-a846-4964-81b6-219e02ff3b20
MacDonald, Ian R.
04f558d4-d969-40ab-8511-9b070be5e4d8
Nunnally, Clifton C.
082f1127-7c76-407c-97eb-1867342cfa0d
Deming, Jody W.
b8f70742-3fbe-45b2-aba7-41b482a7ff96
Montagna, Paul
be3de487-ad78-463c-8905-11db4d1c80bf
Lévesque, Mélanie
2cce1baf-a9b4-427c-87a6-54c5b64dfef7
Weslawski, Jan Marcin
2148632f-bc0a-4b74-b9cd-c9a89189441d
Wlodarska-Kowalczuk, Maria
f72e40ce-2f7d-4e0f-91d5-9a0b377dd5e5
Ingole, Baban S.
6ac42c2b-54d5-407d-b5de-f6fb5c7e1fbf
Bett, Brian J.
61342990-13be-45ae-9f5c-9540114335d9
Billett, David S.M.
aab439e2-c839-4cd2-815c-3d401e0468db
Yool, Andrew
882aeb0d-dda0-405e-844c-65b68cce5017
Bluhm, Bodil A.
7cdfe108-5b55-4f1a-afee-73157ad037e7
Iken, Katrin
0a4183e6-b476-47f3-a59b-a2eb31b75a1f
Narayanaswamy, Bhavani E.
fcecfc2f-1db0-4786-a379-78411de47a3d

Wei, Chih-Lin, Rowe, Gilbert T., Escobar-Briones, Elva, Boetius, Antje, Soltwedel, Thomas, Caley, M. Julian, Soliman, Yousria, Huettmann, Falk, Qu, Fangyuan, Yu, Zishan, Pitcher, C. Roland, Haedrich, Richard L., Wicksten, Mary K., Rex, Michael A., Baguley, Jeffrey G., Sharma, Jyotsna, Danovaro, Roberto, MacDonald, Ian R., Nunnally, Clifton C., Deming, Jody W., Montagna, Paul, Lévesque, Mélanie, Weslawski, Jan Marcin, Wlodarska-Kowalczuk, Maria, Ingole, Baban S., Bett, Brian J., Billett, David S.M., Yool, Andrew, Bluhm, Bodil A., Iken, Katrin and Narayanaswamy, Bhavani E. (2010) Global patterns and predictions of seafloor biomass using random forests. PLoS ONE, 5 (12), e15323. (doi:10.1371/journal.pone.0015323).

Record type: Article

Abstract

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.

Other
fetchObject.action_uri=info_doi%2F10.1371%2Fjournal.pone.0015323&representation=PDF - Version of Record
Available under License Other.
Download (1MB)

More information

Published date: 2010
Organisations: Marine Systems Modelling, Marine Biogeochemistry

Identifiers

Local EPrints ID: 174937
URI: http://eprints.soton.ac.uk/id/eprint/174937
ISSN: 1932-6203
PURE UUID: 6cdae65c-01a6-4e48-b44b-6418a22f13f6

Catalogue record

Date deposited: 18 Feb 2011 10:07
Last modified: 14 Mar 2024 02:35

Export record

Altmetrics

Contributors

Author: Chih-Lin Wei
Author: Gilbert T. Rowe
Author: Elva Escobar-Briones
Author: Antje Boetius
Author: Thomas Soltwedel
Author: M. Julian Caley
Author: Yousria Soliman
Author: Falk Huettmann
Author: Fangyuan Qu
Author: Zishan Yu
Author: C. Roland Pitcher
Author: Richard L. Haedrich
Author: Mary K. Wicksten
Author: Michael A. Rex
Author: Jeffrey G. Baguley
Author: Jyotsna Sharma
Author: Roberto Danovaro
Author: Ian R. MacDonald
Author: Clifton C. Nunnally
Author: Jody W. Deming
Author: Paul Montagna
Author: Mélanie Lévesque
Author: Jan Marcin Weslawski
Author: Maria Wlodarska-Kowalczuk
Author: Baban S. Ingole
Author: Brian J. Bett
Author: David S.M. Billett
Author: Andrew Yool
Author: Bodil A. Bluhm
Author: Katrin Iken
Author: Bhavani E. Narayanaswamy

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×