The University of Southampton
University of Southampton Institutional Repository

Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO2 budgets

Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO2 budgets
Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO2 budgets
One of the dominant sources of uncertainty in the calculation of air–sea flux of carbon dioxide on a global scale originates from the various parameterizations of the gas transfer velocity, k, that are in use. Whilst it is undisputed that most of these parameterizations have shortcomings and neglect processes which influence air–sea gas exchange and do not scale with wind speed alone, there is no general agreement about their relative accuracy.
The most widely used parameterizations are based on non-linear functions of wind speed and, to a lesser extent, on sea surface temperature and salinity. Processes such as surface film damping and whitecapping are known to have an effect on air–sea exchange. More recently published parameterizations use friction velocity, sea surface roughness, and significant wave height. These new parameters can account to some extent for processes such as film damping and whitecapping and could potentially explain the spread of wind-speed based transfer velocities published in the literature.
We combine some of the principles of two recently published k parameterizations [Glover, D.M., Frew, N.M., McCue, S.J. and Bock, E.J., 2002. A multiyear time series of global gas transfer velocity from the TOPEX dual frequency, normalized radar backscatter algorithm. In: Donelan, M.A., Drennan, W.M., Saltzman, E.S., and Wanninkhof, R. (Eds.), Gas Transfer at Water Surfaces, Geophys. Monograph 127. AGU, Washington, DC, 325–331; Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87–94] to calculate k as the sum of a linear function of total mean square slope of the sea surface and a wave breaking parameter. This separates contributions from direct and bubble-mediated gas transfer as suggested by Woolf [Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87–94] and allows us to quantify contributions from these two processes independently.
We then apply our parameterization to a monthly TOPEX altimeter gridded 1.5° × 1.5° data set and compare our results to transfer velocities calculated using the popular wind-based k parameterizations by Wanninkhof [Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97: 7373–7382.] and Wanninkhof and McGillis [Wanninkhof, R. and McGillis, W., 1999. A cubic relationship between air?sea CO2 exchange and wind speed. Geophys. Res. Lett., 26(13): 1889–1892]. We show that despite good agreement of the globally averaged transfer velocities, global and regional fluxes differ by up to 100%. These discrepancies are a result of different spatio-temporal distributions of the processes involved in the parameterizations of k, indicating the importance of wave field parameters and a need for further validation.
Air-water exchanges, gas exchange, carbon dioxide, remote sensing, altimetry
0924-7963
195-203
Fangohr, S.
19f2a5e8-f9e6-4cb2-a107-dcb021094cb1
Woolf, D.K.
aeb210e8-5fd5-4dd4-903e-6d4ef2df9abe
Fangohr, S.
19f2a5e8-f9e6-4cb2-a107-dcb021094cb1
Woolf, D.K.
aeb210e8-5fd5-4dd4-903e-6d4ef2df9abe

Fangohr, S. and Woolf, D.K. (2007) Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO2 budgets. Journal of Marine Systems, 66 (1-4), 195-203. (doi:10.1016/j.jmarsys.2006.01.012).

Record type: Article

Abstract

One of the dominant sources of uncertainty in the calculation of air–sea flux of carbon dioxide on a global scale originates from the various parameterizations of the gas transfer velocity, k, that are in use. Whilst it is undisputed that most of these parameterizations have shortcomings and neglect processes which influence air–sea gas exchange and do not scale with wind speed alone, there is no general agreement about their relative accuracy.
The most widely used parameterizations are based on non-linear functions of wind speed and, to a lesser extent, on sea surface temperature and salinity. Processes such as surface film damping and whitecapping are known to have an effect on air–sea exchange. More recently published parameterizations use friction velocity, sea surface roughness, and significant wave height. These new parameters can account to some extent for processes such as film damping and whitecapping and could potentially explain the spread of wind-speed based transfer velocities published in the literature.
We combine some of the principles of two recently published k parameterizations [Glover, D.M., Frew, N.M., McCue, S.J. and Bock, E.J., 2002. A multiyear time series of global gas transfer velocity from the TOPEX dual frequency, normalized radar backscatter algorithm. In: Donelan, M.A., Drennan, W.M., Saltzman, E.S., and Wanninkhof, R. (Eds.), Gas Transfer at Water Surfaces, Geophys. Monograph 127. AGU, Washington, DC, 325–331; Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87–94] to calculate k as the sum of a linear function of total mean square slope of the sea surface and a wave breaking parameter. This separates contributions from direct and bubble-mediated gas transfer as suggested by Woolf [Woolf, D.K., 2005. Parameterization of gas transfer velocities and sea-state dependent wave breaking. Tellus, 57B: 87–94] and allows us to quantify contributions from these two processes independently.
We then apply our parameterization to a monthly TOPEX altimeter gridded 1.5° × 1.5° data set and compare our results to transfer velocities calculated using the popular wind-based k parameterizations by Wanninkhof [Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97: 7373–7382.] and Wanninkhof and McGillis [Wanninkhof, R. and McGillis, W., 1999. A cubic relationship between air?sea CO2 exchange and wind speed. Geophys. Res. Lett., 26(13): 1889–1892]. We show that despite good agreement of the globally averaged transfer velocities, global and regional fluxes differ by up to 100%. These discrepancies are a result of different spatio-temporal distributions of the processes involved in the parameterizations of k, indicating the importance of wave field parameters and a need for further validation.

This record has no associated files available for download.

More information

Submitted date: 30 September 2005
Published date: 2007
Keywords: Air-water exchanges, gas exchange, carbon dioxide, remote sensing, altimetry

Identifiers

Local EPrints ID: 17522
URI: http://eprints.soton.ac.uk/id/eprint/17522
ISSN: 0924-7963
PURE UUID: f3028196-690c-4fb9-9098-740217959ed1

Catalogue record

Date deposited: 19 Oct 2005
Last modified: 15 Mar 2024 06:00

Export record

Altmetrics

Contributors

Author: S. Fangohr
Author: D.K. Woolf

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×