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ABSTRACT 
 
Missense, nonsense and translationally silent mtuations can inactivate genes by altering 

the inclusion of mutant exons in messenger RNA, but their overall fraction among 

disease-causing exonic substitutions is unknown. Here, we have systematically tested 

missense and silent mutations deposited in the BRCA1 mutation databases of unclassified 

variants for their effects on exon inclusion in the mRNA experimentally. The 

introduction of 21 BRCA1 variants in two minigene systems revealed a single example of 

exon 6 skipping upon mutation c.231G>T. Comprehensive mutagenesis of a 12-nt exon 6 

segment overlapping this change showed that among 36 alterations this mutation gave the 

highest exon inclusion levels. The exon 6 inclusion levels significantly correlated with 

the profile of splicing enhancers/silencers, prompting the development of new online 

utilities, termed EX-SKIP and HOT-SKIP. The latter tool examines all possible 

mutations at each exon position and identifies ‘hot’ exonic substitutions with the highest 

ESS/ESE ratio that are likely to result in exon skipping while the former utility quickly 

determines which of the two or more alleles is more susceptible to this type of aberrant 

splicing. Using a set of disease-causing exonic substitutions that resulted in genetic 

disease we show that distribution of these changes was biased toward top-ranking HOT-

SKIP positions. Together, these results identify a new splicing mutation in BRCA1 exon 6 

in an unstructured silencer element and facilitate prediction of exonic substitutions that 

reduce exon inclusion levels in mature transcripts. 
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INTRODUCTION 

 Single-nucleotide substitutions in exons are the most common type of mutations 

in human genetic disease [Cooper and Krawczak, 1993]. Missense (amino acid altering) 

and nonsense (stop codon creating) mutations form by far the largest group of mutations 

deposited in the Human Gene Mutation Database, accounting for ~56% of over 92,000 

alterations recorded until May 2010 [Stenson et al., 2009]. However, nonsense, missense 

and also translationally silent mutations can inactivate genes by altering the inclusion of 

the mutant exon in mature transcripts [Cartegni et al., 2002; Cooper and Mattox, 1997; 

Pagani et al., 2005; Valentine, 1998]. The most common outcome of these DNA 

alterations is exon skipping, which is associated with diminished expression of canonical 

mRNAs and is usually dramatic in severe phenotypes. Nevertheless, single-nucleotide 

variants in the coding region may induce more subtle changes in the relative expression 

of exon-lacking or exon-containing transcripts [Cartegni et al., 2002; Cooper et al., 

2009]. The exact proportion of such DNA alterations among disease-causing exonic 

substitutions is, however, unknown because RNA samples have not been examined in the 

majority of the cases and routine mutation screening has been largely based on DNA 

analysis.   

Exonic substitutions often create or eliminate short elements that inhibit or 

activate exon inclusion, termed splicing silencers or enhancers, respectively. These 

motifs are abundantly present both in exons (ESSs, ESEs) and introns (ISSs, ISEs) and 

have been derived by computational and/or experimental approaches [Fairbrother et al., 

2002; Liu et al., 2000; Wang et al., 2004; Zhang and Chasin, 2004]. However, the effect 

of exonic mutations and variants on splicing is strongly dependent on the sequence 
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context and does not always correlate with in silico prediction [Goren et al., 2006; 

Lastella et al., 2006; Raponi et al., 2007; Skoko et al., 2008]. Although weak correlation 

with exon inclusion levels in minigenes was observed [Kralovicova and Vorechovsky, 

2007], the predictive value of ab initio computation tools is currently suboptimal. 

 Splicing defects resulting from exonic substitutions have been found in a growing 

number of disease genes, such as CFTR [Pagani et al., 2005; Raponi et al., 2007], MLH1 

[Auclair et al., 2006; Stella et al., 2001; Tournier et al., 2008], ATM [Teraoka et al., 

1999], NF1 [Ars et al., 2000], SMN2 [Lorson and Androphy, 2000] or BRCA1 [Liu et al., 

2001]. The latter gene is one of the two most important breast cancer susceptibility genes 

[King et al., 2003], encoding a 1863 amino-acid protein involved in DNA damage repair 

and transcription regulation [Gowen et al., 1998]. Inheritance of a protein truncating 

mutation in this tumour suppressor gene is associated with a 40-80% lifetime risk of 

breast cancer [King et al., 2003]. Over 450 distinct BRCA1 missense mutations have been 

identified in patients with a strong family history of breast cancer, but the functional 

significance of many of these changes is unclear, with profound implications for genetic 

counseling.  

In the present study, we have systematically tested 21 missense and silent 

mutations selected from the BRCA1 mutation databases of unclassified variants for their 

effects on exon inclusion in the mRNA using two minigene systems. We have identified 

a single exon-skipping mutation c.231>G>T. Systematic mutagenesis of a 12-nt segment 

surrounding this alteration showed that this alteration gave the highest exon skipping 

levels among 36 minigene substitutions and revealed a regular pattern of exon inclusion 

across this motif. Because this mutation was predicted by a combination of ESS and ESE 
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elements, we have developed two online utilities termed EX-SKIP and HOT-SKIP that 

predict exon-skipping mutations ab initio and tested their performance using two 

datasets. These results reveal a new splicing regulatory element in BRCA1 exon 6 and 

facilitate identification of exonic alterations that result in exon exclusion from mature 

transcripts.  

 

MATERIAL AND METHODS 

Selection of BRCA1 variants 

The Breast Cancer Information Core database (http://research.nhgri.nih.gov/bic/), 

an open-access on-line repository of mutations and polymorphisms of the inherited breast 

cancer genes, was searched to identify BRCA1 missense and silent mutations reported 

prior to February 2006 (Supplementary Table 1). The number of cases that sustained 

these mutations varied between 1 and 222. For further experimental study, we selected 

exons that were flanked by smaller introns that would allow us to construct unabridged 

splicing reporters that contained a high frequency of substitutions. 

 

Construction of splicing reporters 

OLIGO® online software (http://www.oligo.net) was used to design PCR primers 

to amplify three-exon BRCA1 minigenes (Supplementary Table 2). Amplification was 

performed with anonymous genomic DNA, 1 μl of each primer (10 pmol/μl) and a 

mixture of 0.25 μl AmpliTaq Gold polymerase and 0.25 μl Pfu DNA polymerase. PCR 

products were visualized on agarose gels, DNA fragments were extracted using 

GENECLEAN® and subcloned into pCR3.1 (Invitrogen).. Plasmid DNA was extracted 

http://research.nhgri.nih.gov/bic/
http://www.oligo.net/
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using Wizard® Plus SV Minipreps DNA Purification System (Promega). Site-directed 

mutagenesis was carried out using a megaprimer approach [Sarkar and Sommer, 1990] 

with mutagenic primers listed in Supplementary Table 3.  

 

Cell culture and transfections 

 HEK293 cells were grown in DMEM supplemented with 10% fetal calf serum 

and 2 mM L-glutamine in 6-well plates. One μg of each plasmid was transfected into 

3x105 HEK293 cells per well in the serum-free medium containing Lipofectamine 

(Invitrogen) according to manufacturer’s recommendations. Cells were grown for a total 

of 48 hrs post-transfection before harvesting for RNA extraction.  

 

Analysis of spliced products 

Total RNA was extracted using the Qiagen RNeasy Plus kit (Qiagen) according to 

the manufacturer’s instructions. One μg of total RNA was reverse transcribed with the 

Reverse Transcription System (Promega) and the first strand of cDNA was amplified 

with vector primers PL3 and PL4 as described [Kralovicova et al., 2004]. 

 

EX-SKIP and HOT-SKIP construction 

Both tools were implemented as a common gateway interface script (written in 

Perl). Each utility perform a local search of the exonic sequence for putative ESEs/PESSs 

(PESEs/PESSs) [Zhang and Chasin, 2004], FAS-ESSs [Wang et al., 2004], RESCUE-

ESEs [Fairbrother et al., 2002; Fairbrother et al., 2004], neighbourhood inference [Stadler 

et al., 2006] and exon/intron identity elements (EIE/IIEs) [Zhang et al., 2008]. The HOT-
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SKIP algorithm generates all possible substitutions at each exonic position, extracts 15-

bp and 11-bp oligomers with the substituted base at the central position and computes the 

appropriate ESS/ESE profile for each oligomer. The profile is presented in a table that 

can be sorted online according to a chosen element, their counts or their ratios. Both tools 

are available at http://www.dbass.org.uk or at http://ex-skip.img.cas.cz/ (EX-SKIP) or 

http://hot-skip.img.cas.cz/ (HOT-SKIP).  

The performance of HOT-SKIP was tested with a set of 37 previously reported 

mutations that resulted in exon skipping and genetic disease (Supplementary Table 4). 

Each mutation was within the exon but outside the splice site consensus sequences, ie. the 

first and the last three exon positions. Set 2 consisted of exon 12 inclusion levels 

measured after transfection of the wild-type CFTR minigene and its 42 mutated versions, 

as published previously [Pagani et al., 2005; Pagani et al., 2003] (Supplementary Table 

5).    

 

RESULTS 

Identification of a silent mutation in BRCA1 that induced exon skipping   

A search of the Breast Cancer Information Core (BIC) database for disease-

associated exonic substitutions identified a total of 487 alterations. For further 

investigation, we selected substitutions in BRCA1 exons 5, 6, 10 and 18 because they 

were flanked by relatively short introns and their length was also small (78, 89, 77 and 78 

bp, respectively), thus facilitating DNA manipulation. We compiled a total of 38 non-

synonomous and 2 synonymous substitutions (Supplementary Table 3).  

http://www.dbass.org.uk/
http://ex-skip.img.cas.cz/
http://hot-skip.img.cas.cz/
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Splicing of the wild-type reporter construct containing exons 5-7 (Fig. 1A) 

produced a mixture of correctly spliced products and exon skipping. Examination of 

RNA products of reporters mutated at each exonic variant (Fig. 1B) revealed that the 

c.231G>T mutation significantly increased exon skipping as compared to the wild-type 

reporter (Fig. 1C), while the remaining variants in exon 6 did not produce any splicing 

defects.  

The wild-type exon 9-11 minigene did not induce exon skipping, nevertheless we 

mutated this construct at each variant because it gave retention of the second minigene 

intron (Fig. 2A-C). None of the mutants produced exon skipping, but mutation 

c.5138T>C improved splicing of the second minigene intron, perhaps as a result of a 

removal of predicted ESS octamer AAATGGGT [Zhang and Chasin, 2004] and 

overlapping FAS-ESS hexamers TAGTTA, GTAGTT, GGTAGT and GGGTAG [Wang 

et al., 2004] from the wildtype construct. Minigenes containing exons 5 and 18 as middle 

minigene exons were either not informative or their cloning was unsuccessful.  

Taken together, the introduction of 21 BRCA1 variants in two minigenes revealed 

a single (~5%) example of exon skipping upon c.231G>T mutation. This mutation was 

likely to markedly diminish expression of canonical BRCA1 transcripts in vivo and may 

have thus contributed to the development of breast cancer in the reported case. 

 

Characterization of a silencer element in BRCA1 exon 6 

The c.231G>T alteration may induce exon 6 skipping by creating a splicing 

silencer or eliminate an exonic enhancer. A systematic search for splicing regulatory 

elements revealed that this alteration increased the predicted ESS/ESE ratio about 70-fold 



Page 9 of 26 
 

(Table 1). To identify residues that control exon 6 inclusion in this region and to 

systematically examine the contribution of each nucleotide, we mutated each position of 

a 12-nt region surrounding this mutation. Measurements of exon inclusion levels of the 

wild-type and 36 mutated constructs showed that the c.231G>T transversion gave the 

highest level of transcripts lacking exon 6 while only a few mutations reduced exon 6 

skipping (Fig. 3A). This mutation creates a new TAG trinucleotide, which are highly 

enriched in splicing silencers [Wang et al., 2004; Vorechovsky, 2009]. In addition, exon 

skipping/inclusion levels across the mutated region showed a pattern of regular 

fluctuations that were only sporadically interrupted by more erratic changes, such as 

224T or 231T, suggesting that the outcome of these changes can be predicted. As 

expected, the average exon skipping tended to be highest for substitutions that introduced 

uracil in the pre-mRNA (Fig. 3B), consistent with a general enrichment of this nucleotide 

in splicing silencers [Wang et al., 2004; Vorechovsky, 2009]. Finally, although uracil is 

overrepresented in introns and in predicted splicing silencers, including FAS-ESSs 

[Wang et al., 2004] and PESSs [Zhang and Chasin, 2004], it is worth noting that X>T 

substitutions did not increase exon skipping at each position (Fig. 3A). 

 

Correlation of the ESS/ESE profile and exon inclusion 

 To determine which of the previously determined ESSs or ESEs correlate best 

with exon inclusion levels, the number of RESCUE-ESEs [Fairbrother et al., 2002; 

Fairbrother et al., 2004], FASS-ESSs [Wang et al., 2004], PESEs/PESSs [Zhang and 

Chasin, 2004], neighbourhood inference elements [Stadler et al., 2006] and EIE/IIEs 

[Zhang et al., 2008] was calculated for each segment. In addition, we employed the 
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ESEfinder [Cartegni et al., 2003; Smith et al., 2006] to correlate exon inclusion levels 

with predicted scores of putative ESEs for SR proteins. The highest correlation with 

enhancers was observed for the score density of the improved consensus of 

serine/arginine-rich (SR) protein SF2/ASF (Fig. 3C, Supplementary Tables 6,7). 

Together, ESEfinder predictions identified a total of 669 potential ESE motifs, with 34 

potential ESEs within exons 5, 6, 10 and 18 (Supplementary Table 7), but putative ESEs 

for the remaining SR proteins did not significantly correlate with the exon inclusion. 

A significant correlation was also found for EIEs (r=0.43), followed by a simple sum of 

all enhancers (r=0.37, Supplementary Table 8). Conversely, the highest correlation 

between exon skipping and silencers was found for counts of FAS-ESSs (hex2 subset) 

(r=0.27), followed by trusted NI ESSs (r=0.25; Supplementary Table 8).  

 

Putative secondary structure   

 Of 36 minigene substitutions, the c.231G>T mutation gave the highest levels of 

exon skipping that were not matched by any other mutation. This could be due to an 

alteration of RNA secondary structure, which may convert the predicted single-stranded 

configuration into a base-paired structure and stabilize a terminal loop (Fig. 4A). In an 

attempt to address this hypothesis, we introduced an additional destabilizing mutation at 

position 238. However, exon inclusion levels for this mutant at both the 231G and 231T 

background were higher than for the wild-type reporter construct (Fig. 4B), which makes 

this explanation unlikely. Prediction of binding sequences using currently available 

online tools [Cartegni et al., 2003; Piva et al., 2009] has identified SR proteins SRp40 
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and SC35 as candidate factors, suggesting that the c.231G>T mutation could primarily 

alter protein binding (data not shown). 

 

HOT-SKIP and EX-SKIP: online tools predicting exon skipping mutations 

 Because combination of independently derived splicing regulatory motifs have 

provided a better predictor of the c.231G>T mutation than individual elements (Table 1), 

we have developed two online tools, termed EX-SKIP and HOT-SKIP, that compute the 

ESS/ESE profile using a single click of the mouse and, as we show below, facilitate 

identification of exon-skipping alterations.  

EX-SKIP is a simple utility that compares the ESE/ESS profile of multiple short 

sequences, typically a wild-type and a mutated allele, to quickly determine which exonic 

variant has a higher chance to skip this exon. In contrast, HOT-SKIP systematically 

examines all possible substitutions at each exonic position, computes the ESS/ESE 

profile for each alteration and identifies ‘hot’ positions and substitutions that are most 

likely to skip this exon.  

The input to both utilities is an exonic sequence (strictly in upper case) in the 

FASTA format flanked by short intronic sequences (lower case) on either side to account 

for adjacent motifs. Multiple FASTA format sequences are permitted up to a total length 

of 4,000 bp.  

The output of EX-SKIP is a simple table indicating the number of each 

ESSs/ESEs, their sum and ratio, which is followed by a short statement which of the 

submitted allele is more likely to skip the exon. By contrast, the HOT-SKIP output is a 

large table listing all possible point mutations at each exon position. Table data can be 
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sorted online by clicking on chosen elements or their combination in table headers. 

Typically, substitutions with the highest values of ESSs and lower values of ESEs are 

likely to represent ‘hot-spots’ for exon skipping that are highlighted in red in the exonic 

sequence. Thus, HOT-SKIP considers all possible exonic substitutions, except for 

changes in the first and the last three positions of the exon, ie. outside splice-site 

consensus signals. As an example, the ESS/ESE profile calculated for each BRCA1 exon 

is shown in Supplementary Table 9. 

 

Prediction of exon skipping mutations by HOT-SKIP 

 To illustrate the utility of this tool, we computed the ESS/ESE ratio for all 

possible point mutations at each exon position for 33 exons that sustained a total of 37 

alterations, each resulting in exon skipping and genetic disease (Supplementary Table 4). 

Mutations were ordered according to the ESS/ESE ratio for each exon. A subset of 

mutations that lacked any predicted ESSs was sorted according to the sum of ESEs. 

Interestingly, we found that 20/37 (54%) of these mutations were in the first HOT-SKIP 

quartile, while 27/37 (73%) were in the first two quartiles (Fig. 5). The bias in their 

distribution toward top HOT-SKIP positions was statistically significant (P=0.0001 and 

P<0.003, respectively, binomial tests). Interestingly, several of the 10 mutations that were 

in the third and fourth quartiles were located in the vicinity of top-ranking positions. For 

example, 10 mutations located up to 10 nt downstream of the disease-associated G>A 

substitution at position 37 of ADA exon 7 [Ozsahin et al., 1997] were ranked within the 

first 12 positions with the highest ESS/ESE ratios. Similarly, mutations introducing 

guanine at position 195-197 of the BRCA2 exon 18 were ranked by HOT-SKIP among 
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the first 5 exon-skipping mutations, just 6 nt from the disease-causing substitution at 

position 189 [Fackenthal et al., 2002]. In cryptic exons, identical positions were in the top 

quartile if mutated to other nucleotides [Dear et al., 2006; Ishii et al., 2002]. These 

observations suggest that in a subset of cases, the ESS/ESE profile did not correctly 

predict mutations that are likely to reside within a shared secondary structure. This leads 

to prediction that the ESS/ESE profile may be more useful for less structured pre-

mRNAs. In addition, it may not perform well for mutations very close to natural splice 

sites. For example, two of the 10 ‘non-performing’ mutations  at position 7 in MLH1 

exon 3 [McVety et al., 2006] and position 5 in GH1 exon 3 [Ryther et al., 2003]) were 

close to 3’ splice sites and the 3’YAG consensus is likely to interfere with accurate 

prediction of exonic auxiliary sequences. In addition, these mutations were in exonic 

segments recognized by the auxiliary factor of U2 small nuclear ribonucleoprotein. The 

small subunit of this factor may bind up to 12 nt of the exon and has a preference for 

uridines [Wu et al., 1999]. Finally, because formation of cross-exon spliceosomal 

network is likely to be less complete for longer exons, we plotted exon length against the 

HOT-SKIP rank, but no correlation was found (r=0.027, P>0.05; Fig. 5).  

 We also compared previously published exon inclusion data for 42 mutations in 

CFTR exon 12 that were determined ex vivo [Pagani et al., 2005; Pagani et al., 2003]. We 

found a significant correlation of exon 12 inclusion with the ESS/ESE ratio (r=-0.28, 

P=0.03) as well as for the total number of ESSs (-0.35), but not for ESEs or any of the 

remaining individual elements, except for trusted NI-ESSs that gave the highest 

correlation coefficient (-0.40, P=0.004). Thus, these data suggest that the best prediction 
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method may vary from exon to exon and highlight the versatility of HOT-SKIP to 

address this in detail in future studies. 

 

DISCUSSION 

This work has shown that (i) exonic point mutations that result in substantive 

exon skipping are infrequent in BRCA1 exons 6 and 10; (ii) prediction of exon-skipping 

mutations is facilitated by the ESS/ESS profile that takes into account independently 

derived elements and can now be easily determined online; (iii) exon 6 inclusion levels in 

the BRCA1 mRNA were not irregular but showed an undulating pattern across a 

systematically mutated segment that contained the newly identified and probably 

unstructured ESS.    

We believe that the first conclusion is not limited to the two BRCA1 segments. 

Although nonsense, missense and translationally silent mutations can inactivate genes by 

inducing the splicing machinery to skip the mutant exons, most mutations to illustrate this 

point were in fact in the splice-site consensus (see Table 1 in [Cartegni et al., 2002]). 

Second, the low frequency of such mutations has been supported by independent screens 

of candidate exonic variants in other genes. For example, BRCA2 substitutions deposited 

in BIC and screened by RT-PCR and minigene assays did not show a single example of 

aberrant splicing [Whiley et al., 2010]. On the other hand, more systematic studies [Sanz 

et al., 2010] confirm previous findings [Pros et al., 2008; Teraoka et al., 1999] that in 

large genes with many introns up to a half of all disease gene mutations affect splicing, 

although only a few were in exons. For example, 2 of four exonic unclassified variants in 

BRCA2 showed aberrant splicing [Bonnet et al., 2008]. Thus, although the overall 
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fraction of pathogenic exonic substitutions that cause aberrant splicing is likely to be 

relatively low, they should always be considered, particularly in exons weakly included 

in mRNAs, such as CFTR exon 12, where almost a third of all point mutations induced 

exon skipping in a minigene system [Pagani et al., 2005] (Supplemental Table 5). 

Remarkably, the ESE/ESS profile correctly predicted a pathogenic mutation over 

a considerable distance from the exonic position (Table 1) and suggested that a 

combination of independently derived elements has a better predictive and perhaps 

practical value. The new online tools are publicly available and should facilitate detection 

of DNA variants that alter splicing if carried out in conjunction with other tools that 

assess the strength of natural splice sites [Senapathy et al., 1990; Yeo and Burge, 2004] 

and branch points [Kol et al., 2005]. Similar algorithms have been recently applied to 

distinguish exon skipping and cryptic splice site activation ab initio [Divina et al., 2009]. 

Interestingly, most minigene substitutions altered exon inclusion levels that 

ranged between 0.39 and 0.86% (Fig. 3A). Disregarding the effect of the c.231G>T 

mutation, these changes were minor and translated only to ~1.6-fold difference between 

maximum and minimum exon skipping. Remarkably, the pattern of these alterations was 

not irregular, raising a question of the underlying mechanism. Apart from alterations of 

cross-exon protein interactions and/or RNA secondary/tertiary structure, chromatin and 

histone modifications have been recently shown to influence splicing [Andersson et al., 

2009; Gama-Carvalho et al., 1997; Kolasinska-Zwierz et al., 2009; Kornblihtt et al., 

2009; Schor et al., 2009; Tilgner et al., 2009]. Exon marking and nucleosome occupancy 

between exons and introns also show only ~1.5-fold differences and nucleosome 

occupancy improved exon recognition only to a limited degree [Spies et al., 2009].  
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Taken together, screening of 21 unclassified exonic variants in BRCA1 has 

identified a single case of exon skipping. Systematic mutagenesis surrounding the new 

ESS in BRCA1 exon 6 revealed only modest variations in exon inclusion for the majority 

of changes, supporting the view that exonic point mutations that result in pathogenic exon 

skipping are relatively infrequent. The newly developed online tools should facilitate 

detection of exonic alterations that reduce exon inclusion in mRNAs and represent the 

first step toward developing more sophisticated algorithms in the future.    
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FIGURES AND TABLES 
 

TABLES 
 

 
Table 1   Counts of predicted ESSs and ESEs in the wild-type and c.231G>T alleles 

 Exon 6 segment RESCUE-ESE FAS-ESS PESE PESS EIE IIE ESE total ESS total ESS/ESE 

Wild type AGTACG231AGATT 0 0 13 0 6 1 19 1 0.053 

Mutant AGTACT231AGATT 0 1 2 9 1 1 3 11 3.667 
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FIGURES 

Figure 1   Identification of the BRCA1 missense mutation that induce exon skipping  
Legend: A, 5-7 minigene reporter construct.  Exons are shown as boxes (numbered 5-7), 
introns as lines. Normal and aberrantly spliced products are shown as dotted lines above 
and below the pre-mRNA, respectively. Transposable elements in introns are 
schematically shown as grey (AluJb), white (3’end of L2) and black (MER104) 
rectangles; their orientation is denoted by arrowheads. Cloning primers are shown as grey 
arrows. B, exon 6 sequence (upper case) with flanking intronic sequences (lower case). 
Substitutions (bold) are shown above mutated residues (highlighted). c.231G>T 
substitution creates the TACTAG hexamer (underlined) predicted by FAS-ESS [Wang et 
al., 2006] and also the CTAGAT splicing regulatory motif (highlighted in grey) predicted 
by a computational method based on the conservation of wobble positions the 
overabundance of sequence motifs between human and mouse orthologous exons [Goren 
et al., 2006]. C, RNA products of the BRCA1 5-7 minigene (schematically shown to the 
right) visualized by reverse-transcription PCR and separated by PAGE. Minigene 
mutations (top) correspond to panel B.  
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Figure 2   Splicing pattern of the 9-11 reporter construct  
Legend: A, Exons are shown as boxes (numbered 9-11), introns as lines. Normal and 
aberrantly spliced products are shown as dotted lines above and below the pre-mRNA, 
respectively. Transposable elements in introns are schematically shown as grey (Alu), 
white (L1) and black (MIR3) rectangles; their orientation is denoted by arrowheads. 
Cloning primers are shown as grey arrows. B, exon 10 sequence with single-nucleotide 
substitutions; C, RNA products of the 9-11 minigene (schematically shown to the right) 
visualized by reverse-transcription PCR and separated by PAGE. Minigene mutations 
(top) correspond to panel B.  
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Figure 3    Systematic mutagenesis of a new splicing regulatory motif in BRCA1 
exon 6  
Legend: A, exon 6 inclusion/skipping levels of the wild-type (WT) and 36 minigene 
mutants. Designation of substitutions (horizontal axis) corresponds to the numbering 
shown in Fig. 1B. The BIC-derived transversion is boxed. Erors bars represent standard 
deviations of two transfections experiments; B, The average exon skipping of X>G, X>T, 
X>C and X>A substitutions. Error bars represent standard deviations; C, Improved 
SF2/ASF ESE scores showed the highest correlation with exon inclusion levels. Full data 
are available in Supplementary Table 6. 
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Figure 4   Predicted RNA secondary structure of the c.231G/T alleles 
Legend: A, predicted secondary structure of the wild type (WT) and mutated (positions 
231 and 238) pre-mRNA. Mutations are denoted by arrows. Secondary structure 
predictions were carried out using the algorithm implemented in the RNAStructure 
program (v. 4.6) [Mathews et al., 2004]. B, The splicing pattern of four mutated reporter 
constructs upon transient transfections in HEK293 cells. EI, exon inclusion. 
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Figure 5   Prediction of exon-skipping substitutions by HOT-SKIP 
Legend: Each point represents a disease-causing mutation that resulted in exon skipping 
(full details are in Supplementary Table 4). HOT-SKIP percentile was calculated as (a-
4)*400/n, where n is exon length in nucleotides and a is the rank of the mutation among 
all possible exon substitutions as determined by sorting the ESS/ESE ratios. 
 

 
 
 
 
 


