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MODELLING THE COCHLEAR ORIGINS OF DISTORTION PRODUCT

OTOACOUSTIC EMISSIONS

by Jacqueline Ann Young

Distortion product otoacoustic emissions (DPOAESs) arise within the cochlea in response to two
stimulus tones (f; and f,) at frequencies such as 2f; — f; and 2f; — f;. Each DPOAE derives from two
contributing mechanisms within the cochlea: a distributed distortion source and a reflection source.
They are used for hearing screening, but a better understanding of their cochlear origin and
transmission could potentially extend their clinical application to facilitate objective hearing loss
assessment, differential diagnosis of sensorineural hearing losses and improved auditory
rehabilitation using hearing aids.

In this thesis a numerical model of the human cochlea is developed to study the generation
of DPOAEs. It is based on a pre-existing active nonlinear model, the micromechanics of which are
carefully re-tuned to simulate the response of the human cochlea to single- and two- tone
stimulation. Particular attention is paid to the form and position of the nonlinearity within the
model to best match experimental results. The model is also reformulated to verify its stability and
ensure computational convergence of the iterative frequency domain solution method. Its
predictions are validated against estimated time domain simulations and documented experimental
DPOAE measurements. Additionally a novel method is developed for decomposing each
frequency component of the cochlear response into forward and backward travelling waves, which
is applied to investigate the multiple sources of both the 2f; — f; and 2f; — fi DPOAEs.

The model is used to explain and predict a variety of phenomena observed in experimental
DPOAE studies. It also confirms for the 2f; — f, emission, that the two source mechanisms are
spatially separated and that the only significant reflection contribution is associated with the 2f; — f
travelling wave. In contrast, it predicts that the two source mechanisms will overlap in the case of
the 2, — fi DPOAE, which can be influenced by reflection of both the primary and 2f; — f;

travelling waves.
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1. Introduction

1. Introduction

This thesis is concerned with understanding the generation mechanisms of distortion product
otoacoustic emissions (DPOAEs) using numerical models of the cochlea. In this chapter the
anatomy and physiology of the mammalian cochlea are briefly reviewed to provide the context for
the model. The properties and applications of otoacoustic emissions are then discussed to allow

comparison with the model predictions.

The chapter concludes with a list of research questions which have been addressed and a summary

of the contributions of the thesis.



1. Introduction
1.1 Anatomy of the ear

1.1 Anatomy of the ear

Figure 1.1a shows the principal structures of the ear. Sound is transmitted from the ear canal
through the middle ear, via the tympanic membrane and ossicles, into the cochlea. The cochlea
converts an acoustic stimulus into neural electrical signals which are transmitted to the brain via the
auditory nerve. In this section the anatomy of the middle ear and cochlea are described so that the

chief mechanisms can then be explained.

1.1.1 The middle ear

The middle ear, illustrated in figure 1.1b, consists of three ossicles: the malleus, incus and stapes.
These bones transmit vibrations from the tympanic membrane to the oval window of the cochlea,
acting collectively as an impedance-matching transformer. The efficient transmission achieved by
the middle ear is attributed to three properties (Pickles, 1982): the effective area ratio between the
tympanic membrane and the stapes footplate, the effective lever ratio of the malleus and incus
bones, and the relative motion of the tympanic membrane and malleus. Overall, the middle ear
performance is well modelled by a mass-spring-damper system for stimulus frequencies under 10
kHz (Relkin, 1988). Figure 1.2 shows that the human middle ear provides a maximum gain of
approximately 20 dB at 1 kHz and that its response becomes nonlinear for stimulus levels above
140 dB SPL. At these high stimulus levels the middle ear performance becomes nonlinear as
reflexes and ligaments act to restrict the stapes motion (Pascal et al., 1998). For the sound levels of
interest here however, which are all below 140 dB SPL, the middle ear can be accurately modelled

as a linear system.

(a) (b)
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Figure 1.1 Ilustrations of (a) the ear overview and (b) the the middle ear.
[From (a) figure la of Chittka & Brockmann (2005), open access journal, and (b) figure 1a of Nobili et al.
(2003) with permission from JARO]
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Figure 1.2 The response of the middle ear

(a) The gain of the middle ear (GME), measured as the ratio of the occluded ear canal acoustic pressure to the
fluid pressure in the scala vestibuli, in 11 human temporal bones (grey lines) and the average result (black
line). (b) Peak-to-peak stapes displacement as a function of sound pressure level (SPL) at the eardrum of a
cat using a 315 Hz stimulus. [From (a) figure 2 of Aibara et al. (2001) and (b) figure 6 of Pascal et al. (1998)
with permission from Elsevier and the ASA respectively].

1.1.2 The cochlea

In humans, the snail-shaped cochlea has a length of approximately 3.5 cm and incorporates about
2% turns (Gelfand, 1998). Figure 1.3 shows an idealised representation of the uncoiled longitudinal
cochlea cross-section. The cochlea is divided length-ways by Reissner’s membrane and the
cochlear partition (CP) into three longitudinal ducts; the scala vestibuli, the scala media and the
scala tympani. Each duct contains fluid, either perilymph or endolymph. These two fluids differ in
their chemical composition (Gelfand, 1998), but both have similar density to water (~1000 kg/m?)
(Steele et al., 2000). The CP separates the scala media and the scala tympani. It is composed of the
spiral lamina, the basilar membrane (BM), the tectorial membrane, and a collection of cells (the
organ of Corti) located between these membranes. Reissner’s membrane is often neglected in
mechanical cochlear models as it is acoustically transparent and appears to exist only in order to
chemically separate the cochlear fluids (Dallos, 1992). The helicotrema, at the apex of the cochlea,
provides a fluid link between the scala vestibuli and scala tympani, which limits damage that may
be caused by excessive low frequency stimulation (Patuzzi, 1996). The middle ear makes contact
with the cochlea via the stapes footplate, which is sealed onto the oval window by an elastic

ligament (Dallos, 1992).

Figure 1.4 shows the transverse cross-section of the cochlea. Movement of the cochlear fluids
causes relative motion of the BM with respect to the TM. As consequence of this relative motion,
the hair cells located within the organ of Corti release neurochemicals to stimulate the auditory

neurons (Patuzzi, 1996). There are two categories of cochlear model that differ in their treatment of
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the CP (Patuzzi, 1996). In macromechanical models, any relative movement between the structures
within the CP is neglected so that the partition moves as one unit. The alternative is a

micromechanical model, in which this relative movement within the CP is not neglected.
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Figure 1.3 Representation of the cochlear ducts
[Based on Patuzzi (1996), figure 4.9 |
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Figure 1.4 Cross-section of the guinea pig cochlea
[From figure 1 of Davis (1953), with permission of Elsevier]
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1.1.3 Hair cells

The two types of hair cell located within the organ of Corti are illustrated in figure 1.5. Inner hair
cells (IHCs) are thought to act primarily as sensory cells as they synapse directly with the auditory
nerve (Nobili et al., 1998). The cell is stimulated when relative motion between the BM and
tectorial membrane causes a deflection of its stereocilia. This deflection produces a sound-induced
receptor current within each hair cell (Patuzzi, 1996). The receptor current and the associated
receptor potential (the change in voltage across the membrane) act to release neurochemicals to
stimulate the auditory neurons. As the receptor potential is induced by BM motion, the neurons that
are most responsive to a given frequency stimulus will be those that synapse with hair cells located

at the characteristic place (defined in section 1.2.1).

Outer hair cells (OHCs) are also stimulated by relative motion between the BM and tectorial
membrane. However, these hair cells act to enhance the motion of the BM rather than to stimulate
auditory neurons (Ashmore et al., 2002). This positive feedback could be achieved through somatic
motility, as the length of the cell varies with changes in receptor potential (Brownell ef al., 1985;
Dallos, 1992). An alternative positive feedback mechanism is motility of the stereocilia, suggested
by observations in amphibians (Martin & Hudspeth, 1999). Several of the OHC processes are
nonlinear, as illustrated in figure 1.6. These include the mechano-electric transduction (MET), the

electro-mechanical motility, and the gating of mechanical channels (Liberman ef al., 2004).

(a) (b)
Stereocilia
A Rudimentary Stereocilia
kinocilium (_H Rudimentary
kinocilium
Cuticular 4 ‘ \
plate 1
) N
Cuticular e
plate
Nucleus . -
> Hair cell > Hair cell
Nucleus —

neurons

Efferent v J
neurons —> )
Afferent Efferent
Afferent neurons neurons

Figure 1.5 Illustrations of (a) an inner hair cell (IHC) and (b) an outer hair cell (OHC)
Details are based on the description given in Gelfand (1998).
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Figure 1.6 Examples of guinea pig OHC input-output functions
(a) mechano-electric transduction [Re-drawn from Dallos, 1996) and (b) electro-mechanical transduction
[From figure 3 of Santos-Sacchi (1989), with permission of Elsevier]
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1.2 Cochlear mechanics

In this section, the principal processes at work within the cochlea are described. It is these
properties that a cochlear model must be able to replicate in order to accurately predict more

complex cochlear responses.

1.2.1 The travelling wave

When the stapes vibrates there are two types of wave that can propagate within the cochlea as a
result. The first is the ‘travelling’, or ‘slow’, wave which propagates along the basilar membrane
(BM) at a rate that is slower than the speed of sound in water. The second is the ‘compression’, or
‘fast’, wave which travels at approximately the speed of sound in water and fills the entire cochlea
almost instantaneously. Dong & Olsen (2008) explain that this compression wave can be viewed
simplistically as a uniform background pressure that varies in time with the motion of the stapes.
They comment that the two types of wave can be distinguished within the cochlear fluid by the
associated spatial pressure variations. For example, the compression wave is associated with a
spatially uniform pressure distribution, whilst the travelling wave leads to a spatially varying

pressure distribution close to the BM.

The BM travelling wave, first observed by von Békésy (1960), is shown in figure 1.7. This wave
propagates along the BM from base to apex, getting larger as it travels due to the exponentially
decreasing stiffness of the BM (Patuzzi, 1996). The travelling wave reaches a maximum and then
collapses abruptly (Gelfand, 1998). In the region of maximum amplitude the wave speed
practically halts and so energy ‘piles-up’ at this position (Dallos, 1992). The amplitude of the
travelling wave at each location along the cochlear partition (CP) is referred to as the travelling
wave ‘envelope’ and is illustrated by the dotted line in figure 1.7. Temporal electrophysiological
measurements demonstrate that the travelling wave is responsible for the excitation of hair cells
(von Békésy, 1970). In contrast to this, the compression wave is usually neglected in cochlear
models as it does not appear to produce significant hair cell excitation, and it is not coupled to the

travelling wave (Dong & Olsen, 2008).

Figure 1.7 The basilar membrane (BM) travelling
wave

The solid lines show successive patterns of BM
displacement, and the dotted line represents the
envelope of the travelling wave, for stimulation at
200 Hz.

[From figure 12/ — 17b of von Békésy (1960),
with permission from ASA].
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The natural frequency of the cochlear partition (CP) decreases from base to apex, as its mass and
stiffness properties vary with distance from the stapes. Therefore, the CP provides frequency
discrimination of the sound stimuli as the peak of the travelling wave envelope occurs at a location
on the partition where the natural frequency corresponds to the stimulus frequency (de Boer, 1996).
This location is near the base for high-frequency stimuli and near the apex for low frequency
stimuli (Dallos, 1992). Very low frequency stimuli (~200 Hz) can result in BM displacement
patterns that propagate along the entire length of the cochlea. The BM displacement and velocity
can reach up to 30 nm and 2 mm/s respectively for an 80 dB SPL stimulus in the Chinchilla
cochlea (Robles & Ruggero, 2001). The location at which the travelling wave envelope has the
greatest amplitude, for a given stimulus frequency, is often called the ‘best’ place for that
frequency. Similarly the stimulus frequency that produces the maximal BM displacement (or
velocity) at a specific location on the cochlear partition is known as the ‘best’ frequency for that
place (e.g. Dong & Olson, 2005). An active process, described in section 1.2.2, is thought to
operate within the cochlea. One consequence of this activity near the base, is an increase in the best
frequency of about half an octave relative to the passive natural frequency at a specific location
(Steele et al., 2006). The best place (or best frequency) in an active cochlea is also known as the
‘characteristic’ place (or ‘characteristic’ frequency) (Dallos, 1992). Figure 1.8 shows the amplitude
and phase accumulated by the travelling wave as it progresses from the base of the cochlea to the
characteristic place. The accumulated phase observed at the characteristic place is fairly constant
for a given species, for a range of stimulus frequencies. For example the travelling wave of the
squirrel monkey accumulates a phase lag of approximately 12 radians (or about 2 cycles), relative
to the stapes motion, en route to its characteristic place irrespectively of the distance between that

place and the base.

As the location of the characteristic place is monotonically dependent on frequency, an empirical
frequency-position function can be constructed as shown below (Greenwood, 1996; Le Page,

2003) . This can be applied to several species using the parameters given in table 1.1.
£.0=G,-(1040 -, =

In this expression, /. is the characteristic frequency corresponding to location x on the BM, L is the

length of the cochlea, and Cy, ay and K, are all constants which differ between animals. The place-
frequency maps obtained from this formula are shown in figure 1.9 for three different species. The
cochlear model discussed in Chapter 2, devised by Kanis & de Boer (1993), is based on the human
cochlea and is therefore designed to have a place-frequency map similar to the solid line shown in

figure 1.9.
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Elephant 81 1.8 1 60 5.1 0
Cow 52.6 2.1 1 38.3 6.6 0
Human 165.4 2.1 1 35 20.8 0
Macaque 360 2.1 0.85 25.6 45.3 54
Domestic cat 456 2.1 0.8 25 57.4 91
Guinea pig 350 2.1 0.85 18.5 44.1 53
Chinchilla 163.5 2.1 0.85 18.4 20.6 25
Gerbil 398 2.2 0.631 12.1 63.1 147
Mouse 7130 0.99 1 6.8 105.3 0

Table 1.1 The parameters for Greenwood’s frequency-position function equation (1.1)
The data is taken from Le Page (2003) and the characteristic frequencies at the base (fy.s.) and at the apex

(fapex) are also shown.

Figure 1.9 The calculated place-frequency
maps for humans, cats and guinea pigs
These results were obtained using equation
(1.1) and the data from table 1.1.
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Figure 1.10 The nonlinear frequency
response of the BM

The response is observed 3.5 mm
from the basal end of the chinchilla
cochlea using laser interferometry.
The characteristic frequency at this
location is approximately 10 kHz.
[From figure 10 of Ruggero et al.
(1997), with permission from the
ASA]
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1.2.2 The active process

Figure 1.10 shows the variation in BM frequency response with stimulus pressure level observed in
the chinchilla cochlea using a laser interferometry (Ruggero ef al., 1997). At high stimulus levels,
the frequency response is broad, and is comparable to the responses observed in dead or damaged
cochlea (Johnstone et al., 1986; Dallos, 1992). This response can be described by a passive
cochlear model (e.g. Zwislocki, 1950), in which the CP can only absorb acoustical energy (de Boer,
1995b). At low stimulus levels, the frequency response is sharper as the BM vibrations are
enhanced at frequencies close to the characteristic frequency. It is necessary for a model to
incorporate a locally active region, just basal to the characteristic place, in order to replicate these
low level responses (de Boer & Nuttal, 1999). This active process, or “cochlear amplifier” (Davis,
1983), injects energy into the travelling wave which is dissipated elsewhere along the cochlear
partition (de Boer, 1995b). The “gain” of the cochlear amplifier usually refers to the 40 — 60 dB
increase in the active BM response compared to the passive case (Nobili et al., 1998), evident in
figure 1.10. The active process also increases the frequency at which the maximum response occurs
at a specific location by about half an octave compared to the passive response (Steele et al., 2006)
and sharpens the tuning of the BM frequency response. For example, in a chinchilla cochlea, the
Qiods "increases from 1.4 to 5 as the stimulus level reduces from 90 dB SPL to 10 dB SPL (Robles
& Ruggero, 2001).

The active process is thought to occur at the level of the BM, as mechanical tuning within the
cochlea is as sharp as neural tuning (Khanna & Leonard, 1982; Sellick et al., 1982; Robles ef al.,
1986), and is associated with the collective action of the OHCs (Davis, 1983). Evidence for the

cochlear amplifier originates from ‘inverse’ solutions in cochlear modelling, where the unknown

" Q1oas is equal to the frequency of the response peak divided by the bandwidth 10dB below the peak (Robles
& Ruggero, 2001). Therefore higher Q45 values indicate sharper tuning.

10
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distribution of the CP impedance is obtained from physiological measurements of the cochlear
response to single tone stimulation. The resulting impedance is found to exhibit a negative real
component over the region just basal to the peak of the travelling wave envelope (Zweig, 1991; de
Boer, 1996). The location of this region of negative damping is dependent on the stimulus
frequency and indicates that the travelling wave energy increases in this region (Allen & Neely,

1992).

Patuzzi (1996) summarises that there are several other physiological phenomena which are
consistent with an active process operating within the cochlea. These include the high metabolic
rate of the cochlea, and the loss of neural sensitivity to low level sound following cochlea damage
(induced by trauma or drugs). He also points out that it is difficult to explain the origin of
otoacoustic emissions (especially spontaneous otoacoustic emissions) with a passive cochlear

model.

1.2.3 The response of the cochlear base to single tone stimulation

Most of our knowledge of cochlear mechanics comes from experimental studies of the basal end of
small animal cochleae, as the base of the cochlea is easier to access relative to the apex (Robles &
Ruggero, 2001). However, there is some evidence that the behaviour of the apical region differs

from that of the base (Kiang & Moxon, 1974) and this issue will be addressed in section 1.2.4.

Figure 1.10 illustrates that the response of the BM to single tone stimulation has a nonlinear
dependence on stimulus level close to the characteristic frequency, and a more linear dependence at
higher and lower frequencies (Ruggero et al., 1997). Figure 1.11 shows an example of the growth
of the BM response at the characteristic place, for increasing stimulus level. Pickles (1982)
identifies three regions on this graph: linear growth at low stimulus levels up to about 30 dB SPL,
compressive nonlinear growth at a rate of approximately 0.2 dB/dB as a consequence of saturation
of the action process for inputs between about 30 and 100 dB SPL, and linear growth at high levels
where the passive component dominates the active component. It can also be seen from figure 1.11

that the input-output function becomes more linear when the cochlea is damaged.

The nonlinear response of the cochlea is also evident in the harmonic distortion evoked by a single
tone stimulus (Cooper, 1998). In addition, nonlinear phenomena such as mutual suppression and
distortion products are observable in the cochlear response to two tone stimulation (Robles &
Ruggero, 2001). The mechanoelectrical transduction processes in the OHCs, where the stereocilla
deflection generates a current, is likely to be the dominant source of this nonlinear behaviour
(Ashmore, 2008). The compressive nonlinear behaviour of the cochlea has been successfully
modelled using dynamic nonlinear models in the past (Kanis & de Boer, 1993; Harte et. al., 2005;
van der Heijden, 2004; Ku, 2008).

11
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Another property of the single tone response in the basal region of the cochlea is approximate
“scaling symmetry”, which means that the amplitude and phase of the travelling wave remain
almost unchanged in a co-ordinate system that moves with the envelope of the travelling wave
(Shera et al., 2000). For example the phase lag, relative to the stapes motion, of the travelling wave

at the characteristic place is nearly constant for all stimulus frequencies as shown in figure 1.8.

1.2.4 The response of the cochlear apex to single tone stimulation

Invasive experimental techniques can obscure the response of the apical region of the cochlea
(Cooper & Rhode, 1995). However, evidence from neural measurements suggests that the cochlear
processing of sound may differ between the basal and apical regions. For example the sharpness of
cochlear nerve tuning decreases as characteristic frequency decreases, as shown in figure 1.12
(Robles & Ruggero, 2001). The form of the low-frequency tail of the neural frequency tuning curve
(FTC) also depends on the characteristic frequency of the auditory nerve fibre (Kiang & Moxon,
1974). In addition the phase lag of neural response at the characteristic place reduces as the
stimulus frequency decreases, as shown in figure 1.13. This indicates that the approximate scaling
symmetry observed in the basal region of the cochlea does not extend throughout the cochlear
length. Finally the effect of damage on the neural response appears to differ between basal and
apical regions of the cochlea. In the apical region, most of the neural FTC is elevated by cochlear
trauma, whilst only the tip of the FTC is affected in the basal region (Johnstone et al., 1986). Also,
if the tip of the FTC can be associated with cochlear amplifier (CA) gain, then the influence of drug
induced damage suggests that the CA gain is lower in the apical, relative to the basal, region of the

cochlea (Gorga et al., 2007).

Differences in the form of the BM frequency response are also evident between the base and the
apex, as shown in figure 1.14 (Robles & Ruggero, 2001). The apical BM response is less sharply

tuned and exhibits less cochlear amplifier gain compared to the more basal response. In addition,

12



1. Introduction
1.2 Cochlear mechanics

the frequency of maximum sensitivity is almost independent of stimulus level in the apical region
but reduces with stimulus level in the basal region of the cochlea. Studies using masking techniques
and otoacoustic emissions in human subjects suggest that the compressive nonlinear growth rate at
the characteristic frequency is approximately the same in apical and basal regions, but that the
range of stimulus levels over which the nonlinear growth occurs is less in the apex than the base
(Lopez-Poveda et al., 2003; Gorga et al., 2007). These studies also provide some evidence that the
cochlear gain may be lower at 500 Hz compared to 4000 Hz, but these results could be

compromised by the variations in noise level with frequency (Gorga et al., 2007).

Most cochlear models are designed to replicate the responses observed in the basal region of the
cochlea, as much more experimental data is available to describe the base compared to apex.
However, Shera et al. (2000) comment that deviations from the typical basal behaviour start to
become evident in human subjects when the characteristic frequency is reduced below 3 kHz,
which corresponds to locations which are over 13 mm from the stapes. This imposes a limitation on
the usefulness of many current cochlear models as the most important frequencies for speech
perception are in the range 0.25 — 8 kHz (Dillon, 2001). Models need to represent the properties of
the apical region, based on either basal responses or the limited experimental data available, to

optimize their relevance in this regard.
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Figure 1.12 The relationship between BM tuning and characteristic frequency.
The sharpness (Qo 4g) of tuning for cochlear nerve and BM threshold responses are shown as a function of
characteristic frequency for a range of animals. The data from the BM tuning curves refers to damaged
cochlea, where the response is likely to be entirely passive.
[From figure 2 of Evans (1975), with permission from Informa Healthcare]
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Figure 1.13 Phase of the neural response to stapes

stimulation

Responses were observed from nerve fibres at
different locations along the BM of the cat cochlea
for a range of stimulus frequencies. The circles
indicate the characteristic frequency of the nerve

fibres.

[From figure 5 of van der Heijden & Joris (2006),

with permission from Elsevier]

Figure 1.14 The response of the BM at a
basal and apical location

The sensitivity (ratio of BM velocity to
stimulus pressure) was recorded at the
0.5 and 9 kHz characteristic places in the
chinchilla cochlea. The multiple curves
correspond to different stimulus levels,
and the best frequencies for the high
stimulus levels are also indicated.

[From figure 13 of Robles & Ruggero
(2001), with permission from Am.
Physiol. Soc.]
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1.3 Classification of otoacoustic emissions

An otoacoustic emission (OAE) is acoustic energy released by the cochlea and recorded in the
external ear canal. OAEs were predicted by Gold (1948), and first detected in the ear canal by
Kemp (1978). Traditionally OAEs have been classified using the auditory stimulation that evokes
them, as listed below (Probst et al., 1991; Hall, 2000). Example recordings of these emissions are

shown in figure 1.15.

(i) Spontaneous otoacoustic emissions (SOAEs) are narrow band that occur without a deliberate
stimulus.

(ii) Transient evoked otoacoustic emissions (TEOAESs) occur in response to a brief stimulus, such
as a click or tone burst.

(iii) Stimulus frequency otoacoustic emissions (SFOAEs) are elicited by a pure tone stimulus and
have the same frequency as that stimulus.

(iv) Distortion product otoacoustic emissions (DPOAEs) which are evoked by two pure tones
presented simultaneously in the ear canal. The conventional notation used to describe the stimuli is
f1 and L, for the frequency and level of the lower frequency tone, and f; and L, for the other tone.
For any two stimulus tones DPOAEs could theoretically occur at all frequencies equal to nf;+mf>,
where n and m are integers, but many are too small relative to the background noise to be detected.
However, there are several which are large enough to be reliably detected, as described in section

L.5.

Section 1.4.1 describes the sources of OAEs and introduces an alternative classification based on
the hypothesised physiological origin of the emission. As DPOAEs are of special interest in this
work, the methods for measuring these emissions and an overview of their properties are presented

in sections 1.5 and 1.6 respectively.
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boxes highlight the response immediately before
and after the click. [From figure 1 of Kemp
(1978), with permission from ASA], (c) An
SFOAE measured at difference frequencies
[From figure 1 of Goodman et al. (2003) with
permission from Elsevier, and (d) Spectrum of
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Lonsbury-Martin & Martin (2007), figure 5.1].
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1. Introduction
1.4 The sources of otoacoustic emissions

1.4 The sources of otoacoustic emissions

This section gives an overview of the evidence for the cochlear origin of OAEs (section 1.4.1) and
describes the cochlear mechanisms by which the emissions are thought to originate and propagate
(section 1.4.2). The spotlight is then turned onto DPOAEs with a description of the location and
mechanism of their cochlear sources (section 1.4.3). The section ends with a discussion of the

possible role of fluid compression waves in the production of DPOAE:s.

1.4.1 Cochlear origins

A range of experiments using two different approaches were conducted during the 1980s to
confirm that OAEs are generated within the cochlea. First it was established that alternative sources,
such as the middle ear or neural mechanisms, were not responsible. For example drug induced
paralysis or relaxation of the middle ear muscles produced no systematic changes in the SOAEs
recorded from guinea pigs or anesthetised cats (Evans et al., 1981; Guinan & McCue, 1987). Also,
the long latencies, frequency dispersion and saturation properties of TEOAEs are difficult to
reconcile with a theoretical source located in the middle ear (Probst ef al., 1991). In addition,
several observations are inconsistent with a neural source: TEOAE detection thresholds are lower
than the corresponding psychophysical thresholds (Kemp (1978);Wit & Ritsma, 1979); OAE
polarity reverses when stimulus polarity reverses (Kemp, 1978); and the TEOAE amplitude
exhibits nonlinear growth with stimulus level (Kemp, 1978). The second approach was to show that
cochlear trauma changes OAESs, using hypoxia, ototoxic drugs or acoustic over-exposure. For
example, Mills (2002) demonstrated that cochlear damage associated with furosemide injection

results in elevated DPOAE thresholds.

The above experiments revealed that OAEs originated from the cochlea, and further work
established that the cochlear source is closely associated with the OHCs. For instance, the
destruction of OHCs lead to changes in the DPOAE thresholds of bats and chinchilla (Hofstetter et
al., 1997; Krossel & Vater, 2000). Also the administration of aminoglycoside antibiotic drugs,
which primarily damage OHCs (Forge & Schacht, 2000), reduce TEOAE levels (Stavroulaki ef al.,
1999) and aspirin can abolish SOAEs and SFOAEs in humans (McFadden & Plattsmier, 1984;
Long & Tubis, 1988). In contrast, the destruction of inner hair cells (IHCs) has little effect on
DPOAE and TEOAE properties when OHC function is retained (Wake ef al., 1996; Hofstetter et
al., 1997). Two different source mechanisms for OAE generation are described in the following
section but it should be noted that the properties of the travelling wave, which are influenced by the

OHCs, are important in both mechanisms.
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In summary, OAEs are known to originate within the cochlea and their properties depend on the

function of the OHCs.

1.4.2 Source mechanisms

The previous section established that OAEs originate within the cochlea and that their properties
depend on the function of the OHCs. Kemp (1986) considered how OAEs relate to travelling waves
in the cochlea in order to shed light on the mechanisms underlying their generation. He classified
OAEs as either “wave-fixed” or “place-fixed”, depending on the relationship between the emission
source and the travelling wave envelop as the stimulus frequency is varied. A wave-fixed source is
one where the source moves along the cochlear partition as the stimulus frequency is varied,
maintaining a constant position relative to the forward travelling wave envelop. In contrast a place-
fixed source does not move along the cochlear partition if the stimulus frequency is altered. This
leads to a difference in the phase behaviour between wave-fixed and place-fixed sources. For a
place-fixed source the phase is related to the phase of the travelling at a fixed location, whilst for a
wave-fixed source the phase is related to a point that moves with the travelling wave envelope.
Shera & Guinan (1999) built on Kemp’s classification to identify two different source mechanisms

which can generate OAEs.

(i) Reflection source mechanism

This mechanism involves the linear scattering of a forward travelling wave off pre-existing
perturbations in the cochlear mechanics to generate backward travelling waves. Upon reaching the
base of the cochlea, these backward travelling waves could vibrate the stapes and be detected in the
ear canal as an OAE. Evidence that these reflection sites could exist is based on the observation
that the primate cochlea appears disorganised (Wright, 1984) indicating that impedance

discontinuities could be distributed throughout its length.

Although the mechanical perturbations are thought to be present along the whole cochlear partition,
Zweig & Shera (1995b) suggest that for a single tone stimulus the tall and broad peak of the
travelling wave envelope ensures that the wavelets originating from the region of the characteristic
place have much larger amplitude than those reflected elsewhere. These reflections must be
coherent, so that constructive interference occurs between the reflected wavelets, in order for a
backward travelling reflected wave to be generated. Coherent reflections are expected to arise in
the cochlea given that the travelling wave envelope has a slowly varying wavelength, Arw, and that
the spacing between some of the randomly distributed impedance irregularities in the vicinity of the
characteristic place is equal to an integer multiple of Arw/2. Therefore the largest contribution to a
reflection source emission, evoked by a single tone stimulus, is thought to originate near the

characteristic place of the forward travelling wave.
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Figure 1.16 Illustration of the influence of stimulus frequency on the phase of emission sources

The change in the source phase for (a) a place-fixed (reflection) source emission and (b) a wave-fixed
(distortion) source emission, evoked by a single stimulus tone, is illustrated when the stimulus tone frequency
is decreased from f, to f;. [From figure 2 of Kalluri & Shera (2001), with permission from ASA]

If the evoked emission arising from a single tone stimulus originates from a reflection source,
Shera & Guinan (1999) argue that the phase of the emission should vary rapidly with stimulus
frequency, as illustrated in figure 1.16a. This is because the reflection sites are fixed and so the
phase of the incident forward travelling wave varies when a small change in stimulus frequency
occurs, resulting in a change in emission phase (with respect to the stimulus tone). Therefore, the
“reflection” source described by Shera & Guinan is analogous to the “place-fixed” source in

Kemp’s scheme.
(ii) Distortion source mechanism

This source mechanism is a consequence of the nonlinear response characteristics of the OHCs.
When stimulated by two forward travelling waves, evoked by the simultaneous presentation of two
pure tones (f; and £>) in the ear canal, the nonlinear output of the OHCs will contain distortion
product (DP) components in addition to components at the two primary frequencies. If the DP
component is generated in a region of the cochlea which supports travelling waves at the DP
frequency then, once generated, the DP travelling wave may propagate both backward towards the
stapes to produce an emission in the ear canal, and forward towards the apex and the DP
characteristic place (Kim et al., 1980). As a consequence of the scaling symmetry in the cochlea
(see section 1.2.3), the phase of a distortion source emission evoked by two pure tone stimuli is not

expected to vary very much for small changes in the stimulus frequency provided that f,/f] is
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constant (Shera & Guinan, 1999), as illustrated in figure 1.16b. A “distortion” source in Shera &

Guinan’s scheme corresponds to a “wave-fixed” emission in Kemp’s description.

Shera & Guinan (1999) use the different phase properties of the two source mechanisms, to identify
the dominant source mechanism responsible for generating different evoked OAEs. For example,
figure 1.17 shows that the phase of an SFOAE evoked by a low level stimulus varies rapidly with
stimulus frequency which suggests it is generated by a place-fixed (reflection) source mechanism.
Conversely the DPOAE shown in figure 1.17 maintains an almost constant phase as the stimulus
frequencies are varied with fixed f/f; ratio, which would be consistent with a wave-fixed
(distortion) source generation mechanism. A schematic diagram illustrating Shera & Guinan’s

theory for the source mechanisms of SFOAEs and DPOAE:s is shown in figure 1.18.

Shera & Guinan suggest that OAEs should be classified according to their source mechanism rather
than the evoking stimulus, as shown in figure 1.19. Using the unmixing techniques described in
section 1.5, they illustrate that DPOAESs are composed of two source contributions: a wave-fixed
(distortion) component and a residual place-fixed (reflection) component. In their taxonomy,
SOAE:s are categorized as predominantly reflection source emissions, as they are thought to arise
from multiple reflections within the cochlea (Kemp, 1986) which are stabilized by cochlear

nonlinearities (Shera & Guinan, 2008).

Figure 1.17 The phase variation of an SFOAE and 1Phase
a DPOAE with stimulus frequency

The SFOAE was obtained using a probe level of
40dB SPL. The 2f; — f, DPOAE was measured
using a swept f, and fixed f/f] ratio (=1.2) with L,
and L, equal to 50 and 40 dB SPL respectively.
To obtain a predominantly distortion source
DPOAE, it was recorded in the presence of a third
stimulus tone (f; ~2f; — f, and L;= 55dB SPL) to
suppress the reflection component originating
from the 2f] — f; characteristic place. [From figure -30-
3 of Shera (2004), with permission from Wolters I ¥
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Figure 1.19 Summary of the Shera & Guinan (1999) taxonomy for OAE classification
The taxonomy is based on the source mechanism, rather than the stimulus used to evoke the emission, but in
general evoked emissions contain contributions from both reflection (place-fixed) and distortion (wave-fixed)

sources at high stimulus levels. [Re-drawn from Shera & Guinan (1999), figure 10]
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1.4.3 Location of cochlear sources for DPOAEs

The previous sections presented the evidence for the cochlear origin of OAEs and the two different
source mechanisms within the cochlea. This included a description of the two source mechanisms
which are thought to contribute to the DPOAE detected in the ear canal: the nonlinear wave-fixed
(distortion) source and the linear place-fixed (reflection) source. These two DPOAE sources can be
spatially distinct (Brown ef al., 1996), and so in this section the evidence for the location of these
sources is presented. It should be noted that the mechanism for DP propagation out of the cochlea
is controversial, but for now we consider that this propagation occurs via backward travelling

waves and defer discussion of the alternative theory until section 1.4.4.

DPs can be categorized by their frequency relative to the stimulus tones (f; and f;, where f; > f1).
For example the emission frequency is either below or above the stimulus tones, so the DP is
referred to as either a ‘lower-" or ‘upper-’ side band emission respectively. As it is likely that the
location of the source mechanisms for DP generation depend on its frequency compared to the

stimulus tones, we consider the source locations of lower and upper side band emissions separately.

(i) Lower side band distortion products

The characteristic place for a lower side band DP is apical to the best places of both f; and f;. Kim
et al. (1980) observed that lower side band emissions (2f; — /> and f; — f1) appeared to be generated
in the region of maximum overlap between the primary travelling waves evoked by the stimulus
tones, from their neural recordings in cat cochleae. Their results also suggested that, once generated
in this overlap region, the DPs could travel both basally and apically. They observed that the
response to the forward travelling DP at its characteristic place was essentially the same as that
elicited by a single tone stimulus at the DP frequency presented in the ear canal. An illustration of
how these two components arise and could contribute to the total DPOAE recorded in the ear canal
is shown in figure 1.20a. In addition to this neural data, measures of the DP component of the
pressure in the scala tympani near the BM of the gerbil cochlea by Dong & Olsen (2008) confirm
that the amplitude of DP is greatest in the vicinity of the f; best place and the CP characteristic
place. This is shown in their results, reproduced in figure 1.21a, of the 2f; — f, DP amplitude of the
scala tympani pressure at the 18 kHz best place. Peaks in the DP amplitude are observed when the
DP frequency is equal to either 11 or 18 kHz, as at these frequencies either the DP or f; frequency

corresponds to the best frequency of the observation site.

22



1. Introduction
1.4 The sources of otoacoustic emissions
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Figure 1.20 Illustrations of the distortion product source mechanisms

(a) a lower side band emission [Re-drawn from Shaffer ef al. (2003), figure 1] and (b) an upper side band
emission. The grey and black lines represent the travelling waves corresponding of the stimulus tones and the
DP frequency respectively. The grey shaded area indicates the predicted distortion source mechanism
location. DPs corresponding to other frequencies are neglected for clarity.

(a) The 2f; — f, DP

= DP (healthy)
W

% DP (dead)
] Noise
“

o floor
™

DP Frequency (kHz)

(b) The 2f; — f; DP

= g8 _ DP (healthy)
ja T

“I'

g DP ({dead)
ey - o Noige
w5 i il floor
R ] 5 10 15 20 25

DP frequency (kHz)

23
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Theory predicts that a DP should arise predominantly from a distortion source mechanism in the
vicinity of the f; characteristic place, as this is the region of maximum overlap between the primary
travelling waves evoked by the stimulus, and a reflection source mechanism located at the DP
characteristic place (Shera & Guinan, 1999). Although the results of Dong & Olsen (2008) confirm
that DP levels are higher at these two locations, compared to other positions along the cochlea,
additional evidence is required to determine the mechanism generating these enhancements and to
demonstrate that the DPs elicited in these areas can propagate back towards the stapes with

sufficient magnitude to be detected in the ear canal as a DPOAE.

The nature of the source mechanism located in the region of overlap between the two primary
travelling waves was investigated by Shaffer ef al. (2003). They measured the 2f; — f, DPOAE in a
normal hearing human subjects, and introduced a third tone to suppress any source located at the
DP characteristic place. For stimulus levels L, and L, equal to 60 and 45 dB respectively, and
f/fi=1.2, the residual 2f; — f; DPOAE had a amplitude between 0 and 10 dB for 2f; — f; frequencies
between 1.4 and 2.4 kHz when the suppressor was applied. The residual DPOAE displayed almost
constant phase as the DP frequency varied, behaviour typical of a DP generated by a wave-fixed
(distortion) source mechanism as illustrated in figure 1.17 (Shera, 2004). This is consistent with
cochlear modelling predictions that the distortion source of the 2f; — f5 DP is distributed over a
region which is a few millimetres long (van Hengel & Duithuis, 1999) and located in the vicinity of
the f, characteristic place (Zhang & Mountain, 2008). Figure 1.22 illustrates the length of the
distribution distortion source predicted by Zhang & Mountain (2008) using a one-dimensional
model of the gerbil cochlea, for various stimulus frequency ratios and L,=L,=60 dB SPL. They
predict that the source length increases from about 2.5 mm to 5 mm as the f,/f; ratio decreases from
1.8 to 1.1. The distributed source produces travelling waves which can propagate in both directions,
but it is directional (Shera & Guinan, 2008). For example, Shera & Guinan (2007) observed in cat
cochleae that although the amplitude of the forward travelling wave generated by this distributed
distortion source region exhibited little amplitude fluctuation with changes in f5/f;, the amplitude of
the backward travelling wave reduced in amplitude significantly for small f,/f; ratios. Therefore a
distributed, directional, distortion source of lower side DPs is thought to be located over a small
area in the vicinity of the f; characteristic place. It is assumed that this finding extends to all other
lower side band DPs, in addition to the 2f; — f5, as range of DP components in the BM velocity are
evident at the f; site (Robles et al., 1997).
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Figure 1.22 Estimated region of 2f; — f; DP generation within the gerbil cochlea

The right (dashed) and left (solid) lines indicate the apical and basal boundaries of the region for various fy/f|
ratios with f,=3 kHz. The results are presented for (a) L;=L, =40dB SPL and (b) L;=L,= 60 dB SPL. The
apical boundary for the generation region is defined as the point at which the DP generated between the
boundary and the apex is 10 dB below the total DP level. Similarly, the basal boundary is defined as the
location at which the DP generated between the base and the boundary is 10 dB below the total DP level. The
total length of their cochlear model is 12.1 mm. [From figure 3 of Zhang & Mountain (2008), with
permission from the authors and World Scientific].

Once generated in the vicinity of the f; best place, the DP travelling wave can propagate forward
towards its characteristic place and be perceived by the listener (Goldstein, 1967; Zureck & Sachs,
1979). Shaffer et al. (2003) used suppression techniques and observations of phase behaviour to
determine that a place-fixed (reflection) mechanism, which generates a backward DP travelling
wave, is located at the DP characteristic place. The place-fixed (reflection) source mechanism
located at the DP characteristic place requires an incident wave which corresponds to the forward
travelling wave generated by the wave-fixed (distortion) source positioned near the £, best place.
This dependence of the place-fixed source on the wave-fixed source is consistent with suppression
experiments which demonstrate a greater 2f; — f DPOAE amplitude reduction when the suppressor
tone is presented close to the f; frequency (Kummer et al., 1995) than when the suppressor is close

to the fq, frequency (Shaffer ef al., 2003).

In summary, the two dominant sources of lower side band DPOAEs are thought to correspond to a
distortion (wave-fixed) mechanism in the vicinity of the £, characteristic place and a reflection
(place-fixed) mechanism from the DP characteristic place. The relative magnitude of these
components in the ear canal can vary (Brown et al., 1996) and leads to complicated interference
effects. This simple picture may be complicated by multiple reflections between the base and the

characteristic place (Stover ef al., 1996) as indicated in figure 1.18.
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(ii) Upper side band distortion products

The characteristic place for an upper side band DP is on the basal side of the f; best place. The
spatial separation of the DP characteristic place and the £, best place is expected to reduce as the
stimulus level increases because the f; best place shifts closer to the base. Although upper side band
DPs have been detected in the BM motion in the vicinity of the f; best place (Robles et al., 1997),
this is not thought to give rise to a substantial DP travelling wave because this location is beyond

the DP characteristic place.

Less information is available regarding the sources of upper side emissions, such as the 2f, — f; DP,
compared to the literature on the 2f; — £, lower side band emission. However, analysis of group
delay suggests that there are again at least two source mechanisms at work for upper side band
DPOAEs (Prijs et al., 2000). But these sources may not be spatially distinct as they were for the
lower side band emissions. For example, the intracochlear measurement of Dong & Olsen (2008),
reproduced in figure 1.21b, shows that the only peak in the amplitude of the 2/, — f; pressure
component occurs when the DP frequency is equal to the best frequency of the observation location.
The distortion source for upper-side band DPOAEs is thought to be basal of the £, characteristic
place as Martin ef al. (1998) found that suppression of the 2/; — f; emission was most effective
when using a probe tone with frequency greater than f;. By extending the principles that are known
about lower-side band emission generation, Wilson & Lutman (2006) separate the 2f; — fi DPOAE
into a distortion (wave-fixed) and reflection (place-fixed) using a time-window technique that
exploits the different phase properties of emission components from these sources. As a result of
their work, they propose that upper-side band emissions contain contributions from these two
source mechanisms. Firstly, there is a distortion source distributed over a region of the cochlea
basal to the DP characteristic place, where the primary travelling waves overlap. Secondly there is
a reflection source located at the DP characteristic place. The way that these two sources could

combine to form a DPOAE is illustrated in figure 1.20b.

1.4.4 Compression waves

It is possible for two types of wave to propagate within the cochlea; a slow BM travelling wave and
a fast compression wave. As discussed in section 1.2.1, the forward transmission of sound from the
stapes is dominated by the BM travelling wave. Similarly the backward transmission of DPs, from
their generation site to the stapes, is commonly believed to occur via BM travelling waves (Kemp,
1980; Kim, 1980 etc). However, this conventional view of the backward transmission of DPs has
recently been challenged. For example, Ren (2004) measured the 2f; — f> DP component of BM
vibration between the base and the f> best place in the gerbil cochlea using laser interferometry. He
observed that the phase of the BM vibration was consistent with a forward, not a backward, DP

travelling wave. He also noted that the stapes vibrated at the DP frequency before the DP
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component was observed in BM motion near the base of the cochlea. He concluded that the 2f; — f>
DP is transmitted from its generation site to the stapes via fluid compression wave, and that the
stapes vibration then initiates a forward travelling wave on the BM at the DP frequency. Similar
phase behaviour has since been observed in gerbils by He et al. (2008) and in guinea pigs by de
Boer ef al. (2008). In addition, Siegel et al. (2005) measured high frequency SFOAE latency in
chinchilla and found the values were too high to be consistent with backward travelling waves but
that the results could be explained by compression waves. As a consequence of these recent
experimental findings, there is dispute regarding the dominant mechanism for the reverse
propagation of DPs within the cochlea. Some attempts have been made to simulate Ren’s results in
models without the use of compression waves, and the outcome has been mixed (Vetesnik et al.,

2006; de Boer et al., 2008).

The model described in the following chapters does not incorporate fast compression waves, and
only allows sound to escape from the cochlea via backward travelling waves. This approach has
been taken, despite the controversy, because the following substantial evidence exists to suggest
that backward travelling waves are the dominant mechanism by which OAEs are transmitted out of

the cochlea.

e  Measurements of intracochlear pressure variation in gerbils demonstrates that the travelling
wave mechanism dominates the compression wave mechanism (Dong & Olsen, 2008).

e  Estimates of reverse, or round-trip, travel times for OAEs are more consistent with backward
travelling waves than fast compression waves (Schoohoven et al., 2001; Moleti & Sisto, 2008;
Harte et al., 2009).

e  Allen-Fahey experiments, where DPOAE levels are observed whilst the f5/f; ratio is varied
and the source amplitude is controlled, support the predominance of the travelling wave over
the compression wave (Shera et al., 2007).

e A suitable volume source within the cochlear partition would be necessary to generate
compression waves, and it is difficult to imagine how the fluid filled organ of Corti could act
as such a source. For example, there is no physiological evidence that the OHCs produce a

volume change in the CP when stimulated (Ashmore, 2008).
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1.5 Measurement of DPOAESs

In this section, an overview of the techniques used for measurement and analysis of DPOAE:s is
presented, followed by a description of common recording stimulus paradigms. This gives insight
into how the properties of the DPOAEs discussed in chapters 4 and 5 have been established

experimentally.

1.5.1 Measurement and analysis

Measuring a DPOAE

The equipment shown in figure 1.23 is typically used to measure a DPOAEs. A probe in the ear
canal contains a microphone and a receiver. The probe can be secured in the ear canal using a soft
plastic tip, but an air tight seal is not required (Hall, 2000). The mixing of the pure tones could be
performed electronically, and the result presented through a single receiver, but acoustic mixing
where each tone is delivered through a separate transducer is less susceptible to nonlinear
interaction artefacts (Probst et al., 1991). Both the recording microphone and the receiver should
have a flat frequency response (between 0.3 and 8kHz) and perform linearly over the required
range of stimulus levels (Grandori, 1985). The receivers require in situ calibration, prior to DPOAE

measurement, using a method such as the two-stage approach described by Knight & Kemp (1999).

DPOAES can be analysed by either selecting a specific DP frequency (such as 2f; — f>) and
applying a narrow band filtering technique, or by digital analysis using an FFT of the recording in
the ear canal (Probst ef al., 1991). A single DPOAE is usually identified if it satisfies three criteria:
The amplitude exceeds the noise floor by 3 to 6 dB (Martin ef al., 1990; Hatzopoulos et al., 2001);
the amplitude exceeds a minimal absolute value; and the measurement is repeatable within 5 dB. A
minimum absolute value is imposed on the DPOAE level, such as 5 dB SPL (Martin ef al., 1990)
or approximately 80dB below the primary levels (Lukashkin & Russell, 2005), to ensure rejection

of system artefacts.

There are many commercial devices available for measuring DPOAEs, and they differ in terms of
their probe shape, noise reduction strategies, and default criteria for DPOAE identification.
However, Parthasarathy & Klostermann (2001) demonstrated that across four different devices, the
probe fitting, mean test time and mean 2f; — f, DPOAE amplitude was not significantly different.
Their results suggest that the characteristics of measured DPOAEs do not depend on the device, but

that differences in stimulus parameters and identification criteria can significantly affect results.
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Figure 1.23 Block diagram illustrating the equipment required for DPOAE measurement.
[Re-drawn from Martin et al. (1990) figure 5].

Separating the DPOAE components from difference source mechanisms

The process of separating the DPOAE into components arising from the two different source
mechanisms described in section 1.4.2, is called unmixing. The two common approaches to
unmixing are described by Kalluri & Shera (2001). First, a third stimulus tone with frequency close
to the DP frequency can be used to suppress the contribution to the DPOAE originating from the
place-fixed (reflection) source mechanism located near the DP characteristic place. When the
suppressor is present, the residual DPOAE is attributed to the wave-fixed (distortion) source
mechanism distributed near the f; best place. The contribution to the total DPOAE by the place-
fixed (reflection) source mechanism is established by subtracting the distortion source component
from the total DPOAE recorded in the absence of the suppressor tone. This approach assumes a
linear summation between the two components and could be limited by nonlinear effects
introduced by the suppressor tone. The second approach exploits the different phase characteristics
of the two source mechanisms, as illustrated in figure 1.24. The level of the DPOAE is recorded
across a range of DP frequencies, using a fixed f5/f; ratio paradigm. Under these conditions the
phase of the wave-fixed (distortion) source component should be approximately constant, whilst
the phase of the contribution from the place-fixed (reflection) source should vary rapidly with DP
frequency. Once the phase of the DPOAE has been unwrapped relative to the stimulus tones, an
inverse fast Fourier transform (IFFT) is performed and a time-windowing technique is then applied
to separate the two components. The wave-fixed source component for the 2f; — f, emission can be
contained in a time window spanning values between 0 and 1 — 2 ms, whilst the place-fixed
component extends from 2.25 ms onwards (Knight & Kemp, 2001). It would not be appropriate to
conclude from this that the travel time of the DP from the reflection source exceeds that of the
distortion source, although this would agree with the spatial separation of the sources, because the
‘latency’ values arise as a consequence of the different phase characteristics of the source

mechanisms not their distance from the stapes.
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Figure 1.24 An illustration of the inverse fast Fourier transform (IFFT) unmixing method

This approach was used by Kalluri & Shera (2001) to separate the components of the DPOAE that arise from
a reflection source and a distortion source. The top graph represents the amplitude and phase of a typical
DPOAE recorded using a constant f5/f; ratio. The second row of graphs illustrates the results of the IFFT and
time windowing. The bottom graphs illustrate the amplitude and phase of the unmixed distortion source
component (left) and reflection source component (right). [From figure 6 of Shaffer ez al. (2003) with
permission from Wolters Kulver Health]
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1.5.2 Recording and reporting paradigms

There are several common approaches to recording and reporting DPOAE observations, and these
methods are discussed below. Examples can be found in the following section, alongside the

description of DPOAE properties.

(i) An amplitude spectrum is a record of the DP frequencies and their amplitudes, which are
evoked by a single stimulus tone pair.

(ii) DPgrams illustrate the amplitude of a single DPOAE (such as the 2f; — f;) as a function of
frequency. Usually L, and L, are kept constant during these measurements, as is f5/f;.

(iii) Input-output (I/0) functions or growth functions consist of DPOAE amplitude plotted as a
function of stimulus level. The stimulus frequencies are fixed during these measurements, and the
stimulus levels are related by a simple formula. Some studies use a fixed level difference (L; — L)
[Mills, 2002), whilst others use a “scissor paradigm” (Janssen & Muller, 2008). The scissor
paradigm was designed so that the responses to both primary tones would grow at an equal rate at
the f> characteristic place, and therefore preserve the degree of overlap between the primary
travelling wave envelopes. In order to achieve this L;=0.4L,+39dB, so that L, increases at a slower
rate than L, to compensate for the greater degree of compression exhibited by the f; response at the
/> characteristic place (Kummer et al., 1998).

(iv) Frequency-ratio functions are constructed by plotting the emission amplitude (and phase) as
a function of the stimulus frequency ratio (£,/f). L, and L, are kept constant during these
measurements (Lukashkin & Russell, 2001), along with either f,, f; or fq, (Mills, 2002).

(v) Contour maps of DPOAE amplitude represent the dependence of the emission on two
different stimulus parameters simultaneously. As DPOAE amplitude (and phase) is dependent on 4
variables (£, f1, L1, & L), contour plots can be viewed as a slice through a 4 — dimensional space
(Mills, 2002).

(vi) DPOAE suppression tuning curves are plotted by introducing a third stimulus tone f; (in
addition to f; and ;) which acts to suppress on of the emission sources. Therefore the suppressor

tone usually has a frequency close to either f; or fg,.
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1.6 Properties of DPOAESs

A cochlear model must replicate the known properties of DPOAEs in order to provide insight into
their generation mechanisms and make valid predictions for future experiments. For this reason, a
brief overview of these properties is given in this section, but further details can be found in

chapters 4 and 5.

1.6.1 Characteristics of human DPOAESs

Amplitude

In mammals, the largest DPOAE is the 2f; — f, emission, with an amplitude of 5 — 15 dB SPL or

50 — 60 dB below the stimuli for moderate stimulus levels (Lonsbury-Martin & Martin, 2008). The
2f1 — f» DPOAE can be up to 20 dB greater than 2f, — f; (Knight & Kemp, 1999). For an individual
ear, the amplitude of different order DPOAESs are related such that an ear with a high level 2f; — f,
DP is also expected to exhibit a high amplitude 2f; — f; emission (Wilson & Lutman, 2006). For an
individual subject, amplitude measures are usually repeatable within 3 dB for the 2f; — f;, DPOAE,
even if the recordings are separated by an interval of several weeks (Franklin ef al., 1992; Roede et
al., 1993; Zhao & Stephens, 1999; Wagner et al., 2008). In addition the amplitude of the 2f; — f
DPOAE has little dependence on stimulus frequency. For example, the average 2f; — f, DPOAE
amplitude recorded from a group of 20 subjects varies by less than about 15 dB as f; increases from

1 to 8 kHz (Mills et al., 2007).
Fine structure

If small frequency intervals are used to record DPOAE amplitude for a range of stimulus
frequencies using a fixed f,/f; ratio, from an individual subject, then a fine structure becomes
evident. In humans, the difference in amplitude between the 2f; — f; fine structure peaks and

troughs can be to up 20dB (He & Schmiedt, 1993). If peaks in the fine structure occur at DP
frequencies of £, and f,, then in humans it is usually found that (f, — f,)/+/ f, f, =1/15 (Zweig &

Shera, 1995b; Dhar & Abdala, 2007). The peaks and troughs can occur at the same emission
frequencies for both the 2f; — £, and 2f; — fi DPOAEs (Knight & Kemp, 1999). This DPOAE fine
structure is thought to be associated with the fine structure observed in other cochlear measures:
SFOAE amplitude, pure tone audiograms recorded using small frequency intervals and the

frequency spacing of SOAEs (Zweig & Shera, 1995a).
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Growth functions

The DPOAE growth rate with increasing stimulus level is dependent on the stimulus parameters
(Knight & Kemp, 1999; Rhode, 2007; Mills, 2002). For example, using the scissor stimulus
paradigm and f,/f;=1.2, Kummer ef al. (1998) observed that the 2f; — f, DPOAE growth rate
reduced from 1 dB/dB to 0.2 dB/dB when L, increased above 40 dB SPL. At higher stimulus levels
(e.g. L, > 80 dB SPL), the growth rate increases above that observed for moderate stimulus levels
(Dorn et al., 2001). DPOAE amplitude does not always increase uniformly with stimulus level, and
deviations from monotonic growth are called “notches” (He & Schmiedt, 1993). These notches
occur more commonly in rodents than in humans and Kummer et al. (1998) found notches
exceeding 2 dB in only 3% of human DPOAE growth functions. In humans, the notches are
thought to arise as a consequence of “the mixing of the DPOAE source components in the ear
canal” which also produces fine structure in DP-grams (He & Schmiedt, 1993; Mauermann et al.,

1999).
Frequency and level differences

The amplitude of lower side band emissions, such as the 2f; — f; DPOAE, can be optimised using
an f,/f; ratio between 1.2 and 1.32 for stimulus levels between 65 and 75 dB SPL (Knight & Kemp,
1999). The amplitude of the emission falls off when the f;/f; ratio is moved away from the optimal
value. The reason for this amplitude dependence of lower side band emissions on the f;/f; ratio is
discussed in section 4.1.6. In addition, there is an optimal level difference (L, — L,) which
maximises the amplitude of both the upper and lower side band DPOAEs. In human subjects the
optimal level difference, which elicits the greatest 2f; — f, DPOAE amplitude, depends on f;/f; and
decreases from 10 dB to 5 dB when f,/f; becomes very small (Knight & Kemp, 1999). For the

2f> — fi DPOAE, the optimal level difference is about 0 or — 5 dB (Fitzgerald & Prieve, 2005). The

origin of the optimal level difference is investigated in section 4.1.5.

1.6.2 Comparison of OAEs between mammals

Much of the information on DPOAEs that has been acquired through invasive physiological
measurements relates to rodent cochleae. Therefore it is important to appreciate some the

differences between the OAE properties of humans and other mammals.

Laboratory animals typically have hearing that extends one or two octaves beyond that of humans,
as shown in figure 1.9. There is some evidence that laboratory animals may have broader auditory
filters compared to humans (Shera et al., 2002), although this has been disputed (Ruggero &
Temchin, 2005). The f/f; ratio which optimizes the 2f; — /> in animals such as rabbits, mice, guinea

pigs and gerbils is generally higher than that observed in humans for the same stimulus paradigms,
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possibly as a consequence of the difference in place-frequency maps (Lonsbury-Martin & Martin,
2008). In addition there is speculation that the cochleae of rodents are smoother than primate
cochleae (Withnell et al., 2003). This would be expected to reduce the place-fixed (reflection)
component of DPs, reduce the fine structure amplitude of DPOAESs, and reduce the amplitude of
other place-fixed (reflection) source emissions such as SOAEs, SFOAEs and TEOAEs.
Physiological evidence supporting this hypothesis includes a lack of fine structure in DPOAEs
recorded from rabbits and rodents (Whitehead, 1998), and reduced prevalence of SOAEs and
TEOAESs in rabbits and rodents compared to primates (Lonsbury-Martin & Martin, 2008).

In general DPOAE amplitudes are larger, by approximately 25 to 30 dB, in rabbit and rodent ears
compared to human or monkey ears at moderate stimulus levels when testing within the best
hearing range of each species (Lonsbury-Martin & Martin, 2008). Notches can be found in the
DPOAE growth functions of all mammals for some, but not all, stimulus paradigms. For example,
Lonsbury-Martin & Martin (2008) report that notches can only be found between stimulus levels of
55 and 70 dB SPL in rabbits and guinea pigs, but they occur over a wider range of stimulus levels
in primate ears. In rabbits, a notch can be replicated across all subjects using the same stimulus
parameters. This is not the case for primates, where the stimulus parameters which correspond to a
notch in the DPOAE growth function differ between individuals. Whitehead (1998) comments that
the origin of notches in DPOAE growth functions may differ between small laboratory mammals
and humans. There is some evidence to suggest that notches in human DPOAE growth functions
are associated with fine structure (He & Schmiedt, 1993), whilst two different suggestions have
been made for the origin of notches in the DPOAE growth functions of small mammals. Firstly,
Whitehead (1995b) proposes that notches arise as a consequence of two different and distinct
distortion generation mechanisms operating at high and low stimulus levels, which differ in their
physiological vulnerability. The alternative suggestion of Mills (2002) is that the notches could

arise from a single, distributed, distortion source mechanism.

In summary these differences suggest that care should be taken inferring human DPOAE

characteristics from measurements made in the ears of other mammals.
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1.7 Applications of DPOAESs

In this section the clinical applications of OAEs are discussed, along with the current limitations of
these applications and possible future developments. We also consider two different methods that
have been suggested for estimating the gain of the cochlear amplifier using DPOAE measurements:

DPOAE suppression tuning curves and Allen-Fahey type experiments.

1.7.1 Clinical applications

Hearing screening

In the UK, TEOAE:S are used for universal neonatal hearing screening, based on the observation
that they occur in all normal hearing ears (Kapadia & Lutman, 1997) and are generally not
observed if the subject has a sensorineural hearing loss greater than 40 — 45 dB HL (Hall, 2000).
DPOAEs are also frequently used to screen for hearing loss. Based on a study of 7179 infants,
Norton et al. (2000) suggest that DPOAEs can be used to identify a hearing loss where the
threshold exceeds 30 dB HL, provided appropriate stimulus parameters are used (e.g. f2/f1=1.22,
L,=65 dB SPL and L,=50dB SPL).

Hearing loss estimation

There have been several attempts to use DPOAE:s to not only screen for hearing loss, but to
establish the hearing threshold levels (HTLs) for subjects with mild hearing loss. If this application
were to be successful it would provide a valuable objective method of hearing testing and a tool for
differential diagnosis between types of sensorineural hearing loss. This would be particularly
helpful for assessment in cases of suspected non-organic hearing loss, or for patients who are
unable to perform conventional behavioural tests such as pure tone audiometry. Improved
differential diagnosis of sensorineural hearing loss may also contribute to an improved auditory

rehabilitation process and hearing aid fitting strategies.

Attempts to estimate HTLs from DPOAE measurements mainly try to establish a link between
HTLs and either the emission threshold levels (e.g.Dorn et al., 2001) or the emission growth
function (Dorn et al., 2001; Boege & Janssen, 2002). Each of these methods is usually limited to
frequencies where £, is greater than 1 kHz, since low frequency DPOAEs can be difficult to record
(Gorga et al., 1994). In addition the definition of the emission threshold is usually dependent on the
noise floor of the study (Dorn et al., 2001). Some studies find high correlation (0.77 to 0.86)
between 2f; — f, DPOAE thresholds, defined as the stimulus level at which the emission exceeds
the experimental noise floor, and HTLs for mild to moderate hearing losses (Dorn ef al., 2001).

However, this is not replicated in other work (Gaskill & Brown, 1993). This discrepancy could be
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due to the different stimulus paradigms, or the influence of DPOAE fine structure (Shaffer ef al.,
2003), but a lack of consistent correlation means that DPOAE thresholds are not used routinely in
clinics for estimating HTLs. The gradient of the DPOAE growth function is also affected by
hearing loss as it tends to increase as hearing loss increases (Dorn et al., 2001). However, it has not
yet been determined if growth functions can be used to reliably determine the extent of a hearing

loss.
Other clinical applications

Although it is not yet possible to use DPOAE growth functions to reliably predict hearing threshold
levels in subjects with hearing loss, there is evidence that DPOAE growth functions closely
resemble psychoacoustic loudness growth curves (Janssen & Muller, 2008). Therefore it may be
possible to use DPOAE growth functions for prescribing hearing aid settings in the future.
However, the application of DPOAE:s to hearing aid rehabilitation is limited by intersubject
variation which makes it difficult to predict loudness growth directly from an individual DPOAE
input-output function (Neely ef al., 2003a). In addition otoacoustic emissions can be used to

monitor the effect of drug treatments which are known to have ototoxic properties (Hall, 2005).

The routine clinical application of OAEs is currently limited to the screening of neonates (and other
patient groups where objective testing is required) and the test battery for non-organic hearing loss.
However, these applications could be vastly extended if more reliable methods for predicting

hearing threshold levels and growth functions from OAEs were available.

1.7.2 Suppression tuning curves

Various attempts have been made to use DPOAEs as a non-invasive tool for investigation of the
cochlear amplifier (CA). As these investigations generally attempt to quantify the CA gain, they are
closely related to studies seeking a relationship between DPOAE measures and hearing loss.
However, large inter-subject variability makes it difficult to conclude CA properties for an

individual on the basis of DPOAE measures (Neely et al., 2003b).

DPOAE suppression tuning curves can be obtained for a variety of stimulus levels. Examples are
shown in figure 1.25, where the level of the suppressor is set to reduce the 2f; — f, DPOAE
amplitude by 3 dB. When using a suppressor frequency close to f5, Gorga et al. (2003) associate
changes in the tip-to-tail difference of DPOAE suppression tuning curves with changes in CA gain.
However, they advise that the absolute value of the tip-to-tail difference might not be a direct
measure of CA gain for a specific stimulus level. On this basis figure 1.25 indicates that the CA

gain reduces by 20 dB as the stimulus level (L,) increases from 20 to 60 dB SPL.

36



1. Introduction
1.7 Applications of DPOAEs

j T T ™ T T
& 100 — ' q 100F" | ™
m ¢

%30- Lp=20 - / 1 agl—Ly=60 \J/ I:IzBo..
> 60 { 60 1
s 40_-40(131 1 ol ]
o

9 20F 20} -
[=

= o}, 1 oF., A
@ 1 2 4 8 1 2 4 8

Suppressor frequency (kHz)

Figure 1.25 Examples of 2f; — f, DPOAE suppression tuning curves

Responses are shown for a human subject with normal hearing threshold levels. The value of L, is shown in
each graph, and L,;=0.4L,+39dB. The stimulus frequencies were f,=4 kHz and f,/f(=1.22. The grey lines and
arrows indicate the tip-to-tail difference for each tuning curve. [From figure 7 of Gorga et al. (2003),with
permission from ASA]

Some studies have focused on other aspects of the tuning curves, such as Mills (1998) who
determined a relationship between the low frequency slope of the curve and the CA gain in gerbils.
Overall, these investigations suggest that it may be possible to establish a relationship between
DPOAE suppression tuning curves and CA gain in humans, although further work is needed to

achieve this.

1.7.3 Allen-Fahey type experiments

Allen & Fahey (1992) proposed a method for measuring the gain of the cochlear amplifier (CA)
using simultaneous measures of the 2f; — f; DP in the ear canal and at its characteristic place. Their
experiment has since been repeated by several research groups, with various modifications (de
Boer et al., 2005; Shera & Guinan, 2007). In this section the principle of the experiment and

interpretation of the results are described.
The principle of the experiment

The Allen-Fahey experiment assumes that the 2f; — / DPOAE originates entirely from the
distortion source mechanism located at the f; best place. Once generated at this site, the DP is
expected to propagate both backwards towards the stapes and forward towards its own
characteristic place. The CA is expected to amplify forward travelling DP wave over a region just
basal to the DP characteristic place. During the experiment, the stimulus frequency ratio is
gradually reduced whilst the DP frequency is held constant. For each DP frequency, the levels of
the primary tones (L, and L,) are adjusted so that the amplitude of the DP vibration at its
characteristic place is constant for all £;/f; values, and the level of the 2f; — f, DPOAE in the ear

canal is monitored. When £,/f; is much greater than one, the f; best place should be basal to the
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region over which the CA acts on the 2f; — f, DP forward travelling wave. Figure 1.26a illustrates
that in this case the DP forward travelling wave is expected to be amplified by the CA en route to
its characteristic place. When f£,/f; is very close to one, the f; best place shifts to the apical side of
the region over which the CA acts on the DP travelling wave. For this reason, Figure 1.26b shows
that in this case the 2f; — f, DP forward travelling wave is not expected to be amplified by the CA
en route to its characteristic place. If the CA provides a gain, G, to the DP travelling wave then the
DPOAE is expected to be a factor of G* smaller for the first paradigm (3/f; > 1) compared to the
second paradigm (f»/f; ~ 1), as illustrated in figure 1.26.

The original Allen-Fahey experiment was performed in cats, and the neural response at the DP
characteristic place was monitored invasively. The experiment was repeated in guinea pigs by de
Boer et al. (2005) who used laser interferometry to measure the BM motion, instead of the neural
response, at the DP characteristic place. Shera & Guinan (2007) developed a non-invasive method
for monitoring the BM response at the DP characteristic place using a third stimulus tone, which

they used to repeat the Allen-Fahey experiment in cats.
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Interpreting the result

Allen & Fahey (1992) summarise that, based on the principles described above, the maximum value
of the CA gain (G) observed in their experiment is 10dB. Replications of their experiment found
similar results (de Boer et al., 2005; Shera & Guinan, 2007). As this estimated gain is much less
than the 30 or 40 dB expected, they conclude that the simplest explanation is that there is no
cochlear amplifier. However, other groups (de Boer et al., 2005; Shera & Guinan, 2007) suggest
that the result indicates a flaw in the method rather than evidence against the existence of the CA.
Based on the assumption that there is a CA, and the experiment fails to demonstrate this, the

following explanations have been offered to account for the null result:

e  There may be wave interference occurring between the DP and the primaries, or DPs at other
frequencies (de Boer et al., 2005)

e  The directionality of the distortion source (wave-fixed) mechanism may change with f£/f; ratio
(Shera & Guinan, 2007), as a result of the distributed nature of the source region (Neely & Liu,
2008), which would invalidate the underlying assumptions of the method

e  There may be some suppression of the DP for small £/f; ratios (Shera & Guinan, 2007)

e  The contribution of the reflection source (place-fixed) mechanism is neglected

e  DPs travel out of the cochlea via fluid compression waves, not reverse travelling waves, and

therefore the principle of the method is flawed (Ren & Nuttal, 2006)

The diversity of these explanations indicates that the assumptions on which the Allen-Fahey
experiment was based are over simplified and that there is a need for an increased understanding of
the detailed mechanisms involved in the generation and propagation of DPs within the cochlea. The
explanations of the Allen-Fahey results will be further discussed using the results of the cochlear

model in section 5.2.1.

39



1. Introduction
1.8 Modelling efforts of cochlear responses and OAEs

1.8 Modelling efforts of cochlear responses and OAEs

1.8.1 Historical overview

Models of cochlear mechanics are constructed to replicate basic physiological properties, such as
the fundamental and harmonic cochlear responses to a single tone stimulus, and then applied to
interpret more complex observations and develop valid experimental hypotheses. For example,
cochlear modelling was used by Helmholtz (1877) to explore perception of tones and by Gold
(1948) to interpret the sharp tuning observed in the cochlea and predict otoacoustic emissions.
More recently models have been used to demonstrate that a cochlear amplifier mechanism is
necessary to explain the sharply tuned response of the BM to single tone stimulation (de Boer,

1995a).

Many different types of cochlear model have been proposed including hardware models,
constructed either from plastic and metal materials or electrical networks (Zwicker, 1986; White &
Grosh, 2005; Wittbrodt et al., 2006), and abstract mechanical models solved by computer (Neely &
Kim, 1986; Kanis & de Boer, 1993; Kolston & Ashmore, 1996; Elliott ef al., 2007; Gan et al.,
2007). The abstract models, where the cochlea is divided into longitudinal elements, have varying
numbers of degrees of freedom ranging from 2 to over 10" per slice (Neely & Kim, 1986;

Baumgart et al., 2008).

Early cochlear models were designed to simulate only the amplitude and phase of linear, passive
response of the cochlea to single tone stimulation (e.g. Zwislocki, 1950; Schroeder, 1973; Zweig et
al., 1976; Steele & Taber, 1979; Allen, 1980; de Boer, 1980). Models then progressed to
incorporate an active process (de Boer, 1983; Neely & Kim, 1986; Mammano & Nobili, 1993;
Geisler & Sang, 1995 etc) and nonlinearity. The nonlinear models were either solved in the time
domain (e.g.Hall, 1974; Kim et al., 1980; Mauermann et al., 1999; van Hengel & Duifhuis, 1999),
or in the frequency domain using iterative or perturbation techniques (Kanis & de Boer, 1993;

Chadwick, 1998; Talmadge et al., 1998; Lim & Steele, 2002; Talmadge et al., 2004 etc).
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1.8.2 Modelling of DPOAEs

We intend to use a one-dimensional active nonlinear cochlear model to investigate the principal
mechanisms of DPOAE generation. Such models have been used successfully in the past to
simulate DPOAE:s (e.g. Kanis & de Boer, 1997; van Hengel & Duithuis, 1999; Neely & Liu, 2008).
However, a consequence of selecting such a simple model is that the predicted responses in the
vicinity of the peak of the travelling wave envelope may be less accurate than the responses of two-
or three- dimensional models. This limitation may influence the amplitude of the predicted place-

fixed (reflection) DPOAE component to a small extent (Shera et al., 2005).

Several studies have used cochlear modelling to predict properties of intracochlear DPs and
DPOAESs. Although these results are consistent with experimental measurements they are
frequently limited to a small range of stimulus parameters or DP frequencies. For example, Kanis
& de Boer (1997) use a one-dimensional model to predict the dependence of the 2f; — /5 DP on the
f>/fi ratio, but do not extend the work to investigate the effect of this ratio on other DPs or to probe
the properties of the generation region. Other studies apply models to predict a few isolated
features of DPOAES, such as the frequency spectrum in the ear canal (Moleti et al., 2009) and fine
structure (Talmadge et al., 1998; Shera et al., 2000). Talmadge et al. (1998) use their one
dimensional model of the human cochlea, which incorporates inhomogeneities in the impedance of
the model to act as sites of reflection, to estimate the forward and backward travelling waves for a
variety of DPs. This approach provides a useful tool for investigating the source of DP components
within the cochlea, but their method is limited to low stimulus levels and small stimulus frequency
ratios as they deliberately neglect the nonlinear effects of self- or mutual- suppression of the

primary tones to simplify the calculations.

Vetesnik et al. (2006) use a two-dimensional cochlear model, based on that proposed by Mammano
& Nobili (1993), to simulate a variety of DPOAE properties including spatial distributions and
dependence on the f,/f; ratio for both the 2f; — £, and 2f, — f; DPs. They also predict the growth of
these DPs for a range of cochlear amplifier gain values. However, their model produces only the
wave-fixed (distortion) component of the DPOAE and the place-fixed (reflection) component is
neglected. In addition they rely on the maxima in the spatial distribution of BM displacement at

2f1 — f> and 2f; — f; to infer the source location of these DPs. Although their results are consistent
with two source contributions from the vicinity of the f; best place and DP characteristic place, they
do not provide evidence that the DPs generated at these locations are effectively transmitted out of

the cochlear model.

It is rare for the harmonic response evoked by a pure tone stimulus to be examined along with the
production of the DPs in a single cochlear model. Nonetheless in cases where both types of

distortion are described, such as the work of Lim & Steele (2002), the predicted harmonic response
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provides useful additional evidence when assessing the validity of the model against experimental
data. However, the Lim & Steele (2002) results are restricted to a small range of stimulus

parameters making extensive verification of their model difficult.

In summary, although many cochlear models have been developed to simulate DP generation
within the cochlea, so far none has given a comprehensive overview of a range of predicted
DPOAE properties and their generation mechanisms whilst incorporating both wave-fixed and
place-fixed components. In addition, it would be useful to be aware of the harmonic responses to
single tone stimulation in such a model to determine if these were also consistent with

physiological studies.
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1.9 Research questions and contributions

The aim of this thesis is to develop a cochlear model to investigate the mechanisms involved in the
production of DPOAESs. There are three stages to the work: chapters 2 and 3 describe the
development and validation of the model; chapters 4, 5 and 6 illustrate the application of the model
to answer some specific questions; and finally chapter 7 provides a discussion of the strengths and

the limitations of the model and suggests some ideas for future work.

The model is verified in the first part of this thesis by comparing its predictions of the cochlear
response with physiological measurements and the estimates of other cochlear models. This
includes a comparison between our quasilinear frequency domain model and a state space time
domain model. The aspects of the cochlear response used for the verification process were the
fundamental and harmonic responses of the BM to single tone stimulation and the mutual
suppression that occurs in the BM response to two tone stimulation. We also made some
preliminary estimates of the 2f; — f, DP properties predicted by the model before proceeding to
study the 2f; — f> and 2f; — fi DPOAEs in more depth.

In chapters 4, 5 and 6 the model is applied to investigate the following research questions:

e  What are the strengths and weaknesses of the model regarding 2f;, — f; and 2f, — fi DPOAE
prediction?

e  What explanation does the model provide for the dependence of the 2f; — £, and 25 — f;
DPOAE amplitudes on the stimulus parameters?

e  What causes notches in the growth of the 2f; — f, DPOAE amplitude predicted by the model?

e  What is the origin of DPOAE fine structure in our model?

e  What forward and backward DP travelling waves are generated within the model in response
to two tone stimulation?

e  What explanation does our cochlear model, which contains a cochlear amplifier, offer for the
outcome of the Allen & Fahey experiment?

e  Can the model provide insight into the results of Ren and colleagues who are unable to detect
backward travelling waves on the BM at DP frequencies?

e  What is the source mechanism for the 2f; — fi DPOAE suggested by our model? Can these
upper sideband emissions be simulated by a cochlear model that does not incorporate fluid

compression waves?

Overall, the most important contributions of the thesis may be summarised as follows:

(i) Reformulation of the Kanis & de Boer (1993) quasilinear model of the cochlea to ensure
computational convergence of the iterative process and to verify stability of the model. The
solution is also decomposed into forward and backward travelling wave components to

facilitate interpretation of the results.
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1.9 Research questions and contributions

(i)

(iii)

(iv)

™)

(vi)

The fine tuning of the micromechanical parameters in the cochlear model is extended to
improve the agreement between experimental responses of the cochlea to single and two tone
stimuli and those predicted by the model. The effect of the position of the nonlinearity within
the micromechanical feedback loop has also been clarified (How ef al., 2010).

A comprehensive comparison of experimental results and the simulated properties of the

2f, — f> and 2f, — f; DPOAESs predicted by the baseline and perturbed model. This allows many
of the DPOAE characteristics to be explained but also determines which features of these
emissions cannot be understood in such a simple model. This review also serves to establish
which characteristics of the emissions are most sensitive to flaws in the tuning of the cochlear
micromechanical model and could therefore be useful in tuning the parameters further.
Confirmation of the origin of the optimal stimulus level difference characteristic exhibited by
both 2f; — > and 2f; — f1 in a coupled cochlear model.

The identification and explanation of predicted notches in the wave-fixed component of the
2f1 — f» DPOAE growth function in the cochlear model.

Clarification of the limitations of the Allen-Fahey experiment.

(vii) Development of tools for assessing the directionality of wave-fixed DP sources within the

cochlear model.

(viii)Suggestions regarding the source mechanism for the 2, — f DPOAE.
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2. The Kanis & de Boer micromechanical model

Kanis & de Boer (1993) developed a model to replicate the nonlinear behaviour of the cochlea.
Their motivation was to provide insight into the mechanisms of cochlear nonlinearity which cannot
be obtained easily through the use of more complex models (Kanis, 1995). They also proposed a
“quasilinear” iterative method, to estimate the response of the model in the frequency domain,
which can be used to evaluate the DPs predicted by the model (Kanis, 1995; Kanis & de Boer,
1997).

In this chapter the Kanis & de Boer model is described along with their quasilinear method for
predicting its response. We start by reviewing the cochlear wave equation, and the associated
solution methods in section 2.1. We then describe their linear micromechanical model (section 2.2).
We go on to propose a method for decomposing the predicted travelling wave into forward and
backward propagating components (section 2.3) and illustrate the features of this method using the
results of the linear model. In section 2.4, nonlinearity is introduced into the micromechanical
model and the quasilinear method is reviewed. Finally, we present the state space formulation of
the Kanis & de Boer cochlear model and use it to verify the stability of the model, which is
required for the quasilinear method to be valid. The state space model also provides a convenient
method of performing time domain simulations, whose steady state response can be compared with

those of the quasilinear method (section 2.5).
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2.1 The wave equation

2.1.1 The one-dimensional wave equation

Figure 2.1 shows a two-dimensional representation of the cochlea (Zweig et al., 1976, Steele &
Taber, 1979). The cochlear partition (CP), the vertical CP velocity (v), the height of the channels
(H), length of the cochlea (L), the stapes velocity (uy), the horizontal and vertical fluid velocities
(ur and vy respectively), and the fluid pressure (py) are all shown. The three dimensions of the
cochlea have been reduced to two by neglecting radial motion and averaging the CP properties,
such as its mass, across its width. This model also assumes that the cochlea is straight with
channels of constant height, that the walls are rigid and that there are no fluid ducts, that Reissner’s
membrane can be neglected so that there are only two significant channels, that the two channels
are symmetric, that the cochlear fluids are incompressible and that there is no significant structural
longitudinal coupling along the CP. The appropriateness and consequences of some of these

assumptions are discussed in appendix A.1.

For a passive linear model such as this, the wave equation (2.1) describes its response to sinusoidal

stimulation in the presence of an internal distributed pressure source S(x,®), and is derived in

pass

appendix A. In this equation o, p, and Z/," denote the angular frequency of the stimulus, the

density of the cochlear fluids, and the impedance of the cochlear partition respectively. The semi-
difference pressure, py, is introduced to simplify the notation (Peterson & Bogert, 1950) and is
defined in terms of the fluid pressure above and below the CP in (2.2). The CP impedance is
defined in (2.3).

ovat| L@ il pr(vz)
window T 1(x.0) ug(x.z,r)

y
Round § "\ o
window (x,2)=(0,0) o

A J

|
-

Zaxi

b

"y axis

Figure 2.1 A two-dimensional illustration of the cochlea

The cochlear partition (CP), the vertical CP velocity (v), the height of the channels (H), length of the cochlea
(L), the stapes velocity (u), the horizontal and vertical fluid velocities (u; and v¢ respectively), and the fluid
pressure (py) are all shown.
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pd(f’(”)+ iop -pd(x,oa)z—-&S(x’@) 2.1)
d’H-ZE (x,0) 2 H-Zg" (x,0)
here Pa(rzt) = (P, (5 2,0) = p, (x.=2,1) 22)
_2 , @
- 70 (x, ) = —2p,(x, @) (2.3)
v(x, @)

This wave equation is one dimensional, as all of the variables depend on only one spatial co-
ordinate, x. This is a consequence of the long-wave approximation which states that the wavelength
of the travelling wave is much greater than the height of the cochlear channel, as discussed in
appendix A3. There are two boundary conditions of the model: conservation of horizontal

momentum at the base (2.4) and no semi-difference pressure at the helicotrema (2.5).

op, (x, ) — _iopu (2.4)
ox | .
p,(L,w)=0 (2.5)

2.1.2 Overview of solution methods

There are two common approaches to solving the linear wave equation (2.1) in the frequency
domain, for a known CP impedance, in the absence of an internal distributed source: The finite

difference method and the WKB approach.

The finite difference method uses a lumped-parameter formulation, where the length of the cochlea
is represented by N discrete elements as shown in figure 2.2. Elements 2 to N-1 correspond to
sections of the cochlear partition, and their dynamics are described by the CP impedance. The first
and last elements represent models of the middle ear dynamics and helicotrema. Appendix B1
describes how this framework allows the wave equation (2.1) to be written in matrix form and
solved using computer software such as MATLAB. It also illustrates that it provides an accurate
representation of the distributed system provided N > 500. For this reason we generally use 500
elements to represent the length of the cochlear partition. However, in early work we took a more

cautious approach and used 1000 elements rather than 500.
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Single
Middle ear micromechanical
dynamics , element
Uy / Fluid coupling
Source o B e
] | | g =4 I%I
# * C B BN N
—_—
Base x-direction Apex

Figure 2.2 The one-dimensional lumped-parameter model of the cochlea
Elements 2 to N-1 represent micromechanical models of the cochlear partition. Elements 1 and N correspond
to models of the middle ear dynamics and helicotrema respectively. [Based on Elliott et al. (2007), figure 4]

The WKB solution for the wave equation (2.1) is derived in appendix B.2.1. To summarise, this

method approximates the total pressure distribution (2.6) by a linear sum of two basis functions
(2.7). The constants p, and p, are determined by the boundary conditions, and k, is chosen to

normalise the basis functions at the base of the model.

P,(x)=p,@p" (x,0)+ p, ¢ (x,0) (2.6)

co*(x,w):,/% exp(—ijk(x,a))dx) and ¢ (x, ) = /k()’:ow) exp 4] K(x. o)) 2.7)

where the wavenumber, £, is complex

K2 (x) = —2iwp

H(x)-Zp(x) ey

The basis functions ¢" and ¢ are interpreted as travelling waves propagating forward and

backward respectively, as discussed in appendix B.2.2. The wavelength of these travelling waves is
inversely proportional to the real part of k(x), whilst the imaginary component of k(x) describes the
exponential growth rate of the travelling wave amplitude. The WKB solution is derived based on
the assumption that there is little variation in k(x) over the distance of one spatial wavelength, as
expressed in (2.9). This is equivalent to the condition that there are no substantial reflections in the
cochlear model. This condition is generally satisfied through the cochlear model (appendix D.1),
and the WKB solutions obtained using (2.6) and (2.7) are consistent with those obtained using the
finite difference approach (appendix B.2.3). It is also possible to apply the WKB solution to linear

models containing internal sources or sources of reflection as described in appendix B.2.4.

1 dk(x)
k*(x) dx

<<1 (2.9)
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Finally it is necessary to use models of the stapes, middle ear and ear canal if the solution to the
wave equation is to be used to predict DPOAEs. The stapes model is necessary for the application
of the basal boundary condition in the cochlear mechanics. The middle ear and ear canal also need
to be incorporated if stimuli are to be presented in the ear canal, and if sound is to be transmitted in
and out of the cochlear model. These details are discussed in appendix C. In general, the stapes is
represented by a simple mass-spring-damper model. However under some circumstances it is
useful to substitute an alternative stapes representation, to minimise reflections at the basal

boundary, so in these cases the use of this alternative boundary condition will be noted as required.
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2.2 The micromechanical model

The wave equation (2.1) applies to all linear cochlear models of the type illustrated in figure 2.1,
whatever the impedance of the cochlear partition, Zqp(x,®). Many different models for the cochlear
partition (CP) have been proposed in the literature. They differ in their descriptions of the CP
dynamics and therefore have different expressions for Zqp(x,®). Macromechanical models neglect
any motion within the CP, whilst micromechanical models incorporate relative motion between
structural components of the CP such as the basilar membrane (BM) and tectorial membrane

(Patuzzi, 1996).

In this section the linear active micromechanical model introduced by Kanis & de Boer (1993) is
described and the responses illustrated. Their model is designed to replicate the response of the

human cochlea. A discussion of other micromechanical models is deferred until chapter 3.

2.2.1 The impedance

Figure 2.3 illustrates a single element of the linear Kanis & de Boer cochlear model. The passive
version of the model is effectively macromechanical, because the CP moves as a single unit of

mass, myp, with stiffness, kgp, and damping, cgz. The upward displacement of the CP is denoted by
&,, and its upward velocity as v. The passive CP impedance, Z/;,” , is defined in (2.10) in terms of

the semi-difference pressure and vertical CP velocity. It can be expressed as a function of the CP

properties as shown in (2.11).

Zg;”(x,a)) :_2pd—(x’a)) (2.10)
v(x,®)
Z5 (x, ) :ia)mKB(x)+cKB(x)+M (2.11)
iw
P2

E-'l:' T MgEe

J— CKBTPd
P

k—KB
1

Figure 2.3 A representation of a single element in the Kanis & de Boer cochlear model
The vertical displacement of the CP (&), the CP mass (mg), stiffness (kxg) and damping (ckg) are all shown.
The fluid pressure below and above the CP (p; and p,) is related to the semi-difference pressure ps—

72(p2 — p1)-
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Kanis & de Boer suggest a distribution of the CP properties along the cochlea as described in (2.12)
to (2.14), where my = 0.5 kgm-*, 8 = 0.4, s, = 10" kgm-s-* and « = 300 m-". They set the height H
equal to 1 mm and generally only consider the basal 0.01 m of the cochlea, but the model can be
extended to 0.035 m. The CP mass is constant throughout the cochlea, but the damping and
stiffness vary exponentially. The value of the exponential growth factor, «k, was chosen so that the
stiffness variation was consistent with that observed in human cadaver cochleae (de Boer, 1980).
For this passive model the natural frequency, @,, is a function of distance from the base (2.15), and
the width of the resonance peak is inversely proportional to the constant damping parameter o (de

Boer, 1996).

My (X) =m, (2.12)
Cp(X) = OyJmys, -e " (2.13)
key(x)=s6" (2.14)

S _KX,
w,= "¢ % (2.15)
ny,

Kanis & de Boer also develop an active micromechanical cochlear model, based on the passive

model described above, by incorporating an impedance associated with the OHCs, Zgzc . This

impedance is defined in terms of the OHC output pressure, pg';lc , and the CP velocity in (2.16). Its

form appears to be an algebraic approximation to the impedance that provides realistic solutions

rather than being based on a specific dynamic model of the CP. The superscript /in, emphasises the
linear nature of these variables. The impedance Z_; .. is related to the parameters of the model as
shown in (2.18), where the constants e, (4.28 x 10> kgm’s) and d, (1404 kgs-") are associated with

the OHCs, & (0 .4) is a dimensionless damping parameter, and oy (0.7) is a dimensionless

parameter that shifts the frequency of the OHC resonance relative to the BM resonance. The
variables @,(x), and b(x,0) are defined in (2.15) and (2.19). The total active CP impedance, Z¢5",

is the linear sum of the two impedance components as shown in (2.17). These components are both

specific acoustic impedances with the dimensions of mass per unit area per unit time.

lin

Zope (x, ) = Poic (% ©) (2.16)

v(x,w)
25 (x, 0) = 22 (x, @) - Z™_(x, ) 2.17)

where
Zin (x,0)=e,, (x)-d, 1+ib(x, w) : 218
S +i| b(x,w)——20
| b(x, )
2.19
b(x,0) = -2 (@19
Q)]

n
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Figure 2.4 The CP impedance of the linear Kanis & de Boer cochlear model

The (a) magnitude, (b) phase, (c) real part and (d) imaginary part of the predicted CP impedance are shown

for the active (solid line) and passive (dashed line) linear model, following a 5 kHz stapes stimulus. The

model length is 0.035 m, but only the first 0.015 m is shown here for clarity. The 5 kHz characteristic place is

illustrated by the thin dotted vertical lines.

Figure 2.4 shows the CP impedance distribution along the cochlea when the model is stimulated at
5 kHz. The real part of the active impedance is negative in the region immediately basal to the
characteristic place, indicating that the OHCs are injecting energy into the travelling wave over this

region.

2.2.2 Response of the linear model

The pressure and velocity distribution along the Kanis & de Boer cochlear model, evoked by a
single tone stimulus applied to the stapes, is shown in figure 2.5. These responses were estimated
with the finite difference method, using N=1000. Note that only the first 15 mm of the full 35 mm
length is shown. Comparing the maximum CP velocity for the passive and active cases indicates
that the cochlear amplifier (CA) gain of the active model is about 38 dB. The response of the active
model also peaks about 2.5 mm further along the cochlea than the response of the passive model,
corresponding to a shift in the best frequency at a single position of approximately 72 an octave. In
addition to increasing the maximum amplitude of the travelling wave, the CA acts to increase the
rate of spatial variation of the phase of p, and v in the vicinity of the best place. The velocity phase
lag, relative to the stapes motion, accumulated by the travelling wave when it reaches the best place

is approximately 2 cycles in figure 2.5d. This is consistent with the 1.5 — 2.5 cycles of phase
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accumulation at the best place measured in the base of mammalian cochlea (Robles & Ruggero,

2001).
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Figure 2.5 The response of the linear active Kanis & de Boer cochlear model
The amplitude and phase of the semi-difference pressure (a and b) and the CP velocity (c and d) evoked by a
5 kHz stimulus are shown. Responses of the linear active (black lines) and passive (grey lines) models were
obtained using the finite difference method. Results are given in units of dB relative to the semi-difference
pressure at the base or stapes velocity in plots a and ¢ respectively. The 5 kHz characteristic place in the
active model is denoted by the thin dotted vertical lines.
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Figure 2.6 The response of the passive linear model to an internal stimulus

The magnitude and phase of the semi-difference pressure (a and b) and the CP velocity (c and d) evoked by
an internal 5 kHz source in the passive linear Kanis & de Boer cochlear model are shown. The source is
located at either 2mm (black arrow) or 9mm (grey arrow) from the base. The responses to the 2mm and 9Imm
sources are drawn in black and grey respectively, and were obtained using the finite difference method and
the basal boundary condition was modified to minimise reflections, as described in appendix C.2. The results
are given in units of dB relative to the semi-difference pressure or the vertical CP velocity at the 9 mm source
location in plots a and c respectively.
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The response of the passive linear Kanis & de Boer cochlear model to an internal point source at 5
kHz is shown in figure 2.6. In this case the phase of the response falls off in both directions away
from the source and illustrates how a DP might propagate out of the cochlea. This reverse
propagation within the cochlea is discussed in more detail with regarding to forward and backward

travelling waves in section 2.3.

The expression for the total linear CP impedance given in (2.17) can be modified to include a

parameter »(x) which takes a value between 0 and 1 at every location (Neely & Kim, 1986).

Zg;tive (x, a)) — Zé’;SS (x’ a)) _ 7(X) . Zg’]’{c (x’ a)) (220)

We shall refer to #(x) as the OHC gain, to distinguish it from the CA gain which usually takes a
value of 30 — 40 dB (section 1.3.2.). In a fully active linear model, y= 1 throughout the model. In a
completely passive model, where the action of the OHCs is neglected, y= 0 everywhere. Gradual
reduction of y from 1 to 0 can be used to simulate the effect of a nonlinear function in the cochlear
model, which would act to reduce the OHC gain as the stimulus level increases, as shown in figure

2.7.
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Figure 2.7 The influence of OHC gain, y, on the response of the linear active model

The (a) amplitude and (b) phase of the semi-difference pressure, and the (¢) amplitude and (d) phase of the
CP velocity, evoked by a 5 kHz in the linear active Kanis & de Boer model are shown. In each case y is
constant throughout the model, at the value indicated in the key. The results are given in units of dB relative
to the semi-difference pressure and vertical CP velocity at the base of the cochlear model in plots a and ¢
respectively.
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2.3 Forward and backward travelling wave decomposition

The finite difference method can be used to determine the distribution of the semi-difference
pressure, p(x,®), but it does not explicitly reveal the direction of the travelling wave. In this
section a method is presented for decomposing the finite difference solution p, into forward and
backward travelling components. This provides a useful tool when examining models with internal

sources or sources of reflection in chapters 4, 5 and 6.

The mathematical steps described below are similar to those presented by Talmadge et al. (1998),
but the application is different. For example, Talmadge et al.construct the distribution of the total
semi-difference pressure arising in the cochlear model from the forward and backward travelling
wave components predicted by the WKB method. In contrast, we use the finite difference method
to estimate the total semi-difference pressure, and then decompose it into forward and backward
travelling waves using the WKB approach. Both approaches to evaluating the forward and
backward travelling wave components invoke the same assumptions, such as the validity of the
WKB approximation described in section 2.1.2. They are also both subject to a similar degree of
numerical error (appendix B.2.3). However we choose to use the decomposition method as it
allows a more straight forward evaluation of the total semi-difference pressure, which is not
dependent on the WKB approximation, compared to the approach of Talmadge et al. We also

develop a strategy for analysing the validity of the decomposition process (section 2.3.2).

2.3.1 The decomposition method

The decomposition process divides the total finite difference solution, p,, into the forward (+) and
backward ( — ) travelling components suggested by the WKB solution as shown in (2.21) — (2.23).
This is the reverse of the usual application of the WKB method, which seeks to determine p,(x)

from p, (x) and p, (x), where:

P,(¥)=p (x)+ p,(x), (2.21)

k .
Py (x)=pg(x) J% -exp(—i jo k(x") dx'), (2.22)

and  p;,(x) = p,(x) Jk ~exp(+ij;k(x') dx'). (2.23)

E(x)

In these expressions, &y a constant which denotes the wavenumber at the base of the model and is

included so that the basis functions are normalised at x = 0, as described in appendix B.2.2. Also,

the coefficients p, (x) and p, (x) should be constant provided that there are no internal sources
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present in the cochlear model. These coefficients, p, and p, correspond to the amplitude of the

forward and backward travelling waves at the base of the cochlear model respectively. It should be

noted that, in general, the amplitudes of the forward and backward travelling waves are given by
the absolute values of py+/k, / k(x) and p, \/k, / k(x) respectively, and so the coefficients p,

and p, are not synonymous with the travelling wave amplitudes at any location other than the

base of the cochlear model.

The decomposition is achieved using both the computed semi-difference pressure p(x) and the

computed longitudinal fluid velocity, ugx); which was evaluated using the finite difference

approximation for dp, / dx . The decomposition formula can be obtained by differentiating the

pj (x) functions with respect to x (2.24), and substituting the result into the equation for

conserving longitudinal momentum (2.25) to obtain (2.26).

32 dk(x)

—%[k(x)] -exp (—ig(x))

HrE]" ( AP )j exp(-id(x))

N 1 'dk(x) )
=-p,(x) {2/(( ) dx 'Hk(x)}

dp,(x)
:lx =D \/E

(2.24)
_ L) e 85
dp,(x) -
) d¢( )
k()] ( ] exp(+ig(x))
o akw
~ py (%) {—Mx - +zk(x>}
where @(x) = jik(x dx'
~ipou(x) = dp;fo = dp;im + dp:;)EX) (2.25)
~ipou,(x) = —f(x) B i)+ pa O}~k i - s 0} 226

Combining (2.21) and (2.26) gives

N (dk(x) 1
Da (x)_—2ik(x){ ou(x)— p,(x) (— EYTIRY lk(X)j} (2.27)

P (%) :%{— piou(x)+ p, (x)- (‘”‘Ef) Tt ik(x)j} .28)
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which can also be written as shown below. If the WKB approximation is valid, then the term
labelled g(x) in (2.29) should be small compared to 1 and the method reduces to wave

decomposition in a uniform system.

1) pou,(x) |odk) 1
1 Tk TP T e e

q(x)

Py (x)= (2.29)

In the following section the validity of the decomposition method is investigated. When the results
of the decomposition process are valid, the amplitude of the predicted forward and backward
travelling wave components typically alter by less than 1 dB if the g(x) term is neglected. However,
it is retained in all following simulations as it can significantly modify the amplitude of any

erroneous predictions.

2.3.2 Accuracy and validity of the decomposition method

The accuracy of the decomposition procedure is limited by any numerical errors in the total semi-
difference pressure or fluid velocity estimated by the finite difference method, and the validity of
the WKB approximation. A consequence of these limitations is that small, but finite, erroneous
travelling wave components may be predicted in scenarios where they have no physical origin.
Consider, for example, the semi-difference pressure evoked by a stapes stimulus applied to a linear
cochlear model in which there are no significant sites of reflection (appendix D.1). In this case the

decomposition method would ideally predict that the total semi-difference pressure, p,(x),
corresponds exactly to the forward travelling wave, p*(x).However in practice, as a result of

errors associated with the numerical calculations and WKB approximation, the decomposition

method would predict that the total semi-difference pressure is equal to the sum of the estimated

+
est

forward travelling wave, p’_(x), and an error term, &x), as shown below.

p,(x)=p., (x)+e(x) (2.30)

As a consequence of the use of expression (2.21) in the decomposition method, any error &x) in the
estimated forward travelling wave is incorporated into the estimated backward travelling wave. For
this reason, the decomposition method will predict a small erroneous estimated backward travelling
wave, p. (x), even in this scenario where such a wave has no physical origin. In this section two
approaches are presented which can be used to discriminate between erroneous predictions of the

decomposition method and valid forward and backward travelling wave estimates which offer

insight into the propagation direction of waves within the cochlear model.
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The first approach estimates the amplitude of the error term &(x), and uses this to form an “error
floor”. Only the estimated forward or backward travelling wave components with amplitudes above
this error floor will be considered valid predictions of the decomposition procedure. As errors
associated with the WKB approximation are difficult to quantify, we assume that the amplitude of
&(x) is similar to the scale of numerical errors in the finite difference method, approximately 0.5 dB
(appendix B.1). This leads to an estimated error floor at — 24.5 dB relative to p,(x), neglecting any
inaccuracies the WKB approximation. The usefulness of this error floor can be demonstrated from
considering the decomposition of the semi-difference pressure in the active linear ‘baseline’
cochlear model, in which the impedance properties of the cochlear partition vary smoothly with
distance from the base and no significant reflection of forward travelling waves should occur
(appendix D.1). Figure 2.8 shows the total semi-difference pressure evoked by a 5 kHz stimulus
applied at the stapes. It also shows the forward and backward travelling waves predicted by the
decomposition method, and the error floor is included for reference. The estimated forward
travelling wave amplitude is above the error floor and within 0.3 dB of the total p(x) distribution
throughout the region between the stapes and the 5 kHz characteristic place. In contrast the
estimated backward travelling wave amplitude is below the error floor, which indicates it is an
erroneous prediction and can be neglected. The phase behaviour of the erroneous predicted
‘backward’ travelling wave (figure 2.8b) also indicates that this component is an artefact as its
phase decreases with increasing x, which is typical of a forward, not backward, travelling wave as
indicated in (2.22) and (2.23). Therefore, taking into account the error floor, the decomposition
process suggests that a 5 kHz stapes stimulus will evoke only a forward travelling wave, and no

significant backward travelling wave, in a linear active baseline cochlear model.

Another approach is to identify valid decomposition estimates from the behaviour of the travelling
wave coefficients p;‘r (x) . In a model containing no internal sources, or sites of reflection, these

coefficients should be constant along the CP. In cases where internal sources, or sites of reflection
are present, then fluctuations should occur in the amplitude of both coefficients. However, if the

error &x) dominates either the estimated forward or backward travelling wave component predicted

by the decomposition method, it will cause fluctuations in the amplitude of either the p, (x) or

P, (x) distribution respectively. These erroneous fluctuations cannot be attributed to internal
sources or sites of reflection as they usually are only evident at significant levels in one of the
travelling coefficients and not the other. For example, figure 2.8¢ shows that the p, (x) coefficient
is essentially uniformly distributed between the base and the characteristic place as its amplitude
varies by less than 0.1 dB over this region. In contrast, the p, (x) coefficient amplitude fluctuates in
excess of 36 dB between the base and the 5 kHz characteristic place. This variation in the

amplitude p, (x), combined with the observed absence of substantial fluctuations in the
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D, (x) coefficient, suggests that the prediction of the estimated backward travelling wave is
dominated by the error &(x) and should be neglected. This approach is subjective, as is it not
apparent what level of fluctuation in the amplitude of the pj (x) coefficients should be considered

indicative of an error. We arbitrarily use a value of 10 dB to determine whether amplitude
variations on of the travelling wave coefficients should indicate caution in interpreting the result.
Overall, this approach yields the same conclusion as the error floor analysis: taking into account
numerical errors and inaccuracies in the WKB approximation, the decomposition process predicts
that a 5 kHz stapes stimulus will evoke only a forward travelling wave, and no significant

backward travelling wave, in a linear active baseline cochlear model.
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Figure 2.8 The estimated forward and backward travelling waves in a baseline cochlear model

The (a) amplitude and (b) phase of the total semi-difference pressure, and the forward and backward
travelling components, evoked by a 5 kHz stapes stimulus in the linear active Kanis & de Boer cochlear
model are shown. As the model is ‘baseline’, no irregularities have been deliberately imposed on the CP
impedance. Results were evaluated using the finite difference method, and decomposition process, with
N=1000. The ‘error floor’ is shown in (a) for reference. (c) The amplitude of the coefficients for the forward

and backward travelling waves. In plots a and b, the amplitudes are given in dB relative to the value of p, at
the base of the model.
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2.3.3 Application to internal sources

Figure 2.91 shows the forward and backward travelling components of the semi-difference pressure
evoked by an internal sinusoidal point source located between the base and the characteristic place
in the linear active Kanis & de Boer model. In order to allow a simple interpretation of the results,
the basal boundary condition is adjusted to minimise reflections by setting the stapes impedance

equal to the impedance for a backward travelling wave at the base of the CP (appendix C.2). Figure

2.91c illustrates that at the location of the internal point source, both the p, (x) or
P, (x) coefficients exhibit a sharp change in amplitude. However, on the basal side of the source

location p, is essentially constant (less than 1 dB amplitude variation) whilst the p, coefficient

level fluctuates considerably (in excess of 40 dB). In this basal region, only the amplitude of the

estimated backward travelling wave component exceeds the error floor of the decomposition

method. In contrast, on the apical side of the source location, p, is almost uniform (less than 2 dB

level variation) whilst the p, coefficient exhibits substantial amplitude variation exceeding 50 dB.

In this apical region, only the amplitude of the estimated forward travelling wave component
exceeds the error floor of the decomposition method. Collectively, these observations suggest that
both the estimated forward travelling wave in the basal region, and the estimated backward
travelling wave in the apical region, should be neglected because they are dominated by errors
associated with numerical inaccuracies and the limitations of the WKB approximation. Therefore,
taking into account numerical errors and inaccuracies in the WKB approximation, the
decomposition procedure predicts that an internal sinusoidal point source located between the base
and the characteristic place will evoke a backward travelling wave which propagates from the
source to the stapes and a forward travelling wave which propagates from the source to the

characteristic place.

In figure 2.911 the basal boundary condition has been altered so that there is approximately
complete reflection of the backward travelling wave at x = 0. The response to the internal
sinusoidal point source on the apical side of the source region is essentially unchanged by the
reflective basal boundary condition. However, the introduction of reflection off the stapes does
influence the predicted response between the base and the source location. In this region, when the
reflecting basal boundary condition is imposed, both the p; (x)or p, (x) coefficients exhibit
almost constant amplitude which varies by less than 1 dB and the amplitudes of the both the
estimated forward and backward travelling wave components exceed the error floor. Therefore,
taking into account numerical errors and inaccuracies in the WKB approximation, the
decomposition procedure indicates that an internal sinusoidal point source located between the base

and the characteristic place will give rise to a backward travelling wave which propagates towards
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the base and can be reflected at the stapes to generate a forward wave which travels into the

cochlear model from the base.
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Figure 2.9 The estimated forward and backward travelling waves evoked by an internal source

Plots (a) and (b) show the amplitude and phase of the total semi-difference pressure, and the forward and
backward travelling components, evoked in the linear active Kanis & de Boer model by a 5 kHz internal
point source located at a distance of 8 mm from the stapes (black arrows). Also (c¢) shows the amplitude of
the coefficients for the forward and backward travelling waves. Results evaluated using the finite difference
method, and decomposition process, with N=1000 and a boundary condition at the stapes such that either (I)

there is no reflection of backward travelling waves or (II) there is complete reflection of the backward
travelling wave.
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2.3.4 Application to sites of reflection

In chapter 4, impedance irregularities are deliberately introduced into the active micromechanics of
the cochlear model to act as sources of reflection. These perturbations could arise from either the
active mechanics, perhaps from differences in the force exerted by neighbouring OHCs (Zweig &
Shera, 1995a) or the passive mechanics, possibly from spatial variations in the BM radial fibres
(Shera & Guinan, 2008).The response of a linear model is determined by the total CP impedance,
which is a linear combination of the passive and active impedances (2.20), and so the qualitative
change in the response should be the same, whether a perturbation is introduced into the active or
the passive mechanics. The same should be true of the quasilinear model, described in chapter 3, at
low stimulus levels. We choose to introduce irregularities into the active mechanics, rather than the

passive mechanics, of the cochlear model.

Reflections can be generated from perturbations imposed on the CP impedance via the OHC gain
parameter {x). This variable was introduced in (2.20) and takes a value between 0 and 1 (Elliott et
al., 2007; Ku et al., 2008). Figure 2.10 shows an example of the effect of a step-down change in
nx), from 1 to 0.95, in the linear active model at the characteristic place. The model is stimulated at

the stapes by a 5 kHz tone, and the step-down change in y(x) is positioned 9 mm from the base. In

the basal region, between the stapes and the internal reflection site, both the p, (x) or

P, (x) coefficients exhibit almost constant amplitude (variations of less than 2 dB) and the

amplitudes of the both the estimated forward and backward travelling wave components exceed the
error floor. These observations suggest that, on the basal side of the reflection site, neither the
estimated forward or backward travelling waves are significantly influenced by errors associated
with numerical inaccuracies and the limitations of the WKB approximation. Section 2.3.2
established that, in the absence of an internal reflection site, the stapes stimulus evoked only a
forward travelling wave. Introduction of the reflection site into the cochlear model has little
influence on the apical side of the site. However, in the basal region of the model, the
decomposition procedure suggests that the internal reflection site gives rise to a backward

travelling wave which was not evident before the reflection site was introduced.

The amplitude of the backward travelling wave is dependent on both the location, and the scale of
the perturbation. For example, if the step-down change in y(x) is reduced from 5% to 1%, the
amplitude of the backward travelling wave observed at the base of the model decreases by
approximately 10 dB. In addition, if the backward travelling wave generated by a fixed internal
reflection site is estimated for a range of excitation frequencies, as shown in figure 2.11, then the
amplitude of the reflected wave is greatest when the stimulus frequency corresponds to the

characteristic frequency of the reflection site.
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Figure 2.10 The estimated forward and backward travelling waves in a perturbed cochlear model
Plots (a) and (b) show the amplitude and phase of the total semi-difference pressure, and the forward and
backward travelling components, in the linear active Kanis & de Boer model stimulated by a 5 kHz tone at
the stapes. Also, (c) shows the amplitude of the coefficients for the forward and backward travelling waves.
This perturbed model contains a 5% step-down change in the distribution of y(x) at 9 mm from the stapes as

indicated by the black arrows. The results were obtained using a reflectionless boundary condition at the
base, and N=1000.
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Figure 2.11 The influence of stimulus frequency on the reflected waves generated by a place-fixed
impedance irregularity in a perturbed cochlear model

Plots (a) and (b) show the amplitude and phase of the backward travelling wave at the base of the linear
Kanis & de Boer model as a function of stimulus frequency when a step-down change in y(x), from 1 to 0.95,

is imposed at the 5 kHz characteristic place. The results were obtained using a reflectionless basal boundary
condition, a stapes stimulus level of 10 8m/s, and N=1000.
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2.4 The quasilinear method

So far we have described a linear cochlear model in which none of the parameters depend on the
stimulus level. However, Kanis & de Boer incorporate a nonlinear function into their active
cochlear model, in order to replicate the nonlinear response of the cochlea to stimulation. They also
develop a ‘quasilinear’ method for predicting the steady state response of this model, in the

frequency domain, as described in this section.

2.4.1 The nonlinearity

The linear active variant of the Kanis & de Boer model can be described by the feedback diagram
shown in figure 2.12a (Neely, 1985), where pOHC is the linear pressure arising from the active
outer hair cells (OHCs) and is assumed to act in the same way on the basilar membrane (BM) as
the transmembrane pressure difference, p,. In this diagram, the impedances Z _ and Z SZC are

pass

defined in equations (2.10) and (2.16) respectively.

Kanis & de Boer implicitly introduce a nonlinearity into the micromechanical feedback loop, as
shown in figure 2.12b. This is assumed to be a hyperbolic tangent nonlinearity, which modifies the

pressure output of the OHCs such that

Poc(x,1) = p,,, tanh[ pjy(x,0)/ p,,,] 231)

In the above expression the scaling constant p,.,has the units of the pressure and is assigned a value

of 2 by Kanis & de Boer (1993).

(a) The linear micromechanical model (b) The nonlinear micromechanical model
y 7 : v
- ZPGSS

im
Iin ZOHC
Porc
lin
Zactive — pd _ ZOHC/ZPMY Z _Zlm
cr - 17 — “ pass OHC
v / pass

Figure 2.12 Representations of a single (a) linear and (b) nonlinear micromechanical element
Kanis & de Boer modify their (a) linear model by inserting a nonlinear function into the micromechanical
feedback loop as shown in (b). The semi-difference pressure across the cochlear partition, p,, the vertical

velocity of the cochlear partition, v, and the linear pressure output of the outer hair cells (OHCs), pg"HC are

all shown.
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The quasilinear notation, QL, indicates that the nonlinearity is expected to produce distortion
which can be treated as a small perturbation compared to the fundamental response. On this basis a

new quasilinear impedance for the OHCs, Z5. (X, @) , is defined as

oL
78 (x,w) = Lot (x, ) (2.32)
v(x, )

2.4.2 The fundamental response to a single tone stimulus

The principle of the quasilinear method is that the distortion which occurs in the system variables
of a nonlinear model can be treated as a small perturbation compared to the fundamental
component. On this basis, the system variables can be represented by their fundamental component
and the harmonic components can be neglected in the calculation of the fundamental response.
Kanis & de Boer justify neglecting these higher order components by demonstrating that the 3"
order harmonic is always more than 25 dB below the fundamental component, and that
incorporating the 3™ order response produces no significant change in the estimated fundamental

component (Kanis & de Boer, 1993).

An iterative method is used to determine the response of the quasilinear model, as detailed in
appendix E.1. To summarise, an initial estimate of the quasilinear CP impedance is obtained by
assuming that the model is fully active. The finite difference method is applied to estimate the
fundamental velocity response of the CP which is then used, in conjunction with the linear OHC
impedance, to determine the time domain input to the nonlinearity. The fundamental pressure
output of the nonlinearity is then estimated and equation (2.32) is applied to determine a revised
estimate of the quasilinear OHC impedance which provides a revised estimate of the CP impedance,
taking into account the effect of the nonlinearity. The process is repeated iteratively until the
estimated CP velocity distribution differs by less than 0.1% between iterative cycles. In general, the
required number of iteration cycles increases with the stimulus level. For example, the response of
the Kanis & de Boer quasilinear model to a 5 kHz stimulus tone can be estimated in only 7
iterations for a 20 dB SPL stimulus, but 30 iterations are required for a stimulus level of 100 dB

SPL. These computations can be performed on a 2.4 GHz computer in less than 30 seconds.

The response of the Kanis & de Boer quasilinear model to a 6 kHz stimulus tone at various levels is
shown in figure 2.13. These results are consistent with those presented by Kanis & de Boer (1993),
and illustrate the compressive nonlinear growth of the response in the vicinity of the characteristic
place. The input to the hyperbolic tangent nonlinearity shown in equation (2.31) is scaled so that
the OHC gain is significantly reduced only when the stimulus level exceeds about 40 dB, as

illustrated in the level curves of figure 2.13d. It is possible to simulate these results with the linear
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model if the distribution of OHC gain, y(x), introduced in equation (2.20) is defined as yo,(x,®),

shown below.

ZOQ]LJC (x,w)

2 (2.33)
zn (x,0)

Voo (X, @) =
Figure 2.14 shows the distribution of yy.(x,®) for several different stimulus levels, for a stimulus
frequency of 6 kHz. This demonstrates that the model becomes almost passive in the region just

basal to the characteristic place, at high stimulus levels, since yp.(x) is close to zero in this region.
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Figure 2.13 The response of the Kanis & de Boer quasilinear cochlear model

Plots (a) and (b) show the amplitude and phase of the CP velocity evoked by a 6 kHz stimulus, evaluated
using N=1000. The corresponding distributions of the quasilinear OHC impedance are also shown in (c). The
input output level functions at four locations along the CP are presented in (d), where x=8 mm corresponds to
the characteristic place. Stimulus stapes velocities are given in units of dB re 10~ *my/s.
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Figure 2.14 The influence of stimulus level on the quasilinear OHC gain distribution

The quasilinear OHC gain, yqy, is plotted for a 6 kHz stapes excitation at a variety of stimulus levels given in

units of dB re 10~ *m/s. The response was evaluated using N=1000, and it should be noted that the 6 kHz

characteristic place is approximately 8 mm from the stapes.
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2.4.3 Estimating harmonic distortion products

The nonlinearity used by Kanis & de Boer to represent the action of the OHCs is a hyperbolic
tangent function. As this nonlinear function is symmetrical its output will contain odd-order
harmonic components in addition to the fundamental component (appendix G). These harmonics
were neglected when estimating the fundamental component, as they have relatively small
amplitude. However, once the fundamental response has been estimated, it is possible to apply the

quasilinear method to predict the harmonic components as well.

The iterative process used by Kanis & de Boer for estimating the harmonic components is
described in appendix E.2 — E.3. This also details the rearrangement made to the quasilinear
process in order to achieve more consistent convergence of the iteration sequence. The results, such
as those shown in figure 2.15 for a 6 kHz stimulus, are consistent with those obtained by Kanis &
de Boer (1993) although slightly different stimulus levels are used to account for the difference in
middle ear properties. The variation in the 3™ order harmonic response, with increasing stimulus
level, is illustrated in figure 2.16. The source of this component is the 3™ harmonic of the OHC
pressure output due to the presence of the fundamental component, given in (2.34). Figure 2.16a
shows that this source pressure is greatest at the best place of the fundamental frequency as at this
location the fundamental component of the CP velocity has the greatest amplitude. The source
broadens, and spreads towards the characteristic place of the 3™ harmonic component, as the
stimulus level increases. Figure 2.16b illustrates that, at low stimulus levels, the amplitude of the
3" harmonic component in the resultant velocity is greatest in the vicinity of the characteristic
place of the fundamental frequency. However, as the stimulus level increases, the 3™ order
response spreads towards its own characteristic place. Although the harmonic response remains
large at the best place of the fundamental component, at high stimulus levels (such as 100 dB re

10~ ®my/s) its amplitude is greatest at its own characteristic place.

Poc..(x,mw) = %IOT tanh [2 Re (Zgzc (x,0)-V(x, ) exp(ia)t)ﬂ -exp(—imat)dt  (2.34)
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Figure 2.15 Comparison of the fundamental and 3™ harmonic response of the quasilinear model

Plots (a) and (b) show the amplitude and phase of the fundamental and 3™ order CP velocity components
evoked by a 6 kHz stapes velocity at 75 dB re 10 *m/s and 105 dB re 10~ ®ms in the Kanis & de Boer
quasilinear cochlear model. The fundamental and 3™ order responses are referenced to 10 “m/s and 10~ 'm/s
respectively, in order to allow for comparison with chapter 2 of Kanis (1995).
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Figure 2.16 The (a) source distribution and (b) amplitude of the 3" harmonic response
The quasilinear Kanis & de Boer cochlear model was stimulated at the stapes with a 6 kHz tone at a variety
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of stimulus levels and (a) the source distribution for the 3™ harmonic was estimated from pf;,.A (x,3m),

defined in (2.34). The amplitude of the 3" harmonic component of the CP velocity is also shown in (b).
Stimulus levels are given in dB re 10~ *my/s. In each graph the characteristic places for 6 and 18 kHz are
indicated by the diamond and triangular arrows respectively. The results were obtained using a discrete
model with N=1000.

For a 6 kHz stapes velocity presented at 0 to 100 dB re 10~ *m/s, the estimate of the fundamental
component changes by less than 1% when the 3™ harmonic is included in the quasilinear
calculations, instead of being neglected. In addition the predicted source distribution for the 3™
harmonic changes by less than 2% if the 3" harmonic is used to improve the estimate of the
fundamental response. This is consistent with Kanis & de Boer’s finding that the inclusion of the
3" harmonic changes the predicted fundamental component by less than 0.01 dB. Therefore we
conclude that the principle of the quasilinear method is valid, at least for these stimulus conditions,
and that the fundamental component of the response of the nonlinear cochlear model can be

accurately estimated by neglecting the harmonic components.

The hyperbolic tangent nonlinear function will produce other odd-order harmonic components in
addition to the 3™ harmonic. Of these higher order responses, the 5™ harmonic has the largest
amplitude. For a 6 kHz stimulus tone, the 5™ harmonic component amplitude can reach within 10
dB of the 3™ harmonic component amplitude at high stimulus levels (e.g. a stapes velocity of 100
dB re 10 *my/s). Despite this, the estimate of the 3™ harmonic component changes by less than 2%
if the 5™ harmonic is included in the quasilinear calculation, compared to the estimated 3™
harmonic response when is the 5™ harmonic is neglected. For this reason, we conclude that it is

appropriate to extend the quasilinear method to the estimation of harmonic components.
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2.4.4 Two tone suppression

Two tone suppression is the reduction of the cochlear response to one tone (the ‘probe’ tone) due to
the simultaneous presentation of another tone (the ‘suppressor’ tone) in the ear canal (Robles &
Ruggero, 2001). This effect is maximised when the two tones have almost equal frequency. It is
important for a cochlear model to replicate the phenomenon of two tone suppression, as it is often

cited as evidence for the nonlinearity of the active process (Patuzzi, 1996).

The quasilinear method for estimating the response of the cochlear model to two tone stimulation
reviewed in appendix E.4, based on the description given by Kanis & de Boer (1994). In summary,
the primary responses to the stimulus frequencies f; and f; are first estimated individually using the
quasilinear method for single tone stimuli. These estimates are then revised using a second iterative
process in which the fundamental responses to each of these tones are combined to form the input
to the OHC nonlinearity. An example of two tone suppression in the quasilinear Kanis & de Boer
cochlear model is shown in figure 2.17. The simulation was performed using a 7 kHz probe tone
and a 7.25 kHz suppressor tone. The plots illustrate that the probe tone frequency component of the
BM velocity response is substantially reduced in amplitude in the vicinity of its best place by the
introduction of the suppressor tone. In association with this, the OHC gain at the probe tone

frequency is also considerably reduced in the region basal to the best place of the probe frequency.

o Figure 2.17 An example of

b two tone suppression in the
Kanis & de Boer cochlear
model.
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2.4.5 Two tone distortion products

The distortion products (DPs) evoked by two tone stimuli (f; and f5, f>>f;) can be estimated with the
quasilinear method, using a combination of the techniques discussed in sections 2.4.3 and 2.4.4. A
sequence of three iterative procedures is used to predict the DPs. These evaluate the response of the
model to each stimulus tone in isolation, the effect of two tone suppression and the DP component
of the CP response. The third stage requires an iteration process similar to that used in the

quasilinear evaluation of the harmonic response to a single tone stimulus. A full description of the
method for predicting two tone DPs is given in appendix E.5.

An example of the 2f; — f, DP predicted by the quasilinear method for the Kanis & de Boer
cochlear model is given in figure 2.18. These results are consistent with those obtained by Kanis
(1995). There is, however, a 10 dB difference in the DP component of the semi-difference pressure
when using f>/fi=1.04. The origin of this discrepancy is unknown. It is unlikely to be associated
with poor convergence of the original Kanis & de Boer iterative method, as that process is
convergent for this stimulus paradigm. However, we have confidence in the validity of the result

shown in figure 2.18c because it is consistent with the state space time domain estimate (section

2.5), at least in the vicinity of the /> and DP characteristic places.

We verified the quasilinear approximation for the case of two tone distortion products by
considering the estimated DP evoked by two stimulus tones presented at levels of 70 dB SPL with

f=1.8 kHz and f;=2.2 kHz. The primary responses alter by less than 0.02 dB if the DP is
incorporated into their evaluation.
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Figure 2.18 The predicted 2f; — f, DP component in the quasilinear Kanis & de Boer model

Three different stimulus paradigms are shown: (a) f5/fi=1.55, (b) f2//i=1.09 and (c) f,//;=1.04. In each case the
DP frequency (fq,) is equal to 5 kHz and the level of the primary stimulus tones (L; and L,) have been chosen
so that the amplitude of the DP component of the CP velocity is approximately 0 dB re 10~ my/s at its
characteristic place. The CP velocity is given in units of dB re 10 °m/s and the semi-difference pressure is in

units of dB re 3.14x10~ *Pa. These results are comparable to those of Kanis (1995), chapter 5 (figures 1,2,
and 3).
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2.5 The state space model

The effect on DPOAESs of random perturbations in the cochlear gain is investigated below, and it is
known that for some perturbations the linear cochlear model may not be stable (Elliott ef al., 2007,
Ku et al., 2008). In this section, the Kanis & de Boer cochlear model is cast into the state space
framework, which is described by Elliott et al. (2007) for the Neely & Kim (1986) cochlear model.
This can be used to assess the stability of the linear model (section 2.5.2), which is an implicit
necessary condition for the validity of the quasilinear method, and also to evaluate the time domain

solution of the nonlinear model for both single tone and two tone stimuli (sections 2.5.3 and 2.5.4).

2.5.1 Formulation of the state space model

In general, a state space time domain representation of a physical system takes the form shown

below, where w(7) is the “state” vector, u(?) is the input vector and y(#) is the output vector.

w(t) = Aw(?)+ Bu(?) (2.35)
y(t) = Cw(t) + Du(z) (2.36)

If w(t), u(t) and y(t) are n —, m — and p — dimensional vectors respectively then A is the n — by-n
‘system’ matrix, B is the n — by-m ‘input’ matrix, C is the p — by-zn ‘output’ matrix, and D is the

p — by-m ‘direct feedthrough’ matrix (Beale, 2006). The eigenvalues of the system matrix, A, are
the poles of the system transfer function. The system is stable if the real parts of all these
eigenvalues are negative, and therefore the stability of the system can be determined from the state

space representation.

The state space representation can be constructed using either the equations of motion of the
system (Elliott et al., 2007; Ku, 2008), or the system transfer function (Furuta ef al., 1988). As the
dynamic components of the active mechanics are not explicitly expressed in the Kanis & de Boer
model, making it difficult to construct the equations of motion, the system transfer function is used
to form a state space representation of the uncoupled linear active Kanis & de Boer model in
appendices F.1 and F.2. The longitudinal fluid coupling is then incorporated to form the coupled

linear active state space model in appendix F.3.

2.5.2 The stability of the linear active Kanis & de Boer cochlear model
The eigenvalues, A, of the system matrix A correspond to the poles of the system and are complex

such that A = o+ iw. The system is known to be stable if the real part (o) of all the poles are

negative. The state space formulation can be used to show that all the poles of a single
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micromechanical element in the uncoupled model remain negative provided that the OHC gain, v,
defined in (2.20), remains less than 1.07 (see appendix F.2.2). The coupled linear active model is
also stable provided that a maximum limit is imposed on y(x), which reduces the value of y below

one for locations within 5 mm of the apex, as shown in figure F.6 of appendix F.3.4.

The use of the state space model to predict the stability of the coupled system can be illustrated by
imposing a step-change in the OHC gain, y(x). Figure 2.19 shows the poles of the coupled linear
active Kanis & de Boer cochlear model, where a step change has been introduced at the 6 kHz
characteristic place. For small step sizes, such as a change in y(x) of 0.01, o is negative for all of

the poles indicating that the model is stable. However as the step size increases, o becomes positive
for some of the poles at approximately 6 kHz. This indicates that the model becomes unstable if y(x)

either steps-up by 0.05 or steps-down by 0.5.

In chapter 4, a non-uniform distribution of y(x) is introduced into the model to generate reflections
of travelling waves. Appendix F.3.4 explains how this random y(x) distribution is implemented and
demonstrates that gain variations of up to 7% can be accommodated in the linear active Kanis & de

Boer model before it becomes unstable.
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Figure 2.19 The poles of the coupled linear active Kanis & de Boer cochlear model

These results were obtained using the state space system matrix when an (a) step-down, and (b) step-up,
change in the OHC gain distribution y(x) is introduced at the 6 kHz characteristic place. In both cases there
are some poles whose real components are positive indicating instability.
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2.5.3 Single tone stimulation of the coupled nonlinear state space model

A nonlinear state space model, solved in the time domain, is described in appendix F.5. A
MATLAB implementation of this model was provided by Ku (2008), and the steady state time

domain responses can be compared with those predicted by the quasilinear method.

Figure 2.20 compares the predicted quasilinear response of the model to a 6 kHz stimulus tone with
the estimated steady state time domain solution. The time required to evaluate the response at all
four stimulus levels on a 2.4 GHz computer was just 25 seconds for the quasilinear method,
compared to 19 hours using the state space approach. The state space solution cannot be treated as
a “gold standard” result, as the predicted amplitude of low level components, such as the 3™
harmonic response near the base of the cochlear model, is influenced by the length of the
observation time as discussed in appendix F.5. However, it is useful to compare the state space and
quasilinear predictions to determine if there are any discrepancies which cannot be attributed to
weaknesses in the state space solution, as this may be indicative of errors in the quasilinear

approach.

Figure 2.20 illustrates that the fundamental component predicted by the state space and quasilinear
methods differ by less than 5 dB in the region between the base and the characteristic place.
However, there are some significant discrepancies between the 3™ harmonic responses predicted by
the state space and quasilinear method. For example, for a 0 dB stimulus, the state space method
appears to suggest the 3" harmonic can reach within 65 dB of the fundamental response. In contrast,
the quasilinear method indicates that the 3™ harmonic response to the 0 dB stimulus is more than
100 dB below the fundamental. Similarly the 3" harmonic response to a 60 dB stimulus is greater
near the base in the state space estimate compared to the quasilinear prediction. These differences
are attributed to the failure of the state space model to reach a steady state within the 30 ms
observation period at all locations within the cochlear model, as illustrated in appendix F.5. For
regions of the cochlear model where the state space model does reach steady state within 30 ms,
such as the vicinity of the 6 kHz characteristic place, the state space and quasilinear estimates differ
by less than 7 dB for stimulus levels > 60 dB. Overall the quasilinear approach provides a better
approximation to the steady state behaviour than the time domain solution, and provides a

considerable saving of computational time by a factor of about 2500.
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Figure 2.20 Comparison of the predicted quasilinear frequency domain and state space time domain
responses to a single tone stimulus

The response of the Kanis & de Boer cochlear model to a 6 kHz stimulus tone presented at a variety of
stimulus levels was estimated using the quasilinear frequency domain method (thick lines) and the state space
time domain method (thin lines). The state space model was observed for 30 ms, and the steady state result
was then determined from the final 20 ms of the predicted response in order to minimise transient effects. In
each case a hyperbolic tangent function was used to represent the nonlinear action of the OHCs and the
discrete model used N=500 element. The solid and dotted lines denote the fundamental and 3™ harmonic
responses respectively. The stimulus levels are referenced to a volume velocity of 10~ ' m-s-! in the ear
canal, and the CP velocity is referenced to the velocity of the fundamental response at the base of the model.

2.5.4 Two tone stimulation of the coupled nonlinear state space model

Kanis & de Boer (1996) used the quasilinear method to predict the DPs evoked in their cochlear
model by two stimulus pure tones at frequencies f; and f5. They compared the results with those
obtained using a time domain method, as an alternative to the quasilinear approach. They observed
good agreement between the steady state time domain solution and the quasilinear estimate for a
range of lower side band DPs (2f; — f5, 3f1 — 2f> and 4f, — 3/5) using a frequency ratio (f5/f;) of 1.2.
In addition they found the 2f; — f, DP amplitude predicted by the two approaches differed by less
than 5 dB across the region of the model encompassing the £, best place and DP characteristic place.
However, near the stapes, Kanis & de Boer note that for stimulus frequency ratios close to unity
(2/fi=1.04) the amplitude of the time domain result exceeds that of the quasilinear method by
approximately 10 dB. For this reason, they conclude that the quasilinear approximation breaks
down in the basal region of the cochlear model as the stimulus frequency ratio approaches unity.
Yet although the quasilinear approximation is more likely to be compromised for small f;/f; ratios,
due to the increased spatial overlap of the two primary travelling waves and the evoked DP
travelling waves, it is unclear why this effect should occur only in the basal region of the model

whilst the approximation remains valid in the region encompassing the best places of £; and 2f; — f>.
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For example, the travelling waves at frequencies f5, f; and 2f; — f> would be expected to exhibit little
nonlinear behaviour close to the base, compared to the regions of the model that correspond to their
respective best places. Therefore it is counter-intuitive that the quasilinear estimate should be valid
between the characteristic places of f; and 2f; — f,, but not near the base of the model. In view of the
discrepancy observed by Kanis & de Boer, and the difficulty interpreting it, we compare the DPs
predicted by the quasilinear method with those obtained using the state space time domain model

described in appendix F.5.

Figure 2.21 compares the predicted 2f; — f, DP response of the cochlear model using the quasilinear
method and time domain state space approach. The results for several stimulus frequency ratios are
displayed. As mentioned in section 2.5.3, the state space result is not a “gold standard” to which the
quasilinear estimate can be validated, since the effects of transients and time windowing in the
analysis of the response limit its accuracy especially for low level components. However, it is
useful to compare the state space and quasilinear predictions to determine if there are any
discrepancies which cannot be attributed to weaknesses in the state space result, as this may be
indicative of errors in the quasilinear approach. Figure 2.21 illustrates that in the vicinity of the

2f1 — f> characteristic place, the predicted amplitude of the DP component differs by less than 5 dB
between the quasilinear and state space estimates. At more basal locations, there are discrepancies
between the predictions, and the state space approach generally tends to suggest higher DP
amplitudes than the quasilinear method estimate. Both of these observations are consistent with the
findings of Kanis & de Boer (1996). However, we attribute the discrepancies between the state
space time domain and quasilinear estimates of the DP amplitude near the base of the model to the
limitations of the time domain approach rather than errors in the quasilinear method. This is
because the state space solution is most likely to be influenced by transient and time windowing
artefacts near the base, where the transient response of the model has a longer decay time (Ku,
2008) and the DP amplitude is small compared to its level at its characteristic place. For example,
at a distance of 2 mm from the stapes, the time domain estimate of amplitude of the 2f; — f, DP
reduces by about 6 dB if the response is measured approximately 25 ms after the stimulus onset,
compared to the response observed around 5 ms after the stimulus onset. The amplitude of the
transient DP response in the basal region of the state space time domain model appears to increase

as f»/fi decreases, possibly due to the change in frequency of the DP component.

Figure 2.22 shows the DPs predicted by the quasilinear method and the state space time domain
method for a stimulus frequency ratio of 1.2. The computational time required to establish all four
DP components was approximately 4 minutes with the quasilinear approach and 10 hours for the
state space method. For the larger amplitude DPs (2] — f2, 2f> — f1 and 3f; — 2f>) the quasilinear and
state space estimates of the DP amplitude at the DP characteristic place differ by less than 5 dB. At
locations where the DP amplitude is small, the state space time domain method tends to

overestimate the level of the DP component due to the effects of transients and time windowing.
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Figure 2.21 Comparison of the 2f; — f, response to two tone stimulation predicted by the quasilinear
frequency domain and state space time domain methods

The plots show the primary and 2f; — f, DP CP velocity responses of the Kanis & de Boer cochlear model
when two stimulus tones, f; and f;, are applied at different stimulus ratios. The responses are estimated using
the quasilinear (solid lines) and the time domain (dotted linear) state space method. In each case f; = 6 kHz
and the stimulus levels were 81 dB re 10~ '®m-’s-". The state space model was observed for 40 ms, but only
approximately the final 10 ms was used in this analysis in order to minimise the effects of transients. The CP
velocity is referenced to the amplitude of the £ primary response at the base of the model.
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Figure 2.22 Comparison of the DP responses to two tone stimulation estimated using the quasilinear and state
space methods

The plots show the predicted 2f; — f5, 311 — 2f5, 4f1 — 3f; and 2f; — f; DPs evoked by two stimulus tones at /;=6
kHz and f;=7.2 kHz (at 80 dB re 10~ '°m-’s-") in the Kanis & de Boer cochlear model. The responses were
obtained using the quasilinear method (thick solid line) and the state space time domain method (thin solid
line). The primary responses (dotted lines) are also shown for reference. The state space model was observed
for 40 ms, but only the final 20 ms was used in this analysis to minimise the effect of transients.
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In summary, we find no evidence that the quasilinear estimate of DPs evoked by two pure tone
stimuli at frequencies f; and f; is invalid for any stimulus frequency ratio or DP frequency. For this

reason, we proceed with the quasilinear method for predicting the response of the cochlear model.

2.5.5 Summary of state space comparison

The frequency domain state space Kanis & de Boer cochlear model allowed us to verify that the
linear and quasilinear micromechanical model is stable for a broad range of stimulus frequencies
when no perturbations are imposed on the active mechanics. If irregularities in the active
impedance are introduced, the model remains stable and the quasilinear method is valid for small or

smoothed changes.

The nonlinear time domain state space model also provided predicted responses for single tone and
two tone stimulation. A comparison between these time domain results and the estimated
quasilinear responses indicates that it is appropriate to use the quasilinear method across a broad

range of stimulus parameters and that this allows a considerable reduction in computational time.
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2.6 Conclusions regarding the Kanis & de Boer
micromechanical model

In this chapter the one-dimensional cochlear model was described. We also reviewed the finite

difference and WKB methods which are used to evaluate the response of the linear model, and the

quasilinear method of Kanis & de Boer for estimating the response of the nonlinear model.

As summarised in section 1.9 (i), this chapter offers the following contributions:

Development of a method to decompose the total semi-difference pressure into forward and
backward travelling wave components for a linear cochlear model (section 2.3). This is in
contrast to the well-used alternative approach whereby the WKB method is employed to
determine the total solution from the predicted forward and backward travelling components
(e.g. Talmadge et al., 1998). The decomposition method appears to offer useful insight into
the response evoked by internal sources within the cochlear model.

A modification of the iterative procedure used in the quasilinear method which improves the
rate of convergence of the method when evaluating harmonic responses (appendix E.3).
Development of a state space model of the Kanis & de Boer micromechanical model, which
has been implemented in both the frequency and time domains in MATLAB (section 2.5 and
appendix F). A substantial portion of this development was achieved by extending the work of
Ku (2008). However, this extension has only been possible due to the relationship which we
were able to establish between the Kanis & de Boer micromechanical model and that used by

Ku (appendix F.4).
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3. Alternative micromechanical models

The response of a coupled cochlear model, such as that of Kanis & de Boer described in chapter 2,
is dependent on several micromechanical properties. These include the nonlinear function used to
represent the action of the outer hair cells (OHCs), the position of this nonlinearity within the
micromechanical feedback loop, the nature of the displacement which acts as the input to the
nonlinear function, and the spatial distributions of the micromechanical parameters. In this chapter
we consider the influence of these factors on the predicted response of the model, and select the
most appropriate micromechanical properties with which to proceed to investigate distortion

product otoacoustic emissions.
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3.1 The nonlinear function

The cochlear model developed by Kanis & de Boer is a dynamic nonlinear model (Harte et al.,
2005) and is therefore suitable for replicating the nonlinear cochlear response to stimulation
(section 1.2.3). However the hyperbolic tangent function which they use to represent the nonlinear
behaviour of the OHCs is symmetric and so does not generate even-order harmonic distortion
products (appendix G.1). As physiological measurements suggest that both even- and odd- order
harmonic components are generated inside the cochlea in response to a single tone stimulus
(Cooper, 1998; Parthasarathi et al., 2003; Olsen, 2004), we consider an asymmetric alternative to
the hyperbolic tangent nonlinearity: the first order Boltzmann function. Use of this nonlinear
function in the cochlear model is in good agreement with the experimental observation that the
response of the OHCs in frogs and mice can be well-matched by a first order Boltzmann function

(Pickles, 1982; Dallos (1996); Kros et al., 1996).

3.1.1 The first order Boltzmann function

Several different asymmetric nonlinear functions have been used in cochlear models to represent
the nonlinear action of the OHCs in the past (Chertoff et al., 2001; Bian et al., 2002), but the first
order Boltzmann function is the simplest choice. It has been successfully applied to cochlear
models in the past, such as the uncoupled model of Cooper (1998) in which this nonlinear function
was used to explain his observations of the odd and even harmonic components evoked by a single

tone stimulus in the guinea pig cochlea.

The first order Boltzmann function is defined in (3.1). The value of &, which determines the
maximum output of the nonlinearity and has the same dimensions as the input u, can be set so that
the response of the model begins to saturate at a specified stimulus level. The dimensionless
constant S controls the asymmetry of the function, and the first order Boltzmann function becomes
identical to the hyperbolic tangent function for f=1. The dimensionless constant 7 is assigned a

value of 1 when, as in this case, the input « has units of pressurez.

o 1 1
F =— - 3.1
0= 11y o

The value of y3, which has the same dimensions as the input, is constrained such that

% In section 3.3 the position of the nonlinearity within the micromechanical feedback loop moves, and so the
value of 7 is changed to 2.5x10'"to compensate for the change in units of the input.
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This ensures that the nonlinearity provides 0 dB gain to the fundamental component at low
stimulus levels. The way in which the parameters o and 3 control the form of the first order
Boltzmann function is illustrated in figure 3.1. This shows that the parameter o affects the input
level at which saturation occurs, as well as controlling the maximum output of the nonlinear
function. Therefore, for a given input level, increasing the value of a reduces the amplitude of both
odd- and even- harmonic components in the output of the function. In addition, increasing a
increases the compression threshold, which we shall define as the minimum input level at which
the growth rate of the fundamental component of the nonlinear function output falls below 1 dB/dB.
The value of the parameter  influences the relative amplitude of the odd and even harmonic
components in the output of the nonlinear function. For example, the function becomes more
asymmetric as [ increases and therefore the amplitude of the even order harmonics, relative to the
odd order harmonics, should increase as [3 increases. Throughout this section, these parameters are
arbitrarily fixed such that a=2 and =3 (so yg = 0.38) for simplicity. Discussion regarding the

selection of suitable o and B values for the cochlea is deferred until section 3.5.

(a) The influence of o (b} The influence of B

Figure 3.1 The first order Boltzmann function

The plots show the influence of the parameters o and B on the form of the first order Boltzmann function,
defined in equation (3.1). (a) The influence of a, for B=1. (b) The influence of  for a=2. In each case yg is
constrained so that the condition given in (3.2) is satisfied. Note that if a=2 and =1, the first order
Boltzmann function is identical to a hyperbolic tangent function.
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3.1.2 The nonlinearity in isolation

Figure 3.2 shows the output of an isolated first order Boltzmann function when a sinusoidal input is
applied at a variety of input levels. It demonstrates that both even- and odd- order harmonic
components occur in the output, as anticipated. In contrast, the 2™ harmonic and DC components

are absent in the output of the hyperbolic tangent function.

The spectrum of the distortion products (DPs) which arise in the output of the isolated first order
Boltzmann function when two equal amplitude pure tones (f; and f) are applied at the input, is
shown in Figure 3.3. Both odd- and even- order DPs are evident in the output of this nonlinear

function. In contrast, only odd-order DPs are present in the output of an isolated hyperbolic tangent

function.
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Figure 3.2 The response of the isolated nonlinear function to a single tone input

The plots show (a) an illustration of the nonlinear function in isolation driven by a sinusoid and (b) the
transfer response (the amplitude of the output component per unit input amplitude) of the first order
Boltzmann function ($=3) compared to that of the hyperbolic tangent function (Tanh) for a range of
frequency components. Note that no even order harmonics are produced by the symmetric tanh function,
including a DC component. The units of the input are arbitrary, and a=2 so yg=0.38.
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Figure 3.3 The response of the isolated nonlinear function to two tone stimulation

The DPs generated by the nonlinear function in isolation are shown. The input contains two equal amplitude
tones at frequencies f;=7.6 kHz and f,=8.4 kHz. Results are given for the Tanh nonlinearity and the first order
Boltzmann function (=3). The units of the input and output are arbitrary, but equal stimulus levels are used
for f] and f;. In the Boltzmann function, a=2 so yg=0.38.

There are few physiological measurements of the harmonic response of the cochlear partition to
single tone stimulation. However, both Cooper (1998) and Olsen (2004) have observed the 2™
harmonic component of the mechanical response of the mammalian cochlea to acoustic stimulation,
and their results demonstrate that the amplitude of this component can reach within —20 to — 10
dB of the level of the fundamental response. The coupled cochlear model will only be capable of
simulating the generation of a 2" harmonic component in response to single tone stimulation, or
predicting even order DPs in response to two tone stimulation, if the Boltzmann function is used
instead of the hyperbolic tangent function. For this reason, we proceed using a first order
Boltzmann function to represent the nonlinear action of the OHCs. In the following sections of this
chapter we demonstrate that several other features of the micromechanical model influence the
amplitude of the harmonic and DP responses, in addition to the choice of the nonlinear function.
For this reason we defer selecting values of the Boltzmann function parameters, o and 3, for the

cochlear model until these other factors have been considered.
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3.2 The influence of the position of the nonlinearity within the
micromechanical feedback loop

For a linear active cochlear model, each micromechanical element pictured in figure 2.2 can be

represented by the feedback diagram shown in figure 3.4a (Neely, 1985). In this illustration the

lin .
orc > 1S

linear pressure output of the feedback loop which represents the action of the OHCs, p
assumed to act on the CP in the same way as the transmembrane pressure, pq, as discussed in
section 2.4.1. Filter 1 corresponds to the passive mechanical impedance of the BM. Filter 2 is a
simplified representation of the impedance of the active OHC complex, incorporating the many
factors that contribute to the action of the OHCs including linear components of the
mechanoelectrical and electromechanical transduction processes associated with the cells. The
nonlinearity can be positioned either before filter 2 (figure 3.4b) as suggested by Cooper (1998) or
after filter 2 (figure 3.4c) as implicit in the model of Kanis & de Boer (1993) described in section

2.4.1. In this section we consider the influence of the position of the nonlinearity on the predicted

response of a cochlear model.
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Figure 3.4 Block diagrams of different micromechanical feedback loop arrangements

An example of a linear active model (a) and two active nonlinear models (b & c) are shown. The semi-
difference pressure across the cochlear partition, the velocity response of the basilar membrane, the linear
pressure output of the outer hair cells and the quasilinear output of the outer hair cells are denoted by p,, v,

lin

OHC

dynamics of the outer hair cells respectively.

and pgzc respectively. Filters 1 and 2 represent the admittance of the basilar membrane and the
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A summary of the results of this investigation were presented in a letter to the editor of the Journal
of The Acoustical Society of America, How et al. (2010), re-printed in appendix H. The simulated
results presented in this section differ quantitatively from those of How et al.because of differences
in the parameters of the nonlinear function. For example, in this section we use a value of  equal
to 3 and a uniform value of o for the coupled cochlear model. In contrast, How et al.use a 3 value
of 1.2 and a spatial distribution of a so that it increases from the base to the apex for reasons

discussed which will be discussed in section 3.5.

3.2.1 The position of the nonlinearity in an uncoupled element

Figure 3.5 shows the predicted response of a single uncoupled micromechanical element, located at
the 6 kHz characteristic place, to sinusoidal stimulation. This element has micromechanical
properties identical to those described by Kanis & de Boer, in all but two aspects. First, a first order
Boltzmann function is used to represent the nonlinear action of the OHCs rather than the
hyperbolic tangent function employed by Kanis & de Boer. Secondly, the simulation is performed
twice: once with the nonlinearity positioned before filter 2, and again with it positioned after filter
2. The Boltzmann function parameter [ is set equal to 3 for both of these arrangements. The value
of o is changed from 5 to 10 when the nonlinear function is moved from before to after filter 2 so
that the amplitude of the fundamental component is the same in each case and the dimensions of o
are the same as the input to the nonlinear function. It should also be noted that the dimensionless
Boltzmann function parameter 7 is assigned a value of 2.5x10'" rather than 1, when the
nonlinearity is positioned before, instead of after, filter 2 to compensate for the change in the units
of the input to the nonlinearity. As a result of these Boltzmann parameter selections, the
fundamental response of the element changes by less than 1 dB when the position of the

nonlinearity within the micromechanical feedback loop is altered, as shown in figure 3.5.

Figure 3.5 also demonstrates that, for both micromechanical arrangements, local maxima occur in
the simulated harmonic responses when either the fundamental frequency, or the harmonic
frequency, is equal to the characteristic frequency of the element. Although the amplitude of the
fundamental response is not significantly affected, the amplitude of the harmonic components is
influenced by the position of the nonlinearity within the micromechanical feedback loop. For
example, the local maximum in the 2™ harmonic response which occurs when the stimulus
frequency is close to the characteristic frequency of the uncoupled element decreases in amplitude
by 8 dB if the nonlinearity is moved from before to after filter 2 in the micromechanical feedback
loop. Conversely the other local maximum in the 2™ harmonic response, which occurs when the 2™
harmonic frequency corresponds to the characteristic frequency of the element, increases in

amplitude by 13 dB if the same change is made to the micromechanical feedback loop.
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When considering the generation of the 2™ harmonic response within the micromechanical
feedback loop we denote the stimulus frequency as f; and therefore the 2™ harmonic frequency is
2f;. Figure 3.6a illustrates the passage of the 2" harmonic component through the micromechanical
feedback loop. It shows that filter 2 will either operate on a signal at 2f; or f, depending on whether
the nonlinearity is positioned before or after filter 2 respectively. If the response of filter 2 were
independent of frequency, then the position of the nonlinear function relative to this filter would
have no influence on the amplitude of the 2™ harmonic component generated by the feedback loop.
However, this is not the case. Figure 3.6b shows the normalised amplitudes of filters 1 and 2 for an
uncoupled micromechanical element located at the 6 kHz characteristic place. This figure is similar
to a graph presented in How et al. (2010), but it has been modified to emphasise the influence on
the 2™ harmonic component of the position of the nonlinearity relative to filter 2. Figure 3.6b
demonstrates that if f, = 6 kHz and 2f; = 12 kHz, then the amplitude response of filter 2 is much
smaller at 2f, compared to fy. Therefore, when a stimulus is present at f, = 6 kHz, the amplitude of
the 2™ harmonic is reduced when the nonlinearity is positioned before, rather than after, filter 2. In
contrast, if fo = 3 kHz and 2f, = 6 kHz, then the amplitude response of filter 2 is approximately
double at 2f, compared to f,. For this reason, when the stimulus is presented at fo = 3 kHz, the
amplitude of the 2™ harmonic component increases when the nonlinearity is positioned before,
rather than after, filter 2. In summary, the influence of the position of the nonlinearity within the
micromechanical feedback loop on the simulated 2™ harmonic response shown in figure 3.5 is
associated with the frequency dependence of filter 2 which represents the impedance of the OHC

complex.
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Figure 3.5 The frequency response of a single micromechanical element

A range of stimulus frequencies, at a level of 1 Pa, are presented to a single micromechanical element located
at the 6 kHz characteristic place. The nonlinearity is positioned either (a) before or (b) after filter 2, as shown
in Figure 3.4. A first order Boltzmann function, with =3 and (a) a=5 or (b) a=10, is used to represent the
nonlinear action of the OHCs. The value of a was selected so that the fundamental response is unaffected by
the change in the position of the nonlinearity within the micromechanical feedback loop. The diamond,
circular and triangular arrow heads indicate stimulus frequencies at which the fundamental, 2" harmonic or
3™ harmonic frequency correspond to the characteristic frequency of the micromechanical element
respectively.
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Figure 3.6 The frequency response of filters 1 and 2 in the Kanis & de Boer cochlear model

Plot (a) shows the frequency of the signal of interest when predicting the 2™ harmonic component of the
response to a stimulus presented at frequency fo. The output of the nonlinear function will also contain
components at the fundamental and other harmonic frequencies, but these are neglected for simplicity. (b)
illustrates the assumed frequency response functions for filters 1 (dashed line) and 2 (solid line), associated
with the passive BM admittance and OHC impedance respectively, observed at the 6 kHz characteristic place
in the Kanis & de Boer (1993) model of the human cochlea. Dotted lines indicate the difference in the
amplitude of filter 2 at f, and 2f; when the stimulus is presented at (i) f,= 6 kHz and (ii) fo= 3 kHz.

3.2.2 The position of the nonlinearity in a coupled model

In this section the influence of the position of the nonlinearity within the micromechanical
feedback loop on the coupled cochlear model is described. The value of a is changed from 0.8 to 2
when the nonlinear function is moved from before to after filter 2 so that the fundamental
component has the same saturation threshold in each case. As for an uncoupled element, the
dimensionless Boltzmann function parameter 7 is assigned a value of 2.5x10' rather than 1, when
the nonlinearity is positioned before, instead of after, filter 2 to compensate for the change in the
units of the input to the nonlinearity. In these simulations, all of the Boltzmann function parameters

are uniformly distributed along the cochlear partition.
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The effect on the harmonic response to a single tone stimulus

Figure 3.7(i) shows the response of the guinea pig cochlea to single tone stimulation at the 17 — 19
kHz characteristic place, observed by Cooper (1998). The fundamental, 2™ harmonic and 3™
harmonic components of the response are given for a range of stimulus frequencies between 6 and
21 kHz. This figure also presents the simulated response of the coupled cochlear model, observed
at the 6 kHz characteristic place. The stimulation is performed twice, with the nonlinear function
positioned either (ii) before or (iii) after filter 2 as illustrated in figure 3.4(b and c). As a
consequence of the selected Boltzmann function parameters, the fundamental response predicted by
the model changes by less than 1.5 dB when the position of the nonlinearity within the
micromechanical feedback loop is altered. The magnitude of this change is comparable to the scale
of numerical errors that can arise in the computation process (appendix B.1), and so it is not
considered significant. However, although the simulated fundamental response is unaffected, the
position of the nonlinearity within the micromechanical feedback loop does influence the harmonic
responses of the coupled model. For example, figure 3.7 shows that predicted the 2™ harmonic
response observed at the 6 kHz characteristic place in the cochlear model has two local maxima
which occur when the stimulus frequency is equal to either 6 or 3 kHz. For these stimuli either the
fundamental or 2" harmonic component frequencies correspond to the characteristic frequency of
the observation location. If the nonlinearity is positioned before, rather than after, filter 2 in the
micromechanical feedback loop then the predicted amplitude of the 2™ harmonic component of the
response at a 3 kHz stimulus tone increases from — 10 to 3 dB relative to the fundamental
component. In addition, the same change in the micromechanical model causes the predicted
amplitude of the 2" harmonic component to decrease from — 24 to — 35 dB relative to the
fundamental response for a 6 kHz stimulus. Therefore, positioning the nonlinearity before rather
than after filter 2 either enhances or reduces the amplitude of the 2™ harmonic response when
either the 2" harmonic or fundamental component frequency is equal to the characteristic
frequency respectively. These effects are largely uninfluenced by other model parameters such as
the Boltzmann function parameters o and 3. The same effects were observed for the uncoupled
model in section 3.2.1, and an explanation for the influence of the position of the nonlinear

function within the micromechanical feedback loop was proposed.

Although the nature of the influence of the position of the nonlinear function is not generally
affected by other model parameters, the amplitude of the predicted level of the 2™ harmonic
response relative to the fundamental response is sensitive. For example, when the 2™ harmonic
frequency is equal to the characteristic frequency of the observation location, the amplitude of the
2" harmonic component relative to the fundamental response depends on the Boltzmann function
parameters o and B3, in addition to the position of the nonlinearity within the micromechanical
feedback loop. For this reason, it is difficult to determine whether the nonlinearity should be

positioned either before or after filter 2 in order to best replicate the results of Cooper (1998).
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However, How et al. (2010) suggest that for suitable choices of o and 3 discussed in section 3.5,
the results of Cooper (1998) are most accurately simulated by the model if the nonlinearity is

positioned before rather than after filter 2.
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Figure 3.7 The influence of the position of the nonlinearity within the micromechanical feedback loop on the
harmonic response of the coupled cochlear model

(1) The measured response of the BM to a single tone stimulus in the guinea pig cochlea, observed at the

17 — 19 kHz characteristic place [From figure 2 of Cooper (1998), with permission from John Wiley &
Sons]. The stimulus was presented at (a) 60 dB SPL and (b) 80 dB SPL. The fundamental, 2™ harmonic, and
3™ harmonic components of the response are denoted by Fy, 2F, and 3F, respectively. (ii) & (iii) The
simulated response of the coupled cochlear model to a single tone stimulus presented at (a) 60 dB SPL and
(b) 80 dB SPL, observed at the 6 kHz characteristic place. The nonlinearity is positioned either (ii) before or
(ii1) after filter 2, as shown in figure 3.4. A first order Boltzmann function, with =3 and (ii) a =0.05 or (iii)
a=0.13, is used to represent the nonlinear action of the OHCs. The predicted fundamental, 2™ harmonic and
3™ harmonic components of the BM displacement are denoted by the solid, dashed and dotted lines

respectively.
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The effect on the distortion products evoked by two tone stimulation

Figure 3.8a shows the predicted response of the coupled model evoked by two stimulus tones at
frequencies f; and f;. Only the largest amplitude DP components of the BM velocity are shown.
Higher order components, such as the 3f; — 2f; and 3f, — 2f; DPs, were at least 60 dB below the
primary responses. The amplitude of the primary responses (f; and f;) vary by less than 1 dB if the
position of the nonlinearity within the micromechanical feedback loop is moved. As this change is
of comparable magnitude to the scale of numerical errors that can arise in the computation process
(appendix B.1), it is not considered significant. Although the primary responses are unaffected, the
DPs can be influenced by the position of the nonlinearity within the feedback loop. For example,
the amplitude of the predicted 2f; — f; and 3f; — 2f, DPs decrease by 5 and 16 dB respectively when

the nonlinearity is moved from before, to after, filter 2.

Figure 3.8b shows the spectrum recorded from the BM of the chinchilla cochlea in response to two
tone stimulation by Robles et al.(1997). The middle ear model and the micromechanical parameters
of the cochlear model are designed to replicate the response of the human ear, rather than the
chinchilla ear, and so it is not appropriate to compare the absolute levels of the spectral components
observed experimentally with those predicted by the model. Comparison of the relative amplitudes
of the spectral components between the simulation and physiological measures is more appropriate.
It should be noted that a lower stimulation level was used in the model, compared to the
experimental study, in order to achieve a broad agreement in the amplitude of the 2f; — f, DP,
relative to the f; component in both the simulated and experimental result. Robles et al.(1997)
observe that the amplitudes of the 2f; — f; and 3f; — 2f; DPs are approximately 22 and 28 dB below
that of the f; component of the BM velocity respectively. The model simulation predicts these
values to be equal to 23 dB and 65 dB respectively, or 29 and 81 dB respectively, depending on
whether the nonlinearity is positioned before, or after, filter 2 in the micromechanical feedback
loop. Although both arrangements underestimate the amplitude of the 4™ order DP, the best
agreement with the physiological measure is observed when the micromechanical feedback loop

incorporates the nonlinear function positioned before filter 2.
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Figure 3.8 The influence of the position of the nonlinearity in the micromechanical feedback loop on the
response of the model to two tone stimulation

(a) The predicted CP velocity components, evoked by two tones (L;=L,=60 dB re 10 *m/s), at frequencies f;,
1, 2fi — f2, and 25 — f1. The result is observed at the characteristic place of 8.1 kHz, as at this position in the
cochlear model the f; and /; components have almost equal amplitude. The simulation is performed twice:
with nonlinearity positioned either before (circles) or after (crosses) the OHC dynamics in the
micromechanical feedback loop. The Boltzmann function uses f=3 and the parameter a is set so that the
primary tones are equally saturated for both micromechanical arrangements so that 0=0.8 and a=2 when the
nonlinearity is positioned before and after filter 2 respectively. (b) The physiological measurement of Robles
et al.at the 8 kHz characteristic place in the chinchilla cochlea (L;=L,=80 dB SPL), used with permission. In
all cases stimuli were presented at fi= 7.6 kHz, £,=8.4 kHz (f;/fj=1.11). [From figure 1 of Robles et al. (1997),
with permission from Am. Physiol. Soc]

In summary, the predicted harmonics and DPs in the cochlear model have higher amplitudes,
relative to the fundamental response, if the nonlinearity is positioned before, rather than after, filter
2. The influence of the position of the nonlinear function within the micromechanical feedback
loop may not be evident in the fundamental response, as the micromechanical parameters can be
adjusted to compensate for any affect on the fundamental component. Therefore it is important to
consider the harmonic response of the model when deciding where to position the nonlinear
function within the micromechanical feedback loop of a simple cochlear model such as the one
considered in this chapter. In section 3.5, we opt to position the nonlinearity before filter 2 for
further work. However, it is feasible that either micromechanical arrangement could be used,
provided that the parameters of the Boltzmann function (o and 3) are appropriately set to provide

sufficient levels of harmonic and DP components in each case.

91



3. Alternative micromechanical models
3.3 Vertical or shear motion input to the nonlinear function

3.3 Vertical or shear motion input to the nonlinear function

When the Kanis & de Boer cochlear model is modified so that the nonlinearity is positioned before
filter 2 in the micromechanical feedback loop, the input to the nonlinear function is dependent on
the vertical velocity of the BM, v. However the anatomical orientation of the OHCs within the
organ of Corti, illustrated in figure 3.9, suggests that motion of the OHC stereocilia arises not from
this vertical movement, but from the relative shear motion of the BM and TM (Lim, 1980; Gueta et
al., 2008). As the nonlinearity in the cochlear model is attributed with the action of the OHCs, it
may therefore be more appropriate to use a shear motion, rather than a vertical motion, to

determine the input to the nonlinear function.

Neely & Kim (1986) suggest a model in which the difference in shear displacement between the
tectorial membrane (TM) and the organ of Corti (OC), &, provides the input to the OHCs. The shear
displacement, &, is assumed to depend linearly on the BM velocity, v, as shown in (3.3), where Z,
and Z; denote the impedances of the TM and the coupling between the TM and OC respectively
and are defined in appendix E.6. The dimensionless constants b,, and gj,,., have values of 0.4 and 1,
and represent the ratio of the average displacement across the width of the CP to the maximum

displacement over the width of the BM, and the BM to IHC lever gain respectively.

g(x a)) — glever ZZ(x7 a)) V(x, a)) (33)
’ b, Z,(x,0)+Z,(x,0) iw
Figure 3.10 shows a block diagram representation of a single micromechanical feedback loop, and
how it is modified when the input to the nonlinearity is switched from v to &. It illustrates that this

change effectively introduces filter 3 into the micromechanical feedback loop, which represents the

response of the TM and the coupling between the TM and OC.

Tectorial membrane

Inner-hair cells Quter-hair cells
Basilar membrane

Radial direction
Figure 3.9 Illustration of the anatomy of the cochlear partition
This shows the position of the outer hair cells (OHCs) with respect to the Basilar membrane and Tectorial
membrane. The orientation of the motion described in the text as “vertical” and “shear” is also shown for
reference. [From figure 1 of Gueta et al. (2008), with permission from the author].
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Figure 3.10. Block diagrams of
(a) micromechanical feedback loops
which differ in the input to the
nonlinear function.
The input to the nonlinear function is
either (a) the vertical BM velocity v
or (b) the difference in shear
displacement of the TM and OC, &
) Filters 1 and 2 represent the
Filter 2 admittance of the basilar membrane
ngfc and the dynamics of the outer hair
cells respectively. The shear
(b) displacement, &, is assumed to have
linear dependence on v, as shown in
equation (3.3), so that filter 3 can be
Filter 1 >V described by the impedance
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In this section, the influence of the orientation of the input to the nonlinear function is considered
by comparing the response of the model when the input to the nonlinearity is switched from
vertical BM velocity v (Figure 3.10a), to shear displacement & (figure 3.10b). In all simulations the
nonlinearity is positioned before filter 2 in the micromechanical feedback loop, and a first order

Boltzmann function (B=3) is used to represent the nonlinear action of the OHCs.

3.3.1 The influence on the uncoupled model

We start by considering the effect of changing the input to nonlinear function from vertical BM
velocity v (figure 3.10a), to shear displacement & (figure 3.10b) on a single micromechanical
element within the cochlear model. Figure 3.11 shows the response of an uncoupled element to a
single tone stimulus presented at a range of frequencies. The simulation is performed twice with the
input to the nonlinearity determined by either the vertical BM velocity, v, or the shear displacement.
& The result demonstrates that there is a range of stimulus frequencies, between about 4 and 6 kHz,
at which the amplitude of the harmonic components increase when the input to the nonlinearity
changes from v to & For lower stimulus frequencies (< 3 kHz), the amplitude of the harmonic

components tends to decrease if the nonlinearity input changes from v to &
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Figure 3.11 The influence of the input to the nonlinear function on the response of a single micromechanical
element

The fundamental (solid line), 2" harmonic (dashed line) and 3™ harmonic (dotted line) components of the
cochlear partition velocity are shown for a micromechanical element at the 6 kHz characteristic place. The
thin lines and thick lines correspond to the micromechanical models illustrated in figure 3.10(a) and (b)
respectively. The nonlinear action of the OHCs is represented by a first order Boltzmann function with =3
and o=24 (for figure 3.10a) or o=20 (figure 3.10b).

The frequency responses of the filters 1, 2 and 3 used in figure 3.10 for the micromechanical
element located at the 6 kHz characteristic place are given in figure 3.12. The filter amplitudes in
figure 3.12 are normalized with respect to the filter amplitude at 6 kHz because the Boltzmann
function parameter o has been adjusted so that the fundamental component exhibits equal
saturation at this stimulus frequency in both micromechanical arrangements. When the input to the
nonlinearity is changed from v to & there are two changes to the micromechanical feedback loop:
filter 3 is introduced and the form of filter 2 changes to accommodate the change in the output of

the nonlinear function from v to &

If the vertical BM velocity, v, provides the input to the nonlinear function, the input is determined
purely by filter 1 for a given stimulus frequency (figure 3.10a). If instead the shear displacement &
acts as the input to the nonlinear function, then the input is determined by both filters 1 and 3
(figure 3.10b). Filter 1 has the same frequency response in both micromechanical arrangements.
However, filter 3 has bandpass characteristics such that the input to the nonlinearity is enhanced
relative to a 6 kHz signal, for stimulus frequencies between 4 and 6 kHz. In contrast, filter 3
attenuates the input to the nonlinearity, relative to a 6 kHz signal, for very low and very high
stimulus frequencies. Therefore, when the input to the nonlinear function is changed from v to &,
the introduction of filter 3 into the micromechanical feedback loop increases the input to the
nonlinearity for stimulus frequencies at 4 — 6 kHz, and reduces the input for all other stimulus
frequencies. For this reason, the amplitude of the harmonic components increase at stimulus
frequencies between 4 and 6 kHz, and decreases at other frequencies, when the input to the

nonlinearity is changed from v to & as observed in figure 3.11.
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Figure 3.12 The form of the filters 1, 2 and 3 in the Kanis & de Boer cochlear model

Plots (a) to (c) show the responses of filter 1, 2 and 3 at the 6 kHz characteristic place. The filter amplitude is
normalised relative to the filter amplitude at 6 kHz. The thin and thick lines correspond to the filters for the
different micromechanical models shown in figure 3.10(a) and (b) respectively. In plot (a) the filter 1
responses are indistinguishable.

3.3.2 The influence on the coupled model

We now investigate the effect of changing the input to nonlinear function from vertical BM

velocity v (figure 3.10a), to shear displacement & (figure 3.10b), on the coupled cochlear model.
The fundamental response to single tone stimulation

Figure 3.13 shows the fundamental response of the cochlear model to a range of stimulus
frequencies, observed at the 6 kHz characteristic place. The simulation is performed twice, with the
input to the nonlinear function either being determined by v or & In both cases a Boltzmann
function is used to represent the nonlinear action of the OHCs, and it is positioned before filter 2 in
the micromechanical feedback loop. At low stimulus levels, such as a stapes velocity of 50 dB re
10~ ®m/s, the change in the nature of the input to the nonlinear function has no substantial effect.
However, at a higher stimulus level of 80 dB re 10 ~* m/s a difference is observed: when the input
to the nonlinearity is changed from the vertical BM velocity, v, to the shear displacement, &, the
amplitude of the fundamental response decreases and the OHC gain reduces. These effects are most
apparent for stimulus frequencies between 3.8 and 6 kHz, when the response is observed at the 6
kHz characteristic place in the cochlear model. Although a reduction in response amplitude and
OHC gain are often associated with greater saturation of the nonlinear function, it has not proved
possible to adjust the uniformly distributed parameters of the Boltzmann function to compensate
for a change in the nature of the input to the nonlinear function from v to &. This is not surprising
considering the gain distributions for the 80 dB response shown in figure 3.13, which illustrate that
at low stimulus frequencies (<3.8 kHz) the nonlinear function is more saturated when the vertical
BM velocity provides the input, whilst at higher stimulus frequencies (3.8 to 5.5 kHz) the nonlinear

function is more saturated when the shear displacement acts as the input.
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Figure 3.13 The influence of the input variable to the nonlinear function on the fundamental response of the
coupled cochlear model

Plot (a) shows the fundamental response of the coupled model to a 6 kHz stimulus presented at 50 and 80 dB
re 10~ *m/s. The amplitude is given in dB relative to the low frequency response at 2 kHz. Plot (b) gives the
fundamental OHC gain (yq1), as defined in equation (2.30), for the same stimuli used in (a). The input to the
nonlinear function is either the vertical BM velocity v (thin lines), or the shear displacement & (thick lines). In
both cases, the nonlinearity is a Boltzmann function (=3, a=0.8) and it is positioned before filter 2.

The harmonic response to single tone stimuli

Figure 3.14 shows the spatial distributions of the fundamental and harmonic responses of the model
to a 6 kHz stimulus tone presented at the stapes at 60 dB re 10~ *m/s. There are two effects of
changing the input to the nonlinear function from v to £ on the harmonic components. Firstly, at the
characteristic place of the fundamental frequency, the amplitude of the harmonic components
increase relative to the fundamental component. For example, figure 3.14 demonstrates that the
amplitude of the 2™ harmonic component at the 6 kHz characteristic place increases from — 40 dB
to — 27 dB, relative to the fundamental response, when the input of the nonlinear function changes
from v to & Secondly, the amplitude of the harmonic components at their characteristic places
decrease when the input to the nonlinearity switches from v to & In Figure 3.14 the amplitude of
the 2" harmonic component at its characteristic place decreases from — 4 dB to — 35 dB relative

to the fundamental response when the input to the nonlinear function changes from v to &
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Figure 3.14 The influence of the input variable to the nonlinear function on the harmonic response of the
coupled model

The plots show the fundamental and harmonic responses to a 6 kHz stimulus at 60 dB re 10~ *m/s in a model
where the input to nonlinear function is either determined by (a) the vertical velocity of the CP, v, or (b) the
difference in shear displacement between the tectorial membrane and the organ of Corti, & A first order
Boltzmann function (=3 and a=0.8) is used in both models.
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The measurement of Cooper (1998), in the guinea pig cochlea, suggests that the 2™ harmonic
component should be approximately 11 dB below the fundamental component at the characteristic
place of the 2" harmonic frequency. Therefore, the model response is more in agreement with
physiological observations if v, rather than &, is used to determine the input to the nonlinear

function.

These observations of the model suggest that the nonlinear function is more readily saturated at the
characteristic place, but less readily saturated at more basal locations, if the input to the
nonlinearity changes from v to & The quasilinear approximation assumes that, at all locations
within the cochlear model, the harmonic components are small relative to the fundamental and so it
is the amplitude of the fundamental response which determines the degree to which the nonlinear
function is saturated. At a location immediately basal to the 6 kHz characteristic place, figure 3.12
suggests that the input to the nonlinearity at 6 kHz is increased by the introduction of filter 3 into
the micromechanical feedback loop. Therefore the nonlinearity is more saturated at this location,
and higher levels of harmonic components are generated within the cochlear model if the input to
the nonlinear function is switched from v to & However, at the characteristic place of the 2™
harmonic frequency, filter 3 acts to reduce the input to the nonlinear function at 6 kHz, and so the
nonlinear function is less saturated at this location, and lower levels of harmonic components are

generated when the input to the nonlinear function changes from v to &
The distortion products evoked by two tone stimulation

Figure 3.15 shows the predicted DP spectrum evoked by two stimulus tones presented at 7.6 and
8.4 kHz. The simulation is performed twice, with the micromechanical feedback arranged so the
input to the nonlinear function was either determined by the vertical BM velocity, v, or the
difference in shear displacement between the tectorial membrane and the organ of Corti, & The
value of the Boltzmann function parameter « was adjusted between simulations so that the
amplitude of the primary components at the 8 kHz characteristic place is changed by less than 1 dB
by the alteration in the micromechanical feedback loop. The results demonstrate that changing the
input of the nonlinear function from v to £ has little effect on the predicted DPs. For example, the
amplitude of the 2f; — /5 DP changes by less than 1 dB if the input to the nonlinear function is
switched from v to & The 3f; — 2f; DP decreases by 7 dB, whilst the 2f, — f; and 3f; — 2f; DPs
increase by 5 and 6 dB respectively, if the input to the nonlinearity is changed from v to &.
Therefore the effect of altering the micromechanical feedback loop such that the input to the

nonlinearity is changed from v to & depends on the frequency of the DP component.
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Figure 3.15. The influence of the input variable to the nonlinear function on the response to two tone
stimulation

The plots shows CP velocity components evoked by two tones (L;=L,=50 dB re 10 *m/s) at the 8 kHz place
in the model, at frequencies f), f1, 2f| — f2, 2> — f1, 3f1 — 2f> and 3f; — 2f; when it is stimulated by f;=7.6 and
£>=8.4 kHz. The input to the OHCs is either determined by v (circles) or & (squares). Both simulations use a
first order Boltzmann function (3=3) to represent the nonlinear action of the OHCs, and the parameter o is
set equal to either 0.8 or 0.42 when using v or £ respectively so that the level of the fundamental components
is the same in each case.

In summary, the harmonic response and the spatial OHC gain distribution arising from single tone
stimulation can be influenced by whether the vertical BM velocity, v, or shear displacement &,
determines the input to the nonlinear function. For example, the amplitude of the harmonic
response is more consistent with the physiological measurement of Cooper (1998) if v, rather than
¢, provides the input to the nonlinear function. There is also a change in the amplitude of the
predicted DPs, which is generally small (<10 dB) and is dependent on the frequency of the DP. In
section 3.5, we opt to proceed with a model in which the input to the nonlinear function is
determined by the shear displacement, &. It should be noted, however, that this model tends to
underestimate the amplitude of harmonic components in the vicinity of their characteristic place.
This is a pragmatic choice which allows the estimated response of the quasilinear model to be
compared with the results of the state space time domain model in which the input to the

nonlinearity is determined by &
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3.4 Alternative micromechanical parameters

The micromechanical parameters suggested by Kanis & de Boer allow their cochlear model to
exhibit features which are broadly consistent with physiological observations of the human cochlea.
For example, the place-frequency map of the fully active linear Kanis & de Boer cochlear model
differs by less than Y4 of an octave from the human Greenwood formula, up to distance of 0.025 m
from the stapes. Also, at a given location within the model the characteristic frequency reduces by
0.46 octaves when local activity is removed, consistent with experimental observation (Robles &
Ruggero, 2001). In addition the cochlear amplifier (CA) gain for the model is approximately 37 dB,
for stimulus frequencies below 15 kHz, which is approaching the value of 40 — 60 dB observed in
experimental studies of the basal region of the mammalian cochlea (Sellick ef al., 1982; Johnstone
et al., 1986; Robles & Ruggero, 2001). However, there are some features of their model which do
not agree with experimental observations. For example, the response of the model to single tone
stimulation does not exhibit reduced CA gain or broader sharpness of tuning as the stimulus

frequency decreases and the characteristic place moves from the base to the apex.

The aim of this section is to present a set of adapted micromechanical parameters, for which the
fundamental response to single tone stimulation exhibits reduced sharpness of tuning as stimulus
frequency decreases, without compromising the qualities of the original micromechanical model
such as the accuracy of the place frequency-map and the high CA gain near the base. The
motivation for this is that the modified micromechanical parameters may allow the model to better
predict the place-fixed component of distortion product otoacoustic emissions (DPOAESs), as the
reflection of travelling waves within the cochlea is dependent on the tuning of the response (Zweig

& Shera, 1995a).

3.4.1 The modified micromechanical parameters

The micromechanical parameters were altered by trial and error, inspired by the spatial variation of
the micromechanical parameters in the cochlear model of Ku ef al. (2008), which permits broader
tuning of the response towards the apex of the model. The result is that the micromechanical
parameters describing the active mechanics are modified as shown in table 3.1, to produce a model
which exhibits the linear characteristics described in the following section. These characteristics
are achieved by introducing the exponential distributions Q;(x) and Q,(x), defined in (3.4) and
illustrated in figure 3.16, into the description of the parameters describing the active mechanics.

The passive mechanics are unaffected by these changes.

0.(x) = exp(=0.7x/ L) and Q,(x) = 0.2(x / L)"* +1.01 (3.4)
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The function Q,(x) is used to reduce both the sharpness of tuning and the CA gain towards the apex
of the cochlea. Distribution Q,(x) is used to compensate for the reduction in CA gain introduced by
0,(x) so that gain does not become too small in the apical region of the model. The net result is a
small shift in the active place-frequency map (figure 3.20), a slight decrease in gain as frequency
decreases (figure 3.18), and a broadening of the response as stimulus frequency decreases (figure

3.17).

Micromechanical Interpretation 6] (i1)
parameter Original Kanis Modified
& de Boer model
model

A dimensionless damping parameter in the

Ose . . 0.14 0.14xQ,
active mechanics
A dimensionless parameter which describes

Go the shift in resonance between the OHCs and 0.7 0.7xVQ,
BM.

e A factor which determines the maximum 428x10° 4.28x10xQ,

pressure output of the OHCs

Table 3.1 The micromechanical parameters of the (i) original and (ii) modified cochlear models
The interpretation of the parameters is based on that given by Kanis & de Boer (1994), in terms of the Basilar

membrane (BM) and outer hair cells (OHCs). The distributions Q, (x) = exp(-0.7x/ L) and

0,(x)=02(x/ L)0‘6 +1.01 where obtained by trial and error for a model of length L. All other parameters

for the modified model are the same as in the original description of Kanis & de Boer (see chapter 2).

0.4

o 0005 001 0015 002 0025 003 0035

Figure 3.16 The distributions Q;(x) and Q,(x)
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Figure 3.18 The predicted cochlear amplifier gain
The cochlear amplifier gain, defined as the
difference in maximum velocity amplitude between
the active and passive responses, is shown for the
coupled cochlear model incorporating either the

Figure 3.17 The predicted Qo4

The Qo4 measure of sharpness of tuning is shown
for a range of locations with different characteristic
frequencies. Values are shown for the coupled
cochlear model containing either the original Kanis original Kanis & de Boer micromechanical

8,‘ de Boer micrqm echanical paramete?rs (dotted parameters (dotted line) or the modified parameters
line), or the modified parameters (solid line). (solid line)

3.4.2 Properties of the linear model with modified micromechanical
parameters

Figure 3.17 shows the Q;o4g Over a range of stimulus frequencies for the fully active linear cochlear

model incorporating either the original, or modified, micromechanical parameters.

It demonstrates that there is little variation in sharpness of tuning with stimulus frequency in the
original model, as the Q;yq4p is approximately equal to 13 for all stimulus frequencies between 1 and
16 kHz. However, in the modified model the sharpness of tuning decreases as the stimulus
frequency decreases, so that the Q;oqp of the response reduces from 11 for a 10 kHz stimulus to 3
for a 0.3 kHz tone. Therefore if the model incorporates the modified micromechanical parameters,
rather than the original ones, it provides a better simulation of the physiological result shown in
figure 1.12, where Q,o4p decreases from approximately 9 to 1 as the stimulus frequency reduces

from 10 to 0.2 kHz.

Figure 3.18 shows the CA gain of the coupled model incorporating either the original or modified
micromechanical parameters. For high stimulus frequencies the modification of the
micromechanical parameters has no significant effect on the CA gain, as the gain of the 12 kHz
response is 37 dB in both cases. However, the modified micromechanical parameters significantly
reduce the CA gain for low frequency responses, compared to the original micromechanical
parameters. For example, the gain of the 500 Hz response decreases from 37 dB to 22 dB when the
original micromechanical parameters are modified. Therefore the model is more consistent with

physiological measurements from chinchilla cochlea, in which the gain for low frequency stimuli
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(0.5 — 0.8 kHz) is around 10 to 20 dB (Robles & Ruggero, 2001), when the modified, rather than

original, micromechanical parameters are used.
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Figure 3.19 The estimated response in the basal and apical regions of the cochlear model

The plots show the velocity response of the cochlear partition in a model incorporating either the original
micromechanical parameters of Kanis & de Boer (a and b), or the modified micromechanical parameters
described in the text (c and d). In each case the coupled model contains N=1000 elements and the basal
boundary condition minimises reflections. The stimulus frequency is normalised to the CF at each
observation location which corresponds to (a) 0.59 Hz, (b) 9.8 kHz, (c) 0.54 kHz & (d) 9.6 kHz. In each case,
both the active and passive linear responses are shown and the CA gain in given in dB. In (e), the measured
sensitivity (ratio of BM velocity to stimulus pressure) at the base and apex of the chinchilla cochlea is given
for reference. The apical and basal measurements were made using laser interferometry at the characteristic
places for 0.5 and 9 kHz respectively. In each case the multiple curves correspond to different stimulus
levels, and the up/down arrows indicate the best frequency for the highest/lowest levels respectively. [From
figure 13 of Robles & Ruggero (2001), with permission from Am. Physiol. Soc]

102



3. Alternative micromechanical models
3.4 Alternative micromechanical parameters

In figure 3.19, the velocity response of the cochlear model at a basal and apical location is
compared to an experimental measurement in the chinchilla cochlea (Robles & Ruggero, 2001).
This demonstrates that at a basal location (5 mm from the stapes), the modification of the
micromechanical parameters has little effect on the gain of the cochlear model, which is around 37
dB. This is less than the gain observed in the basal region of the chinchilla cochlea, approximately
48 dB, but cannot be increased without compromising the stability of the model (Kanis, 1995). At
the apical location (20 mm from the stapes), the modified micromechanical parameters reduce the
CA gain by 10 dB, but this remains greater than the 15 dB gain observed in the apical region of the

chinchilla cochlea.

It is not possible to further manipulate the micromechanical parameters to achieve more accurate
replication of the physiological measures of sharpness of tuning or CA gain due to adverse effects
that this can introduce into the place-frequency map of the fully active cochlear model. For
example, the modified micromechanical parameters introduce a small shift of the characteristic
place towards the base for low frequency stimuli such that the characteristic place for a 0.25 kHz
stimulus moves 1 mm closer to the base when the parameters are modified. This shift can be seen
in figure 3.21, which shows the predicted velocity response of the model for several stimulus
frequencies. If further modification of the parameters is introduced to further reduce the gain in the
apex of the model, this shift is enhanced. Therefore the set of modified micromechanical
parameters shown in table 3.1 are thought to represent a suitable compromise between the
properties of CA gain and Qo4 variation required to replicate experimental observations, without

substantially altering the place-frequency map of the cochlear model.

Frequency (Hz)

0 ooos: 0 oots 002 0025 003 _D.DSE
(rn)

Figure 3.20 The estimated place-frequency map for the fully active cochlear model

The map is shown for a cochlear model incorporating the original Kanis & de Boer micromechanical
parameters (dashed thin line) or the modified micromechanical parameters (solid thin line). The Greenwood
function for the human cochlea (solid thick line) and the predicted response of the passive model (dotted line)
are also shown for reference.
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Figure 3.21 The velocity response of the cochlear partition to a range of stimulus frequencies
Results are shown for the coupled model incorporating the original Kanis & de Boer micromechanical
parameters (dotted lines) and the model containing the modified parameters described in the test (solid

lines).
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3.5 Selecting a micromechanical model

In the previous sections, a variety of micromechanical properties have been considered. However,

in the interest of simplicity it is necessary to select a single micromechanical model in order to

proceed with investigating the properties of DPOAEs.

3.5.1 The micromechanical properties

The selected micromechanical properties, and the reasons for these choices, are given in table 3.2.

To summarise, a micromechanical model is selected with the modified parameters described in

section 3.4, in which a first order Boltzmann function (3=1.2) is used to represent the nonlinear

action of the OHCs. This nonlinearity is positioned before filter 2, a simplified representation of the

impedance of the active OHC complex, in the micromechanical feedback loop. In addition, the

difference in shear displacement between the tectorial membrane and the organ of Corti is used as

the input to the nonlinear function.

Selection Reasoning
A set of modified The new parameters allow the linear active response of the model to
micromechanical exhibit the trend that the cochlear response is more broadly tuned towards

parameters are used, as
described in section 3.4.

the apex than towards the base. This trend may be significant for
estimating the place-fixed component of cochlear DPs for which the
broadness of tuning is thought to be important (Zweig & Shera, 1995a).

A first order Boltzmann
function is used to
represent the nonlinear
action of the OHCs.

The Boltzmann function allows the model to predict even order harmonic
responses to single tone stimuli. It has not been possible to determine
suitable values of the Boltzmann function parameters o and  from
physiological measurements, as discussed in appendix G.2. For this reason,
the values of o and B are chosen such that the model predicts saturation
thresholds and levels of harmonic distortion in response to single- and two-
tone stimuli that most closely match features of physiological
measurements.

The nonlinearity is
positioned before filter 2
in the micromechanical
feedback loop, as
described in section 3.2

It is feasible that either micromechanical arrangement could be used,
provided that the parameters of the Boltzmann function (o and 3) are
appropriately set to provide sufficient levels of harmonic components in
each case. However, figure 3.22 demonstrates that if the nonlinearity is
positioned after filter 2 in the feedback loop then a value of 3 in excess of
7 is required to generate amplitudes of the 2" harmonic component that are
consistent with physiological measurement. In contrast, f=1.2 is sufficient
when the nonlinearity is positioned before filter 2 in the micromechanical
feedback loop. As experimental observations generally find that f <5
(appendix G.2), we conclude that the most appropriate model is one where
the Boltzmann function (=1.2) is positioned before filter 2.

The difference in shear
displacement between
the tectorial membrane
and organ of Corti, &, is
used as the input to the
nonlinear function.

This pragmatic selection allows the predictions of the quasilinear model to
be compared with those of a state space time domain model, provided by
Ku (2008), in which & is used as the input to the nonlinear function. This
choice is consistent with anatomical considerations (Lim, 1980; Gueta et
al., 2008). However, a limitation of this selection is that the amplitude of
the harmonic components at their characteristic place is underestimated if
&, rather v, is used as the input to the nonlinear function.

Table 3.2 The selected micromechanical features and the reasons for these choices
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Figure 3.22 The influence of parameter  on the relative amplitude of the fundamental and harmonic
responses to single tone stimulation

Results are shown for a 6 kHz stimulus tone applied to a model where the nonlinearity is either positioned
before filter 2 (solid line) or after filter 2 (dashed line). The difference is observed at the characteristic place
of the 2™ harmonic component. In this model a first order Boltzmann function is used to represent the
nonlinear action of the OHCs, and the modified set of micromechanical parameters is used. The input to the
OHC:s is the CP velocity v. The saturation of the fundamental response is kept equal in both arrangements,
using 0=0.8 and a=2 when the nonlinearity is position before and after the OHC dynamics respectively. The
thin dotted line shows the difference of — 11 dB observed in the guinea pig cochlea by Cooper (1998), for
reference.

The first order Boltzmann function is used to represent the nonlinear behaviour of the OHCs. The
parameter 3 controls the asymmetry of the nonlinear function and is assigned a uniform value of
1.2 as described in table 3.2. It is possible that an alternative value may be more suitable, and it
could be appropriate to use a distribution of  values which vary between the base and the apex.
However, the value of B has little effect on the amplitude of the predicted 2f; — f; or 2f, — f;
DPOAE:s. For example, if the model is stimulated by two pure tones simultaneously (L;= 65, L,=
55 dB SPL and f1=1.8, f;= 2.2 kHz) then the amplitude of the simulated 2f; — f; and 2f; — f;
DPOAESs change by less than 1 dB if 3 is increased from 1.2 to 3. For this reason, we simply

proceed using f=1.2 without further investigation.

It is also necessary to specify the value of the Boltzmann function parameter o, which determines
the saturation threshold and maximum output of the nonlinear function. One approach to this would
be to assign a uniform distribution to a, such that the saturation threshold would occur for the same
value of shear displacement £ at all locations along the cochlear partition. However, there is little
physiological data to support this assumption. Figure 3.23a shows the maximum predicted shear
displacement at the characteristic place, evoked by a 0 dB SPL pure tone stimulus presented at a
range of frequencies in the ear canal of the model. The predicted amplitude of the maximum shear
displacement increases from the base of the apex as a consequence of the frequency dependence of
the middle ear mechanics and linear cochlear micromechanics. If the parameter o was constant

along the length of the model, then the ear canal pressure corresponding to the saturation threshold
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would decrease as the stimulus frequency decreases. However, in contrast to this, there is
experimental evidence to suggest the saturation threshold does not vary substantially for different
stimulus frequencies. For example, the growth functions for different frequency components of a
human TEOAE suggest that the saturation threshold corresponds to a level between 30 and 40 dB
SPL in the ear canal (Grandori, 1985). Similarly, the saturation threshold deduced from human
DPOAE growth functions varies by less than 10 dB when the f, frequency changes from 0.5 to 4
kHz (Lopez-Poveda et al., 2003). For this reason, we opt to use an o distribution which gives a
saturation threshold of approximately 30 dB SPL in the ear canal across a range of stimulus
frequencies between 0.5 and 6 kHz. This distribution is illustrated in figure 3.23b, and the resulting
BM displacement growth function is shown in figure 3.24 for three different stimulus frequencies.
A plateau is imposed on the o distribution close to the base of the model, such that the value of o
does not fall below 0.02, and as a result the saturation threshold increases above 30 dB SPL for
stimulus frequencies greater than 6 kHz. The plateau is necessary because the amplitude of a
response to a high frequency stimulus presented at 30 dB SPL, at its characteristic place in the
cochlear model, can be exceeded by the amplitude of a response to a lower frequency stimulus, as
shown in figure 3.25. Therefore the plateau in the distribution of o near the base of the model
prevents the value of o becoming so small that all low frequency stimuli are suppressed in this

region.
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Figure 3.23 The spatial variation of the Boltzmann function parameter o
Plot (a) shows the maximum shear displacement & at the characteristic place predicted by the linear model for
a 0 dB SPL pure tone stimulus presented in the ear canal at a variety of frequencies. The displacement tends
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to increase as distance from the base increases. For this reason, the spatial variation shown in (b) is
introduced into the Boltzmann function parameter a.
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Figure 3.24 Nonlinear growth of the BM response at the characteristic place
The plot shows the predicted growth of BM displacement for stimuli presented at 0.5, 2, and 4 kHz observed
at their respective characteristic places within the cochlear model
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Figure 3.25 The comparison of the amplitude of the response evoked by different stimulus frequencies

The difference in shear displacement (&) between the tectorial membrane and the organ of Corti, predicted by
the quasilinear cochlear model is shown for single tone stimuli applied at 1 and 10 kHz at levels of 75 and 30
dB SPL respectively. At the 10 kHz place, approximately Smm from the base of the model, the magnitude of
& is approximately the same for both stimulus frequencies.
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3.5.2 The response of the selected model to single tone stimulation

It is worth briefly reviewing the response of the selected model to single tone stimulation before
processing to estimate the DPs it predicts. Figure 3.24 shows the growth function of BM
displacement with increasing stimulus levels in the cochlear model described in section 3.5.1.
Between the stimulus levels of 40 and 70 dB SPL, the compressive nonlinear growth is rate is
0.3 — 0.4 dB/dB, consistent with the value of 0.12 — 0.5 dB/dB observed experimentally in the

basal region of mammalian cochleae (Robles & Ruggero, 2001).

The harmonic responses of the model to single tone stimulation at two different stimulus
frequencies are shown in figure 3.26. At the characteristic place, the level of the harmonic
components are approximately 40 dB below the amplitude of the fundamental response. This is in
broad agreement with the measurement experimental observations which indicate that harmonic
components can reach up 20 dB of the fundamental response depending on the stimulus level

(Cooper & Rhode, 1995; Khanna & Hao, 1999).
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Figure 3.26 The predicted fundamental and harmonic responses to a single tone stimulus
The results are shown for both a 6 kHz and 0.5 kHz stimulus, presented at 60 dB SPL in the ear canal of the

model
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3.6 Conclusions regarding micromechanical parameters

We have investigated the effect that several different variations in the micromechanical model can
have on the single tone harmonics and two tone DPs predicted by the quasilinear model. These
variations included the degree of asymmetry in the nonlinear function used to represent the OHCs,
the position of the nonlinear function within the micromechanical feedback loop, the shear or
vertical orientation of the input to the nonlinear function, and the spatial distribution of the
micromechanical parameters. Based on these results, we have selected an appropriate

micromechanical model with which to proceed to investigate predicted DPOAE:s.

As summarised in section 1.9 (ii), this chapter offers the following contributions:

e  Fine tuning of the original Kanis & de Boer micromechanical parameters, so that the linear
responses of the model to low frequency single tone stimuli appear more consistent with
physiological observations (section 3.4).

e A description and explanation of the influence of the position of the nonlinear function within

the micromechanical feedback loop (section 3.2)
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4. Predicted 2f; — f, DPOAE characteristics

In this chapter the simulated distortion product otoacoustic emissions (DPOAESs) predicted by the
cochlear model are presented and special attention is paid to the 2f; — f; distortion product (DP).
The properties of this emission are extensively documented in the literature and this information is

used to determine the successes and weaknesses of the model with regard to DPOAE prediction.

Details of the cochlear model used are given in section 3.5. The response of the model is estimated
using the quasilinear method described in section 2.4, and transmission into and out of the cochlear
model is described by the two-port model of the middle ear and ear canal detailed in appendix C.1.
We start by considering the 2f; — /5 DPOAE characteristics predicted by a “baseline” model, in
which no impedance irregularities have been introduced into the active micromechanics (section
4.1). We then introduce random irregularities into the active micromechanics of the model and
present the 2f; — f, DPOAE characteristics simulated with this “perturbed” model (section 4.2).
This allows the place-fixed effects to be studied separately from the wave-fixed effects. Overall
this chapter addresses the first four research questions posed in section 1.9 concerning the 2f; — f;

DPOAE.
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4.1 Predictions of a baseline model

We start by considering the 2f; — /; DPOAEs predicted by a baseline model, in which no
irregularities have been deliberately imposed on the active micromechanics. As this emission is
typically the largest emission detected in the human ear canal, its properties are well documented.
In this section we present the simulated 2f; — f, DPOAE characteristics and compare them to the
physiological properties described in the literature. Having established the strengths and
weaknesses of the baseline mode, we conclude that it is appropriate to use the model for further

applications such as hypothesis testing and investigating the 2f; — f, DPOAE source.

4.1.1 Amplitude of the 2f; — f, DPOAE

Figure 4.1 shows the predicted pressure spectrum in the ear canal, evoked by the presentation of
two stimulus pure tones at frequencies f1 and f; (f2 > f1). The equivalent experimental result
obtained by Lonsbury-Martin & Martin (2007) is given in figure 1.15d. The amplitude of the

2f1 — f», 3f1 — 2f> and 2f, — f1 emissions predicted by the model differ by less than + 5 dB from the
values measured by Lonsbury-Martin & Martin. As the amplitude of the 2f; — f, DPOAE can vary
by + 5 dB between individuals for a given stimulus paradigm (Mills ef al., 2007), we conclude that
the model prediction is consistent with the experimental result for these DPs. The 3/, — 2f; DPOAE
has an amplitude of —41 dB SPL in the simulation, but is absent from the Lonsbury-Martin &
Martin spectrum. This is not thought to be a significant discrepancy, as the noise floor of the
experimental study was — 32 dB and would therefore conceal the presence of this distortion product

in the physiological result.
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Figure 4.1 The simulated ear EOF % ]
canal pressure spectrum
The response of the cochlear

model was evaluated at
frequencies of 11, f5, 3f1 — 25,

2f1 — fr, 2f> — f1 and 3> — 2
when two simultaneous tones
were presented in the ear canal at
fi=1.8 and 5,=2.2 kHz and L,=65
and L,=55 dB SPL. b

A
3,21, 12 dB SPL
1dB SPL X
0r A B
-21 dB 5PL
20+ 32,
-41 dB SPL
1 1

1 1
1000 1500 2000 2500 3000
Frequency (Hz)

20+

Ear canal pressure (dB SPL)

-60

112



4. Predicted 2f;, — £, DPOAE characteristics
4.1 Predictions of a baseline model

Although we have seen that the model prediction for the 2f; — /5 DPOAE can be consistent with
experimental measurement for a single stimulus paradigm, the amplitude and phase of this
emission depends on the following four stimulus parameters: level (L,), level difference (L; — L,),
frequency (f2) and frequency ratio (f2/f1) of the primary tones (e.g. Harris ef al., 1989; Gaskill &
Brown, 1990; Abdala, 1996). For this reason, the 2f; — f, DPOAE amplitude can be conceptualised
in a four-dimensional space described by the f; stimulus frequency, the ratio £5/f1, and the two
primary tone levels L; and L,. As this four-dimensional space is not easily visualised, many
physiological studies choose to set two of the stimulus variables constant and report their results as
contour plots of DPOAE amplitude or phase (Whitehead, 1995b, 1995a; Knight & Kemp, 2000;
Mills, 2002). Alternatively, a conventional line graph can be obtained if three of the stimulus
variables are fixed. In the following sections we use a combination of contour plots and line graphs

to illustrate the 2f; — f, DPOAE properties predicted by the model.

In addition to the above stimulus parameters, it is also possible that the amplitude and phase of the
evoked 2f; — f; DPOAE could be influenced by the relative phase of the stimulus tones. We do not
investigate this explicitly, but endeavour to use appropriate relative phases in our simulations

through the use of a middle ear model which approximates the physiological phase response of the

middle ear (appendix C).

4.1.2 The 2f; — f, DPOAE dependence on f; frequency

Figure 4.2 shows the amplitude of the predicted 2f; — f, DPOAE for stimulus levels L; and L, equal
to 60 and 50 dB SPL respectively and an f5/f; value of 1.21. The simulation was performed using
several different f; frequencies between 1 and 8 kHz. The measurements made by Mills et al.
(2007), from the ears of 20 normal hearing subjects using the same stimulus parameters, are also

shown for reference.
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Figure 4.2 The amplitude of the 2f; — /, DPOAE for a range of stimulus frequencies

The DPOAE predicted by the model (grey circles) can be compared to the amplitude of this emission
measured in the ears of 20 normal hearing subjects by Mills ef al. (2007). The mean values (black squares)
and one standard deviation (error bars) are shown for the physiological results. In both cases the stimuli were
presented at levels L;=60 and L,=50 dB SPL with f,/fj=1.21.
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Comparison of the simulated and measured results shown in figure 4.2 reveals that, for f; stimulus
frequencies between 1 and 3 kHz, the values of the predicted 2f; — /5, DPOAE amplitude are within
one standard deviation of the mean physiological measurements. However, as the stimulus level
increases above 3 kHz the amplitude of the predicted 2f; — f, DPOAE:s falls off. As f; increases
from 1 to 8 kHz the model predicts a decline of 40 dB in the emission amplitude, which is much
larger than the 15 dB decrease observed by Mills et al. This discrepancy between the frequency
dependence of the predicted and measured 2f; — f, DPOAE amplitudes is not thought to be
associated with an error in the middle ear transfer function, which is believed to be reasonably
accurate for the reasons given in appendix C.3. Therefore the weakness in the model which leads to
an underestimation of the 2f; — f, DPOAE amplitude at high f; frequencies (>4 kHz) is attributed to
insufficiencies in either the amplitude of the BM response to stimulation at high frequencies, the
saturation threshold of the nonlinear function in the basal region of the model, or some other aspect
of the nonlinear cochlear model. Attempts to modify the model to address these possible
insufficiencies have been unsuccessful as the modifications introduced other undesirable effects.
For example, altering the micromechanical parameters to enhance the amplitude of the response
could have a detrimental effect on the place-frequency map and stability of the model. We also
found that reducing the saturation threshold near the base of the model, to enhance the DPs evoked
by high frequency stimuli, can unfavourably affect the propagation of low frequency forward

travelling waves through this region (section 3.5.1).

Overall, we conclude that the amplitude of the 2f; — /5 DPOAE is consistent with experimental
measures when £, is less than 4 kHz. However, the model tends to underestimate the amplitude of
the emission by more than 20 dB when f; exceeds 4 kHz. Therefore caution should be applied when

comparing DPOAE amplitudes across a wide range of stimulus frequencies.

4.1.3 The dependence of the 2f; —f, DPOAE on L, and L,

Figure 4.3a shows simulated contour plots of the predicted 2f; — f, DPOAE amplitude as a function
of stimulus levels L; and L, for various f;/f; ratios. In each case the results have been averaged
across f, frequencies between 1 and 3 kHz. An experimental contour plot, measured by Meinke et
al. (2005) using f>/f; equal to 1.21, is reproduced in figure 4.3b for reference. Comparing the
simulated and measured results shows similarities in the range of 2f; — /, DPOAE amplitudes on
the plots and the asymmetry in the dependence of the emission on L, and L,. For example, when
fo/fi equal to 1.2, the maximum predicted DPOAE level of approximately 10 dB SPL differs by
only 2 dB from the maximum level of 12 dB SPL observed in the physiological study, which is
within + 5 dB variation observed between individual subjects (Mills et al., 2007). Also, for this

frequency ratio, the predicted emission amplitude is maximised when L; and L, are set equal to 75
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and 65 dB SPL respectively. This is in close agreement with the experimental result which reveals

optimal stimulus levels of 75 and 70 dB SPL for L; and L, respectively for this stimulus frequency

ratio.

The contour plots shown in figure 4.3 contain much information regarding the dependence of

2f1 — /» DPOAE amplitude on the stimulus level L; and the stimulus level difference (L; — L,), and

these aspects of the predicted emission are examined in more detail in the following two sections.

We then progress onto a discussion of the influence of stimulus frequency ratio on the 2f; — f5

DPOAE amplitude, as this ratio affects the relative amplitude of the primary travelling waves at the

distributed site where the 2f; — f, DP is generated.
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Figure 4.3 2f; — f DPOAE level contour plots

(a) The predicted amplitude of the 2f; — f, DPOAE in dB SPL,
evoked by two stimulus tones at levels L, and L,. The
simulations for various f5/f; ratios are shown. In each case the
predicted DPOAE levels are averaged across f, values of 1,
1.5,2,2.5 & 3 kHz.

(b) The measured 2f; — f DPOAE amplitude (dB SPL) for
various stimulus levels, averaged across 10 human ears and
stimulus frequency £, values between 0.6 and 8.8 kHz (f;/f; =
1.21). [From figure 3a of Meinke ef al. (2005), with
permission from Elsevier]
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(a) Simulation (b) Data from Mills ef al. (2007)
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Figure 4.4 Growth functions for the 2f; — f, DPOAE

(a) The amplitude of the 2f; — f, DPOAE predicted by the model for /,=2 kHz, L,;=L,+10 dB and f,//;=1.2 or
1.3. (b) The amplitude of the 2f; — / DPOAE recorded in the ear canal of one human subject by Mills et al.
(2007) using f,=4 kHz, L;=L,+10 dB and f5/f; = 1.21 or 1.28. [From figure 1 of Mills et al. (2007), with
permission from Wolters Kulver Health]. In both plots, the triangular and square arrows denote the
compression threshold, based on the criteria used by Abdala (2000).

4.1.4 Growth of the 2f; — f, DPOAE

A DPOAE growth function is recorded using a fixed relationship between L, and L,, such as
constant L; — L, or L;=0.4L,+39dB (the “scissor paradigm” described in section 1.5.2). The
“growth rate” of the 2f; — f, DPOAE refers to the increase in DPOAE amplitude for every dB

increase in stimulus level, and is commonly quoted in units of dB/dB.
Growth rates and saturation thresholds

Comparing stimulated growth functions with those measured in experimental studies is not straight
forward as the intersubject variation in both the saturation threshold and the gradient must be taken
into account. Abdala (2000) defined saturation threshold, L, as the stimulus level above which the
amplitude of the DPOAE increased by no more than 2 dB with further stimulus level increases, and
found that these thresholds varied by £ 10 dB between subjects. In addition, the gradient can vary
by £ 0.4 dB/dB between individuals (Lind, 1998; Abdala, 2000).

Figure 4.4a shows the growth of the predicted 2f; — £, DPOAE with stimulus level, when L;=L,+10
dB, =2 kHz and f,/f; is equal to either 1.2 or 1.3. Experimental results obtained by Mills et al.
(2007) from normal human ears, for similar stimulus parameters, are given in figure 4.4b for
reference. The simulation is performed at a lower f, frequency (2 kHz) compared to the
experimental measurement (4 kHz) in order to avoid any affects associated with the model’s
tendency to underestimate the 2f; — f;, DPOAE amplitude at high frequencies (section 4.1.2). Figure
4.4a suggests that the predicted Ly, as defined by Abdala (2000), occurs at approximately 60 or 70

dB SPL when f;/f; equals 1.2 or 1.3 respectively. In comparison, the experimental measurement
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exhibits a saturation threshold of 40 or 55 dB SPL, for f,/f; values of 1.21 and 1.28 in that order.
Although the difference between the simulated saturation thresholds and those measured by Mills
et al. exceeds the = 10 dB variation observed between human subjects, this discrepancy is not
thought to be significant because other experimental studies using the same stimulus paradigm
record higher saturation thresholds. An example is the work of Abdala (2000) who recorded
saturation thresholds between 62 and 75 dB SPL for an f,/f; value of 1.2. On average, for the two
stimulus frequency ratios shown in figure 4.4a, the model predicts that the 2f; — f, DPOAE growth
rate will be 1.2 dB/dB for stimulus levels between Lg,, — 20 dB and L. The average growth rate
observed by Mills et al.for the same stimulus level range is 0.9 dB/dB, which is within + 0.4 dB/dB

of the predicted value.

Influence of f5/f; ratio

The model suggests the saturation threshold, L, should increase as stimulus frequency ratio
increases. This is demonstrated by figure 4.4a, in which the saturation threshold increases from 60
to 70 dB SPL as f5/f1 increases from 1.2 to 1.3. A similar trend is seen in the data of Mills et al, in
figure 4.4b. However, this increase in L, with stimulus frequency ratio is not always evident in
experimental data (Abdala, 2000), possibly as a consequence of large intersubject variation in
DPOAE growth rates. The relationship between f,/f; ratio and L, observed in the model is thought
to originate from the change in spatial overlap of the primary travelling wave envelopes as the
stimulus frequency ratio changes. The 2f; — f, DPOAE is thought to be generated in the vicinity of
the £, best place, and as f,/f; increases the level of the f; travelling wave at this location reduces.
Therefore a higher stimulus level would be required to saturate the nonlinear function representing

the action of the OHCs at the £, best place.

Notches in the growth function

For some specific stimulus paradigms the baseline model predicts non-monotonic growth or
“notches” in the 2f; — f;, DPOAE growth function. For example, figure 4.5a shows the growth of the
2f1 — f» DPOAE with increasing stimulus level (L,=L,) when f; is equal to 2 kHz and £5/f; is 1.2. A
notch can be seen in this growth function when L= L,= 57.5 dB SPL. Figure 4.5b illustrates that
the notch is associated with a change in the phase of the 2f; — f, DPOAE of around half a cycle.
This notch was evident as a minima in the simulated DPOAE contour plots (figure 4.3a), for
stimulus frequency ratios between 1.15 and 1.3, when L and L, are equal at around 55 to 65 dB
SPL. The contour plots suggest that notches in the simulated growth function will be not be
observed if the L;=L,+ 10 dB paradigm is used, but that they will be detected using other linear
stimulus relations such as L;=L, or the “scissor” paradigm. The predicted notch is only evident in

the model when f; is around 2 kHz, and is not present for all stimulus frequency ratios.
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These simulations are performed using a baseline model, in which no irregularities have been
deliberately imposed on the micromechanics, and so the results predict only the behaviour of the
wave-fixed DPOAE component as discussed in section 5.1. It has not been possible to determine if
notches occur in the growth of the wave-fixed component of DPOAESs measured in experimental
studies, as the process used to separate the wave-fixed and place-fixed components of the

physiological emission usually average results over several f; frequencies.

Notches in the DPOAE growth functions observed from human ears are often attributed to shifts in
the emission fine structure described in section 4.2.3 (He & Schmiedt, 1993). However, this cannot
be the origin of the notch illustrated in figure 4.5a as the baseline model is unable to generate a
place-fixed DPOAE component necessary for the production of fine structure. Instead, there are
two possible explanations for its origin, both of which require only one source mechanism, such as
the spatially distributed wave-fixed (distortion) source mechanism present in the baseline model
described in section 5.1.1. Firstly, Lukashkin & Russell (2001) demonstrate that amplitude notches
are evident in a contour plot of the 2f; — f, DP output of a single isolated nonlinear function as a
function of the level of the two input tones (A and A;,), and that these notches are accompanied by
a change in the DP phase of 'z a cycle. However, it is not possible to attribute the notch seen in
figure 4.5a, to the behaviour of the nonlinear function as the predicted notch is not a robust feature
observed for all stimulus level relationships and all stimulus frequencies. Secondly, Mills (2002)
suggests that the notch could occur as a result of a change in the interaction between elements
within the distributed wave-fixed 2f; — f, DP source region as the increase in stimulus level alters
the spatial overlap between the primary travelling waves. On this basis, a notch may be expected to
occur in the growth of the 2f; — / DPOAE when the phase distribution of the source region changes
so that neighbouring source elements change from a pattern of constructive interference to one of

destructive interference. Mills bases this proposition on the results obtained from measurements of
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notches in the growth functions of Mongolian gerbils, and observed that a phase change of up to
half a cycle accompanies the notch. To test this explanation, figure 4.6 shows the accumulative

2f1 — /> DPOAE recorded in the ear canal as the distribution of the 2f; — f, OHC pressure output is
gradually “switched-on” from the base of the model. At low stimulus levels, such as 40 dB SPL, all
of the elements within the source region appear to interact constructively to form the total 2f; — f5
DPOAE as gradually increasing the source length results in monotonic growth of the predicted
emission. However, as the stimulus level approaches or exceeds the level at which the notch occurs,
figure 4.6a demonstrates that the growth in the simulated DPOAE amplitude with increasing source
length is no longer monotonic. This indicates the presence of destructive interference between

neighbouring elements within the DP source distribution.

In summary, we conclude that notches in the growth of the wave-fixed (distortion) component of
the 2f; — f, DPOAE can occur in the model for some stimulus paradigms. This is thought to arise
from relative changes in phase of neighbouring source elements as the stimulus level increases,
such that the contributions from these source elements partially cancel each other at higher stimulus
levels (Mills, 2002). It is possible that these notches are not observed for all stimulus paradigms

because of the influence of the middle ear response on the relative phase of the primary tones.
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Figure 4.6 The influence of the DP source distribution on the predicted 2f; — f, DPOAE

(a) The accumulative 2f; — f; DPOAE amplitude predicted by the model is shown as the wave-fixed

(distortion) source is gradually “switched-on” from the base of the model. In this case, f,/f;=1.2, /o= 2kHz and

L;=L, (dB SPL). The stimulus level is given in dB SPL in the key. The amplitude and phase of the DP

pressure output of the OHCs, for these primary tones, which forms the total distributed DP source

distribution, is given in (b) and (c) respectively. The dots on plot (b) mark the f; best place for each stimulus

level.
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(a) Simulation (b) Gaskill & Brown (1990)
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Figure 4.7 The influence of stimulus level difference on the 2f; — f, DPOAE

(a) The predicted dependence of the 2f; — f, DPOAE amplitude of the stimulus level difference L, — L,, when
L, is fixed at 40 dB SPL, £5/f(=1.2 and f,=2 kHz. (b) The experimental 2f; — /, DPOAE amplitude recorded by
Gaskill & Brown (1990) from human ears using f5//i=1.225 and L,=40 dB SPL. The different lines
correspond to different f; frequencies between 3 and 6 kHz. [From figure 7a of Gaskill & Brown (1990), with
permission from ASA].

4.1.5 Optimal stimulus level difference

Figure 4.7a shows the simulated variation in 2f; — f, DPOAE amplitude with stimulus level
difference. A similar experimental measure by Gaskill & Brown (1990) is reproduced in Figure
4.7b for comparison. In both cases the stimulus level L, was fixed at 40 dB SPL. The model
predicts that, at this L, level, the optimal stimulus level difference (L; — L,) is approximately 20 to
25 dB. This is in broad agreement with the measurements of Gaskill & Brown who observe the
optimal level difference to be between 15 and 25 dB. They also note that there is variation of at

least 10 dB in the optimal level difference between subjects.

The optimal stimulus level difference (L; — L,) depends on the stimulus level and the stimulus
frequency ratio. Figure 4.8 shows the decrease in optimal level difference with increasing L, level
predicted by the model and compares it with the experimental observations of Gaskill & Brown
(1990) and Whitehead (1995a). The reduction in predicted optimal level difference from 25 to 5 dB
as L, increases from 45 to 80 dB SPL is reasonably consistent with the change measured in the
experimental studies, given the difference in stimulus frequencies and f5/f; ratios. Figure 4.9 shows
simulated increase in the optimal stimulus level difference with increasing f,/f; ratio, along side the
experimental results collected by Abdala (1996) are also shown in figure 4.9 for reference. Both the
simulation and the physiological measurement suggest that the optimal stimulus level difference

increases with increasing stimulus frequency ratio.
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Figure 4.9 The influence of f5/f; ratio on the
optimal level difference

The plot shows the predicted dependence of
the optimal stimulus level difference for

2f, — f, DPOAE amplitude on stimulus
frequency ratio f,/f; and it is compared to
experimental data. The simulation was
performed using L, = 50 dB SPL and f;=1
kHz. The experimental results were estimated
from figure 8 of Abdala (1996), which was
obtained using L, =50 dB SPL and f, = 1.5
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Figure 4.8 The influence of stimulus level
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The plot shows the predicted dependence
of the optimal stimulus level difference
for 2f; — f, DPOAE amplitude on stimulus
level L,, is compared to experimental
data. The simulated results are averaged
across f»/f; ratios of 1.05 — 1.3 and f;
frequencies 1 to 3 kHz, and the optimal
level difference (L, — L,) is estimated to
the nearest 5 dB. The experimental data is
taken from Whitehead (1995a) and
Gaskill & Brown (1990) which used a
variety of f,/f] ratios between 1.1 and 1.3
and f; frequencies between 1 and 10 kHz.
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Figure 4.10 The level of input to the nonlinear
function at the f; best place in the coupled model
The levels of the input to the nonlinear function, A;
and A,, are equated with the primary components of
the shear displacement and are evaluated at the f,
best place in the coupled model for a range of
stimulus level differences. Levels L; and L,
correspond to stimulus levels in the ear canal of the
model and for this simulation L,= 50 dB SPL, ;=2
kHz and f5/fi=1.1.

Explanations for the optimal stimulus level difference have been proposed by Gaskill & Brown

(1990) and Lukashkin & Russell (2001). To summarise, the wave-fixed distortion source of the

2f1 — /> DP is thought to be generated in the region of the f; best place, where the amplitude of the

travelling wave envelopes can be denoted by A; and A, for f; and f; respectively. Increasing the

stimulus level difference such that L; exceeds L,, increases A; relative to A, as shown in figure

4.10. For example, as L, increases from 0 to 30 dB above L,, A, increases from about — 2 to 28 dB

relative to A,. The amplitude of the 2f; — / DP component of the output from an isolated nonlinear

function for a variety of A; and A, levels is illustrated in figure 4.11.
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Figure 4.11 Simulated contour plot of the 2f; — f; DP output of the isolated nonlinear function

(a) A single isolated first order Boltzmann function is stimulated by tones with frequencies f; and f; and
corresponding levels A; and A, respectively, and the amplitude of resulting 2f; — f; DP component of the
output is plotted. (b) The estimated level of the DP component is also shown for fixed A, levels
corresponding to the dotted lines in (a). In both cases, the dB scale reference is arbitrary, /, = 1 kHz and

Alfi=LLL

Figure 4.11 demonstrates that as A; increases relative to A,, the amplitude of the DP output
increases until an optimal A; — A, difference is reached, and above this level the amplitude of the
DP output decreases. The optimal A; — A, difference also decreases as A, increases. For this reason,
the optimal stimulus level difference (L; — L,) and its dependence on stimulus level can be
attributed to the behaviour of the nonlinear function in isolation. This conclusion contradicts the
suggestion of Whitehead (1995b) that it is the mutual suppression of the primary travelling waves
which is responsible for the decline in the 2f; — f, DPOAE amplitude as L, — L, exceeds the

optimal value. However, figure 4.12 shows the dependence of the emission amplitude on L; — L,
when the effect of mutual suppression is temporarily removed from the quasilinear model. This
demonstrates that mutual suppression has no significant influence on the decline in the 2f; — f

DPOAE amplitude at high stimulus level differences.

Figure 4.12 The simulated effect of suppression
on the optimal level difference

The full quasilinear method requires three
iterative stages to evaluate the predicted distortion
product evoked by two stimulus pure tones: Self-
suppression of the primary tones, mutual
suppression of the primary tones and finally self-
suppression of the distortion product component.
The predicted amplitude of the 2f; — f, DPOAE
for a variety of stimulus level differences,
estimated using the full model is shown as a solid
line. The predicted response with the DP self-
suppression stage neglected (dotted line) and DP
self-suppression and mutual suppression of the
primaries neglected (dashed line) are also shown 5
to facilitate interpretation of the full quasilinear

result. In each case L,= 60 dB SPL, ;=1 kHz and

flfi=1.2.

2f -f, DPOAE (dB SPL)

; Full quasilinear model
0 ._:' ----- Mo mutual suppression | 4
2 Mo self-suppression

0 5 10 15 20 25
Stimulus level difference L,-L, (dB)

122



4. Predicted 2f;, — £, DPOAE characteristics
4.1 Predictions of a baseline model

In summary, we conclude that the optimal level difference originates from the behaviour of the
isolated nonlinear function and change in the value of A relative to A, at the DP generation site as

L, changes relative to L.

4.1.6 Optimal stimulus frequency ratio

The existence of a stimulus frequency ratio which maximises the 2f; — f; DPOAE is a common
feature of physiological measurements. The optimum ratio is usually between 1.1 and 1.35 for
human subjects, depending on the individual ear and the stimulus parameters (Harris et al., 1989;
Abdala, 1996). For the same stimulus paradigm, the optimum stimulus frequency ratio can vary

between individuals by up to = 0.1 (Harris et al., 1989).

Figure 4.13a shows the simulated 2f; — f, DP amplitude as a function of stimulus frequency ratio.
At low stimulus levels such as 40 or 50 dB SPL, the predicted optimum f,/f; ratio is between 1.15
and 1.25. This is in agreement with the optimal ratio of 1.25 observed by Gaskill & Brown (1990)
at low stimulus levels (L; = 55 and L, =40 dB SPL). Figure 4.13b shows the change in the
optimum f>/f; ratio predicted by the model as stimulus level increases. Experimental results
obtained by Harris ef al. (1989) and Knight & Kemp (1999) are also shown for comparison. This
figure illustrates that the model tends to over-estimate the rate at which the optimum £/f; ratio
increases with stimulus level which causes the model to overestimate the optimal stimulus

frequency at higher stimulus levels.

(a) (b)

Optirnal ratio (fsz,l)

i a0 4ID 55 EID ?ID BID a0
— L1:|_2:?D dB SPL Stimulus level, Ly (dB SPL)

| =L =60 dB SPL |
..... L,=L,=50 dB SPL ||
—— L,=L,=40 dB SPL

21 -f, DPOAE (dB SPL)

20F

Simulation, L1=L2
---------- Knight & Kemp (1995), L,-L=10 dB
_____ Harris et al (1989, L_|=L2
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Figure 4.13 The influence of stimulus level on the optimal f,/f; ratio

(a) The variation in the predicted 2f; — /, DPOAE amplitude with stimulus frequency ratio f5/f;. The

simulation was performed using f,=2 kHz various L, levels (40, 50 60 & 70) and L,=L,. (b) The variation in

the predicted optimum stimulus frequency ratio with stimulus level. Physiological data from Harris et al.

(1989) and Knight & Kemp (1999) is also shown for reference. The results from Harris ef al. are averaged

across f, frequencies between 1 and 4 kHz. The level difference used for these experimental measures is

indicated in the key.
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Figure 4.14 The dependence of 2f; — f, DPOAE amplitude on f,/f; ratio

(a) The wave-fixed (distortion) 2f; — f, DPOAE amplitude measured from a human ear by Knight & Kemp
(2001), using L1=L,= 70 dB SPL. The result is averaged across recordings in which 2f; — f, ranged between 1
and 4 kHz. [From Knight & Kemp (2001), figure 5a, with permission from ASA] (b) The simulated 2f; — f,
DPOAE amplitude when L,=L,=70 dB SPL and f,=2 kHz, taken from figure 4.13a.

This tendency is demonstrated by figure 4.14 which shows the amplitude of the 2f; — f, DPOAE as
a function of stimulus frequency ratio for a higher stimulus level (L;=L, = 70 dB SPL). This figure
provides a comparison between the experimental result recorded by Knight & Kemp (1999) and the
model simulation. The optimal £,/f; of 1.55 predicted by the model is significantly greater than the
stimulus frequency ratio of around 1.2 which maximises the 2f; — f, emission in the Knight &

Kemp study.

Figure 4.15 shows the influence of stimulus frequency on the optimal f;/f; ratio predicted by the
model. As the 2f; — f, DP frequency is increased from 1.5 to 3 kHz, the simulated optimal £5/f; ratio
decreases from 1.3 to 1.18. This trend is consistent with the results of Harris et al. (1989) who
found that the optimal £,/ ratio reduces from around 1.27 to 1.21 as the DP frequency increases
from 1 to 4 kHz for stimulus levels between 65 and 85 dB SPL (L;=L,). However, the model
appears to overestimate the rate at which the optimal f,/f; ratio increases as stimulus frequency

decreases.
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Figure 4.15 The influence of DP frequency on the optimal f,/f; ratio

(a) The variation in the predicted 2f; — /, DPOAE amplitude with stimulus frequency ratio f5/f;. The
simulation was performed using various 2f; — f; (fpp) frequencies (1.5, 2 and 3 kHz) and L,=L,=50 dB SPL.
(b) The dependence of the predicted optimal stimulus frequency ratio on DP frequency.

Origin of the optimal f,/f; ratio

The bell-shaped dependence of the 2f; — f, DPOAE on the f5/f; ratio, exhibited by the model
predictions (figure 4.13 and figure 4.15) and experimental measurements (figure 4.14a) is
commonly attributed to changes in the amplitude of the primary travelling wave envelopes at the
DP source region (Gaskill & Brown, 1990; Lukashkin & Russell, 2001). The stimulus frequency
ratio can influence the levels A; and A, of the primary tones f; and f; respectively, near the f; best
place which corresponds to the 2f; — f, DP source region. Figure 4.16 illustrates that as f5/f;
increases from 1.05 to 1.6, the amplitude difference (A; — A,) decreases from 0.7 dB to — 11.7 dB.
This decrease in the level of A, relative A,, as the spatial overlap of the primary travelling wave
decreases, is thought to be responsible for the decline in the emission amplitude as the stimulus
frequency ratio increases above the optimum f,/f; value (Gaskill & Brown, 1990; Lukashkin &
Russell, 2001; Mills, 2002). However, there is not an agreed explanation in the literature for the
decline of the emission amplitude as the f;/f| ratio falls below the optimum value. There are two
predominant arguments for this effect. First, Lukashkin & Russell (2001) propose that the
dependence of the 2f; — f;, DPOAE amplitude on the f,/f; ratio is equivalent to the dependence on
stimulus level difference (L, — L,) and can therefore be entirely attributed to the behaviour of the
nonlinear function in isolation (section 4.1.5). However, figure 4.11 suggests that, at low stimulus
levels, it is necessary for A; to exceed A, by 20 to 25 dB in order 2f; — /> DP component of the
output of the nonlinear function to decline in amplitude. Considering that A; does not exceed A, by
more than 1 or 2 dB for this stimulus paradigm, even at very low f5/f; ratios (figure 4.16), it is not
possible to attribute the decline in 2f; — /5, DPOAE amplitude below the optimum f5/f; ratio to the
behaviour of the isolated nonlinear function. The alternative explanation, suggested by Kanis & de
Boer (1997), is that the decline of the DPOAE amplitude at low f5/f; ratios occurs due to
overloading, or saturation, of the nonlinear function leading to mutual suppression of the primary
responses. They base this suggestion on the observation that a decline in DPOAE amplitude at very

low f>/f; ratios is not evident at low stimulus levels. Their explanation is tested in figure 4.17 which
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shows the simulated dependence of the 2f; — f; DPOAE amplitude on f5/f; ratio. The result was
evaluated for the full quasilinear model and for a manipulated model which neglects either the DP
self-suppression or both the mutual suppression of the primary tones and the self-suppression of the
DP. This figure demonstrates that when the effect of mutual suppression is neglected from the
quasilinear model, the decline in emission amplitude at low stimulus frequency ratios is no longer
apparent. Therefore we can confirm that mutual suppression seems predominantly responsible for

the reduction in 2f; — f, DPOAE amplitude at low f5/f; ratios.

(a)

R X

(b) Figure 4.16. The influence of £,/f; ratio on the
amplitude to the input to the nonlinear function at the
/> best place

_____ A2 (a) An illustration of the levels A and A,, which
correspond to the amplitudes of the f; and £, primary
travelling waves at the location of the f; best place.
The labels x; and x, denote the best places for f; and f>
respectively. [Redrawn from Lukashkin & Russell
(2001), figure 1]. (b) The effective amplitudes A; and
A,, at the f; best place of the baseline cochlear model,
when stimuli are presented at L;=L,=50 dB SPL with
/> =2 kHz. These amplitudes correspond to the f; and
f> components of the difference in shear displacement
between the BM and TM respectively, which serve as
0 : : : : : the input to the nonlinear function representing the

ooz f;'fé e e action of the OHCs at this location.

Shear displacement (dB re Tnm)

Figure 4.17 Simulation of the influence of = Full quasilinear made|

. . N KT N Bl Mo DP selfsuppression
suppression on the optimal f,/f; ratio a = = = No mutual suppression ||
The amplitude of the 2f; — /, DPOAE is simulated
for a range of f,/f; ratios in three different
cochlear models, L;=L,=50 dB SPL and
2f1 — =2 kHz. Results are shown for the full
quasilinear model (solid line), a modified model
excluding any self-suppression of the DP
component (dotted line) and finally a modified
model which excludes any mutual suppression of
the primary frequency components, in addition to
any self-suppression of the DP component
(dashed line).
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Increasing Reducing overlap of
mutual primary travelling wave
suppression envelopes

Figure 4.18 An illustration of the relationship between f,/f ratio and primary travelling wave overlap
Top: A representation of the 2f; — f, DPOAE level as a function of f,/f;. Bottom: A picture of the change in
overlap of the primary travelling wave envelopes corresponding to regions A, B, and C on the top graph.

In summary, figure 4.18 illustrates the origin of the influence of f,/f; ratio on 2f; — f, DPOAE
amplitude. On this basis the value of the optimal f,/f; ratio for a given stimulus level paradigm is
determined in a rather complicated way by the sharpness of tuning of the primary travelling waves
and the degree to which the nonlinear function, representing the action of the OHCs, becomes
saturated when the primary travelling waves are almost superimposed. These factors are also
expected to influence the rate at which the emission amplitude declines when the f,/f| ratio deviates

away from the optimal value.

4.1.7 Strengths and weaknesses of the model predictions

This section has reviewed the 2f; — f DPOAE properties which are predicted by the baseline
cochlear model and revealed that the model has many strengths. For example, the amplitude of the
predicted 2f; — f> emission is consistent with experimental measures when £, is less than 4 kHz
(section 4.1.2). The relative amplitude of the different order DPOAE:S also appears to be in good
agreement with that observed in physiological studies (section 4.1.1). The contour plots of 2f; — f
DPOAE amplitude as a function of L; and L, are similar to those observed experimentally in terms
of the range of amplitude values on the plot and the asymmetry in the dependence of the emission
amplitude on L; and L, (section 4.1.3). The saturation threshold and growth rate of the emission
with increasing stimulus level do not differ significantly from experimental results, at least for the
stimulus paradigms considered in section 4.1.4. In addition the optimum level difference (L; — L)
for the simulated 2f; — f, DPOAE, and its dependence on stimulus level and stimulus frequency, are
reasonably consistent with data from physiological studies (4.1.5). Finally we note that the
optimum f5/f; ratio for the predicted 2f; — f; emission is consistent with experimental measures at

low stimulus levels or high stimulus frequencies. The prediction that this optimum ratio will

127



4. Predicted 2f;, — £, DPOAE characteristics
4.1 Predictions of a baseline model

increase with increasing stimulus level or decreasing stimulus frequency is qualitatively similar to

trends observed in physiological studies (section 4.1.6).

The model made a few predictions regarding the behaviour of the 2f; — f, DPOAE which were
difficult to verify against experimental measurements. For example, the model suggests that the
saturation threshold of the 2f; — / DPOAE should increase as stimulus frequency ratio increases. In
section 4.1.4 we discuss that, although this tendency has been observed in some physiological
studies it is not consistently evident at a statistically significant level, perhaps as a consequence of
the large intersubject variation in DPOAE saturation thresholds. We also observe in section 4.1.4
that notches occur in the predicted emission growth function for some, but not all, stimulus level
paradigms and stimulus frequencies. These notches are attributed to phase changes between the
elements of the DP source region, but it has not been possible to verify their existence in the

growth function of the wave-fixed (distortion) component recorded from human ear canals.

The greatest limitations of the model with regard to predicting 2f; — />, DPOAE properties are as
follows. Firstly, the model underestimates the amplitude of the 2f; — f, DPOAE when f; is equal to
or above 4 kHz. In chapter 6 we see that this is also true of the 2f, — f; emission. The origin of this
weakness, which we were unable to rectify, is discussed in section 4.1.2. The other limitations of
the model were all associated with the prediction of the optimal f;/f; ratio, which illustrates the
sensitivity of this parameter to weaknesses in the model. For example, although the estimated
optimal f5/f; are consistent with physiological measures at low stimulus levels and high stimulus
frequencies, the model tends to overestimate the optimal £5/f; ratio at high stimulus levels (L; and
L, > 55 dB SPL) and lower stimulus frequencies (2f; — f> less than 3 kHz). Also, at higher stimulus
levels (e.g. 70 dB SPL) the level of the predicted emission does not decline sufficiently when f,/f; is
changed from the optimal value (figure 4.14). Section 4.1.6 identifies that the two factors which
determine the optimal simulated f,/f; ratio are the sharpness of tuning of the primary response and
the degree to which the nonlinear function is saturated, but it is difficult to isolate these factors
within the model to determine which may be at fault. However we can make some informed
suggestions by comparing the dependence of DPOAE amplitude on f,/f; ratio between our model
and the original Kanis & de Boer model, as the models differ in terms of the change in sharpness of
tuning with stimulus level and stimulus frequency. This comparison suggests that our model
overestimates the optimal f,/f] ratio at high stimulus levels due to the form of the nonlinear function,
but that the insufficient fall-off in emission amplitude at non-optimal ratio values could be an
indication that the passive response of the model is too broadly tuned. The comparison also
implies that the optimal f;/f; ratio predicted by our model is over sensitive to changes in stimulus
frequency because the primary tone responses are too broad at low stimulus frequencies. Overall,
the model limitations suggest that some improvements in 2f; — f; DPOAE prediction could be made
by reconsidering the sharpness of tuning of the BM travelling wave at low stimulus frequencies and

the form of the nonlinear function in the future development of the model discussed in chapter 7.
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In summary, we conclude that the baseline model makes appropriate predictions for a broad range

of 2f; — f DPOAE properties and so it is valid to extend the application of the model to hypothesis
testing and to investigate the source mechanisms for this emission. The weaknesses of the model
suggest that caution should be used when analysing results of simulations which extend over a

broad range of stimulus frequencies or stimulus levels.
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4.2 Predictions of a perturbed model

There is considerable evidence from experimental and modelling studies that the 2f; — f> DP is
generated by two different mechanisms within the cochlea: A wave-fixed (distortion) source
distributed over a region close to the f; best place, and a place-fixed (reflection) source located at
the 2f; — f; characteristic place. So far, only the wave-fixed component has been included in our
predictions of the 2f; — f, DPOAE as we have been using a baseline model in which no
irregularities have been imposed on the cochlear partition impedance to act as place-fixed sites of

reflection.

In this section we introduce random irregularities into the active mechanics of the cochlear partition,
to act as sites of reflection. We refer to the model as “perturbed”, rather than “baseline”, when it
incorporates such irregularities. We find that the incorporation of these irregularities allows the
model to replicate some of the DPOAE fine structure characteristics which are observed

experimentally.

4.2.1 The impedance irregularities

Zweig & Shera (1995b) propose that random irregularities in the impedance of the cochlear model
can be used to generate OAE fine structure, similar to that observed in physiological measurement.
They explain that, in a system in which Bragg scattering can occur, distributed irregularities in the
impedance generate coherent reflection of forward travelling waves with wavelength A when the
spatial separation between the perturbations is equal to an integer multiple of A/2. This coherent
reflection process is illustrated in figure 4.19. If the forward travelling signal is composed of many
different wavelengths, rather than one, then only the component with a wavelength equal to twice
the spatial separation of the impedance irregularities will be coherently reflected. If the system
contains randomly distributed irregularities then a forward travelling wave with wavelength A will
be coherently reflected from only those irregularities which are spatially separated by distances

which are integer multiples of A/2.

/\/\/\/\/\/\/\/\/\/ Figure 4.19 An illustration of coherent reflection

in a uniform system

. Uniform medium . . . ..
/\/\/\/\/ i In this case the impedance irregularities as
; Two iall ted by a distance 1/2, where A i
——— leflection spatially separated by a distance A/2, where A is

/\/\/\/\/\ sites the wave length of the forward travelling wave.

—
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The situation in the cochlea is more complicated as the impedance changes with longitudinal
position and consequentially the wavelength of the travelling wave reduces as it propagates.
Assuming for simplicity that the amplitude of the forward travelling wave within the cochlea has a
constant amplitude and a wavelength which varies slowly with distance from the stapes, then it is
theoretically possible for small amounts of coherent reflection to occur at any location within the
cochlea given that the randomly distributed impedance irregularities are likely to contain some
components with a spatial separation equal to half of the instantaneous wavelength. However,
because the instantaneous wavelength changes as the forward travelling wave propagates, the
reflected waves originating from different regions of the cochlea will have different wavelengths
and the net result is an incoherent jumble of small reflected waves. For this reason, coherent
reflections are mainly thought to occur within the cochlea because the amplitude of the travelling
wave is not constant. The amplitude of the forward travelling wave is greatest in the vicinity of the
characteristic place and so the reflected waves from this region dominate the total backward
travelling wave. As the dominant backward travelling waves originate from a small region of the
cochlea, and the wavelength of the travelling wave is assumed to vary slowly with distance, these
reflections will be coherent and form a substantial backward travelling wave. Talmadge et al. (1998)
note that coherent reflection of forward travelling waves will only occur in a cochlear model if two
conditions are met. Firstly, the amplitude of the forward travelling wave at the site of reflection
must exceed the amplitude of the incident wave at other locations and be sufficient to generate a
reflection given the small scale of the impedance irregularities. Secondly, the peak of the travelling
wave must be wide enough to incorporate 1 or 2 wavelengths of the travelling wave. It is helpful to
recall this theory when considering the generation of the place-fixed component of DPOAEs in
sections 4.2.2 and 6.3. For example, the conditions for coherent reflection outlined by Talmadge et
al. may not be satisfied if the peak of the travelling wave envelope becomes too low or broad at
high stimulus levels, as then the amplitude of the reflected waves from the best place of the forward
travelling wave may fail to dominate those originating from other locations within the cochlear
model. Similarly the amplitude of the reflected waves could be compromised if the scale of the

impedance irregularities reduces with stimulus level in the quasilinear model.

The random irregularities which act as sites of reflection for forward travelling waves could be
associated with impedance irregularities in either the active mechanics, perhaps from differences in
the force exerted by neighbouring OHCs (Zweig & Shera, 1995a), or the passive mechanics,
possibly from spatial variations in the BM radial fibres (Shera & Guinan, 2008). Talmadge ef al.
(1998) introduce random irregularities into the stiffness component of the CP impedance in their
cochlear model in order to simulate spontaneous OAEs and DPOAE fine structure. Similarly Ku et
al. (2009) introduced random irregularities into the active component of the CP impedance in order
to simulate SOAEs. Following the work of Ku et al/, we introduce random irregularities into the

active component of the CP impedance in order to generate the place-fixed (reflection) component
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of the 2f; — f, DP. This is implemented using the OHC gain parameter, {x), which was introduced
in equation (2.20) and takes a value between 0 and 1 (Elliott et al., 2007; Ku et al., 2008). When an
irregularity is introduced into the cochlear model, we can apply the decomposition process

described in section 2.3, to estimate the forward and backward components of the total semi-
difference pressure, which we label p, (x)and p, (x) respectively. Although this method was

developed for the linear model, we invoke the quasilinear approximation in order to apply to the
primary or DP components which arise in response to two tone stimulation of the nonlinear

cochlear model.

Given that the CA gain of the cochlear model decreases with distance from the stapes, the
amplitude of the impedance irregularities distributed along the CP will have to increase in order for
the model to be capable of generating equal amplitude reflections from basal and apical regions.
The size of a single step-increase in y(x) that would be necessary to evoke equal reflections at
different locations in the model is shown in figure 4.20. When random irregularities are imposed on
the y(x) distribution of the quasilinear model, the amplitude of the irregularities is scaled using the
distribution shown in figure 4.20. This allows sufficient reflection of low frequency travelling
waves (<4 kHz), such that the place-fixed component of the DP is detectable in the ear canal,
without causing the model to become unstable when higher frequency stimuli are present. Figure
4.21 shows the distribution of random irregularities imposed on the OHC gain distribution
throughout this chapter. The root-mean-square of the variation in the maximum value of y(x)

between the 1 and 2 kHz characteristic places is 5%.

Figure 4.20 The gain step size required for a constant
reflection ratio throughout the model

The plot shows the step-increase in OHC gain y(x)
required at position X, to achieve a reflection ratio of

p,!p,
characteristic frequency. The value of y(x) between the
base and the step-change is set equal to 1, and the stapes
boundary condition is set to minimise reflections of the
0 0005 001 0015 002 002 003 003% backward travelling wave. The reflection ratio 1.3 is
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The physiological origin of the impedance irregularities could be associated with differences in the
orientation or force exerted by neighbouring OHCs (Shera & Guinan, 2008). The irregularities are
thought to occur even in healthy human cochleae, as some disorganisation is evident in the spatial
distribution of human OHCs in fresh tissue samples, and some OHCs may be missing completely
(Glueckert et al., 2005). We have not been able to establish from the literature whether or not the
increased amplitude of the impedance variations between the base and the apex, used in the model,
are evident in the human cochlea. This is because it is unusual to find descriptions of invasive
observations within the human cochlea, and those observations of human OHCs which are
available in the literature do not compare spatially separated sites. It is also possible that impedance
irregularities may not be visible in the anatomy (Withnell ez al., 2003), as they could be associated
with differences in force exerted by neighbouring OHCs, rather than differences in their spatial
orientation, and it would not be evident from visual inspection of tissue samples if these variations
in OHC performance were more exaggerated in the apical region compared to the basal region of

the cochlea.

4.2.2 Estimating the place-fixed component

In this investigation, the place-fixed (reflection) component of the DP is estimated by comparing
two separate simulations. The first uses a baseline cochlear model to determine the wave-fixed
(distortion) component of the DPOAE, and the second uses a perturbed model in which the
irregularities described in section 4.2.1 are imposed on the active cochlear partition impedance to
estimate the total DPOAE. It is then assumed that the place-fixed (reflection) component

corresponds to the difference between these simulations such that

Place-fixed DP = Total DP - Wave-fixed DP 4.1)

This approach has limitations in a nonlinear model. For example, it is possible that the introduction
of impedance irregularities into the model may not only introduce a place-fixed reflection of the
DP travelling waves, but could also alter the wave-fixed DP source via reflections which could
occur in the primary travelling waves. However, in section 5.1.4 we show that the largest
contribution to the place-fixed DPOAE component originates from impedance irregularities at the
2f1 — f> characteristic place. For this reason we proceed with this simple approach to estimating the

place-fixed DPOAE component.
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Figure 4.22 2f; — f DPOAE fine structure

The (a) amplitude and (b) phase of the 2f; — f, DPOAE recorded from one ear by Mauermann & Kollmeier
(2004), using L1=51 and L,=30 dB SPL with f£5/fj=1.2. A time windowing procedure was used to separate the
total DPOAE (grey line) into component with difference phase behaviours: A component with essentially
constant phase (black solid line) and a component with phase which varies rapidly with 2f1 — /2 frequency
(black dotted line). [From Mauermann & Kollmeier (2004), figure 1 b and ¢, with permission from ASA].
The (c) amplitude and (d) phase of the predicted 2f; — f; DPOAE simulated in the cochlear model, using
L;=50 and L,=30 dB SPL with £5/fj=1.25. The total emission, the wave-fixed component and the place-fixed
component are again denoted by the solid grey, the solid black, the dotted black lines respectively.

4.2.3 The 2f,— f;, DPOAE fine structure

In experimental studies, peaks and troughs in the 2f; — f, DPOAE amplitude are observed as f; is
varied for a fixed stimulus frequency ratio. This amplitude fluctuation is known as ‘fine structure’.
Figure 4.22 shows the 2f; — /, DPOAE fine structure recorded from a human ear canal by
Mauermann & Kollmeier (2004). The simulated 2f; — f, DPOAE fine structure predicted by the
model is also shown for comparison. The stimulus frequency ratio used in the simulation is higher
than that used in the experimental study in order maximise the amplitude of the simulated emission
at this stimulus level. The figure demonstrates that both the physiological measurement and the
simulation exhibit peaks and troughs in the 2f; — f, DPOAE amplitude. These amplitude
fluctuations exceed 10 dB. This is consistent with the observation of Dhar & Abdala (2007), who
found that the fine structure trough-to-peak amplitude in their 10 adult subjects was approximately

16 dB = 8 dB.

Mauermann & Kollmeier (2004) use a time windowing technique to separate the total DPOAE into
two components with different phase behaviours: one component has essentially constant phase,
whilst the phase of the other component varies rapidly with stimulus frequency. Figure 4.22 shows
that the wave-fixed component estimated by the model has similar phase behaviour to the
component with constant phase observed by Mauermann & Kollmeier. These wave-fixed
components exhibit little amplitude variation as the stimulus frequency changes. In contrast, the
phase of the predicted place-fixed component varies rapidly as the stimulus frequency changes, in a

comparable manner to the second component extracted by Mauermann & Kollmeier. Also, unlike
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the wave-fixed components, the place-fixed components fluctuate in amplitude as the stimulus

frequency changes in both the model simulation and the experimental measure.

In many experimental studies of 2f; — f, DPOAE fine structure, the spacing between two minima

occurring at adjacent frequencies of £, and f; has been quantified using the ratio Af/fie.n, Where
Joean =~ f.. 1, and Afis given by f; f,. Smaller values of this ratio indicate narrower fine structure.

The ratio typically takes a value of around 1/15 for human subjects (Zweig & Shera, 1995b; Dhar
& Abdala, 2007), but tends to increase as the stimulus frequency decreases. For example, Dhar &
Abdala (2007) found that if the 2f; — f> DP frequency reduced from 2000 to around 750 Hz, the
Aflfnean ratio increases from 0.06 + 0.02 to 0.15 + 0.02. The fine structure predicted by the model
for DP frequencies of 2000 and 750 Hz exhibit Af/fmean ratio values of 0.08 and 0.13 respectively,
which is consistent with the results of Dhar & Abdala.

Origin of the fine structure

Fine structure in the amplitude of the 2f; — /, DPOAE was first reported by Gaskill & Brown (1990)
and He & Schmiedt (1993). It is thought to arise because the total 2f; — £; is formed of a vector sum
of two components (Brown et al., 1996) which have different phase characteristics (Shera &
Guinan, 1999). These two components have been identified in various experimental and modelling
studies (Shaffer er al. (2003),Talmadge et al. (1998) etc) and are evident in the perturbed cochlear
model (figure 4.22).

There are two ways in which the wave-fixed and place-fixed DPOAE components could combine
to form 2f; — f DPOAE fine structure evident in the cochlear model. Firstly, amplitude fluctuations
in the place-fixed component could directly result in amplitude variations for the total DPOAE.
Secondly, amplitude fluctuations in the total 2f; — f, DPOAE could arise from alternating
constructive and destructive summation between the wave-fixed and place-fixed components,
which is expected to occur as a consequence of their different phase characteristics. Figure 4.22
suggests that both of these effects can influence the formation of 2f; — f, DPOAE fine structure at
different stimulus frequencies. For example there are DP frequencies, in both the model simulation
(near 2500 Hz) and the physiological measurement (around 1500 Hz), at which the amplitude of
the place-fixed component approaches that of the wave-fixed component and under these
conditions the fine structure of the total DPOAE appears to exhibit peaks and troughs at
frequencies which correspond to fluctuations in the amplitude of the place-fixed component. This
indicates that at these DP frequencies, the DPOAE fine structure arises predominantly from
amplitude fluctuations in the place-fixed component. The model simulation suggests that the level
of the place-fixed component must exceed that of the wave-fixed component by at least 5 to 10 dB

if this effect is to be the primary cause of the fine structure.
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Figure 4.23 The predicted influence of stimulus
level on 2f; — f, DPOAE fine structure

(a) The simulated fine structure using f5/f; = 1.2
and stimulus levels of 40 or 50 dB SPL (L;=L,).
The circular and square markers indicate
corresponding peaks an troughs in the two
simulations. (b) The peak-to-tough fine structure
amplitude for a range of stimulus levels (L,=L,)
evaluated using f;/f; =1.2 and f; between 2.4 and
3 kHz. (¢) The frequency corresponding to the

= peak and trough marker in (a) for a range of
stimulus levels.
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At other DP frequencies, the fine structure is thought to be formed mainly from the constructive
and destructive summation of the two components. For example, the predicted peak and trough
observed in the total emission amplitude at DP frequencies of 1.6 and 2.4 kHz respectively
correspond to relative phase differences between the place-fixed and wave-fixed components of

2.04 and 5.52 cycles in that order.

The influence of stimulus parameters on predicted fine structure

Figure 4.23 shows how the properties of the simulated 2f; — f, DPOAE fine structure vary with
stimulus level. The model predicts that the stimulus level will affect the fine structure in two ways.
Firstly, the amplitude of the fine structure will reduce as the stimulus level increases. Figure 4.23b
estimates that the peak-to-trough amplitude will decrease from approximately 13 to 4 dB as the
stimulus level increases from 45 to 65 dB SPL for these stimulus frequencies (f5/fj=1.2 and f,= 2.4
to 3 kHz). The cause of this effect within the cochlear model is likely to be associated with the
change in the relative amplitude of the wave-fixed and place-fixed DPOAE components discussed
in section 4.2.5. Secondly, the f; stimulus frequencies at which the peaks and troughs occur will
shift towards lower frequencies as the stimulus level increases. Figure 4.23¢ suggests that the peaks
and troughs can shift by 100 — 150 Hz as the stimulus level increases from 40 to 60 dB SPL. This
may be due to the basal shift in the best places for f; and f; as the stimulus level increases. These
two trends are also evident in experiment measures. For example, figure 4.24 shows the 2f; — />
DPOAE fine structure recorded by He & Schmiedt (1993). This illustrates that the peak-to-trough
amplitude of the fine structure decreases from around 15 to 5 dB as the stimulus level increases

from 45 to 65 dB SPL.
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He & Schmiedt also observe that the f, frequencies at which peaks and troughs occur shift towards
lower frequencies as the stimulus level increases. In this example, the shift is approximately 200
Hz for a 20 dB increase in stimulus level. Therefore the influence of stimulus level on the fine

structure predicted by the model is also observed, on a similar scale, in experimental measurements.

4.2.4 Notches in the 2f; — f, DPOAE growth function

In section 4.1.4 we observed that notches can occur in the growth function of the 2f; — f, DPOAE
predicted by a baseline model. These notches occurred for some, but not all, stimulus paradigms
when the stimulus level was around 50 to 60 dB SPL. They were attributed to changes in the
relative phase of elements within the source region of the wave-fixed 2f; — f; DP as the stimulus
level increased. However, He & Schmiedt (1993) suggest that notches should also occur as a
consequence of shifts in fine structure associated with the mixing of the wave-fixed and place-fixed

components of the DPOAE in the ear canal.

Figure 4.25a shows the growth of the simulated 2f; — f, DPOAE with increasing stimulus level,
using a paradigm in which L,=L,, £/fj=1.1 and f,=2.5 kHz. In this case the predicted wave-fixed
component, evaluated using the baseline model, exhibits no significant notch. There is a change in
the growth rate of the simulated wave-fixed component when the stimulus level reaches 60 dB,
associated with the phase changes between elements within the DP source region, but no
substantial reduction in the amplitude of this component is observed. In contrast, when the growth
of the total DPOAE is predicted by the perturbed model, a notch appears in the simulated growth
function at a stimulus level of 60 dB SPL. The total DPOAE predicted by the perturbed model is
made up of a wave-fixed and a place-fixed component, and the phase difference between these

components as the stimulus level increases is shown in figure 4.25b.
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Figure 4.25 The predicted growth of the wave-fixed and place-fixed components

(a) The simulated amplitude of the predicted 2f; — f, DPOAE and the wave-fixed and place-fixed
components for increasing stimulus level (L;=L, and f;//i=1.1 and £,=2500 Hz). (b) The phase
difference between the place-fixed and wave-fixed components shown in (a).

The notch in the growth function of the total emission, at a stimulus level of 60 dB SPL, is thought
to arise from destructive summation between the place-fixed and wave-fixed components of the
DPOAE, as the phase difference between the two components is almost exactly /2 a cycle at this
stimulus level. It is also interesting to note that the two components are again almost ’2 a cycle out
of phase at a stimulus level of 30 dB SPL, where the predicted amplitude of the total 2f; — f5

emission is less than the amplitude of either the wave-fixed or place-fixed components.

4.2.5 The influence of stimulus parameters on the place-fixed component

The influence of stimulus level

Figure 4.25a shows that the amplitude of the predicted 2f; — /, DPOAE place-fixed component
relative to the wave-fixed component decreases as stimulus level increases above 55 dB SPL. This
is consistent with the experimental observation of Mauermann & Kollmeier (2004), who found that
the amplitude of the place-fixed component decreased relative to the wave-fixed component at L,
levels above 50 dB SPL in all of their 6 subjects using a ‘scissor’ stimulus paradigm (section 1.5.2).
Figure 4.25a suggests that the relative amplitude difference between the DP components which
occurs from stimulus levels in excess of 60 dB SPL arises because the considerable predicted
increase in the wave-fixed component amplitude is accompanied by a decrease in the amplitude of
the simulated place-fixed component. There are several factors which could be responsible for this
including changes in source directionality, reduced influence of the irregularities in the active
micromechanics as the model becomes more passive, and the broadening of the BM response to

stimulation at higher stimulus levels.
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The first two explanations are unlikely to be primarily responsible for the predicted relative decline
in the amplitude of the place-fixed component at high stimulus levels. Section 5.1.3 explains that
any change in source directionality with stimulus level is expected promote forward travelling
waves propagating towards the place-fixed reflection site at higher levels, not diminish them. In
addition, figure 4.26 shows the simulated growth of the emission evaluated using a modified
perturbed cochlear model in which the impedance irregularities were introduced into the passive,
not the active, micromechanics. This demonstrates that the predicted increase in the wave-fixed
component amplitude relative to the place-fixed component does not seem to be directly related to
the reduced influence of irregularities in the active micromechanics at high stimulus levels.
However, the broadening of the BM response could explain the relative amplitude difference
between the two DP components as the stimulus level increases. To illustrate this, figure 4.27
shows the influence of the suppression of the DP travelling wave on the growth of the total
predicted 2f; — f, DPOAE and its wave-fixed and place-fixed components. The CA supplies energy
to the DP travelling wave over a distributed region of the cochlea, but is most active at a distance of
13 mm from the stapes for this simulation. Figure 4.27a demonstrates that the CA gain at this
location reduces from about 1 to less than 0.2 as the stimulus levels (L,=L,) increase from 30 to 70
dB SPL. Figure 4.27b shows the spatial distribution of the BM response at the DP frequency and
illustrates that the CA gain reduction is associated with a broadening of the DP travelling wave
which could lead to a reduction in coherent reflection from the DP characteristic place. Given the
low amplitude of the DP travelling wave, the origin of the extensive CA suppression at the DP
frequency at high stimulus levels is likely to result from the primary travelling waves rather than
self-suppression of the DP component. The influence of DP suppression on the relative amplitude
of the wave-fixed and place-fixed components of the DPOAE is confirmed by figure 4.27c, which
shows the growth of the 2f; — f; emission predicted by a modified cochlear model in which the DP
travelling wave is not influenced by suppression. In this modified simulation the amplitude of both
the wave-fixed and place-fixed DPOAE components increase with the stimulus level and so no

substantial relative amplitude different arises.
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Figure 4.27 The influence of self-suppression on
the growth of the 2f; — f; DP
(a) The predicted OHC gain, observed in the
quasilinear model at a location corresponding the
point of maximum CA activity at the DP
frequency in a fully active linear model (a distance
of 13 mm from the stapes in this case). (b) The
simulated DP component of the BM velocity
response to stimulation by two tones, f; and f;. The
e —— response is shown for stimulus lfavels (Li=L,) of
e o Wae fixed 30 aqd 70 dB SPL. (c¢) The predlf:ted grovyth
@ Place-fixed function for the 2f; — f, DPOAE in a quasilinear
Lo - o= = -0 model which has been modified so that the DP
L,=L, (dB SPL) travelling wave is not suppressed by the primary
tones or influenced by self-suppression. In all
plots, /,= 2 kHz and f£/f; =1.2.

(c) Growth function excluding DP suppression

|DPOAE | (4B SPL)

The influence of stimulus frequency

The 2f; — f, DPOAE fine structure simulation shown in figure 4.22b demonstrates that the absolute
amplitude of the predicted place-fixed component varies with stimulus frequency, and that the
relative amplitude of the place-fixed and wave-fixed components can also vary with stimulus
frequency. The fluctuations in the absolute amplitude of the predicted place-fixed component are
expected to arise due to the random size variations in the impedance irregularities imposed on the
active micromechanics of the cochlear model. Substantial changes in the relative amplitudes of the
wave-fixed and place-fixed components with stimulus frequency could be associated with several
different properties of the model, all of which may contribute to a certain degree. Firstly, the
properties of the middle ear result in changes in the effective level of the stimuli reaching the
cochlea as the stimulus frequency varies, even when the stimulus levels in the ear canal are kept
constant. This could be significant because, as discussed above, the stimulus level can affect the
amplitude of the place-fixed component relative to the wave-fixed component of the DPOAE.
Secondly, the extent of spatial overlap between the primary travelling waves in the cochlear model
is likely to change with stimulus frequency, even if the f,/f; ratio is fixed, due to the change in the
sharpness of tuning of the BM response with stimulus frequency (section 3.4.2). Changes in spatial
overlap can influence the relative phase of the elements with the wave-fixed DP source distribution

and impact on the directionality of the source (section 5.1.3). These alterations in source
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directionality could lead to changes in the relative amplitude of the wave-fixed and place-fixed

DPOAE components as a consequence of stimulus frequency variation.
The influence of stimulus frequency ratio

Figure 4.28 shows the variation in amplitude of the predicted place-fixed 2f; — f, DPOAE
component with stimulus frequency ratio. This plot contains a simulation, and the experimental
result of Knight & Kemp (2001) for comparison. The simulation predicts that the amplitude of the
wave-fixed component will exceed that of the place-fixed component when the stimulus frequency
ratio is close to the optimal value, between 1.2 and 1.6 for the cochlear model. When f,/f; exceeds
1.15, the amplitude of the predicted place-fixed component decreases as the stimulus frequency
ratio increases. The origin of this effect within the cochlear model is likely to be a change in the
directionality of the spatially distributed wave-fixed DP source. In section 5.1.1, the source length
is shown to change as the f5/f| ratio changes which can impact on the source directionality (section
5.1.3). This decrease in the amplitude of the predicted place-fixed DPOAE component with
increasing stimulus frequency ratio is in agreement with the experimental measurement, in which
the wave-fixed component dominates the place-fixed component for f,/f; ratios between 1.1 and
1.35. At very high stimulus frequency ratios, the amplitude of both components declines in the
simulation and the physiological result. However, at very low £5/f; values (<1.15) the model
predicts that the amplitude of the place-fixed DPOAE component should decline as the stimulus
frequency ratio approaches unity. This is in contrast to the experimental outcome, which suggests

that the amplitude of this component continues to rise as f,/f; approaches unity.
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Figure 4.28 The influence of f,/f] ratio on the wave-fixed and place-fixed DPOAE components

(a) The amplitude of the wave-fixed and place-fixed components of the 2f; — /, DPOAE measured by Knight
& Kemp using a time windowing technique. The DP frequencies are averaged between 1.1 and 4 kHz, and
L,;=L,=70 dB SPL. [From Knight & Kemp (2001), figure 5, with permission from ASA] (b) The predicted
amplitude of the total 2f; — f, DPOAE and the wave-fixed and place-fixed components. The simulation was
performed using L;=L,=50 dB SPL and f,=2kHz.
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Other studies, such as that of Wilson & Lutman (2006), have also observed that at low f,/f; ratios
that amplitude of the place-fixed component exceeds that of the wave-fixed component by around
15 dB. Therefore the model tends to underestimate the amplitude of the place-fixed component,
relative to the wave-fixed component, at low stimulus frequency ratios below approximately 1.15.
There could be several explanations for this. For example, it is possible that if the tuning of the BM
response is too broad in the cochlear model then the wave-fixed DP source region may extend too
close to the DP characteristic place at low f,/f; and adversely affect the generation of the place-
fixed component at this location. This suggested weakness of the model would be consistent with
some of the limitations noted previously in section 4.1.7 regarding the dependence of the wave-
fixed 2f; — f, DPOAE on stimulus frequency ratio. It is also possible that self-suppression of the DP
response may be occurring in the model at low f,/f] ratios, which would impact the sharpness of
tuning of the BM response and the CA gain at the DP characteristic place and could therefore

reduce the amplitude of the place-fixed component.
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4.3 Conclusions regarding 2f; — f, DPOAE prediction

This chapter provides a response to the following research questions posed in section 1.9

concerning the predicted 2f; — f, DPOAE:

o  What are the strengths and weaknesses of the model regarding 2f; — f, DPOAE prediction?

o  What explanation does the model provide for the dependence of the 2f; — f, DPOAE
amplitude on the stimulus parameters?

o  What causes notches in the growth of the 2f; — /, DPOAE predicted by the model?

o  What is the origin of DPOAE fine structure in our model?

From sections 4.1 and 4.2 we identify the strengths and weaknesses of the model regarding 2f; — f,
DPOAE predictions. Overall we conclude that the model makes appropriate predictions for a broad
range of 2f] — f, emission properties and that it is valid to extend the application of the model to
investigate source mechanisms for this emission, and to test experimental hypotheses. The
limitations of the model suggest improvements that could be made in future development which are
discussed in chapter 7. Sections 4.1.5 and 4.1.6 provide evidence which is used to either verify or
challenge existing theories concerning the basis of stimulus effects on DPOAE level. Sections 4.1.4
and 4.2.4 identify notches in the growth of the predicted 2f; — f;, DPOAE, including a notch in the
growth of the estimated wave-fixed DPOAE component for a small range of stimulus paradigms. A
possible explanation for this notch is suggested, based on the work of Mills (2002). Finally,
section 4.2.3 illustrates the predicted 2f; — / DPOAE fine structure and discusses the two ways in
which this fine structure could be formed in the model from combination of the wave-fixed and

place-fixed components.

The main contributions of this chapter are listed below and correspond to the summary given in

section 1.9(iii-v).

e A comprehensive prediction of 2f; — / DPOAE characteristics for a broad range of stimulus
parameters, using a model which can estimate both the wave-fixed and place-fixed
components of the emission

e  Confirmation that the Lukashkin & Russell (2001) explanation for the reduction in the 2f; — f;
DPOAE amplitude when L;>>L,, which leads to the occurrence of an optimal stimulus level
difference for this DP, can be extended to a coupled cochlear model (section 4.1.5)

e  New evidence for attributing the reduction of 2f; — / DPOAE amplitude at low f,/f] ratios to
the effect of mutual suppression of the primary tones (section 4.1.6)

e  Identification and explanation of predicted notches in the growth of the estimated wave-fixed

2f1 — /> DPOAE component for a small range of stimulus paradigms (section 4.1.4)
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S. Predicted 2f; — f, DPOAE source and transmission

mechanisms

Having gained an understanding of the strengths and weaknesses of the model with regarding

2f1 — /- DPOAE prediction, in this chapter the model is applied to address the remaining research
questions posed in section 1.9 concerning the 2f; — f, DPOAE. This includes an investigation of the
mechanism and location of the 2f; — f;, DP source within the cochlear model. As the cochlear origin
of the 2f; — f, DPOAE has been studied extensively in human subjects, these results provide useful

verification of the generation mechanisms within the model.

We also apply the model to hypothesis testing in section 5.2. Two particular hypotheses are
considered: those relating to the Allen & Fahey (1998) and the He et al. (2008) experiments. These
studies were chosen as illustrations of cases in which the model either challenges or supports the
experimental hypothesis. These experimental studies are also interesting because they have been
used in the literature to inform on the transmission mechanism by which the 2f; — f, DP propagates

out of the cochlea from its generation site.
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5.1 Investigation of source mechanism and location

The source mechanism for the 2f; — £, DP has been detailed extensively in the literature. Figure 5.1
illustrates this generation mechanism, which consists of two components: a wave-fixed source
positioned in the vicinity of the £, best place, and a place-fixed source located at the DP
characteristic place. This simple picture is likely to be complicated in reality by multiple reflections

between the base and the DP characteristic place (Stover et al., 1996).

In this section we determine the source of the 2f; — f, distortion product in the model, and confirm
that it is consistent with the two source illustration given in figure 5.1. We assume that the wave-
fixed component corresponds to the 2f; — f, DPOAE which is predicted by the baseline model, and
that the place-fixed component can be estimated by comparing the emission simulated by the
perturbed model with that simulated by the baseline model (section 4.2.2). We start by considering
the location and distribution of the wave-fixed component, and its directional properties. We then
investigate the location of the place-fixed source in the perturbed cochlear model. This approach
allows us to develop analysis tools which will be useful for investigating the source of the 2f; — f;

DPOAE, which is less well understood, in chapter 6.

I X2 X1 I Xdp
|
| |
i
i
B i ]
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distortion distortion component distartion component

product
<

Reflection component

Figure 5.1 Illustration of the two source components for a lower side band emission

This picture is based on figure 1 of Shaffer ef al. (2003) and refers only to lower side band emissions, such as
the 2f; — f, DPOAE. The grey triangles represent the travelling wave envelopes evoked by the stimulus tones
fiand f,. The black triangle denotes the distortion product (fy,) travelling wave, and the grey shaded region
shows the predicted region of origin for the distortion source. Distortion products at other frequencies (not
2f1 — /) have been neglected for clarity.
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Figure 5.2 The 2f; — f, DP component of the OHC pressure output

Plots (a) and (c) show the DP component of the OHC pressure output. The BM velocity response is also
shown in (b) and (d) where the frequency components f5, f;, and 2f; — f; are represented by the grey dotted,
grey dashed, and solid black lines respectively. In each case f; = 2 kHz, f,/f; = 1.25 and the stimulus levels
are either (a and b) L;=L,=40 dB SPL or (c and d) L,;=L,=60 dB SPL. The best places for £, f|, and the

2f> — f1 characteristic place are indicated by the circle, square, and triangle markers respectively.

5.1.1 The 2f; — f; wave-fixed source distribution

We assume that the wave-fixed distortion mechanism is entirely responsible for generating the

2f1 — - DPOAE in a baseline cochlear model. However, in principle, there could also be a wave-
fixed reflection component generated by impedance irregularities introduced by the nonlinearity.
Appendix D.2 demonstrates that these wave-fixed impedance irregularities are most prominent at
moderate stimulus levels, but negligible at low or high stimulus levels. It is difficult to distinguish
between the distortion and nonlinear reflection components of the wave-fixed DP in the cochlear
model, as both are expected to exhibit the same phase behaviour when the stimulus frequency is
varied. We assume, however, that the distortion source contribution dominates the wave-fixed
emission, which is essentially sourced by the distribution of the OHC pressure output at the DP

frequency.
The 2f; — f> component of the OHC pressure output

Figure 5.2 shows the simulated distribution of the 2f; — /5 component of the OHC pressure output,
and the corresponding BM velocity response, for two different stimulus levels. It is helpful to recall
the distinction between ‘characteristic’ and ‘best’ place when inspecting this figure. For a given
stimulus frequency presented at the stapes we define the ‘characteristic’ and ‘best’ places as the
locations on the cochlear partition corresponding to the peak in the travelling wave envelope
predicted by either a linear active or quasilinear cochlear model respectively. Therefore the
‘characteristic’ place is independent of stimulus level whilst the ‘best’ place is not. The best places

for the f; and f; stimulus tones are easily identified from the primary travelling wave responses in
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the quasilinear cochlear model. However, as the DP travelling wave is evoked by internal
distributed source rather than a stapes stimulus, the best place for this frequency may not
correspond to the peak of the DP travelling wave envelope. For this reason the DP characteristic
place, rather than the DP best place, is indicated on the figures. Figure 5.2(a and c) illustrates that
there is a peak in the amplitude of the 2f; — f; OHC pressure output near the f; best place, and that
the distribution is broader for the higher stimulus level compared to the lower levels. It also
demonstrates that the distribution of the 2f; — f; component of the BM velocity, exhibits two peaks:
One at the f; best place where the source amplitude is greatest, and one at the DP characteristic
place. This simulation result is consistent with the source illustration shown in figure 5.1, as it
indicates that the DP pressure output of the OHCs generates a forward travelling wave which

propagates to the 2f; — f, characteristic place.

The effective wave-fixed (distortion) source distribution

Although figure 5.2 (a and c) illustrates the distribution of the 2f; — f, OHC pressure output, it does
not inform us as to whether this distribution is capable of generating DP backward travelling waves
which would be able to propagate out of the cochlea and be detectable in the ear canal. For this
reason, the effective source region for the wave-fixed component of the 2f; — f, DPOAE is
estimated by taking each individual element of the OHC pressure source distribution described in
figure 5.2, and evaluating the level of the DPOAE which is evoked by that element in isolation. We
then identify the dominant source region as the area of the model over which the individual source
elements evoke a DPOAE level which is within 10 dB of the maximum level evoked by any single
element. This approach finds the most influential source elements, but collectively their
performance will depend on the phase relationships which determine the interactions between them.
The dark grey shaded area in Figure 5.3a shows the estimated effective source region for the wave-
fixed 2f; — f, DPOAE component generated by 50 dB SPL stimuli (L,=L,) using a variety of f,/f;
ratios and fixed f, (2 kHz). This region increases in length from 1.5 to 2.5 mm as the stimulus
frequency ratio reduces from 1.4 to 1.01. The figure also shows that the location of the distributed
source region straddles the f; best place and considerable contributions to the amplitude of the
wave-fixed DPOAE are generated on either side of this location. The exact width of the source
region depends on the boundary definition used, but the estimate of 1.5 to 2.5 mm for a stimulus
level of 50 dB SPL equates to 0.04L to 0.07L, where L is the cochlear model length. This estimate
is in good agreement with that of Zhang & Mountain (2008), who found that that the length of the
source region in their model grew from <0.05L to 0.1L as the stimulus frequency ratio reduced

from 1.4 to less than 1.1 (figure 1.22a).

The light grey shaded region in figure 5.3a corresponds to the area of the model over which the
2f1 — f> DP component of the OHC pressure output is within 10 dB of the maximum value. For the
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2f1 — f> DP, this region is expected to essentially coincide with the dark grey shaded effective
source area as the travelling waves at 2f; — f are able to propagate throughout this area of the
model. However, when we consider the 2f; — f; DPOAE in chapter 6, we anticipate that some

differences between the dark and light shaded regions will emerge.

Figure 5.3b shows that the estimated length of the effective 2f; — 5 DP source region increases
from about 1 to 2 mm as the stimulus level (L;=L,) increases from 30 to 80 dB SPL for a stimulus
frequency ratio of 1.2. This equates to an increase from 0.03L to 0.06L, and is associated with the
broadening of the travelling wave envelope for higher stimulus levels which increases the spatial
overlap between the f; and £, travelling waves. In summary, figure 5.3 demonstrates that the width
of the source region tends to increase if either the stimulus level is increased, or the stimulus

frequency ratio is decreased.
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Figure 5.3 The predicted location and length of the 2f; — f, DP source region
(a) The simulated length and location of the 2f; — f; wave-fixed DPOAE source for a variety of the f,/f; ratios
using L;=L,= 50 dB SPL and 2f] — f; = 2 kHz. The dark grey shaded region highlights this source region,
which is bounded by the solid black lines. The light grey shaded region illustrates the source region estimated
from the DP component of the OHC pressure output only. (b) The simulated length and location of the
2f1 — f» wave-fixed DPOAE source region for a variety of stimulus levels, using f,/f;j=1.2 and 2f; — f, = 2 kHz.
In both plots, the black dashed and dotted lines correspond to the f; best place and 2f; — f; characteristic place
respectively.
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Figure 5.4 The wave number of the travelling wave
The (a) real and (b) imaginary components of the wavenumber of the travelling wave in the quasilinear
model, when it is stimulated by a single 2 kHz tone at a level of either 20 or 80 dB SPL.

The effective 2f; — > DP source region shown in figure 5.3 suggests that significant contribution to
the wave-fixed DPOAE can be generated from a location that is apical of the f; best place. This can
occur in the model because the £, travelling wave does not convert from a propagating travelling
wave to an evanescent wave immediately upon reaching its best place. Instead of a discrete change
from travelling wave to evanescent behaviour, there is a finite region of the model over which the
amplitude of the real component of the wavenumber falls off towards zero (corresponding to a
decline in the amplitude of the f, travelling wave) and the negative imaginary part of the
wavenumber builds up (signifying the transfer to an evanescent wave). This is illustrated in figure
5.4 which shows the real and imaginary parts of the wavenumber of a travelling wave evoked by a
2 kHz single tone stimulus in the quasilinear model. Therefore, beyond the £, best place, it is still
possible for the residual f; travelling wave to interact with the f travelling wave and contribute to

the wave-fixed DPOAE source.

Interactions between individual source elements

Figure 5.3 indicates the effective amplitude of individual elements within the DP source region, but
does not offer insight into whether these elements are likely to sum together constructively or
destructively to form the total 2f; — /, DPOAE. Instead we investigate whether any substantial
destructive summation is occurring within the source region by modifying the model such that the
length of the 2f; — f, OHC pressure source is gradually extended from the base of the model whilst
monitoring the level of the DPOAE predicted by the model. This technique is illustrated in figure
5.5 and, for this stimulus paradigm, the predicted 2f; — /, DPOAE amplitude increases
monotonically with the length of the source region. The monotonic increase suggests that there is

no significant destructive interference occurring between the distributed elements of the source
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region. However we observed in figure 4.6 that, at higher stimulus levels, this approach can detect

destructive summation occurring between different elements within the source distribution.

5.1.2 Relative amplitude of different DPOAE frequency components

The 2f; — f> DP is the largest DPOAE observed in humans. Figure 4.1 shows the amplitude of
various frequency components recorded in the human ear canal during the presentation of two
simultaneous pure tones. In this section we discuss the origin of the relative amplitudes of these
DPOAESs. As part of this investigation we mention the source of the 2f, — f; DP, which is described

in much more detail in chapter 6.

The difference in amplitude between DPs of different orders appears to originate from differences
in the amplitude of the wave-fixed DP pressure source, and will therefore by influenced by the
choice of nonlinear function. For example, figure 5.6 shows the simulated internal pressure source
distribution which generates the wave-fixed components of the 3" and 5™ order DPs in the cochlear
model. The maximum amplitude of the pressure source, which occurs in the vicinity of the f; best

place, is greater for the lower order DPs, compared to the higher order DPs.
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The difference in amplitude between upper and lower side band emissions of the same order is
likely to arise as a consequence of the difference in the breadth of the wave-fixed pressure source
distribution. This difference can be seen in the spatial distributions of the 2f; — f, and 2f, — f; DP
wave-fixed pressure sources in figure 5.6. On the apical side of the f; best place the amplitude of
the pressure source falls-off over a shorter distance for the upper- compared to the lower- side band
emission. In addition figure 5.7 shows the predicted contributions to the total DPOAE from each
component of the DP source term, which takes into account not only the pressure source
distribution but also the propagation of DP from the source region to the base of the cochlea. This
figure should be interpreted with caution, as any interference between neighbouring source
elements is neglected. However, it confirms that the source elements which contribute most
significantly to the DPOAE observed in the ear canal are positioned across a broader region for the

2f1 — f> DP compared to the 2f; — f; DP.

Figure 5.6 The source distribution for different
al [ 0 DP frequencies
—n (a) The £, and f, components of the predicted BM
velocity response evoked by two stimulus pure
tones at frequencies f] and f, in the baseline
model The stimulus levels L; and L, were set
T O equal to 65 and 55 dB SPL respectively and
0 0.005 001 i 0ds 0.0z £>=2200 Hz and £,=1800 Hz. (b) The predicted
P quasilinear OHC output pressure at various DP
b | [— 3o frequencies, generated by the stimulus tones
- described in (a). This pressure acts as the internal
- 32;2 pressure source distribution for travelling waves
at the DP frequencies. Other DP frequencies are
also expected to occur in the OHC output
. pressure, but these have been neglected for
0 0.0 T 0m simplicity. In (a) and (b) the thin dotted lines
i) indicate the location at which the BM velocity
amplitude is greatest for each stimulus tone.
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Figure 5.7 The contribution to the total DPOAE °
from individual wave-fixed source elements
The (a) amplitude and (b) of the predicted
DPOAE detected in the ear canal of the model
when the DP source from one element only is
“switched on”. The stimulus parameters are the
same as those described in figure 5.6. The plot 250 ToE oo oo oo
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travelling waves.
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5.1.3 Directionality of the 2f; — f, wave-fixed component

Shera & Guinan (2008) explain that if the source elements comprising a distributed source have a
phase distribution typical of a forward travelling wave in the cochlea, then the source will be highly
directional. We investigate the directionality of the DP source region using two approaches. First,
the amplitude of the travelling wave on the basal and apical sides of the distributed source region is
compared to the amplitudes observed for a point source. Secondly, the forward-backward

decomposition method (section 2.3) is used to support our conclusions.
The influence of source length

Figure 5.8 shows the amplitude of the travelling wave evoked by an internal source, observed at the
base and at the characteristic place in the active linear cochlear model. The source is positioned
between the base and the characteristic place, and the length of the source is gradually increased.
The amplitude of the evoked travelling wave at the base and characteristic place is given in units of
dB relative to the amplitude of the travelling wave evoked by a point source in the centre of the
extending region. Figure 5.8a demonstrates that if the source has uniform amplitude and phase,
then the source exhibits no directionality. In this case, the amplitude of both the forward and
backward travelling waves evoked by the internal source increase equally as the source length
extends. However, figure 5.8b shows that if the internal source is given the phase distribution of a
forward travelling wave then the source becomes directional as the source length increases. In this
case the amplitude of the forward travelling wave exceeds that of the backward travelling wave,

relative to the waves generated by a point source.
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Figure 5.8 The directionality of an extended source

These plots show the predicted BM velocity at the base (dashed lines) and at the characteristic place (solid
lines) in an active linear model, evoked by an internal 1.3 kHz velocity source distribution of increasing
length. The source starts as a 10nm/s velocity source presented to one micromechanical element, at a distance
halfway between the stapes and the characteristic place. The source is gradually extended by increasing the
number of elements to which the 10 nm/s velocity stimulus is presented. The phase of the source along its
length is either (a) uniform or (b) consistent with the phase of a travelling wave, so that the source phase at an

element located at x;, is given by ¢(x,) = L: k(x")dx'
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Figure 5.9 shows the amplitude and phase of the 2f; — 5 component of the OHC pressure output,
which forms the basis of the wave-fixed source within the baseline cochlear model. It illustrates
that the phase behaviour of this pressure is similar to that of a forward travelling wave. For this
reason, as the source length increases, we would expect the wave-fixed DP source to become more
directional such that it preferentially evokes forward travelling waves rather than backward
travelling waves. Given the effective 2f; — f, source distributions shown in figure 5.3, we anticipate
that the changing source directionality will act to enhance forward travelling waves relative to

backward travelling waves as the stimulus level increases or the f,/f] ratio decreases.
Using forward-backward travelling wave decomposition

Figure 5.10 shows the estimated forward and backward travelling components of the DP travelling
wave that are evoked by two different stimulus levels, using the forward-backward decomposition
method (section 2.3). Although both forward and backward travelling waves are evident in the
region between the base and the f; best place, the amplitude of the forward travelling wave in this
region falls below the error floor of the decomposition method if the stapes boundary condition is
adjusted to minimise reflections of backward travelling waves. On the apical side of the f; best

place, only a forward travelling DP wave is evident as the amplitude of the backward travelling

wave decreases below the error floor. If the amplitude of the forward travelling DP wave, p, , near
the DP characteristic place is compared to the amplitude of the backward travelling DP wave, p,,
on the basal side of the /> best place then the ratio p), / p, is approximately equal to 1.3 for the 50

dB SPL stimulus level. However, the ratio increases so that p, / p, is around 1.6 for the 60 dB

SPL stimulus level, indicating that the wave-fixed source has become more directional as the

stimulus level has increased.
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Figure 5.10 The forward and backward travelling components of the 2f; — f, DP
(a) The amplitude of the forward and backward travelling waves at the DP frequency. The amplitude of the f;
and f, travelling waves are also shown (grey lines) for reference. (b) The coefficients of the DP forward and
backward travelling wave. The simulations are performed using L,=L,=50 dB SPL, ;=2 kHz and f,/fi=1.2. In

(c and d) the same responses are obtained except that a stimulus level of L;=L,=60 dB SPL was used. The
arrow marks the f; best place in each of the plots.

The use of forward-backward travelling wave decomposition to investigate changes in source
directionality has its limitations, and the most significant is that the amplitude growth of the DP
forward travelling is nonlinear and this may prevent significant changes in directionality from
being detected at higher stimulus levels. However, the result is consistent with the previous
assessment of directionality based on source length, which suggests that the directionality of the

wave-fixed source should increase with stimulus level due to an increased source length.

5.1.4 Origin of the 2f; — f;, DPOAE place-fixed component

The predicted place-fixed DP component is evaluated by introducing random irregularities into the
active component of the CP impedance, to form a perturbed cochlear model, as described in section
4.2. This should allow the forward travelling wave evoked by the wave-fixed DP source in the
region of the f; best place, to be reflected when it reaches the 2f; — f; characteristic place. However,
the introduction of the irregularities could also modify the DP component of the OHC pressure
output, through reflections of the fiand £, primary travelling waves at their best places. Therefore it

is important to determine the dominant mechanism behind what we have classified as the place-

fixed DP component.

The solid line in figure 5.11 shows the amplitude of the place-fixed DPOAE component, evoked by

imposing a single step increase in the active OHC impedance so that y(x) increases by 0.1 at a
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single location in the cochlear model. This has been obtained by substituting the results of the
baseline model from those of the model incorporating the irregularity. The location of the
impedance step is moved progressively from the base to the apex of the model, and the amplitude
of the place-fixed DPOAE is evaluated for each position as described in section 4.2.2. The figure
reveals that although a small place-fixed component is measured when the step-up is located near
the f; or f; best places, the place-fixed component from the 2f; — f; characteristic place is about 17
dB larger. The small place-fixed component which is evoked by an irregularity positioned near the
/> or f; best places results from reflections in the primary travelling waves which then modify the
input to the nonlinear function. This is evidenced by the dotted line in figure 5.11 which
demonstrates that irregularities at the f; or f; best places do not significantly influence the predicted
DP if reflection of the primary travelling waves is neglected from the simulation. Overall we
conclude that the place-fixed component of the 2f; — f, DPOAE estimated by the perturbed model,

originates primarily from a linear reflection mechanism located at the 2f; — f; characteristic place.

20+

Armnplitude (dB)

a0k

X

-50
0

0005 oot o o 0.025
u(rn)
Figure 5.11 The location of the place-fixed (reflection) 2f; — f, DP source mechanism
This plot shows the predicted amplitude of the place-fixed component of the 2f; — / DPOAE generated by
imposing a single step into the active impedance of the cochlear model at various locations, x(m). The
stimulus parameters were L;=L,=50 dB SPL, f,= 2 kHz and f,/f;=1.3. The best places for f;, /> and the 2f; — f;
characteristic place are indicated by X4, Xp and X, - p respectively. The solid line corresponds to the result
from a model in which the irregularity affects the primary and DP travelling waves. In contrast the dotted line
corresponds to a model in which the irregularity affects only the DP, not the primary, travelling waves.
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5.2 Application of the model to hypothesis testing

In this section we consider how the model can be applied to hypothesis testing in order to gain a
better understanding of the implications of some experimental results. Two examples are given:
The Allen & Fahey (1998) experiment and the He et al. (2008) experiment. These studies were
chosen as illustrations of cases in which the model either challenges or supports the experimental
hypothesis respectively. This application also provides further verification of the model predictions
as they are in good agreement with simulations performed in other studies, at least as far as those
other models have been taken. In this section we also seek to explore the results of these

experiments in more depth.

5.2.1 The Allen-Fahey experiment

The Allen-Fahey experiment, described in section 1.7.3 was originally designed to quantify the
gain of the CA, but was unsuccessful. Several explanations for the null result of this experiment
have been proposed in the literature:

(1) There is no cochlear amplifier (Allen & Fahey, 1992)

(i1) Distortion products travel out of the cochlea via fluid compression waves, not reverse
travelling waves, and therefore the principle of the method is flawed (Ren & Nuttal,
2006)

(ii1) The contribution of the reflection source (place-fixed) mechanism is neglected

(iv) There may be some suppression of the DP for small £,/f; ratios (Shera & Guinan, 2007)

(v) There may be wave interference occurring between the DP and the primaries, or
between DPs of different frequencies (de Boer ef al., 2005)

(vi) The directionality of the distortion source (wave-fixed) mechanism may change with
fo/fi ratio (Shera & Guinan, 2007), as a result of the distributed nature of the source
region (Neely & Liu, 2008), which would invalidate the underlying assumptions of the
method

In the past, the cochlear models of Kanis (1995) and Neely & Liu (2008) have been used to
discount explanation (i) on the basis that the null result of the Allen-Fahey experiment can be
replicated using a cochlear model which incorporates an amplifier mechanism. Explanation (ii) has
also been rebuffed because, so far, cochlear models have only been able to replicate the Allen-
Fahey experiment result if the reverse propagation of DPs towards the stapes is dominated by the
travelling wave mechanism rather than a compression wave or a hybrid mechanism (Shera et al.,
2007). Further objections to the backward propagation of DPs out of the cochlea via fluid

compression waves were discussed in section 1.4.4. The other explanations (iii) — (iv) are more
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difficult to assess based on the literature, and for this reason we apply our cochlear model to
simulate the Allen-Fahey experiment in order to determine which of these suggestions is likely to

be most influential.

We start by replicating the Allen-Fahey experiment in the baseline cochlear model. Figure 5.12a
shows the result that Allen & Fahey anticipated in their 1992 experiment, based on the assumption
that the cochlear amplifier enhances the travelling wave amplitude by a factor G. As explained in
section 1.7.3, the experiment involves presenting two tones (f; and f;) in the ear canal, and
adjusting the stimulus levels (L;=L,) such that a pre-specified response level occurs at the
characteristic place corresponding to the 2f; — f, DP frequency. During the experiment, the 2f; — f;
DP frequency is fixed and the level of the DPOAE in the ear canal is monitored for a range of £
values. Allen and Fahey argue that the shift in the relative position of the DP source and the region
over which the CA amplifies the BM travelling wave at the DP frequency as the f,/f; reduces
towards unity, should result in a G* increase in the DPOAE amplitude detected in the ear canal
where G is the gain of the CA. Therefore figure 5.12a illustrates that the DP amplitude was
anticipated to increase as f; is moved towards the DP frequency. It should also be noted that the
stimulus level L, is expected to decrease as f; approaches the DP frequency as the spatial overlap
between the f| and f; primary travelling waves increases, enhancing the DP source pressure and

reducing the stimulus levels required.

Figure 5.12b shows the result of the original Allen-Fahey experiment. In contrast to the anticipated
result, the level of the DPOAE in the ear canal remains essentially constant for all f; frequencies.
Therefore Allen & Fahey concluded that G was close to 1, or in other words, there is no cochlear
amplifier. Kanis (1995) demonstrated that the original Allen & Fahey experiment may not have
included values of f; sufficiently close to 2f; — f> to detect the value of G correctly. However
replications of the experiment, which included smaller f,/f; ratios, were consistent with the null
result of Allen & Fahey (de Boer et al., 2005; Shera & Guinan, 2007). The results of the simulated
experiment performed by Neely & Liu (2008), using a cochlear model in which the CA provides a
gain of 47 dB to the BM displacement, is shown in figure 5.12c. This demonstrates that, contrary to
the expected result (figure 5.12a), the predicted DPOAE amplitude declines as f; approaches the
DP frequency. Neely & Liu conclude that the Allen-Fahey experiment does not provide an accurate

method for quantifying the gain of the CA.

Our simulation of the Allen-Fahey experiment is shown in figure 5.12d. It differs from that of
Neely & Liu mainly in the behaviour of the f; pressure amplitude. This difference arises because, in
our simulation, it is the DP component of the response rather than the total response at the DP
characteristic place which is kept constant throughout the simulation. For this reason, the f;

pressure component does not follow the iso-displacement curve as f approaches the DP frequency
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in our simulation. The conclusion from our model simulation, that the DPOAE amplitude should

fall off as f; tends towards the DP frequency, is the same as that of Neely & Liu.
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Figure 5.12 The result of the Allen-Fahey experiment

(a) Illustration of the anticipated result of the Allen-Fahey experiment, based on the explanation given in
section 1.7.3. As the stimulus frequency ratio f,/f; decreases, and f; tends towards the DP frequency, the DP
pressure in the ear canal is expected to increase by either a factor of G or G* where G is the gain of the
cochlear amplifier. (b) The experimental results recorded in cats by Allen & Fahey. [From Allen & Fahey
(1992), figure 5, with permission from ASA]. (c) The simulation performed by Neely & Liu, using a model
of the cat cochlea [From Neely & Liu (2008), figure 4 with permission of the authors and World Scientific].
(d) Our simulation. The stimulus levels (L;=L,) were adjusted for each f; frequency, such that the 2f; — f, DP
component of the shear displacement was fixed at — 25 dB re 1 nm, at the 4 kHz characteristic place.
Throughout the simulation the DP frequency (2f; — f;) was equal to 4 kHz, and the f; frequency was varied

from 4020 to 7000 Hz.
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Explanations for the null Allen-Fahey result

As we simulated the Allen-Fahey result in the baseline cochlear model, in which there are no place-
fixed sites of reflection for forward travelling waves, we can conclude that explanation (iii) is not
important: The null result of the Allen-Fahey experiment is not associated with neglecting the

place-fixed component of the 2f; — £, DP from the experimental design.

To eliminate explanation (iv) the cochlear model was manipulated to neglect self-suppression of
the DP travelling wave and mutual suppression of the primary responses. Figure 5.13 shows the
simulation of the Allen-Fahey experiment using this manipulated model. It demonstrates that
although these suppression effects can alter the amplitude of the 2f; — f, DPOAE by up to
approximately 5 dB, this change is not sufficient to explain the decline in DPOAE amplitude of
over 50 dB which is observed as the f; frequency is reduced from 7000 to 4000 Hz in the full
quasilinear model. For this reason, suppression can be excluded as the dominant cause of the null
Allen-Fahey experiment result in the cochlear model. This is similar to the conclusion of de Boer et
al. (2005) who verified experimentally that there was little change in the degree of mutual
suppression between the primary tones as the stimulus frequency ratio decreased in their replication

of Allen-Fahey experiment in the guinea pig cochlea.

Our simulation, and the earlier work of Kanis (1995), allows explanation (v) to also be dismissed.
This is because it was not necessary to incorporate other DP components, such as the 2f; — f; or the
3f1 — 2f1, in order to replicate the null result of the Allen-Fahey experiment. The interaction
between the 2f; — f> DP and the primary tones is also negligible as the result of the simulation is
altered by less than 1 dB if the 2f; — f, DP component is permitted to modify the estimation of the

primary responses in the quasilinear iterative process.

Figure 5.13 The influence of suppression on the -10 ’
Allen-Fahey result = R

The plot shows the simulated Allen-Fahey $ -20 -:;::"-_
experiment performed in the full quasilinear % a0 = Bﬁfe“cﬁ;tw
model (solid line), and in the model when it is 2

manipulated to exclude self-suppression of the S a0

DP component (dotted line) and to exclude T

mutual suppression of the primary responses in S 50

addition to self-suppression of the DP i

component (dashed line). Both of these plots are -60
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As all other explanations have been rebuffed, this leaves only explanation (vi) which suggests that
the directionality of the source region changes as the stimulus frequency ratio reduces. It is,
however, not possible to alter the directionality of the source region in the model to confirm this
finding since it is such an intrinsic part of the nonlinear distortion generation and longitudinal
coupling within the model. Instead, some support for this explanation can be derived from the
evidence presented in section 5.1.3, that the length of the distributed wave-fixed source region
tends to increase as the stimulus frequency ratio reduces towards unity, and that this is expected to
change the directionality of the source region. For example, as the f,/f| ratio reduces and the source
length increases, the DP travelling waves it evokes tend to be emitted preferentially towards the
apex rather than towards the base. Allen & Fahey, anticipating no change in source directionality as
fo/fi decreases, expected the level of the 2f; — f, DPOAE recorded in the ear canal to increase by a
factor of G as f/f; reduced to unity. However, the model predicts that the extending source region
will increasingly tend to emit DP travelling waves preferentially towards the DP characteristic
place, rather than the base, as the stimulus frequency ratio reduces towards unity. This would lower
the level of the 2f; — / DPOAE, compared to the expectation of Allen & Fahey, because the
amplitude of the backward travelling wave is reduced and lower stimulus levels are needed to
evoke the required response at the DP characteristic place. For this reason, the Allen & Fahey
experiment may underestimate the gain of the CA as a consequence of changes in source

directionality with changes in the stimulus frequency ratio.

5.2.2 Fluid compression waves and the He ef al. experiment

The He et al. (2008) study is one of several recent experiments which measure the phase behaviour
of the BM motion at the 2f; — f> DP frequency between the base and the f; best place, in an attempt
to detect the phase pattern expected for a backward travelling wave. Along with other studies (Ren,
2004; de Boer et al., 2008) this experiment detects phase behaviour which is typical of a forward
(not a backward) travelling wave in this region, and therefore casts doubt on the theory that DPs
propagate out of the cochlea via backward travelling waves. We have simulated the He et al.
experiment in our cochlear model, in which the only mechanism for reverse propagation of DPs out
of the cochlear is via reverse travelling waves. We find, in agreement with the model of de Boer et
al. (2008), that the phase behaviour observed by He et al. is indeed at odds with the theory of

reverse DP propagation via backward travelling waves.
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Apex

Figure 5.14 Illustration of the observation
locations used by He et al.

In their experiment, the gerbil cochlea is
stimulated by two tones which generate a 2f; — f,
distortion product in the grey region indicated.

Sta‘p ea Observations of the BM at then made at locations
\ x,, and x,, which have characteristic frequencies of
j((:} Xm N 15 kHz and 12 kHz respectively.
| —- \ [From figure 1 of He et al. (2008), with universal
Base \"\4 DP origin permission].

Observation
locations

Overview of the He et al. (2008) experiment

He et al. (2008) observed the amplitude and phase of the BM velocity at two different locations (x,,
and x,) in the gerbil cochlea, as illustrated in figure 5.14. The cochlea was stimulated by two pure
tones (f; and f;) and 2f; — f> DP travelling waves are generated in the vicinity of the f; best place.
The value of f; is selected so that the source region of the 2f; — f, DP lies between x, and the DP
characteristic place. The principle of the experiment is that the direction of the 2f; — f, travelling
wave emitted from the DP source region can be identified from the phase measurements at x,, and
xn. The analysis exploits the observation that the travelling wave accumulates phase lag as it
propagates. On this basis, He et al. hypothesise that the 2f; — f> backward travelling wave, should
exhibit the following properties:
e  The phase lag at x,, should be greater than the phase lag at x,
e  Ifthe source location moves closer to x, as the f; frequency increases, then the phase lag
should decrease at both x,, and x,
The reasoning behind these hypotheses is illustrated in figure 5.15 which shows the phase of a
travelling wave evoked by an internal 2 kHz source. The source is placed at different locations
within the linear active cochlear model and the phase of the resulting travelling wave is observed at
Xxm and x,. This demonstrates that a backward travelling wave evoked by an internal point source of
fixed frequency exhibits the phase characteristics anticipated by He et a/. in a linear cochlear model:
the phase lag of the travelling wave is greater at x,,, compared to x,. In addition, when the source
location is moved further away from x,, the phase lag observed at both x,, and x, increases. Similar
results are obtained in a quasilinear model, and in a scenario in which the source frequency is
related to the source location such that the frequency increases as the location moves closer to the

base.
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— i — Figure 5.15 The phase of the BM velocity

P i response to an internal 2 kHz source in the
linear active cochlear model

. The locations x,,, x,, and x,y, correspond to the
observation points in figure 5.14 and the 2 kHz
characteristic place respectively. Each solid
line corresponds to a different source location,
as indicated by the black dotes. When the
source is located at the base of the model, the
travelling propagates from the base to the
apex, accumulating increasing phase lag in this
direction. When an internal source is located
between x, and x,, the phase of the
travelling wave is greater at x,, compared to x,,.
If the internal source location is moved closer
to x,, then the phase lag observed at either x,,
or x, increases.
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The results of the experiment

He et al. perform two experiments. The first uses a single tone stimulus at frequency f; presented in
the ear canal. This generates the expected forward travelling wave on the cochlear partition, and the
phase of this wave is detected at the observation points x,,, and x,. To summarise, the results
demonstrate a greater phase lag at x, compared to x,, and greater phase lag at both sites as the
stimulus frequency increases. These results are consistent with those anticipated for a forward
travelling wave, and were used by He et al. to verify their observation techniques. This experiment
was simulated in the model to demonstrate that the predicted response was qualitatively similar to

that observed by He et a/, as shown in appendix L.

In the second experiment, two tones were presented in the ear canal at frequencies f; and f; such
that a 2f; — f, DP would be generated within the cochlea. Other DPs would also be expected to arise,
but are neglected from this discussion for simplicity. The wave-fixed (distortion) component of the
2f1 — f> DP is thought to arise from a distributed region in the vicinity of the £, best place (section
5.1.1). As sites x,, and x, correspond to locations with characteristic frequencies of 15 kHz and 12
kHz respectively in the gerbil cochlea, the 2f; — f, DP generation region is expected to be between
x, and the DP characteristic place provided that 2f; — f; is less than 10.9 kHz. For this reason, the
DP phase measurements observed at locations x,, and x, are expected to correspond to a backward
travelling wave when 2f; — f; is less than 10.9 kHz. The results observed by He et al. are displayed
in figure 5.16. These plots do not show the phase behaviour expected of a backward travelling
wave when 2f; — f; is less than 10.9 kHz. Instead the phase behaviour of the DP travelling wave

observed at the two sites appears to be consistent with a forward travelling wave.
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Figure 5.16 The result of the He et al. (2008) experiment

The magnitude (A and B) and phase (C and D) of the 2f; — f; distortion component of the BM response to
two stimulation of the gerbil cochlea, observed at two spatially separated locations. The observation locations
Xm and x, are located at the 15 kHz and 12 kHz characteristic places respectively, which are spatially
separated by approximately 0.6 mm. Responses to stimulus levels (L;=L,) of 40, 50, 60, and 70 dB SPL are
denoted by dash-dot, dashed, dotted and solid black lines in that order. The stimulus frequency ratio f,/f;
=1.05 is held constant throughout the experiment. The grey dotted lines in A and B show the amplitude of the
response to a 60 dB SPL single pure tone stimulus (scale on the right hand side) for reference. Plots A and C
correspond to the more apical site whilst B and D were observed the basal location. C and D show the phase
of the responses given in A and B relative to 2¢, — ¢, where ¢, and ¢, correspond to the phase of the stapes
motion at f; and £; in that order. E gives the phase of BM velocity at site 2, relative to site 1. The dashed lines
in C,D and E indicate the results that are anticipated for a backward DP travelling wave. F shows the delay
(Ad) in propagation of the DP travelling wave, at each DP frequency, between sites | and 2, calculated using
the phase data in E and the stimulus frequency (e.g. delay= — A¢/fy, where A¢ is the phase change and

fo=2/1 — f2). G and H give the group velocity and wavelength of the travelling wave respectively, which are
estimated from the delay (F) and the known distance between the observation sites. [figure 2 of He et al.
(2008), with universal permission]

The baseline model simulation of the two tone He et al. experiment is shown in figure 5.17. The
simulation is not expected to be quantitatively comparable to the physiological result of He ef al.
because of animal differences and differences in observation location. The observation sites for the
simulation were positioned distances of 10.5 and 11.3 mm from the stapes which correspond to
locations with characteristic frequencies of 4 and 3.5 kHz respectively. These sites were selected so
that it would be possible to detect a backward travelling wave in the two tone experiment using the
range of frequencies over which the model predictions of distortion products appears to be

strongest (f between 1 and 4 kHz and f,/f; = 1.2). Although only one stimulus level (40 dB SPL) is
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shown in the simulation for simplicity, similar results were obtained using higher levels. As the x,
site is located at the 3.5 kHz characteristic place, then the wave-fixed (distortion) DP source is
expected to be on the apical side of the two observation points provided that 2f; — f; is less than 2.3
kHz. Plots C and D, in figure 5.17, show that as the DP frequency decreases below 2.3 kHz the
simulated phase lag on the DP travelling wave observed at x,, and x, increases. Also, plot E
suggests that when 2f; — f5 is below 2.3 kHz, the phase of the simulated DP travelling wave
observed at x, slightly leads that observed at x,,,. These model predictions are consistent with the

hypotheses of He ef a/, but at odds with their experimental results shown in figure 5.16.
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Figure 5.17 The simulated He ef al. (2008) experiment

The model simulation of the 2f; — f; distortion component of the BM velocity response to two tone
stimulation, observed at two spatially separated locations. The observation locations x,, and x, are located at
the 4 kHz and 3.5 kHz characteristic places respectively, which are spatially separated by approximately 0.8
mm. The stimulus levels, L;=L,, were set to 40 dB SPL and f,//;=1.2. A and B show the magnitude of the DP
response at sites x; and x,, respectively. C and D show the phase of the responses shown in A and B relative
to 2¢; — ¢, where ¢, and ¢; correspond to the phase of the stapes motion at f; and f; in that order. The black
arrows indicate the frequency below which the 2f; — f, wave-fixed generation site is expected to be further
from the base than the observation site. E gives the phase of BM velocity at site x,, relative to site X,. '
shows the delay (Ad) in propagation of the DP travelling wave, at each DP frequency, between sites 1 and 2,
calculated using the phase data in E and the stimulus frequency (e.g. delay= — A¢/fy, where A¢ is the phase
change and f4,=2f; — f>). G and H give the group velocity and wavelength of the travelling wave respectively,
which are estimated from the delay () and the known distance between the observation sites.
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(a) The output of the DP source is predominantly a
backward travelling wave (black arrows) which passes
through x, before reaching X,

Stapes
DP source

Figure 5.18 Possible reverse DP
propagation mechanisms in the He et al.
experiment

In these illustrations, the cochlea is
stimulated by two pure tones
simultaneously to generate a distortion

< ' l < product (DP) at the location indicated by
the light grey marker. The phase of the BM
velocity at the DP frequency is observed at
locations x,, and x,, corresponding to the
black and dark grey markers respectively.
The phase lag of the BM velocity
component at the DP frequency is expected
to be either (a) smaller at x,, compared to x,
or (b) greater at x, compared to x,,. If f; is
increased, and f5/f; is fixed, then the DP
source moves closer to x, and the 2f; — f,
characteristic place moves towards the
base. This is would lead to either a (a)
decreased or (b) increased phase lag at x,,
and x, as f, increases.

(b) The output of the DP source is predominantly a fluid
compression wave (grey arrows), which vibrates the
stapes and initiates a forward travelling wave (black
arrows) which passes through x, before reaching x,.

Stapes B DP source

—{> >

He et al. conclude that, as their experiment failed to detect a DP backward travelling wave between
the DP source region and the base of the cochlear model, the 2f; — f, DP must primarily propagate
out of the cochlea fast via fluid compression waves rather than slow backward travelling waves.
They propose that the fast fluid compression wave results in motion of the stapes which, in turn,
gives rise to a DP forward travelling wave which propagates from the base to the DP characteristic
place. Figure 5.18 illustrates the He et al. fast compression wave theory, and compares it to the

alternative backward travelling wave mechanism.

The unresolved problem

Attempts to reconcile the phase measurements of He et al. (figure 5.16) and others (Ren, 2004; de
Boer et al., 2008) with the predictions of conventional ‘local’ cochlear models (figure 5.17) like
ours have, so far, been unsuccessful. These models only support BM travelling waves, not fluid
compression waves, and the velocity of the BM is determined only by the local pressure difference
across it (de Boer & Nuttal, 2008). De Boer et al. (2008) implemented a similar experiment to that
of He et al. and made several modifications to their conventional cochlear model in an attempt to
better simulate the observed phase behaviour. This included introducing impedance irregularities
into their baseline model in order to generate both place-fixed and wave-fixed DP travelling waves,
and investigating the effect of broadening the region over which the CA acts to enhance CA motion.
They found that introducing impedance irregularities had no significant impact on the phase
behaviour predicted by the model. We can confirm that there is also no notable difference in the
nature of the predicted DP phase behaviour between the baseline and perturbed versions of our

model. In addition, de Boer et al. (2008) concluded that broadening the CA region did not
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adequately explain the discrepancy between the model prediction and the experimental outcome,
because this adaptation was not consistent with the original physiological single tone measurements

from the guinea pig cochlea on which their model was based.

We investigated whether reflection of backward travelling waves at the stapes, or errors in phase
unwrapping of the physiological recordings could explain the absence of a backward travelling
wave in the results of He ef al. We found that maximising the stapes reflection of backward
travelling waves in our baseline cochlear model did not substantially alter the DP phase behaviour
simulated by the model. The unwrapping algorithm, used to ensure that the phases recorded in the
experiment formed a continuous curve, is sensitive to noise which can obscure the 27 radian jumps
in phase that need to be detected in order to stitch together the continuous phase curve. Although in
simulations the phase results are subject to very little noise, making the unwrapping reliable, it is
not known how reliable the unwrapping is for the noisier experimental results. For this reason we
sampled the simulated phase results at intervals of approximately 400 Hz, similar to the interval
used by He ef al., and superimposed random fluctuations on the predicted phase to act as noise. The
amplitude of the noise was gradually increased and we found that the nature of the predicted phase

behaviour was not influenced by errors in the unwrapping algorithm until the phase noise exceeded
t TE/ 2 radians. When these high noise fluctuations are superimposed on the predicted 2f; — f, DP

phase behaviour, the results become erratic and do not lead to a better replication of the He et al.
results. Therefore, we have found no evidence that the phase behaviour observed by He et al. is

influenced by errors in the unwrapping algorithm.

The failure of conventional local cochlear models to replicate the phase behaviour of the 2f; — f; DP
observed experimentally by He et al. and others presents a considerable challenge to our type of
model. On the other hand, these conventional travelling wave models appear to explain features of
the 2f; — f, DPOAE characteristics which cannot be accounted for by a fluid compression wave
model or a hybrid model supporting both backward travelling waves and fluid compression waves,
such as predicting the results of the Allen-Fahey experiment (Shera et al., 2007). De Boer et
al.(2008) suggest that it may be possible to address this challenge by pursuing a travelling wave
model with ‘non-local’ micromechanical properties. For example, de Boer & Nuttal (2008)
successfully replicate the phase behaviour observed by He ef al. using a ‘feedforward’ cochlear
model, in which travelling waves propagate more readily in the forward direction compared to the
backward direction. However, a side-effect of the feedforward mechanism is that backward
travelling waves can be strongly attenuated, compromising both the predicted amplitude of the
DPOAE:s and the influence of coherent reflection within the cochlear model (de Boer & Nuttal,
2008; de Boer et al., 2008). For this reason, the application of cochlear modelling to explain the

2f1 — f> DP phase behaviour observed by He et al. and others remains an active area of research.
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5.3 Conclusions regarding the predicted 2f; — f; DPOAE source
and transmission mechanisms

In this chapter the source mechanism for the 2f; — /, DPOAE within the cochlear model studied,
and we find results consistent with the theory summarised in sections 1.4.3. The model predicts
that there is a distributed source of the 2f] — f, wave-fixed component occupying an area which
includes the f; characteristic place. The length of this estimated region increases as the stimulus
level increases or stimulus frequency ratio decreases towards unity. This wave-fixed source is
directional relative to a point source, and its tendency to emit forward travelling waves in
preference to backward travelling waves is greater for increased source lengths. The place-fixed
component of the 2f; — f, DPOAE is found to originate primarily from impedance perturbations
located in the vicinity of the DP characteristic place within the model. These results serve to verify
the generation mechanisms of the 2f; — f, DP in the cochlear model, and suggest that it could

provide useful insight into the generation of the 2f, — f; DP which is less well understood.

This chapter also addresses the following research questions posed in section 1.9 concerning the

2f, — f DPOAE:

o  What forward and backward DP travelling waves are generated within the model in response
to two tone stimulation?

o  What explanation does our cochlear model, which contains a cochlear amplifier, offer for the
null result of the Allen & Fahey experiment?

o  Can the model provide insight into the results of Ren and colleagues who are unable to detect

backward travelling waves on the BM at DP frequencies?

Consideration of these questions produced the main contributions of this chapter, listed below,

which correspond to those summarised in section 1.9 (vi-vii).

e  The development of analysis tools for probing the source mechanism for the 2f; — f, DPOAE
within the model. This includes the use of the decomposition method to estimate the
predicted forward and backward DP travelling wave components, the results of which provide
supporting evidence for the directionality of the DP source region (section 5.1.3).

e  An analysis of the explanations cited in the literature for the outcome of the Allen-Fahey
experiment. The results confirm that the null result observed in this physiological study is
likely to be a consequence of changes in the directionality of the wave-fixed DP source as the
stimulus paradigm is varied (section 5.2.1).

e  Verification of the challenge to conventional cochlear models presented by the phase
measurements of He et al. (2008), in which DPs propagate out of the cochlea via backward

travelling waves (section 5.2.2)

168



6. Predicted 2f, — f; DPOAE characteristics

6. Predicted 2f; — f; DPOAE characteristics

Distortion product otoacoustic emissions (DPOAEs) can be classified as ‘upper’ or ‘lower’ side-
band emissions according to their frequency relative to the stimulus tones f; and f; (,>f;). The

2f1 — f> DP is an example of a lower side-band emission, and its measured characteristics and
simulated properties are discussed in chapters 4 and 5. The 2f; — f; DPOAE is the largest upper side
band emission detected in human ears. As upper and lower side-band emissions are thought to arise
from generation mechanisms at different locations within the cochlea, it could prove insightful to

investigate the source of the 2f; — f; DP within the cochlear model.

In this chapter we address the research questions posed in section 1.9 which relate to the 2f, — f;
DPOAE. The outcome is a summary of the 2f, — fi DPOAE characteristics predicted by the model
compared to physiological results, and a description of the emission source within the cochlear
model. The generation mechanism for the 2f; — f; DP is interesting because the wave-fixed source
of the upper side band DP is very close to its own characteristic place (figure 1.21b). This differs
from the 2f; — f; DP wave-fixed source region which is spatially separated from its own
characteristic place (figure 1.21a). However, the close proximity of the 2f; — f; characteristic place

and the wave-fixed source makes it more difficult to interpret simulated results for this emission
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6.1 The measured and predicted characteristics of the 2f; — f;
distortion product

In this section we summarise the measured characteristics of the 2f; — f{ DPOAE described in the
literature, and also demonstrate the strengths and weaknesses of the model with regard to
predicting these properties. We consider the properties of the wave-fixed and place-fixed
components of the predicted emission, as well as the behaviour of the total 2f, — f; DP. We
conclude that, although it has some limitations, the model adequately predicts a range of 2f, — f;
DPOAE characteristics and is therefore useful for gaining further insight into the mechanisms

underlying the generation of this emission within the cochlea.

6.1.1 Detection

The 2f, — f DPOAE can be observed in up to 90% of human ears (Horn et al., 2008), but this is
dependent on the stimulus paradigm and this emission is not as prevalent as the 2f; — /, DPOAE
(Moulin et al., 1993; Erminy et al., 1998; Lasky, 1998a, 1998b; Moulin, 2000; Fitzgerald & Prieve,
2005). In addition, Fitzgerald & Prieve (2005) found that the intra-subject variation in emission
amplitude was greater for the 2f; — f; compared to the 2f; — / DPOAE

The 2f, — /i DPOAE has also been observed in a variety of mammals such as the rabbit (Lonsbury-
Martin et al., 1987) and the gerbil (Brown & Kemp, 1985; Dong & Olsen, 2008). Intracochlear
measures of the 2/; — f; distortion product in the basilar membrane velocity of the chinchilla
cochlea, and the cochlear fluid pressure of the gerbil have also been obtained (Robles et al., 1997;
Dong & Olson, 2005; Dong & Olsen, 2008).

6.1.2 Amplitude

The absolute amplitude of the 2f, — f; DPOAE

The amplitude of the 2f, — fi DPOAE depends on the level, level difference, frequency and
frequency ratio of the primary tones (Erminy et al., 1998). As an example, figure 6.1a shows the
average 2f, — f; emission amplitude recorded from 108 human ears by Martin ef al. (1998). This
demonstrates that for moderate stimulus levels and an £/ ratio of 1.21, the 2f, — fi DPOAE level
varies between — 10 and 5 dB SPL across a range of stimulus frequencies. Figure 6.1b shows the

simulated amplitude of the 2f, — fi DPOAE predicted by the perturbed cochlear model.
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Figure 6.1 Amplitude of the 2f; — fi DPOAE for a range of DP frequencies

(a) The physiological measurement of the average DPOAE amplitude in 108 human ears, using f/f;=1.21
[from figure 7 of Martin et al. (1998), with permission from ASA]. (b) The predicted amplitude of the 2f; — £
and 2f; — f, DPOAEs evoked by stimulus tones f,//;=1.2. The simulation was performed using a perturbed
model incorporating random irregularities in the active BM impedance, as described in section 4.2.1. In both
plots, the amplitudes of the 2f; — f; and 2f; — f; emissions are denoted by the solid and dotted lines
respectively. Stimulus levels of L= L,=75 dB SPL were used. The geometric mean frequency corresponds to
the square root of ff5,

Comparing figure 6.1a and b, establishes that the 2f, — f{ DPOAE amplitude predicted by the model

is within = 5 dB of the amplitude observed in the experimental study at low stimulus frequencies
(+/ f,.f, £ 1kHzor f; < 1.1 kHz). However, the model tends to underestimate the amplitude of the

2f, — fi DPOAE at high stimulus frequencies. For example, when f; exceeds 4.4 kHz, the predicted
2f, — f1 emission level is at least 10 dB smaller than that observed experimentally. The model has a
similar tendency to underestimate the amplitude of the 2f; — f;, DPOAE for high stimulus

frequencies, and the possible reasons for this were discussed in section 4.1.2.
Intracochlear distortion product measurements

In contrast to measurements in the ear canal, where the amplitude of the 2f; — £, emission exceeds
that of the 2f, — fi DPOAE, intracochlear measures of BM velocity in the chinchilla suggest that the
2f1 — f> and 2f; — fi DPs have similar magnitude when observed at a location near the characteristic
places of the primary tones (Robles et al., 1997). For example, figure 6.2 shows the predicted BM
velocity at the f; best place in the perturbed cochlear mode, and a Robles et al. (1997) measurement
from the chinchilla cochlea for comparison. The model is not expected to replicate the absolute
levels of the DP components observed in the experimental study, due to animal differences in both
the cochlea and middle ear. However, it is possible to compare the relative amplitudes of the DPs
between the simulation and the physiological study. Robles et al. observed that the 3 order DPs
were approximately equal amplitude and around 20 dB below the level of the primary responses.
The model simulation is in agreement with this, as the levels of the 3 order DPs differ by only 2

dB, and fall approximately 20 dB below the level of the primary responses.
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Figure 6.2 The spectrum of the BM velocity response to two tone stimulation
(a) The measured BM velocity of the chinchilla cochlea in response to two tone stimulation, observed at the 8
kHz characteristic place by Robles ef al. (1997). [From figure 1b of Robles ef al. (1997), with permission
from Am. Physiol. Soc]. In both cases, the stimuli were presented at L;=L,=70 dB SPL and frequencies
£1=7.6 kHz and £,=8.4 kHz. (b) The predicted BM velocity evoked by two stimulus tones presented to the ear
canal of the cochlear model, evaluated for the frequency components 3f; — 2f1, 2f> — f1, />, f1, 2f1 — f> and
3f1 — 2f,. The perturbed model incorporates random irregularities as described in section 4.2.1
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Figure 6.3 The dependence of 2f; — f DPOAE amplitude on f/f; ratio

(a) Variation measured of 2, — f{ DPOAE amplitude with stimulus frequency ratio, averaged across 18
human ears. The stimulus levels were L;=65 and L,=60 dB SPL, ;=3 kHz. [Adapted from Moulin (2000),
figure 3]. (b) The amplitude of the 2f; — f DPOAE predicted by the model incorporating random
irregularities as described in section 4.2.1. The stimulus levels were set to L;=L,=50 dB SPL and f,= 3 kHz.

6.1.3 Influence of stimulus frequency ratio

General features of the dependence of 2f, — f; DPOAE amplitude on f5/f; ratio

Figure 6.3 shows the measured and predicted influence of f,/f; ratio on the 2f; — f; DPOAE

amplitude. The measurement of Moulin (2000) demonstrates that the emission amplitude tends to
increase as the f5/f] ratio decreases towards 1. In contrast to the behaviour of the 2f; — / DPOAE,
there is no substantial decline in the amplitude of the 2f, — f; emission as f,/f; approaches unity in

the experimental study. This physiological result is consistent with other recordings from humans
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and chinchilla (Robles et al., 1997; Knight & Kemp, 1999, 2001; Fitzgerald & Prieve, 2005; Horn

et al., 2008), but the dependence of the 2f; — /i DPOAE on stimulus frequency ratio is known to
vary significantly between individual subjects (Moulin, 2000). The simulation was performed at a
lower stimulus level compared to the experimental measurement, because section 4.1.6 revealed
that the model tends to over estimate the optimal f,/f; ratio at higher stimulus levels for upper side
band emissions. The predicted amplitude of the 2f;, — f; DPOAE decreases by about 9 dB as the f;/f;
ratio increases from 1.05 to 1.3. This is similar behaviour to that observed in the experimental
study, which shows a decrease in emission amplitude of approximately 12 dB as the f£/f; ratio
increases from 1.05 to 1.32. The high intersubject variation in the dependence of 2f; — fj DPOAE
amplitude on f,/f; ratio is illustrated by the results of Moulin (2000), reproduced in figure 6.4. In
this study, the optimal f,/f; values ranged from <1.06 to 1.16.

In section 4.1.6 the decline in the 2f; — f, DPOAE amplitude as the fo/f; approached unity was
attributed to the influence of mutual suppression of the primary tones. The absence of this effect on
the 2f; — fi DPOAE in figure 6.3 suggests that the wave-fixed DP sources for the two emissions

occur at different locations within the cochlea.
The effect of stimulus level on the influence of the f,/f; ratio

Figure 6.5 and figure 6.6 show the predicted and measured dependence of the 2f;, — fi DPOAE
amplitude on stimulus frequency ratio for different stimulus levels. The model simulation predicts
that the optimum f/f; ratio for the 2f; — f| emission should increase from around 1.01 to 1.1 as the

stimulus level (L,=L,) increases from 50 to 70 dB SPL.
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Figure 6.4 The intersubject variation in the influence of £5/f; on the 2f, — f{ DPOAE amplitude
The plot shows the amplitude of the 2f; — f DPOAE measured in 5 different individuals by Moulin (2000)

for a range of f,/f] ratios. The key refers to the different subjects. Measurements were made using L,;=65,
L,=60 dB SPL and f; = 4 kHz. [From figure 5 of Moulin (2000), with permission from ASA].
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It is difficult to determine if this trend is consistent with physiological results, in view of the large
intersubject variation in the optimal f,/f; ratio. For example, although the measurements of Knight
& Kemp (1999) shown in figure 6.6 were only recorded for 4 different f,/f; ratios (1.05, 1.20, 1.27
and 1.32), the results suggest that increasing the L, stimulus level (L,;=L,+10dB) from 65 dB SPL
to 75 dB SPL shifts the optimal stimulus frequency ratio from 1.2 to 1.27. However, such a shift is
not observed in the Knight & Kemp (1999) results for other stimulus paradigms such as L;=L, or
L,=L,+ 5dB. In addition, Fitzgerald & Prieve (2005) comment that they observe an increase in the
measured optimal f,/f; ratio as stimulus level increases, although they do not quantify the scale of
this change. Therefore, the increase in optimal f,/f; ratio with increasing stimulus level predicted by

the model for the 2f, — f; emission could be consistent with experimental measurements.

: s ™~ ]
" / = Figure 6.5 The predicted influence of stimulus level on

S AN | the optimal f5/f; ratio
\\ The plot shows 2f; — fi DPOAE amplitude as a
function of f;/f; ratio for two different stimulus levels,
using f>,= 3 kHz. The model incorporates random
irregularities as described in section 4.2.1.
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Figure 6.6. The influence of stimulus level on the 2f; — f; and 2/, — f DPOAEs

The plot shows the average 3™ order DPOAEs recorded from 9 human ears at a range of stimulus levels and
f>/fi ratios by Knight & Kemp (1999). The results are averaged across measurements using f, values between
1.7 and 2.4 kHz. The average amplitudes of the 2f; — f; (dotted line) and 2f; — f; (squares) are shown, along
with the solid lines which represent 1 standard error from the mean values. [From figure 2 of Knight &
Kemp (1999), with permission from ASA].
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The effect of stimulus frequency on the f5/f; ratio

Figure 6.7 shows the dependence of the simulated 2/, — f; amplitude on f5/f] ratio for two different
stimulus frequencies. The model predicts that the optimal £5/f; ratio for the 2f; — f; emission will
increase from <1.01 to 1.2 when the £, frequency is reduced from 3 to 0.75 kHz. This is in good
qualitative agreement with the trend observed by Fitzgerald & Prieve (2005) who found that the
optimal £/ ratio for the 2f;, — f; DPOAE increases from 1.05 to 1.1 when f; is decreased from 2 to
0.7 kHz. However, the scale of the 0.2 increase in the optimal f,/f; ratio predicted by the model is
greater than the increases of 0.05 (Fitzgerald & Prieve, 2005) and 0.08 (Moulin, 2000) observed for
similar stimulus frequency changes in experimental studies. For this reason, the model appears to
overestimate the influence of stimulus frequency on the optimal f,/f; ratio compared to
experimental studies. Fitzgerald & Prieve (2005) suggest that the change in optimal f5/f] ratio with
stimulus frequency arises from the sharper tuning of the BM response to higher stimulus
frequencies which influences the degree of overlap between primary travelling waves. On this basis,
the tendency of the model to overestimate the influence of stimulus frequency on the optimal f,/f;
ratio could suggest that the change in sharpness of tuning between the base and apex of the model
is too great. This is consistent with the conclusion drawn in section 4.3 regarding the models
tendency to overestimate the influence of stimulus frequency on the optimal f,/f; ratio for the

2f, - f, DPOAE.
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Figure 6.8 The influence of f,/f; on the components of the 2f; — /> and 2f; — f; DPOAEs

(a) The amplitude of the wave-fixed (thick line) and place-fixed (line thin) for the 2f; — f; and 2f;, — f;
DPOAESs, measured in the human ear canal by Knight & Kemp (2001) using L,;=L,=70 dB SPL and DP
frequencies averaged across 1 to 4 kHz. [From figure 5 of Knight & Kemp (2001), with permission from
ASA]. (b) The simulated wave-fixed and place-fixed components of the 2f; — f; and 2f; — f{ DPOAEs, using
=3 kHz, and L,;=L,=50 dB SPL.

The wave-fixed and place-fixed components

Figure 6.8 shows the estimated amplitude of the wave-fixed and place-fixed components of the
simulated 2f, — /i DPOAE across a wide range of stimulus frequency ratios (1.01 to 1.60). The
experimental measurement made by Knight & Kemp (2001) is also shown for reference. For f3/f;
values between 1.01 and 1.3, the amplitude of the place-fixed 2f, — f; varies by about 10 dB, which
is comparable to the change of approximately 7 dB in the Knight & Kemp study. However, at
higher stimulus frequency ratios in excess of 1.3, the amplitude of the place-fixed component falls
off rapidly in the cochlear model which is not evident in the Knight & Kemp measurement. It is
difficult to determine if this discrepancy constitutes a significant limitation of the cochlear model,
as there is little other experimental data available for the components of the 2f, — f; emission at
high stimulus frequency ratios and it is often averaged over several stimulus paradigms (such as

different level differences or f; stimulus frequencies).

6.1.4 Influence of stimulus level difference

Figure 6.9 shows the dependence of the simulated 2f; — fj DPOAE amplitude on the stimulus level
difference (L, — L,) predicted by the perturbed model. It suggests that the amplitude of the
predicted 2/, — f; emission amplitude will be maximised for small level differences, between — 5
and 5 dB, at moderate stimulus levels (50 to 70 dB SPL). This simulated result is consistent with
physiological measurements, which demonstrate that the level of the human 2f; — f; DPOAE is
greatest when the level difference is equal to zero (Knight & Kemp, 1999; Fitzgerald & Prieve,
2005; Horn et al., 2008). This is in contrast to the behaviour of the 2f; — f emission, which is

enhanced by a stimulus level difference such that L,;>L, (section 4.1.5).
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Figure 6.9 The predicted dependence of the 2f; — /| DPOAE on stimulus level difference
The simulation was performed using f5/fi=1.2 and L, equal to either 50 or 70 dB SPL

The optimal stimulus level difference for the 2f; — f, DPOAE is attributable to the behaviour of the
nonlinear function (section 4.1.5) and the same is true of the optimal level difference for the 2f, — f;
DPOAE. For example, figure 6.10 shows the levels of the f; and f; components of the shear
displacement at the 2f, — f; characteristic place, which serve as the inputs to the nonlinear function.
The levels of the input to the nonlinear function are labelled A, and A, and this location was
chosen as it corresponds to a site within the 2f; — f; DP wave-fixed source region in the cochlear
model, as shown in section 6.2. The figure illustrates that when the level difference between the
tones presented in the ear canal (L, — L,) is 5 dB, which optimises the 2f; — fi DPOAE at this L,
level, then the level difference in the input to the nonlinear function (A; — A;) is around 0 to 5 dB

at the DP characteristic place.

Figure 6.10 The predicted level of input to the
JE— nonlinear function at the DP characteristic place
e a2 1 The plot shows the £} and f; inputs to the nonlinear
function, denoted by A, and A,, that are evoked at
the 2f, — f; characteristic place in the coupled
cochlear model by stimulus tones presented in the

25

Level at the 25-f1 characteristic
place (dB re Tnm)
=]

c e ] ear canal at levels L; and L,. The simulation was
e performed by setting L, equal to 50 dB SPL and
u T varying L; such that the level difference (L; — L,)
- increased from — 5 to +20 dB.
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Figure 6.11 The level of the 2/; — fj DP component output of an isolated nonlinear function

(a) A contour plot of the 2f; — f; DP component output from a single isolated first order Boltzmann function
stimulated at frequencies f; and f, with levels of A; and A, respectively. (b) The variation in the DP output as
A —A, varies for a fixed A, value of 60 dB. The results are shown for both the 2f; — f; (solid line) and 2f; — f,
(dotted line) DPs.

Figure 6.11 shows the simulated amplitude of the 2f, — f; DP in the output of a single isolated first
order Boltzmann function when two tones at frequencies f; and f,, with levels of A; and A,
respectively, are presented at the input. Figure 6.11b demonstrates that the 2f, — f; DP component
of the output is maximised when A; — A, is 5 dB, which corresponds to a stimulus level difference
(L — L,) of about 5 dB in the coupled cochlear model. It also shows that the level difference

(A — A,) required to maximise the 2f, — f; DP component of the output for an isolated nonlinearity
is less than the level difference needed to optimise the 2f; — f, DP component. This suggests that
the difference in the optimal level difference for the 2f, — f; and 2f; — /> DPOAEs observed for the

coupled model could also arise simply from the properties of the nonlinear function in isolation.

6.1.5 Growth functions

The predicted growth of the total 2f; — f{ DPOAE in a perturbed cochlear model, including both the
wave-fixed and place-fixed components, is shown in figure 6.12. This demonstrates that the
simulated place-fixed component dominates the total emission at low stimulus levels, but decreases
in amplitude at higher levels. The introduction of the place-fixed component to the simulation
reduces the growth rate from 1.1 dB/dB to 0.3 dB/dB, as a consequence of the contribution from
the place-fixed component at low stimulus levels. This is in good agreement with the 2f; — f;
DPOAE growth rate of around 0.6 — 0.9 dB/dB measured by Horn et al. (2008) using f,/f; ratios
between 1.04 and 1.12, given that the growth rate is likely to differ by at least £ 0.4 dB/dB between

individuals (section 4.1.4).
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Figure 6.12 The predicted growth of the 2f, — f;
DPOAE
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The decline in the amplitude of the 2f; — f; place-fixed component at high stimulus levels indicates
a limitation of the model because it requires that simulations of the 2f; — f; emission have to be
performed at a lower stimulus levels than experimental measures to achieve similar results (e.g.
fine structure simulations). The same decline was observed in section 4.2.5 for the place-fixed
component of the 2f; — /5 emission, but it was not thought indicative of a weakness in the model as
it has less impact on the simulated fine structure of the lower- compared to the upper- side band
emission. In section 4.2.5, the decline of the place-fixed 2f; — f> emission at high stimulus levels
was attributed to suppression of the DP travelling in the vicinity of the DP characteristic place by
the primary travelling waves. This is also likely to be responsible for the underestimation of the
place-fixed component of the 2f;, — f; emission because, if the effect of DP suppression by the
primary tones is neglected from the model, the amplitude of the place-fixed component increases
by 37 dB whilst the wave-fixed component changes by less than 2 dB when L,=L,=70 dB SPL. As
the suppression of the DP travelling wave by the primary responses has a more substantial
influence on the upper- rather than the lower- side band emission at high stimulus levels, this
suggests that there is less spatial separation between the DP characteristic place and the best places
for the primary tones for the 2f; — fi DP compared to the 2f; — f, DP. Overall the predicted growth
of the upper side band emission indicates that the source of the 2f; — f; DP within the cochlear

model may be more representative of the human ear at low stimulus levels.
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(a) Simulation (b) Wilson & Lutman (2006)
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Figure 6.13 The 2f; — f{ DPOAE fine structure

(a) The predicted level and phase of the 2f, — f DPOAE in the ear canal, using L,=L,=50 dB SPL and
f2/fi=1.2. The perturbed model incorporates irregularities in the active mechanics, as described in section
4.2.1. (b) Level and phase of the measured 2f, — f DPOAE observed in a human ear canal by Wilson &
Lutman (2006), using L,;=65, L,=60 dB SPL and f,/f; between 1.05 and 1.32. The wave-fixed and place-fixed
components were separated using a time-windowing technique. [From figure 2 of Wilson & Lutman (2006),
with permission of ASA]. In both plots, the open circles correspond to the total DPOAE, and the wave-fixed
(distortion) and place-fixed (reflection) components are denoted by filled squares and crosses respectively.

6.1.6 Fine structure

Figure 6.13 shows the fine structure for the 2f; — fi DPOAE predicted by the perturbed cochlear
model and the experimental measure of Wilson & Lutman (2006) for comparison. The amplitude
and phase of the wave-fixed and place-fixed components are shown in addition to the total
emission. In both cases the amplitude of the total predicted 2f, — /i DPOAE is seen to fluctuate by
10 to 20 dB as the DP frequency is swept from 1.4 to 2.2 kHz. The amplitude and phase of the
wave-fixed component is essentially constant across this frequency range, apart from the decrease
in the predicted result at 1700 — 1800 Hz which is thought to arise from the properties of the
middle ear transfer function. In contrast, the place-fixed component of both the simulation and the
measurement has fluctuating amplitude and phase which varies rapidly as the stimulus frequency

changes.

As for the 2f; — f; DPOAE fine structure discussed in section 4.2.3, the fine structure illustrated in
figure 6.13 could arise in two different ways. Firstly, the amplitude fluctuations in the place-fixed
component could directly give rise to amplitude fluctuations in the total 2/, — ff DPOAE. Secondly,
the difference in phase behaviour could lead to alternating constructive and destructive summation
between the two components. Both of these mechanisms appear to be evident in the simulated fine
structure (figure 6.13a). For example, when the emission frequency is close to 1450 or 1900 Hz, the

peaks and troughs of the predicted fine structure correspond to fluctuations in the place-fixed
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component. At these frequencies, the simulated fine structure thought to arise predominantly from
the amplitude fluctuations in the estimated 2f; — f; place-fixed component. Only fine structure of
this origin is evident in the physiological measurement of Wilson & Lutman (2006). However, at
other emission frequencies peaks and troughs occur in the predicted DPOAE amplitude which do
not correspond to variations in either the level of either place-fixed or wave-fixed components
(such as 1550 — 1800 Hz). At these frequencies, fine structure is attributed to the alternating
constructive and destructive summation of the wave-fixed and place-fixed components. This is
consistent with the relative phase of the two components predicted by the model. For example, the
total simulated 2f, — f; DPOAE exhibits a peak and a trough at 1625 and 1715 Hz respectively. At
these locations, the phase difference between the place-fixed and wave-fixed components
corresponds to 0.99 and 1.52 cycles in that order, which confirms that peaks and troughs can occur
in the 2f; — f| fine structure when the wave-fixed and place-fixed components are either entirely in
phase or out of phase respectively. Although fine structure of this origin is not evident in the
Wilson & Lutman (2006) measurement, the analysis of other experimental measures discussed

below suggests that fine structure of this nature can be recorded in the human ear canal.

Similarities in fine structure between the 2f; — f; and 2f; — f, DPOAEs

Figure 6.14 compares the fine structure of the 2f, — f; and 2f; — f DPOAESs. The experimental
measure of Knight & Kemp (1999) is also shown for reference. The simulated and measured results
agree that for some but not all, emission frequencies, fine structure peaks and troughs can coincide
for the 2f, — f and 2f; — /, DPOAEs. When they do coincide, the peaks and troughs may not have
the same amplitude. At DP frequencies which correspond to peaks and troughs in the fine structure
of both the 2f; — f| and 2f] — f; emission, analysis of the simulated wave-fixed and place-fixed
components verifies that the two components are almost either entirely in phase or out of phase
respectively. For example, a peak is predicted when the DP frequency is equal to 1.25 kHz in the
simulated fine structure of both emissions. At this DP frequency, the predicted phase difference in
cycles between the wave-fixed and place-fixed components is 6.05 and 7.06 for the 2f; — f; and

2f| — f> emissions respectively, which indicates that the components are essentially in phase at this
DP frequency. Inspection of other peaks and troughs that occur coincidently in the simulated fine
structure for both emissions suggests that the fine structure for the two emissions will coincide only
when the origin of the fine structure is the alternating destructive and constructive summation of
the wave-fixed and place-fixed component. If instead, the simulated fine structure of one or both of
the emissions is dominated by amplitude fluctuations in the place-fixed component, the peaks and
troughs of the predicted fine structure should not occur at the same DP frequencies for both
DPOAE:s. This final suggestion is supported by the measurements of Wilson (2005), who observed
2f, — f1 and 2f; — f, DPOAE fine structure in cases where the amplitude of the estimated place-fixed

component dominated that of the wave-fixed component. In these measurements there are very few
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DP frequencies at which peaks and troughs occur coincidently in the fine structure of both

emissions.

The similarity that occurs in the 2f; — f; and 2f; — f, fine structure has some theoretical implications
for the origin of the place-fixed component of the 2f, — f; DP. For example, it will be shown in
section 6.2.2 that for a given DP frequency the wave-fixed source will have a phase distribution
that is essentially the same for both the 2f; — £, and 2f, — f; DPs. For this reason, coincidences in the
2f1 — f> and 2f, — f; emission fine structure suggest that the phase lag accumulated by the DP
travelling wave between the wave-fixed generation site and the reflection site should differ by an

integer number of cycles between the two emissions.
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Figure 6.14 Comparison of the 2f; — f; and 2f; — / DPOAE fine structure

(a) The predicted amplitude of the 2f, — f; and 2f; — f, DPOAE:s in a perturbed model incorporating
irregularities in the active micromechanics, as described in chapter 4.2.1. Stimulus levels L;=L,= 50 dB SPL
are used, with £5//;=1.05. (b) Level of the measured 2f; — f; and 2f, — f; DPOAE observed in a human ear
canal by Knight & Kemp (1999). Measurements were made using L;=L,=70 dB SPL and f,/fj=1.05. [From
figure 6 of Knight & Kemp (1999), with permission from ASA].
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The simplest, but not the only, interpretation of this result is that the ratio of fggce/fqp 1S the same
for both emissions, where fs,u.c is the best frequency of the wave-fixed source location for the DP
frequency, fy,. For example, if a 2 kHz DP is measured with a stimulus frequency ratio of 1.05 and
L,=L,=50 dB SPL, we know from the 2f; — f, emission that the fs,u../f4, ratio is approximately
1.105 as it originates from the vicinity of the f; best place. Assuming that this ratio is also true of
the 2f; — fi DP, we could tentatively suggest that the wave-fixed source of the upper-side band
emission originates from the vicinity of the 2210 Hz characteristic place when the DP frequency is
equal to 2 kHz. This would correspond to a distance of 14.3 mm from the stapes which is 0.6 mm
closer to the base that the 2f; — f| characteristic place. Although this deduction is highly speculative,
it is consistent with the finding in section 6.2.2 which shows that the centre of the distributed

2f> — fi wave-fixed source is located between 14 and 14.5 mm from the base of the cochlear model

when the DP frequency is 2 kHz and the f,/f; ratio is set equal to 1.05.

6.1.7 Strengths and weaknesses of 2f, — f; DPOAE predictions

There are many characteristics of the 2f; — f{ DPOAE simulated by the model which agree well
with experimental measures. These predicted properties include the amplitude of the emission for f,
stimulus frequencies less than around 4.4 kHz (section 6.1.2), the optimal stimulus frequency ratio
across a range of stimulus levels (section 6.1.3), the optimal stimulus level difference (section
6.1.4), the rate of growth (section 6.1.5), and the amplitude of the fine structure at low stimulus

levels (section 6.1.6).

The model also has some significant weaknesses. As for the 2f; — /, DPOAE, the model tends to
underestimate the amplitude of the 2f; — f; emission when the f; stimulus frequency exceeds 4.4
kHz (section 6.1.2) and possible explanations for this are discussed in section 4.1.2.The model also
underestimates the amplitude of the place-fixed 2f, — f{ DPOAE component, relative to the wave-
fixed component, at high stimulus levels. A consequence of this limitation is that simulations have
to be performed at lower stimulus levels than those employed in experimental studies in order to
observe effects such as the 2f; — f; DPOAE fine structure (section 6.1.6). Section 4.2.5 explains that
excessive suppression of the DP travelling wave in the vicinity of the DP characteristic place at
high stimulus levels may be responsible for this weakness, which could indicate that the peak of the
primary travelling wave envelope broadens too much as the stimulus increases in the cochlear

model.
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6.2 The wave-fixed 2f, — f; DPOAE source

In this section, the origin of the wave-fixed 2f, — f; DPOAE within the cochlear model is
investigated. A summary of the literature regarding the source of the 2f, — fi DPOAE is given in
section 1.4.2. Analysis of group delay, component separation using time-windowing techniques,
and the results of suppressor tone experiments suggest that this emission has two sources: A wave-
fixed source mechanism, distributed over a region basal of the 2f; — f; characteristic place where
the primary travelling waves overlap, and a place-fixed source located at the 25 — f; characteristic

place. These two source mechanisms are illustrated for the 2/, — f{ DPOAE in figure 6.15.

As the model generally makes valid predictions of the 2f, — f{ DPOAE characteristics, especially at
low stimulus levels, we apply the model to provide insight into the generation mechanism
underlying the wave-fixed component of this emission. We assume that the baseline model
generates a wave-fixed component which is dominated by a distortion mechanism and that any
wave-fixed nonlinear reflection that may occur at moderate stimulus levels can be neglected. We
start by considering the region of the model over which the quasilinear OHC pressure output
contains a significant DP component. We then evaluate the effective 2f; — f; DP source region,
taking into account the mechanical properties of the cochlear partition which limit the propagation
of DP travelling waves on the apical side of the DP characteristic place. Finally, in section 6.2.3 we
use the forward-backward decomposition method to verify the location of the source region for the
2f> — f1 DP travelling wave, and find the results to be consistent with those presented in the

previous sections.

Cochlear

. partition
Total Backward travelling
distortion wave-fixed component

Faorward travelling

product !

L place-fixed

- component

Backward-travelling
placefixed component

Figure 6.15 Illustration of the two source components for an upper side band emission

The grey and black triangles represent travelling waves corresponding to the primary and distortion product
frequencies respectively. The grey shaded area indicates the likely generation region for the wave-fixed
component.
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Figure 6.16 The DP component of the OHC pressure output

Plots (a and ¢) show the DP component of the OHC pressure output where the thick solid line and thin dotted
line correspond to the 2f, — f; and 2f; — f, DP respectively. The BM velocity response (b and d) where the
frequency components f, fi, 2f> — fi and 2f; — f, are represented by the grey dotted, grey dashed, solid black,
and thin black dotted lines in that order. In each case f, = 2 kHz, f,/f; = 1.25 and the stimulus levels are either
(aand b) L;=L,=40 dB SPL or (c and d) L,=L,=60 dB SPL. The best places for f;, f;, and the characteristic
places for 2f; — f; and 2f; — f; are indicated by the circle, square, cross and triangle markers respectively.

6.2.1 The 2f, — f OHC pressure source distribution

Figure 6.16 shows the predicted 2/, — f; and 2f; — f, DP components of the pressure output of the
OHCs, and the BM velocity response, for two different stimulus levels. At low stimulus levels (L
= L,=40 dB SPL) the 2f, — fi component of the OHC pressure is greatest at the f, best place. At
higher stimulus levels (L;=L,=60 dB SPL) this is still the case, but the f; best place has shifted
closer to the 2f; — f| characteristic place such that the two locations overlap. The distribution of the
OHC pressure output differs for the 2, — fi DP compared to the 2f; — f, DP. For example, the
2f> — fi component of the OHC pressure output has greater amplitude on the basal side of the f; best
place, and smaller amplitude of the apical side of this location, compared to the 2f; — f, component.
There is also a difference in the simulated DP components of the BM velocity response which is
most apparent for the 60 dB SPL stimuli. The 2f, — f; component of the BM velocity exhibits only
one peak, in the vicinity of the £, best place, whilst the 2f; — f, component shows peaks at both the
/> best place and the 2f; — f, characteristic place. This is consistent with the pressure response of the
gerbil cochlea made by Dong & Olsen (2008), who observed a single peak response for the 2, — £
DP component compared to a double peaked response for the 2f; — f, DP component (figure 1.21).
Two peaks are expected to occur in the 2f; — f, DP component of the BM velocity in association
with the location of the maximum pressure source near the f; best place and the large amplitude of

the DP forward travelling at the 2f; — f; characteristic place (Kim ef al., 1980). The absence of a
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two peaks in the 2/, — f{ BM velocity component suggests that the 2f, — f; wave-fixed DP source is

not spatially separated from the 2f, — f; DP characteristic place.

6.2.2 The wave-fixed pressure source distribution

It is not possible for the DP pressure output of the OHCs at every location within the cochlear
model to influence the DPOAE in the ear canal. This is particularly relevant for the 2f, — f; DP as
the maximum 2f; — f; component of the OHC pressure output arises at a location which is further
from the base than the DP characteristic place. However, DP pressure sources on the apical side of
the DP characteristic place should not simply be dismissed because we have seen that there is not a
discrete change from travelling wave to evanescent wave at the characteristic place in the model
(section 5.1.1). For this reason, large 2f; — f| pressure sources may be able to contribute
significantly to the emission detected in the ear canal, even if they are located on the apical side of
the DP characteristic place. In this section we evaluate the effective wave-fixed 2f; — fi DPOAE
source distribution which can influence the level of the emission in the ear canal using the

technique described in section 5.1.1.
Source length and location

The dark grey shaded area in figure 6.17 shows the predicted effective source length (defined in
5.1.1) for the wave-fixed component of the 2f; — f{ DPOAE. The figure also illustrates how the
length and position of this region changes as the stimulus frequency ratio is increased from 1.01 to
1.4. The light grey area corresponds to the region over which the simulated 2f; — f; component of
the OHC pressure output is within 10 dB of its maximum value. At f5/f; values close to 1, the dark
and light grey regions essentially coincide. However, as f;/f; increases, the effective source regions

shifts closer to the base than the region of the maximum OHC pressure output.

Source length (mrm)

11F 1

1.05F B

0 0002 D004 0006 0003 001 0012 0014 0016 0018 002 11 108 11 115 12 125 13 135 1.4

() £/, ratio
Figure 6.17 The location and length of the wave-fixed 2f, — f; DP source
The plots show the simulated length of the 2f, — f; DPOAE source with varying f,/f) ratio using L,=L,=50
dB SPL and 2f, — f; = 2 kHz. (a) The solid black lines indicate the boundaries of the source region, and the
dotted and dashed lines denote the locations at which the maximum BM velocity occurs at frequencies
2f, — f) and f; respectively. The dark grey shaded area represents the effective source region, whilst the light
grey region corresponds to the area of maximal OHC pressure output at the DP frequency. (b) The length of
the dark grey region, shown in (a), for various stimulus frequency ratios.
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The length of the effective 2/; — f; DP source region predicted by the model, changes by less than

0.5 mm as the f,/f; ratio increases from 1.01 to 1.4. A comparison between the predicted effective
wave-fixed DP source region and the distribution of the DP component of the OHC pressure output,

for a single stimulus frequency ratio, is shown in figure 6.18.

Figure 6.17a shows that the effective source region for the 2f, — f; DP within the cochlear model is
distributed between the £, best place and a location just basal of the 2f, — f; characteristic place.
This is consistent with the observation of Martin et al. (1998), who found that the 2f; — ff DPOAE
was most effectively suppressed by a tone that was higher in frequency than f,. As the apical
boundary of this dominant source area is close to the f; best place, this means that a significant
contribution to the simulated 2f; — f; wave-fixed DPOAE originates from a region extending up to
approximately 1.6 mm further from the base than the 2f; — f characteristic place. This can occur
because there is a finite region beyond the 2f, — f; characteristic place over which the travelling
wave amplitude is decaying and motion is becoming evanescent. It is also possible that evanescent
wave coupling may allow the DP component of the OHC pressure output on the apical side of the
2f> — f1 characteristic place to contribute to the DPOAE observed in the ear canal of the model.
Figure 6.19 shows the predicted 25 — f| component of the semi-difference pressure evoked by a
single element of the source distribution described in figure 6.17a. The location of the source
element is 1.6 mm further from the base than the 2f, — f| characteristic place, and so the amplitude
of the semi-difference pressure in the immediate vicinity of the source element decays
exponentially with distance from the source. However, between the 2f, — f| characteristic place and
the base of the model, there is a 2f, — f; travelling wave with phase behaviour consistent with that

of backward propagation towards the stapes.

a0 : : : Figure 6.18 Comparison of the effective
wave-fixed source distribution and the OHC
- pressure output for the 2f, — f; DP
In this plot the effective source distribution
- and OHC pressure output are denoted by
solid and dotted lines respectively. The two
- different distributions are given in dB
referenced to different pressure levels for
ease of comparison, as the absolute level of
the estimated effective source distribution is
arbitrary and depends on the number of
""""" 2f2-f1 component of OHC pressure output (dB re 2071 o Pa) elements used to represent the length of the
Effective 2{2-f1 OHC pressure source (dB re 207108 Pa) cochlear partition (500 in this example)- For
these simulations L;=L,= 70 dB SPL, £;=2
kHz and f5/fi=1.1.
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Figure 6.19 The predicted 2f; — f; component of
the semi-difference pressure evoked by a single
element pressure source
The pressure source is located at a distance of
15.7mm from the stapes, on the apical side of the
Do DP characteristic place. The amplitude and
pn'wé oo phase of the source was determined by the DP
P component of the OHC pressure output at this
J location, when the model is stimulated by two
P pure tones L;=L,=50 dB SPL, 2f; — /i=2 kHz

and f,/fi=1.2. The characteristic place for the
2f1 — f> frequency, and the source location, are
indicated by the square and circular markers

‘ . P respectively. The basal boundary condition of
f o0 E(% oo oo the model was modified to minimise reflections.

Pressure (dB SPL)

#(rm)

Phasze (cycles)

Figure 6.20 shows the simulated length of the 2f, — f; wave-fixed DPOAE source for a variety of
the stimulus levels (L,=L,), using f,/f; equal to 1.1. At low stimulus levels, where the model
predictions most accurately reflect the measured properties of the 2/, — f; emission, the effective
wave-fixed DP source region spans the area between the 2/, — f characteristic place and the £, best
place. As stimulus level increases, the effective wave-fixed DP source region broadens out towards
the base of the model. The model also suggests that the effective wave-fixed source length

increases from 1 to 4.5 mm as the stimulus level increases from 30 to 80 dB SPL.

Stimulus level (dB SPL)
Source length {rnrm)
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Figure 6.20 The predicted length and location of the wave-fixed 2f; — f; DPOAE source

The length of the 2/, — f| DPOAE source is predicted for various stimulus levels, using f,//i=1.1 and 2/, — f; =
2 kHz. (a) The solid black lines indicate the boundaries of the source region, and the dotted and dashed lines
denote the locations at which the maximum BM velocity occurs at frequencies 2f; — f; and f; respectively.
The dark grey shaded area represented the source region, whilst the light grey shading indicates the
distribution that the source region would be expected to occupy if the source was restricted by the limitation
imposed by the propagation region for the 2f, — f; frequency. (b) The length of the dark grey zone shown in
(a) for difference stimulus levels (L;=L,).
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Figure 6.21 The influence of individual elements within the wave-fixed source distribution

The plots show the predicted (a) amplitude and (b) phase of the wave-fixed DPOAE component evoked by
single pressure source elements at position x. At each position, the source element has the amplitude and
phase described by the distribution of the DP component of the OHC pressure output evoked by two stimulus
tones at levels L=L,= 50 dB SPL, f5/fi=1.1 and DP frequency of 2 kHz. Results are shown for both the

2f, — f1 (solid lines) and 2f; — f; (dotted lines) DPs, and the arrow indicates the characteristic place of the DP
frequency.

Source directionality & forward travelling waves

The directionality of the effective wave-fixed 2f, — fi DPOAE source region in the model is likely
to change with source length in view of its phase distribution, illustrated in figure 6.21, for the
reasons discussed in section 5.1.3. The length of the effective source region extends as the stimulus
level increases (figure 6.20) and so the source is expected to preferentially enhance forward

travelling DP waves, with respect to backward travelling DP waves, as the stimulus level increases.

So far, we have only considered the effective DP source for backward travelling waves which give
rise to the wave-fixed component of the 2/, — fy DPOAE. However, it is also important to consider
the effective source region for forward DP travelling waves, given that the place-fixed component
of the 25 — fi DPOAE tends to dominate the wave-fixed component in experimental studies.
Wilson & Lutman (2006) suggest that the 2/, — f DPOAE could arise predominantly from 2, — f
forward travelling waves generated between the base and the DP characteristic place, which are
then reflected at the characteristic place and propagate out of the cochlea. It is possible that wave-
fixed forward travelling waves at the 2f, — f; DP frequency could be generated in two different
areas of the model at low stimulus levels. Firstly the forward travelling waves could originate
within the same region as the 2f, — f; wave-fixed backward travelling waves, and travel only short
distances between their generation site and the 2f, — f; characteristic place where they are reflected.
Beyond the DP characteristic place the forward travelling waves should gradually decay away and
become evanescent waves. Secondly, the DP forward travelling waves could be generated by a
highly directional source with a preference for emitting forward travelling waves, which is
distributed over an extended region between the base and the 2f; — f; characteristic place. This
source would have to be highly directional or it would have been detected in the previous

investigation of the wave-fixed source of backward travelling waves (figure 6.17, for example). To
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achieve this high degree of directionality it would be expected to be distributed over an extensive

region of the cochlea.

In section 6.3.1, we discover that the place-fixed component of the 2f; — f| DPOAE originates
primarily from reflection sites in the vicinity of the DP characteristic place in the model. In order to
determine the source of the forward travelling wave which gives rise to these reflections, we
manipulate the model so that the 2f, — fj DP component of the OHC pressure output is “switched
off” over a controlled region of the model and monitor the DP component of the BM velocity at the
2f> — fi characteristic place. When this 2f, — f; DP source is switched off between the base and a
location only 0.7 mm closer to the base than the 2f; — f; characteristic place, we observe that there
is no significant change (< 2 dB) in the amplitude of the 2f; — f; component of the BM velocity in
the region apical to the manipulated zone. This suggests that substantial forward travelling waves
are not generated by an extensively distributed wave-fixed (distortion) mechanism located between
the base and the characteristic place. Therefore we conclude that the wave-fixed forward travelling
waves are generated in the immediate vicinity of the 2f; — f; characteristic place and are likely to

travel only a short distance.

6.2.3 Forward and backward travelling wave decomposition

Figure 6.22a shows the estimated forward and backward travelling waves, at the 2f; — f| frequency,

evoked by two stimulus tones at levels L;=L,=50 dB SPL. The basal boundary condition of the
model was set to minimise reflections from the stapes (appendix C.2). The poi coefficients of the
forward and backward travelling waves are shown in figure 6.22b. Although fluctuation in the
amplitude of just one of the p(f coefficients is an indicator that one of the travelling waves

estimated by the decomposition method is dominated by errors associated with numerical
inaccuracies or the WKB approximation, fluctuation in the amplitude of both coefficients over a
region of the cochlear model is suggestive of a internal DP pressure operating in that vicinity

(appendix B.2.4). The vertical dotted lines in figure 6.22 illustrate the boundaries of the source
region that could explain the variations in the amplitude of both p; and p, in the vicinity of the

2f> — f1 characteristic place. Between the stapes and the basal boundary of this estimated source
region, only a backward travelling DP wave is evident. The apical boundary of the estimated DP
source region is further from the stapes than the 2f; — f; characteristic place, and so the amplitude of
the travelling waves fall off rapidly beyond this point. Within the estimated DP pressure source
region, the amplitudes of both the predicted forward and backward travelling waves exceed the
error floor of the decomposition process. The decomposition method suggests that significant
forward travelling 2f; — f; waves will only arise within the DP source region bounded by the

vertical dotted lines on figure 6.22, which is consistent with the conclusion of section 6.2.2.

190



6. Predicted 2/, — f; DPOAE characteristics
6.2 The wave-fixed 2f, — fi DPOAE source

a0
- By 1 | == P forward
T ', T I L fOP backward
m 401 error floar
=
z
s 20
@
=
[

D F
=20 . : -
a 0.00s 0.1 n0.01s 0.0z

m— o rward coefficient
memnn hackward coeflicient

Pressure (dB SPL)

1] 0.00s 0.1 15 0.0z

Figure 6.22 The estimated forward and backward travelling 2/, — f; DP waves
(a) The estimated forward and backward travelling components of the DP frequency (fDP) semi-difference
pressure for the 2/, — f| distortion product. The f; and f; components of the simulated semi-difference

pressure are also shown for reference. (b) The p(f coefficients of estimated forward and backward travelling

waves shown in (a). In both cases, L;=L,= 50 dB SPL, £,=2 kHz, f5/f(=1.1 and the basal boundary condition
was set to minimise reflections from the stapes. The vertical dotted lines indicate the region of the cochlear

model over which the coefficients p, both vary suggesting the presence of an internal pressure source

distribution. The arrow denotes the 2f; — f; characteristic place, which also happens to correspond to the
location of the f; best place for this stimulus paradigm.
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6.3 The place-fixed component of the 2f, — f; DPOAE

We have simulated the place-fixed component of the 2f, — fi DPOAE by introducing irregularities
into the active micromechanics of the cochlear model. These irregularities could give rise to DP
backward travelling waves by either of two mechanisms: Reflection of DP forward travelling
waves, or alterations in the DP component of the OHC pressure output due to reflection of the
primary travelling waves. As the irregularities are at fixed locations, the phase of the reflected
waves will change as the phase of the incident wave varies with stimulus frequency. This is true of
reflections in either the primary or DP travelling waves and therefore the phase behaviour of the
place-fixed 2f; — fi observed in section 6.1.6 cannot be used to differentiate between these two
possible generation mechanisms. In this section we investigate the location and mechanism behind

the place-fixed source of the 2f; — f; DP in the cochlear model.

6.3.1 The location and mechanism of the place-fixed source

To identify the location of the dominant mechanism underlying the place-fixed 2f, — fi DPOAE
within the model, we manipulate the model such that a single 10% impedance irregularity is
introduced into the active micromechanics at varying distances from the stapes. At each location,
we check the model for stability and examine the amplitude of the place-fixed DPOAE component
generated by the inclusion of the single impedance irregularity. Figure 6.23 shows the predicted
amplitude of the place-fixed 2f; — fi DPOAE generated by a single impedance irregularity
positioned at distance x from the base. We also repeat the simulation with a modified quasilinear
method in which the impedance irregularity is only introduced to the 2f, — f{ DP component of the
model response, and the primary responses are evaluated in a baseline model containing no

impedance irregularity.
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Figure 6.23 The location of the 2f; — f; DPOAE place-fixed source
The plot shows the predicted amplitude of the place-fixed (reflection) 2f; — fi DPOAE generated by a single
impedance irregularity at position x(m) which enhances the OHC gain by 0.1 relative to a baseline cochlear
model at that location. Stimulus parameters L;=L,=50 dB SPL, /,=2 kHz and f,/f;j=1.3 are used. The solid line
shows the place-fixed component which arises when the impedance irregularity affects the primary and DP
travelling waves. The dotted line indicates the place-fixed component which arises when the impedance
irregularity only affects the DP travelling wave and the primary responses are evaluated for a baseline
cochlear model. The characteristic place for 2f; — f1, and the best places for f; are indicated by the cross, and
circle markers respectively.
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Figure 6.23 demonstrates that when the irregularities are only introduced for the DP component of
the model response, the predominant source of the place-fixed 2f, — fi DPOAE is located at the

2f> — f1 characteristic place. It also shows that when the irregularity positioned at the DP
characteristic place is applied to the primary responses, as well as the 2f; — f; DP response, the
amplitude of the place-fixed component increases by up to 5 dB. In addition, it is possible for
irregularities positioned at the f; and f; best places to generate low level place-fixed 2f; — f{ DPOAE
components but these are at least 10 dB smaller than the maximum place-fixed emission

component which originates from the 2f; — f; characteristic place for this stimulus frequency ratio.

Overall we conclude that place-fixed mechanism for the 2f, — f; DP involves reflection of both the
primary and the 2f; — f] travelling waves in the model. The location of this place-fixed source is

distributed but it predominantly originates from the 2f, — f; characteristic place at high £/f; ratios.

6.3.2 The place-fixed component and 2f; — f; fine structure

In section 6.1.6 we observed the predicted 2f, — fi DPOAE fine structure simulated in the perturbed
model. We discussed the origin of the fine structure and concluded that, depending on the
frequency, it could arise either directly from amplitude fluctuations in the place-fixed component or
as a consequence of alternative constructive and destructive summation between the wave-fixed
and place-fixed components. However, section 6.3.1 revealed that there are two contributions to the
place-fixed component of the 2f; — f; DPOAE predicted by the model. Which of these is most

important to the simulation of the 2f, — f; emission fine structure?

We assess this by manipulating the quasilinear method so that the fine structure can be simulated in
a version of the perturbed model in which the impedance irregularities only influence the DP, not
the primary, travelling waves. The results are then compared with those obtained using a fully
perturbed model in which the primary travelling waves, in addition to the DP travelling waves, are
influenced by the impedance irregularities. The outcome is shown in figure 6.24. This demonstrates
that neglecting reflections of the primary travelling waves reduces the amplitude of the place-fixed
DP component, and therefore it also reduces the amplitude of the total 2f, — f; DPOAE. Figure 6.24
shows that the residual place-fixed component, arising solely from reflections of the DP travelling
wave, exhibits relatively slow and small amplitude fluctuations as the emission frequency changes,
relative to the behaviour of the total 2f; — f; emission. Therefore substantial amplitude fluctuations
in the simulated place-fixed component are associated with reflection of the primary travelling
waves, not the DP travelling wave. For example, the trough in the amplitude of the place-fixed
component which occurs when 2f, — f] is approximately 1850 — 1900 Hz is associated with
reflection of the primary travelling waves, as it is not present in a model in which these reflections

are neglected. For this reason, in cases where the fine structure coincides with amplitude
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fluctuations in the place-fixed component, reflection of the primary travelling waves appears to be

predominantly responsible for the fine structure. However, at most of the 2f; — f; DP frequencies
shown in figure 6.24 the fine structure of the total emission does not coincide with amplitude
fluctuations in the place-fixed component, and so the predicted fine structure is attributed to
interference between the place-fixed and wave-fixed components. In this case, the fine structure is
not disrupted when reflection of the primary travelling waves is neglected from the model.
Although the amplitude of the predicted total DPOAE reduces in the modified model, the fine-
structure retains the same peak-to-trough amplitude. We also observe that the frequencies at which
the peaks and troughs in the predicted 2/, — f; fine structure occur shift to lower frequencies by 15
to 30 Hz when the reflection of primary travelling waves is removed from the model. This
frequency shift is attributed to a change in the phase behaviour of the simulated place-fixed DP
response when the reflection of the primary travelling waves is neglected. For example, figure 6.24
shows that if the place-fixed component originates purely from reflection of the DP travelling wave,
then the phase lag of this component increases uniformly as the DP frequency increases. However,
if the place-fixed component is made up of contributions from mechanisms involving reflections of
both the primary travelling waves and the DP travelling wave, then the phase lag of the estimated

place-fixed component increases rapidly, but not uniformly, as the DP frequency increases.
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Figure 6.24 The influence of the place-fixed component on the 2f; — f; DPOAE fine structure

The plot shows the wave-fixed, place-fixed and total predicted 2f;, — f; DPOAE evoked by stimulus tones
L,=L, =150 dB SPL and f;/fj=1.2. These components were evaluated using a fully perturbed model. In
addition, the model was modified so that the impedance irregularities only influenced the DP travelling wave,
and this manipulated model was used to estimate the modified total DPOAE and the modified place-fixed
component.
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Overall, figure 6.24 suggests that when the predicted DPOAE fine structure predominantly arises
from interference between the wave-fixed and place-fixed components, then the reflection of DP
travelling waves is sufficient for this. Fine structure of this type, originating from interference, can
be simulated without significant reflections of the primary travelling waves contributing to the
place-fixed component. In contrast, the contribution of primary travelling wave reflection to the
place-fixed component of the DPOAE is important in simulating fine structure for stimulus
paradigms where the amplitude of the place-fixed component dominates that of the wave-fixed
component, and fine structure of the DPOAE coincides with amplitude fluctuations of the place-

fixed component.
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6.4 Conclusions regarding the predicted 2f; — fi DPOAE

This chapter provides a response to the following research questions posed in section 1.9

concerning the 2f; — f; upper side band emission:

O

O

What are the strengths and weaknesses of the model regarding 2f; — f; DPOAE prediction?
What explanation does the model provide for the dependence of the 2f, — /i DPOAE
amplitudes on the stimulus parameters?

What is the origin of 2f; — fi DPOAE fine structure in our model?

What is the source mechanism for the 2f, — fi DPOAE suggested our model? Can these upper
sideband emissions be simulated by a cochlear model that does not incorporate fluid

compression waves?

The most significant outcomes of this chapter arising from consideration of these research

questions are listed below. The main contribution is the discussion of the predicted source

mechanism for the 2f; — /i DPOAE in sections 6.2 and 6.3, as listed in section 1.9(viii).

Confirmation that the properties of the 2f, — fi DPOAE can be simulated in a model in which
DPs propagate out of the cochlea via backward travelling waves. From section 6.1 we
conclude that the model makes appropriate predictions for a broad range of 2f, — f; emission
properties, especially at low stimulus levels, and that it is valid to extend the application of the
model to investigate source mechanisms for this emission. Some of the limitations of the
model were the same as those observed for the 2f, — fi DPOAE described in chapter 4, and
can be used to suggest improvements that could be made in future development of the model
discussed in chapter 7.

Plots of the location of the dominant source region for the wave-fixed component of the

2f, — fi DPOAE within the model, which suggest that the source is distributed over the region
between the DP characteristic place and the f, best place for most stimulus paradigms.
Description of the location of the dominant place-fixed 2f; — /i DPOAE component within the
model and the different mechanisms by which travelling wave reflection can impact the

2f> — fi DPOAE detected in the ear canal.
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7. Conclusions and suggestions for future work

This chapter summarises the strengths and weaknesses of the model and the conclusions that can be
drawn from the simulations. The most important contributions of the thesis, may be summarised as

follows:

(i) Reformulation of the Kanis & de Boer (1993) quasilinear model of the cochlea to ensure
computational convergence of the iterative process and verify stability of the model. The
solution is also decomposed into forward and backward travelling wave components to
facilitate interpretation of the results.

(ii)) The fine tuning of the micromechanical parameters in the cochlear model is extended to
improve the agreement between experimental responses of the cochlea to single and two tone
stimuli and those predicted by the model. The effect of the position of the nonlinearity within
the micromechanical feedback loop has also been clarified (How et al., 2010).

(iii) A comprehensive comparison of experimental results and the simulated properties of the
2f, — f> and 2f, — f; DPOAESs predicted by the baseline and perturbed model. This allows many
of the DPOAE characteristics to be explained but also determines which features of these
emissions cannot be understood in such a simple model. This review also serves to establish
which characteristics of the emissions are most sensitive to flaws in the tuning of the cochlear
micromechanical model and could therefore be useful in tuning the parameters further.

(iv) Confirmation of the origin of the optimal stimulus level difference characteristic exhibited by
both 2f; — f; and 2f; — f; using a coupled cochlear model.

(v) The identification and explanation of predicted notches in the wave-fixed component of the
2f1 — /> DPOAE growth function in the cochlear model.

(vi) Clarification of the limitations of the Allen-Fahey experiment.

(vii) Development of tools for assessing the directionality of wave-fixed DP sources within the
cochlear model.

(viii)Suggestions regarding the source mechanism for the 2/, — f; DPOAE.

The work also suggests some future research directions, which are outlined in section 7.3.
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7.1 Strengths of the model

The strength of this study lies primarily in the simplicity of the model and the breadth of its
application. The coupled model, incorporating a nonlinearity and micromechanical impedance
perturbations, has been applied to predict a broad range of responses to single- and two- tone
stimulation. The results include predicted effects such as self-suppression of the fundamental
response and the harmonic responses evoked by single tone stimuli as well as mutual suppression

and DPOAESs arising from two tone stimulation.

7.1.1 The properties of the quasilinear model

The model is based on the Kanis & de Boer (1993) simulation of the human cochlea, although the
micromechanical parameters have been tuned so that the response better replicates the sharpness of
tuning and CA gain exhibited by the mammalian cochlea in response to single tone stimulation
across a range of frequencies. We also developed a state space formulation of the model, based on
that devised by Elliott ef al. (2007), which required construction of the state space matrix equations
using the system transfer function rather than the equations of motion as these were not explicit for
the Kanis & de Boer cochlear model. The application of the state space formulation provided a
method of establishing the stability of the model, which is a prerequisite for the quasilinear method
to be valid. Kanis & de Boer devised the quasilinear iterative approach for estimating the response
of the model in the frequency domain. We found that this approach was very time efficient,
especially when we modified the iterative process to improve the reliability of its convergence. The
quasilinear responses of the model were compared to state space time domain simulations, and we
found no evidence of significant discrepancies between the two approaches. Therefore the
considerable time saving offered by the quasilinear approach, over a time domain approach such as
the state space time domain method, does not appear to compromise the validity of the estimated
response. The further advantage of the frequency domain approach is that it allows the model to be
manipulated to gain insight into the mechanisms underlying DP generation. For example, it was
possible to apply the impedance irregularities to only the DP travelling wave rather than the DP and

the primary travelling waves simultaneously.

Simulations were performed using both the baseline model and a perturbed model, in which
random irregularities were imposed on the active impedance of the model. This allowed it to be
used for predicting reflection of forward travelling waves within the cochlear model and the place-
fixed component of DPOAEs. Such impedance perturbations have been applied in other cochlear
models, but these models have either been limited in other ways, such as neglecting the effect of
suppression of the primary tones (Talmadge et al., 1998), or they have not yet been applied to the
simulation of DPOAEs (Ku, 2008).
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In order to investigate the origin of DPs within the cochlear model we also developed some
analysis tools, particularly the method for decomposing the travelling wave describing the semi-
difference pressure into forward and backward travelling components. The novel aspects of this
particular tool include its application to decompose the travelling wave solution, and the
identification of cases where the method is not accurate. This decomposition method formed part of
a battery of investigatory strategies which were applied to indicate the directionality of a wave-
fixed DP source. The other strategies included evaluation of changes in source length as the
stimulus parameters varied and the detection of constructive or destructive summation between

neighbouring elements within the wave-fixed source distribution.

7.1.2 The predicted responses to single tone stimulation

The micromechanical parameters of the cochlear model were tuned to improve the agreement
between the predicted responses to single tone stimulation, and experimental observations from the
mammalian cochlea. In addition the parameters of the nonlinear function were selected to achieve
appropriate levels of 2™ and 3™ order harmonics, relative to the fundamental component, in
response to a single tone stimulus. The amplitude of the first order Boltzmann function was set to
increase with distance from the base of the model, so that the saturation threshold of the
fundamental response to single tone stimulation occurs at 30 dB SPL for a frequencies between 0.5
and 6 kHz. The resulting active model has a place-frequency map consistent with that of
Greenwood (1990) throughout most of its length. The model also exhibits nonlinear growth in the
fundamental component of 0.3 — 0.4 dB/dB between stimulus levels of 40 and 70 dB SPL which is
in good agreement with the growth rates observed over a similar stimulus range in experimental
studies which tend to be in the range of 0.12 — 0.5 dB/dB (Robles & Ruggero, 2001). In addition
the predicted amplitude of the CP displacement at the characteristic place (such as 0.1 to 1 nm for a
50 dB SPL stimulus) is within the range of physiological measurements in mammalian cochleae

(e.g. 0.05 to 10 nm) for the same stimulus level (Robles & Ruggero, 2001).

7.1.3 The predicted responses to two tone stimulation

The model has been used to simulate a broad range of 2f; — £, and 2f, — fi DPOAE properties which
provides a useful basis on which to judge the validity of the model and any explanations which are

drawn from it.

The predicted amplitude of the 2f; — f; and 2f; — /i DPOAEs agrees well with experimental
measures provided that f; is below 4 kHz, and the relative amplitude of the two DPs seems to be
appropriate across a broader stimulus frequency range. The model also replicates well the growth

rate, optimal stimulus level difference, and fine structure of both DPOAEs. In addition, it estimates
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appropriate optimal stimulus frequency ratios at low stimulus levels. In view of these successes, the
model has provided useful insight into the origin of the optimal stimulus parameters (such as level
difference and frequency ratio). It has also improved our understanding of the null result seen by
Allen and Fahey in their attempt to use the 2f; — f, DPOAE to estimate the gain of the cochlear
amplifier. The model also makes some predictions regarding the source mechanism and location

for the 2f; — fi DPOAE, although these are difficult to verify against experimental evidence.
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7.2 Limitations of the model

This section provides a summary of the weaknesses of the model with regard to simulating the
cochlear response to single and two tone stimuli. It should be noted that despite all of the
limitations listed below, the model predicts a variety of cochlear responses to single and two tone
stimulation that show good agreement with experimental measurements. A cochlear model will
always be a simplified version of a complex system, and so the model should not be disregarded on
the basis of these weaknesses. Rather, the limitations indicate areas in which the model could be

improved or developed.

7.2.1 The properties of the quasilinear model

The micromechanical model used was based on that of Kanis & de Boer (1993) and represents an
empirical fit to the expected cochlear partition impedance, rather than a direct model of the
mechanics of the organ of Corti. This may be the cause of some of the difficulties in tuning the
model. In addition to this, our model incorporates the “long-wave” approximation, which assumes
that the wavelength of the travelling wave is greater than the height of the model. This
approximation is not valid near the peak of the travelling wave envelope, close to the characteristic
place of the stimulus frequency, and therefore it may be possible to improve the model by
increasing the dimensions. It is also worth noting that our model neglects any structural
longitudinal coupling along the cochlear partition, as longitudinal coupling is assumed to occur
entirely through the incompressible cochlear fluids. This is a controversial assumption and one that
could be addressed in future models. We also assume that DPs propagate out of the cochlea via
backward travelling waves and so fluid compression waves are neglected. Although this has been
useful for investigating whether the travelling wave mechanism of reverse propagation of DPs out
of the cochlea is sufficient for replicating the behaviour of DPOAEs, it may prove to be a
significant limitation of the model in view of recent experimental evidence such as the He et al.

(2008) experiment described in section 5.2.2.

The quasilinear approach, which assumes that the primary responses are unaffected by the presence
of distortion in the cochlear model, may not be valid for all stimulus paradigms. For example,
Kanis & de Boer (1996) find that the quasilinear estimate of the 2f; — f, DP near the base of their
cochlear model exceeds the time domain estimate by 10 dB when the stimulus frequency ratio is
close to unity (e.g. f2/fi=1.04). Therefore more extensive comparison between the quasilinear
frequency domain predictions of the model and those of a time domain approach such as the state

space method is desirable.
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7.2.2 The predicted responses to single tone stimulation

The amplitude of the first order Boltzmann function was set so that the fundamental response to
single tone stimulation has a saturation threshold of 30 dB SPL for stimulus frequencies between
0.5 and 6 kHz. It was not possible to extend this to higher frequencies, as this resulted in adverse
effects such as the saturation in the basal region of travelling waves evoked by low frequency
stimuli. This approach seemed sensible, on the basis that saturation thresholds for TEOAEs and
DPOAES vary by less than 10 dB across a range of stimulus frequencies (section 3.5). However,
other approaches may be more appropriate. For example, it would be possible to set the Boltzmann

function amplitude such that saturation commences at some defined CP displacement amplitude.

The active micromechanical parameters of the cochlear model were also tuned so that the gain of
the CA reduced from 37 dB to 20 dB from the basal to the apical end of the model. However, this
gain variation is less than that observed in studies of laboratory animals such as the chinchilla
where the gain reduces from 48 dB to 15 dB for high- and low- frequency stimuli respectively. It
was not possible to further modify the gain variation in our model without compromising stability
of the basal region of the cochlea or underestimating the amplitude of low frequency DPOAEs. In
addition the micromechanical parameters were adjusted so that the Q,o4p Of the cochlear frequency
response to low stimulus levels decreased from 11 to 3 between the characteristic places for 10 and
0.3 kHz respectively. This compares well to the physiological data from mammalian cochleae in
which the Q,o4p values decreases from 8 to 1 between the characteristic places corresponding to 10
and 0.2 kHz. However, there is some evidence from the DPOAE studies that the tuning of the
model may be too broad at high stimulus levels and therefore further comparison between the

tuning of the model and higher level single tone stimuli could be fruitful.

7.2.3 The predicted responses to two tone stimulation

Although the amplitude of the 2f; — f; and 2f; — fi DPOAEs are in good agreement with
experimental measures when f; is below 4 kHz, the amplitudes of both emissions are
underestimated by the model at higher stimulus frequencies. It is unclear where this weakness
originates within the model, but it is likely to be associated with insufficiencies in the amplitude of
the BM response to high frequency stimulation, or some aspect of the nonlinear function in the
basal region of the model such as the amplitude which influences the saturation threshold of the

BM response.

There are some discrepancies between the DPOAE properties predicted by the model, and those
observed in physiological studies, which may indicate that the frequency response of the model at

high stimulus levels is too broadly tuned. These discrepancies are evident in the dependence of the
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2f1 — f> and 2f; — fi DPOAESs on stimulus frequency ratio at moderate and high stimulus levels, but
this limitation of the model could also be responsible for the fall off in the level of the place-fixed
2f1 — f DPOAE place-fixed component at low stimulus frequency ratios, and in the decline in the
amplitude of the place-fixed 2f; — fi DPOAE component relative to the wave-fixed component at

high stimulus levels.
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7.3 The assumed micromechanical model

The model used for predicting human DPOAES in chapters 4, 5 and 6 consists of a first order
Boltzmann function positioned before the filter representing the dynamics of the OHC within the
micromechanical feedback loop. The input to the nonlinear function is determined by the
difference in shear displacement between the tectorial membrane and the organ of Corti. In
addition, the micromechanical parameters were selected so that that the gain of cochlear amplifier
and sharpness of the BM tuning reduced between the base and the apex of the model. The reasons
for these choices are discussed in chapter 3, but in this section we consider whether any of these

assumptions could influence the conclusions that have been drawn from the model predictions.

7.3.1 The nonlinear function

The nonlinearity associated with the OHC mechanoelectrical transduction process is thought to be
primarily responsible for the nonlinear behaviour of the cochlea (Ashmore, 2008). This
nonlinearity is most accurately described by either a 3" order polynomial function (Chertoff et al..,
1996) or a second order Boltzmann function (Bian ef al.., 2002). However it is common to use a
more basic sigmoidal nonlinear function, such as the first order Boltzmann function, when
constructing a cochlear model to simulate DPOAE generation in the interest of simplicity (Kanis &
de Boer, 1997; Vetesnik et al., 2006; Liu & Neely, 2010). In this section we consider whether the
conclusions drawn from the model would have been different if a more physiological nonlinear
function, such as a second order Boltzmann function, had been employed instead of the first order

Boltzmann function.

Several properties of the model are sensitive to the choice of the nonlinear function: The relative
amplitude of different order DPs, the relative amplitude of the two third order DPs, the shape of
contour lines showing the dependence of the DP amplitude on the input level for an isolated
nonlinear function, the length of the wave-fixed DP source region, the phase distribution of the
wave-fixed distortion source, the growth of the DPOAE with stimulus level, and the influence of
stimulus level on both the optimal L, — L, difference and the optimal f,/f; ratio. However, few of
these sensitivities are thought to impact the conclusions drawn in this thesis. For example, none of
our conclusions are based on the value of the relative amplitude of the various DP frequency
components. In addition, mutual suppression of the primary responses if not unique to the first
order Boltzmann nonlinearity and this suppression is expected to increase with either increasing
stimulus level, or decreasing f,/f; ratio, no matter which nonlinear function used in the
micromechanical feedback. In association with this, although the estimated length of the wave-
fixed DP source region is likely to depend on the choice of the nonlinear function, this length

should increase with decreasing f,/f; irrespective of the form of the nonlinearity. For these reasons
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the conclusions regarding the origin of the optimal L, — L, difference, optimal f,/f; ratio and the
limitations of the Allen & Fahey experiment are not thought to be dependent on the choice of the

nonlinear function.

It is worth noting that as the form of the nonlinearity influences the dependence of DPOAE
amplitude on stimulus level, the shape of the contour lines shown in figures 4.3,4.11 and 6.11 are
contingent upon the choice of the nonlinear function. Despite the fact that these plots were
simulated using a first order Boltzmann function, the predictions of the coupled model are in
reasonably good agreement with experimental measures (figure 4.3) and therefore unlikely to have
been substantially adversely affected by the choice of the nonlinear function. However, the
dependence of the contour plots on the form of the nonlinearity does suggest that the notches
observed in the wave-fixed DP growth function may be dependent on the form of the nonlinearity.
For this reason the simulated notches should not be used to infer the exact depth of notch that could

be observed from a human ear, or the specific stimulus paradigm at which it may be observed.

Finally, it has already been suggested that the tendency of the model to overestimate the
dependence of the optimal f,/f; ratio on stimulus level may be associated with the use of the first
order Boltzmann function (sections 4.1.7 and 6.1.7). This weakness indicates that the model may
saturate too rapidly as the stimulus level increases and implies that the model may be improved by

use of an alternative nonlinear function.

Sections 4.1.7 and 6.1.7 demonstrate that the cochlear model makes appropriate predictions for
many properties of human DPOAEs, which illustrates the usefulness of the first order Boltzmann
function in the model despite its simplicity. Overall there is no evidence to suggest that the
conclusions of the thesis can not be extended qualitatively to cochlear models incorporating a
physiological nonlinearity, such as a second order Boltzmann function, in the micromechanical

feedback loop or to the human cochlea itself.

7.3.2 Other aspects of the micromechanical feedback loop

In the model, nonlinear function was positioned before the filter representing the dynamics of the
OHC within the micromechanical feedback loop and the input to the nonlinear function was
determined by the difference in shear displacement between the tectorial membrane and the organ
of Corti. These choices were made for a variety of reasons including anatomical considerations and
physiological OHCs measurements (section 3.5.1). It is unlikely that the chosen position of the
nonlinear function within the micromechanical feedback loop should have a considerable impact on
the conclusions drawn from the model. This because, although the position of the nonlinear
function within the micromechanical feedback loop can have a substantial influence on the

amplitude of harmonic distortion within the cochlear model, this has essentially been compensated
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for in the selection of the nonlinear function parameters (table 3.1). Similarly the use of the shear
displacement between the tectorial membrane and organ of Corti to determine the input to the
nonlinear function is not thought to significantly influence the conclusions. The predicted
amplitude of the both the 2f; — £, and 2f; — f; DPs are not sensitive to the vertical or shear nature of

this input (section 3.3) and an alternative input would be difficult to justify anatomically.

7.3.3 The tuning of the micromechanical parameters

The micromechanical parameters used in the model are based on those proposed by Kanis & de
Boer (1993) which allow the model to replicate several aspects of the response of the human
cochlea to single tone stimulation (section 3.4). These parameters were modified so that the
response of the model was more consistent with physiological measurements across a broader
range of stimulus frequencies (section 3.4.2). The model is profoundly influenced by the tuning of
the micromechanical parameters, which could affect all aspects of the predicted response from the
place-frequency map of the fully active model, to the sourcing and propagation of the DPs. For
this reason, sections 7.2 and 7.4 discuss some changes to the micromechanical parameters which
could be used in future development of the model. However, we do not expect the conclusions of
the thesis to be dependent on the choice of micromechanical parameters so long as they have been
selected to appropriately simulate the response of the human cochlea to single- and two- tone

stimulation at a variety of intensity levels and frequencies.
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7.4 Suggestions for future work

The strengths and weaknesses observed in the model, and the resulting predictions regarding the

properties of DPOAEs, suggest some directions for future work which are discussed in this section.

7.4.1 Development of the model

The micromechanical parameters of any cochlear model are subject to review in the light of
discrepancies that arise between simulated and experimental data. Therefore it may be possible to
adjust the parameters further to address some of the observed limitations. For example, the
sharpness of tuning of the BM response, and the parameters of the nonlinear function, were
selected for the model to ensure that the simulated response to single tone stimulation produces
responses that were consistent with invasive measures from within animal cochleae. However, in
future it may be more appropriate to choose micromechanical parameters for a cochlear model
which attempt to compromise between optimising accuracy of both single tone and two tone
simulations. We would recommend that the predicted behaviour of the optimum f,/f; ratio for the
2f1 — f> DP be used when determining the micromechanical parameters for a cochlear model on the
basis of the response to two stimulus tones, as these simulations are very sensitive to both the
sharpness of tuning the BM response and the rate at which the nonlinear function becomes

saturated with increasing stimulus level.

We have used a local coupled cochlear model, in which the velocity of the BM is determined only
by the local pressure difference across it, however there could be benefits in using an alternative
‘feedforward’ model in which forward travelling waves are amplified and backward travelling
waves attenuated (de Boer et al., 2008). A feedforward mechanism is suggested by the oblique
orientation of OHCs in the organ of Corti (Geisler & Sang, 1995), and has been used in cochlear
modelling by de Boer & Nuttal (2008) to simulate the DP phase behaviour observed by He et al.
(2008) which cannot be replicated by a local cochlear model. However, a side-effect of the
feedforward mechanism is that backward travelling waves can be strongly attenuated and this can
compromise both the predicted amplitude of the DPOAESs and the influence of coherent reflection
within the cochlear model (de Boer & Nuttal, 2008; de Boer et al., 2008). For this reason,
considerable work would be required to investigate the usefulness of cochlear models which

incorporate a feedforward mechanism.

Our model is based on that of Kanis & de Boer (1993), which was derived from the earlier model
of Neely & Kim (1986). The earlier model was linear, but was amongst the first to incorporate a
locally active region on the basal side of the travelling wave peak. Models of this type represent an

empirical fit to the expected cochlear partition impedance rather than directly epitomizing the
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mechanics of the organ of Corti. Our model has inherited some of the limitations of this original
model in addition to its many attributes. For example, a common criticism of the Neely & Kim
model is that the OHCs have nothing to react off. For example, Fukazawa (1997) comments that in
a model of this type the force of the OHCs should not able to change the movement of the cochlear
partition, because the force is an ‘internal” one. Another limitation raised by Ku (2008) is that
models of the Neely & Kim variety achieve the desired half octave shift in the characteristic
frequency between the passive and active response through a change in the micromechanical tuning
by altering the stiffness, but that this shift is more likely to occur as a direct consequence of the
amplification. In addition, the model reduces the complex behaviour of the OHCs to that of a
simplistic micromechanical feedback loop consisting of two linear filters and a single nonlinear
function. This is unlikely to do sufficient justice to the many processes associated with these cells
such as hair bundle motility (Martin & Hudspeth, 1999; Jia & He, 2005), resonance differences
between the tectorial membrane (TM) and stereocilia (Kanis & de Boer, 1993), frequency-
dependent phase shifts between the OHC pressure output and the radial displacement of the BM
and TM (Neely & Kim, 1986) as well as processes within the OHC (Santos-Sacchi, 1989). In
addition, there are multiple nonlinearities within the physiological OHC feedback loop, as both the
mechanoelectrical and electromechanical transduction processes exhibit nonlinear behaviour
(Dallos, 1985; Kros ef al., 1992; Kakehata & Santos-Sacchi, 1996), which are reduced to a single
nonlinear function in the model. In order to address these limitations and criticisms in future
cochlear modelling work, it may be necessary to take a more direct approach to modelling the
mechanics of the organ of Corti rather than developing an empirical fit to the expected impedance

of cochlear partition.

7.4.2 Simulations

So far, the application of the model has been limited to the simulation of experiments in which only
two stimulus tones are presented to the ear canal of the model. However, interest has been growing
in the use of DPOAE suppression techniques to estimate cochlear amplifier gain (e.g. Neely et al.,
2003b) or to investigate the source of the 2f; — f; DPOAE (e.g. Martin ef al., 1998). It would be
useful to modify the MATLAB code in order to simulate these three tone experiments to determine
which experimental methods may be the most fruitful. However, it would be particularly important
to validate any predictions made by the quasilinear process under these circumstances as the
amplitude of the third tone may be comparable to the primary or DP amplitude so that the

quasilinear approximation may not be appropriate.

In addition, if the application of the model were extended to accommodate a third stimulus tone, it

would be possible to investigate the experimental observation that 2f; — f, DPOAESs can be
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suppressed or enhanced by third stimulus tone which has a frequency higher than £, (Lonsbury-

Martin & Martin, 2008) .

7.4.3 Experiments

The model predicts notches in the growth function of the 2f; — f;, DPOAE wave-fixed component at
moderate stimulus levels. In the model, these notches originate from a change in the phase
relationship between neighbouring elements of the wave-fixed source distribution which result in
an alteration of source directionality as the stimulus level increases. However, it has not been
possible to verify this result by comparison with experimental data as DPOAE component
separation is usually performed with a time windowing techniques across a range of f, frequencies
in physiological studies. Unfortunately the stimulus level and amplitude of the notch predicted by
the model is highly sensitive to stimulus frequency, possibly because it is related to the relative
phase of the primary travelling waves, and so wave-fixed growth functions that have been obtained
using time-windowing techniques and averaged across many f; frequencies cannot be expected to
exhibit the notch. It may prove interesting to measure the 2f; — f, DPOAE growth function in
human subjects using an alternative component separation technique, such as a suppressor tone to
reduce the place-fixed component. The presence of notches in the 2f; — f;, DPOAE wave-fixed
component could have implications for the application of DPOAE growth functions which are
occasionally proposed as a tool for estimating psychoacoustic hearing threshold level or loudness

growth.

7.4.4 Longer term uses of the model

If some of the limitations of the current model can be resolved, it may be possible to use the model
to design novel stimulus paradigms that, for example, generate specific excitation patterns on the
cochlea. Novel methods may thus be computationally developed for achieving the long-term goal
of using OAEs to accurately measure the frequency variation of cochlear amplifier gain or even
hearing loss. One of the significant advantages to using OAEs to investigate the properties of the
cochlea, instead of direct measurements of BM velocity for example, is that they are non-invasive
and the physiological health of the cochlear is not compromised. The work of this thesis has
demonstrated the complexity of the interactions that generate DPOAES, such as those between the
distributed nonlinearity and the propagation of the various wave components. In many cases simple
explanations of specific effects, which take into account one part of this complex interaction but
not another, are not adequate to explain the experimental results. It has been shown that a model
can be used to tease apart some of these interactions. Continued development of models that can be

used to test various theories of cochlear function is thus an important goal.
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Appendices

A. Derivation of the one-dimensional wave equation

In this section the approximations, boundary conditions and equations of motion for the cochlear

model are described, so that the one-dimensional wave equation can be derived.

A.1 Approximations of the two-dimensional box model

The simple three dimensional ‘box’ model of the cochlea, illustrated in Figure A.1, incorporates the

following approximations:

(1)
(i1)
(iii)

(iv)

™)
(vi)

The cochlear walls are immobile (Shera & Zweig, 1992)

The effect of “fluid ducts” can be neglected (Shera & Zweig, 1992; Voss ef al., 1996)

The spiral shape of the cochlea is straightened out. This may introduce some errors in the
apical region of the model (Viergever, 1978; Cai et al., 2005), where the cochlea curvature
is greatest, but this is neglected as there is limited physiological data available for the
apical region

Reissner’s membrane is neglected as it is acoustically transparent (Dallos, 1992; Gelfand,
1998)

The two cochlear channels have equal cross-sectional area and shape (de Boer, 1996)

The cross-sectional area of the channels in the human cochlea actually differs in the region

very close to the base, as shown in Figure A.2, but this is neglected for simplicity

Helicotrem

Crval windnv’/
i
Round Windﬂw Cochlear partition
z
u
¥

Figure A.1 A three-dimensional ‘box” model of the cochlea

(vii)

The effective height of the channels (the ratio of the cross-sectional area to the width of the

channel) is assumed to be constant, neglecting any variation with distance from the base
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Figure A.2 shows that the height of the lower channel is about 1mm throughout most of the
cochlea (Rebscher et al., 1996)

(viii))  The cochlear fluids have negligible viscosity, so that only the cochlear partition (CP)
motion dissipates energy (de Boer, 1996). Cochlear input impedance is not significantly
affected by the introduction of the fluid viscosity for frequencies > 500 Hz (Koshigo ef al.,
1983; Puria & Allen, 1991)

(ix) The cochlear fluids and CP are incompressible (de Boer, 1996)

x) There is no structural longitudinal coupling along the CP, and elements along the CP
interact through fluid coupling only (de Boer, 1996). This is a controversial assumption
based on the work of Voldrich (1978) who observed that, in guinea pig cochleae,
displacement of the BM did not spread along the membrane in the longitudinal direction
(Naidu & Mountain, 2001). Other studies have observed significant longitudinal coupling
which acts to increase the stiffness of the cochlear partition and broadens the peak of the
travelling wave envelope in the region of the characteristic place in cochlear models (von
Békésy, 1960; Naidu & Mountain, 2001). However, the space constant for the longitudinal
coupling of the cochlear partition has a measured value between 20 and 44um (Naidu &
Mountain, 2001; Emadi ef al., 2004), which is small compared to the width of the
individual micromechanical elements in our model (approximately 70pm, corresponding to
about 10 outer hair cells). Therefore coupling is neglected and the micromechanical

elements are assumed to interact only through the fluid

In order to reduce a the three-dimensional box model into a two-dimensional model, any radial
motion (across the width of the CP) is neglected and parameters of the CP (such as mass) are

averaged across its width (de Boer, 1996).
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Figure A.2 The cross sectional area of the (a) upper and (b) lower channels of the human cochlea
The areas were estimated from MRI imagines [From Thorne ef al. (1999) figure 6, with permission from

John Wiley & Sons]
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Figure A.3 The height of the human scala tympani
The measurements are collated from three different studies [From figure 4 of Rebscher et al. (1996), with

permission from Inform Healthcare]

A.2 The variables

30

In the two-dimensional box model of the cochlea, shown in figure 2.1, the fluid velocities in the

x — and z — directions are denoted by u/(x,z,f) and v(x,z,f) respectively. The vertical velocity of the

cochlear partition (CP) is given by v(x,#) and the fluid pressure, p(x,z,?), is also shown.

The fluid pressure within the cochlear channels can be represented as a superposition of two

different states, which differ in the relative forces applied to the cochlear windows in each case.
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(1) The symmetric mode: Identical forces are applied to both the oval and round windows,
so that a symmetrical fast compression wave travels along both the upper and the lower
channel simultaneously (Lineton, 2001). As this mode does not result in any pressure

difference across the CP, it does not induce a travelling wave (Patuzzi, 1996).

(i1) The asymmetric mode: Equal and opposite forces are applied to the oval and round
windows (Lineton, 2001). This asymmetry exerts a pressure difference across the CP and

induces a travelling wave.

As it is only the second state that induces a travelling wave, only the pressure difference across the
CP is important for deriving the wave equation. As a consequence of this, the notation can be

simplified by defining the semi-difference pressure, p, as shown below.
pd(xazat):%(pf(x,Z,f)—pf(x,—Z,t)) (A.1)

In the asymmetrical state, the forces applied to the cochlear windows are equal and opposite.

Therefore the expression for pg becomes

pa(x,z,0) = p, (x,2,1) (A2)

A.3 The long-wave approximation

The “long-wave” approximation states that the wavelength of the travelling wave, Arw, is much
greater than the height of the cochlear channel, so that H/Arw < 21 (de Boer, 1996). Using this
approximation, the fluid velocity can be related to the CP velocity as shown in (A.3). This

effectively reduces the two-dimensional model into a one- dimensional model as the variable

6vf / 0z , used in the wave equation derivation (appendix A.5) is dependent on only one spatial co-

ordinate, x.
v, (x,2,0) = (1= 7 o(x,1) (A3)

The travelling wave slows down, and its wavelength decreases, as it approaches its characteristic
place (Nobili et al., 1998), so the long-wave approximation is not expected to be valid in the
immediate vicinity of the peak of the travelling wave envelope. It is worth noting that the finite
difference method, used to numerically evaluate the wave equation solution for a discrete cochlear
model (section 2.1.2), is also limited in this region as the wavelength of the travelling wave may
become shorter than the width of a discrete element (0.07 mm). However despite these limitations,
the responses of the one-dimensional model successfully replicate the responses of more complex

models which do not assume the long-wave approximation, provided that observations are made at
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a location where the approximation is valid (Shera et al., 2004). Therefore we proceed with the

one-dimensional model for simplicity.

A.4 Model boundary conditions

The boundary conditions of the cochlear model are listed below:

e The velocity across the area of the stapes footplate is assumed to be uniform
e The stapes footplate velocity is equal, and opposite, to the round window velocity
e Only vertical fluid flow is permitted through the Helicotrema
e The semi-difference pressure at the Helicotrema is zero
p,(L,H)=0 (A4)
e Continuity at the CP requires that v/(x,0,) = v(x,f)
e Continuity at the ceiling of the cochlear channel requires that u/x, H,)=0
e Conservation of momentum at the stapes requires that

Pue0| o, (A5)
Oox ot

x=0

A.5 The wave equation

The principles of conservation of mass (A.6) and momentum (A.7) are used to derive the wave

equation, as described by de Boer (1996).

ou,(x,z,t) 0ov.(x,zt 0 ,t
f( )+ f( ):O:> ”f(x ):V(X,f)
ox oz ox H

(A.6)

apd(x,z,t)__ auf(X,Z,l‘)
o Y

(A7)

Differentiating (A.6) with respect to ¢ and (A.7) with respect to x, allows these two equations to be

combined such that

o’ p,(x,t) __P ov(x,t) (A%)
ox’ H ot

For a linear model, this can be re-written in the frequency domain by substituting 8v/ Ot =iwv for

harmonic oscillations with angular frequency .
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0’ p,(x,w) __iep
H

<5 (x,0) (A.9)

An impedance for the CP, Zcp(x,®), can also be defined for a linear model to relate the CP velocity
to the semi-difference pressure as shown below
2p,(x,w
7., (x, ) =—2Pa0 @) (A.10)
v(x, @)
Substituting (A.10), into (A.9), produces the following one-dimensional wave equation for a linear
cochlear model in the frequency domain. The physical interpretation of i(x, ), based on the WKB
solution to the wave equation (section 2.1.2), is that Re(k) corresponds to the wavenumber of the
travelling wave whilst Im(k) describes the exponential growth rate of the travelling wave amplitude.

On this basis crw can be interpreted as the travelling wave velocity.

2
apd(f,a))+k2(x,a))pd(x;a))zo (All)
dx

where 2i :
k* (x,0) = — i A a; (A.12)

H-Z.,(x,0) c;y

and i oHZ

2, :lwz—pCP (A.13)

Provided there is no internal pressure source, equation (A.11) applies everywhere in the cochlea

apart from the basal and apical boundaries. For harmonic oscillation these boundary conditions

become...
At the stapes: 0 ) Al4
pd (xa ) — _l-pwust ( )
ox |
At the Helicotrema: p,(L,w)=0 (A.15)
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A.6 The source term

If there is a distributed pressure source S(x, @) acting on the cochlear partition then, in a linear
model, the vertical velocity of the cochlear partition has two components: One arising from the
semi-difference pressure caused by the stapes vibration (v,), and another that results directly from

the distributed pressure source (v;). They combine such that

v(x,0) =v,(x,0)+ v (x,®) (A.16)

where -2p

v, (x, @) = 4 and v, (x,w) = S(x, )

Z.p(x,0) Zp(x,0)

Substitution of (A.16) into (A.9) gives the wave equation in the presence of a distributed pressure

source ...

o’p,(x,w) (A.17)

0 +k2(x,a))-pd(x,a))=—%-k2(x,a))-S(x,a))
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B.1 The finite difference method

This technique, devised by Neely (1981), discretizes the cochlear model in order to solve the linear
wave equation (A.11) numerically. This is achieved by converting the differential equations (A.11),
(A.14) and (A.15) into a single matrix equation which can be solved by computer software such as

MATLAB.

To apply the finite difference method, the length of the cochlea is divided into N-1 elements, so
that N points compose the cochlea in the x-direction. The first point is the oval window (or stapes
footplate), and the final point is the Helicotrema. The length of a single element, A, is given by

A=L/(N-1). The matrix equation is formed by using Taylor series expansion to replace the
o’ )2 / ox® term by its finite difference approximation in (A.11), so that equation of motion for the

g™ element becomes. ..

1 , (B.1)
F{pd(q+1)—2pd(q)+pd(q—1)}+k (q,)-p,(q,0)=0

The boundary conditions can also be re-written for first and last elements as shown in (B.2) and

(B.3). In (B.2) the stapes velocity, uy, is written as a linear combination of two components (Elliott
et al., 2007): The velocity arising from external excitation (ui't’) such as the pressure stimulus in the
ear canal, and the component resulting from the internal pressure response of the cochlea at the
base (u)").

1 . . in out (B2)
Z{pd (2)-p, ()} =—iwp-u, = —za)p-(ust +ul )

p,(N)=0 (B.3)

By considering the pressure at the stapes also as a linear combination of the two components

arising from the external excitation ( p;':) and the internal pressure response of the cochlea at the

out

"), the specific acoustic impedance of the stapes, Z, can be defined as shown in (B.4)

base (p

(Lineton, 2001). Assuming the round window impedance is very small so that p* =-2p, (1),

the finite difference basal boundary condition can be re-written as shown in (B.5).

Z,(w)=-Lx (B.4)

st
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1 B _Ziwp
A {pd 2)-p, (1)}' 7

st

p, () =—iwpu, (B.5)

Equations (B.1), (B.3), and (B.5) can be combined to give the following matrix equation, where C
and M denote the fluid coupling and mobility matrices respectively. In this expression the specific

acoustic admittances are defined as Y,,= 1/Z,, and Yp=1/Zcp.

(B.6)
-A A 0 0 0 0 HY, 0 0 0 0 0 | p, (D) ~iwpu,
I 2 1 0 0 0 0 Y,2 0 0 0 0 0

1] o 0 0| i2mp| O 0 .0 0 0

A0 o o| m| o 0 0 0 |
o 0 0 1 2 1 0 0 0 0 Y, (N-1) 0 0
o 0o 0 o o A 0 0 0 0 0 0/ |\p, V) 0

i AT By 1

The finite difference method is expected to produce an erroneous solution to the wave equation if
an insufficient number of elements is used to represent the length of the cochlea (N). For example,
Kanis & de Boer (1993) comment that discretization errors become apparent in their model when
the number of elements falls below 15 per mm. This would equate to a minimum N of 525 in a full
length cochlear model. Figure B.1 and Figure B.2 illustrate that N > 500 is required to minimise
discretization errors in our implementation of the linear active Kanis & de Boer cochlear model.
Since the minimum wavelength of the model is about 0.5 mm, this corresponds to approximately 7

elements when N = 500.

30
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- ; —— 8 kHz
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=
= 158} i
=
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] 1 e ——
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Figure B.1 The influence of the number of elements (N) used in the finite difference method

The plot shows the maximum change in amplitude of the py(x,®) distribution predicted by the finite
difference method using N elements compared to N+100 elements
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Figure B.2 The influence of N of the predicted semi-difference pressure distribution

The plot shows the magnitude of the semi-difference pressure evoked by a 2 kHz stimulus in the linear active
Kanis & de Boer (1993) cochlear model for a variety of N values, where N indicates the number of elements
used to represent the length of the cochlear partition

B.2 The Wentzel, Kramers and Brillouin (WKB) method

The WKB method is a mathematical technique for obtaining an approximate solution to linear
second order differential equations, of the form shown in (B.7), which arise in many fields of
physics (Quantum mechanics, diffusion theory etc). It is described by many authors (e.g. Bellman,
1972; Bender & Orszag, 1999), but the summary presented here is based on the synopsis of
Matthews & Walker (1970).

ﬂ(zx) +F(x)y(x)=0 ®7
dx

In this section the WKB solution is derived and the validity of applying the WKB technique to

cochlear models is discussed, with respect to the one-dimensional cochlear model.

B.2.1 Derivation of the WKB solution

The WKB method provides an approximate solution to (B.7), where y(x) is a system variable, x is a
spatial coordinate and F(x) is a variable which is positive for x>0 and must have the dimensions of
(length) ' (Bellman, 1972). The estimated solution is derived by considering a trial solution of the

form shown in (B.8), which is suggested by the result that would be expected if F(x) was constant.

y =exp{ig(x)} (B.8)
For this trial solution, the differential equation becomes

~(¢'(x))* +ig"(x) + F(x) =0 (B.9)
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where the apostrophe indicates differentiation with respect to x.

Assuming that ¢"(x) is small, (B.9) can be approximated by
$'(x) = +[F(x) (B.10)
Therefore, to a first approximation, the trial solution is given by
y(x) = exp {ip(x)} where g(x)~ ij-ox\/% dx (B.11)

Iteration can be used to determine a second approximation as (B.11) indicates that

" ~ 1 !
P"(x) = 2ﬁF (x) (B.12)

and substituting (B.12) into (B.9), gives

' 2 l F'(X)
~F(x)x—
(P'(x)) (x) 2 JF G (B.13)
so that
y(x) = F11/4 {C*e[jo F()Z)H&Jrcfe_[IO F(i)ﬁ} (B.14)

where ¢' and c- are constants.

Considering (B.9) and (B.12), the earlier assumption that ¢’’(x) is “small” can be expressed as

F'(x)

VEF(x)

Equation (B.11) indicates that 1/VF is approximately 2r “wavelengths” or one “exponential length”

1
|p"(x)| = 5 <<|F(x)| (B.15)

of the trial solution. Therefore the approximation that @ "(x) is small is valid if F(x) is either

constant or slowly varying, such that the change in F(x) over one wavelength is small compared to

£,

In summary the solution to a second order differential equation, such as (B.7), can be approximated
by the sum of two independent solutions, or ‘basis’ functions, which can be added together with

arbitrary constants to form the general solution. The basis functions for (B.7) are given in (B.16).

@ (x)= Ff/'+5(x)exp(—ij: F()E)d)"c)
(B.16)

o (x)= Flﬁo(x) exp (+iJ‘O)‘ F()”c)dfc)
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These basis functions can be used to form the general solution (B.17), where (ooi are constants

chosen to normalise the basis functions as shown in (B.18).

y(x)=c'p'(x)+c o (x) (B.17)

0

l

¢"(¥)| dv=1and T\(p(x)r dx=1 (B.18)
0

The WKB solution, (B.17), will not be valid if F(x) changes too rapidly such that (B.15) is not
valid. In addition, if F(x) passes through zero at some location (e.g. x,), then care must be taken to

ensure that the approximate solutions either side of x are consistent’.

B.2.2 Physical interpretation of the WKB solution for cochlear models

For a cochlear model, the WKB solution to the wave equation (A.11) can be written as shown in
(B.19), where poi are constants, with normalised basis functions (B.20). It should be noted that a

common convention in cochlear applications of the WKB solution is for the basis functions to be

normalised using (B.21) (Talmadge ef al., 1998).

. ; (B.19)
()= pi k’z;) expl -], k(i)d£)+ P k’z;) expl +i]; k(yc)dyc)
. ; _ (B.20)
o (x) = %exp(—ijo k(i)ab?) and ™ (x) = J% exp(+i [ k(ic)d;?)
? e
NIE) exp(+l [ k(x)dx) - =1 a1

= p; =, =Jk(x=0) =Jk,

To determine the physical interpretation of the basis functions, a model incorporating a uniform CP
impedance is considered. In this scenario k(x) would be a complex constant with real and imaginary

parts 77, and y, respectively (B.22), and so the basis functions could be re-written in the form of

(B.23).

k=n,+iz, (.22)

9" (x) o e e ™ and @ (x) oc e HF e (B.23)

3 This is because F(x) was defined as greater than zero for x>0 in the derivation, and so a change in sign of
F(x) can be problematic
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There are two components to the basis functions shown in (B.23): One part which oscillates along
the x — axis, with a spatial wavelength of 27n/7, and another component which varies in amplitude

along the x — axis with an exponential growth rate of 1/yx. Therefore the basis functions correspond
to travelling waves with wavenumber 77;. As 7 is positive the basis functions, " and @™,

correspond to forward and backward travelling waves respectively.

In a realistic cochlear model, k(x) is a complex function of x. As this complex function can still be
broken down into real and imaginary components, then the basis functions continue to be
interpreted as forward and backward travelling waves. In this case the wavenumber is given by the

real part of k(x), and varies with x.

Shera et al. (2004) note that there is long-standing controversy in cochlear mechanics regarding
whether the forward and backward travelling waves discussed above actually occur in the cochlea.
For example, it may be possible to find alternative basis functions to form a solution to the cochlear
wave equation (2.1). In addition other approaches avoid the wave equation completely, such as that
of Nobili et al. (2003) who interpret the response of the cochlea as a weighted sum of motions of
individual BM oscillators which interact with each other via the incompressible cochlear fluid.
Shera et al. (2004) argue that these different interpretations represent alternative conceptual
frameworks for the same underlying physics and that the travelling wave concept is no less
physically appropriate than other interpretations whilst being easier to visualise. For this reason we
continue to represent the physics of the cochlear model with a wave equation, the solutions to

which are interpreted as travelling waves.

B.2.3 The validity of the WKB method

The WKB is an approximation method and equation (B.19) is actually a truncation of an
exponential power series which forms the full WKB approximate solution to the cochlear wave
equation. Bender & Orszag (1999) explain that the full WKB approximate solution can be written

as

p,(x)=exp {i S, (x)} (B.24)
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The first three terms in the series are given by

S,(x) =+ j:k()z)dx

1
5,0 == Ink(x) ©.25)

e &y 5 (d s Y
S, {81(3()?) = K@) 32k5(£)(d5ck (x)j }dx

It can be seen that equation (B.19) corresponds to sum of the first two terms in the WKB series. In

order for this series to provide an asymptotic solution for p,(x), the magnitude of the successive
terms must decrease. Applying this condition to the first two terms in the series, S, (x) << S, (x),
produces an expression equivalent to that given in (B.15). In addition, Bender & Orszag (1999)

note that it is only appropriate to truncate the full WKB series approximation after S,(x) if
|5, (x)| <<1 (B.26)

In this section we assess the validity of the WKB method in two ways. First the conditions for the
use of the WKB approximation, equations (B.15) and (B.26), are evaluated. Then we compare the

estimated WKB solution with that obtained using the finite difference technique.
The WKB condition

The condition of the WKB approximation (B.15), can be re-written for a cochlear model as shown
below (de Boer, 1996). This condition is equivalent to stating that there is no significant reflection

of travelling waves in the cochlear model.

1 dk(x)

R <<1 (B.27)

Figure B.3a shows examples of the magnitude of this WKB condition parameter, for two different
micromechanical cochlear models. This illustrates that for a single stimulus tone, the WKB
solution is likely to be least accurate near the base, and in the vicinity of the characteristic place. At
the base, both the real and imaginary parts of k(x) are small and so the term 1/&* in (B.27) becomes
large, as illustrated in Figure B.4a, and causes the condition to be violated. In contrast, at the
characteristic place it is the dk/dx term which becomes large (Figure B.4b) and threatens the
validity of (B.27). In addition, the WKB condition can be violated for low frequency stimuli (<500
Hz) at basal locations within the cochlear model, as illustrated in Figure B.3b. Despite this
violation, the WKB results appear to be perfectly reasonable in this region, as illustrated in Figure

B.6.
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(a) Spatial distributions of the WKB condition fora  (b) Frequency distributions of the WKB condition

2kHz stimulus at two different locations along the cochlear
partition
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Figure B.3 The WKB approximation condition given in equation (B.27)

The plots show the amplitude of the WKB approximation condition for (a) a 2kHz stimulus and (b) a range
of stimulus frequencies observed at two different locations along the cochlear partition. The results are shown
for two different linear micromechanical models: The Kanis & de Boer (1993) model and a modified model
described in section 3.5. In (a) the results for both passive and active variants of the models are shown, but in
(b) the passive distributions are neglected for simplicity.
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Figure B.4 The distributions of (a) |1/ 4°| and (b) |dk / dx],

These distributions are plotted for a 2 kHz stimulus tone in the original Kanis & de Boer linear active
cochlear model with N=1000.

The other condition which should be satisfied in order for the WKB approximation to be truncated

after the first two terms, (B.26), is satisfied within the linear active cochlear model. This is

demonstrated by Figure B.5, which shows the spatial distribution of |S2 (x)|, for a 2 kHz stimulus.
It also illustrates that variation in |S2 (x)| for a variety of stimulus frequencies at two different

locations within the cochlear model. The results suggest that |S2 (x)| is consistently less than 1

throughout the cochlear model, and so it is appropriate to truncate the approximate WKB solution

after the first two terms of the series.
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Figure B.5 The WKB approximation condition (B.26)

The WKB approximation is evaluated for (a) a 2kHz stimulus and (b) a range of stimulus frequencies
observed at two different locations along the cochlear partition. The results in (a) are shown for two different
linear micromechanical models: The Kanis & de Boer (1993) model and a modified model described in
section 3.5. In (b) the results for only the Kanis & de Boer model are shown for simplicity.

Overall, the nature of the inequalities in the WKB conditions is such that there is no objectively
defined level at which the term on the left hand side of (B.26) or (B.27) become “much less” than 1.
However, as the left hand side remains less than 1 for a broad range of stimulus frequencies (0.25

to 15 kHz) throughout most of the cochlear model, we conclude that the WKB solution can be used

reliably provided that it is verified against another approach, such as the finite difference method.
Comparison the finite difference solution

The validity of the WKB solution can also be investigated by comparing predictions with those of
the finite difference method. However, both approaches are subject to discretization errors when
the WKB solution is evaluated numerically. To minimise these errors, the two solutions are

compared using a high value of N (N=3000), as shown in Figure B.6.

For stimulus frequencies >1 kHz, the two solutions differ by less than 1.3 dB. Below this frequency,
the difference increases to around 2 dB. The discretization errors, shown in Figure B.1, could
account for up to 0.5 dB of this difference, leaving a small error which may be associated with the
WKB approximation. However, as this residual error is of the same order as the discretization error,
it is not thought to be significant. This result is consistent with the extensive validation of the
application of the WKB solution to cochlear models in the literature. For example, Zweig et al.
(1976) and Steele & Taber (1979) confirm that the WKB solution agrees with accurate numerical
solutions for one- and two-dimensional cochlear models respectively. De Boer & Viergever (1982)
also confirm that there is “generally” good agreement between the WKB and ‘exact’ solutions for
two- and three-dimensional cochlear models, even in cases where the condition of absent

reflections is violated.
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Figure B.6 Comparison of the finite difference and WKB approximation estimated results

The plot shows the response of the modified cochlear model estimated using the discrete method (solid lines)
and WKB approximation (dotted lines) for sinusoidal stapes stimulation at a various frequencies. Details of
the model can be found in section 3.5.

B.2.4 Internal sources

It is important to consider the application of the WKB method to linear models containing internal
sources or sites of reflection, as this is important when studying the cochlear origins of otoacoustic
emissions and the generation of distortion in the cochlea. The approach described in this section is

based on the explanation given by Talmadge ef al. (1998).

When an internal source distribution S(x, @) is present, the cochlear wave equation can be written as
shown in (A.17). The source distribution is complex, with dimensions of pressure. The solution can

be estimated by a linear sum of the two basis functions given in (B.20). However, the coefficients
of the basis functions, p, and p, , are no longer constants. Instead they become function of x over

the source region. Therefore the WKB solution for a cochlear model with an internal source
distribution is of the form given in (B.28). In these expressions k; is the wavenumber at the base of

the cochlear model, and is introduced to normalise the basis functions (see appendix B.2.2). The
coefficients p, (x) and p, (x) should only vary with x in regions where there are sources, and are,

in principle, constant elsewhere.

p,(x)= \/\l/c% {pg (x)- exp(—i_[ox k(x ')a’x') + P, (x)-exp(+ij§k(x')dx’)} (B.28)

The WKB solution can also be applied to a model containing impedance perturbations, as well as
internal sources. On the face of it, a model containing impedance irregularities is likely to violate
the WKB condition requiring no significant reflections (B.27). However, provided that the
distribution of impedance perturbations is known, then these irregularities can be viewed as
distribution of internal sources in a “smooth” cochlear model so that the WKB approximation
remains valid (Talmadge et al., 1998). For example the complex wavenumber for the model

containing the impedance perturbations, k(x) can be written as a sum of the wavenumber for the
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“smooth” model and a perturbation parameter dk(x) which characterises the effect of the impedance
irregularities, as shown below.

K (x) =k

S

oo (X) + Ok (x) (B.29)

This allows the wave equation to be arranged such that the impedance perturbations appear as a

source term, as demonstrated in (B.30).

o’ p(x
20D k2 ()P = 5k ()p() @.30)
Source term
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C The middle ear and ear canal

In this section the basal boundary condition of the cochlear model, and the transmission of sound

through the middle ear are considered.

C.1 The ear canal and middle ear

The ear canal and middle ear influence the transmission of sound in and out of the cochlea.
Therefore, in order to predict DPOAESs, recorded in the ear canal, a model of these two components
is needed. The model used is essentially a replica of that described by Ku (2008), which is based on
the middle ear model of Kringlebotn (1988). It involves a sequence of two-port networks: one
representing the ear canal and the second corresponding to the middle ear. Details of these models

are given by Ku (2008). In summary, illustrations of these two port networks are shown in

Figure C.1. The ear canal is modelled as tube, of diameter 0.007m and 3.85 x 10> m” cross-
sectional area, in which sound propagates as plane waves. A foam earplug, with damping R,e, can
also be incorporated into the ear canal model. The middle ear representation is formed by a
collection of mass-spring-damper models corresponding to the atrium and mastoid cells, the
tympanic cavity, the eardrum, the eardrum suspension, the eardrum rim, the malleus and the incus,
the coupling between the ossicles, the stapes, the stapedial tendon and the oval window. The
impedances used to constructed the matrix elements of the middle ear two-port network are formed
from these constituent mass-spring-damper models and some additional transformer ratios which
arise from the difference in the cross-sectional area between the eardrum and stapes footplate and

the difference in lengths of the malleus and the incus. All of the parameters are listed in Table C.1.

(a) (b)
Qed QSI
Qe Qe —— ———e
. —
e " * Middle ear *
Ear canal two-port
R, two-port
Pac plug network Pes Peg network Pat

pec _ 1 0 Tecedll Tecedlz ped |:ped:| _ |:Tedstll Tedst12 :||:pst:|

Qec %eplug 1 T, eced21 T, eced22 Qed QEd Tf—’db‘f 21 TEde 22 QSt
Figure C.1 Two-port models of (a) the ear canal and (b) the middle ear
In this plots, p and Q denote the pressure and volume velocity respectively. The parameters associated with
the earcanal, eardrum and stapes are labelled ec, ed, and st respectively. R, represents the damping effect
introduced by a foam plug into the ear canal. [From Ku (2008), figure A5]. In (a) the matrix elements Teceq
are formed by considering a tubular model of ear canal, in which sound propagates as plane waves. In (b) the

matrix elements T4 are determine from an array of mass-spring-damper models representing the different
mechanisms in the middle ear, and the transformer ratios arising from area and lever arm ratios.
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The transfer function for the ear canal and middle ear model is shown in Figure C.2. It should be
noted that the inertial mass of the stapes and the resistance of the coupling between the malleus and
the incus have both been reduced by a factor of 10, compared to the values used by Ku (2008), in

order to better match the measured values for the backward transfer function.

Mechanical quantity being modelled Inertia Compliance  Resistance
(Ns*/m°) (m*/N) (Ns/m°)
Antrum and mastoid cells 1x107 3.9x10 " 6x10°
Tympanic cavity 0 4x10° "2 0
Eardrum 7.5%10? 0 0
Suspension of the eardrum 6.6x10° 3x10° "2 2x10°
Rim of the eardrum 0 1.3x10° " 1.2x10’
Coupling between the malleus and the incus 0 3.8x10° "2 1.2x10°
Ossicles (the malleus and incus) 2.2x10° 0 2x10’
Coupling between the incus and the stapes 0 5.6x10 "2 6x10°
Stapes, stapedius tendon and oval window 4.6x10* 5.6x10° "2 0

Table C.1 The parameters of the middle ear
These impedance, compliance and resistance terms used to form the multiple mass-spring-damper models
which collective constitute the middle ear model. [Adapted from Table A.4, Ku, 2008).

{a} Forward transfer function (b_,/p. ) {b) Backward transfer function (p_ /p_,}
a0 =20
= g
a
E E
g E
= =
=20 . - :
0 1 -0 -
10 10 T 10!
Frequency (kHz) Frequency (kHz)
0.4 04

Fhase (cycles)
Phase {cycles)

10” 10 _ 10” 10'
Frequency (kHz) Frequency (kHz)

Figure C.2 Comparison of the middle ear and ear canal model with experimental measures

The (a) forward and (b) backward transfer functions for the ear canal and middle ear models (thick black
line) ar shown along with the experimental measurements from human cadavers [Puria, 2003). Thin black
lines show the average (solid line) and min/max values (dotted lines) for the experimental data. The transfer
functions are defined as ratios of the pressure at the stapes (py) and ear canal pressure (p..) are shown above.
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C.2 The basal boundary condition

In order to implement the basal boundary condition of the cochlear model, it is necessary to form
an expression for the specific acoustic impedance of the stapes, Z,, defined in (B.4). This
impedance is equivalent to the ‘reverse middle ear impedance’ used by Ku (2008) in his
formulation of the state space cochlear model. As it was not possible to formulate the state space
basal boundary condition from the two-port network discussed above, Ku used a simple mass-
spring-damper model to represent the stapes impedance Z. In order to allow comparison between
the predictions of the quasilinear and state space models, we also choose to use a mass-spring-
damper model to characterise the stapes impedance. Although this mass-spring-damper model of
the stapes is generally used throughout this thesis, an alternative expression is occasionally used to
minimise reflections at the basal boundary. This “reflectionless” condition is not intended to be
realistic, but is used to limit the number of sources of backward travelling waves in the model
(Kanis & de Boer, 1994; de Boer et al., 2008) and to aid the interpretation of distortion product
generation in some circumstances. The implementation of the mass-spring-damper and

“reflectionless” stapes models are described below.
@) A mass-spring-damper model

In general, a simple mass-spring-damper model is used to represent the stapes impedance (Neely &
Kim, 1986), so that Z, takes the form shown below, where m,= 1.4 kgm—2 , C= 32000 kgm—zs—2
and s,,= 2.6x10® kgm-’s-'. These values are based on those measured in human cadavers by Puria

(2003), and assuming a stapes surface area of 3.2 mm” (Ku, 2008).

) s
Z (w)=im,w+c, +—* (C.1)
170
This expression for the impedance of the stapes results in a reflection of backward travelling waves

generated within the cochlear model, as shown in Figure C.3
(ii) An expression to minimise reflections

To minimise reflections at the base of the cochlear model, the stapes impedance is set equal to the
impedance encountered by a backward travelling wave as it approaches the base (Lineton, 2001).
Using the WKB approximation, the semi-difference pressure of a backward travelling wave, can be
written as shown below (see appendix B.2 for further details). The dependence on © has been

neglected for simplicity.

pi(x)= \/% exp(+i[ k(xr)d') €2)
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Figure C.3 The reflection coefficient for
10° ~ backward travelling waves at the stapes
B - The reflection coefficient (Ryapes) for
travelling waves propagating towards the
stapes, at the basal boundary was evaluated
using Rsmpes = b , where Zis the
2 Z x=0 + Z st

stapes impedance defined in equation (C.1),

10’ 10° 10* and Z 7_0 is the characteristic impedance for
Fregquency (Hz) x=
a - backward travelling waves such that
st B (x=0
Z - pd ( )

R x=0 T -

100 uf ( x = 0)

The reflection coefficient for the cochlear
model (thick line) and that calculated by
280 Puria (2000) from measurements of human

= ears (thin dotted line) are both shown
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An expression for the longitudinal fluid velocity towards the base, u, (x), can be obtained from

(C.2) using conversation of momentum (A.7), so that

u;(X):Ldpd(X)
‘ po  dx
», 1 dk ©
:_lpd(x)' . (X) +lk()C)
po | 2k(x) dx
The impedance for the backward travelling wave is then given by

_ -1

Z‘(x)z—pj’—(x):ipa) LMJrz'/c()c) (C4)

u,(x) 2k(x) dx

So for a reflectionless boundary condition, Z ,=2Z"(x = 0) where Z ™ (x)is given in (C.4). It

should be noted that (C.4) can also be rearranged as shown below (Viergever & de Boer, 1987). If
the WKB condition (B.27) were to strictly hold and & was real and equal to w/czy, where cry is the

travelling wave velocity, then the expression for the impedance of the backward travelling wave

reduces to the characteristic impedance Z~ (x) = pc;, (x) (Kinsler & Frey, 1962).

Z (x) =22 [1— ! dkz(zx)j_ (C.5)
k(x) 2k (x) dx
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Figure C.4 The cochlear input impedance
The plots show the cochlear input impedance
Z. for the model (thick line), evaluated using
the impedance for a forward travelling wave
at the base of the model

1’ - ZC:Z+(x:0)Ep‘J—(x)
100 10° 1’ u (x)
Fregquency (Hz) / x=0
. 2 -1
180 ] _ PO dk”(x)
k(x) 2k (x) dx’

The human cochlear input impedance
measurements of Puria (2000) are also
shown. Thin black lines show the average
(solid line) and min/max values (dotted lines)
for the experimental data.

Frequency (Hz)

In general, the mass-spring-damper representation of the stapes is used throughout this thesis.
However, on specified occasions the impedance of the stapes is set to minimise reflections at the

basal boundary to aid interpretation.

It should be noted that the input impedance of the cochlear model can be deduced using similar
expressions to those shown above. This input impedance for the model is shown in Figure C.4, and

experimental results are also shown for comparison.

C.3 Impact of the middle ear on predicted otoacoustic emissions

Puria (2003) studied the effect of the middle ear on otoacoustic emissions, using measurements
obtained from the temporal bones of 5 human cadaver temporal bones. His results are summarised
in Figure C.5a, which shows the dependence on stimulus frequency of the middle ear “round-trip”
pressure gain, 2f; — f, DPOAE amplitude and CEOAE amplitude. The band pass nature of the
middle ear pressure gain was calculated by Puria from the previous results shown in Figure C.2,
and demonstrates that the middle ear round-trip gain falls off as the stimulus frequency increases
above 1 kHz. Figure C.5 demonstrates that the CEOAE amplitude also falls off with increasing
stimulus frequency above 1 kHz, suggesting that this could be associated with the reduction in the
middle ear transfer function. However, the DPOAE amplitude is not substantially influenced by the
stimulus frequency, compared to the behaviour of the middle ear gain or CEOAE amplitude. There
are several factors that could have influenced this result, such as the comparison between DPOAEs
from young living ears with the middle ear gain of older cadaver ears and the difference in
frequency between the input and output for DPOAEs. However Puria (2003) comments that there

is little evidence to suggest that aging or death significantly affects the behaviour of the middle ear
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response at any frequencies other than 4 — 5 kHz. In addition, there is reportedly little change in the
round-trip middle ear gain if the frequency difference between the input and output signal for
DPOAE:S is taken into account. Therefore, the origin of the difference between the frequency
dependence of the middle ear round-trip gain and the level of the DPOAE measurement remains

unclear.

Figure C.5b shows the round-trip pressure gain for the middle ear model and the level of the 2f; — f;
DPOAE predicted by the model. In contrast to the experimental observation of Puria (2003), the
model predicts that the DPOAE amplitude will fall off with increasing frequency above 1 kHz, in a
manner similar to the fall off exhibited by the middle ear round-trip gain. Figure C.5b also shows
the 2f; — f> component of the BM velocity at the base of the model, which demonstrates a relatively
constant amplitude as the distortion product frequency increases. Overall the predicted frequency
dependence of the 2f; —f, DPOAE amplitude differs from that observed experimentally. This
difference could arise from errors either in the middle ear model, or in the nonlinear properties of

the micromechanical model near the base. As Figure C.3, Figure C.4 and

Figure C.1 indicate that the responses of the middle ear model are a good replication of
experimental measures, and any further reasonable attempts to improve the middle ear model (such
as adjusting the reflection of backward travelling waves at the stapes) has no significant effect on
the levels of the high frequency DPOAESs. For this reason we conclude that the nonlinear properties

of the micromechanical model near the base are responsible for the discrepancy.
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Figure C.5 The round-trip middle ear pressure gain and OAE amplitudes

(a) The “round-trip” pressure gain of the human middle ear measured by Puria (2003). The thick line
indicates the average measurement from the 5 subjects, and the thin lines denote the range of measured
values. The dash-dot and dashed lines show the levels of DPOAEs and CEOAEs recorded from healthy
human subjects by Smurzynski and Kim (1992). The level of the DPOAE measures has been reduced by 14
dB for display purposes. [From Puria (2003), figure 5, with permission from ASA]. (b) The middle ear
round-trip pressure gain for the model (solid line), the predicted 2f; — f, DPOAE amplitude (dash-dot line),
and the 2f; — f; components of the BM velocity at the base of the model (dotted line). The units of the
DPOAE and BM distortion product are dB SPL — 25dB and dB re 1um/s + 40 dB respectively.
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D Testing for reflections

We have assumed that the baseline cochlear model, in no irregularities have been deliberately
introduced into the impedance distribution, contains no significant sources of reflection. As this
influences our interpretation of the wave decomposition results in section 2.3.2, and our
interpretation of the DP wave-fixed source mechanism in section 5.1 and 6.2, this assumption

should be checked.

In a cochlear model with uniform CP impedance, travelling waves initiated at the stapes would not
be reflected along the CP. However in a cochlear model, the CP impedance is a function of position
from the base, and therefore it is feasible that reflections may occur. The amplitude of these
reflections is expected to depend on the rate and magnitude of the impedance changes. In addition,
it is conceivable that the changes in impedance between adjacent elements in a discrete cochlear
model may be sufficient to generate significant reflections. In this section a battery of tests, rather
than a single test, is applied to determine the significance of reflections in the baseline cochlear
model. This approach is taken because each of the tests has limitations and is subjective to some

degree.

D.1 Reflections in a linear active cochlear model

In this section, the discrete linear active Kanis & de Boer cochlear model is tested to determine if it
contains significant sources of reflection. Unfortunately it is not possible to cite the accuracy of the
WKB solution in a discrete cochlear model as evidence of a lack of reflections, as the WKB result
can be accurate even if the condition for no reflections is violated (de Boer & Viergever, 1984).
Instead, the following evidence is presented to demonstrate that no substantial reflections occur in

the model.

@) The WKB approximation condition is satisfied

In appendix B.2.3, the validity of the WKB approximation, (B.22), is investigated. The
conclusion is that the approximation is appropriate for a broad range of stimulus frequencies.
As the WKB approximation is equivalent to the condition for absent reflections, this suggests
that there should be no substantial reflections in the linear Kanis & de Boer cochlear model.
However, further evidence is needed to demonstrate an absence of significant reflections in the
model due to the ambiguous nature of the inequality in the WKB condition discussed in

appendix B.2.3.
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(ii) The wavenumber spectrum of the model response is one-sided

In a homogenous system the inverse Fourier transform of the BM velocity, V(k), has a narrow
peak around k, where k is the constant real wavenumber of the travelling wave. De Boer &
Viergever (1984) explain that as inhomogeneity is introduced and increases, the distribution of
V(k) widens, eventually to the extent that it crosses the k=0 axis indicating that reflections are

present. When analysing the inverse Fourier transform, it is appropriate to neglect
wavenumbers for which |V(k)| is more than 50dB below the peak|V(k)| value, as these low
magnitude components are comparable with the artefacts introduced by spatial windowing as a
finite sample of length L is used. Figure D.1 shows the magnitude of |V(k)| obtained by

numerically taking the Fourier transform of the BM velocity, v(x), predicted by the linear

active Kanis & de Boer cochlear model in response to a stimulus presented at the stapes. This
demonstrates that the magnitude of |V(k)| for negative k is negligible compared to its

amplitude for positive k values. The figure also illustrates that if a step decrease in the active

impedance of 5% is introduced at the characteristic place, then reflections do occur as the

amplitude of the |V(k)| components corresponding to negative k values increases.
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Figure D.1 Negative components in the wavenumber spectrum

(a) The wavenumber spectrum of the response of the original Kanis & de Boer linear active model,
found by taking the inverse Fourier transform of the estimated CP velocity response to a 1 kHz
stapes stimulation obtained using the finite difference method (N=1000). Two spectra are shown:
One for a “smooth” model, in which no impedance perturbations have been introduced (solid line),
and the other (dotted line) for the same model containing a step-down change in the OHC gain, y(x),
as illustrated in (b).
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(iii) The input impedance of the model is a smooth function of stimulus frequency

The cochlear input impedance, Z., is defined in terms of the semi-difference pressure, p,, and
longitudinal fluid velocity, u;, as shown below (Shera & Zweig, 1993). Any reflections arising
in the model influence the pressure and the fluid velocity near the stapes, and therefore

influence the cochlear input impedance.

7. ()= 25D D.1)
u,(x0)|

In a model with no reflections, Z, is expected to be a smooth function of frequency. Figure D.2
demonstrates that this is the case for the discrete linear active Kanis & de Boer cochlear model.
In contrast, variations of up to 10 dB can be observed in the magnitude of Z. when

irregularities in the active impedance are introduced to the model to act as sources of reflection.

Figure D.2 Ripples in the cochlear model
input impedance

The (a) magnitude and (b) phase of the
cochlear input impedance, Z,, for a range
of stimulus frequencies presented to the
linear active Kanis & de Boer cochlear
model. The solid lines are results for a
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Figure D.3 The effect of
truncating the cochlear model
(a) An illustration of the
truncation of the cochlear
model at the location of the
black dashed line. Stimulation
is applied at the stapes,
initiating a travelling wave in
the direction of the black

Base Apex arrow. If a source of reflection
is present in the vicinity of the
characteristic place, this may
result in a backward travelling
reflected wave, denoted by the
grey arrow. However, this
reflected wave should be
eliminated by introducing a
reflectionless truncation at the
1 black dashed line. (b) The
responses of the full (dotted
lines) and truncated (solid
lines) linear active Kanis & de
Boer model, calculated with
the finite difference method
and N=1000.

-80

0.025

(iv) Truncating the model does not significantly alter the basal response

Reflections are most likely to occur from the vicinity of the characteristic place, as this is the
region where the spatial variation in the wavenumber is the greatest. This can be investigated
by truncating the model, with a ‘reflectionless’ boundary condition basal to the characteristic
place. If no significant reflections are propagating between the characteristic place and the base
in the full model, then the response should be unaffected by the truncation. The process is
illustrated in Figure D.3a. This approach would fail to detect local reflections from the
characteristic place, which do not propagate basally as far as the un-shaded region. However,
local reflections are neglected in this analysis on the basis that reflections which are unable to
propagate a substantial distance are unlikely to be significant.

When a truncation is imposed at location x,,,, the number of elements used to represent the
length of the discrete model reduces from N to N,,,. Conservation of momentum at the
truncation leads to the boundary condition (D.2) in the finite difference method notation. This

boundary should minimise reflections if the CP impedance immediately adjacent to the

truncation, Z.,(N,,,, —1), is set equal to the impedance of the forward travelling wave at this

run

location Z*(N,

Tun

pd(Ntmn)_pd(Ntrun _1)
A

—1) defined in (D.3).

_ la)ppd (Ntmn B 1)
ZCP (Ntmn - 1)

=—iwpu,(N,,, —1)= (D.2)
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ZJr (Nmm _ 1) — Zchar (Ntrun — 1)
1 _ 1 Zc’har (Ntrun) B Zchar (Ntmn - 2) (D3)
2iwp 2A
where for the j" element,
__ PO [,
Zawr (M) =05 = JWhiopHZ.,(N) (D4)

This method can be used to impose a reflectionless boundary condition at any point along the
CP. Introducing the truncation 2.5 mm basal of the characteristic place, elicits a change of less
than % dB in the velocity response of the cochlear partition across a range of stimulus
frequencies (Figure D.3b). This implies that there are no sites of significant reflection in the
vicinity of the characteristic place, as the response in the basal region is not affected by the
truncation.

It should be noted that at locations very close to the characteristic place, numerical errors can
occur in the implementation of the finite difference equations as a consequence of the rapid
spatial variation in parameters such as the characteristic impedance Z.,,.. These errors can be

substantially reduced by increasing N, the number of elements in the discrete model.

In conclusion, there are no substantial reflections occurring within the discrete linear active Kanis
& de Boer cochlear model, for N=1000. As the impedance variations are greater in the active
model, compared to the passive model, we can infer that significant reflections are also absent in

the discrete linear passive Kanis & de Boer model.

D.2 Quasilinear cochlear models

We have established that, for a linear cochlear model, reflections can be neglected in both the
passive and active case. In contrast, Figure D.4 and Figure D.5 illustrate that backward travelling
waves arise in a baseline quasilinear cochlear model, in which no impedance irregularities have
been deliberated introduced, at moderate stimulus levels (40 — 80 dB SPL). This is due to the
spatial variations in the active impedance which are introduced by the effects of self-suppression.
For example, Figure D.4 shows the inverse Fourier transform of the velocity distribution obtained
by allowing the quasilinear method to converge for a single frequency excitation at 2 kHz. This
graph demonstrates that some of the £<0 components of the V(k) spectrum have amplitudes within
40 dB of the optimal >0 components for stimuli at 60 and 80 dB SPL, indicating that negative
wavenumbers cannot be neglected. In addition the input impedance of the Kanis & de Boer model,
shown in Figure D.5, exhibits peaks and troughs for the 60 dB SPL stimulus. These results indicate

the presence of backward travelling waves, which may arise as a consequence of impedance
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perturbations due to self-suppression acting as sites of reflection. Figure D.6 demonstrates that the

nonlinearity causes the amplitude of the WKB condition parameter

%%‘ to increase in the region
K2 dx

basal to the characteristic place, relative to a linear model with comparable CA gain. Despite this
behaviour at moderate stimulus levels, it should be noted at for low levels (< 40 dB SPL) and very
high levels (> 80 dB SPL) no significant reflections occurring within the cochlear model are

evident in either the wavenumber spectrum (Figure D.4) or the input impedance (Figure D.5).

v 0 20 4B
b
of @ —— 4048
10 -==+- G0 dB
7 10 = | ki | | B0 dB
‘E’L -20 Ej- _2D ---------- 1DD dB
2 ®
%’ 30 % -30
= -40 =
=
= gr -40
£0 =
0 0
70 L N L
i > &0 -

Figure D.4 The inverse Fourier transform of the quasilinear fundamental velocity distribution

The plots show the inverse Fourier transform, V(k), of the fundamental velocity distribution v(x) evoked by a
2 kHz tone in the (a) modified Neely & Kim model and (b) the Kanis & de Boer model. The result is
obtained using the quasilinear method, and a discrete model with N=1000.

Z (yuasilinear) (dE)

=3

al —20dB SPL

1 100 dB EPL | A

0 5000 10000 15000
Stimulus frequency (Hz)

Figure D.5 The estimated input impedance for the quasilinear cochlear model
The input impedance, Z, of the quasilinear Kanis & de Boer cochlear model is shown for a range of stimulus
levels, evaluated using the finite difference method with N=1000.
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Figure D.6 The WKB approximation condition for the quasilinear model

(a) The velocity response and (b) amplitude of the WKB condition parameter for the Kanis & de Boer model
stimulated at 5 kHz. Results are shown for a 60 dB SPL stimulus in the QL model (solid black line) and
linear model using y = 0.74 (dotted black line) and y = 1 (solid grey line). The (c) magnitude and (d) phase of
the complex wavenumber, k(x), are also shown. The calculations were performed using N=1000.
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E Quasilinear iterative procedures

In this appendix, the details of the quasilinear iteration used in this thesis are presented. This is
partly for completion and partly because it differs in some details from the method described by
Kanis & de Boer. These differences were introduced to make the process more consistent and were

found to significantly improve the convergence properties of the iterative procedure.

In appendix E.1 — E.5, the quasilinear method is discussed with reference to the original
micromechanical model of Kanis & de Boer. Appendix E.6 discusses the application of this method

to a different micromechanical model, that of Neely & Kim (1986).

E.1 Fundamental component of the response to a single tone stimulus

An illustration of the Kanis & de Boer (1993) iterative process used to estimate the fundamental
response of the quasilinear model to a stimulus with angular frequency  is shown in Figure E.1.
The process stops when the estimate of v(x,®) varies by less than 0.1% between iterative cycles.
When implementing this procedure in MATLAB it is necessary to construct a time vector ¢,
ranging between 0 and 21/m, with N, samples per period. Kanis & de Boer recommend using N,
equal to 24, but as numerical integration errors can occur at high stimulus levels we use a ¢ of
variable sample length. This is achieved by evaluating step 2 of the process several times with
increasing values of V, in a single iterative cycle. Step 2 is considered complete only when a value
of N, is found for which further increases in &, produce no significant change in the estimated
pressure output of the OHCs. For example, when evaluating the response of the Kanis & de Boer
quasilinear model to a 5 kHz stimulus, we find that N, equal to 24 is sufficient for stimulus levels

up to 60 dB SPL, but that higher values of N, are required for greater stimulus levels.

As the position of the nonlinearity within the feedback loop influences the calculation of
ngL{C (x,@,n) in step 2, either equation (E.1) or (E.2) should be used depending on whether the

nonlinearity (F) is placed before or after or filter 2 respectively (see section 3.2).

Lo | |

po (x,0) = - .[0 Zpye (x,@) - F (v(x,w)-exp(ior) )- exp(—iot) dt (E.1)
1 7 )

P2 (x,0) = = jo F(Zly(x,@) - v(x, ) -expliar) ) - exp (~iot) dt (E.2)

Kanis & de Boer employ averaging between iterative cycles to improve the rate of the convergence
of the procedure. We observed by trial and error indicated that using an averaging ratio of 0.3xnew

+ 0.7xold, appeared to produce consistently rapid convergence across a range of stimulus levels.
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Step 0: An initial estimate of the CP impedance is made by assuming the model is

fully active

Z8 (x,0,n=1)=Z2" (x,0) - Z} .(x,®)

Step 1: The finite difference method is used to

determine p, (X, ®,n)and, v(x,@,n) given Zo (x,w,n)

Step 2: The response of the OHCs is calculated in the following stages...
(i) A time domain input to the nonlinearity is constructed from the fundamental

component of the CP velocity
Pl (x,t,m) = 2Re( Zgre (x, @) - v(x, ,n) - expliaot)

(ii) The time domain signal is passed through the hyperbolic tangent nonlinear

function and the fundamental component of the output extracted...

1 T in o
ngLiC (x,0,n) = ?Ipmf tanh{pIOHC (x,t,n)/ pref} & dt
0

Step 3: A new estimate of the CP impedance is formed
oL
L AX pOHC (x . n)
Z8 (x,0,n+1) =z} -2 22
v(x, ®,n)
Step 4: Stop iteration when, at every location, either

|v(x, w,n)—v(x,o,n— 1)|

<0.001 or
|v(x, , n)|

_ vxom)| )
20-log,, <-100dB

max |v(x, , n)|

Figure E.1 The quasilinear iterative process for evaluating the fundamental response
The scaling parameter p,.; which has dimensions of pressure, is set equal to 2 by Kanis & de Boer (1993).
Steps 1 to 3 are repeated until the estimate of v varies by less than 0.1%. The parameter n denoted the n™

iterative cycles
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E.2 The harmonic response to a single tone stimulus

Given the predicted fundamental response to a single tone stimulus, it is possible to extend the

quasilinear method to estimate the harmonic responses as described below.

The m™ harmonic component of pgflc can be regarded theoretically in two different ways. First,
there is the harmonic component generated by the BM motion at the fundamental frequency which

acts as an internal source for the harmonic response. This component of pSr. is labelled ngL,C’ y

and is calculated using (E.3) and (E.4), where the time period T is equal to 27/® and F(]

corresponds to the nonlinearity.

1 r in .
pgf,c’A (x,mw) = ?IO F(pé)HC,A (x, t)) . exp(—zma)t)dt (E.3)
where Ployie. 4 (6:1) = 2Re( Ziyi. (x, @) - v(x, @) - exp(iot) ) (E4)

Second, it is useful to calculate the total quasilinear pressure output of the OHCs at harmonic

frequency mo, including the effects of any self-suppression of the harmonic response. This total

quasilinear pressure is labelled ngL{C, 5> and is evaluated using (E.5) and (E.6). The extent of the
self-suppression of the harmonic response can be estimated from the difference between pgi,c, B

and pgfic’ > denoted by AngL{C , and is used to define the harmonic quasilinear impedance of the

OHC complex, as shown in (E.7).

1 r in .
Phic.s(omo) = [ F (pojic.s(x0)-exp(~imer) de (E5)
where . Z" (x,w)-v(x,w)-exp(iot
plol’;c L(x,1)=2Re 01jC( ) v( )-exp(ir) E6)
’ +Z e (X, mo) - v(x, mw) - exp(imat)
oL oL
and ZOQIsC (x, me) = Apgéc (x, mm) _ Porc.s — Porc.a E7)

v(x, mw) v(x, mw)

The Kanis & de Boer (1993) iterative process for evaluating the harmonic response is illustrated in
Figure E.2. It uses the wave equation for the harmonic component shown in (E.S8). This is

analogous to the fundamental wave equation given in (A.17), but in this case the distributed source

. . L
is the harmonic component of ngC B-
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2 . .
0 p,(x,mw)  2imwp - p, (e, M) = 2imwp oL

1
5 rrzpasge N X, ma E.8
o’ HZp” (x,mo) 2 HZI (eoma) ¢ orc.5 (¥, M) (E3)

Alternatively the wave equation for the harmonic response can be re-arranged into the form shown
in (E.9). If this wave equation is used, instead of (E.S8), the iterative process then requires an

additional step within each cycle, compared to the original Kanis & de Boer approach, as shown in
Figure E.2 The convergence of this modified iterative procedure is more rapid than the original, as

illustrated in Figure E.3. A possible explanation for this improvement is discussed in appendix E.3.

O’p,(x,mw)  2imwp
ox’” HZZ (x, mw)

1 2imawp
2 HZE (x, mo)

-p,(x,mw) = -pggc,A (x,mw) (E.9)

In summary, our approach to evaluating the harmonic components is identical to that of the
quasilinear method proposed by Kanis & de Boer, apart from the rearrangement of (E.8) into (E.9).
In our investigation the iteration process continues until the estimated fundamental, harmonic and
DP responses vary by less than 1% between cycles. The process also stops after 50 iterations, even
if this condition is not met, provided that the harmonic response is 100 dB below that of the
fundamental component. For the stimulus frequencies considered in this investigation, up to 63
iterations were required to establish the fundamental, 2“d, and 3" order components of the BM
displacement evoked by a single tone stimulus in a cochlear model incorporating a Boltzmann
nonlinearity. This calculation is achieved on a 2.4 GHz computer in less than 60 seconds which is
significantly less than the computational time of 2 to 4 hours required to allow a time domain

simulation to reach steady state Ku (2008).
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Step 0: Estimate the fundamental response V(X, @, ) , make an initial estimate of the CP impedance for
mo by assuming the model is fully active at this frequency

Z8 (x,mo,n =1)= ZL2 (x,me) - Zb . (x, mw)

then evaluate

T
Poiic.a(x,ma,n=1)= % [[tanh {2Re( 2 (x. ) -v(x, .n) - explian) )| - dt
0

Step 1: Equations (A.11) and (A.10) are used to re-estimate p, (X, ®,n) and v(x,®,n), given
ZCQ}f (x, w,n) . In addition, equations (E.9) and (A.10) are used to determine p,, (x,m, n) and

v(x,mo,n), given Z25 (x,maw,n) .

Step 2: The OHC response is calculated
lin .
o 1= 1 (2 Re(ZOHC (x,w)-v(x,w,n)- exp(za)t)) .
DPone (X, 0,n+1) = __[me tanh { — . e dt
ry P | +2Re (Z one (X, m@) -v(x, ma, n) - exp(ima)t))

1 [2Re (Zg’,c (x,m)-v(x,w,n)- exp(ia)t))

15 _
pgjljjc)g (X, maw,n + 1) = _lere/. tanh _— . . emm)tdt
T 0 : p”‘,f +2Re (Zg;[f (X, ma)) . V(X, mo, Vl) . GXp(lma)t))

1 2 : _
P (x,mo,n+1) = - I p,, tanh {— Re (ZgZC (x, @) -v(x,0,n)- exp(ia)t))} " dt
0 ref

Step 3: A new estimate of the CP impedance at the 1. .uamental frequency is formed

oL
x,o,n+1
nge(x,a),n-{-l):Zé’;SS_pOHc( s Wy )

v(x,m,n)
Step 4: In the original Kanis & de Boer method Step 4: In the modified method
pgfic’B (x, me, n) is used to solve (E.8) to obtain | ngLJC,B (x, mo,n+1)
. L
p,(x,mm,n+1)and 29 Gemon+1)= —Doic..(X,ma,n+1)
—2p,(x,mao,n+1) OHC ™ V(x, ma,n)
oy LB Ceman ] o
vwx,mw,n+1)= - ! ZpaSS(
pass X, ma))
Zép (x,mo) Z8 (x,mw,n+1) = r .
-7 (x,mw,n+1)

Step 5: Stop iteration when, at every location, either
|v(x, ma,n)—v(x,mo,n— 1)|

|v(x, mao, n)|

<0.01 or 20-log,, < —100dB for n>50

|v(x, mo, n)| max |v(x, , n)|

Figure E.2 The quasilinear iterative process for estimating the m™ order harmonic component of the response
to a single tone stimulus

The nonlinearity scaling parameter p,.; which has dimensions of pressure, is set equal to 2 by Kanis & de
Boer (1993). It is necessary to employ boundary conditions for the harmonic component and so we assume

that p,(x = L, mw,n) = 0 at the helicotrema and that the stapes velocity associated with the external

stimulus, introduced in (B.2), is zero: u_ (mw) =0
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Figure E.3 The convergence of the quasilinear iterative estimate of the harmonic response

The (a) amplitude and (b) phase of the response of the Kanis & de Boer micromechanical model after
convergence to a stimulus stapes velocity of 80 dB re 10 *m/s at 6 kHz. The fundamental (black lines) and
3" order (grey lines) components were estimated using either the original (dotted lines) or modified (solid
lines) iterative methods. (c) & (d) The rate of convergence of the 3™ harmonic estimate, at a location 0.0003
m from the stapes, is illustrated. The total number of iterations required for the whole distribution to
converge was 218 for the original method, and 11 for the modified method.

E.3 Improved convergence of the iterative process

The modified iteration procedure, for estimating the harmonic components of the response to a
single tone stimulus with the quasilinear method, exhibits more rapid convergence that the original
iteration scheme. The quasilinear method uses a fixed-point iteration process, which is described in
simple terms by (E.10). This process will converge, as shown in Figure E.4, provided that condition

(E.11) is satisfied, and the convergence is more rapid for smaller gradients (Bostock & Chandler,
1990).

z,., = g{Zn} (E.10)
‘@ <1 (E.11)
dz

The analogy between this simple convergence formula and the quasilinear method is not obvious
because of the complex and coupled nature of the cochlear model solution. If z, corresponds to the
CP velocity at location x;, where 7 takes a value between 1 and N, then g(z,) corresponds to the CP

velocity v(x;) predicted by the following iterative cycle, using the equations shown in Figure E.2.
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Figure E.4 An illustration of a fixed-point iteration scheme

This iterative method finds the solution to z=g(z). An initial estimate of the solution, z;, is gradually
improved by repeatedly settings z,.; equal to g(z,). The process will convergence provided that condition
(E.11) is satisfied.

For a problem with complex variables we can apply (E.10) and (E.11) to the real and imaginary

components separately, to generate the following convergence condition

‘aRe[g(zn

E.12
ORe[z] (E12)

<1land ‘M <1
0lm[z]

As the cochlear model consists of coupled micromechanical elements, the rate of convergence for
the solution at one location along the CP may be influenced by the value of the solution at all the
other N-1 locations which also change every iterative cycle. Therefore we have been unable to
prove whether the fixed-point iteration method is guaranteed to converge to a solution at a given
location, without prior knowledge of the solution at all other locations. However, when the solution
at all locations has been estimated, it is possible to evaluate the partial derivates in (E.12) to
determine if one application of the fixed-point iteration method can be expected to converge more
rapidly than the other. For example, when the predicted solution v(x) has been obtained, the
function g[v(x;)] can be estimated by repeatedly calculating g[v(x;)] for a range of v(x;) values close
to the known v(x;) solution. The resulting g[v(x;)] functions at a location 0.0075 m from the base,
for the two alternative iteration schemes, are shown in Figure E.5. The gradient values shown in
this figure indicate that although the convergence condition (E.12) is satisfied for both the original
and modified iterative processes, the gradient for the modified scheme is much smaller suggesting
this process should converge more rapidly. This is consistent with the observation that in practice,
the original method requires more iterative cycles to reach an estimated solution compared to the

modified process.
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Figure E.5 The convergence properties of the iterative procedure

Plots of y=g[v(x;)] are shown for the original (a & b) and modified (¢ & d) fixed-point iteration schemes, for
the location 0.0003 m from the stapes, when the Kanis & de Boer model is stimulated with a stapes velocity
of 80 dB re 10~ * m/s at 6 kHz. This is the same location as featured in Figure E.3. The dotted line shows
y=v(x;) for reference.

E.4 Two tone suppression

The iterative process used to establish the quasilinear response of a cochlear model to two tone
stimulation (®; and m,) is shown in Figure E.6. Only the primary responses, at frequencies ®; and
, are estimated at this stage. However, distortion components can also be determined using the

quasilinear method as shown in appendix E.5.

E.5 Estimating distortion products

The quasilinear procedure for estimating distortion products, arising when the cochlear model is
stimulated by two tones (f; and f;) simultaneously, is illustrated in Figure E.7. The estimation of
distortion products involves a sequence of three iterative procedures: the two single tone responses,
the two tone suppression and finally the distortion product response. The third stage is analogous to

the iterative process used to predict the harmonic response to a single tone stimulus.
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Step 0: A time period, T, is selected which will contain an integer number of cycles of
both stimuli (f; and £>). The fundamental response of cochlear model to each tone
individually is then established using the quasilinear method (appendix E.1). This

provides estimates of ZCQ; (x,w,,n=1)and Zc%f (x,w,,n=1)

Step 1: The finite difference method is used to
. . oL
determine p, (X, @, ,.4,,7) and, V(X, @, .4, 1) given Z 5, (X, @, ,.4,-1)

Step 2: The response of the OHCs is calculated in the following stages...
(i) A time domain input to the nonlinearity is constructed from the w; and w,
components of the CP velocity

lin lin .
Popc(X,t,n) = Z 2 Re(ZOHC (x, ) v(x,,,n)- exp(za),t))
I=1,2
(ii) The time domain signal is passed through the hyperbolic tangent nonlinear function
and the fundamental component of the output extracted...

17 . }
po (x,0,,n) = ?jpwf tanh {pg’},c (x,t,n)/ p”f} -e'dt forl=1or2
0

Step 3: A new estimate of the CP impedance is formed
oL
Porc (X, @,,n)

forl=1o0r2
v(x,@,,n)

Z& (x,0,n+1) =27, (x,0,) -

Step 4: Stop iteration when, at every location, either

|v(x,a)l,n)—v(xawl’n_l)| <0.001 for/=1o0r2

v(x, @, 1)

|v(x, o, n)|

or 20-log,, <-100 dB

max |v(x, o, n)|

Figure E.6 The quasilinear iterative process for estimating the primary quasilinear responses to two tone
stimulation

The two stimulus tones have angular frequencies ®, and ,. The scaling parameter p,.; which has
dimensions of pressure, is set equal to 2 by Kanis & de Boer (1993).
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Step 0: A time period, T, is selected which will contain an integer number of cycles of both stimuli (f; and
). The fundamental response of cochlear model to each tone individually is then established using the
quasilinear method (appendix E.1). Then the two tone quasilinear iteration is performed (appendix E.4) to
provide estimates of

Z% (x,w,,n=1)and ZS (x,m,,n=1)
The estimated primary velocity responses v(x, @,,n) , where /=1 or 2, can be used to make an initial

estimate of the CP impedance at the distortion product frequency w,, by assuming the model is fully active at
this frequency

oL pass lin
Zep(X,0,,,n=1)=27"(x,0,,) = Zpyc(X,0,,)
The distributed pressure source for the distortion product can then be estimated

ngL{CA(x @y n=1)=— jtaﬂh{z 2R€(Zggc(x @,)-v(x,@,,n)- eXp(la)ll‘))} & dy
=12

Step 1: Equations (A.11) and (A.10) are used to re-estimate p, (X, ®,,n) and v(x,®,,n), given
Z CQ; (x, w,, n), for /=1 and 2 In addition, equations (E.9) and (A.10) are used to determine

Py(x,@,,,n)and V(x,®,,,n), given Z8 (x, @y,5 1) -

Step 2: The OHC response is calculated

> 2Re(ZgZ,C(x, @) v(x, a),,n)-exp(ia)lt)) ‘ '
pg,L,C(X, SN+ l) = J‘p“f tanh { ——| =12 'ewj[dt fOI’_]:1 or?2

Pros +2Re(Zg};C(x @,,) V(x,0,,,1n) exp(za)dpt))
> 2Re(Zpe (. @) - v(x, @;,n) - expliayt)

pOHC B (X a)dp ,n+ 1) = jpre[ tanh =12 . ei(udptdt
Pry | 42 Re(Zéﬁ,C (x,mw)-v(x,mo,n)- exp(zma)t))

ref 1=1,2

1 T 1 in . iyt
Porica(%,0,,n+1)= Fjpmf tanh {— D2 Re(Z(’)HC (x,@)-v(x,w,,n) exp(za),t))} e dt
0

Step 3: A new estimates of the CP impedance are formed ...

x,m,,n+1
ZQL()C @, ,n+1)=2Z5" (x,0)— pOHC( d )forl:10r2

v(x’a)lan
OL oL
X, n+l)— x.w..n+1
ZOQ]%]C(-X, a)dp,l’l-i-l) = pOHCB( dp’ ) pOHC,A( 5 dp’ )
v(x,@,,,n)

so that
Z& (x,,,n+1)= 25" (x,0,) — 25, (X, 0,,,n+1)

Step 4: Stop iteration when, at every location, either

‘v(x, @,,,1) = V(X,@,,,n— 1)‘

<0.01

v(x,@,,,n)

(X, @,,,1)

max |v(x, O n)|

or 20-log,, < —100dB for n>50

Figure E.7 the quasilinear iterative process for estimating the distortion product evoked by two tone
stimulation

The stimulus tones (o, and ,), evoke the DP, wy,. The scaling parameter p,.; which has dimensions of
pressure, is set equal to 2 by Kanis & de Boer (1993).
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ks C3 LJ‘J [ (eytky/s)

Tpd

Figure E.8 The micromechanical model of Neely & Kim

This plot is based on figure 2.1 of Ku (2008). The micromechanical parameters (k;, ¢;, m;, m,, ks, ¢3, k4, c4)
are defined in Table E.1(i). The vertical displacement of the BM and the radial displacement of the tectorial
membrane are denoted by &, and &, respectively. The gain between the organ of Corti and the reticular
laminar, g, is set equal to 1 (Neely & Kim, 1986). In addition, s=i®, where o is the angular frequency of the
stimulus. Neely & Kim define four impedances in their model: The passive impedance of the OC (Z, =
sm;+c;+k;/s), the passive impedance of the TM (Z, = sm, + ¢, + ky/s), the coupling between the TM and OC
(Z3 = c;5 + ks/s), and the phase shift between the shear displacement input to the OHCs and the active pressure
output (Z4 = ¢4 + ky/s).

E.6 The quasilinear Neely & Kim model

A single micromechanical element in the Neely & Kim (1986) model can be represented as shown
in Figure E.8, where the parameters are defined in Table E.1. The micromechanical feedback loop
for the linear active Neely & Kim model can also be illustrated by the block diagram given in

Figure E.9a. In this diagram the filters are defined in terms of the impedances given in the caption

to Figure E.8.
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Micromechanical Interpretation (i) (ii) (iii)
parameter Original Neely & Kim  Original = Modified
model Kanis & model
de Boer
model
The ratio of the average
displacement across the
b width of the CP to the 0.4 0.4 0.4
maximum displacement
over the width of the BM
g The BM to IHC lever gain 1 1 1
m, The mass of the OC 35107 kgm™ bm,, bm,,
k The compliance of the OC 1.1 51000 N3 bk, bk,,
¢ The damping of the OC 200+1.5x10% 2" Nem™ bey, bc,,
k The compliance of the TM 7x107e " Nm™ 0 0
e The damping of the TM 100e**Nsm™ 0 0
m, Mass of the TM 5x107kgm™ - -
The ratio of the
compliance in the
ks/m; coupling between the OC - 02(0: cfza):Q1
and TM to the mass of the
™
The ratio of the damping
in the coupling between
¢/ the OC anI()i TI%/I to the ) 0,.®, 6,,9,
mass of the TM
The damping associated
¢y with the action of the 100¢™** Nsm’™ be, d,w, bed w O,
OHCs
The compliance associated
ks with the action of the 6.15x10°¢ """ Nsm™ be,d,@’  be,d,®’Q,

OHCs

Table E.1 The micromechanical parameters of Neely & Kim (1986) model related to other cochlear models
(1) Neely & Kim model of the cat cochlea in S.I units (Elliott ez al., 2007), (ii) the original Kanis & de Boer
model as formulated in appendix F.4, and (iii) the parameters of the modified model presented in section 3.4.
The interpretation of the parameters is based on that given by Neely & Kim (1986), in terms of the cochlear
partition (CP), organ of Corti (OC), tectorial membrane (TM), and outer hair cells (OHCs). The factors mgsg,
kB, KkB, O, Osc, €0, dg and , are defined in section 2.2.1. The distributions Q; andQ, are defined in section

34.

A nonlinear model can be developed from the linear active Neely & Kim model by inserting a

nonlinear function into the micromechanical feedback loop as shown in Figure E.9 b and c. Such a

model can be solved using the quasilinear method described in the previous sections, given the

following modification. In step 1 of the quasilinear iterative process described in E.1, it is

necessary to evaluate the difference in shear displacement between the tectorial membrane (TM)

and organ of Corti (OC), &, in addition to the variables p, and v, using (E.13) (Neely & Kim, 1986).

E(x, 0,m) = Elox

Z,(x,)

v(x,w,n)

b, Z,(x,0)+Z,(x,0) iw
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(a)
P Filter 1 v
Filter 2 Filter 3
(b) (©)
Pa Filter 1 v - Filter 1
-
_i i_ Filter 3 Filter 2 [ Filter 3
.

Figure E.9 Representations of single micromechanical element in the Neely & Kim (1986) model

The block diagrams represent (a) linear active model of Neely & Kim. Filter 1 denotes the passive admittance
of the organ of Corti (1/Z,), filter 2 describes the dynamics of the OHC (Z,) and filter 3 arises from the
interaction between the TM and OC (gZ,/(b(Z,+Z5))). Impedances Z,, Z,, Z; and Z, are defined in the caption
of Figure E.8. A nonlinear model can be developed by inserting a nonlinear function either (b) before or (c)
after filter 2.

This shear displacement then acts as the input to the OHCs, so that the quasilinear pressure
output ngL{C (x,@,n) in step 2, can be calculated using either equation (E.14) or (E.15) depending

on whether the nonlinearity is placed before or after or filter 2 respectively

17 . .

po (x,w,n) =?J-0 Z,(x,0)-F (E(x,0,n)-exp(ior))-exp(—iot ) dt (E.14)
1

P =— [ F(Z,(x.0) £(x.0.m)-explioon))-exp(~iot)dr (£15)

Finally, in step 3 of the iterative process the quasilinear impedance of the CP can be estimated
using

Z, po
Z%(x,0,n+1) =2k — S 2y Pouc(%,01) (E. 16)

b, Z,+Z, iv&(x,w,n)

In summary, the quasilinear method can be used to estimate the response of the nonlinear Neely &
Kim coupled cochlear model. However, the process must be adapted to account for the fact that in
the Neely & Kim formulation the input to the OHCs is the difference in the shear displacement
between the TM and OC. This is in contrast to the Kanis & de Boer formulation, where the input to
the OHCs is associated with the vertical displacement of the cochlear partition. The use of different
variables to stimulate the OHCs means that the quasilinear response of the model will be different

in each formulation even if equivalent micromechanical parameters are used.
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F. State space representation of the Kanis & de Boer cochlear
model

In this section the state space model of the Kanis & de Boer micromechanical cochlear model is
described. First a general method for obtaining the frequency domain state space framework for a
linear system, from the system transfer function, is reviewed. This is then applied to the uncoupled,
linear, active Kanis & de Boer micromechanical model. This state space model is used as the basis
of the coupled linear active state space model in appendix F.3. Finally, the state space
representation of the uncoupled linear active model is used to determine a relationship between two

different micromechanical models considered in appendix F.4.

F.1 A frequency domain state space representation of a linear system

Furuta et al. (1988) describe a method for constructing a frequency domain state space
representation of a linear system from its transfer function. In this section the approach is
summarised for a general system and it is applied to the Kanis & de Boer linear active cochlear

model.

If a system is stimulated by a sinusoidal pressure input p, at an angular frequency o, and generates
an output velocity v, then the system transfer function (Hy;) is defined below. In this case, s = i@,
but in general s may contain real and imaginary components to allow unstable systems to be

characterised.

v(s
) _p «(8) (F.1)
p(s)
The state space model for a system can be written in the time domain as
w(t)=Aw(t)+Bp(t
(1) (1) +Bp(?) F2)

v(t) =Cw(t)+Dp(¢)

where w is the state vector, incorporating the displacement of one of the system components, w,

and several orders of its time derivative such that
T

wio=[w o W W] (F.3)

In the present case v(f) is not directly proportional to p(z), so the “feed through” matrix D is zero.
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If each element of the state vector w(¢) is now proportional to e, the state space equations written

as

sw(s)=Aw(s)+Bp(s)

(F.4)
and v(s)=Cw(s)

Equation (F.4) can be rearranged to give an expression for H(s) in terms of the state space
matrices A, B, C and D as shown below. In this equation ‘adj’ and ‘det’ refer to the adjoint and
determinant matrix functions respectively and I denotes the identity matrix.

C adj (SI - A) B

H (s)=C(sI-A) 'B= det (T A) (F.5)

The determinant of (sI — A] gives a denominator polynomial of order ¢ in s, while every element of
the adjoint matrix of (sI — A] gives a numerator polynomial of order < g —1 in s (Furuta et al.,
1988). Therefore equation (F.5) can be re-written as (F.6), where ¢(s) is a lower order polynomial

than y;(s).

H (s)= 4(5) (F.6)
X (5)

Equations (F.5) and (F.6) can be used to determine the elements of the state space matrices A, B, C

and D using the following procedure. First, note that the variables G(s) is Figure F.1 such that

G,(s) 1 _ 1 F.7
p(s) Yo (s) s"+ aHs""l +-+as+a, 7
d
an V(S) = ¢SS (S) = IBn—lSrh1 + ﬂn—ZSer o ﬂls + ﬂO (F8)
G, (s)
| | G (5) ' (
P(s) 1 | > i (5) =
X (5)

Figure F.1 Representation of the transfer function given in equation (F.6) for a single micromechanical

element of a cochlear model.
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Cross multiplying (F.7), and multiplying both sides by e”, we can define w(s)e” as w(¢) so that

sw(s)e” is equal to dw(¢)/dt etc. Therefore (F.7) can be written in the time domain as

aw(t) - d™'w d'w

agw(t)+a, tete, = p(0)
(F.9)
d'w dw(t) d™'w
jdt" =—awW(t)—a,—— P aqldql—i-p(t)
Secondly, Figure F.1 also shows that
v(s) = 4, (s)w(s) (F.10)

which, using a similar method to that described above, can also be represented in the time domain

as

w(t) dw(t)

a"’1 AT

v(t) = f,. + /5, (F.11)

If a state vector w' = [Wl, W, Wy, WJ is now selected, such that w, =w,, w; =w, = w,etc,

then (F.9) and (F.11) can be written in the matrix forms

w, 0 0 0 w
w, 0 0 0 w,
d .
R 0 W) p@) (F.12)
0 1 0
W | | "% o Q|| W | (1]
and i W, ]
W,
v =[8 B o B m (F.13)
RCER
Therefore the state space matrices are given by
0o 1 0 0 | 0]
0 0 0
A= 0 |[.B=|:],
1 0 (F.14)
|-, —a,, | 1]
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The general method described in the previous section can be applied to a single micromechanical
element of the linear Kanis & de Boer cochlear model in order to assess the stability of the

uncoupled model and contribute to the construction of a coupled state space model.

F.2 The uncoupled linear active Kanis & de Boer micromechanical model

The general technique for formulating a state space model of a linear system in the frequency
domain, given in appendix F.1. In this section, the technique is applied to obtain a state space
model of a single micromechanical element in the linear active Kanis & de Boer cochlear model.
This is then used to evaluate the response to of the uncoupled model to sinusoidal stimulation and

to determine the stability of the system.

F.2.1 The state space representation

pass

The linear active Kanis & de Boer cochlear model is described by two impedances Z/,” (x, s) and
ZZZC (x,s), where s=io in this case, defined in (F.15) and (F.16). The variables m,,(x), ¢,z (x),

and k., (x) represent the mass, resistance and stiffness per unit area of the basilar membrane (BM)

respectively, and details of the other parameters can be found in section 2.2.1.

Zlp" (X,8) =smy, (x)+cm(x)+M (F.15)
S
in 1+ib(x,s
Zoye (x,8) = e,w,(x)-d, 55) o (F.16)
5SC + l|:b(x, S) - b(x’s):|

where ) s
ib(x,s)=—
0]

n

The overall system transfer function (F.17) is a function of these two impedances. The input to the

overall micromechanical element is the transmembrane pressure, p(s), and the output is the vertical

velocity of the CP, v(s). The parameter y(x) controls the gain of the activity in the model so that

v(x)=0 and y(x)=1 for a passive and an active model respectively (Neely & Kim, 1986).
v(x,s) _ 1

- HSS (x’ S) = pass lin
p(x,s) 20 (x,8) = y(X)Z e (%, 5)

(F.17)

258



Appendices
F. State space representation of the Kanis & de Boer cochlear model

In order to construct the state space matrices for a single micromechanical element of the Kanis &
de Boer model, the polynomials y,(s) and ¢(s) (defined in appendix F.1) must be formed. This is
achieved by expanding (F.17) in powers of s and comparing the result to (F.6), to give

X (8)= st+ s [5 @O My +Crp —yeodoa)n]/mKB

sc n
2 2 2 2
+s [mKBO- W, +Cx0,. 0, +kyy —ye,dyo, }/mKB (F.18)
sc n

+s[cKBaza),f +ky0. 0 ]/mKB +k,00 0 my,

and P(s)=5"Im, +5°0, 0, | My, +56° @, | my, (F.19)

The coefficients of these polynomials are listed below by comparison with (F.9) and (F.11), and

these parameters can be used to construct the state space matrices A, B, C and D as shown in (F.14).

O-za):kKB
a, =
0 m By =0
KB
2 2 o’w
(kdvcwn +o a)ncKB) ﬂl = L
a = Myp
m
KB
. 5 ,3 B é'sca)n (F.20)
(kKB +§vcwncKB +o a)anB _7eodoa)n ) 2 m
a, = KB
Myp 1
_ By =
_ (CKB + é‘Scl/nKBa)n }/eOdOa)n) m
a3 = KB
My

The vertical velocity of the BM, v(s), can be calculated from the state space representation using
v(s)=C(sI- A)_1 Bp(s) (F.21)

The state space representation for the uncoupled Kanis & de Boer cochlear model is validated by
comparing the resulting velocity response, with s=i, to that obtain by direct application of the
transfer function as shown in Figure F.2. The responses differ by less than 3x10 ™ "*dB across a

range of stimulus frequencies.
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Response of a single micromechanical elernent of the Kanis & de Boer model for unit semi-difference pressure stimulation
The elerment is located 3.3 mm from the stapes, which corresponds to the BkHz characteristic place in a coupled cochelar model
T T T T T T T T T
A0k Transfer function
===un Dtate space

-— Active -

20+
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Figure F.2 The response of a single micromechanical element in the Kanis & de Boer cochlear model
The responses is calculated using the conventional method (grey line) and the state space approach (black
dotted line).

F.2.2 The stability of the uncoupled Kanis & de Boer model

The eigenvalues, A, of the system matrix A correspond to the poles of the system. The poles are
complex such that 1 = o+ iw, and the system is known to be stable if the real part (o) of all the
poles are negative. Figure F.3 shows the poles for a single micromechanical element in the
uncoupled linear active Kanis & de Boer cochlear model, located 8.3 mm from the stapes where the
characteristic frequency is 6 kHz. The poles are shown for a variety of gains, v, as defined in (2.20).
Provided that y < 1, the real parts of these poles are negative which indicates the system is stable.
However, when y >1.07 the micromechanical element becomes unstable when stimulated at a
frequency close to its characteristic frequency. For example, an unstable pole arises at a frequency

of 5.9 kHz when y =1.2 for this single element located at the 6 kHz characteristic place.
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F.3 The coupled linear active Kanis & de Boer cochlear model

In this section a state space representation of the linear coupled Kanis & de Boer cochlear model is
constructed using the formulation for the uncoupled micromechanical elements (appendix F.2), and

the longitudinal fluid coupling method of Elliott ez al. (2007).

F.3.1 Defining the state space vectors and matrices

For the /" micromechanical element, the state vector for that individual element is shown below,

where w; is the vertical displacement of the BM.
T . ..
W, = [wj w, W, wj] (F.22)
The state vector for the complete coupled model is now defined as
F.23
w(O=[w (@) w0 - wi)] (F-23)

Each micromechanical element is stimulated by the input to that element p(¢) and generates a

vertical velocity v{(#). The input and output vectors for the complete model are now defined as

pP'O=[p®) p,) - py(©)] (F.24)

Vi =[w@® w@) - v @] (F.25)
Elliott ez al. (2007) explain that, for each micromechanical element, the dynamics can be expressed
in state space as
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X,(1)=A,w,()+B,p, (1) (F.26)

v,(1)=C,w (1) (F.27)

So that all of the elemental uncoupled state space models can be gathered together in the following

matrix equation

Ww(t)= A, w(t)+Bp(t) (F.28)
v(t)=C,w(t) (F.29)
where
A 0 B, 0 C, 0 (F.30)
A=l DM o |'Bs= P o [:Ce= "G 0
0 A, 0 B, 0 C,

F.3.2 The basal and apical boundaries

Each micromechanical element 1<j< N-1 describes the behaviour of the CP, but j=1 and j=N
correspond to the systems representing the stapes footplate and helicotrema fluid respectively. At

the stapes,

vl(s):H (5) = 1 s (F.31)
ns) "

=
Z,:(8) s'my, +sc,, +k,,;

where u(s) is the stapes velocity, pi(s) is the pressure difference across the BM at the base of the
cochlea, Hy(s) is the middle ear transfer function, Zy(s) is the middle ear impedance and mz cue,

and ky, denote the middle ear mass damping and stiffness respectively.

A state space model for the stapes can be formed from (F.31), as shown below.

Wl = AIW1 + Blp1 and v, = Clw1 (F.32)

where

(F.33)

0 1 0
A = _kME/ _CM% ,B1:|:1} and C1:[0 l/mME]
Mg Mg

At the helicotrema, the semi-difference pressure is set to zero. Therefore, for simplicity, all the

elements of Ay, By and Cy are set to zero.
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F.3.3 The longitudinal fluid coupling

The longitudinal fluid coupling and boundary conditions can be described by the differential

equations described in appendix A in finite difference form.

2 J—
Oox A H
At the base
_ F.35
PO o pi, (=200, ()= 2D"2D 5y (y=2piey
ox |, A
At the helicotrema

(F.36)
p(0)]_, =0= p,(1)=0

These equations can be written in matrix form, in a similar way to that described in appendix B.

Fp(t)-v()=q() (F.37)
where
A A | L
H H v, (2)
1 -2 1 0 0
H 0 1 -2 1 0
F= . . and q=| . F.38
2N’ S 0 a : (F3%)
o 1 -2 :
. 2
0 2pA | 0 |
L H

Assuming matrix F is invertible, then (F.37) can be re-written as shown below, where (F.29) has

been used to eliminate v(¢).
p(t) =F'q(t) + F'v(1) = F'q() + F'C,x(1) (£39)
Substituting (F.39) into (F.28) now gives

Ww(t)=A,w()+B, (F'q(t)+F'C,w(0)) (F.40)
= (I-B,F'C,)W() = A,w(r)+B,Fq(t)
= Ww()=(1-B,F'C,) A,w(n)+(1-B,F'C,) B,F'q()
Therefore
w(t)=A,,w(t)+B,u(r) (F41)

where
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I PN _ (F.42)
A, =(I-BF'C,) A, B, =(I-B,F ‘CE) B, and u() = F'q(?)

The frequency response of the state space system can be obtained by assuming that each element of
w(?) is proportional to e, so that w(¢) can be written as w(w)e™®". It is then possible to solve (F.42)

and (F.29) to obtain an estimate of v(m).

iow(w) = Aﬁll,w(a)) + Bfu”u(a))

= (il -A,, ) W(®) =B, u(e) (F.43)

. -1
V(@) =Cpx(0)=C, (iol-A ) B, u(w)

In practice, the matrices inverted in (F.42) and (F.43) can be ill-conditioned, making the
calculations susceptible to computational errors. The MATLAB function ‘balance’ can improve the
condition of a matrix. For example, an ill-conditioned matrix Q. can be reconstructed by two

matrices Q, and Q,, which are better conditioned than Q, using the command...
[Q..Q,]=balance(Q,) (F.44)

The matrices are related according to Q. =Q_Q bQ;l , so that is it possible to

use QHQ;Q;1 instead of Q;l to reduce computational error in calculations.

The frequency domain response computed from the state space model is compared to that
calculated with the finite difference solution for the coupled linear active Kanis & de Boer model,
in Figure F.4. The accuracy of the state space solution is limited in the apical region of the cochlear
model for higher frequencies. Numerical errors in the computation process involved in estimating
the state space response appear to introduce an effective ‘noise floor’ approximately 300 dB below
the peak BM velocity amplitude. Excluding this region, the responses predicted by the two

alternative approaches differ by less than 0.02 dB for these example responses.

F.3.4 The stability of the coupled Kanis & de Boer cochlear model

The stability of the coupled Kanis & de Boer cochlear model can be assessed using the state space
formulation. The eigenvalues of the system matrix Agy, correspond to the poles of the system, and
the system is known to be stable if the real part of every eigenvalue is negative. In this section we
consider the stability of the model for a variety of OHC gain distributions, y(x); A uniform y(x)
distribution, a distribution of y(x) resulting from self-suppression in the quasilinear model, and a
non-uniform y(x) distribution in which irregularities have been introduced to act as sources of

reflection.
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Linear active coupled Kanis & de Boer model
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Figure F.4 Comparison of the state space and finite different solutions for the linear active model
The plots show the state space (solid black line) and finite difference (dotted grey line) solutions for the
coupled linear active Kanis & de Boer cochlear model

The coupled linear active model

Figure F.5 shows the poles of the coupled model for a variety of uniform OHC gain distributions, y.
The real parts of the poles are plotted as a function of the characteristic frequency, which is
proportional to the imaginary component of the pole. Although the results for each y appear to be a
continuous line, they are actually composed of 500 discrete pole positions. In general, the real parts
of the all poles are negative for y<1. The exceptions to this are two low frequency poles whose real
parts become positive when y exceeds 0.7. This low frequency instability can be eliminated by
imposing a maximum y(x) distribution on the model, such as that shown in Figure F.6. In contrast,
for values of y>1, the real part of a large number of the poles becomes positive which indicates that

the model is unstable.
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Figure F.5 The influence of OHC gain on the poles of the Kanis & de Boer cochlear model

The poles of the coupled linear active Kanis & de Boer cochlear model are shown for various values of y(x),
where y(x) is constant along the length of the model. For each y value, 1000 poles depict the behaviour of the
model. The grey arrows indicate the movement of the poles as the value of y increases.
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Figure F.6 The baseline distribution of OHC gain

The plot shows a distribution of y(x) which eliminates instability in the Kanis & de Boer coupled cochlear
model at extremely low stimulus frequencies (e.g. 97 and 107 Hz).
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Figure F.7 The poles of the quasilinear Kanis & de Boer cochlear model

(a) to (d): The poles of the coupled linear active Kanis & de Boer state space system matrix, for different
You(x) distributions evoked by a 6 kHz stimulus applied at different stimulus levels (in units of dB re

10 *m/s). The You(x) distributions were obtained using the quasilinear method described in appendix E, and
are shown in (e).

The coupled quasilinear model

The state space model can be used to predict the stability of the quasilinear coupled system, in
which variations in OHC gain, yq.(x), arise due to self-suppression. For example, Figure F.7 shows
the poles of the linear active Kanis & de Boer state space model, for a variety of yy,(x) distributions
which correspond to a range of stimulus levels. These graphs illustrate that the real part of the pole
(o) varies as the stimulus level increases, but that the model remains stable as ¢ remains negative

for all of the poles provided that the maximum gain distribution shown in Figure F.6 is imposed.
The coupled linear model with random gain irregularities

The state space model can be used to predict the stability of the linear coupled system, where
variations in OHC gain, y(x), are deliberately introduced to act as sources of reflection. For
example, in section 2.5.2, the linear active Kanis & de Boer cochlear model was found to become
unstable if y(x) either steps-up by 0.5 or steps-down by 0.05. Non-uniform variation in y(x) can be

introduced using the MATLAB formula
v
y(x)=1+ 3 v -smooth[&(x)] (F.45)

where g(x) is a distribution of numbers with values between 0 and 1 produced by the MATLAB
random number generator and v is the magnitude of the gain variations. The average value of y(x),
along the length of the cochlear partition, remains unchanged by the introduction of random

variations. However, the local value of y(x) does exceed 1 at some locations. The poles for the
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coupled model containing this non-uniform distribution of y(x) are shown in Figure F.8. Random

variations in the gain of up to 7% can be accommodated before the model becomes unstable.

F.4 Comparing two micromechanical models

Kanis & de Boer (1993) comment that their micromechanical cochlear model is similar to, but
simplier than, the micromechanical model of Neely & Kim (1986). However, it is difficult to
determine the relationship between the two models, as the dynamic components of the active
impedance are not explicitly expressed in the Kanis & de Boer model. By casting both uncoupled
models into the frequency domain state space framework, however, it is possible to compare the

matrix elements and establish a relationship between the micromechanical parameters.
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Figure F.8 The poles of the perturbed linear active Kanis & de Boer cochlear model
The plot shows the poles of the linear active Kanis & de Boer model, with a non-uniform distribution of the
OHC gain y. The dashed circle indicates a pole for which the real part is positive.
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The state space representation of the Neely & Kim micromechanical model was developed by
Elliott et al. (2007) from the equations of motion. If the Neely & Kim micromechanical model is
re-cast into state space formulation using the system transfer function, so that the results are

comparable with those previously obtained for the Kanis & de Boer cochlear model (appendix F.2),

then the state space vector takes the form x' = [Z1 zZ, Z Zl] and the state space matrices are

given by
0 1 0 - 0 [0 (F.46)
0 0 1 0 0
A= 0 |.B=|: ,c:[,go B ,b’n,l],andDzo
1 0
—_ao _al _an—l_ L+
where, in this case,
a, = k, (kz +ky I)n"'n];zk3 - yk,k, 5 =0 (F.47)
17772
b(k,+k
_cl(kz+k3)+k1(02+C3)+k263+Czk3—}/(kzc4+czk4) B = (2 3)
“= mm mym,
1"7"2
b(c,+c
a _ml(k2+k3)+cl(cz+c3)+mz(k1+k3)+0203—7(m2k4+c2c4) B, = (2 3)
. mm, mn;,
b
+c; )+ +c)— By=—
%:ml(cz Ca) ’:;,5101 c3) ymyc, . "
17772

Comparing the o and 3 coefficients in (F.20) with those given in (F.47), allows the Kanis & de
Boer cochlear model to be re-written in the formulation used by Neely & Kim using the

relationships given in Table F.1.

Origin of relationship Relationship
In order to balance the y terms when equating k2 =0 & c,= 0
the o and o, coefficients, it is assumed that...
Equating B; coefficients: m, = meB
Equating [, coefficients: s s
— =0 0,
m,
Equating 3, coefficients: ¢,
- = é‘S‘Ca)}’l
m,
Equating o, coefficients: kl = kaB
Equating o, coefficients: ¢ = chB
Equating a; coefficient y terms: ¢, = beod NoX
Equating a, coefficient y terms: = 2
quating a Y k, =e,dbw;

Table F.1 The relationship between the micromechanical parameters or Kanis & de Boer and Neely & Kim
models
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Figure F.9 The micromechanical model of Kanis & de Boer

The plot is based on figure 2.1 of Ku (2008) and the micromechanical parameters (ky, ¢;, m;, my, k3, 3, ky,

c4) are defined in terms of the original Kanis & de Boer parameters in Table F.1. The vertical displacement of
the BM and the radial displacement of the tectorial membrane are denoted by &, and &; respectively. The gain
between the organ of Corti and the reticular laminar, g, is set equal to 1 (Neely & Kim, 1986). In addition,
s=iw, where o is the angular frequency of the stimulus.

Using these relationships, the Kanis & de Boer micromechanical model could be represented by a
block diagram as shown in Figure F.9. It is not possible to explicitly specify the parameters m,, c;
and k3 in terms of the Kanis & de Boer micromechanical quanities. Therefore we assign m,(x) a
small, constant value throughout the length of the CP (1x10 > kgm-?) and use the equations in

Table F.1 to calculate the resultant values of c¢; and £;.

The response of a linear active cochlear model, using the micromechanics of Kanis & de Boer, is
not dependent on which formulation is used. For example, the predicted response is the same for
the original Kanis & de Boer model as it is when for the Neely & Kim model modified to
incorporate the micromechanics of Kanis & de Boer. However, care must be taken when
considering nonlinear models, as the input to the nonlinearity representing the action of the OHCs

differs between the formulations as described in appendix E.5.

F.5 A time domain solution for a nonlinear model

Elliott et al. (2007) describe a state space formulation of the Neely & Kim (1986) cochlear model.
They illustrate how the model can be adapted to incorporate a nonlinear function to represent the
action of the OHCs, and use a MATLAB ordinary differential equation solver, ode45, to obtain the
time domain response of the system using an iterative method. The steady state response predicted
by this time domain state space method, can be compared with the estimated response obtained

used the quasilinear method.
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The MATLAB program used to obtain the time domain state space solution for the nonlinear
cochlear model was provided by Ku (2008). It was modified so that the micromechanical
parameters equated to those used by Kanis & de Boer, using the relationships given in Table F.1. A
hyperbolic tangent function was used to represent the nonlinear action of the OHCs. The
micromechanical feedback loop was arranged so that the nonlinearity is positioned before the filter
describing the dynamics of the OHCs, and the input to the OHCs is determined by the difference in

shear displacement between the tectorial membrane and the BM.

The steady state response of the state space model is compared to the estimated quasilinear
response in section 2.5. Discrepancies may occur between the two predictions if the quasilinear
approximation is invalid. However, differences may also arise due to errors in the state space
response. These inaccuracies predominantly arise due to the failure of the model to reach a steady
state at all locations with the observation time, and the effect of time windowing in the analysis of
the response. Use of longer observation times allows both of these errors to be minimised, but

requires significantly longer computational time.

For example, when the state space model is stimulated by a 6 kHz stimulus tone, a 2.4 GHz
computer requires approximately 4 to 7 hours to evaluate the first 30 ms of the response depending
on the stimulus level. We assume that the response has reached steady state within the 30 ms
observation period. However, this is not necessarily true at all locations for all components. For
example, Figure F.10 shows the amplitude of the fundamental and 3™ harmonic components of the
state space response to a 6 kHz stimulus presented at 60 dB at two different locations within the
cochlear model. The characteristic place, 8 mm from the stapes, both the fundamental and 3™
harmonic components appear to have reached a steady state within 30 ms. However at a more basal
location, 2 mm from the stapes, the amplitude of the 3" harmonic component does not reach a
steady state within the 30 ms observation time. Therefore the harmonic response predicted by the
state space model is likely to be erroneous at the basal location unless a longer observation period
is employed. However, at the locations where steady state is not achieved within the observation
period, the amplitude of the harmonic components is very small (< — 100 dB) relative to the
fundamental component. For this reason, despite the limitations, the observation time is not

generally extended beyond 30 or 40 ms.
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Figure F.10 The change over time of the fundamental and harmonic components of the state space time
domain model

The plot shows the fundamental (solid line) and 3™ harmonic (dashed line) components of the response of
state space model to a 6 kHz stimulus tone presented at 60 dB re 10~ '® m-’s-' in the ear canal. The amplitude
of the components is observed at two different locations (a) the characteristic place for 6 kHz (8 mm from the
stapes) and (b) a location basal to the characteristic place (2 mm from the stapes).
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G Asymmetric and symmetric nonlinear functions

G.1 The harmonic components predicted by a nonlinear function

The hyperbolic tangent function is symmetric so that, for an input , it satisfies the relation (G.1) as
illustrated in Figure G.1. The first order Boltzmann function is not symmetric as it does not satisfy

this relation.
tanh(—u) = — tanh(u) (G.1)

To demonstrate that no even-order harmonics are produced by a symmetric nonlinear function

acting on a sinusoidal input, consider the input x(¢#) = A cos(wt) The nonlinear function F, acts on

this input to produce the Fourier components X; defined in (G.2).

T/2

X, =% j F[x(1)]-exp(—i2zkt | T)dt
-T/2
1 ¢ 1 7R (G.2)
=— j F[x(t)]exp(=i2zkt / T) dt +— j Flx(t)]exp(~i27kt / T) dt
T -7/2 T 0
Substituting ¢'=¢+ 7 /2 into the first term gives
T/2
l [ . . 1
Xo=o j F[x(t'=T /2)]exp(-i2zkt | T)exp (izk) dt
0 (G.3)

T/2

+% ! Flx(¢)]exp(—i2zkt / T) dt

Figure G.1 Illustrations of a first order Boltzmann function
The two lines denote f=5 (solid line), and a hyperbolic tangent function (dotted line).
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The cosine nature of x(f) means that x(¢ +7 /2) = —x(¢) (Bostock & Chandler, 1990), and so the

output of the symmetric nonlinearity becomes F[x(t —7 /2)] = F[—x(t)] = —F[x(¢)]. Therefore

T/2
X, =%(1—exp(i7rk)) [ Fx(t)]exp(-i2kt / T) dt (G. 4)

0

This indicates that whenever k=2n, where 7 is an integer, X, will equal zero and so no even-order

harmonic components can be generated.

G.2 Parameters for the first order Boltzmann function

Figure G.2 shows examples of the OHC response functions measured in the ear of a Bullfrog, a
mouse, and another mammal (Pickles, 1982; Dallos, 1996) together with a first order Boltzmann
function. In each case, the o and 3 parameters of the Boltzmann function have been adjusted to
match the physiological measurements using trial an error. The use of the first order Boltzmann
function should be treated with caution in these cases, because the input and output variables
shown in Figure G.2 have different units, but the Boltzmann function was defined in section 3.1.1
in such a manner that the input and output variables are expected to have the same dimensions. For
this reason we do not attempt to estimate the value of a, the parameter which determines the
amplitude of the Boltzmann function, from these graphs. However, it is interesting to note that the
dimensionless Boltzmann function parameter 3 takes a value between 4 and 5 in each of the cases
shown in Figure G.2. Overall, it is likely that 3 could assume any value from 1 up to about 5, as the
smaller value of 1.7 used by Cooper (1998) was useful in modelling the uncoupled response of the

guinea pig cochlea.
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Figure G.2 OHC input-output functions
The plots show Boltzmann functions (dotted lines) fitted subjectively to experimental transfer functions
(solid lines) for outer hair cells (OHCs) of a) A Bullfrog (Data from Hudspeth & Corey 1977, cited in
Pickles, 1982) using Boltzmann constants 0=8.5, f=4 and y=0.35, b) A Mammalian OHC (Dallos, 1996)
using Boltzmann constants 0=29,=4.5 and y=0.09, c¢) A Mouse OHC (Data from ~Russell, Cody &
Richardson (1986), cited in Dallos, 1996) using a=4.5, =5 and y=5.5.
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The text, figures and simulations presented in this journal letter were developed by myself.

Guidance and editorial assistance were provided by S J Elliott and B Lineton

The influence on predicted harmoniec and distortion product
generation of the position of the nonlinearity within
cochlear micromechanical models (L)
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Numerical techniques are used to explore the influence on the predicted basilar membrane [BM)
response of the position of the nonlinearity within the micromechanical feedback loop of an active
nonlinear cochlear model. This position is found to influence both the harmonic and distonion
product specira of the predicted BM response. The BM motion ai the fundamental or primary
frequencies is not significantly altered by the position of the nonlinearity, however, provided that the
gain is approprigely adjusied. The observed effects are explained in terms of the frequency
responses of the elements within the micromechanical feadback loop.

© 2010 Acowestical Soctery of America. [DOTL 10112171 3279812]

PACS number(s): 43.64 Ke, 4364 Bt, 4354.16 [BLM]

LINTRODUCTION

Discrete models of the cochlea have heen used exten-
sively to describe and investigaie the mechanics of the co-
chlea (Meely and Kim, |'98%; Viergever and de Boer, 1987;
Kanis and de Boer, 1993; Ku, 2008). In a linear active vari-
ani of this model, each micromechanical element can be de-
scribed by a feedhack diagram, as shownin Fig. 1(a) (MNeely,
1985), where pi,'.f,‘l_x is the pressure arising from the active
outer hair cells (OHCs) and is assumed to act in the same
way on the hasilar membrane (BM) as the transmembrane
pressure difference p.

Filter | corresponds io the passive mechanical admit-
tance of the BM. Filier 2 is a simplified represantation of the
impedance of the active OHC complex, incorporating the
many factors that contribute to the action of the OHCs, in-
duding linear components of the machancelectrical and elec-
tromechanical iransduction processes associated with the
celk. For example, filler 2 may encompass contributions
from hair bundle motility (Manin and Hudspeth, [999), pro-
cesses within the OHC [Santos-Sacchi, 1988), extra-cellular
processes, such &5 resonance of the tectorial membrane [Th)
and stereocilia (Kanis and de Boer, 1993), and frequency-
dependent phase shifis between the OHC pressure output and
the radial displacement of the BM and TM [Meely and Kim,
1985). A nonlinearity, atiributed to the QOHC transduction
process, can be positioned either before (Cooper, 1998) or
affer (Kanis and de Boer 1993) filter 2, as shown in Figs.
I(b) and 1ic), respactively. In ather physical systems, swch as
chemical and thermodynamic processes, the position of the
nonlinearity within a model is known to influence the pre-
dicted results [Aguirre er af_, 2005). As this effect has yet 1o
ke examined for cochlear models, we use numerical muodel-
ing to investigaie the effect on the predicied BM response of
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jhEinTsoon ac vk
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changing the position of the nonlinearity within the micro-
mechanical feedback koop. This is initially achieved by pre-
dicting the fundamenial and low order harmonic components
of the BM displacement evoked by single tone stimulation of
the maodel. In addition, the influence on distortion products
[DPs) arising from two tone excitation of the allemative mi-
cromechanical arrangemenis is also quantified.

Il. MODEL AND METHOD

A discrete long-wave cochlear model is used, whene the
longitudinal coupling is mediated by the cochlear fluid and
1000 micromechanical elements are usad 1o represent the 35
mm length of the human cochlea. The sssumed passive ad-
mittance of the BM (filter 1) and the dynamics of the OHC
complex [filier 2) comespond to those suggested by Kanis
and de Boer [1993) for a human cochlear model. The fre-
quency response functions for the filiers, obsarved at the 4
kHz characteristic place in the cochlear model, are shown in
Fig. 2. Details of the houndary conditions and the two port
model used to represent the ear canal and middle ear are
described by Elliott er o, (2007) and Ku (2008).

The nonlinearity within each micromechanical element
is assumed to be a first order Boltzmann function (Cooper,
1508), defined as follows:

T L5 i
=\ v g™ 12p) !
The value of & which deiermines the maximum ouiput of
the nonlinearity and has the same dimensions as the input .,
increases from base 10 apex 20 that the coupled model exhib-
its a compression knee-point at 30 dB sound pressure level
[SPL) for frequencies hetween (.5 and & kHz. The spatial
distribution of o differs between the itwo altemative micro-
mechanical arrangements 10 ensure thai this assumed condi-
tion is satisfied in both cases. The dimensionless constant #
is msigned a valua of either 2.5 10 or |, when the non-
linearity & positioned either before or after filter 2, respeac-

2 2010 Acaustical Society of Amarica
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FIG. 1. Bloaek disgrams represendng the micmmechanical fasdback loop
within mach element of te diwmie cochlsar mode] Examples of f) 2 fnear
active made] and [{b} and )] wo akermacdve actve nonlinesr models are
swwn. The pressore differnce aoross e BM and e BM velociy are
denoied by p and p in cach diagram. The lincar pressore owgpet and e
qrasilinear peseore oot of te (HCs are mpesened by plo, od pit
mspectively. Fikesx 1 and 2 mpresest te passive admimance of e basilr
membrae and de impedance of ge GHC complex, mspectvely.

tively, to compensate fior the change in the wnits of the input
io the nonlinearity. The dimensionless consiant 8 conirols
the asymmetry of the function and is set equal to 1.2, The
value of 9, which has the same dimensions as the input, is
selected 50 thai the nonlinearity provides O dB gain 1o the
fundamenial component at low stimulus levels. The param-
elers A and yinfluence the amplitude of even- and odd-order
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hamonic components of the nonlinear output, respactively
[Coopar, |998).

The fundamenial response of the maodel is estimated us-
ing an iterative, quasilinear method devised by Kanis and de
Boer (1993). This approach, with modifications deseribed in
the online appendix to improve the convergence, was also
applied o estimate harmaonic components and DPs.

. RESULTS
A Single tone excitation

For single tone stimulus levels of &0 and 80 dB SPL
betwean | and 7 kHz, the fundamenial component of the
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predicted BM displacement differs hy less than 5 dB be-
tween the two micromechanical amrangements [Fig. 3(a)].
However, the amplitude of the estimated harmonic compo-
nents is significantly influenced by the position of the non-
linearity within the micromec hanical feedback loop. For ex-
anple, the relaive amplitude of the predicied fundamental
and second hamonic responses toa 3 kHz tone at &0 dB
SPL decreases by 22 dB, from — 10 1o — 32 dB relative 1o the
fundamental response, when the nonlinearity is moved from
before 1o after filter 2.

B. Two tone stimulation

When two tones with frequencies £, and f; are presented
simultaneously to the model, DPs are predicted in the BM
response, 85 shown in Fig. 4(a). The amplitude of the pre-
dicted 2} —f and 25 -, DPs is decreasad by 23 and 25 dB,
respactively, when the nonlinearity is moved from hefore to
dfter filter 2. In conirast, the predicted BM velocity ai the
primary frequencies does not change by maore than 2 dB for
the same change in position.

B854 J Acoust Sac. Am., Val 127, Na. 2, Fabruary 2010

V. DISCUSSION AND COMCLUSIONS

The simulations of pure tone responses are compared to
the experimenial resulis obtained by Cooper (1998) from a
guines pig cochlea shown in Fig. 3(b). There are amplitude
differences beiween the simulations and the physiological
ohservations. These differences may arise because the as-
sumed middle ear response of the model differs from that of
the guinea pig, resuliing in different effactive stimulus levels,
or because the parameters of the model are primarily ad-
justed to replicae the response of the human cochlea, How-
ever, it is interesting to note that the relative difference he-
tween the amplitude of the fundamenial and second
hamonic responses 1o a &0 dB stimulus observed by Cooper
[1998) is 1] dB when the second harmonic frequency is ap-
proximately aqual to the best frequency of the observation
location, and that this is best replicated by the model whan
the nonlinearity is positioned hefore, rather than afier, filter
2. The position of the nonlinearity within the micromechani-
cal feedback loop does not have a substantial effect on the
fundamental response. The micromechanical arangement af-
fecis the harmonic response hecause the impedance of the
OHC complex, represented by filter 2 in Fig. |, is fraquency
de pendent (Fig. 2). For example, when considering the effect
of the feedhack loop on the second harmonic responss, the
signal of most interest is at the fundamental frequency f,
before the nonlinearity, but changes to 2 in the nonlineari-
ty's output. Therefore if the nonlinearity is positioned hefiore
filter 2, filter 3 operates on a signal at frequency 2, but if
the nonlinearity is positioned afier filier 2, then filier 2 acis
on asignal &t frequency f. The extent to which the position
af the nonlinearity influences the harmonic responses is thus
expecied to depend on the nature of the impedance used in
the maodel o represent the OHC complex.

The frequency depandence of filter 2 is also responsihle
for the influence of the position of the nonlinearity on the
predicted DP amplitudes since it acts on either the DPF fre-
quency, or the primary frequencies individually, when the
nonlinearity is placed either before or after filter 2, respac-
tively. For example, Robles er @ (1997) found that the am-
pitude of the 2f, —f; OF is approximately 28 dB below the
amplitude of the primary frequencies in their ohservation of
the chinchilla cochlea shown in Fig. 4(b). The simulation
uses a lower stimulus level than the physiological measune-
ment in order to achieve a similar degree of sauration, as a
consaquence of the middle ear differences. The relative am-
pitude of the predicied 2, —f; OP to the pimaries decreases
from —31 to —54 B when the nonlinearity is moved from
b fore to after filter 2, and so the former model again appears
1o be most consistent with the messured data Despite the
considerable e ffect on the DPs, the amplitudes of the primary
responses are not altered significantly by the placement of
the nonlinearity.

In summary, the position of the nonlinearity within the
micromechanical feedback loop can substantially affect
simulations of harmonic responses and distorion products,
without significantly influencing the fundamental response if
the gain is adjusted approprisiely. The extent of this effect
will depend on the form of the cochlear model used in the

How o af: Lafiant % tha Editar
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simulations, as it is aitribuied 1o the assumed frequency de-
pendence of the impedance attributed to the OHC complex.
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I The He et al. experiment

The He et al. experiment is described in section 5.2.2, and was designed to determine the direction

of the 2f, — f, DP travelling wave evoked by two tone stimulation of the gerbil cochlea.

The first stage of the experiment recorded measurements at two internal locations, following single
tone stimulation of the cochlea via a tone presented in the ear canal. The results are shown in
Figure I.1. The experiment was simulated on the cochlear model, and the predicted results are
displayed in Figure 1.2. Although only one stimulus level (40 dB SPL) is shown in the simulation
for simplicity, similar results were obtained using higher levels. The simulation and physiological
result of He ef al. are not quantitatively similar because of animal differences and differences in
observation location. The observation sites for the simulation were positioned distances of 10.5 and
11.3 mm from the stapes. The characteristic frequencies of these sites are 4 and 3.5 kHz
respectively. They were selected so that it would be possible to detect a backward travelling wave
in the two tone experiment using the range of frequencies over which the model predictions of

distortion products appears to be strongest (f; between 1 and 4 kHz).

The results of the simulation and experimental study, using a single tone stimulus, are qualitatively
similar in several ways. For example, both the model simulation and physiological study exhibit
peaks in the frequency response of the two locations (A and C) at the “best” frequency. Both cases
also demonstrate that the response amplitude reduces as the stimulus frequency deviates from the
best frequency, but the effect is asymmetric and the fall-off in amplitude is more rapid when the
stimulus frequency increases above the best frequency compared to decreases in stimulus
frequency. In Figure I.1.and Figure 1.2, the phase lag at the observation sites increases as the
stimulus frequency increases (B and D). In the model, the phase lag at each site is essentially the
same other than at frequencies close to the best frequency of each place and so the estimates of
phase difference, delay, group velocity at travelling wave wavelength (E, F, G and H) are only
meaningful for stimulus frequencies between approximately 2.5 and 4 kHz. For this frequency
range, increases in stimulus frequency tend to increase the phase difference, delay and travelling
wave wavelength between the observation sites calculated for both the model simulation and the
experimental results. In addition, the travelling wave velocity between the observation sites
increases with stimulus frequency in both cases. These qualitative similarities between the model
predictions and experimental outcomes of the single tone He ef al. experiment lead us to conclude

that the model could provide useful insight into the two tone He et al. experiment.
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Figure 1.1 The He ef al. single tone
stimulus experimental measurements

The BM velocity at locations 1 and 2
following presentation of single tones (at
frequency fy) in the ear canal at levels of
40, 50, 60 and 70 dB SPL indicated by
dash-dot, dashed, dotted and solid lines
respectively.

A and B show the amplitude and phase of
the BM velocity at site 2 which has a
‘best frequency’ (BF) of ~12kHz. C and
D show the amplitude and phase of the
BM velocity at site 1, which has a BF of
~15kHz.

The phase of BM velocity at site 2,
relative to site 1, is given in E. The delay
in propagation of the travelling wave, at
each stimulus frequency, between sites 1
and 2 is shown in F and is calculated
using the phase data in E and the stimulus
frequency (e.g. delay= — Ad/f where Ao is
the phase change and f the stimulus
frequency). The group velocity and
wavelength of the travelling wave (G and
H respectively) is calculated from the
delay (F) and the known distance between
the observation sites.

[From He et al. (2008), figure 3, with
universal permission]
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Figure 1.2 The simulated He ef a/
single tone stimulus experiment

Model simulation of the He ef al.
experiment. A single pure tone was
presented to the ear canal of the
model at 40 dB SPL and observed at
sites 1 and 2 located at distances of
10.5 and 11.3 mm from the stapes
respectively. A and C show the
amplitude of the response observed at
sites 2 and 1 respectively. B and D
show the phase of the response
corresponding to responses shown in
A and B relative to the stapes motion.
E gives the phase of BM velocity at
site 2, relative to site 1. F shows the
delay in propagation of the travelling
wave, at each stimulus frequency,
between sites 1 and 2, calculated
using the phase data in E and the
stimulus frequency (e.g.

delay= — A¢/f where A¢ is the phase
change and f the stimulus frequency).
G and H give the group velocity and
wavelength of the travelling wave
respectively, calculated from the
delay (F) and the known distance
between the observation sites.
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