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Distortion product otoacoustic emissions (DPOAEs) arise within the cochlea in response to two 

stimulus tones (f1 and f2) at frequencies such as 2f1 − f2 and 2f2 − f1. Each DPOAE derives from two 

contributing mechanisms within the cochlea: a distributed distortion source and a reflection source.  

They are used for hearing screening, but a better understanding of their cochlear origin and 

transmission could potentially extend their clinical application to facilitate objective hearing loss 

assessment, differential diagnosis of sensorineural hearing losses and improved auditory 

rehabilitation using hearing aids.  

In this thesis a numerical model of the human cochlea is developed to study the generation 

of DPOAEs. It is based on a pre-existing active nonlinear model, the micromechanics of which are 

carefully re-tuned to simulate the response of the human cochlea to single- and two- tone 

stimulation. Particular attention is paid to the form and position of the nonlinearity within the 

model to best match experimental results. The model is also reformulated to verify its stability and 

ensure computational convergence of the iterative frequency domain solution method. Its 

predictions are validated against estimated time domain simulations and documented experimental 

DPOAE measurements.  Additionally a novel method is developed for decomposing each 

frequency component of the cochlear response into forward and backward travelling waves, which 

is applied to investigate the multiple sources of both the 2f1 − f2 and 2f2 − f1 DPOAEs.  

The model is used to explain and predict a variety of phenomena observed in experimental 

DPOAE studies. It also confirms for the 2f1 − f2 emission, that the two source mechanisms are 

spatially separated and that the only significant reflection contribution is associated with the 2f1 − f2 

travelling wave. In contrast, it predicts that the two source mechanisms will overlap in the case of 

the 2f2 − f1 DPOAE, which can be influenced by reflection of both the primary and 2f2 − f1 

travelling waves. 
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 1. Introduction 

This thesis is concerned with understanding the generation mechanisms of distortion product 

otoacoustic emissions (DPOAEs) using numerical models of the cochlea. In this chapter the 

anatomy and physiology of the mammalian cochlea are briefly reviewed to provide the context for 

the model. The properties and applications of otoacoustic emissions are then discussed to allow 

comparison with the model predictions. 

The chapter concludes with a list of research questions which have been addressed and a summary 

of the contributions of the thesis. 



1. Introduction 
1.1 Anatomy of the ear 

 2  

1.1 Anatomy of the ear 

Figure 1.1a shows the principal structures of the ear. Sound is transmitted from the ear canal 

through the middle ear, via the tympanic membrane and ossicles, into the cochlea. The cochlea 

converts an acoustic stimulus into neural electrical signals which are transmitted to the brain via the 

auditory nerve. In this section the anatomy of the middle ear and cochlea are described so that the 

chief mechanisms can then be explained. 

1.1.1 The middle ear 

The middle ear, illustrated in figure 1.1b, consists of three ossicles: the malleus, incus and stapes. 

These bones transmit vibrations from the tympanic membrane to the oval window of the cochlea, 

acting collectively as an impedance-matching transformer. The efficient transmission achieved by 

the middle ear is attributed to three properties (Pickles, 1982): the effective area ratio between the 

tympanic membrane and the stapes footplate, the effective lever ratio of the malleus and incus 

bones, and the relative motion of the tympanic membrane and malleus. Overall, the middle ear 

performance is well modelled by a mass-spring-damper system for stimulus frequencies under 10 

kHz (Relkin, 1988). Figure 1.2 shows that the human middle ear provides a maximum gain of 

approximately 20 dB at 1 kHz and that its response becomes nonlinear for stimulus levels above 

140 dB SPL. At these high stimulus levels the middle ear performance becomes nonlinear as 

reflexes and ligaments act to restrict the stapes motion (Pascal et al., 1998). For the sound levels of 

interest here however, which are all below 140 dB SPL, the middle ear can be accurately modelled 

as a linear system. 

 

(a) 

 

(b) 

 
Figure 1.1 Illustrations of (a) the ear overview and (b) the the middle ear. 
[From (a) figure 1a of Chittka & Brockmann (2005), open access journal, and (b) figure 1a of Nobili et al. 
(2003) with permission from JARO] 
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(a) (b) 

 

 

Figure 1.2 The response of the middle ear 
(a) The gain of the middle ear (GME), measured as the ratio of the occluded ear canal acoustic pressure to the 
fluid pressure in the scala vestibuli, in 11 human temporal bones (grey lines) and the average result (black 
line). (b) Peak-to-peak stapes displacement as a function of sound pressure level (SPL) at the eardrum of a 
cat using a 315 Hz stimulus. [From (a) figure 2 of Aibara et al. (2001) and (b) figure 6 of Pascal et al. (1998) 
with permission from Elsevier and the ASA respectively]. 

1.1.2 The cochlea 

In humans, the snail-shaped cochlea has a length of approximately 3.5 cm and incorporates about 

2¾ turns (Gelfand, 1998). Figure 1.3 shows an idealised representation of the uncoiled longitudinal 

cochlea cross-section. The cochlea is divided length-ways by Reissner’s membrane and the 

cochlear partition (CP) into three longitudinal ducts; the scala vestibuli, the scala media and the 

scala tympani. Each duct contains fluid, either perilymph or endolymph. These two fluids differ in 

their chemical composition (Gelfand, 1998), but both have similar density to water (~1000 kg/m3) 

(Steele et al., 2000). The CP separates the scala media and the scala tympani. It is composed of the 

spiral lamina, the basilar membrane (BM), the tectorial membrane, and a collection of cells (the 

organ of Corti) located between these membranes. Reissner’s membrane is often neglected in 

mechanical cochlear models as it is acoustically transparent and appears to exist only in order to 

chemically separate the cochlear fluids (Dallos, 1992). The helicotrema, at the apex of the cochlea, 

provides a fluid link between the scala vestibuli and scala tympani, which limits damage that may 

be caused by excessive low frequency stimulation (Patuzzi, 1996). The middle ear makes contact 

with the cochlea via the stapes footplate, which is sealed onto the oval window by an elastic 

ligament (Dallos, 1992).  

Figure 1.4 shows the transverse cross-section of the cochlea. Movement of the cochlear fluids 

causes relative motion of the BM with respect to the TM. As consequence of this relative motion, 

the hair cells located within the organ of Corti release neurochemicals to stimulate the auditory 

neurons (Patuzzi, 1996). There are two categories of cochlear model that differ in their treatment of 
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the CP (Patuzzi, 1996). In macromechanical models, any relative movement between the structures 

within the CP is neglected so that the partition moves as one unit. The alternative is a 

micromechanical model, in which this relative movement within the CP is not neglected.  

 

 

 
Figure 1.3 Representation of the cochlear ducts 
[Based on Patuzzi (1996), figure 4.9 ] 

 

 
Figure 1.4 Cross-section of the guinea pig cochlea  
[From figure 1 of Davis (1953), with permission of Elsevier] 
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1.1.3 Hair cells 

The two types of hair cell located within the organ of Corti are illustrated in figure 1.5. Inner hair 

cells (IHCs) are thought to act primarily as sensory cells as they synapse directly with the auditory 

nerve (Nobili et al., 1998). The cell is stimulated when relative motion between the BM and 

tectorial membrane causes a deflection of its stereocilia. This deflection produces a sound-induced 

receptor current within each hair cell (Patuzzi, 1996). The receptor current and the associated 

receptor potential (the change in voltage across the membrane) act to release neurochemicals to 

stimulate the auditory neurons. As the receptor potential is induced by BM motion, the neurons that 

are most responsive to a given frequency stimulus will be those that synapse with hair cells located 

at the characteristic place (defined in section 1.2.1). 

Outer hair cells (OHCs) are also stimulated by relative motion between the BM and tectorial 

membrane. However, these hair cells act to enhance the motion of the BM rather than to stimulate 

auditory neurons (Ashmore et al., 2002). This positive feedback could be achieved through somatic 

motility, as the length of the cell varies with changes in receptor potential (Brownell et al., 1985; 

Dallos, 1992). An alternative positive feedback mechanism is motility of the stereocilia, suggested 

by observations in amphibians (Martin & Hudspeth, 1999). Several of the OHC processes are 

nonlinear, as illustrated in figure 1.6. These include the mechano-electric transduction (MET), the 

electro-mechanical motility, and the gating of mechanical channels (Liberman et al., 2004). 

 

(a)  (b) 

 

 

Figure 1.5 Illustrations of (a) an inner hair cell (IHC) and (b) an outer hair cell (OHC)  
Details are based on the description given in Gelfand (1998). 
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(a) 
 

 

(b)  

 
Figure 1.6 Examples of guinea pig OHC input-output functions 
(a) mechano-electric transduction [Re-drawn from Dallos, 1996) and (b) electro-mechanical transduction 
[From figure 3 of Santos-Sacchi (1989), with permission of Elsevier] 
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1.2 Cochlear mechanics 

In this section, the principal processes at work within the cochlea are described. It is these 

properties that a cochlear model must be able to replicate in order to accurately predict more 

complex cochlear responses. 

1.2.1 The travelling wave 

When the stapes vibrates there are two types of wave that can propagate within the cochlea as a 

result. The first is the ‘travelling’, or ‘slow’, wave which propagates along the basilar membrane 

(BM) at a rate that is slower than the speed of sound in water. The second is the ‘compression’, or 

‘fast’, wave which travels at approximately the speed of sound in water and fills the entire cochlea 

almost instantaneously. Dong & Olsen (2008) explain that this compression wave can be viewed 

simplistically as a uniform background pressure that varies in time with the motion of the stapes. 

They comment that the two types of wave can be distinguished within the cochlear fluid by the 

associated spatial pressure variations. For example, the compression wave is associated with a 

spatially uniform pressure distribution, whilst the travelling wave leads to a spatially varying 

pressure distribution close to the BM.  

The BM travelling wave, first observed by von Békésy (1960), is shown in figure 1.7. This wave 

propagates along the BM from base to apex, getting larger as it travels due to the exponentially 

decreasing stiffness of the BM (Patuzzi, 1996). The travelling wave reaches a maximum and then 

collapses abruptly (Gelfand, 1998). In the region of maximum amplitude the wave speed 

practically halts and so energy ‘piles-up’ at this position (Dallos, 1992). The amplitude of the 

travelling wave at each location along the cochlear partition (CP) is referred to as the travelling 

wave ‘envelope’ and is illustrated by the dotted line in figure 1.7. Temporal electrophysiological 

measurements demonstrate that the travelling wave is responsible for the excitation of hair cells 

(von Békésy, 1970). In contrast to this, the compression wave is usually neglected in cochlear 

models as it does not appear to produce significant hair cell excitation, and it is not coupled to the 

travelling wave (Dong & Olsen, 2008). 

Figure 1.7 The basilar membrane (BM) travelling 
wave  
The solid lines show successive patterns of BM 
displacement, and the dotted line represents the 
envelope of the travelling wave, for stimulation at 
200 Hz. 
[From figure 12/ − 17b of von Békésy (1960), 
with permission from ASA].  
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The natural frequency of the cochlear partition (CP) decreases from base to apex, as its mass and 

stiffness properties vary with distance from the stapes. Therefore, the CP provides frequency 

discrimination of the sound stimuli as the peak of the travelling wave envelope occurs at a location 

on the partition where the natural frequency corresponds to the stimulus frequency (de Boer, 1996). 

This location is near the base for high-frequency stimuli and near the apex for low frequency 

stimuli (Dallos, 1992). Very low frequency stimuli (~200 Hz) can result in BM displacement 

patterns that propagate along the entire length of the cochlea. The BM displacement and velocity 

can reach up to 30 nm and 2 mm/s respectively for an 80 dB SPL stimulus in the Chinchilla 

cochlea (Robles & Ruggero, 2001). The location at which the travelling wave envelope has the 

greatest amplitude, for a given stimulus frequency, is often called the ‘best’ place for that 

frequency. Similarly the stimulus frequency that produces the maximal BM displacement (or 

velocity) at a specific location on the cochlear partition is known as the ‘best’ frequency for that 

place (e.g. Dong & Olson, 2005). An active process, described in section 1.2.2, is thought to 

operate within the cochlea. One consequence of this activity near the base, is an increase in the best 

frequency of about half an octave relative to the passive natural frequency at a specific location 

(Steele et al., 2006). The best place (or best frequency) in an active cochlea is also known as the 

‘characteristic’ place (or ‘characteristic’ frequency) (Dallos, 1992). Figure 1.8 shows the amplitude 

and phase accumulated by the travelling wave as it progresses from the base of the cochlea to the 

characteristic place. The accumulated phase observed at the characteristic place is fairly constant 

for a given species, for a range of stimulus frequencies. For example the travelling wave of the 

squirrel monkey accumulates a phase lag of approximately 12 radians (or about 2 cycles), relative 

to the stapes motion, en route to its characteristic place irrespectively of the distance between that 

place and the base. 

As the location of the characteristic place is monotonically dependent on frequency, an empirical 

frequency-position function can be constructed as shown below (Greenwood, 1996; Le Page, 

2003) . This can be applied to several species using the parameters given in table 1.1.    

 ( )0 (1 / )
0 0( ) 10a x L

xf x C K
−= ⋅ −  

(1.1) 

In this expression, xf  is the characteristic frequency corresponding to location x on the BM, L is the 

length of the cochlea, and C0, a0 and K0 are all constants which differ between animals. The place-

frequency maps obtained from this formula are shown in figure 1.9 for three different species. The 

cochlear model discussed in Chapter 2, devised by Kanis & de Boer (1993), is based on the human 

cochlea and is therefore designed to have a place-frequency map similar to the solid line shown in 

figure 1.9. 
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Figure 1.8 The basilar member (BM) response to 
stimulation at the stapes 
The (a) amplitude and (b) phase of the ratio of 
BM to malleus displacement in the squirrel 
monkey cochlea. The responses are observed at 
two different locations, separated by 1.5 mm, 
where fi and fii are the characteristic frequencies of 
the basal and apical sites respectively.  
[From figure 5 of Shera & Guinan (1999), with 
permission from ASA]. 
 

 
 
 

Mammal C0 (Hz) a0 K0 L (mm) ƒbase (kHz) ƒapex (Hz) 
Elephant 81 1.8 1 60 5.1 0 
Cow 52.6 2.1 1 38.3 6.6 0 
Human 165.4 2.1 1 35 20.8 0 
Macaque  360 2.1 0.85 25.6 45.3 54 
Domestic cat 456 2.1 0.8 25 57.4 91 
Guinea pig 350 2.1 0.85 18.5 44.1 53 
Chinchilla 163.5 2.1 0.85 18.4 20.6 25 
Gerbil 398 2.2 0.631 12.1 63.1 147 
Mouse 7130 0.99 1 6.8 105.3 0 

Table 1.1 The parameters for Greenwood’s frequency-position function equation (1.1) 
The data is taken from Le Page (2003) and the characteristic frequencies at the base (fbase) and at the apex 
(fapex) are also shown.  
 

Figure 1.9 The calculated place-frequency 
maps for humans, cats and guinea pigs 
These results were obtained using equation 
(1.1) and the data from table 1.1.  
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Figure 1.10 The nonlinear frequency 
response of the BM 
The response is observed 3.5 mm 
from the basal end of the chinchilla 
cochlea using laser interferometry. 
The characteristic frequency at this 
location is approximately 10 kHz.  
[From figure 10 of Ruggero et al. 
(1997), with permission from the 
ASA] 
 

 

1.2.2 The active process 

Figure 1.10 shows the variation in BM frequency response with stimulus pressure level observed in 

the chinchilla cochlea using a laser interferometry (Ruggero et al., 1997). At high stimulus levels, 

the frequency response is broad, and is comparable to the responses observed in dead or damaged 

cochlea (Johnstone et al., 1986; Dallos, 1992). This response can be described by a passive 

cochlear model (e.g. Zwislocki, 1950), in which the CP can only absorb acoustical energy (de Boer, 

1995b). At low stimulus levels, the frequency response is sharper as the BM vibrations are 

enhanced at frequencies close to the characteristic frequency. It is necessary for a model to 

incorporate a locally active region, just basal to the characteristic place, in order to replicate these 

low level responses (de Boer & Nuttal, 1999). This active process, or “cochlear amplifier” (Davis, 

1983), injects energy into the travelling wave which is dissipated elsewhere along the cochlear 

partition (de Boer, 1995b). The “gain” of the cochlear amplifier usually refers to the 40 − 60 dB 

increase in the active BM response compared to the passive case (Nobili et al., 1998), evident in 

figure 1.10. The active process also increases the frequency at which the maximum response occurs 

at a specific location by about half an octave compared to the passive response (Steele et al., 2006) 

and sharpens the tuning of the BM frequency response. For example, in a chinchilla cochlea, the 

Q10dB 
1

 increases from 1.4 to 5 as the stimulus level reduces from 90 dB SPL to 10 dB SPL (Robles 

& Ruggero, 2001). 

The active process is thought to occur at the level of the BM, as mechanical tuning within the 

cochlea is as sharp as neural tuning (Khanna & Leonard, 1982; Sellick et al., 1982; Robles et al., 

1986), and is associated with the collective action of the OHCs (Davis, 1983). Evidence for the 

cochlear amplifier originates from ‘inverse’ solutions in cochlear modelling, where the unknown 

                                                      
1 Q10dB is equal to the frequency of the response peak divided by the bandwidth 10dB below the peak (Robles 
& Ruggero, 2001). Therefore higher Q10dB values indicate sharper tuning.  
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distribution of the CP impedance is obtained from physiological measurements of the cochlear 

response to single tone stimulation. The resulting impedance is found to exhibit a negative real 

component over the region just basal to the peak of the travelling wave envelope (Zweig, 1991; de 

Boer, 1996). The location of this region of negative damping is dependent on the stimulus 

frequency and indicates that the travelling wave energy increases in this region (Allen & Neely, 

1992). 

Patuzzi (1996) summarises that there are several other physiological phenomena which are 

consistent with an active process operating within the cochlea. These include the high metabolic 

rate of the cochlea, and the loss of neural sensitivity to low level sound following cochlea damage 

(induced by trauma or drugs). He also points out that it is difficult to explain the origin of 

otoacoustic emissions (especially spontaneous otoacoustic emissions) with a passive cochlear 

model. 

1.2.3 The response of the cochlear base to single tone stimulation 

Most of our knowledge of cochlear mechanics comes from experimental studies of the basal end of 

small animal cochleae, as the base of the cochlea is easier to access relative to the apex (Robles & 

Ruggero, 2001). However, there is some evidence that the behaviour of the apical region differs 

from that of the base (Kiang & Moxon, 1974) and this issue will be addressed in section 1.2.4.  

Figure 1.10 illustrates that the response of the BM to single tone stimulation has a nonlinear 

dependence on stimulus level close to the characteristic frequency, and a more linear dependence at 

higher and lower frequencies (Ruggero et al., 1997). Figure 1.11 shows an example of the growth 

of the BM response at the characteristic place, for increasing stimulus level. Pickles (1982) 

identifies three regions on this graph: linear growth at low stimulus levels up to about 30 dB SPL, 

compressive nonlinear growth at a rate of approximately 0.2 dB/dB as a consequence of saturation 

of the action process for inputs between about 30 and 100 dB SPL, and linear growth at high levels 

where the passive component dominates the active component. It can also be seen from figure 1.11 

that the input-output function becomes more linear when the cochlea is damaged. 

The nonlinear response of the cochlea is also evident in the harmonic distortion evoked by a single 

tone stimulus (Cooper, 1998).  In addition, nonlinear phenomena such as mutual suppression and 

distortion products are observable in the cochlear response to two tone stimulation (Robles & 

Ruggero, 2001). The mechanoelectrical transduction processes in the OHCs, where the stereocilla 

deflection generates a current, is likely to be the dominant source of this nonlinear behaviour 

(Ashmore, 2008). The compressive nonlinear behaviour of the cochlea has been successfully 

modelled using dynamic nonlinear models in the past (Kanis & de Boer, 1993; Harte et. al., 2005; 

van der Heijden, 2004; Ku, 2008).  
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Figure 1.11 Input-output function of the 
BM response at the characteristic 
frequency  
Responses were measured before 
(squares) and after (triangles) trauma in 
the guinea pig cochlea. The solid, 
dashed and dotted lines represent the 
growth function that would be expected 
from a saturated mechanism, a linear 
mechanism or a combined mechanism 
respectively.  
[From figure 5 of Johnstone et al. 
(1986), with permission from Elsevier]  
 

 

Another property of the single tone response in the basal region of the cochlea is approximate 

“scaling symmetry”, which means that the amplitude and phase of the travelling wave remain 

almost unchanged in a co-ordinate system that moves with the envelope of the travelling wave 

(Shera et al., 2000). For example the phase lag, relative to the stapes motion, of the travelling wave 

at the characteristic place is nearly constant for all stimulus frequencies as shown in figure 1.8. 

1.2.4 The response of the cochlear apex to single tone stimulation 

Invasive experimental techniques can obscure the response of the apical region of the cochlea 

(Cooper & Rhode, 1995). However, evidence from neural measurements suggests that the cochlear 

processing of sound may differ between the basal and apical regions. For example the sharpness of 

cochlear nerve tuning decreases as characteristic frequency decreases, as shown in figure 1.12 

(Robles & Ruggero, 2001). The form of the low-frequency tail of the neural frequency tuning curve 

(FTC) also depends on the characteristic frequency of the auditory nerve fibre (Kiang & Moxon, 

1974). In addition the phase lag of neural response at the characteristic place reduces as the 

stimulus frequency decreases, as shown in figure 1.13. This indicates that the approximate scaling 

symmetry observed in the basal region of the cochlea does not extend throughout the cochlear 

length. Finally the effect of damage on the neural response appears to differ between basal and 

apical regions of the cochlea. In the apical region, most of the neural FTC is elevated by cochlear 

trauma, whilst only the tip of the FTC is affected in the basal region (Johnstone et al., 1986). Also, 

if the tip of the FTC can be associated with cochlear amplifier (CA) gain, then the influence of drug 

induced damage suggests that the CA gain is lower in the apical, relative to the basal, region of the 

cochlea (Gorga et al., 2007).  

Differences in the form of the BM frequency response are also evident between the base and the 

apex, as shown in figure 1.14 (Robles & Ruggero, 2001). The apical BM response is less sharply 

tuned and exhibits less cochlear amplifier gain compared to the more basal response. In addition, 
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the frequency of maximum sensitivity is almost independent of stimulus level in the apical region 

but reduces with stimulus level in the basal region of the cochlea. Studies using masking techniques 

and otoacoustic emissions in human subjects suggest that the compressive nonlinear growth rate at 

the characteristic frequency is approximately the same in apical and basal regions, but that the 

range of stimulus levels over which the nonlinear growth occurs is less in the apex than the base 

(Lopez-Poveda et al., 2003; Gorga et al., 2007). These studies also provide some evidence that the 

cochlear gain may be lower at 500 Hz compared to 4000 Hz, but these results could be 

compromised by the variations in noise level with frequency (Gorga et al., 2007). 

Most cochlear models are designed to replicate the responses observed in the basal region of the 

cochlea, as much more experimental data is available to describe the base compared to apex. 

However, Shera et al. (2000) comment that deviations from the typical basal behaviour start to 

become evident in human subjects when the characteristic frequency is reduced below 3 kHz, 

which corresponds to locations which are over 13 mm from the stapes. This imposes a limitation on 

the usefulness of many current cochlear models as the most important frequencies for speech 

perception are in the range 0.25 − 8 kHz (Dillon, 2001). Models need to represent the properties of 

the apical region, based on either basal responses or the limited experimental data available, to 

optimize their relevance in this regard. 

 
Figure 1.12 The relationship between BM tuning and characteristic frequency. 
The sharpness (Q10 dB) of tuning for cochlear nerve and BM threshold responses are shown as a function of 
characteristic frequency for a range of animals. The data from the BM tuning curves refers to damaged 
cochlea, where the response is likely to be entirely passive. 
[From figure 2 of Evans (1975), with permission from Informa Healthcare] 
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Figure 1.13 Phase of the neural response to stapes 
stimulation 
Responses were observed from nerve fibres at 
different locations along the BM of the cat cochlea 
for a range of stimulus frequencies. The circles 
indicate the characteristic frequency of the nerve 
fibres. 
[From figure 5 of van der Heijden & Joris (2006), 
with permission from Elsevier] 

 

  

Figure 1.14 The response of the BM at a 
basal and apical location 
The sensitivity (ratio of BM velocity to 
stimulus pressure) was recorded at the 
0.5 and 9 kHz characteristic places in the 
chinchilla cochlea. The multiple curves 
correspond to different stimulus levels, 
and the best frequencies for the high 
stimulus levels are also indicated. 
 [From figure 13 of Robles & Ruggero 
(2001), with permission from Am. 
Physiol. Soc.]  
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1.3 Classification of otoacoustic emissions 

An otoacoustic emission (OAE) is acoustic energy released by the cochlea and recorded in the 

external ear canal. OAEs were predicted by Gold (1948), and first detected in the ear canal by 

Kemp (1978). Traditionally OAEs have been classified using the auditory stimulation that evokes 

them, as listed below (Probst et al., 1991; Hall, 2000). Example recordings of these emissions are 

shown in figure 1.15. 

(i) Spontaneous otoacoustic emissions (SOAEs) are narrow band that occur without a deliberate 

stimulus.  

(ii) Transient evoked otoacoustic emissions (TEOAEs) occur in response to a brief stimulus, such 

as a click or tone burst.  

(iii) Stimulus frequency otoacoustic emissions (SFOAEs) are elicited by a pure tone stimulus and 

have the same frequency as that stimulus. 

(iv) Distortion product otoacoustic emissions (DPOAEs) which are evoked by two pure tones 

presented simultaneously in the ear canal. The conventional notation used to describe the stimuli is 

f1 and L1 for the frequency and level of the lower frequency tone, and f2 and L2 for the other tone. 

For any two stimulus tones DPOAEs could theoretically occur at all frequencies equal to nf1+mf2, 

where n and m are integers, but many are too small relative to the background noise to be detected. 

However, there are several which are large enough to be reliably detected, as described in section 

1.5.  

Section 1.4.1 describes the sources of OAEs and introduces an alternative classification based on 

the hypothesised physiological origin of the emission. As DPOAEs are of special interest in this 

work, the methods for measuring these emissions and an overview of their properties are presented 

in sections 1.5 and 1.6 respectively. 
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(a) SOAEs 

 

 

(b) TEOAE 

 
(c) SFOAE 

 
(d) DPOAEs 

 

Figure 1.15 Examples of otoacoustic emission 
(OAE) recordings  
(a) Spectrum of SOAEs [Adapted from figure 2 
of Lind & Randa, 1992), (b) A TEOAE time 
history evoked by a click stimulus. The lower 
boxes highlight the response immediately before 
and after the click. [From figure 1 of Kemp 
(1978), with permission from ASA], (c) An 
SFOAE measured at difference frequencies 
[From figure 1 of Goodman et al. (2003) with 
permission from Elsevier, and (d) Spectrum of 
DPOAEs in the presence of two stimulus tones 
(f1 and f2, where f1<f2). The emissions are 
classified as “upper” or “lower” side band 
emissions if their frequency is greater than or 
less than f2 respectively. [Adapted from 
Lonsbury-Martin & Martin (2007), figure 5.1]. 
All responses are from human ears, apart from 
(c) which corresponds to a guinea pig ear. 
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1.4 The sources of otoacoustic emissions 

This section gives an overview of the evidence for the cochlear origin of OAEs (section 1.4.1) and 

describes the cochlear mechanisms by which the emissions are thought to originate and propagate 

(section 1.4.2). The spotlight is then turned onto DPOAEs with a description of the location and 

mechanism of their cochlear sources (section 1.4.3). The section ends with a discussion of the 

possible role of fluid compression waves in the production of DPOAEs. 

1.4.1 Cochlear origins 

A range of experiments using two different approaches were conducted during the 1980s to 

confirm that OAEs are generated within the cochlea. First it was established that alternative sources, 

such as the middle ear or neural mechanisms, were not responsible. For example drug induced 

paralysis or relaxation of the middle ear muscles produced no systematic changes in the SOAEs 

recorded from guinea pigs or anesthetised cats (Evans et al., 1981; Guinan & McCue, 1987). Also, 

the long latencies, frequency dispersion and saturation properties of TEOAEs are difficult to 

reconcile with a theoretical source located in the middle ear (Probst et al., 1991). In addition, 

several observations are inconsistent with a neural source: TEOAE detection thresholds are lower 

than the corresponding psychophysical thresholds (Kemp (1978);Wit & Ritsma, 1979); OAE 

polarity reverses when stimulus polarity reverses (Kemp, 1978); and the TEOAE amplitude 

exhibits nonlinear growth with stimulus level (Kemp, 1978). The second approach was to show that 

cochlear trauma changes OAEs, using hypoxia, ototoxic drugs or acoustic over-exposure. For 

example, Mills (2002) demonstrated that cochlear damage associated with furosemide injection 

results in elevated DPOAE thresholds.  

The above experiments revealed that OAEs originated from the cochlea, and further work 

established that the cochlear source is closely associated with the OHCs. For instance, the 

destruction of OHCs lead to changes in the DPOAE thresholds of bats and chinchilla (Hofstetter et 

al., 1997; Krossel & Vater, 2000). Also the administration of aminoglycoside antibiotic drugs, 

which primarily damage OHCs (Forge & Schacht, 2000), reduce TEOAE levels (Stavroulaki et al., 

1999) and aspirin can abolish SOAEs and SFOAEs in humans (McFadden & Plattsmier, 1984; 

Long & Tubis, 1988). In contrast, the destruction of inner hair cells (IHCs) has little effect on 

DPOAE and TEOAE properties when OHC function is retained (Wake et al., 1996; Hofstetter et 

al., 1997). Two different source mechanisms for OAE generation are described in the following 

section but it should be noted that the properties of the travelling wave, which are influenced by the 

OHCs, are important in both mechanisms. 
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In summary, OAEs are known to originate within the cochlea and their properties depend on the 

function of the OHCs. 

1.4.2 Source mechanisms 

The previous section established that OAEs originate within the cochlea and that their properties 

depend on the function of the OHCs. Kemp (1986) considered how OAEs relate to travelling waves 

in the cochlea in order to shed light on the mechanisms underlying their generation. He classified 

OAEs as either “wave-fixed” or “place-fixed”, depending on the relationship between the emission 

source and the travelling wave envelop as the stimulus frequency is varied. A wave-fixed source is 

one where the source moves along the cochlear partition as the stimulus frequency is varied, 

maintaining a constant position relative to the forward travelling wave envelop. In contrast a place-

fixed source does not move along the cochlear partition if the stimulus frequency is altered. This 

leads to a difference in the phase behaviour between wave-fixed and place-fixed sources. For a 

place-fixed source the phase is related to the phase of the travelling at a fixed location, whilst for a 

wave-fixed source the phase is related to a point that moves with the travelling wave envelope. 

Shera & Guinan (1999) built on Kemp’s classification to identify two different source mechanisms 

which can generate OAEs.  

(i) Reflection source mechanism  

This mechanism involves the linear scattering of a forward travelling wave off pre-existing 

perturbations in the cochlear mechanics to generate backward travelling waves. Upon reaching the 

base of the cochlea, these backward travelling waves could vibrate the stapes and be detected in the 

ear canal as an OAE. Evidence that these reflection sites could exist is based on the observation 

that the primate cochlea appears disorganised (Wright, 1984) indicating that impedance 

discontinuities could be distributed throughout its length. 

Although the mechanical perturbations are thought to be present along the whole cochlear partition, 

Zweig & Shera (1995b) suggest that for a single tone stimulus the tall and broad peak of the 

travelling wave envelope ensures that the wavelets originating from the region of the characteristic 

place have much larger amplitude than those reflected elsewhere. These reflections must be 

coherent, so that constructive interference occurs between the reflected wavelets, in order for a 

backward travelling reflected wave to be generated. Coherent reflections are expected to arise in 

the cochlea given that the travelling wave envelope has a slowly varying wavelength, λTW, and that 

the spacing between some of the randomly distributed impedance irregularities in the vicinity of the 

characteristic place is equal to an integer multiple of λTW/2. Therefore the largest contribution to a 

reflection source emission, evoked by a single tone stimulus, is thought to originate near the 

characteristic place of the forward travelling wave. 
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(a) Linear (place-fixed) reflection 

 

(b) Nonlinear (wave-fixed) distortion 

 
 

Figure 1.16 Illustration of the influence of stimulus frequency on the phase of emission sources 
The change in the source phase for (a) a place-fixed (reflection) source emission and (b) a wave-fixed 
(distortion) source emission, evoked by a single stimulus tone, is illustrated when the stimulus tone frequency 
is decreased from fa to fb. [From figure 2 of Kalluri & Shera (2001), with permission from ASA] 

 

If the evoked emission arising from a single tone stimulus originates from a reflection source, 

Shera & Guinan (1999) argue that the phase of the emission should vary rapidly with stimulus 

frequency, as illustrated in figure 1.16a. This is because the reflection sites are fixed and so the 

phase of the incident forward travelling wave varies when a small change in stimulus frequency 

occurs, resulting in a change in emission phase (with respect to the stimulus tone). Therefore, the 

“reflection” source described by Shera & Guinan is analogous to the “place-fixed” source in 

Kemp’s scheme.  

(ii) Distortion source mechanism 

This source mechanism is a consequence of the nonlinear response characteristics of the OHCs. 

When stimulated by two forward travelling waves, evoked by the simultaneous presentation of two 

pure tones (f1 and f2) in the ear canal, the nonlinear output of the OHCs will contain distortion 

product (DP) components in addition to components at the two primary frequencies. If the DP 

component is generated in a region of the cochlea which supports travelling waves at the DP 

frequency then, once generated, the DP travelling wave may propagate both backward towards the 

stapes to produce an emission in the ear canal, and forward towards the apex and the DP 

characteristic place (Kim et al., 1980). As a consequence of the scaling symmetry in the cochlea 

(see section 1.2.3), the phase of a distortion source emission evoked by two pure tone stimuli is not 

expected to vary very much for small changes in the stimulus frequency provided that f2/f1 is 
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constant (Shera & Guinan, 1999), as illustrated in figure 1.16b. A “distortion” source in Shera & 

Guinan’s scheme corresponds to a “wave-fixed” emission in Kemp’s description. 

Shera & Guinan (1999) use the different phase properties of the two source mechanisms, to identify 

the dominant source mechanism responsible for generating different evoked OAEs. For example, 

figure 1.17 shows that the phase of an SFOAE evoked by a low level stimulus varies rapidly with 

stimulus frequency which suggests it is generated by a place-fixed (reflection) source mechanism. 

Conversely the DPOAE shown in figure 1.17 maintains an almost constant phase as the stimulus 

frequencies are varied with fixed f2/f1 ratio, which would be consistent with a wave-fixed 

(distortion) source generation mechanism. A schematic diagram illustrating Shera & Guinan’s 

theory for the source mechanisms of SFOAEs and DPOAEs is shown in figure 1.18.  

Shera & Guinan suggest that OAEs should be classified according to their source mechanism rather 

than the evoking stimulus, as shown in figure 1.19. Using the unmixing techniques described in 

section 1.5, they illustrate that DPOAEs are composed of two source contributions: a wave-fixed 

(distortion) component and a residual place-fixed (reflection) component. In their taxonomy, 

SOAEs are categorized as predominantly reflection source emissions, as they are thought to arise 

from multiple reflections within the cochlea (Kemp, 1986) which are stabilized by cochlear 

nonlinearities (Shera & Guinan, 2008).  

 

 

Figure 1.17 The phase variation of an SFOAE and 
a DPOAE with stimulus frequency 
The SFOAE was obtained using a probe level of 
40dB SPL. The 2f1 − f2 DPOAE was measured 
using a swept f2 and fixed f2/f1 ratio (=1.2) with L1 
and L2 equal to 50 and 40 dB SPL respectively. 
To obtain a predominantly distortion source 
DPOAE, it was recorded in the presence of a third 
stimulus tone (f3 ~2f1 − f2 and L3= 55dB SPL) to 
suppress the reflection component originating 
from the 2f1 − f2 characteristic place. [From figure 
3 of Shera (2004), with permission from Wolters 
Kulver Health] 
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Figure 1.18 Illustration of SFOAE and DPOAE generation mechanisms at low stimulus levels 
[From Shera & Guinan (1999), figure 12 with permission from ASA].  

 

 
Figure 1.19 Summary of the Shera & Guinan (1999) taxonomy for OAE classification 
The taxonomy is based on the source mechanism, rather than the stimulus used to evoke the emission, but in 
general evoked emissions contain contributions from both reflection (place-fixed) and distortion (wave-fixed) 
sources at high stimulus levels. [Re-drawn from Shera & Guinan (1999), figure 10] 
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1.4.3 Location of cochlear sources for DPOAEs 

The previous sections presented the evidence for the cochlear origin of OAEs and the two different 

source mechanisms within the cochlea. This included a description of the two source mechanisms 

which are thought to contribute to the DPOAE detected in the ear canal: the nonlinear wave-fixed 

(distortion) source and the linear place-fixed (reflection) source. These two DPOAE sources can be 

spatially distinct (Brown et al., 1996), and so in this section the evidence for the location of these 

sources is presented. It should be noted that the mechanism for DP propagation out of the cochlea 

is controversial, but for now we consider that this propagation occurs via backward travelling 

waves and defer discussion of the alternative theory until section 1.4.4.  

DPs can be categorized by their frequency relative to the stimulus tones (f1 and f2, where f2 > f1). 

For example the emission frequency is either below or above the stimulus tones, so the DP is 

referred to as either a ‘lower-’ or ‘upper-’ side band emission respectively. As it is likely that the 

location of the source mechanisms for DP generation depend on its frequency compared to the 

stimulus tones, we consider the source locations of lower and upper side band emissions separately.  

(i) Lower side band distortion products 

The characteristic place for a lower side band DP is apical to the best places of both f1 and f2. Kim 

et al. (1980) observed that lower side band emissions (2f1 − f2 and f2 − f1) appeared to be generated 

in the region of maximum overlap between the primary travelling waves evoked by the stimulus 

tones, from their neural recordings in cat cochleae. Their results also suggested that, once generated 

in this overlap region, the DPs could travel both basally and apically. They observed that the 

response to the forward travelling DP at its characteristic place was essentially the same as that 

elicited by a single tone stimulus at the DP frequency presented in the ear canal. An illustration of 

how these two components arise and could contribute to the total DPOAE recorded in the ear canal 

is shown in figure 1.20a. In addition to this neural data, measures of the DP component of the 

pressure in the scala tympani near the BM of the gerbil cochlea by Dong & Olsen (2008) confirm 

that the amplitude of DP is greatest in the vicinity of the f2 best place and the CP characteristic 

place. This is shown in their results, reproduced in figure 1.21a, of the 2f1 − f2 DP amplitude of the 

scala tympani pressure at the 18 kHz best place. Peaks in the DP amplitude are observed when the 

DP frequency is equal to either 11 or 18 kHz, as at these frequencies either the DP or f2 frequency 

corresponds to the best frequency of the observation site. 
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(a) A lower side band emission (e.g. 2f1 − f2) 

 
(b) An upper side band emission (e.g. 2f2 − f1) 

 
Figure 1.20 Illustrations of the distortion product source mechanisms  
(a) a lower side band emission [Re-drawn from Shaffer et al. (2003), figure 1] and (b) an upper side band 
emission. The grey and black lines represent the travelling waves corresponding of the stimulus tones and the 
DP frequency respectively. The grey shaded area indicates the predicted distortion source mechanism 
location. DPs corresponding to other frequencies are neglected for clarity.  
 
 
 
(a) The 2f1 − f2 DP 

 
(b) The 2f2 − f1 DP 

 

Figure 1.21 The (a) 2f1 − f2 and (b) 
2f2 − f1 DP components of the scala 
tympani pressure 
Responses were observed near the 
BM at the 18 kHz best place in a 
gerbil cochlea (L1=L2=80 dB SPL 
& f2/f1=1.25). The solid black, 
solid grey and dotted grey lines 
show measurements from a 
healthy, damaged and dead cochlea 
respectively. In (a), f2 is 
approximately equal to the best 
frequency when the 2f1 − f2 = 11 
kHz.  
[From Dong & Olsen (2008), 
figure 3, with permission from 
ASA] 
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Theory predicts that a DP should arise predominantly from a distortion source mechanism in the 

vicinity of the f2 characteristic place, as this is the region of maximum overlap between the primary 

travelling waves evoked by the stimulus, and a reflection source mechanism located at the DP 

characteristic place (Shera & Guinan, 1999). Although the results of Dong & Olsen (2008) confirm 

that DP levels are higher at these two locations, compared to other positions along the cochlea, 

additional evidence is required to determine the mechanism generating these enhancements and to 

demonstrate that the DPs elicited in these areas can propagate back towards the stapes with 

sufficient magnitude to be detected in the ear canal as a DPOAE.  

The nature of the source mechanism located in the region of overlap between the two primary 

travelling waves was investigated by Shaffer et al. (2003). They measured the 2f1 − f2 DPOAE in a 

normal hearing human subjects, and introduced a third tone to suppress any source located at the 

DP characteristic place. For stimulus levels L1 and L2 equal to 60 and 45 dB respectively, and 

f2/f1=1.2, the residual 2f1 − f2 DPOAE had a amplitude between 0 and 10 dB for 2f1 − f2 frequencies 

between 1.4 and 2.4 kHz when the suppressor was applied. The residual DPOAE displayed almost 

constant phase as the DP frequency varied, behaviour typical of a DP generated by a wave-fixed 

(distortion) source mechanism as illustrated in figure 1.17 (Shera, 2004). This is consistent with 

cochlear modelling predictions that the distortion source of the 2f1 − f2 DP is distributed over a 

region which is a few millimetres long (van Hengel & Duifhuis, 1999) and located in the vicinity of 

the f2 characteristic place (Zhang & Mountain, 2008). Figure 1.22 illustrates the length of the 

distribution distortion source predicted by Zhang & Mountain (2008) using a one-dimensional 

model of the gerbil cochlea, for various stimulus frequency ratios and L1=L2=60 dB SPL. They 

predict that the source length increases from about 2.5 mm to 5 mm as the f2/f1 ratio decreases from 

1.8 to 1.1. The distributed source produces travelling waves which can propagate in both directions, 

but it is directional (Shera & Guinan, 2008). For example, Shera & Guinan (2007) observed in cat 

cochleae that although the amplitude of the forward travelling wave generated by this distributed 

distortion source region exhibited little amplitude fluctuation with changes in f2/f1, the amplitude of 

the backward travelling wave reduced in amplitude significantly for small f2/f1 ratios. Therefore a 

distributed, directional, distortion source of lower side DPs is thought to be located over a small 

area in the vicinity of the f2 characteristic place. It is assumed that this finding extends to all other 

lower side band DPs, in addition to the 2f1 − f2, as range of DP components in the BM velocity are 

evident at the f2 site (Robles et al., 1997). 
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Figure 1.22 Estimated region of 2f1 − f2 DP generation within the gerbil cochlea 
The right (dashed) and left (solid) lines indicate the apical and basal boundaries of the region for various f2/f1 
ratios with f2=3 kHz. The results are presented for (a) L1=L2 = 40dB SPL and (b) L1=L2 = 60 dB SPL. The 
apical boundary for the generation region is defined as the point at which the DP generated between the 
boundary and the apex is 10 dB below the total DP level. Similarly, the basal boundary is defined as the 
location at which the DP generated between the base and the boundary is 10 dB below the total DP level. The 
total length of their cochlear model is 12.1 mm. [From figure 3 of Zhang & Mountain (2008), with 
permission from the authors and World Scientific]. 

 

Once generated in the vicinity of the f2 best place, the DP travelling wave can propagate forward 

towards its characteristic place and be perceived by the listener (Goldstein, 1967; Zureck & Sachs, 

1979). Shaffer et al. (2003) used suppression techniques and observations of phase behaviour to 

determine that a place-fixed (reflection) mechanism, which generates a backward DP travelling 

wave, is located at the DP characteristic place. The place-fixed (reflection) source mechanism 

located at the DP characteristic place requires an incident wave which corresponds to the forward 

travelling wave generated by the wave-fixed (distortion) source positioned near the f2 best place. 

This dependence of the place-fixed source on the wave-fixed source is consistent with suppression 

experiments which demonstrate a greater 2f1 − f2 DPOAE amplitude reduction when the suppressor 

tone is presented close to the f2 frequency (Kummer et al., 1995) than when the suppressor is close 

to the fdp frequency (Shaffer et al., 2003). 

In summary, the two dominant sources of lower side band DPOAEs are thought to correspond to a 

distortion (wave-fixed) mechanism in the vicinity of the f2 characteristic place and a reflection 

(place-fixed) mechanism from the DP characteristic place. The relative magnitude of these 

components in the ear canal can vary (Brown et al., 1996) and leads to complicated interference 

effects. This simple picture may be complicated by multiple reflections between the base and the 

characteristic place (Stover et al., 1996) as indicated in figure 1.18. 
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(ii) Upper side band distortion products 

The characteristic place for an upper side band DP is on the basal side of the f2 best place. The 

spatial separation of the DP characteristic place and the f2 best place is expected to reduce as the 

stimulus level increases because the f2 best place shifts closer to the base. Although upper side band 

DPs have been detected in the BM motion in the vicinity of the f2 best place (Robles et al., 1997), 

this is not thought to give rise to a substantial DP travelling wave because this location is beyond 

the DP characteristic place.  

Less information is available regarding the sources of upper side emissions, such as the 2f2 − f1 DP, 

compared to the literature on the 2f1 − f2 lower side band emission. However, analysis of group 

delay suggests that there are again at least two source mechanisms at work for upper side band 

DPOAEs (Prijs et al., 2000). But these sources may not be spatially distinct as they were for the 

lower side band emissions. For example, the intracochlear measurement of Dong & Olsen (2008), 

reproduced in figure 1.21b, shows that the only peak in the amplitude of the 2f2 − f1 pressure 

component occurs when the DP frequency is equal to the best frequency of the observation location. 

The distortion source for upper-side band DPOAEs is thought to be basal of the f2 characteristic 

place as Martin et al. (1998) found that suppression of the 2f2 − f1 emission was most effective 

when using a probe tone with frequency greater than f2. By extending the principles that are known 

about lower-side band emission generation, Wilson & Lutman (2006) separate the 2f2 − f1 DPOAE 

into a distortion (wave-fixed) and reflection (place-fixed) using a time-window technique that 

exploits the different phase properties of emission components from these sources. As a result of 

their work, they propose that upper-side band emissions contain contributions from these two 

source mechanisms. Firstly, there is a distortion source distributed over a region of the cochlea 

basal to the DP characteristic place, where the primary travelling waves overlap. Secondly there is 

a reflection source located at the DP characteristic place. The way that these two sources could 

combine to form a DPOAE is illustrated in figure 1.20b. 

1.4.4 Compression waves 

It is possible for two types of wave to propagate within the cochlea; a slow BM travelling wave and 

a fast compression wave. As discussed in section 1.2.1, the forward transmission of sound from the 

stapes is dominated by the BM travelling wave. Similarly the backward transmission of DPs, from 

their generation site to the stapes, is commonly believed to occur via BM travelling waves (Kemp, 

1980; Kim, 1980 etc). However, this conventional view of the backward transmission of DPs has 

recently been challenged. For example, Ren (2004) measured the 2f1 − f2 DP component of BM 

vibration between the base and the f2 best place in the gerbil cochlea using laser interferometry. He 

observed that the phase of the BM vibration was consistent with a forward, not a backward, DP 

travelling wave. He also noted that the stapes vibrated at the DP frequency before the DP 
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component was observed in BM motion near the base of the cochlea. He concluded that the 2f1 − f2 

DP is transmitted from its generation site to the stapes via fluid compression wave, and that the 

stapes vibration then initiates a forward travelling wave on the BM at the DP frequency. Similar 

phase behaviour has since been observed in gerbils by He et al. (2008) and in guinea pigs by de 

Boer et al. (2008). In addition, Siegel et al. (2005) measured high frequency SFOAE latency in 

chinchilla and found the values were too high to be consistent with backward travelling waves but 

that the results could be explained by compression waves. As a consequence of these recent 

experimental findings, there is dispute regarding the dominant mechanism for the reverse 

propagation of DPs within the cochlea. Some attempts have been made to simulate Ren’s results in 

models without the use of compression waves, and the outcome has been mixed (Vetesnik et al., 

2006; de Boer et al., 2008).  

The model described in the following chapters does not incorporate fast compression waves, and 

only allows sound to escape from the cochlea via backward travelling waves. This approach has 

been taken, despite the controversy, because the following substantial evidence exists to suggest 

that backward travelling waves are the dominant mechanism by which OAEs are transmitted out of 

the cochlea. 

• Measurements of intracochlear pressure variation in gerbils demonstrates that the travelling 

wave mechanism dominates the compression wave mechanism (Dong & Olsen, 2008). 

• Estimates of reverse, or round-trip, travel times for OAEs are more consistent with backward 

travelling waves than fast compression waves (Schoohoven et al., 2001; Moleti & Sisto, 2008; 

Harte et al., 2009).  

• Allen-Fahey experiments, where DPOAE levels are observed whilst the f2/f1 ratio is varied 

and the source amplitude is controlled, support the predominance of the travelling wave over 

the compression wave (Shera et al., 2007). 

• A suitable volume source within the cochlear partition would be necessary to generate 

compression waves, and it is difficult to imagine how the fluid filled organ of Corti could act 

as such a source. For example, there is no physiological evidence that the OHCs produce a 

volume change in the CP when stimulated (Ashmore, 2008).  
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1.5 Measurement of DPOAEs 

In this section, an overview of the techniques used for measurement and analysis of DPOAEs is 

presented, followed by a description of common recording stimulus paradigms. This gives insight 

into how the properties of the DPOAEs discussed in chapters 4 and 5 have been established 

experimentally. 

1.5.1 Measurement and analysis 

Measuring a DPOAE 

The equipment shown in figure 1.23 is typically used to measure a DPOAEs. A probe in the ear 

canal contains a microphone and a receiver. The probe can be secured in the ear canal using a soft 

plastic tip, but an air tight seal is not required (Hall, 2000). The mixing of the pure tones could be 

performed electronically, and the result presented through a single receiver, but acoustic mixing 

where each tone is delivered through a separate transducer is less susceptible to nonlinear 

interaction artefacts (Probst et al., 1991). Both the recording microphone and the receiver should 

have a flat frequency response (between 0.3 and 8kHz) and perform linearly over the required 

range of stimulus levels (Grandori, 1985). The receivers require in situ calibration, prior to DPOAE 

measurement, using a method such as the two-stage approach described by Knight & Kemp (1999).  

DPOAEs can be analysed by either selecting a specific DP frequency (such as 2f1 − f2) and 

applying a narrow band filtering technique, or by digital analysis using an FFT of the recording in 

the ear canal (Probst et al., 1991). A single DPOAE is usually identified if it satisfies three criteria: 

The amplitude exceeds the noise floor by 3 to 6 dB (Martin et al., 1990; Hatzopoulos et al., 2001); 

the amplitude exceeds a minimal absolute value; and the measurement is repeatable within 5 dB. A 

minimum absolute value is imposed on the DPOAE level, such as 5 dB SPL (Martin et al., 1990) 

or approximately 80dB below the primary levels (Lukashkin & Russell, 2005), to ensure rejection 

of system artefacts.  

There are many commercial devices available for measuring DPOAEs, and they differ in terms of 

their probe shape, noise reduction strategies, and default criteria for DPOAE identification. 

However, Parthasarathy & Klostermann (2001) demonstrated that across four different devices, the 

probe fitting, mean test time and mean 2f1 − f2 DPOAE amplitude was not significantly different. 

Their results suggest that the characteristics of measured DPOAEs do not depend on the device, but 

that differences in stimulus parameters and identification criteria can significantly affect results. 
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Figure 1.23 Block diagram illustrating the equipment required for DPOAE measurement.  
[Re-drawn from Martin et al. (1990) figure 5]. 
 

Separating the DPOAE components from difference source mechanisms 

The process of separating the DPOAE into components arising from the two different source 

mechanisms described in section 1.4.2, is called unmixing. The two common approaches to 

unmixing are described by Kalluri & Shera (2001). First, a third stimulus tone with frequency close 

to the DP frequency can be used to suppress the contribution to the DPOAE originating from the 

place-fixed (reflection) source mechanism located near the DP characteristic place. When the 

suppressor is present, the residual DPOAE is attributed to the wave-fixed (distortion) source 

mechanism distributed near the f2 best place. The contribution to the total DPOAE by the place-

fixed (reflection) source mechanism is established by subtracting the distortion source component 

from the total DPOAE recorded in the absence of the suppressor tone. This approach assumes a 

linear summation between the two components and could be limited by nonlinear effects 

introduced by the suppressor tone. The second approach exploits the different phase characteristics 

of the two source mechanisms, as illustrated in figure 1.24. The level of the DPOAE is recorded 

across a range of DP frequencies, using a fixed f2/f1 ratio paradigm. Under these conditions the 

phase of the wave-fixed (distortion) source component should be approximately constant, whilst 

the phase of the contribution from the place-fixed (reflection) source should vary rapidly with DP 

frequency. Once the phase of the DPOAE has been unwrapped relative to the stimulus tones, an 

inverse fast Fourier transform (IFFT) is performed and a time-windowing technique is then applied 

to separate the two components. The wave-fixed source component for the 2f1 − f2 emission can be 

contained in a time window spanning values between 0 and 1 − 2 ms, whilst the place-fixed 

component extends from 2.25 ms onwards (Knight & Kemp, 2001). It would not be appropriate to 

conclude from this that the travel time of the DP from the reflection source exceeds that of the 

distortion source, although this would agree with the spatial separation of the sources, because the 

‘latency’ values arise as a consequence of the different phase characteristics of the source 

mechanisms not their distance from the stapes.  
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Figure 1.24 An illustration of the inverse fast Fourier transform (IFFT) unmixing method  
This approach was used by Kalluri & Shera (2001) to separate the components of the DPOAE that arise from 
a reflection source and a distortion source. The top graph represents the amplitude and phase of a typical 
DPOAE recorded using a constant f2/f1 ratio. The second row of graphs illustrates the results of the IFFT and 
time windowing. The bottom graphs illustrate the amplitude and phase of the unmixed distortion source 
component (left) and reflection source component (right). [From figure 6 of Shaffer et al. (2003) with 
permission from Wolters Kulver Health]  
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1.5.2 Recording and reporting paradigms 

There are several common approaches to recording and reporting DPOAE observations, and these 

methods are discussed below. Examples can be found in the following section, alongside the 

description of DPOAE properties.  

(i) An amplitude spectrum is a record of the DP frequencies and their amplitudes, which are 

evoked by a single stimulus tone pair. 

(ii) DPgrams illustrate the amplitude of a single DPOAE (such as the 2f1 − f2) as a function of 

frequency. Usually L1 and L2 are kept constant during these measurements, as is f2/f1.  

(iii) Input-output (I/O) functions or growth functions consist of DPOAE amplitude plotted as a 

function of stimulus level. The stimulus frequencies are fixed during these measurements, and the 

stimulus levels are related by a simple formula. Some studies use a fixed level difference (L1 − L2) 

[Mills, 2002), whilst others use a “scissor paradigm” (Janssen & Muller, 2008). The scissor 

paradigm was designed so that the responses to both primary tones would grow at an equal rate at 

the f2 characteristic place, and therefore preserve the degree of overlap between the primary 

travelling wave envelopes. In order to achieve this L1=0.4L2+39dB, so that L1 increases at a slower 

rate than L2 to compensate for the greater degree of compression exhibited by the f2 response at the 

f2 characteristic place (Kummer et al., 1998). 

(iv) Frequency-ratio functions are constructed by plotting the emission amplitude (and phase) as 

a function of the stimulus frequency ratio (f2/f1). L1 and L2 are kept constant during these 

measurements (Lukashkin & Russell, 2001), along with either f2, f1 or fdp (Mills, 2002).  

(v) Contour maps of DPOAE amplitude represent the dependence of the emission on two 

different stimulus parameters simultaneously. As DPOAE amplitude (and phase) is dependent on 4 

variables (f2, f1, L1, & L2), contour plots can be viewed as a slice through a 4 − dimensional space 

(Mills, 2002). 

(vi) DPOAE suppression tuning curves are plotted by introducing a third stimulus tone f3 (in 

addition to f1 and f2) which acts to suppress on of the emission sources. Therefore the suppressor 

tone usually has a frequency close to either f2 or fdp.  
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1.6 Properties of DPOAEs 

A cochlear model must replicate the known properties of DPOAEs in order to provide insight into 

their generation mechanisms and make valid predictions for future experiments. For this reason, a 

brief overview of these properties is given in this section, but further details can be found in 

chapters 4 and 5. 

1.6.1 Characteristics of human DPOAEs 

Amplitude 

In mammals, the largest DPOAE is the 2f1 − f2 emission, with an amplitude of 5 − 15 dB SPL or 

50 − 60 dB below the stimuli for moderate stimulus levels (Lonsbury-Martin & Martin, 2008). The 

2f1 − f2 DPOAE can be up to 20 dB greater than 2f2 − f1 (Knight & Kemp, 1999). For an individual 

ear, the amplitude of different order DPOAEs are related such that an ear with a high level 2f1 − f2 

DP is also expected to exhibit a high amplitude 2f2 − f1 emission (Wilson & Lutman, 2006). For an 

individual subject, amplitude measures are usually repeatable within 3 dB for the 2f1 − f2 DPOAE, 

even if the recordings are separated by an interval of several weeks (Franklin et al., 1992; Roede et 

al., 1993; Zhao & Stephens, 1999; Wagner et al., 2008). In addition the amplitude of the 2f1 − f2 

DPOAE has little dependence on stimulus frequency. For example, the average 2f1 − f2 DPOAE 

amplitude recorded from a group of 20 subjects varies by less than about 15 dB as f2 increases from 

1 to 8 kHz (Mills et al., 2007). 

Fine structure 

If small frequency intervals are used to record DPOAE amplitude for a range of stimulus 

frequencies using a fixed f2/f1 ratio, from an individual subject, then a fine structure becomes 

evident. In humans, the difference in amplitude between the 2f1 − f2 fine structure peaks and 

troughs can be to up 20dB (He & Schmiedt, 1993). If peaks in the fine structure occur at DP 

frequencies of fa and fb, then in humans it is usually found that ( ) / 1/15a b a bf f f f− ≈  (Zweig & 

Shera, 1995b; Dhar & Abdala, 2007). The peaks and troughs can occur at the same emission 

frequencies for both the 2f1 − f2 and 2f2 − f1 DPOAEs (Knight & Kemp, 1999). This DPOAE fine 

structure is thought to be associated with the fine structure observed in other cochlear measures: 

SFOAE amplitude, pure tone audiograms recorded using small frequency intervals and the 

frequency spacing of SOAEs (Zweig & Shera, 1995a).  



1. Introduction 
1.6 Properties of DPOAEs 

 33  

Growth functions 

The DPOAE growth rate with increasing stimulus level is dependent on the stimulus parameters 

(Knight & Kemp, 1999; Rhode, 2007; Mills, 2002). For example, using the scissor stimulus 

paradigm and f2/f1=1.2, Kummer et al. (1998) observed that the 2f1 − f2 DPOAE growth rate 

reduced from 1 dB/dB to 0.2 dB/dB when L2 increased above 40 dB SPL. At higher stimulus levels 

(e.g. L2 > 80 dB SPL), the growth rate increases above that observed for moderate stimulus levels 

(Dorn et al., 2001). DPOAE amplitude does not always increase uniformly with stimulus level, and 

deviations from monotonic growth are called “notches” (He & Schmiedt, 1993). These notches 

occur more commonly in rodents than in humans and Kummer et al. (1998) found notches 

exceeding 2 dB in only 3% of human DPOAE growth functions. In humans, the notches are 

thought to arise as a consequence of “the mixing of the DPOAE source components in the ear 

canal” which also produces fine structure in DP-grams (He & Schmiedt, 1993; Mauermann et al., 

1999).  

Frequency and level differences 

The amplitude of lower side band emissions, such as the 2f1 − f2 DPOAE, can be optimised using 

an f2/f1 ratio between 1.2 and 1.32 for stimulus levels between 65 and 75 dB SPL (Knight & Kemp, 

1999). The amplitude of the emission falls off when the f2/f1 ratio is moved away from the optimal 

value. The reason for this amplitude dependence of lower side band emissions on the f2/f1 ratio is 

discussed in section 4.1.6. In addition, there is an optimal level difference (L1 − L2) which 

maximises the amplitude of both the upper and lower side band DPOAEs. In human subjects the 

optimal level difference, which elicits the greatest 2f1 − f2 DPOAE amplitude, depends on f2/f1 and 

decreases from 10 dB to 5 dB when f2/f1 becomes very small (Knight & Kemp, 1999). For the 

2f2 − f1 DPOAE, the optimal level difference is about 0 or  − 5 dB (Fitzgerald & Prieve, 2005). The 

origin of the optimal level difference is investigated in section 4.1.5.  

1.6.2 Comparison of OAEs between mammals 

Much of the information on DPOAEs that has been acquired through invasive physiological 

measurements relates to rodent cochleae. Therefore it is important to appreciate some the 

differences between the OAE properties of humans and other mammals.  

Laboratory animals typically have hearing that extends one or two octaves beyond that of humans, 

as shown in figure 1.9. There is some evidence that laboratory animals may have broader auditory 

filters compared to humans (Shera et al., 2002), although this has been disputed (Ruggero & 

Temchin, 2005). The f2/f1 ratio which optimizes the 2f1 − f2 in animals such as rabbits, mice, guinea 

pigs and gerbils is generally higher than that observed in humans for the same stimulus paradigms, 
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possibly as a consequence of the difference in place-frequency maps (Lonsbury-Martin & Martin, 

2008). In addition there is speculation that the cochleae of rodents are smoother than primate 

cochleae (Withnell et al., 2003). This would be expected to reduce the place-fixed (reflection) 

component of DPs, reduce the fine structure amplitude of DPOAEs, and reduce the amplitude of 

other place-fixed (reflection) source emissions such as SOAEs, SFOAEs and TEOAEs. 

Physiological evidence supporting this hypothesis includes a lack of fine structure in DPOAEs 

recorded from rabbits and rodents (Whitehead, 1998), and reduced prevalence of SOAEs and 

TEOAEs in rabbits and rodents compared to primates (Lonsbury-Martin & Martin, 2008).  

In general DPOAE amplitudes are larger, by approximately 25 to 30 dB, in rabbit and rodent ears 

compared to human or monkey ears at moderate stimulus levels when testing within the best 

hearing range of each species (Lonsbury-Martin & Martin, 2008). Notches can be found in the 

DPOAE growth functions of all mammals for some, but not all, stimulus paradigms. For example, 

Lonsbury-Martin & Martin (2008) report that notches can only be found between stimulus levels of 

55 and 70 dB SPL in rabbits and guinea pigs, but they occur over a wider range of stimulus levels 

in primate ears. In rabbits, a notch can be replicated across all subjects using the same stimulus 

parameters. This is not the case for primates, where the stimulus parameters which correspond to a 

notch in the DPOAE growth function differ between individuals. Whitehead (1998) comments that 

the origin of notches in DPOAE growth functions may differ between small laboratory mammals 

and humans. There is some evidence to suggest that notches in human DPOAE growth functions 

are associated with fine structure (He & Schmiedt, 1993), whilst two different suggestions have 

been made for the origin of notches in the DPOAE growth functions of small mammals. Firstly, 

Whitehead (1995b) proposes that notches arise as a consequence of two different and distinct 

distortion generation mechanisms operating at high and low stimulus levels, which differ in their 

physiological vulnerability. The alternative suggestion of Mills (2002) is that the notches could 

arise from a single, distributed, distortion source mechanism. 

In summary these differences suggest that care should be taken inferring human DPOAE 

characteristics from measurements made in the ears of other mammals. 
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1.7 Applications of DPOAEs 

In this section the clinical applications of OAEs are discussed, along with the current limitations of 

these applications and possible future developments. We also consider two different methods that 

have been suggested for estimating the gain of the cochlear amplifier using DPOAE measurements: 

DPOAE suppression tuning curves and Allen-Fahey type experiments. 

1.7.1 Clinical applications 

Hearing screening 

In the UK, TEOAEs are used for universal neonatal hearing screening, based on the observation 

that they occur in all normal hearing ears (Kapadia & Lutman, 1997) and are generally not 

observed if the subject has a sensorineural hearing loss greater than 40 − 45 dB HL (Hall, 2000). 

DPOAEs are also frequently used to screen for hearing loss. Based on a study of 7179 infants, 

Norton et al. (2000) suggest that DPOAEs can be used to identify a hearing loss where the 

threshold exceeds 30 dB HL, provided appropriate stimulus parameters are used (e.g. f2/f1=1.22, 

L1=65 dB SPL and L2=50dB SPL).  

Hearing loss estimation 

There have been several attempts to use DPOAEs to not only screen for hearing loss, but to 

establish the hearing threshold levels (HTLs) for subjects with mild hearing loss. If this application 

were to be successful it would provide a valuable objective method of hearing testing and a tool for 

differential diagnosis between types of sensorineural hearing loss. This would be particularly 

helpful for assessment in cases of suspected non-organic hearing loss, or for patients who are 

unable to perform conventional behavioural tests such as pure tone audiometry. Improved 

differential diagnosis of sensorineural hearing loss may also contribute to an improved auditory 

rehabilitation process and hearing aid fitting strategies.  

Attempts to estimate HTLs from DPOAE measurements mainly try to establish a link between 

HTLs and either the emission threshold levels (e.g.Dorn et al., 2001) or the emission growth 

function (Dorn et al., 2001; Boege & Janssen, 2002). Each of these methods is usually limited to 

frequencies where f2 is greater than 1 kHz, since low frequency DPOAEs can be difficult to record 

(Gorga et al., 1994). In addition the definition of the emission threshold is usually dependent on the 

noise floor of the study (Dorn et al., 2001). Some studies find high correlation (0.77 to 0.86) 

between 2f1 − f2 DPOAE thresholds, defined as the stimulus level at which the emission exceeds 

the experimental noise floor, and HTLs for mild to moderate hearing losses (Dorn et al., 2001). 

However, this is not replicated in other work (Gaskill & Brown, 1993). This discrepancy could be 
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due to the different stimulus paradigms, or the influence of DPOAE fine structure (Shaffer et al., 

2003), but a lack of consistent correlation means that DPOAE thresholds are not used routinely in 

clinics for estimating HTLs. The gradient of the DPOAE growth function is also affected by 

hearing loss as it tends to increase as hearing loss increases (Dorn et al., 2001). However, it has not 

yet been determined if growth functions can be used to reliably determine the extent of a hearing 

loss.  

Other clinical applications 

Although it is not yet possible to use DPOAE growth functions to reliably predict hearing threshold 

levels in subjects with hearing loss, there is evidence that DPOAE growth functions closely 

resemble psychoacoustic loudness growth curves (Janssen & Muller, 2008). Therefore it may be 

possible to use DPOAE growth functions for prescribing hearing aid settings in the future. 

However, the application of DPOAEs to hearing aid rehabilitation is limited by intersubject 

variation which makes it difficult to predict loudness growth directly from an individual DPOAE 

input-output function (Neely et al., 2003a). In addition otoacoustic emissions can be used to 

monitor the effect of drug treatments which are known to have ototoxic properties (Hall, 2005).  

The routine clinical application of OAEs is currently limited to the screening of neonates (and other 

patient groups where objective testing is required) and the test battery for non-organic hearing loss. 

However, these applications could be vastly extended if more reliable methods for predicting 

hearing threshold levels and growth functions from OAEs were available. 

1.7.2 Suppression tuning curves 

Various attempts have been made to use DPOAEs as a non-invasive tool for investigation of the 

cochlear amplifier (CA). As these investigations generally attempt to quantify the CA gain, they are 

closely related to studies seeking a relationship between DPOAE measures and hearing loss. 

However, large inter-subject variability makes it difficult to conclude CA properties for an 

individual on the basis of DPOAE measures (Neely et al., 2003b).  

DPOAE suppression tuning curves can be obtained for a variety of stimulus levels. Examples are 

shown in figure 1.25, where the level of the suppressor is set to reduce the 2f1 − f2 DPOAE 

amplitude by 3 dB. When using a suppressor frequency close to f2, Gorga et al. (2003) associate 

changes in the tip-to-tail difference of DPOAE suppression tuning curves with changes in CA gain. 

However, they advise that the absolute value of the tip-to-tail difference might not be a direct 

measure of CA gain for a specific stimulus level. On this basis figure 1.25 indicates that the CA 

gain reduces by 20 dB as the stimulus level (L2) increases from 20 to 60 dB SPL.  
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Figure 1.25 Examples of 2f1 − f2 DPOAE suppression tuning curves  
Responses are shown for a human subject with normal hearing threshold levels. The value of L2 is shown in 
each graph, and L1=0.4L2+39dB. The stimulus frequencies were f2=4 kHz and f2/f1=1.22. The grey lines and 
arrows indicate the tip-to-tail difference for each tuning curve. [From figure 7 of Gorga et al. (2003),with 
permission from ASA] 

 

Some studies have focused on other aspects of the tuning curves, such as Mills (1998) who 

determined a relationship between the low frequency slope of the curve and the CA gain in gerbils. 

Overall, these investigations suggest that it may be possible to establish a relationship between 

DPOAE suppression tuning curves and CA gain in humans, although further work is needed to 

achieve this. 

1.7.3 Allen-Fahey type experiments 

Allen & Fahey (1992) proposed a method for measuring the gain of the cochlear amplifier (CA) 

using simultaneous measures of the 2f1 − f2 DP in the ear canal and at its characteristic place. Their 

experiment has since been repeated by several research groups, with various modifications (de 

Boer et al., 2005; Shera & Guinan, 2007). In this section the principle of the experiment and 

interpretation of the results are described.  

The principle of the experiment 

The Allen-Fahey experiment assumes that the 2f1 − f2 DPOAE originates entirely from the 

distortion source mechanism located at the f2 best place. Once generated at this site, the DP is 

expected to propagate both backwards towards the stapes and forward towards its own 

characteristic place. The CA is expected to amplify forward travelling DP wave over a region just 

basal to the DP characteristic place. During the experiment, the stimulus frequency ratio is 

gradually reduced whilst the DP frequency is held constant. For each DP frequency, the levels of 

the primary tones (L1 and L2) are adjusted so that the amplitude of the DP vibration at its 

characteristic place is constant for all f2/f1 values, and the level of the 2f1 − f2 DPOAE in the ear 

canal is monitored. When f2/f1 is much greater than one, the f2 best place should be basal to the 
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region over which the CA acts on the 2f1 − f2 DP forward travelling wave. Figure 1.26a illustrates 

that in this case the DP forward travelling wave is expected to be amplified by the CA en route to 

its characteristic place. When f2/f1 is very close to one, the f2 best place shifts to the apical side of 

the region over which the CA acts on the DP travelling wave. For this reason, Figure 1.26b shows 

that in this case the 2f1 − f2 DP forward travelling wave is not expected to be amplified by the CA 

en route to its characteristic place. If the CA provides a gain, G, to the DP travelling wave then the 

DPOAE is expected to be a factor of G2 smaller for the first paradigm (f2/f1 > 1) compared to the 

second paradigm (f2/f1 ~ 1), as illustrated in figure 1.26. 

The original Allen-Fahey experiment was performed in cats, and the neural response at the DP 

characteristic place was monitored invasively. The experiment was repeated in guinea pigs by de 

Boer et al. (2005) who used laser interferometry to measure the BM motion, instead of the neural 

response, at the DP characteristic place. Shera & Guinan (2007) developed a non-invasive method 

for monitoring the BM response at the DP characteristic place using a third stimulus tone, which 

they used to repeat the Allen-Fahey experiment in cats.  

 

 

 

(a)  

 

(b) 

 

Figure 1.26 The Allen 
& Fahey (1992) 
stimulus paradigm 
During the experiment 
the f2/f1 ratio is reduced 
from (a) high to (b) 
low for a fixed 2f1 − f2 
DP frequency. The DP 
amplitude at its 
characteristic place 
(xdp) is kept constant at 
L0. The characteristic 
places for f1 and f2 are 
denoted by x1 and x2 
respectively. The CA 
region provides a gain 
G to the DP travelling 
wave, in both 
directions. 

 



1. Introduction 
1.7 Applications of DPOAEs 

 39  

Interpreting the result 

Allen & Fahey (1992) summarise that, based on the principles described above, the maximum value 

of the CA gain (G) observed in their experiment is 10dB. Replications of their experiment found 

similar results (de Boer et al., 2005; Shera & Guinan, 2007). As this estimated gain is much less 

than the 30 or 40 dB expected, they conclude that the simplest explanation is that there is no 

cochlear amplifier. However, other groups (de Boer et al., 2005; Shera & Guinan, 2007) suggest 

that the result indicates a flaw in the method rather than evidence against the existence of the CA. 

Based on the assumption that there is a CA, and the experiment fails to demonstrate this, the 

following explanations have been offered to account for the null result: 

• There may be wave interference occurring between the DP and the primaries, or DPs at other 

frequencies (de Boer et al., 2005) 

• The directionality of the distortion source (wave-fixed) mechanism may change with f2/f1 ratio 

(Shera & Guinan, 2007), as a result of the distributed nature of the source region (Neely & Liu, 

2008), which would invalidate the underlying assumptions of the method  

• There may be some suppression of the DP for small f2/f1 ratios (Shera & Guinan, 2007) 

• The contribution of the reflection source (place-fixed) mechanism is neglected 

• DPs travel out of the cochlea via fluid compression waves, not reverse travelling waves, and 

therefore the principle of the method is flawed (Ren & Nuttal, 2006)  

The diversity of these explanations indicates that the assumptions on which the Allen-Fahey 

experiment was based are over simplified and that there is a need for an increased understanding of 

the detailed mechanisms involved in the generation and propagation of DPs within the cochlea. The 

explanations of the Allen-Fahey results will be further discussed using the results of the cochlear 

model in section 5.2.1.  
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1.8 Modelling efforts of cochlear responses and OAEs 

1.8.1 Historical overview 

Models of cochlear mechanics are constructed to replicate basic physiological properties, such as 

the fundamental and harmonic cochlear responses to a single tone stimulus, and then applied to 

interpret more complex observations and develop valid experimental hypotheses. For example, 

cochlear modelling was used by Helmholtz (1877) to explore perception of tones and by Gold 

(1948) to interpret the sharp tuning observed in the cochlea and predict otoacoustic emissions. 

More recently models have been used to demonstrate that a cochlear amplifier mechanism is 

necessary to explain the sharply tuned response of the BM to single tone stimulation (de Boer, 

1995a). 

Many different types of cochlear model have been proposed including hardware models, 

constructed either from plastic and metal materials or electrical networks (Zwicker, 1986; White & 

Grosh, 2005; Wittbrodt et al., 2006), and abstract mechanical models solved by computer (Neely & 

Kim, 1986; Kanis & de Boer, 1993; Kolston & Ashmore, 1996; Elliott et al., 2007; Gan et al., 

2007). The abstract models, where the cochlea is divided into longitudinal elements, have varying 

numbers of degrees of freedom ranging from 2 to over 104 per slice (Neely & Kim, 1986; 

Baumgart et al., 2008). 

Early cochlear models were designed to simulate only the amplitude and phase of linear, passive 

response of the cochlea to single tone stimulation (e.g. Zwislocki, 1950; Schroeder, 1973; Zweig et 

al., 1976; Steele & Taber, 1979; Allen, 1980; de Boer, 1980). Models then progressed to 

incorporate an active process (de Boer, 1983; Neely & Kim, 1986; Mammano & Nobili, 1993; 

Geisler & Sang, 1995 etc) and nonlinearity. The nonlinear models were either solved in the time 

domain (e.g.Hall, 1974; Kim et al., 1980; Mauermann et al., 1999; van Hengel & Duifhuis, 1999), 

or in the frequency domain using iterative or perturbation techniques (Kanis & de Boer, 1993; 

Chadwick, 1998; Talmadge et al., 1998; Lim & Steele, 2002; Talmadge et al., 2004 etc). 
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1.8.2 Modelling of DPOAEs 

We intend to use a one-dimensional active nonlinear cochlear model to investigate the principal 

mechanisms of DPOAE generation. Such models have been used successfully in the past to 

simulate DPOAEs (e.g. Kanis & de Boer, 1997; van Hengel & Duifhuis, 1999; Neely & Liu, 2008). 

However, a consequence of selecting such a simple model is that the predicted responses in the 

vicinity of the peak of the travelling wave envelope may be less accurate than the responses of two- 

or three- dimensional models. This limitation may influence the amplitude of the predicted place-

fixed (reflection) DPOAE component to a small extent (Shera et al., 2005).  

Several studies have used cochlear modelling to predict properties of intracochlear DPs and 

DPOAEs. Although these results are consistent with experimental measurements they are 

frequently limited to a small range of stimulus parameters or DP frequencies. For example, Kanis 

& de Boer (1997) use a one-dimensional model to predict the dependence of the 2f1 − f2 DP on the 

f2/f1 ratio, but do not extend the work to investigate the effect of this ratio on other DPs or to probe 

the properties of the generation region. Other studies apply models to predict a few isolated 

features of DPOAEs, such as the frequency spectrum in the ear canal (Moleti et al., 2009) and fine 

structure (Talmadge et al., 1998; Shera et al., 2000). Talmadge et al. (1998) use their one 

dimensional model of the human cochlea, which incorporates inhomogeneities in the impedance of 

the model to act as sites of reflection, to estimate the forward and backward travelling waves for a 

variety of DPs. This approach provides a useful tool for investigating the source of DP components 

within the cochlea, but their method is limited to low stimulus levels and small stimulus frequency 

ratios as they deliberately neglect the nonlinear effects of self- or mutual- suppression of the 

primary tones to simplify the calculations.  

Vetesnik et al. (2006) use a two-dimensional cochlear model, based on that proposed by Mammano 

& Nobili (1993), to simulate a variety of DPOAE properties including spatial distributions and 

dependence on the f2/f1 ratio for both the 2f1 − f2 and 2f2 − f1 DPs. They also predict the growth of 

these DPs for a range of cochlear amplifier gain values. However, their model produces only the 

wave-fixed (distortion) component of the DPOAE and the place-fixed (reflection) component is 

neglected. In addition they rely on the maxima in the spatial distribution of BM displacement at 

2f1 − f2 and 2f2 − f1 to infer the source location of these DPs. Although their results are consistent 

with two source contributions from the vicinity of the f2 best place and DP characteristic place, they 

do not provide evidence that the DPs generated at these locations are effectively transmitted out of 

the cochlear model.  

It is rare for the harmonic response evoked by a pure tone stimulus to be examined along with the 

production of the DPs in a single cochlear model. Nonetheless in cases where both types of 

distortion are described, such as the work of Lim & Steele (2002), the predicted harmonic response 



1. Introduction 
1.8 Modelling efforts of cochlear responses and OAEs 

 42  

provides useful additional evidence when assessing the validity of the model against experimental 

data. However, the Lim & Steele (2002) results are restricted to a small range of stimulus 

parameters making extensive verification of their model difficult. 

In summary, although many cochlear models have been developed to simulate DP generation 

within the cochlea, so far none has given a comprehensive overview of a range of predicted 

DPOAE properties and their generation mechanisms whilst incorporating both wave-fixed and 

place-fixed components. In addition, it would be useful to be aware of the harmonic responses to 

single tone stimulation in such a model to determine if these were also consistent with 

physiological studies. 
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1.9 Research questions and contributions 

The aim of this thesis is to develop a cochlear model to investigate the mechanisms involved in the 

production of DPOAEs. There are three stages to the work: chapters 2 and 3 describe the 

development and validation of the model; chapters 4, 5 and 6 illustrate the application of the model 

to answer some specific questions; and finally chapter 7 provides a discussion of the strengths and 

the limitations of the model and suggests some ideas for future work. 

The model is verified in the first part of this thesis by comparing its predictions of the cochlear 

response with physiological measurements and the estimates of other cochlear models. This 

includes a comparison between our quasilinear frequency domain model and a state space time 

domain model. The aspects of the cochlear response used for the verification process were the 

fundamental and harmonic responses of the BM to single tone stimulation and the mutual 

suppression that occurs in the BM response to two tone stimulation.  We also made some 

preliminary estimates of the 2f1 − f2 DP properties predicted by the model before proceeding to 

study the 2f1 − f2 and 2f2 − f1 DPOAEs in more depth.  

In chapters 4, 5 and 6 the model is applied to investigate the following research questions:  

• What are the strengths and weaknesses of the model regarding 2f1 − f2 and 2f2 − f1 DPOAE 

prediction? 

• What explanation does the model provide for the dependence of the 2f1 − f2 and 2f2 − f1 

DPOAE amplitudes on the stimulus parameters?  

• What causes notches in the growth of the 2f1 − f2 DPOAE amplitude predicted by the model? 

• What is the origin of DPOAE fine structure in our model? 

• What forward and backward DP travelling waves are generated within the model in response 

to two tone stimulation?  

• What explanation does our cochlear model, which contains a cochlear amplifier, offer for the 

outcome of the Allen & Fahey experiment? 

• Can the model provide insight into the results of Ren and colleagues who are unable to detect 

backward travelling waves on the BM at DP frequencies? 

• What is the source mechanism for the 2f2 − f1 DPOAE suggested by our model? Can these 

upper sideband emissions be simulated by a cochlear model that does not incorporate fluid 

compression waves? 

Overall, the most important contributions of the thesis may be summarised as follows: 

(i) Reformulation of the Kanis & de Boer (1993) quasilinear model of the cochlea to ensure 

computational convergence of the iterative process and to verify stability of the model. The 

solution is also decomposed into forward and backward travelling wave components to 

facilitate interpretation of the results.  
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(ii) The fine tuning of the micromechanical parameters in the cochlear model is extended to 

improve the agreement between experimental responses of the cochlea to single and two tone 

stimuli and those predicted by the model. The effect of the position of the nonlinearity within 

the micromechanical feedback loop has also been clarified (How et al., 2010). 

(iii) A comprehensive comparison of experimental results and the simulated properties of the 

2f1 − f2 and 2f2 − f1 DPOAEs predicted by the baseline and perturbed model. This allows many 

of the DPOAE characteristics to be explained but also determines which features of these 

emissions cannot be understood in such a simple model. This review also serves to establish 

which characteristics of the emissions are most sensitive to flaws in the tuning of the cochlear 

micromechanical model and could therefore be useful in tuning the parameters further. 

(iv) Confirmation of the origin of the optimal stimulus level difference characteristic exhibited by 

both 2f1 − f2 and 2f2 − f1 in a coupled cochlear model. 

(v) The identification and explanation of predicted notches in the wave-fixed component of the 

2f1 − f2 DPOAE growth function in the cochlear model. 

(vi) Clarification of the limitations of the Allen-Fahey experiment. 

(vii) Development of tools for assessing the directionality of wave-fixed DP sources within the 

cochlear model. 

(viii) Suggestions regarding the source mechanism for the 2f2 − f1 DPOAE. 

 



2. The Kanis & de Boer micromechanical model 

45 

2. The Kanis & de Boer micromechanical model 

Kanis & de Boer (1993) developed a model to replicate the nonlinear behaviour of the cochlea. 

Their motivation was to provide insight into the mechanisms of cochlear nonlinearity which cannot 

be obtained easily through the use of more complex models (Kanis, 1995). They also proposed a 

“quasilinear” iterative method, to estimate the response of the model in the frequency domain, 

which can be used to evaluate the DPs predicted by the model (Kanis, 1995; Kanis & de Boer, 

1997). 

In this chapter the Kanis & de Boer model is described along with their quasilinear method for 

predicting its response. We start by reviewing the cochlear wave equation, and the associated 

solution methods in section 2.1. We then describe their linear micromechanical model (section 2.2). 

We go on to propose a method for decomposing the predicted travelling wave into forward and 

backward propagating components (section 2.3) and illustrate the features of this method using the 

results of the linear model. In section 2.4, nonlinearity is introduced into the micromechanical 

model and the quasilinear method is reviewed. Finally, we present the state space formulation of 

the Kanis & de Boer cochlear model and use it to verify the stability of the model, which is 

required for the quasilinear method to be valid. The state space model also provides a convenient 

method of performing time domain simulations, whose steady state response can be compared with 

those of the quasilinear method (section 2.5).  
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2.1 The wave equation  

2.1.1 The one-dimensional wave equation 

Figure 2.1 shows a two-dimensional representation of the cochlea (Zweig et al., 1976; Steele & 

Taber, 1979). The cochlear partition (CP), the vertical CP velocity (v), the height of the channels 

(H), length of the cochlea (L), the stapes velocity (ust), the horizontal and vertical fluid velocities 

(uf and vf respectively), and the fluid pressure (pf) are all shown. The three dimensions of the 

cochlea have been reduced to two by neglecting radial motion and averaging the CP properties, 

such as its mass, across its width. This model also assumes that the cochlea is straight with 

channels of constant height, that the walls are rigid and that there are no fluid ducts, that Reissner’s 

membrane can be neglected so that there are only two significant channels, that the two channels 

are symmetric, that the cochlear fluids are incompressible and that there is no significant structural 

longitudinal coupling along the CP. The appropriateness and consequences of some of these 

assumptions are discussed in appendix A.1.  

For a passive linear model such as this, the wave equation (2.1) describes its response to sinusoidal 

stimulation in the presence of an internal distributed pressure source S(x,ω), and is derived in 

appendix A. In this equation ω, ρ, and 
pass

CPZ  denote the angular frequency of the stimulus, the 

density of the cochlear fluids, and the impedance of the cochlear partition respectively. The semi-

difference pressure, pd, is introduced to simplify the notation (Peterson & Bogert, 1950) and is 

defined in terms of the fluid pressure above and below the CP in (2.2). The CP impedance is 

defined in (2.3). 

 

 

Figure 2.1 A two-dimensional illustration of the cochlea 
The cochlear partition (CP), the vertical CP velocity (v), the height of the channels (H), length of the cochlea 
(L), the stapes velocity (ust), the horizontal and vertical fluid velocities (uf and vf respectively), and the fluid 
pressure (pf) are all shown.  
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This wave equation is one dimensional, as all of the variables depend on only one spatial co-

ordinate, x. This is a consequence of the long-wave approximation which states that the wavelength 

of the travelling wave is much greater than the height of the cochlear channel, as discussed in 

appendix A3. There are two boundary conditions of the model: conservation of horizontal 

momentum at the base (2.4) and no semi-difference pressure at the helicotrema (2.5). 
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2.1.2 Overview of solution methods 

There are two common approaches to solving the linear wave equation (2.1) in the frequency 

domain, for a known CP impedance, in the absence of an internal distributed source: The finite 

difference method and the WKB approach.  

The finite difference method uses a lumped-parameter formulation, where the length of the cochlea 

is represented by N discrete elements as shown in figure 2.2. Elements 2 to N-1 correspond to 

sections of the cochlear partition, and their dynamics are described by the CP impedance. The first 

and last elements represent models of the middle ear dynamics and helicotrema. Appendix B1 

describes how this framework allows the wave equation (2.1) to be written in matrix form and 

solved using computer software such as MATLAB. It also illustrates that it provides an accurate 

representation of the distributed system provided N ≥ 500. For this reason we generally use 500 

elements to represent the length of the cochlear partition. However, in early work we took a more 

cautious approach and used 1000 elements rather than 500.  
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Figure 2.2 The one-dimensional lumped-parameter model of the cochlea 
Elements 2 to N-1 represent micromechanical models of the cochlear partition. Elements 1 and N correspond 
to models of the middle ear dynamics and helicotrema respectively. [Based on Elliott et al. (2007), figure 4] 

 

The WKB solution for the wave equation (2.1) is derived in appendix B.2.1. To summarise, this 

method approximates the total pressure distribution (2.6) by a linear sum of two basis functions 

(2.7). The constants 0 0 and pp+ − are determined by the boundary conditions, and k0 is chosen to 

normalise the basis functions at the base of the model.  
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where the wavenumber, k, is complex 
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The basis functions  and ϕ ϕ+ − are interpreted as travelling waves propagating forward and 

backward respectively, as discussed in appendix B.2.2. The wavelength of these travelling waves is 

inversely proportional to the real part of k(x), whilst the imaginary component of k(x) describes the 

exponential growth rate of the travelling wave amplitude. The WKB solution is derived based on 

the assumption that there is little variation in k(x) over the distance of one spatial wavelength, as 

expressed in (2.9). This is equivalent to the condition that there are no substantial reflections in the 

cochlear model. This condition is generally satisfied through the cochlear model (appendix D.1), 

and the WKB solutions obtained using (2.6) and (2.7) are consistent with those obtained using the 

finite difference approach (appendix B.2.3). It is also possible to apply the WKB solution to linear 

models containing internal sources or sources of reflection as described in appendix B.2.4. 
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Finally it is necessary to use models of the stapes, middle ear and ear canal if the solution to the 

wave equation is to be used to predict DPOAEs. The stapes model is necessary for the application 

of the basal boundary condition in the cochlear mechanics. The middle ear and ear canal also need 

to be incorporated if stimuli are to be presented in the ear canal, and if sound is to be transmitted in 

and out of the cochlear model. These details are discussed in appendix C. In general, the stapes is 

represented by a simple mass-spring-damper model. However under some circumstances it is 

useful to substitute an alternative stapes representation, to minimise reflections at the basal 

boundary, so in these cases the use of this alternative boundary condition will be noted as required.  
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2.2 The micromechanical model 

The wave equation (2.1) applies to all linear cochlear models of the type illustrated in figure 2.1, 

whatever the impedance of the cochlear partition, ZCP(x,ω). Many different models for the cochlear 

partition (CP) have been proposed in the literature. They differ in their descriptions of the CP 

dynamics and therefore have different expressions for ZCP(x,ω). Macromechanical models neglect 

any motion within the CP, whilst micromechanical models incorporate relative motion between 

structural components of the CP such as the basilar membrane (BM) and tectorial membrane 

(Patuzzi, 1996). 

In this section the linear active micromechanical model introduced by Kanis & de Boer (1993) is 

described and the responses illustrated. Their model is designed to replicate the response of the 

human cochlea. A discussion of other micromechanical models is deferred until chapter 3.  

2.2.1 The impedance 

Figure 2.3 illustrates a single element of the linear Kanis & de Boer cochlear model. The passive 

version of the model is effectively macromechanical, because the CP moves as a single unit of 

mass, mKB, with stiffness, kKB, and damping, cKB. The upward displacement of the CP is denoted by 

ξp, and its upward velocity as v. The passive CP impedance, pass

CPZ , is defined in (2.10) in terms of 

the semi-difference pressure and vertical CP velocity. It can be expressed as a function of the CP 

properties as shown in (2.11). 

 2 ( , )
( , )

( , )
pass d

CP

p x
Z x

v x

ω
ω

ω
−

=  (2.10) 

 ( )
( , ) ( ) ( )pass KB

CP KB KB

k x
Z x i m x c x

i
= + +ω ω

ω
 (2.11) 

 
 
 

 
Figure 2.3 A representation of a single element in the Kanis & de Boer cochlear model 
The vertical displacement of the CP (ξp), the CP mass (mKB), stiffness (kKB) and damping (cKB) are all shown. 
The fluid pressure below and above the CP (p1 and p2) is related to the semi-difference pressure pd= 
½(p2 − p1). 
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Kanis & de Boer suggest a distribution of the CP properties along the cochlea as described in (2.12) 

to (2.14), where m0 = 0.5 kgm-2, δ = 0.4, s0 = 1010 kgm-2s-2 and κ = 300 m-1. They set the height H 

equal to 1 mm and generally only consider the basal 0.01 m of the cochlea, but the model can be 

extended to 0.035 m. The CP mass is constant throughout the cochlea, but the damping and 

stiffness vary exponentially. The value of the exponential growth factor, κ, was chosen so that the 

stiffness variation was consistent with that observed in human cadaver cochleae (de Boer, 1980). 

For this passive model the natural frequency, ωn, is a function of distance from the base (2.15), and 

the width of the resonance peak is inversely proportional to the constant damping parameter δ (de 

Boer, 1996).  
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Kanis & de Boer also develop an active micromechanical cochlear model, based on the passive 

model described above, by incorporating an impedance associated with the OHCs, lin

OHCZ . This 

impedance is defined in terms of the OHC output pressure, lin

OHCp , and the CP velocity in (2.16). Its 

form appears to be an algebraic approximation to the impedance that provides realistic solutions 

rather than being based on a specific dynamic model of the CP. The superscript lin, emphasises the 

linear nature of these variables. The impedance lin

OHCZ  is related to the parameters of the model as 

shown in (2.18), where the constants e0 (4.28 × 10 − 5 kgm2s) and d0 (1404 kgs-1) are associated with 

the OHCs, δsc (0 .4) is a dimensionless damping parameter, and σ0 (0.7) is a dimensionless 

parameter that shifts the frequency of the OHC resonance relative to the BM resonance. The 

variables ωn(x), and b(x,ω) are defined in (2.15) and (2.19). The total active CP impedance, active

CPZ , 

is the linear sum of the two impedance components as shown in (2.17). These components are both 

specific acoustic impedances with the dimensions of mass per unit area per unit time.  
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Figure 2.4 The CP impedance of the linear Kanis & de Boer cochlear model 
The (a) magnitude, (b) phase, (c) real part and (d) imaginary part of the predicted CP impedance are shown 
for the active (solid line) and passive (dashed line) linear model, following a 5 kHz stapes stimulus. The 
model length is 0.035 m, but only the first 0.015 m is shown here for clarity. The 5 kHz characteristic place is 
illustrated by the thin dotted vertical lines. 

 

Figure 2.4 shows the CP impedance distribution along the cochlea when the model is stimulated at 

5 kHz. The real part of the active impedance is negative in the region immediately basal to the 

characteristic place, indicating that the OHCs are injecting energy into the travelling wave over this 

region. 

2.2.2 Response of the linear model 

The pressure and velocity distribution along the Kanis & de Boer cochlear model, evoked by a 

single tone stimulus applied to the stapes, is shown in figure 2.5. These responses were estimated 

with the finite difference method, using N=1000. Note that only the first 15 mm of the full 35 mm 

length is shown. Comparing the maximum CP velocity for the passive and active cases indicates 

that the cochlear amplifier (CA) gain of the active model is about 38 dB. The response of the active 

model also peaks about 2.5 mm further along the cochlea than the response of the passive model, 

corresponding to a shift in the best frequency at a single position of approximately ½ an octave. In 

addition to increasing the maximum amplitude of the travelling wave, the CA acts to increase the 

rate of spatial variation of the phase of pd and v in the vicinity of the best place. The velocity phase 

lag, relative to the stapes motion, accumulated by the travelling wave when it reaches the best place 

is approximately 2 cycles in figure 2.5d. This is consistent with the 1.5 − 2.5 cycles of phase 
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accumulation at the best place measured in the base of mammalian cochlea (Robles & Ruggero, 

2001).  

 
Figure 2.5 The response of the linear active Kanis & de Boer cochlear model 
The amplitude and phase of the semi-difference pressure (a and b) and the CP velocity (c and d) evoked by a 
5 kHz stimulus are shown. Responses of the linear active (black lines) and passive (grey lines) models were 
obtained using the finite difference method. Results are given in units of dB relative to the semi-difference 
pressure at the base or stapes velocity in plots a and c respectively. The 5 kHz characteristic place in the 
active model is denoted by the thin dotted vertical lines. 
 

 
Figure 2.6 The response of the passive linear model to an internal stimulus 
The magnitude and phase of the semi-difference pressure (a and b) and the CP velocity (c and d) evoked by 
an internal 5 kHz source in the passive linear Kanis & de Boer cochlear model are shown. The source is 
located at either 2mm (black arrow) or 9mm (grey arrow) from the base. The responses to the 2mm and 9mm 
sources are drawn in black and grey respectively, and were obtained using the finite difference method and 
the basal boundary condition was modified to minimise reflections, as described in appendix C.2. The results 
are given in units of dB relative to the semi-difference pressure or the vertical CP velocity at the 9 mm source 
location in plots a and c respectively.  
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The response of the passive linear Kanis & de Boer cochlear model to an internal point source at 5 

kHz is shown in figure 2.6. In this case the phase of the response falls off in both directions away 

from the source and illustrates how a DP might propagate out of the cochlea. This reverse 

propagation within the cochlea is discussed in more detail with regarding to forward and backward 

travelling waves in section 2.3.  

The expression for the total linear CP impedance given in (2.17) can be modified to include a 

parameter γ(x) which takes a value between 0 and 1 at every location (Neely & Kim, 1986).  

 ( , ) ( , ) ( ) ( , )active pass lin

CP CP OHCZ x Z x x Z xω ω γ ω= − ⋅  (2.20) 

We shall refer to γ(x) as the OHC gain, to distinguish it from the CA gain which usually takes a 

value of 30 − 40 dB (section 1.3.2.). In a fully active linear model, γ = 1 throughout the model. In a 

completely passive model, where the action of the OHCs is neglected, γ = 0 everywhere. Gradual 

reduction of γ from 1 to 0 can be used to simulate the effect of a nonlinear function in the cochlear 

model, which would act to reduce the OHC gain as the stimulus level increases, as shown in figure 

2.7.  

 

 
Figure 2.7 The influence of OHC gain, γ, on the response of the linear active model 
The (a) amplitude and (b) phase of the semi-difference pressure, and the (c) amplitude and (d) phase of the 
CP velocity, evoked by a 5 kHz in the linear active Kanis & de Boer model are shown. In each case γ is 
constant throughout the model, at the value indicated in the key. The results are given in units of dB relative 
to the semi-difference pressure and vertical CP velocity at the base of the cochlear model in plots a and c 
respectively.  
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2.3 Forward and backward travelling wave decomposition 

The finite difference method can be used to determine the distribution of the semi-difference 

pressure, pd(x,ω), but it does not explicitly reveal the direction of the travelling wave. In this 

section a method is presented for decomposing the finite difference solution pd into forward and 

backward travelling components. This provides a useful tool when examining models with internal 

sources or sources of reflection in chapters 4, 5 and 6.  

The mathematical steps described below are similar to those presented by Talmadge et al. (1998), 

but the application is different. For example, Talmadge et al.construct the distribution of the total 

semi-difference pressure arising in the cochlear model from the forward and backward travelling 

wave components predicted by the WKB method. In contrast, we use the finite difference method 

to estimate the total semi-difference pressure, and then decompose it into forward and backward 

travelling waves using the WKB approach. Both approaches to evaluating the forward and 

backward travelling wave components invoke the same assumptions, such as the validity of the 

WKB approximation described in section 2.1.2.  They are also both subject to a similar degree of 

numerical error (appendix B.2.3).  However we choose to use the decomposition method as it 

allows a more straight forward evaluation of the total semi-difference pressure, which is not 

dependent on the WKB approximation, compared to the approach of Talmadge et al. We also 

develop a strategy for analysing the validity of the decomposition process (section 2.3.2).  

2.3.1 The decomposition method 

The decomposition process divides the total finite difference solution, pd, into the forward (+) and 

backward ( − ) travelling components suggested by the WKB solution as shown in (2.21) − (2.23). 

This is the reverse of the usual application of the WKB method, which seeks to determine pd(x) 

from ( )dp x+ and ( )dp x− , where: 

 ( ) ( ) ( )d d dp x p x p x
+ −= + , (2.21) 

 

( )0
0 0

( ) ( ) exp ( ') '
( )

x

d

k
p x p x i k x dx

k x

+ += ⋅ − ∫ , (2.22) 

and ( )0
0 0

( ) ( ) exp ( ') '
( )

x

d

k
p x p x i k x dx

k x

− −= ⋅ + ∫ . (2.23) 

In these expressions, k0 a constant which denotes the wavenumber at the base of the model and is 

included so that the basis functions are normalised at x = 0, as described in appendix B.2.2. Also, 

the coefficients 0 ( )p x+ and 0 ( )p x− should be constant provided that there are no internal sources 
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present in the cochlear model. These coefficients, 0p+  and 0p− correspond to the amplitude of the 

forward and backward travelling waves at the base of the cochlear model respectively. It should be 

noted that, in general, the amplitudes of the forward and backward travelling waves are given by 

the absolute values of 0 0 / ( )p k k x+ and 0 0 / ( )p k k x−  respectively, and so the coefficients 0p+  

and 0p−  are not synonymous with the travelling wave amplitudes at any location other than the 

base of the cochlear model. 

The decomposition is achieved using both the computed semi-difference pressure pd(x) and the 

computed longitudinal fluid velocity, uf(x); which was evaluated using the finite difference 

approximation for /ddp dx . The decomposition formula can be obtained by differentiating the 

( )dp x± functions with respect to x (2.24), and substituting the result into the equation for 

conserving longitudinal momentum (2.25) to obtain (2.26). 
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Combining (2.21) and (2.26) gives 
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which can also be written as shown below. If the WKB approximation is valid, then the term 

labelled q(x) in (2.29) should be small compared to 1 and the method reduces to wave 

decomposition in a uniform system.  

 

2
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( )1 ( ) 1
( ) ( ) 1

2 ( ) 2 ( )
f

d d

q x

u x dk x
p x p x
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      

∓ ∓

�������
 (2.29) 

In the following section the validity of the decomposition method is investigated. When the results 

of the decomposition process are valid, the amplitude of the predicted forward and backward 

travelling wave components typically alter by less than 1 dB if the q(x) term is neglected. However, 

it is retained in all following simulations as it can significantly modify the amplitude of any 

erroneous predictions.  

2.3.2 Accuracy and validity of the decomposition method 

The accuracy of the decomposition procedure is limited by any numerical errors in the total semi-

difference pressure or fluid velocity estimated by the finite difference method, and the validity of 

the WKB approximation. A consequence of these limitations is that small, but finite, erroneous 

travelling wave components may be predicted in scenarios where they have no physical origin. 

Consider, for example, the semi-difference pressure evoked by a stapes stimulus applied to a linear 

cochlear model in which there are no significant sites of reflection (appendix D.1). In this case the 

decomposition method would ideally predict that the total semi-difference pressure, pd(x), 

corresponds exactly to the forward travelling wave, ( )p x+ . However in practice, as a result of 

errors associated with the numerical calculations and WKB approximation, the decomposition 

method would predict that the total semi-difference pressure is equal to the sum of the estimated 

forward travelling wave, ( )estp x+ , and an error term, ε(x), as shown below.  

 ( ) ( ) ( )d estp x p x x+= + ε  (2.30) 

As a consequence of the use of expression (2.21) in the decomposition method, any error ε(x) in the 

estimated forward travelling wave is incorporated into the estimated backward travelling wave. For 

this reason, the decomposition method will predict a small erroneous estimated backward travelling 

wave, ( )estp x− , even in this scenario where such a wave has no physical origin. In this section two 

approaches are presented which can be used to discriminate between erroneous predictions of the 

decomposition method and valid forward and backward travelling wave estimates which offer 

insight into the propagation direction of waves within the cochlear model.  
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The first approach estimates the amplitude of the error term ε(x), and uses this to form an “error 

floor”. Only the estimated forward or backward travelling wave components with amplitudes above 

this error floor will be considered valid predictions of the decomposition procedure. As errors 

associated with the WKB approximation are difficult to quantify, we assume that the amplitude of 

ε(x) is similar to the scale of numerical errors in the finite difference method, approximately 0.5 dB 

(appendix B.1). This leads to an estimated error floor at  − 24.5 dB relative to pd(x), neglecting any 

inaccuracies the WKB approximation. The usefulness of this error floor can be demonstrated from 

considering the decomposition of the semi-difference pressure in the active linear ‘baseline’ 

cochlear model, in which the impedance properties of the cochlear partition vary smoothly with 

distance from the base and no significant reflection of forward travelling waves should occur 

(appendix D.1). Figure 2.8 shows the total semi-difference pressure evoked by a 5 kHz stimulus 

applied at the stapes. It also shows the forward and backward travelling waves predicted by the 

decomposition method, and the error floor is included for reference. The estimated forward 

travelling wave amplitude is above the error floor and within 0.3 dB of the total pd(x) distribution 

throughout the region between the stapes and the 5 kHz characteristic place. In contrast the 

estimated backward travelling wave amplitude is below the error floor, which indicates it is an 

erroneous prediction and can be neglected. The phase behaviour of the erroneous predicted 

‘backward’ travelling wave (figure 2.8b) also indicates that this component is an artefact as its 

phase decreases with increasing x, which is typical of a forward, not backward, travelling wave as 

indicated in (2.22) and (2.23). Therefore, taking into account the error floor, the decomposition 

process suggests that a 5 kHz stapes stimulus will evoke only a forward travelling wave, and no 

significant backward travelling wave, in a linear active baseline cochlear model.  

Another approach is to identify valid decomposition estimates from the behaviour of the travelling 

wave coefficients 0 ( )p x± . In a model containing no internal sources, or sites of reflection, these 

coefficients should be constant along the CP. In cases where internal sources, or sites of reflection 

are present, then fluctuations should occur in the amplitude of both coefficients. However, if the 

error ε(x) dominates either the estimated forward or backward travelling wave component predicted 

by the decomposition method, it will cause fluctuations in the amplitude of either the 0 ( )p x+ or 

0 ( )p x− distribution respectively. These erroneous fluctuations cannot be attributed to internal 

sources or sites of reflection as they usually are only evident at significant levels in one of the 

travelling coefficients and not the other. For example, figure 2.8c shows that the 0 ( )p x+ coefficient 

is essentially uniformly distributed between the base and the characteristic place as its amplitude 

varies by less than 0.1 dB over this region. In contrast, the 0 ( )p x− coefficient amplitude fluctuates in 

excess of 36 dB between the base and the 5 kHz characteristic place. This variation in the 

amplitude 0 ( ),p x− combined with the observed absence of substantial fluctuations in the 
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0 ( )p x+ coefficient, suggests that the prediction of the estimated backward travelling wave is 

dominated by the error ε(x) and should be neglected. This approach is subjective, as is it not 

apparent what level of fluctuation in the amplitude of the 0 ( )p x± coefficients should be considered 

indicative of an error. We arbitrarily use a value of 10 dB to determine whether amplitude 

variations on of the travelling wave coefficients should indicate caution in interpreting the result. 

Overall, this approach yields the same conclusion as the error floor analysis: taking into account 

numerical errors and inaccuracies in the WKB approximation, the decomposition process predicts 

that a 5 kHz stapes stimulus will evoke only a forward travelling wave, and no significant 

backward travelling wave, in a linear active baseline cochlear model.  

  

 
Figure 2.8 The estimated forward and backward travelling waves in a baseline cochlear model 
The (a) amplitude and (b) phase of the total semi-difference pressure, and the forward and backward 
travelling components, evoked by a 5 kHz stapes stimulus in the linear active Kanis & de Boer cochlear 
model are shown. As the model is ‘baseline’, no irregularities have been deliberately imposed on the CP 
impedance. Results were evaluated using the finite difference method, and decomposition process, with 
N=1000. The ‘error floor’ is shown in (a) for reference. (c) The amplitude of the coefficients for the forward 
and backward travelling waves. In plots a and b, the amplitudes are given in dB relative to the value of pd at 
the base of the model. 
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2.3.3 Application to internal sources 

Figure 2.9I shows the forward and backward travelling components of the semi-difference pressure 

evoked by an internal sinusoidal point source located between the base and the characteristic place 

in the linear active Kanis & de Boer model. In order to allow a simple interpretation of the results, 

the basal boundary condition is adjusted to minimise reflections by setting the stapes impedance 

equal to the impedance for a backward travelling wave at the base of the CP (appendix C.2). Figure 

2.9Ic illustrates that at the location of the internal point source, both the 0 ( )p x+ or 

0 ( )p x− coefficients exhibit a sharp change in amplitude. However, on the basal side of the source 

location 0p−  is essentially constant (less than 1 dB amplitude variation) whilst the 0p+ coefficient 

level fluctuates considerably (in excess of 40 dB). In this basal region, only the amplitude of the 

estimated backward travelling wave component exceeds the error floor of the decomposition 

method. In contrast, on the apical side of the source location, 0p+ is almost uniform (less than 2 dB 

level variation) whilst the 0p−  coefficient exhibits substantial amplitude variation exceeding 50 dB. 

In this apical region, only the amplitude of the estimated forward travelling wave component 

exceeds the error floor of the decomposition method. Collectively, these observations suggest that 

both the estimated forward travelling wave in the basal region, and the estimated backward 

travelling wave in the apical region, should be neglected because they are dominated by errors 

associated with numerical inaccuracies and the limitations of the WKB approximation. Therefore, 

taking into account numerical errors and inaccuracies in the WKB approximation, the 

decomposition procedure predicts that an internal sinusoidal point source located between the base 

and the characteristic place will evoke a backward travelling wave which propagates from the 

source to the stapes and a forward travelling wave which propagates from the source to the 

characteristic place.  

In figure 2.9II the basal boundary condition has been altered so that there is approximately 

complete reflection of the backward travelling wave at x = 0. The response to the internal 

sinusoidal point source on the apical side of the source region is essentially unchanged by the 

reflective basal boundary condition. However, the introduction of reflection off the stapes does 

influence the predicted response between the base and the source location. In this region, when the 

reflecting basal boundary condition is imposed, both the 0 ( )p x+ or 0 ( )p x−  coefficients exhibit 

almost constant amplitude which varies by less than 1 dB and the amplitudes of the both the 

estimated forward and backward travelling wave components exceed the error floor. Therefore, 

taking into account numerical errors and inaccuracies in the WKB approximation, the 

decomposition procedure indicates that an internal sinusoidal point source located between the base 

and the characteristic place will give rise to a backward travelling wave which propagates towards 
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the base and can be reflected at the stapes to generate a forward wave which travels into the 

cochlear model from the base.  

(I) 

 
(II) 

 
Figure 2.9 The estimated forward and backward travelling waves evoked by an internal source 
Plots (a) and (b) show the amplitude and phase of the total semi-difference pressure, and the forward and 
backward travelling components, evoked in the linear active Kanis & de Boer model by a 5 kHz internal 

point source located at a distance of 8 mm from the stapes (black arrows). Also (c) shows the amplitude of 
the coefficients for the forward and backward travelling waves. Results evaluated using the finite difference 
method, and decomposition process, with N=1000 and a boundary condition at the stapes such that either (I) 
there is no reflection of backward travelling waves or (II) there is complete reflection of the backward 
travelling wave. 
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2.3.4 Application to sites of reflection 

In chapter 4, impedance irregularities are deliberately introduced into the active micromechanics of 

the cochlear model to act as sources of reflection. These perturbations could arise from either the 

active mechanics, perhaps from differences in the force exerted by neighbouring OHCs (Zweig & 

Shera, 1995a) or the passive mechanics, possibly from spatial variations in the BM radial fibres 

(Shera & Guinan, 2008).The response of a linear model is determined by the total CP impedance, 

which is a linear combination of the passive and active impedances (2.20), and so the qualitative 

change in the response should be the same, whether a perturbation is introduced into the active or 

the passive mechanics. The same should be true of the quasilinear model, described in chapter 3, at 

low stimulus levels. We choose to introduce irregularities into the active mechanics, rather than the 

passive mechanics, of the cochlear model.  

Reflections can be generated from perturbations imposed on the CP impedance via the OHC gain 

parameter γ(x). This variable was introduced in (2.20) and takes a value between 0 and 1 (Elliott et 

al., 2007; Ku et al., 2008). Figure 2.10 shows an example of the effect of a step-down change in 

γ(x), from 1 to 0.95, in the linear active model at the characteristic place. The model is stimulated at 

the stapes by a 5 kHz tone, and the step-down change in γ(x) is positioned 9 mm from the base. In 

the basal region, between the stapes and the internal reflection site, both the 0 ( )p x+ or 

0 ( )p x− coefficients exhibit almost constant amplitude (variations of less than 2 dB) and the 

amplitudes of the both the estimated forward and backward travelling wave components exceed the 

error floor. These observations suggest that, on the basal side of the reflection site, neither the 

estimated forward or backward travelling waves are significantly influenced by errors associated 

with numerical inaccuracies and the limitations of the WKB approximation. Section 2.3.2 

established that, in the absence of an internal reflection site, the stapes stimulus evoked only a 

forward travelling wave. Introduction of the reflection site into the cochlear model has little 

influence on the apical side of the site. However, in the basal region of the model, the 

decomposition procedure suggests that the internal reflection site gives rise to a backward 

travelling wave which was not evident before the reflection site was introduced.  

The amplitude of the backward travelling wave is dependent on both the location, and the scale of 

the perturbation. For example, if the step-down change in γ(x) is reduced from 5% to 1%, the 

amplitude of the backward travelling wave observed at the base of the model decreases by 

approximately 10 dB. In addition, if the backward travelling wave generated by a fixed internal 

reflection site is estimated for a range of excitation frequencies, as shown in figure 2.11, then the 

amplitude of the reflected wave is greatest when the stimulus frequency corresponds to the 

characteristic frequency of the reflection site.  
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Figure 2.10 The estimated forward and backward travelling waves in a perturbed cochlear model 
Plots (a) and (b) show the amplitude and phase of the total semi-difference pressure, and the forward and 
backward travelling components, in the linear active Kanis & de Boer model stimulated by a 5 kHz tone at 
the stapes. Also, (c) shows the amplitude of the coefficients for the forward and backward travelling waves. 
This perturbed model contains a 5% step-down change in the distribution of γ(x) at 9 mm from the stapes as 
indicated by the black arrows. The results were obtained using a reflectionless boundary condition at the 
base, and N=1000. 

 

 
Figure 2.11 The influence of stimulus frequency on the reflected waves generated by a place-fixed 
impedance irregularity in a perturbed cochlear model 
Plots (a) and (b) show the amplitude and phase of the backward travelling wave at the base of the linear 
Kanis & de Boer model as a function of stimulus frequency when a step-down change in γ(x), from 1 to 0.95, 
is imposed at the 5 kHz characteristic place. The results were obtained using a reflectionless basal boundary 
condition, a stapes stimulus level of 10 − 8m/s, and N=1000.  
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2.4 The quasilinear method 

So far we have described a linear cochlear model in which none of the parameters depend on the 

stimulus level. However, Kanis & de Boer incorporate a nonlinear function into their active 

cochlear model, in order to replicate the nonlinear response of the cochlea to stimulation. They also 

develop a ‘quasilinear’ method for predicting the steady state response of this model, in the 

frequency domain, as described in this section. 

2.4.1 The nonlinearity 

The linear active variant of the Kanis & de Boer model can be described by the feedback diagram 

shown in figure 2.12a  (Neely, 1985), where lin

OHCp  is the linear pressure arising from the active 

outer hair cells (OHCs) and is assumed to act in the same way on the basilar membrane (BM) as 

the transmembrane pressure difference, pd. In this diagram, the impedances passZ and lin

OHCZ are 

defined in equations (2.10) and (2.16) respectively.  

Kanis & de Boer implicitly introduce a nonlinearity into the micromechanical feedback loop, as 

shown in figure 2.12b. This is assumed to be a hyperbolic tangent nonlinearity, which modifies the 

pressure output of the OHCs such that 

 ( , ) tanh[ ( , ) / ]QL lin

OHC ref OHC refp x t p p x t p=  (2.31) 

In the above expression the scaling constant pref has the units of the pressure and is assigned a value 

of 2 by Kanis & de Boer (1993). 

 

(a) The linear micromechanical model 

 

(b) The nonlinear micromechanical model 

 
1

1
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OHC passactive lind
CP pass OHC

pass
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Z Z Z

v Z

−
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Figure 2.12 Representations of a single (a) linear and (b) nonlinear micromechanical element  
Kanis & de Boer modify their (a) linear model by inserting a nonlinear function into the micromechanical 
feedback loop as shown in (b). The semi-difference pressure across the cochlear partition, pd, the vertical 

velocity of the cochlear partition, v, and the linear pressure output of the outer hair cells (OHCs), lin

OHCp
,
 are 

all shown. 
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 The quasilinear notation, QL, indicates that the nonlinearity is expected to produce distortion 

which can be treated as a small perturbation compared to the fundamental response. On this basis a 

new quasilinear impedance for the OHCs, ( , )QL

OHCZ x ω , is defined as 

 

),(
),(

),(
ω

ω
ω

xv

xp
xZ

QL

OHCQL

OHC ≡  (2.32) 

2.4.2 The fundamental response to a single tone stimulus 

The principle of the quasilinear method is that the distortion which occurs in the system variables 

of a nonlinear model can be treated as a small perturbation compared to the fundamental 

component. On this basis, the system variables can be represented by their fundamental component 

and the harmonic components can be neglected in the calculation of the fundamental response. 

Kanis & de Boer justify neglecting these higher order components by demonstrating that the 3rd 

order harmonic is always more than 25 dB below the fundamental component, and that 

incorporating the 3rd order response produces no significant change in the estimated fundamental 

component (Kanis & de Boer, 1993). 

An iterative method is used to determine the response of the quasilinear model, as detailed in 

appendix E.1. To summarise, an initial estimate of the quasilinear CP impedance is obtained by 

assuming that the model is fully active. The finite difference method is applied to estimate the 

fundamental velocity response of the CP which is then used, in conjunction with the linear OHC 

impedance, to determine the time domain input to the nonlinearity. The fundamental pressure 

output of the nonlinearity is then estimated and equation (2.32) is applied to determine a revised 

estimate of the quasilinear OHC impedance which provides a revised estimate of the CP impedance, 

taking into account the effect of the nonlinearity. The process is repeated iteratively until the 

estimated CP velocity distribution differs by less than 0.1% between iterative cycles. In general, the 

required number of iteration cycles increases with the stimulus level. For example, the response of 

the Kanis & de Boer quasilinear model to a 5 kHz stimulus tone can be estimated in only 7 

iterations for a 20 dB SPL stimulus, but 30 iterations are required for a stimulus level of 100 dB 

SPL. These computations can be performed on a 2.4 GHz computer in less than 30 seconds. 

The response of the Kanis & de Boer quasilinear model to a 6 kHz stimulus tone at various levels is 

shown in figure 2.13. These results are consistent with those presented by Kanis & de Boer (1993), 

and illustrate the compressive nonlinear growth of the response in the vicinity of the characteristic 

place. The input to the hyperbolic tangent nonlinearity shown in equation (2.31) is scaled so that 

the OHC gain is significantly reduced only when the stimulus level exceeds about 40 dB, as 

illustrated in the level curves of figure 2.13d. It is possible to simulate these results with the linear 
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model if the distribution of OHC gain, γ(x), introduced in equation (2.20) is defined as γQL(x,ω), 

shown below. 

 ( , )
( , )

( , )

QL

OHC
QL lin

OHC

Z x
x

Z x

ω
γ ω

ω
≡  (2.33) 

Figure 2.14 shows the distribution of γQL(x,ω) for several different stimulus levels, for a stimulus 

frequency of 6 kHz. This demonstrates that the model becomes almost passive in the region just 

basal to the characteristic place, at high stimulus levels, since γQL(x) is close to zero in this region. 

 
Figure 2.13 The response of the Kanis & de Boer quasilinear cochlear model 
Plots (a) and (b) show the amplitude and phase of the CP velocity evoked by a 6 kHz stimulus, evaluated 
using N=1000. The corresponding distributions of the quasilinear OHC impedance are also shown in (c). The 
input output level functions at four locations along the CP are presented in (d), where x=8 mm corresponds to 
the characteristic place. Stimulus stapes velocities are given in units of dB re 10 − 8m/s. 
 

 
Figure 2.14 The influence of stimulus level on the quasilinear OHC gain distribution 
The quasilinear OHC gain, γQL, is plotted for a 6 kHz stapes excitation at a variety of stimulus levels given in 
units of dB re 10 − 8m/s. The response was evaluated using N=1000, and it should be noted that the 6 kHz 
characteristic place is approximately 8 mm from the stapes.  



2. The Kanis & de Boer micromechanical model 
2.4 The quasilinear method 

67 

2.4.3 Estimating harmonic distortion products 

The nonlinearity used by Kanis & de Boer to represent the action of the OHCs is a hyperbolic 

tangent function. As this nonlinear function is symmetrical its output will contain odd-order 

harmonic components in addition to the fundamental component (appendix G). These harmonics 

were neglected when estimating the fundamental component, as they have relatively small 

amplitude. However, once the fundamental response has been estimated, it is possible to apply the 

quasilinear method to predict the harmonic components as well.  

The iterative process used by Kanis & de Boer for estimating the harmonic components is 

described in appendix E.2 − E.3. This also details the rearrangement made to the quasilinear 

process in order to achieve more consistent convergence of the iteration sequence. The results, such 

as those shown in figure 2.15 for a 6 kHz stimulus, are consistent with those obtained by Kanis & 

de Boer (1993) although slightly different stimulus levels are used to account for the difference in 

middle ear properties. The variation in the 3rd order harmonic response, with increasing stimulus 

level, is illustrated in figure 2.16. The source of this component is the 3rd harmonic of the OHC 

pressure output due to the presence of the fundamental component, given in (2.34). Figure 2.16a 

shows that this source pressure is greatest at the best place of the fundamental frequency as at this 

location the fundamental component of the CP velocity has the greatest amplitude. The source 

broadens, and spreads towards the characteristic place of the 3rd harmonic component, as the 

stimulus level increases. Figure 2.16b illustrates that, at low stimulus levels, the amplitude of the 

3rd harmonic component in the resultant velocity is greatest in the vicinity of the characteristic 

place of the fundamental frequency. However, as the stimulus level increases, the 3rd order 

response spreads towards its own characteristic place. Although the harmonic response remains 

large at the best place of the fundamental component, at high stimulus levels (such as 100 dB re 

10 − 8m/s) its amplitude is greatest at its own characteristic place.  

 

( ) ( ), 0

1
( , ) tanh 2Re ( , ) ( , ) exp( ) exp

T
QL lin

OHC A OHCp x m Z x v x i t im t dt
T

ω ω ω ω ω = ⋅ ⋅ ⋅ − ∫  (2.34) 

 

 
Figure 2.15 Comparison of the fundamental and 3rd harmonic response of the quasilinear model 
Plots (a) and (b) show the amplitude and phase of the fundamental and 3rd order CP velocity components 
evoked by a 6 kHz stapes velocity at 75 dB re 10 − 8m/s and 105 dB re 10 − 8ms in the Kanis & de Boer 
quasilinear cochlear model. The fundamental and 3rd order responses are referenced to 10 − 5m/s and 10 − 7m/s 
respectively, in order to allow for comparison with chapter 2 of Kanis (1995). 
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Figure 2.16 The (a) source distribution and (b) amplitude of the 3rd harmonic response 
The quasilinear Kanis & de Boer cochlear model was stimulated at the stapes with a 6 kHz tone at a variety 

of stimulus levels and (a) the source distribution for the 3rd harmonic was estimated from
,

( , 3 )QL

OHC A
p x ω , 

defined in (2.34). The amplitude of the 3rd harmonic component of the CP velocity is also shown in (b). 
Stimulus levels are given in dB re 10 − 8m/s. In each graph the characteristic places for 6 and 18 kHz are 
indicated by the diamond and triangular arrows respectively. The results were obtained using a discrete 
model with N=1000. 
 

For a 6 kHz stapes velocity presented at 0 to 100 dB re 10 − 8m/s, the estimate of the fundamental 

component changes by less than 1% when the 3rd harmonic is included in the quasilinear 

calculations, instead of being neglected. In addition the predicted source distribution for the 3rd 

harmonic changes by less than 2% if the 3rd harmonic is used to improve the estimate of the 

fundamental response. This is consistent with Kanis & de Boer’s finding that the inclusion of the 

3rd harmonic changes the predicted fundamental component by less than 0.01 dB. Therefore we 

conclude that the principle of the quasilinear method is valid, at least for these stimulus conditions, 

and that the fundamental component of the response of the nonlinear cochlear model can be 

accurately estimated by neglecting the harmonic components. 

The hyperbolic tangent nonlinear function will produce other odd-order harmonic components in 

addition to the 3rd harmonic. Of these higher order responses, the 5th harmonic has the largest 

amplitude. For a 6 kHz stimulus tone, the 5th harmonic component amplitude can reach within 10 

dB of the 3rd harmonic component amplitude at high stimulus levels (e.g. a stapes velocity of 100 

dB re 10 − 8m/s). Despite this, the estimate of the 3rd harmonic component changes by less than 2% 

if the 5th harmonic is included in the quasilinear calculation, compared to the estimated 3rd 

harmonic response when is the 5th harmonic is neglected. For this reason, we conclude that it is 

appropriate to extend the quasilinear method to the estimation of harmonic components.  
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2.4.4 Two tone suppression 

Two tone suppression is the reduction of the cochlear response to one tone (the ‘probe’ tone) due to 

the simultaneous presentation of another tone (the ‘suppressor’ tone) in the ear canal (Robles & 

Ruggero, 2001). This effect is maximised when the two tones have almost equal frequency. It is 

important for a cochlear model to replicate the phenomenon of two tone suppression, as it is often 

cited as evidence for the nonlinearity of the active process (Patuzzi, 1996). 

The quasilinear method for estimating the response of the cochlear model to two tone stimulation 

reviewed in appendix E.4, based on the description given by Kanis & de Boer (1994). In summary, 

the primary responses to the stimulus frequencies f1 and f2 are first estimated individually using the 

quasilinear method for single tone stimuli. These estimates are then revised using a second iterative 

process in which the fundamental responses to each of these tones are combined to form the input 

to the OHC nonlinearity. An example of two tone suppression in the quasilinear Kanis & de Boer 

cochlear model is shown in figure 2.17. The simulation was performed using a 7 kHz probe tone 

and a 7.25 kHz suppressor tone. The plots illustrate that the probe tone frequency component of the 

BM velocity response is substantially reduced in amplitude in the vicinity of its best place by the 

introduction of the suppressor tone. In association with this, the OHC gain at the probe tone 

frequency is also considerably reduced in the region basal to the best place of the probe frequency. 

 

 

Figure 2.17 An example of 
two tone suppression in the 
Kanis & de Boer cochlear 
model.  
The (a) amplitude and (b) 
phase of the response evoked 
by a 7 kHz probe tone and a 
7.25 kHz suppressor tone, 
presented at levels of 50 and 
80 dB re 10 − 8 m/s 
respectively. The amplitude is 
presented in units of dB re 
10 − 5 m/s to correspond with 
the figures of Kanis (1995). 
The (c) damping of the 
cochlear partition, CP, and (d) 
the OHC gain at 7 kHz are 
also shown. 
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2.4.5 Two tone distortion products 

The distortion products (DPs) evoked by two tone stimuli (f1 and f2, f2>f1) can be estimated with the 

quasilinear method, using a combination of the techniques discussed in sections 2.4.3 and 2.4.4. A 

sequence of three iterative procedures is used to predict the DPs. These evaluate the response of the 

model to each stimulus tone in isolation, the effect of two tone suppression and the DP component 

of the CP response. The third stage requires an iteration process similar to that used in the 

quasilinear evaluation of the harmonic response to a single tone stimulus. A full description of the 

method for predicting two tone DPs is given in appendix E.5.  

An example of the 2f1 − f2 DP predicted by the quasilinear method for the Kanis & de Boer 

cochlear model is given in figure 2.18. These results are consistent with those obtained by Kanis 

(1995). There is, however, a 10 dB difference in the DP component of the semi-difference pressure 

when using f2/f1=1.04. The origin of this discrepancy is unknown.  It is unlikely to be associated 

with poor convergence of the original Kanis & de Boer iterative method, as that process is 

convergent for this stimulus paradigm. However, we have confidence in the validity of the result 

shown in figure 2.18c because it is consistent with the state space time domain estimate (section 

2.5), at least in the vicinity of the f2 and DP characteristic places.  

We verified the quasilinear approximation for the case of two tone distortion products by 

considering the estimated DP evoked by two stimulus tones presented at levels of 70 dB SPL with 

f1=1.8 kHz and f2=2.2 kHz.  The primary responses alter by less than 0.02 dB if the DP is 

incorporated into their evaluation. 

 
Figure 2.18 The predicted 2f1 − f2 DP component in the quasilinear Kanis & de Boer model 
Three different stimulus paradigms are shown: (a) f2/f1=1.55, (b) f2/f1=1.09 and (c) f2/f1=1.04. In each case the 
DP frequency (fdp) is equal to 5 kHz and the level of the primary stimulus tones (L1 and L2) have been chosen 
so that the amplitude of the DP component of the CP velocity is approximately 0 dB re 10 − 5m/s at its 
characteristic place. The CP velocity is given in units of dB re 10 − 5m/s and the semi-difference pressure is in 
units of dB re 3.14×10 − 4Pa. These results are comparable to those of Kanis (1995), chapter 5 (figures 1,2, 
and 3). 
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2.5 The state space model 

The effect on DPOAEs of random perturbations in the cochlear gain is investigated below, and it is 

known that for some perturbations the linear cochlear model may not be stable (Elliott et al., 2007; 

Ku et al., 2008). In this section, the Kanis & de Boer cochlear model is cast into the state space 

framework, which is described by Elliott et al. (2007) for the Neely & Kim (1986) cochlear model. 

This can be used to assess the stability of the linear model (section 2.5.2), which is an implicit 

necessary condition for the validity of the quasilinear method, and also to evaluate the time domain 

solution of the nonlinear model for both single tone and two tone stimuli (sections 2.5.3 and 2.5.4). 

2.5.1 Formulation of the state space model 

In general, a state space time domain representation of a physical system takes the form shown 

below, where w(t) is the “state” vector, u(t) is the input vector and y(t) is the output vector. 

 ( ) ( ) ( )t t t= +ɺw Aw Bu  (2.35) 

 ( ) ( ) ( )t t t= +y Cw Du  (2.36) 

If w(t), u(t) and y(t) are n − , m −  and p −  dimensional vectors respectively then A is the n − by-n 

‘system’ matrix, B is the n − by-m ‘input’ matrix, C is the p − by-n ‘output’ matrix, and D is the 

p − by-m ‘direct feedthrough’ matrix (Beale, 2006). The eigenvalues of the system matrix, A, are 

the poles of the system transfer function. The system is stable if the real parts of all these 

eigenvalues are negative, and therefore the stability of the system can be determined from the state 

space representation.  

The state space representation can be constructed using either the equations of motion of the 

system (Elliott et al., 2007; Ku, 2008), or the system transfer function (Furuta et al., 1988). As the 

dynamic components of the active mechanics are not explicitly expressed in the Kanis & de Boer 

model, making it difficult to construct the equations of motion, the system transfer function is used 

to form a state space representation of the uncoupled linear active Kanis & de Boer model in 

appendices F.1 and F.2. The longitudinal fluid coupling is then incorporated to form the coupled 

linear active state space model in appendix F.3.  

2.5.2 The stability of the linear active Kanis & de Boer cochlear model 

The eigenvalues, λ, of the system matrix A correspond to the poles of the system and are complex 

such that λ = σ + iω. The system is known to be stable if the real part (σ) of all the poles are 

negative. The state space formulation can be used to show that all the poles of a single 
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micromechanical element in the uncoupled model remain negative provided that the OHC gain, γ, 

defined in (2.20), remains less than 1.07 (see appendix F.2.2). The coupled linear active model is 

also stable provided that a maximum limit is imposed on γ(x), which reduces the value of γ below 

one for locations within 5 mm of the apex, as shown in figure F.6 of appendix F.3.4.  

The use of the state space model to predict the stability of the coupled system can be illustrated by 

imposing a step-change in the OHC gain, γ(x). Figure 2.19 shows the poles of the coupled linear 

active Kanis & de Boer cochlear model, where a step change has been introduced at the 6 kHz 

characteristic place. For small step sizes, such as a change in γ(x) of 0.01, σ is negative for all of 

the poles indicating that the model is stable. However as the step size increases, σ becomes positive 

for some of the poles at approximately 6 kHz. This indicates that the model becomes unstable if γ(x) 

either steps-up by 0.05 or steps-down by 0.5. 

In chapter 4, a non-uniform distribution of γ(x) is introduced into the model to generate reflections 

of travelling waves. Appendix F.3.4 explains how this random γ(x) distribution is implemented and 

demonstrates that gain variations of up to 7% can be accommodated in the linear active Kanis & de 

Boer model before it becomes unstable.  

 
Figure 2.19 The poles of the coupled linear active Kanis & de Boer cochlear model  
These results were obtained using the state space system matrix when an (a) step-down, and (b) step-up, 
change in the OHC gain distribution γ(x) is introduced at the 6 kHz characteristic place. In both cases there 
are some poles whose real components are positive indicating instability.  
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2.5.3 Single tone stimulation of the coupled nonlinear state space model 

A nonlinear state space model, solved in the time domain, is described in appendix F.5. A 

MATLAB implementation of this model was provided by Ku (2008), and the steady state time 

domain responses can be compared with those predicted by the quasilinear method. 

Figure 2.20 compares the predicted quasilinear response of the model to a 6 kHz stimulus tone with 

the estimated steady state time domain solution. The time required to evaluate the response at all 

four stimulus levels on a 2.4 GHz computer was just 25 seconds for the quasilinear method, 

compared to 19 hours using the state space approach. The state space solution cannot be treated as 

a “gold standard” result, as the predicted amplitude of low level components, such as the 3rd 

harmonic response near the base of the cochlear model, is influenced by the length of the 

observation time as discussed in appendix F.5. However, it is useful to compare the state space and 

quasilinear predictions to determine if there are any discrepancies which cannot be attributed to 

weaknesses in the state space solution, as this may be indicative of errors in the quasilinear 

approach. 

Figure 2.20 illustrates that the fundamental component predicted by the state space and quasilinear 

methods differ by less than 5 dB in the region between the base and the characteristic place. 

However, there are some significant discrepancies between the 3rd harmonic responses predicted by 

the state space and quasilinear method. For example, for a 0 dB stimulus, the state space method 

appears to suggest the 3rd harmonic can reach within 65 dB of the fundamental response. In contrast, 

the quasilinear method indicates that the 3rd harmonic response to the 0 dB stimulus is more than 

100 dB below the fundamental. Similarly the 3rd harmonic response to a 60 dB stimulus is greater 

near the base in the state space estimate compared to the quasilinear prediction. These differences 

are attributed to the failure of the state space model to reach a steady state within the 30 ms 

observation period at all locations within the cochlear model, as illustrated in appendix F.5. For 

regions of the cochlear model where the state space model does reach steady state within 30 ms, 

such as the vicinity of the 6 kHz characteristic place, the state space and quasilinear estimates differ 

by less than 7 dB for stimulus levels ≥ 60 dB. Overall the quasilinear approach provides a better 

approximation to the steady state behaviour than the time domain solution, and provides a 

considerable saving of computational time by a factor of about 2500.  
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Figure 2.20 Comparison of the predicted quasilinear frequency domain and state space time domain 
responses to a single tone stimulus  
The response of the Kanis & de Boer cochlear model to a 6 kHz stimulus tone presented at a variety of 
stimulus levels was estimated using the quasilinear frequency domain method (thick lines) and the state space 
time domain method (thin lines). The state space model was observed for 30 ms, and the steady state result 
was then determined from the final 20 ms of the predicted response in order to minimise transient effects. In 
each case a hyperbolic tangent function was used to represent the nonlinear action of the OHCs and the 
discrete model used N=500 element. The solid and dotted lines denote the fundamental and 3rd harmonic 
responses respectively. The stimulus levels are referenced to a volume velocity of 10 − 16 m-2s-1 in the ear 
canal, and the CP velocity is referenced to the velocity of the fundamental response at the base of the model. 

2.5.4 Two tone stimulation of the coupled nonlinear state space model 

Kanis & de Boer (1996) used the quasilinear method to predict the DPs evoked in their cochlear 

model by two stimulus pure tones at frequencies f1 and f2. They compared the results with those 

obtained using a time domain method, as an alternative to the quasilinear approach. They observed 

good agreement between the steady state time domain solution and the quasilinear estimate for a 

range of lower side band DPs (2f1 − f2, 3f1 − 2f2 and 4f1 − 3f2) using a frequency ratio (f2/f1) of 1.2. 

In addition they found the 2f1 − f2 DP amplitude predicted by the two approaches differed by less 

than 5 dB across the region of the model encompassing the f2 best place and DP characteristic place. 

However, near the stapes, Kanis & de Boer note that for stimulus frequency ratios close to unity 

(f2/f1=1.04) the amplitude of the time domain result exceeds that of the quasilinear method by 

approximately 10 dB. For this reason, they conclude that the quasilinear approximation breaks 

down in the basal region of the cochlear model as the stimulus frequency ratio approaches unity. 

Yet although the quasilinear approximation is more likely to be compromised for small f2/f1 ratios, 

due to the increased spatial overlap of the two primary travelling waves and the evoked DP 

travelling waves, it is unclear why this effect should occur only in the basal region of the model 

whilst the approximation remains valid in the region encompassing the best places of f2 and 2f1 − f2. 
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For example, the travelling waves at frequencies f2, f1 and 2f1 − f2 would be expected to exhibit little 

nonlinear behaviour close to the base, compared to the regions of the model that correspond to their 

respective best places. Therefore it is counter-intuitive that the quasilinear estimate should be valid 

between the characteristic places of f2 and 2f1 − f2, but not near the base of the model. In view of the 

discrepancy observed by Kanis & de Boer, and the difficulty interpreting it, we compare the DPs 

predicted by the quasilinear method with those obtained using the state space time domain model 

described in appendix F.5.  

Figure 2.21 compares the predicted 2f1 − f2 DP response of the cochlear model using the quasilinear 

method and time domain state space approach. The results for several stimulus frequency ratios are 

displayed. As mentioned in section 2.5.3, the state space result is not a “gold standard” to which the 

quasilinear estimate can be validated, since the effects of transients and time windowing in the 

analysis of the response limit its accuracy especially for low level components. However, it is 

useful to compare the state space and quasilinear predictions to determine if there are any 

discrepancies which cannot be attributed to weaknesses in the state space result, as this may be 

indicative of errors in the quasilinear approach. Figure 2.21 illustrates that in the vicinity of the 

2f1 − f2 characteristic place, the predicted amplitude of the DP component differs by less than 5 dB 

between the quasilinear and state space estimates. At more basal locations, there are discrepancies 

between the predictions, and the state space approach generally tends to suggest higher DP 

amplitudes than the quasilinear method estimate. Both of these observations are consistent with the 

findings of Kanis & de Boer (1996). However, we attribute the discrepancies between the state 

space time domain and quasilinear estimates of the DP amplitude near the base of the model to the 

limitations of the time domain approach rather than errors in the quasilinear method. This is 

because the state space solution is most likely to be influenced by transient and time windowing 

artefacts near the base, where the transient response of the model has a longer decay time (Ku, 

2008) and the DP amplitude is small compared to its level at its characteristic place. For example, 

at a distance of 2 mm from the stapes, the time domain estimate of amplitude of the 2f1 − f2 DP 

reduces by about 6 dB if the response is measured approximately 25 ms after the stimulus onset, 

compared to the response observed around 5 ms after the stimulus onset. The amplitude of the 

transient DP response in the basal region of the state space time domain model appears to increase 

as f2/f1 decreases, possibly due to the change in frequency of the DP component.  

Figure 2.22 shows the DPs predicted by the quasilinear method and the state space time domain 

method for a stimulus frequency ratio of 1.2. The computational time required to establish all four 

DP components was approximately 4 minutes with the quasilinear approach and 10 hours for the 

state space method. For the larger amplitude DPs (2f1 − f2, 2f2 − f1 and 3f1 − 2f2) the quasilinear and 

state space estimates of the DP amplitude at the DP characteristic place differ by less than 5 dB. At 

locations where the DP amplitude is small, the state space time domain method tends to 

overestimate the level of the DP component due to the effects of transients and time windowing.  
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Figure 2.21 Comparison of the 2f1 − f2 response to two tone stimulation predicted by the quasilinear 
frequency domain and state space time domain methods 
The plots show the primary and 2f1 − f2 DP CP velocity responses of the Kanis & de Boer cochlear model 
when two stimulus tones, f1 and f2, are applied at different stimulus ratios. The responses are estimated using 
the quasilinear (solid lines) and the time domain (dotted linear) state space method. In each case f1 = 6 kHz 
and the stimulus levels were 81 dB re 10 − 16m-2s-1. The state space model was observed for 40 ms, but only 
approximately the final 10 ms was used in this analysis in order to minimise the effects of transients. The CP 
velocity is referenced to the amplitude of the f1 primary response at the base of the model. 
 

 
Figure 2.22 Comparison of the DP responses to two tone stimulation estimated using the quasilinear and state 
space methods 
The plots show the predicted 2f1 − f2, 3f1 − 2f2, 4f1 − 3f2 and 2f2 − f1 DPs evoked by two stimulus tones at f1=6 
kHz and f2=7.2 kHz (at 80 dB re 10 − 16m-2s-1) in the Kanis & de Boer cochlear model. The responses were 
obtained using the quasilinear method (thick solid line) and the state space time domain method (thin solid 
line). The primary responses (dotted lines) are also shown for reference. The state space model was observed 
for 40 ms, but only the final 20 ms was used in this analysis to minimise the effect of transients.  
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In summary, we find no evidence that the quasilinear estimate of DPs evoked by two pure tone 

stimuli at frequencies f1 and f2 is invalid for any stimulus frequency ratio or DP frequency. For this 

reason, we proceed with the quasilinear method for predicting the response of the cochlear model.  

2.5.5 Summary of state space comparison 

The frequency domain state space Kanis & de Boer cochlear model allowed us to verify that the 

linear and quasilinear micromechanical model is stable for a broad range of stimulus frequencies 

when no perturbations are imposed on the active mechanics. If irregularities in the active 

impedance are introduced, the model remains stable and the quasilinear method is valid for small or 

smoothed changes.  

The nonlinear time domain state space model also provided predicted responses for single tone and 

two tone stimulation. A comparison between these time domain results and the estimated 

quasilinear responses indicates that it is appropriate to use the quasilinear method across a broad 

range of stimulus parameters and that this allows a considerable reduction in computational time. 
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2.6 Conclusions regarding the Kanis & de Boer 

micromechanical model 

In this chapter the one-dimensional cochlear model was described. We also reviewed the finite 

difference and WKB methods which are used to evaluate the response of the linear model, and the 

quasilinear method of Kanis & de Boer for estimating the response of the nonlinear model.  

As summarised in section 1.9 (i), this chapter offers the following contributions:  

• Development of a method to decompose the total semi-difference pressure into forward and 

backward travelling wave components for a linear cochlear model (section 2.3). This is in 

contrast to the well-used alternative approach whereby the WKB method is employed to 

determine the total solution from the predicted forward and backward travelling components 

(e.g. Talmadge et al., 1998). The decomposition method appears to offer useful insight into 

the response evoked by internal sources within the cochlear model. 

• A modification of the iterative procedure used in the quasilinear method which improves the 

rate of convergence of the method when evaluating harmonic responses (appendix E.3). 

• Development of a state space model of the Kanis & de Boer micromechanical model, which 

has been implemented in both the frequency and time domains in MATLAB (section 2.5 and 

appendix F). A substantial portion of this development was achieved by extending the work of 

Ku (2008). However, this extension has only been possible due to the relationship which we 

were able to establish between the Kanis & de Boer micromechanical model and that used by 

Ku (appendix F.4). 
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3. Alternative micromechanical models 

The response of a coupled cochlear model, such as that of Kanis & de Boer described in chapter 2, 

is dependent on several micromechanical properties. These include the nonlinear function used to 

represent the action of the outer hair cells (OHCs), the position of this nonlinearity within the 

micromechanical feedback loop, the nature of the displacement which acts as the input to the 

nonlinear function, and the spatial distributions of the micromechanical parameters. In this chapter 

we consider the influence of these factors on the predicted response of the model, and select the 

most appropriate micromechanical properties with which to proceed to investigate distortion 

product otoacoustic emissions.  
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3.1 The nonlinear function 

The cochlear model developed by Kanis & de Boer is a dynamic nonlinear model (Harte et al., 

2005) and is therefore suitable for replicating the nonlinear cochlear response to stimulation 

(section 1.2.3). However the hyperbolic tangent function which they use to represent the nonlinear 

behaviour of the OHCs is symmetric and so does not generate even-order harmonic distortion 

products (appendix G.1). As physiological measurements suggest that both even- and odd- order 

harmonic components are generated inside the cochlea in response to a single tone stimulus 

(Cooper, 1998; Parthasarathi et al., 2003; Olsen, 2004), we consider an asymmetric alternative to 

the hyperbolic tangent nonlinearity: the first order Boltzmann function. Use of this nonlinear 

function in the cochlear model is in good agreement with the experimental observation that the 

response of the OHCs in frogs and mice can be well-matched by a first order Boltzmann function 

(Pickles, 1982; Dallos (1996); Kros et al., 1996). 

3.1.1 The first order Boltzmann function 

Several different asymmetric nonlinear functions have been used in cochlear models to represent 

the nonlinear action of the OHCs in the past (Chertoff et al., 2001; Bian et al., 2002), but the first 

order Boltzmann function is the simplest choice. It has been successfully applied to cochlear 

models in the past, such as the uncoupled model of Cooper (1998) in which this nonlinear function 

was used to explain his observations of the odd and even harmonic components evoked by a single 

tone stimulus in the guinea pig cochlea. 

The first order Boltzmann function is defined in (3.1). The value of α, which determines the 

maximum output of the nonlinearity and has the same dimensions as the input u, can be set so that 

the response of the model begins to saturate at a specified stimulus level. The dimensionless 

constant β controls the asymmetry of the function, and the first order Boltzmann function becomes 

identical to the hyperbolic tangent function for β=1. The dimensionless constant η is assigned a 

value of 1 when, as in this case, the input u has units of pressure2.  
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The value of γB, which has the same dimensions as the input, is constrained such that  

                                                      
2 In section 3.3 the position of the nonlinearity within the micromechanical feedback loop moves, and so the 
value of η is changed to 2.5×1010

 to compensate for the change in units of the input. 
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This ensures that the nonlinearity provides 0 dB gain to the fundamental component at low 

stimulus levels. The way in which the parameters α and β control the form of the first order 

Boltzmann function is illustrated in figure 3.1. This shows that the parameter α affects the input 

level at which saturation occurs, as well as controlling the maximum output of the nonlinear 

function. Therefore, for a given input level, increasing the value of α reduces the amplitude of both 

odd- and even- harmonic components in the output of the function. In addition, increasing α 

increases the compression threshold, which we shall define as the minimum input level at which 

the growth rate of the fundamental component of the nonlinear function output falls below 1 dB/dB. 

The value of the parameter β influences the relative amplitude of the odd and even harmonic 

components in the output of the nonlinear function. For example, the function becomes more 

asymmetric as β increases and therefore the amplitude of the even order harmonics, relative to the 

odd order harmonics, should increase as β increases. Throughout this section, these parameters are 

arbitrarily fixed such that α=2 and β=3 (so γB = 0.38) for simplicity. Discussion regarding the 

selection of suitable α and β values for the cochlea is deferred until section 3.5. 

 

 

 

Figure 3.1 The first order Boltzmann function 
The plots show the influence of the parameters α and β on the form of the first order Boltzmann function, 
defined in equation (3.1). (a) The influence of α, for β=1. (b) The influence of β for α=2. In each case γB is 
constrained so that the condition given in (3.2) is satisfied. Note that if α=2 and β=1, the first order 
Boltzmann function is identical to a hyperbolic tangent function. 
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3.1.2 The nonlinearity in isolation 

Figure 3.2 shows the output of an isolated first order Boltzmann function when a sinusoidal input is 

applied at a variety of input levels. It demonstrates that both even- and odd- order harmonic 

components occur in the output, as anticipated. In contrast, the 2nd harmonic and DC components 

are absent in the output of the hyperbolic tangent function. 

The spectrum of the distortion products (DPs) which arise in the output of the isolated first order 

Boltzmann function when two equal amplitude pure tones (f1 and f2) are applied at the input, is 

shown in Figure 3.3. Both odd- and even- order DPs are evident in the output of this nonlinear 

function. In contrast, only odd-order DPs are present in the output of an isolated hyperbolic tangent 

function.  

(a) 

 
(b) 

 
Figure 3.2 The response of the isolated nonlinear function to a single tone input 
The plots show (a) an illustration of the nonlinear function in isolation driven by a sinusoid and (b) the 
transfer response (the amplitude of the output component per unit input amplitude) of the first order 
Boltzmann function (β=3) compared to that of the hyperbolic tangent function (Tanh) for a range of 
frequency components. Note that no even order harmonics are produced by the symmetric tanh function, 
including a DC component. The units of the input are arbitrary, and α=2 so γB=0.38.  
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Figure 3.3 The response of the isolated nonlinear function to two tone stimulation 
The DPs generated by the nonlinear function in isolation are shown. The input contains two equal amplitude 
tones at frequencies f1=7.6 kHz and f2=8.4 kHz. Results are given for the Tanh nonlinearity and the first order 
Boltzmann function (β=3). The units of the input and output are arbitrary, but equal stimulus levels are used 
for f1 and f2. In the Boltzmann function, α=2 so γB=0.38. 

 

There are few physiological measurements of the harmonic response of the cochlear partition to 

single tone stimulation. However, both Cooper (1998) and Olsen (2004) have observed the 2nd 

harmonic component of the mechanical response of the mammalian cochlea to acoustic stimulation, 

and their results demonstrate that the amplitude of this component can reach within  − 20 to  − 10 

dB of the level of the fundamental response. The coupled cochlear model will only be capable of 

simulating the generation of a 2nd harmonic component in response to single tone stimulation, or 

predicting even order DPs in response to two tone stimulation, if the Boltzmann function is used 

instead of the hyperbolic tangent function. For this reason, we proceed using a first order 

Boltzmann function to represent the nonlinear action of the OHCs. In the following sections of this 

chapter we demonstrate that several other features of the micromechanical model influence the 

amplitude of the harmonic and DP responses, in addition to the choice of the nonlinear function. 

For this reason we defer selecting values of the Boltzmann function parameters, α and β, for the 

cochlear model until these other factors have been considered. 
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3.2 The influence of the position of the nonlinearity within the 

micromechanical feedback loop 

For a linear active cochlear model, each micromechanical element pictured in figure 2.2 can be 

represented by the feedback diagram shown in figure 3.4a (Neely, 1985). In this illustration the 

linear pressure output of the feedback loop which represents the action of the OHCs, lin

OHCp , is 

assumed to act on the CP in the same way as the transmembrane pressure, pd, as discussed in 

section 2.4.1. Filter 1 corresponds to the passive mechanical impedance of the BM. Filter 2 is a 

simplified representation of the impedance of the active OHC complex, incorporating the many 

factors that contribute to the action of the OHCs including linear components of the 

mechanoelectrical and electromechanical transduction processes associated with the cells. The 

nonlinearity can be positioned either before filter 2 (figure 3.4b) as suggested by Cooper (1998) or 

after filter 2 (figure 3.4c) as implicit in the model of Kanis & de Boer (1993) described in section 

2.4.1. In this section we consider the influence of the position of the nonlinearity on the predicted 

response of a cochlear model.  

 

(a) 

 

 

(b) 

 

(c) 

 

Figure 3.4 Block diagrams of different micromechanical feedback loop arrangements 
An example of a linear active model (a) and two active nonlinear models (b & c) are shown. The semi-
difference pressure across the cochlear partition, the velocity response of the basilar membrane, the linear 
pressure output of the outer hair cells and the quasilinear output of the outer hair cells are denoted by pd, v, 

lin

OHC
p , and QL

OHC
p  respectively. Filters 1 and 2 represent the admittance of the basilar membrane and the 

dynamics of the outer hair cells respectively.  

 

pd 

pd 
pd 
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A summary of the results of this investigation were presented in a letter to the editor of the Journal 

of The Acoustical Society of America, How et al. (2010), re-printed in appendix H. The simulated 

results presented in this section differ quantitatively from those of How et al.because of differences 

in the parameters of the nonlinear function. For example, in this section we use a value of β equal 

to 3 and a uniform value of α for the coupled cochlear model. In contrast, How et al.use a β value 

of 1.2 and a spatial distribution of α so that it increases from the base to the apex for reasons 

discussed which will be discussed in section 3.5.  

3.2.1 The position of the nonlinearity in an uncoupled element 

Figure 3.5 shows the predicted response of a single uncoupled micromechanical element, located at 

the 6 kHz characteristic place, to sinusoidal stimulation. This element has micromechanical 

properties identical to those described by Kanis & de Boer, in all but two aspects. First, a first order 

Boltzmann function is used to represent the nonlinear action of the OHCs rather than the 

hyperbolic tangent function employed by Kanis & de Boer. Secondly, the simulation is performed 

twice: once with the nonlinearity positioned before filter 2, and again with it positioned after filter 

2. The Boltzmann function parameter β is set equal to 3 for both of these arrangements. The value 

of α is changed from 5 to 10 when the nonlinear function is moved from before to after filter 2 so 

that the amplitude of the fundamental component is the same in each case and the dimensions of α 

are the same as the input to the nonlinear function. It should also be noted that the dimensionless 

Boltzmann function parameter η is assigned a value of 2.5×1010
 rather than 1, when the 

nonlinearity is positioned before, instead of after, filter 2 to compensate for the change in the units 

of the input to the nonlinearity. As a result of these Boltzmann parameter selections, the 

fundamental response of the element changes by less than 1 dB when the position of the 

nonlinearity within the micromechanical feedback loop is altered, as shown in figure 3.5. 

Figure 3.5 also demonstrates that, for both micromechanical arrangements, local maxima occur in 

the simulated harmonic responses when either the fundamental frequency, or the harmonic 

frequency, is equal to the characteristic frequency of the element. Although the amplitude of the 

fundamental response is not significantly affected, the amplitude of the harmonic components is 

influenced by the position of the nonlinearity within the micromechanical feedback loop. For 

example, the local maximum in the 2nd harmonic response which occurs when the stimulus 

frequency is close to the characteristic frequency of the uncoupled element decreases in amplitude 

by 8 dB if the nonlinearity is moved from before to after filter 2 in the micromechanical feedback 

loop. Conversely the other local maximum in the 2nd harmonic response, which occurs when the 2nd 

harmonic frequency corresponds to the characteristic frequency of the element, increases in 

amplitude by 13 dB if the same change is made to the micromechanical feedback loop. 
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When considering the generation of the 2nd harmonic response within the micromechanical 

feedback loop we denote the stimulus frequency as f0 and therefore the 2nd harmonic frequency is 

2f0. Figure 3.6a illustrates the passage of the 2nd harmonic component through the micromechanical 

feedback loop. It shows that filter 2 will either operate on a signal at 2f0 or f0 depending on whether 

the nonlinearity is positioned before or after filter 2 respectively. If the response of filter 2 were 

independent of frequency, then the position of the nonlinear function relative to this filter would 

have no influence on the amplitude of the 2nd harmonic component generated by the feedback loop. 

However, this is not the case. Figure 3.6b shows the normalised amplitudes of filters 1 and 2 for an 

uncoupled micromechanical element located at the 6 kHz characteristic place. This figure is similar 

to a graph presented in How et al. (2010), but it has been modified to emphasise the influence on 

the 2nd harmonic component of the position of the nonlinearity relative to filter 2. Figure 3.6b 

demonstrates that if f0 = 6 kHz and 2f0 = 12 kHz, then the amplitude response of filter 2 is much 

smaller at 2f0 compared to f0. Therefore, when a stimulus is present at f0 = 6 kHz, the amplitude of 

the 2nd harmonic is reduced when the nonlinearity is positioned before, rather than after, filter 2. In 

contrast, if f0 = 3 kHz and 2f0 = 6 kHz, then the amplitude response of filter 2 is approximately 

double at 2f0 compared to f0. For this reason, when the stimulus is presented at f0 = 3 kHz, the 

amplitude of the 2nd harmonic component increases when the nonlinearity is positioned before, 

rather than after, filter 2. In summary, the influence of the position of the nonlinearity within the 

micromechanical feedback loop on the simulated 2nd harmonic response shown in figure 3.5 is 

associated with the frequency dependence of filter 2 which represents the impedance of the OHC 

complex.  

 

Figure 3.5 The frequency response of a single micromechanical element 
A range of stimulus frequencies, at a level of 1 Pa, are presented to a single micromechanical element located 
at the 6 kHz characteristic place. The nonlinearity is positioned either (a) before or (b) after filter 2, as shown 
in Figure 3.4. A first order Boltzmann function, with β=3 and (a) α=5 or (b) α=10, is used to represent the 
nonlinear action of the OHCs. The value of α was selected so that the fundamental response is unaffected by 
the change in the position of the nonlinearity within the micromechanical feedback loop. The diamond, 
circular and triangular arrow heads indicate stimulus frequencies at which the fundamental, 2nd harmonic or 
3rd harmonic frequency correspond to the characteristic frequency of the micromechanical element 
respectively.  
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(a)  

 
(b)  

 
Figure 3.6 The frequency response of filters 1 and 2 in the Kanis & de Boer cochlear model 
Plot (a) shows the frequency of the signal of interest when predicting the 2nd harmonic component of the 
response to a stimulus presented at frequency f0. The output of the nonlinear function will also contain 
components at the fundamental and other harmonic frequencies, but these are neglected for simplicity. (b) 
illustrates the assumed frequency response functions for filters 1 (dashed line) and 2 (solid line), associated 
with the passive BM admittance and OHC impedance respectively, observed at the 6 kHz characteristic place 
in the Kanis & de Boer (1993) model of the human cochlea. Dotted lines indicate the difference in the 
amplitude of filter 2 at f0 and 2f0 when the stimulus is presented at (i) f0 = 6 kHz and (ii) f0 = 3 kHz. 
 

3.2.2 The position of the nonlinearity in a coupled model 

In this section the influence of the position of the nonlinearity within the micromechanical 

feedback loop on the coupled cochlear model is described. The value of α is changed from 0.8 to 2 

when the nonlinear function is moved from before to after filter 2 so that the fundamental 

component has the same saturation threshold in each case. As for an uncoupled element, the 

dimensionless Boltzmann function parameter η is assigned a value of 2.5×1010
 rather than 1, when 

the nonlinearity is positioned before, instead of after, filter 2 to compensate for the change in the 

units of the input to the nonlinearity. In these simulations, all of the Boltzmann function parameters 

are uniformly distributed along the cochlear partition. 
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The effect on the harmonic response to a single tone stimulus 

Figure 3.7(i) shows the response of the guinea pig cochlea to single tone stimulation at the 17 − 19 

kHz characteristic place, observed by Cooper (1998). The fundamental, 2nd harmonic and 3rd 

harmonic components of the response are given for a range of stimulus frequencies between 6 and 

21 kHz. This figure also presents the simulated response of the coupled cochlear model, observed 

at the 6 kHz characteristic place. The stimulation is performed twice, with the nonlinear function 

positioned either (ii) before or (iii) after filter 2 as illustrated in figure 3.4(b and c). As a 

consequence of the selected Boltzmann function parameters, the fundamental response predicted by 

the model changes by less than 1.5 dB when the position of the nonlinearity within the 

micromechanical feedback loop is altered. The magnitude of this change is comparable to the scale 

of numerical errors that can arise in the computation process (appendix B.1), and so it is not 

considered significant. However, although the simulated fundamental response is unaffected, the 

position of the nonlinearity within the micromechanical feedback loop does influence the harmonic 

responses of the coupled model. For example, figure 3.7 shows that predicted the 2nd harmonic 

response observed at the 6 kHz characteristic place in the cochlear model has two local maxima 

which occur when the stimulus frequency is equal to either 6 or 3 kHz. For these stimuli either the 

fundamental or 2nd harmonic component frequencies correspond to the characteristic frequency of 

the observation location. If the nonlinearity is positioned before, rather than after, filter 2 in the 

micromechanical feedback loop then the predicted amplitude of the 2nd harmonic component of the 

response at a 3 kHz stimulus tone increases from  − 10 to 3 dB relative to the fundamental 

component. In addition, the same change in the micromechanical model causes the predicted 

amplitude of the 2nd harmonic component to decrease from  − 24 to  − 35 dB relative to the 

fundamental response for a 6 kHz stimulus. Therefore, positioning the nonlinearity before rather 

than after filter 2 either enhances or reduces the amplitude of the 2nd harmonic response when 

either the 2nd harmonic or fundamental component frequency is equal to the characteristic 

frequency respectively. These effects are largely uninfluenced by other model parameters such as 

the Boltzmann function parameters α and β. The same effects were observed for the uncoupled 

model in section 3.2.1, and an explanation for the influence of the position of the nonlinear 

function within the micromechanical feedback loop was proposed.  

Although the nature of the influence of the position of the nonlinear function is not generally 

affected by other model parameters, the amplitude of the predicted level of the 2nd harmonic 

response relative to the fundamental response is sensitive. For example, when the 2nd harmonic 

frequency is equal to the characteristic frequency of the observation location, the amplitude of the 

2nd harmonic component relative to the fundamental response depends on the Boltzmann function 

parameters α and β, in addition to the position of the nonlinearity within the micromechanical 

feedback loop. For this reason, it is difficult to determine whether the nonlinearity should be 

positioned either before or after filter 2 in order to best replicate the results of Cooper (1998). 
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However, How et al. (2010) suggest that for suitable choices of α and β discussed in section 3.5, 

the results of Cooper (1998) are most accurately simulated by the model if the nonlinearity is 

positioned before rather than after filter 2. 
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Figure 3.7 The influence of the position of the nonlinearity within the micromechanical feedback loop on the 
harmonic response of the coupled cochlear model 
(i) The measured response of the BM to a single tone stimulus in the guinea pig cochlea, observed at the 
17 − 19 kHz characteristic place [From figure 2 of Cooper (1998), with permission from John Wiley & 
Sons]. The stimulus was presented at (a) 60 dB SPL and (b) 80 dB SPL. The fundamental, 2nd harmonic, and 
3rd harmonic components of the response are denoted by F0, 2F0 and 3F0 respectively. (ii) & (iii) The 
simulated response of the coupled cochlear model to a single tone stimulus presented at (a) 60 dB SPL and 
(b) 80 dB SPL, observed at the 6 kHz characteristic place. The nonlinearity is positioned either (ii) before or 
(iii) after filter 2, as shown in figure 3.4. A first order Boltzmann function, with β=3 and (ii) α =0.05 or (iii) 
α=0.13, is used to represent the nonlinear action of the OHCs. The predicted fundamental, 2nd harmonic and 
3rd harmonic components of the BM displacement are denoted by the solid, dashed and dotted lines 
respectively. 
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The effect on the distortion products evoked by two tone stimulation 

Figure 3.8a shows the predicted response of the coupled model evoked by two stimulus tones at 

frequencies f1 and f2. Only the largest amplitude DP components of the BM velocity are shown. 

Higher order components, such as the 3f1 − 2f2 and 3f2 − 2f1 DPs, were at least 60 dB below the 

primary responses. The amplitude of the primary responses (f1 and f2) vary by less than 1 dB if the 

position of the nonlinearity within the micromechanical feedback loop is moved. As this change is 

of comparable magnitude to the scale of numerical errors that can arise in the computation process 

(appendix B.1), it is not considered significant. Although the primary responses are unaffected, the 

DPs can be influenced by the position of the nonlinearity within the feedback loop. For example, 

the amplitude of the predicted 2f1 − f2 and 3f1 − 2f2 DPs decrease by 5 and 16 dB respectively when 

the nonlinearity is moved from before, to after, filter 2.  

Figure 3.8b shows the spectrum recorded from the BM of the chinchilla cochlea in response to two 

tone stimulation by Robles et al.(1997). The middle ear model and the micromechanical parameters 

of the cochlear model are designed to replicate the response of the human ear, rather than the 

chinchilla ear, and so it is not appropriate to compare the absolute levels of the spectral components 

observed experimentally with those predicted by the model. Comparison of the relative amplitudes 

of the spectral components between the simulation and physiological measures is more appropriate. 

It should be noted that a lower stimulation level was used in the model, compared to the 

experimental study, in order to achieve a broad agreement in the amplitude of the 2f1 − f2 DP, 

relative to the f1 component in both the simulated and experimental result. Robles et al.(1997) 

observe that the amplitudes of the 2f1 − f2 and 3f1 − 2f2 DPs are approximately 22 and 28 dB below 

that of the f1 component of the BM velocity respectively. The model simulation predicts these 

values to be equal to 23 dB and 65 dB respectively, or 29 and 81 dB respectively, depending on 

whether the nonlinearity is positioned before, or after, filter 2 in the micromechanical feedback 

loop. Although both arrangements underestimate the amplitude of the 4th order DP, the best 

agreement with the physiological measure is observed when the micromechanical feedback loop 

incorporates the nonlinear function positioned before filter 2.  
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Figure 3.8 The influence of the position of the nonlinearity in the micromechanical feedback loop on the 
response of the model to two tone stimulation 
(a) The predicted CP velocity components, evoked by two tones (L1=L2=60 dB re 10 − 8m/s), at frequencies f1, 
f2, 2f1 − f2, and 2f2 − f1. The result is observed at the characteristic place of 8.1 kHz, as at this position in the 
cochlear model the f1 and f2 components have almost equal amplitude. The simulation is performed twice: 
with nonlinearity positioned either before (circles) or after (crosses) the OHC dynamics in the 
micromechanical feedback loop. The Boltzmann function uses β=3 and the parameter α is set so that the 
primary tones are equally saturated for both micromechanical arrangements so that α=0.8 and α=2 when the 
nonlinearity is positioned before and after filter 2 respectively. (b) The physiological measurement of Robles 
et al.at the 8 kHz characteristic place in the chinchilla cochlea (L1=L2=80 dB SPL), used with permission. In 
all cases stimuli were presented at f1= 7.6 kHz, f2=8.4 kHz (f2/f1=1.11). [From figure 1 of Robles et al. (1997), 
with permission from Am. Physiol. Soc]  

 

In summary, the predicted harmonics and DPs in the cochlear model have higher amplitudes, 

relative to the fundamental response, if the nonlinearity is positioned before, rather than after, filter 

2. The influence of the position of the nonlinear function within the micromechanical feedback 

loop may not be evident in the fundamental response, as the micromechanical parameters can be 

adjusted to compensate for any affect on the fundamental component. Therefore it is important to 

consider the harmonic response of the model when deciding where to position the nonlinear 

function within the micromechanical feedback loop of a simple cochlear model such as the one 

considered in this chapter. In section 3.5, we opt to position the nonlinearity before filter 2 for 

further work. However, it is feasible that either micromechanical arrangement could be used, 

provided that the parameters of the Boltzmann function (α and β) are appropriately set to provide 

sufficient levels of harmonic and DP components in each case. 
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3.3 Vertical or shear motion input to the nonlinear function 

When the Kanis & de Boer cochlear model is modified so that the nonlinearity is positioned before 

filter 2 in the micromechanical feedback loop, the input to the nonlinear function is dependent on 

the vertical velocity of the BM, v. However the anatomical orientation of the OHCs within the 

organ of Corti, illustrated in figure 3.9, suggests that motion of the OHC stereocilia arises not from 

this vertical movement, but from the relative shear motion of the BM and TM (Lim, 1980; Gueta et 

al., 2008). As the nonlinearity in the cochlear model is attributed with the action of the OHCs, it 

may therefore be more appropriate to use a shear motion, rather than a vertical motion, to 

determine the input to the nonlinear function. 

Neely & Kim (1986) suggest a model in which the difference in shear displacement between the 

tectorial membrane (TM) and the organ of Corti (OC), ξ, provides the input to the OHCs. The shear 

displacement, ξ, is assumed to depend linearly on the BM velocity, v, as shown in (3.3), where Z2 

and Z3 denote the impedances of the TM and the coupling between the TM and OC respectively 

and are defined in appendix E.6. The dimensionless constants bw and glever have values of 0.4 and 1, 

and represent the ratio of the average displacement across the width of the CP to the maximum 

displacement over the width of the BM, and the BM to IHC lever gain respectively.  
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Figure 3.10 shows a block diagram representation of a single micromechanical feedback loop, and 

how it is modified when the input to the nonlinearity is switched from v to ξ. It illustrates that this 

change effectively introduces filter 3 into the micromechanical feedback loop, which represents the 

response of the TM and the coupling between the TM and OC. 

 
Figure 3.9 Illustration of the anatomy of the cochlear partition 
This shows the position of the outer hair cells (OHCs) with respect to the Basilar membrane and Tectorial 
membrane. The orientation of the motion described in the text as “vertical” and “shear” is also shown for 
reference. [From figure 1 of Gueta et al. (2008), with permission from the author]. 
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(a) 

 

(b) 

 

Figure 3.10. Block diagrams of 
micromechanical feedback loops 
which differ in the input to the 
nonlinear function. 
The input to the nonlinear function is 
either (a) the vertical BM velocity v 
or (b) the difference in shear 
displacement of the TM and OC, ξ. 
Filters 1 and 2 represent the 
admittance of the basilar membrane 
and the dynamics of the outer hair 
cells respectively. The shear 
displacement, ξ, is assumed to have 
linear dependence on v, as shown in 
equation (3.3), so that filter 3 can be 
described by the impedance 
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In this section, the influence of the orientation of the input to the nonlinear function is considered 

by comparing the response of the model when the input to the nonlinearity is switched from 

vertical BM velocity v (Figure 3.10a), to shear displacement ξ (figure 3.10b). In all simulations the 

nonlinearity is positioned before filter 2 in the micromechanical feedback loop, and a first order 

Boltzmann function (β=3) is used to represent the nonlinear action of the OHCs.  

3.3.1 The influence on the uncoupled model 

We start by considering the effect of changing the input to nonlinear function from vertical BM 

velocity v (figure 3.10a), to shear displacement ξ (figure 3.10b) on a single micromechanical 

element within the cochlear model. Figure 3.11 shows the response of an uncoupled element to a 

single tone stimulus presented at a range of frequencies. The simulation is performed twice with the 

input to the nonlinearity determined by either the vertical BM velocity, v, or the shear displacement. 

ξ. The result demonstrates that there is a range of stimulus frequencies, between about 4 and 6 kHz, 

at which the amplitude of the harmonic components increase when the input to the nonlinearity 

changes from v to ξ. For lower stimulus frequencies (≤ 3 kHz), the amplitude of the harmonic 

components tends to decrease if the nonlinearity input changes from v to ξ.  
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Figure 3.11 The influence of the input to the nonlinear function on the response of a single micromechanical 
element 
The fundamental (solid line), 2nd harmonic (dashed line) and 3rd harmonic (dotted line) components of the 
cochlear partition velocity are shown for a micromechanical element at the 6 kHz characteristic place. The 
thin lines and thick lines correspond to the micromechanical models illustrated in figure 3.10(a) and (b) 
respectively. The nonlinear action of the OHCs is represented by a first order Boltzmann function with β=3 
and α=24 (for figure 3.10a) or α=20 (figure 3.10b). 

 

The frequency responses of the filters 1, 2 and 3 used in figure 3.10 for the micromechanical 

element located at the 6 kHz characteristic place are given in figure 3.12. The filter amplitudes in 

figure 3.12 are normalized with respect to the filter amplitude at 6 kHz because the Boltzmann 

function parameter α has been adjusted so that the fundamental component exhibits equal 

saturation at this stimulus frequency in both micromechanical arrangements. When the input to the 

nonlinearity is changed from v to ξ, there are two changes to the micromechanical feedback loop: 

filter 3 is introduced and the form of filter 2 changes to accommodate the change in the output of 

the nonlinear function from v to ξ.  

If the vertical BM velocity, v, provides the input to the nonlinear function, the input is determined 

purely by filter 1 for a given stimulus frequency (figure 3.10a). If instead the shear displacement ξ 

acts as the input to the nonlinear function, then the input is determined by both filters 1 and 3 

(figure 3.10b). Filter 1 has the same frequency response in both micromechanical arrangements. 

However, filter 3 has bandpass characteristics such that the input to the nonlinearity is enhanced 

relative to a 6 kHz signal, for stimulus frequencies between 4 and 6 kHz. In contrast, filter 3 

attenuates the input to the nonlinearity, relative to a 6 kHz signal, for very low and very high 

stimulus frequencies. Therefore, when the input to the nonlinear function is changed from v to ξ, 

the introduction of filter 3 into the micromechanical feedback loop increases the input to the 

nonlinearity for stimulus frequencies at 4 − 6 kHz, and reduces the input for all other stimulus 

frequencies. For this reason, the amplitude of the harmonic components increase at stimulus 

frequencies between 4 and 6 kHz, and decreases at other frequencies, when the input to the 

nonlinearity is changed from v to ξ, as observed in figure 3.11. 
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Figure 3.12 The form of the filters 1, 2 and 3 in the Kanis & de Boer cochlear model 
Plots (a) to (c) show the responses of filter 1, 2 and 3 at the 6 kHz characteristic place. The filter amplitude is 
normalised relative to the filter amplitude at 6 kHz. The thin and thick lines correspond to the filters for the 
different micromechanical models shown in figure 3.10(a) and (b) respectively. In plot (a) the filter 1 
responses are indistinguishable.  

3.3.2 The influence on the coupled model 

We now investigate the effect of changing the input to nonlinear function from vertical BM 

velocity v (figure 3.10a), to shear displacement ξ (figure 3.10b), on the coupled cochlear model. 

The fundamental response to single tone stimulation 

Figure 3.13 shows the fundamental response of the cochlear model to a range of stimulus 

frequencies, observed at the 6 kHz characteristic place. The simulation is performed twice, with the 

input to the nonlinear function either being determined by v or ξ. In both cases a Boltzmann 

function is used to represent the nonlinear action of the OHCs, and it is positioned before filter 2 in 

the micromechanical feedback loop. At low stimulus levels, such as a stapes velocity of 50 dB re 

10 − 8 m/s, the change in the nature of the input to the nonlinear function has no substantial effect. 

However, at a higher stimulus level of 80 dB re 10 − 8 m/s a difference is observed: when the input 

to the nonlinearity is changed from the vertical BM velocity, v, to the shear displacement, ξ, the 

amplitude of the fundamental response decreases and the OHC gain reduces. These effects are most 

apparent for stimulus frequencies between 3.8 and 6 kHz, when the response is observed at the 6 

kHz characteristic place in the cochlear model. Although a reduction in response amplitude and 

OHC gain are often associated with greater saturation of the nonlinear function, it has not proved 

possible to adjust the uniformly distributed parameters of the Boltzmann function to compensate 

for a change in the nature of the input to the nonlinear function from v to ξ. This is not surprising 

considering the gain distributions for the 80 dB response shown in figure 3.13, which illustrate that 

at low stimulus frequencies (<3.8 kHz) the nonlinear function is more saturated when the vertical 

BM velocity provides the input, whilst at higher stimulus frequencies (3.8 to 5.5 kHz) the nonlinear 

function is more saturated when the shear displacement acts as the input.  
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Figure 3.13 The influence of the input variable to the nonlinear function on the fundamental response of the 
coupled cochlear model 
Plot (a) shows the fundamental response of the coupled model to a 6 kHz stimulus presented at 50 and 80 dB 
re 10 − 8m/s. The amplitude is given in dB relative to the low frequency response at 2 kHz. Plot (b) gives the 
fundamental OHC gain (γQL), as defined in equation (2.30), for the same stimuli used in (a). The input to the 
nonlinear function is either the vertical BM velocity v (thin lines), or the shear displacement ξ (thick lines). In 
both cases, the nonlinearity is a Boltzmann function (β=3, α=0.8) and it is positioned before filter 2.  

The harmonic response to single tone stimuli 

Figure 3.14 shows the spatial distributions of the fundamental and harmonic responses of the model 

to a 6 kHz stimulus tone presented at the stapes at 60 dB re 10 − 8m/s. There are two effects of 

changing the input to the nonlinear function from v to ξ on the harmonic components. Firstly, at the 

characteristic place of the fundamental frequency, the amplitude of the harmonic components 

increase relative to the fundamental component. For example, figure 3.14 demonstrates that the 

amplitude of the 2nd harmonic component at the 6 kHz characteristic place increases from  − 40 dB 

to  − 27 dB, relative to the fundamental response, when the input of the nonlinear function changes 

from v to ξ. Secondly, the amplitude of the harmonic components at their characteristic places 

decrease when the input to the nonlinearity switches from v to ξ. In Figure 3.14 the amplitude of 

the 2nd harmonic component at its characteristic place decreases from  − 4 dB to  − 35 dB relative 

to the fundamental response when the input to the nonlinear function changes from v to ξ.  

 

Figure 3.14 The influence of the input variable to the nonlinear function on the harmonic response of the 
coupled model 
The plots show the fundamental and harmonic responses to a 6 kHz stimulus at 60 dB re 10 − 8m/s in a model 
where the input to nonlinear function is either determined by (a) the vertical velocity of the CP, v, or (b) the 
difference in shear displacement between the tectorial membrane and the organ of Corti, ξ. A first order 
Boltzmann function (β=3 and α=0.8) is used in both models.  
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The measurement of Cooper (1998), in the guinea pig cochlea, suggests that the 2nd harmonic 

component should be approximately 11 dB below the fundamental component at the characteristic 

place of the 2nd harmonic frequency. Therefore, the model response is more in agreement with 

physiological observations if v, rather than ξ, is used to determine the input to the nonlinear 

function. 

These observations of the model suggest that the nonlinear function is more readily saturated at the 

characteristic place, but less readily saturated at more basal locations, if the input to the 

nonlinearity changes from v to ξ. The quasilinear approximation assumes that, at all locations 

within the cochlear model, the harmonic components are small relative to the fundamental and so it 

is the amplitude of the fundamental response which determines the degree to which the nonlinear 

function is saturated. At a location immediately basal to the 6 kHz characteristic place, figure 3.12 

suggests that the input to the nonlinearity at 6 kHz is increased by the introduction of filter 3 into 

the micromechanical feedback loop. Therefore the nonlinearity is more saturated at this location, 

and higher levels of harmonic components are generated within the cochlear model if the input to 

the nonlinear function is switched from v to ξ. However, at the characteristic place of the 2nd 

harmonic frequency, filter 3 acts to reduce the input to the nonlinear function at 6 kHz, and so the 

nonlinear function is less saturated at this location, and lower levels of harmonic components are 

generated when the input to the nonlinear function changes from v to ξ.  

The distortion products evoked by two tone stimulation 

Figure 3.15 shows the predicted DP spectrum evoked by two stimulus tones presented at 7.6 and 

8.4 kHz. The simulation is performed twice, with the micromechanical feedback arranged so the 

input to the nonlinear function was either determined by the vertical BM velocity, v, or the 

difference in shear displacement between the tectorial membrane and the organ of Corti, ξ. The 

value of the Boltzmann function parameter α was adjusted between simulations so that the 

amplitude of the primary components at the 8 kHz characteristic place is changed by less than 1 dB 

by the alteration in the micromechanical feedback loop. The results demonstrate that changing the 

input of the nonlinear function from v to ξ has little effect on the predicted DPs. For example, the 

amplitude of the 2f1 − f2 DP changes by less than 1 dB if the input to the nonlinear function is 

switched from v to ξ. The 3f1 − 2f2 DP decreases by 7 dB, whilst the 2f2 − f1 and 3f2 − 2f1 DPs 

increase by 5 and 6 dB respectively, if the input to the nonlinearity is changed from v to ξ. 

Therefore the effect of altering the micromechanical feedback loop such that the input to the 

nonlinearity is changed from v to ξ, depends on the frequency of the DP component. 
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Figure 3.15. The influence of the input variable to the nonlinear function on the response to two tone 
stimulation 
The plots shows CP velocity components evoked by two tones (L1=L2=50 dB re 10 − 8m/s) at the 8 kHz place 
in the model, at frequencies f1, f1, 2f1 − f2, 2f2 − f1, 3f1 − 2f2 and 3f2 − 2f1 when it is stimulated by f1=7.6 and 

f2=8.4 kHz. The input to the OHCs is either determined by v (circles) or ξ (squares). Both simulations use a 
first order Boltzmann function (β=3) to represent the nonlinear action of the OHCs, and the parameter α is 
set equal to either 0.8 or 0.42 when using v or ξ respectively so that the level of the fundamental components 
is the same in each case. 
 
 

In summary, the harmonic response and the spatial OHC gain distribution arising from single tone 

stimulation can be influenced by whether the vertical BM velocity, v, or shear displacement ξ, 

determines the input to the nonlinear function. For example, the amplitude of the harmonic 

response is more consistent with the physiological measurement of Cooper (1998) if v, rather than 

ξ, provides the input to the nonlinear function. There is also a change in the amplitude of the 

predicted DPs, which is generally small (<10 dB) and is dependent on the frequency of the DP. In 

section 3.5, we opt to proceed with a model in which the input to the nonlinear function is 

determined by the shear displacement, ξ. It should be noted, however, that this model tends to 

underestimate the amplitude of harmonic components in the vicinity of their characteristic place. 

This is a pragmatic choice which allows the estimated response of the quasilinear model to be 

compared with the results of the state space time domain model in which the input to the 

nonlinearity is determined by ξ.  
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3.4 Alternative micromechanical parameters 

The micromechanical parameters suggested by Kanis & de Boer allow their cochlear model to 

exhibit features which are broadly consistent with physiological observations of the human cochlea. 

For example, the place-frequency map of the fully active linear Kanis & de Boer cochlear model 

differs by less than ¼ of an octave from the human Greenwood formula, up to distance of 0.025 m 

from the stapes. Also, at a given location within the model the characteristic frequency reduces by 

0.46 octaves when local activity is removed, consistent with experimental observation (Robles & 

Ruggero, 2001). In addition the cochlear amplifier (CA) gain for the model is approximately 37 dB, 

for stimulus frequencies below 15 kHz, which is approaching the value of 40 − 60 dB observed in 

experimental studies of the basal region of the mammalian cochlea (Sellick et al., 1982; Johnstone 

et al., 1986; Robles & Ruggero, 2001). However, there are some features of their model which do 

not agree with experimental observations. For example, the response of the model to single tone 

stimulation does not exhibit reduced CA gain or broader sharpness of tuning as the stimulus 

frequency decreases and the characteristic place moves from the base to the apex.  

The aim of this section is to present a set of adapted micromechanical parameters, for which the 

fundamental response to single tone stimulation exhibits reduced sharpness of tuning as stimulus 

frequency decreases, without compromising the qualities of the original micromechanical model 

such as the accuracy of the place frequency-map and the high CA gain near the base. The 

motivation for this is that the modified micromechanical parameters may allow the model to better 

predict the place-fixed component of distortion product otoacoustic emissions (DPOAEs), as the 

reflection of travelling waves within the cochlea is dependent on the tuning of the response (Zweig 

& Shera, 1995a). 

3.4.1 The modified micromechanical parameters 

The micromechanical parameters were altered by trial and error, inspired by the spatial variation of 

the micromechanical parameters in the cochlear model of Ku et al. (2008), which permits broader 

tuning of the response towards the apex of the model. The result is that the micromechanical 

parameters describing the active mechanics are modified as shown in table 3.1, to produce a model 

which exhibits the linear characteristics described in the following section. These characteristics 

are achieved by introducing the exponential distributions Q1(x) and Q2(x), defined in (3.4) and 

illustrated in figure 3.16, into the description of the parameters describing the active mechanics. 

The passive mechanics are unaffected by these changes. 

 
1 2

0.6( ) exp( 0.7 / ) and ( ) 0.2( / ) 1.01Q x x L Q x x L= − = +  (3.4) 
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The function Q1(x) is used to reduce both the sharpness of tuning and the CA gain towards the apex 

of the cochlea. Distribution Q2(x) is used to compensate for the reduction in CA gain introduced by 

Q1(x) so that gain does not become too small in the apical region of the model. The net result is a 

small shift in the active place-frequency map (figure 3.20), a slight decrease in gain as frequency 

decreases (figure 3.18), and a broadening of the response as stimulus frequency decreases (figure 

3.17). 

 
 

Micromechanical 
parameter 

Interpretation (i) 
Original Kanis 

& de Boer 
model 

(ii) 
Modified 

model 

δsc 
A dimensionless damping parameter in the 
active mechanics 

0.14 0.14×Q1 

σ0 
A dimensionless parameter which describes 
the shift in resonance between the OHCs and 
BM. 

0.7 0.7×√Q1 

e0 
A factor which determines the maximum 
pressure output of the OHCs 4.28×10 − 5 4.28×10 − 5×Q2 

Table 3.1 The micromechanical parameters of the (i) original and (ii) modified cochlear models  
The interpretation of the parameters is based on that given by Kanis & de Boer (1994), in terms of the Basilar 

membrane (BM) and outer hair cells (OHCs). The distributions 
1
( ) exp( 0.7 / )Q x x L= − and 

2

0.6( ) 0.2( / ) 1.01Q x x L= + where obtained by trial and error for a model of length L. All other parameters 

for the modified model are the same as in the original description of Kanis & de Boer (see chapter 2). 

  

 
Figure 3.16 The distributions Q1(x) and Q2(x) 
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Figure 3.17 The predicted Q10dB  

The Q10dB measure of sharpness of tuning is shown 
for a range of locations with different characteristic 
frequencies. Values are shown for the coupled 
cochlear model containing either the original Kanis 
& de Boer micromechanical parameters (dotted 
line), or the modified parameters (solid line). 

 

 
Figure 3.18 The predicted cochlear amplifier gain 
The cochlear amplifier gain, defined as the 
difference in maximum velocity amplitude between 
the active and passive responses, is shown for the 
coupled cochlear model incorporating either the 
original Kanis & de Boer micromechanical 
parameters (dotted line) or the modified parameters 
(solid line).  
 

3.4.2 Properties of the linear model with modified micromechanical 

parameters  

Figure 3.17 shows the Q10dB over a range of stimulus frequencies for the fully active linear cochlear 

model incorporating either the original, or modified, micromechanical parameters.  

It demonstrates that there is little variation in sharpness of tuning with stimulus frequency in the 

original model, as the Q10dB is approximately equal to 13 for all stimulus frequencies between 1 and 

16 kHz. However, in the modified model the sharpness of tuning decreases as the stimulus 

frequency decreases, so that the Q10dB of the response reduces from 11 for a 10 kHz stimulus to 3 

for a 0.3 kHz tone. Therefore if the model incorporates the modified micromechanical parameters, 

rather than the original ones, it provides a better simulation of the physiological result shown in 

figure 1.12, where Q10dB decreases from approximately 9 to 1 as the stimulus frequency reduces 

from 10 to 0.2 kHz. 

Figure 3.18 shows the CA gain of the coupled model incorporating either the original or modified 

micromechanical parameters. For high stimulus frequencies the modification of the 

micromechanical parameters has no significant effect on the CA gain, as the gain of the 12 kHz 

response is 37 dB in both cases. However, the modified micromechanical parameters significantly 

reduce the CA gain for low frequency responses, compared to the original micromechanical 

parameters. For example, the gain of the 500 Hz response decreases from 37 dB to 22 dB when the 

original micromechanical parameters are modified. Therefore the model is more consistent with 

physiological measurements from chinchilla cochlea, in which the gain for low frequency stimuli 
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(0.5 − 0.8 kHz) is around 10 to 20 dB (Robles & Ruggero, 2001), when the modified, rather than 

original, micromechanical parameters are used. 

 

 

 
Figure 3.19 The estimated response in the basal and apical regions of the cochlear model 
The plots show the velocity response of the cochlear partition in a model incorporating either the original 
micromechanical parameters of Kanis & de Boer (a and b), or the modified micromechanical parameters 
described in the text (c and d). In each case the coupled model contains N=1000 elements and the basal 
boundary condition minimises reflections. The stimulus frequency is normalised to the CF at each 
observation location which corresponds to (a) 0.59 Hz, (b) 9.8 kHz, (c) 0.54 kHz & (d) 9.6 kHz. In each case, 
both the active and passive linear responses are shown and the CA gain in given in dB. In (e), the measured 
sensitivity (ratio of BM velocity to stimulus pressure) at the base and apex of the chinchilla cochlea is given 
for reference. The apical and basal measurements were made using laser interferometry at the characteristic 
places for 0.5 and 9 kHz respectively. In each case the multiple curves correspond to different stimulus 
levels, and the up/down arrows indicate the best frequency for the highest/lowest levels respectively. [From 
figure 13 of Robles & Ruggero (2001), with permission from Am. Physiol. Soc]  

 

e 
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In figure 3.19, the velocity response of the cochlear model at a basal and apical location is 

compared to an experimental measurement in the chinchilla cochlea (Robles & Ruggero, 2001). 

This demonstrates that at a basal location (5 mm from the stapes), the modification of the 

micromechanical parameters has little effect on the gain of the cochlear model, which is around 37 

dB. This is less than the gain observed in the basal region of the chinchilla cochlea, approximately 

48 dB, but cannot be increased without compromising the stability of the model (Kanis, 1995). At 

the apical location (20 mm from the stapes), the modified micromechanical parameters reduce the 

CA gain by 10 dB, but this remains greater than the 15 dB gain observed in the apical region of the 

chinchilla cochlea.  

It is not possible to further manipulate the micromechanical parameters to achieve more accurate 

replication of the physiological measures of sharpness of tuning or CA gain due to adverse effects 

that this can introduce into the place-frequency map of the fully active cochlear model. For 

example, the modified micromechanical parameters introduce a small shift of the characteristic 

place towards the base for low frequency stimuli such that the characteristic place for a 0.25 kHz 

stimulus moves 1 mm closer to the base when the parameters are modified. This shift can be seen 

in figure 3.21, which shows the predicted velocity response of the model for several stimulus 

frequencies. If further modification of the parameters is introduced to further reduce the gain in the 

apex of the model, this shift is enhanced. Therefore the set of modified micromechanical 

parameters shown in table 3.1 are thought to represent a suitable compromise between the 

properties of CA gain and Q10dB variation required to replicate experimental observations, without 

substantially altering the place-frequency map of the cochlear model. 

 

 
Figure 3.20 The estimated place-frequency map for the fully active cochlear model  
The map is shown for a cochlear model incorporating the original Kanis & de Boer micromechanical 
parameters (dashed thin line) or the modified micromechanical parameters (solid thin line). The Greenwood 
function for the human cochlea (solid thick line) and the predicted response of the passive model (dotted line) 
are also shown for reference. 
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Figure 3.21 The velocity response of the cochlear partition to a range of stimulus frequencies 
Results are shown for the coupled model incorporating the original Kanis & de Boer micromechanical 
parameters (dotted lines) and the model containing the modified parameters described in the test (solid 
lines). 
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3.5 Selecting a micromechanical model 

In the previous sections, a variety of micromechanical properties have been considered. However, 

in the interest of simplicity it is necessary to select a single micromechanical model in order to 

proceed with investigating the properties of DPOAEs.  

3.5.1 The micromechanical properties 

The selected micromechanical properties, and the reasons for these choices, are given in table 3.2. 

To summarise, a micromechanical model is selected with the modified parameters described in 

section 3.4, in which a first order Boltzmann function (β=1.2) is used to represent the nonlinear 

action of the OHCs. This nonlinearity is positioned before filter 2, a simplified representation of the 

impedance of the active OHC complex, in the micromechanical feedback loop. In addition, the 

difference in shear displacement between the tectorial membrane and the organ of Corti is used as 

the input to the nonlinear function. 

 
Selection Reasoning 
A set of modified 

micromechanical 

parameters are used, as 
described in section 3.4.  

The new parameters allow the linear active response of the model to 
exhibit the trend that the cochlear response is more broadly tuned towards 
the apex than towards the base. This trend may be significant for 
estimating the place-fixed component of cochlear DPs for which the 
broadness of tuning is thought to be important (Zweig & Shera, 1995a).  

A first order Boltzmann 

function is used to 
represent the nonlinear 
action of the OHCs. 

The Boltzmann function allows the model to predict even order harmonic 
responses to single tone stimuli. It has not been possible to determine 
suitable values of the Boltzmann function parameters α and β from 
physiological measurements, as discussed in appendix G.2. For this reason, 
the values of α and β are chosen such that the model predicts saturation 
thresholds and levels of harmonic distortion in response to single- and two- 
tone stimuli that most closely match features of physiological 
measurements. 

The nonlinearity is 
positioned before filter 2 
in the micromechanical 
feedback loop, as 
described in section 3.2 

It is feasible that either micromechanical arrangement could be used, 
provided that the parameters of the Boltzmann function (α and β) are 
appropriately set to provide sufficient levels of harmonic components in 
each case. However, figure 3.22 demonstrates that if the nonlinearity is 
positioned after filter 2 in the feedback loop then a value of β in excess of 
7 is required to generate amplitudes of the 2nd harmonic component that are 
consistent with physiological measurement. In contrast, β=1.2 is sufficient 
when the nonlinearity is positioned before filter 2 in the micromechanical 
feedback loop. As experimental observations generally find that β ≤ 5 
(appendix G.2), we conclude that the most appropriate model is one where 
the Boltzmann function (β=1.2) is positioned before filter 2.  

The difference in shear 

displacement between 
the tectorial membrane 
and organ of Corti, ξ, is 
used as the input to the 
nonlinear function. 

This pragmatic selection allows the predictions of the quasilinear model to 
be compared with those of a state space time domain model, provided by 
Ku (2008), in which ξ is used as the input to the nonlinear function. This 
choice is consistent with anatomical considerations (Lim, 1980; Gueta et 

al., 2008). However, a limitation of this selection is that the amplitude of 
the harmonic components at their characteristic place is underestimated if 
ξ, rather v, is used as the input to the nonlinear function. 

Table 3.2 The selected micromechanical features and the reasons for these choices 
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Figure 3.22 The influence of parameter β on the relative amplitude of the fundamental and harmonic 
responses to single tone stimulation 
Results are shown for a 6 kHz stimulus tone applied to a model where the nonlinearity is either positioned 
before filter 2 (solid line) or after filter 2 (dashed line). The difference is observed at the characteristic place 
of the 2nd harmonic component. In this model a first order Boltzmann function is used to represent the 
nonlinear action of the OHCs, and the modified set of micromechanical parameters is used. The input to the 
OHCs is the CP velocity v. The saturation of the fundamental response is kept equal in both arrangements, 
using α=0.8 and α=2 when the nonlinearity is position before and after the OHC dynamics respectively. The 
thin dotted line shows the difference of  − 11 dB observed in the guinea pig cochlea by Cooper (1998), for 
reference. 

 

The first order Boltzmann function is used to represent the nonlinear behaviour of the OHCs. The 

parameter β controls the asymmetry of the nonlinear function and is assigned a uniform value of 

1.2 as described in table 3.2. It is possible that an alternative value may be more suitable, and it 

could be appropriate to use a distribution of β values which vary between the base and the apex. 

However, the value of β has little effect on the amplitude of the predicted 2f1 − f2 or 2f2 − f1 

DPOAEs. For example, if the model is stimulated by two pure tones simultaneously (L1= 65, L2 = 

55 dB SPL and f1=1.8, f2 = 2.2 kHz) then the amplitude of the simulated 2f1 − f2 and 2f2 − f1 

DPOAEs change by less than 1 dB if β is increased from 1.2 to 3. For this reason, we simply 

proceed using β=1.2 without further investigation. 

It is also necessary to specify the value of the Boltzmann function parameter α, which determines 

the saturation threshold and maximum output of the nonlinear function. One approach to this would 

be to assign a uniform distribution to α, such that the saturation threshold would occur for the same 

value of shear displacement ξ at all locations along the cochlear partition. However, there is little 

physiological data to support this assumption. Figure 3.23a shows the maximum predicted shear 

displacement at the characteristic place, evoked by a 0 dB SPL pure tone stimulus presented at a 

range of frequencies in the ear canal of the model.  The predicted amplitude of the maximum shear 

displacement increases from the base of the apex as a consequence of the frequency dependence of 

the middle ear mechanics and linear cochlear micromechanics. If the parameter α was constant 

along the length of the model, then the ear canal pressure corresponding to the saturation threshold 
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would decrease as the stimulus frequency decreases. However, in contrast to this, there is 

experimental evidence to suggest the saturation threshold does not vary substantially for different 

stimulus frequencies. For example, the growth functions for different frequency components of a 

human TEOAE suggest that the saturation threshold corresponds to a level between 30 and 40 dB 

SPL in the ear canal (Grandori, 1985). Similarly, the saturation threshold deduced from human 

DPOAE growth functions varies by less than 10 dB when the f2 frequency changes from 0.5 to 4 

kHz (Lopez-Poveda et al., 2003). For this reason, we opt to use an α distribution which gives a 

saturation threshold of approximately 30 dB SPL in the ear canal across a range of stimulus 

frequencies between 0.5 and 6 kHz. This distribution is illustrated in figure 3.23b, and the resulting 

BM displacement growth function is shown in figure 3.24 for three different stimulus frequencies. 

A plateau is imposed on the α distribution close to the base of the model, such that the value of α 

does not fall below 0.02, and as a result the saturation threshold increases above 30 dB SPL for 

stimulus frequencies greater than 6 kHz. The plateau is necessary because the amplitude of a 

response to a high frequency stimulus presented at 30 dB SPL, at its characteristic place in the 

cochlear model, can be exceeded by the amplitude of a response to a lower frequency stimulus, as 

shown in figure 3.25. Therefore the plateau in the distribution of α near the base of the model 

prevents the value of α becoming so small that all low frequency stimuli are suppressed in this 

region. 

(a)  

 
(b) 

 
Figure 3.23 The spatial variation of the Boltzmann function parameter α 
Plot (a) shows the maximum shear displacement ξ at the characteristic place predicted by the linear model for 
a 0 dB SPL pure tone stimulus presented in the ear canal at a variety of frequencies. The displacement tends 
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to increase as distance from the base increases. For this reason, the spatial variation shown in (b) is 
introduced into the Boltzmann function parameter α.  

 

 
Figure 3.24 Nonlinear growth of the BM response at the characteristic place  
The plot shows the predicted growth of BM displacement for stimuli presented at 0.5, 2, and 4 kHz observed 
at their respective characteristic places within the cochlear model 

 

 
Figure 3.25 The comparison of the amplitude of the response evoked by different stimulus frequencies 
The difference in shear displacement (ξ) between the tectorial membrane and the organ of Corti, predicted by 
the quasilinear cochlear model is shown for single tone stimuli applied at 1 and 10 kHz at levels of 75 and 30 
dB SPL respectively. At the 10 kHz place, approximately 5mm from the base of the model, the magnitude of 
ξ is approximately the same for both stimulus frequencies. 
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3.5.2 The response of the selected model to single tone stimulation 

It is worth briefly reviewing the response of the selected model to single tone stimulation before 

processing to estimate the DPs it predicts. Figure 3.24 shows the growth function of BM 

displacement with increasing stimulus levels in the cochlear model described in section 3.5.1. 

Between the stimulus levels of 40 and 70 dB SPL, the compressive nonlinear growth is rate is 

0.3 − 0.4 dB/dB, consistent with the value of 0.12 − 0.5 dB/dB observed experimentally in the 

basal region of mammalian cochleae (Robles & Ruggero, 2001). 

The harmonic responses of the model to single tone stimulation at two different stimulus 

frequencies are shown in figure 3.26. At the characteristic place, the level of the harmonic 

components are approximately 40 dB below the amplitude of the fundamental response. This is in 

broad agreement with the measurement experimental observations which indicate that harmonic 

components can reach up 20 dB of the fundamental response depending on the stimulus level 

(Cooper & Rhode, 1995; Khanna & Hao, 1999). 

 

 

Figure 3.26 The predicted fundamental and harmonic responses to a single tone stimulus 
The results are shown for both a 6 kHz and 0.5 kHz stimulus, presented at 60 dB SPL in the ear canal of the 
model
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3.6 Conclusions regarding micromechanical parameters 

We have investigated the effect that several different variations in the micromechanical model can 

have on the single tone harmonics and two tone DPs predicted by the quasilinear model. These 

variations included the degree of asymmetry in the nonlinear function used to represent the OHCs, 

the position of the nonlinear function within the micromechanical feedback loop, the shear or 

vertical orientation of the input to the nonlinear function, and the spatial distribution of the 

micromechanical parameters. Based on these results, we have selected an appropriate 

micromechanical model with which to proceed to investigate predicted DPOAEs. 

As summarised in section 1.9 (ii), this chapter offers the following contributions: 

• Fine tuning of the original Kanis & de Boer  micromechanical parameters, so that the linear 

responses of the model to low frequency single tone stimuli appear more consistent with 

physiological observations (section 3.4). 

• A description and explanation of the influence of the position of the nonlinear function within 

the micromechanical feedback loop (section 3.2) 
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4. Predicted 2f1 − f2 DPOAE characteristics 

In this chapter the simulated distortion product otoacoustic emissions (DPOAEs) predicted by the 

cochlear model are presented and special attention is paid to the 2f1 − f2 distortion product (DP). 

The properties of this emission are extensively documented in the literature and this information is 

used to determine the successes and weaknesses of the model with regard to DPOAE prediction. 

Details of the cochlear model used are given in section 3.5. The response of the model is estimated 

using the quasilinear method described in section 2.4, and transmission into and out of the cochlear 

model is described by the two-port model of the middle ear and ear canal detailed in appendix C.1. 

We start by considering the 2f1 − f2 DPOAE characteristics predicted by a “baseline” model, in 

which no impedance irregularities have been introduced into the active micromechanics (section 

4.1). We then introduce random irregularities into the active micromechanics of the model and 

present the 2f1 − f2 DPOAE characteristics simulated with this “perturbed” model (section 4.2). 

This allows the place-fixed effects to be studied separately from the wave-fixed effects. Overall 

this chapter addresses the first four research questions posed in section 1.9 concerning the 2f1 − f2 

DPOAE.  

 



4. Predicted 2f1 − f2 DPOAE characteristics 
4.1 Predictions of a baseline model 

112 

4.1 Predictions of a baseline model 

We start by considering the 2f1 − f2 DPOAEs predicted by a baseline model, in which no 

irregularities have been deliberately imposed on the active micromechanics. As this emission is 

typically the largest emission detected in the human ear canal, its properties are well documented. 

In this section we present the simulated 2f1 − f2 DPOAE characteristics and compare them to the 

physiological properties described in the literature. Having established the strengths and 

weaknesses of the baseline mode, we conclude that it is appropriate to use the model for further 

applications such as hypothesis testing and investigating the 2f1 − f2 DPOAE source.  

4.1.1 Amplitude of the 2f1 − f2 DPOAE 

Figure 4.1 shows the predicted pressure spectrum in the ear canal, evoked by the presentation of 

two stimulus pure tones at frequencies f1 and f2 (f2 > f1). The equivalent experimental result 

obtained by Lonsbury-Martin & Martin (2007) is given in figure 1.15d. The amplitude of the 

2f1 − f2, 3f1 − 2f2 and 2f2 − f1 emissions predicted by the model differ by less than ± 5 dB from the 

values measured by Lonsbury-Martin & Martin. As the amplitude of the 2f1 − f2 DPOAE can vary 

by ± 5 dB between individuals for a given stimulus paradigm (Mills et al., 2007), we conclude that 

the model prediction is consistent with the experimental result for these DPs. The 3f2 − 2f1 DPOAE 

has an amplitude of  − 41 dB SPL in the simulation, but is absent from the Lonsbury-Martin & 

Martin spectrum. This is not thought to be a significant discrepancy, as the noise floor of the 

experimental study was − 32 dB and would therefore conceal the presence of this distortion product 

in the physiological result. 

 

Figure 4.1 The simulated ear 
canal pressure spectrum 
The response of the cochlear 
model was evaluated at 
frequencies of f1, f2, 3f1 − 2f2, 
2f1 − f2, 2f2 − f1 and 3f2 − 2f1 
when two simultaneous tones 
were presented in the ear canal at 
f1=1.8 and f2=2.2 kHz and L1=65 
and L2=55 dB SPL. 
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Although we have seen that the model prediction for the 2f1 − f2 DPOAE can be consistent with 

experimental measurement for a single stimulus paradigm, the amplitude and phase of this 

emission depends on the following four stimulus parameters: level (L2), level difference (L1 − L2), 

frequency (f2) and frequency ratio (f2/f1) of the primary tones (e.g. Harris et al., 1989; Gaskill & 

Brown, 1990; Abdala, 1996). For this reason, the 2f1 − f2 DPOAE amplitude can be conceptualised 

in a four-dimensional space described by the f2 stimulus frequency, the ratio f2/f1, and the two 

primary tone levels L1 and L2. As this four-dimensional space is not easily visualised, many 

physiological studies choose to set two of the stimulus variables constant and report their results as 

contour plots of DPOAE amplitude or phase (Whitehead, 1995b, 1995a; Knight & Kemp, 2000; 

Mills, 2002). Alternatively, a conventional line graph can be obtained if three of the stimulus 

variables are fixed. In the following sections we use a combination of contour plots and line graphs 

to illustrate the 2f1 − f2 DPOAE properties predicted by the model.  

In addition to the above stimulus parameters, it is also possible that the amplitude and phase of the 

evoked 2f1 − f2 DPOAE could be influenced by the relative phase of the stimulus tones. We do not 

investigate this explicitly, but endeavour to use appropriate relative phases in our simulations 

through the use of a middle ear model which approximates the physiological phase response of the 

middle ear (appendix C). 

4.1.2 The 2f1 − f2 DPOAE dependence on f2 frequency 

Figure 4.2 shows the amplitude of the predicted 2f1 − f2 DPOAE for stimulus levels L1 and L2 equal 

to 60 and 50 dB SPL respectively and an f2/f1 value of 1.21. The simulation was performed using 

several different f2 frequencies between 1 and 8 kHz. The measurements made by Mills et al. 

(2007), from the ears of 20 normal hearing subjects using the same stimulus parameters, are also 

shown for reference.  

 
Figure 4.2 The amplitude of the 2f1 − f2 DPOAE for a range of stimulus frequencies 
The DPOAE predicted by the model (grey circles) can be compared to the amplitude of this emission 
measured in the ears of 20 normal hearing subjects by Mills et al. (2007). The mean values (black squares) 
and one standard deviation (error bars) are shown for the physiological results. In both cases the stimuli were 
presented at levels L1=60 and L2=50 dB SPL with f2/f1=1.21. 
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Comparison of the simulated and measured results shown in figure 4.2 reveals that, for f2 stimulus 

frequencies between 1 and 3 kHz, the values of the predicted 2f1 − f2 DPOAE amplitude are within 

one standard deviation of the mean physiological measurements. However, as the stimulus level 

increases above 3 kHz the amplitude of the predicted 2f1 − f2 DPOAEs falls off. As f2 increases 

from 1 to 8 kHz the model predicts a decline of 40 dB in the emission amplitude, which is much 

larger than the 15 dB decrease observed by Mills et al. This discrepancy between the frequency 

dependence of the predicted and measured 2f1 − f2 DPOAE amplitudes is not thought to be 

associated with an error in the middle ear transfer function, which is believed to be reasonably 

accurate for the reasons given in appendix C.3. Therefore the weakness in the model which leads to 

an underestimation of the 2f1 − f2 DPOAE amplitude at high f2 frequencies (>4 kHz) is attributed to 

insufficiencies in either the amplitude of the BM response to stimulation at high frequencies, the 

saturation threshold of the nonlinear function in the basal region of the model, or some other aspect 

of the nonlinear cochlear model. Attempts to modify the model to address these possible 

insufficiencies have been unsuccessful as the modifications introduced other undesirable effects. 

For example, altering the micromechanical parameters to enhance the amplitude of the response 

could have a detrimental effect on the place-frequency map and stability of the model. We also 

found that reducing the saturation threshold near the base of the model, to enhance the DPs evoked 

by high frequency stimuli, can unfavourably affect the propagation of low frequency forward 

travelling waves through this region (section 3.5.1).  

Overall, we conclude that the amplitude of the 2f1 − f2 DPOAE is consistent with experimental 

measures when f2 is less than 4 kHz. However, the model tends to underestimate the amplitude of 

the emission by more than 20 dB when f2 exceeds 4 kHz. Therefore caution should be applied when 

comparing DPOAE amplitudes across a wide range of stimulus frequencies. 

4.1.3 The dependence of the 2f1 − f2 DPOAE on L1 and L2 

Figure 4.3a shows simulated contour plots of the predicted 2f1 − f2 DPOAE amplitude as a function 

of stimulus levels L1 and L2 for various f2/f1 ratios. In each case the results have been averaged 

across f2 frequencies between 1 and 3 kHz. An experimental contour plot, measured by Meinke et 

al. (2005) using f2/f1 equal to 1.21, is reproduced in figure 4.3b for reference. Comparing the 

simulated and measured results shows similarities in the range of 2f1 − f2 DPOAE amplitudes on 

the plots and the asymmetry in the dependence of the emission on L1 and L2. For example, when 

f2/f1 equal to 1.2, the maximum predicted DPOAE level of approximately 10 dB SPL differs by 

only 2 dB from the maximum level of 12 dB SPL observed in the physiological study, which is 

within ± 5 dB variation observed between individual subjects (Mills et al., 2007). Also, for this 

frequency ratio, the predicted emission amplitude is maximised when L1 and L2 are set equal to 75 
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and 65 dB SPL respectively. This is in close agreement with the experimental result which reveals 

optimal stimulus levels of 75 and 70 dB SPL for L1 and L2 respectively for this stimulus frequency 

ratio.  

The contour plots shown in figure 4.3 contain much information regarding the dependence of 

2f1 − f2 DPOAE amplitude on the stimulus level L1 and the stimulus level difference (L1 − L2), and 

these aspects of the predicted emission are examined in more detail in the following two sections. 

We then progress onto a discussion of the influence of stimulus frequency ratio on the 2f1 − f2 

DPOAE amplitude, as this ratio affects the relative amplitude of the primary travelling waves at the 

distributed site where the 2f1 − f2 DP is generated. 

 
(a) Simulation 

 
(b) Meinke et al. (2005) 

 

Figure 4.3 2f1 − f2 DPOAE level contour plots 
(a) The predicted amplitude of the 2f1 − f2 DPOAE in dB SPL, 
evoked by two stimulus tones at levels L1 and L2. The 
simulations for various f2/f1 ratios are shown. In each case the 
predicted DPOAE levels are averaged across f2 values of 1, 
1.5, 2, 2.5 & 3 kHz.  
(b) The measured 2f1 − f2 DPOAE amplitude (dB SPL) for 
various stimulus levels, averaged across 10 human ears and 
stimulus frequency f2 values between 0.6 and 8.8 kHz (f2/f1 = 
1.21). [From figure 3a of Meinke et al. (2005), with 
permission from Elsevier]  
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(a) Simulation 

 

(b) Data from Mills et al. (2007) 

 
 

Figure 4.4 Growth functions for the 2f1 − f2 DPOAE 
(a) The amplitude of the 2f1 − f2 DPOAE predicted by the model for f2=2 kHz, L1=L2+10 dB and f2/f1=1.2 or 
1.3. (b) The amplitude of the 2f1 − f2 DPOAE recorded in the ear canal of one human subject by Mills et al. 
(2007) using f2=4 kHz, L1=L2+10 dB and f2/f1 = 1.21 or 1.28. [From figure 1 of Mills et al. (2007), with 
permission from Wolters Kulver Health]. In both plots, the triangular and square arrows denote the 
compression threshold, based on the criteria used by Abdala (2000). 

4.1.4 Growth of the 2f1 − f2 DPOAE 

A DPOAE growth function is recorded using a fixed relationship between L1 and L2, such as 

constant L1 − L2 or L1=0.4L2+39dB (the “scissor paradigm” described in section 1.5.2). The 

“growth rate” of the 2f1 − f2 DPOAE refers to the increase in DPOAE amplitude for every dB 

increase in stimulus level, and is commonly quoted in units of dB/dB.  

Growth rates and saturation thresholds 

Comparing stimulated growth functions with those measured in experimental studies is not straight 

forward as the intersubject variation in both the saturation threshold and the gradient must be taken 

into account. Abdala (2000) defined saturation threshold, Lsat, as the stimulus level above which the 

amplitude of the DPOAE increased by no more than 2 dB with further stimulus level increases, and 

found that these thresholds varied by ± 10 dB between subjects. In addition, the gradient can vary 

by ± 0.4 dB/dB between individuals (Lind, 1998; Abdala, 2000).  

Figure 4.4a shows the growth of the predicted 2f1 − f2 DPOAE with stimulus level, when L1=L2+10 

dB, f2 = 2 kHz and f2/f1 is equal to either 1.2 or 1.3. Experimental results obtained by Mills et al. 

(2007) from normal human ears, for similar stimulus parameters, are given in figure 4.4b for 

reference. The simulation is performed at a lower f2 frequency (2 kHz) compared to the 

experimental measurement (4 kHz) in order to avoid any affects associated with the model’s 

tendency to underestimate the 2f1 − f2 DPOAE amplitude at high frequencies (section 4.1.2). Figure 

4.4a suggests that the predicted Lsat, as defined by Abdala (2000), occurs at approximately 60 or 70 

dB SPL when f2/f1 equals 1.2 or 1.3 respectively. In comparison, the experimental measurement 
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exhibits a saturation threshold of 40 or 55 dB SPL, for f2/f1 values of 1.21 and 1.28 in that order. 

Although the difference between the simulated saturation thresholds and those measured by Mills 

et al. exceeds the ± 10 dB variation observed between human subjects, this discrepancy is not 

thought to be significant because other experimental studies using the same stimulus paradigm 

record higher saturation thresholds. An example is the work of Abdala (2000) who recorded 

saturation thresholds between 62 and 75 dB SPL for an f2/f1 value of 1.2. On average, for the two 

stimulus frequency ratios shown in figure 4.4a, the model predicts that the 2f1 − f2 DPOAE growth 

rate will be 1.2 dB/dB for stimulus levels between Lsat  −  20 dB and Lsat. The average growth rate 

observed by Mills et al.for the same stimulus level range is 0.9 dB/dB, which is within ± 0.4 dB/dB 

of the predicted value.  

Influence of f2/f1 ratio 

The model suggests the saturation threshold, Lsat, should increase as stimulus frequency ratio 

increases. This is demonstrated by figure 4.4a, in which the saturation threshold increases from 60 

to 70 dB SPL as f2/f1 increases from 1.2 to 1.3. A similar trend is seen in the data of Mills et al, in 

figure 4.4b. However, this increase in Lsat with stimulus frequency ratio is not always evident in 

experimental data (Abdala, 2000), possibly as a consequence of large intersubject variation in 

DPOAE growth rates. The relationship between f2/f1 ratio and Lsat observed in the model is thought 

to originate from the change in spatial overlap of the primary travelling wave envelopes as the 

stimulus frequency ratio changes. The 2f1 − f2 DPOAE is thought to be generated in the vicinity of 

the f2 best place, and as f2/f1 increases the level of the f1 travelling wave at this location reduces. 

Therefore a higher stimulus level would be required to saturate the nonlinear function representing 

the action of the OHCs at the f2 best place.  

Notches in the growth function 

For some specific stimulus paradigms the baseline model predicts non-monotonic growth or 

“notches” in the 2f1 − f2 DPOAE growth function. For example, figure 4.5a shows the growth of the 

2f1 − f2 DPOAE with increasing stimulus level (L1=L2) when f2 is equal to 2 kHz and f2/f1 is 1.2. A 

notch can be seen in this growth function when L1= L2 = 57.5 dB SPL. Figure 4.5b illustrates that 

the notch is associated with a change in the phase of the 2f1 − f2 DPOAE of around half a cycle. 

This notch was evident as a minima in the simulated DPOAE contour plots (figure 4.3a), for 

stimulus frequency ratios between 1.15 and 1.3, when L1 and L2 are equal at around 55 to 65 dB 

SPL. The contour plots suggest that notches in the simulated growth function will be not be 

observed if the L1=L2 + 10 dB paradigm is used, but that they will be detected using other linear 

stimulus relations such as L1=L2 or the “scissor” paradigm. The predicted notch is only evident in 

the model when f2 is around 2 kHz, and is not present for all stimulus frequency ratios.  
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Figure 4.5 The notch in the predicted 2f1 − f2 
DPOAE growth 

 (a) Predicted growth of the 2f1 − f2 DPOAE with 
increasing stimulus level (L1=L2) when f2/f1=1.2, 
and f2=2 kHz. This simulation was performed in a 
model in which no impedance irregularities had 
been imposed on the active micromechanical 
impedance.  

 (b) The phase of the emission shown in (a), in 
cycles and referenced to 2φ1 − φ2 where φ1 and φ2 
correspond to the phase of the stapes velocity at 
frequencies f1 and f2. 

   

These simulations are performed using a baseline model, in which no irregularities have been 

deliberately imposed on the micromechanics, and so the results predict only the behaviour of the 

wave-fixed DPOAE component as discussed in section 5.1. It has not been possible to determine if 

notches occur in the growth of the wave-fixed component of DPOAEs measured in experimental 

studies, as the process used to separate the wave-fixed and place-fixed components of the 

physiological emission usually average results over several f2 frequencies. 

Notches in the DPOAE growth functions observed from human ears are often attributed to shifts in 

the emission fine structure described in section 4.2.3 (He & Schmiedt, 1993). However, this cannot 

be the origin of the notch illustrated in figure 4.5a as the baseline model is unable to generate a 

place-fixed DPOAE component necessary for the production of fine structure. Instead, there are 

two possible explanations for its origin, both of which require only one source mechanism, such as 

the spatially distributed wave-fixed (distortion) source mechanism present in the baseline model 

described in section 5.1.1. Firstly, Lukashkin & Russell (2001) demonstrate that amplitude notches 

are evident in a contour plot of the 2f1 − f2 DP output of a single isolated nonlinear function as a 

function of the level of the two input tones (A1 and A2), and that these notches are accompanied by 

a change in the DP phase of ½ a cycle. However, it is not possible to attribute the notch seen in 

figure 4.5a, to the behaviour of the nonlinear function as the predicted notch is not a robust feature 

observed for all stimulus level relationships and all stimulus frequencies. Secondly, Mills (2002) 

suggests that the notch could occur as a result of a change in the interaction between elements 

within the distributed wave-fixed 2f1 − f2 DP source region as the increase in stimulus level alters 

the spatial overlap between the primary travelling waves. On this basis, a notch may be expected to 

occur in the growth of the 2f1 − f2 DPOAE when the phase distribution of the source region changes 

so that neighbouring source elements change from a pattern of constructive interference to one of 

destructive interference. Mills bases this proposition on the results obtained from measurements of 
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notches in the growth functions of Mongolian gerbils, and observed that a phase change of up to 

half a cycle accompanies the notch. To test this explanation, figure 4.6 shows the accumulative 

2f1 − f2 DPOAE recorded in the ear canal as the distribution of the 2f1 − f2 OHC pressure output is 

gradually “switched-on” from the base of the model. At low stimulus levels, such as 40 dB SPL, all 

of the elements within the source region appear to interact constructively to form the total 2f1 − f2 

DPOAE as gradually increasing the source length results in monotonic growth of the predicted 

emission. However, as the stimulus level approaches or exceeds the level at which the notch occurs, 

figure 4.6a demonstrates that the growth in the simulated DPOAE amplitude with increasing source 

length is no longer monotonic. This indicates the presence of destructive interference between 

neighbouring elements within the DP source distribution. 

In summary, we conclude that notches in the growth of the wave-fixed (distortion) component of 

the 2f1 − f2 DPOAE can occur in the model for some stimulus paradigms. This is thought to arise 

from relative changes in phase of neighbouring source elements as the stimulus level increases, 

such that the contributions from these source elements partially cancel each other at higher stimulus 

levels (Mills, 2002). It is possible that these notches are not observed for all stimulus paradigms 

because of the influence of the middle ear response on the relative phase of the primary tones.  

 

 
Figure 4.6 The influence of the DP source distribution on the predicted 2f1 − f2 DPOAE  
(a) The accumulative 2f1 − f2 DPOAE amplitude predicted by the model is shown as the wave-fixed 
(distortion) source is gradually “switched-on” from the base of the model. In this case, f2/f1=1.2, f2= 2kHz and 
L1=L2 (dB SPL). The stimulus level is given in dB SPL in the key. The amplitude and phase of the DP 
pressure output of the OHCs, for these primary tones, which forms the total distributed DP source 
distribution, is given in (b) and (c) respectively. The dots on plot (b) mark the f2 best place for each stimulus 
level.  
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(a) Simulation 

 

(b) Gaskill & Brown (1990) 

 
Figure 4.7 The influence of stimulus level difference on the 2f1 − f2 DPOAE 
(a) The predicted dependence of the 2f1 − f2 DPOAE amplitude of the stimulus level difference L1 − L2, when 
L2 is fixed at 40 dB SPL, f2/f1=1.2 and f2=2 kHz. (b) The experimental 2f1 − f2 DPOAE amplitude recorded by 
Gaskill & Brown (1990) from human ears using f2/f1=1.225 and L2=40 dB SPL. The different lines 
correspond to different f2 frequencies between 3 and 6 kHz. [From figure 7a of Gaskill & Brown (1990), with 
permission from ASA]. 

4.1.5 Optimal stimulus level difference 

Figure 4.7a shows the simulated variation in 2f1 − f2 DPOAE amplitude with stimulus level 

difference. A similar experimental measure by Gaskill & Brown (1990) is reproduced in Figure 

4.7b for comparison. In both cases the stimulus level L2 was fixed at 40 dB SPL. The model 

predicts that, at this L2 level, the optimal stimulus level difference (L1 − L2) is approximately 20 to 

25 dB. This is in broad agreement with the measurements of Gaskill & Brown who observe the 

optimal level difference to be between 15 and 25 dB. They also note that there is variation of at 

least 10 dB in the optimal level difference between subjects.  

The optimal stimulus level difference (L1 − L2) depends on the stimulus level and the stimulus 

frequency ratio. Figure 4.8 shows the decrease in optimal level difference with increasing L2 level 

predicted by the model and compares it with the experimental observations of Gaskill & Brown 

(1990) and Whitehead (1995a). The reduction in predicted optimal level difference from 25 to 5 dB 

as L2 increases from 45 to 80 dB SPL is reasonably consistent with the change measured in the 

experimental studies, given the difference in stimulus frequencies and f2/f1 ratios. Figure 4.9 shows 

simulated increase in the optimal stimulus level difference with increasing f2/f1 ratio, along side the 

experimental results collected by Abdala (1996) are also shown in figure 4.9 for reference. Both the 

simulation and the physiological measurement suggest that the optimal stimulus level difference 

increases with increasing stimulus frequency ratio.  
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Figure 4.8 The influence of stimulus level 
on the optimal level difference 
The plot shows the predicted dependence 
of the optimal stimulus level difference 
for 2f1 − f2 DPOAE amplitude on stimulus 
level L2, is compared to experimental 
data. The simulated results are averaged 
across f2/f1 ratios of 1.05 − 1.3 and f2 
frequencies 1 to 3 kHz, and the optimal 
level difference (L1 − L2) is estimated to 
the nearest 5 dB. The experimental data is 
taken from Whitehead (1995a) and 
Gaskill & Brown (1990) which used a 
variety of f2/f1 ratios between 1.1 and 1.3 
and f1 frequencies between 1 and 10 kHz. 
 

Figure 4.9 The influence of f2/f1 ratio on the 
optimal level difference 
The plot shows the predicted dependence of 
the optimal stimulus level difference for 
2f1 − f2 DPOAE amplitude on stimulus 
frequency ratio f2/f1 and it is compared to 
experimental data. The simulation was 
performed using L2 = 50 dB SPL and f2=1 
kHz. The experimental results were estimated 
from figure 8 of Abdala (1996), which was 
obtained using L2 = 50 dB SPL and f2 = 1.5 
kHz. 

 

 

Figure 4.10 The level of input to the nonlinear 
function at the f2 best place in the coupled model 
The levels of the input to the nonlinear function, A1 
and A2, are equated with the primary components of 
the shear displacement and are evaluated at the f2 
best place in the coupled model for a range of 
stimulus level differences. Levels L1 and L2 
correspond to stimulus levels in the ear canal of the 
model and for this simulation L2= 50 dB SPL, f2= 2 
kHz and f2/f1=1.1. 

Explanations for the optimal stimulus level difference have been proposed by Gaskill & Brown 

(1990) and Lukashkin & Russell (2001). To summarise, the wave-fixed distortion source of the 

2f1 − f2 DP is thought to be generated in the region of the f2 best place, where the amplitude of the 

travelling wave envelopes can be denoted by A1 and A2 for f1 and f2 respectively. Increasing the 

stimulus level difference such that L1 exceeds L2, increases A1 relative to A2 as shown in figure 

4.10. For example, as L1 increases from 0 to 30 dB above L2, A1 increases from about − 2 to 28 dB 

relative to A2. The amplitude of the 2f1 − f2 DP component of the output from an isolated nonlinear 

function for a variety of A1 and A2 levels is illustrated in figure 4.11.  
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(b) 

 

(a) 

 

 

Figure 4.11 Simulated contour plot of the 2f1 − f2 DP output of the isolated nonlinear function 
(a) A single isolated first order Boltzmann function is stimulated by tones with frequencies f1 and f2 and 
corresponding levels A1 and A2 respectively, and the amplitude of resulting 2f1 − f2 DP component of the 
output is plotted. (b) The estimated level of the DP component is also shown for fixed A2 levels 
corresponding to the dotted lines in (a). In both cases, the dB scale reference is arbitrary, f2 = 1 kHz and 
f2/f1=1.1.  

Figure 4.11 demonstrates that as A1 increases relative to A2, the amplitude of the DP output 

increases until an optimal A1 − A2 difference is reached, and above this level the amplitude of the 

DP output decreases. The optimal A1 − A2 difference also decreases as A2 increases. For this reason, 

the optimal stimulus level difference (L1 − L2) and its dependence on stimulus level can be 

attributed to the behaviour of the nonlinear function in isolation. This conclusion contradicts the 

suggestion of Whitehead (1995b) that it is the mutual suppression of the primary travelling waves 

which is responsible for the decline in the 2f1 − f2 DPOAE amplitude as L1 − L2 exceeds the 

optimal value. However, figure 4.12 shows the dependence of the emission amplitude on L1 − L2 

when the effect of mutual suppression is temporarily removed from the quasilinear model. This 

demonstrates that mutual suppression has no significant influence on the decline in the 2f1 − f2 

DPOAE amplitude at high stimulus level differences. 

Figure 4.12 The simulated effect of suppression 
on the optimal level difference  
The full quasilinear method requires three 
iterative stages to evaluate the predicted distortion 
product evoked by two stimulus pure tones: Self-
suppression of the primary tones, mutual 
suppression of the primary tones and finally self-
suppression of the distortion product component. 
The predicted amplitude of the 2f1 − f2 DPOAE 
for a variety of stimulus level differences, 
estimated using the full model is shown as a solid 
line. The predicted response with the DP self-
suppression stage neglected (dotted line) and DP 
self-suppression and mutual suppression of the 
primaries neglected (dashed line) are also shown 
to facilitate interpretation of the full quasilinear 
result. In each case L2= 60 dB SPL, f2=1 kHz and 
f2/f1=1.2. 
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In summary, we conclude that the optimal level difference originates from the behaviour of the 

isolated nonlinear function and change in the value of A1 relative to A2 at the DP generation site as 

L1 changes relative to L2. 

4.1.6 Optimal stimulus frequency ratio 

The existence of a stimulus frequency ratio which maximises the 2f1 − f2 DPOAE is a common 

feature of physiological measurements. The optimum ratio is usually between 1.1 and 1.35 for 

human subjects, depending on the individual ear and the stimulus parameters (Harris et al., 1989; 

Abdala, 1996). For the same stimulus paradigm, the optimum stimulus frequency ratio can vary 

between individuals by up to ± 0.1 (Harris et al., 1989).  

Figure 4.13a shows the simulated 2f1 − f2 DP amplitude as a function of stimulus frequency ratio. 

At low stimulus levels such as 40 or 50 dB SPL, the predicted optimum f2/f1 ratio is between 1.15 

and 1.25. This is in agreement with the optimal ratio of 1.25 observed by Gaskill & Brown (1990) 

at low stimulus levels (L1 = 55 and L2 = 40 dB SPL). Figure 4.13b shows the change in the 

optimum f2/f1 ratio predicted by the model as stimulus level increases. Experimental results 

obtained by Harris et al. (1989) and Knight & Kemp (1999) are also shown for comparison. This 

figure illustrates that the model tends to over-estimate the rate at which the optimum f2/f1 ratio 

increases with stimulus level which causes the model to overestimate the optimal stimulus 

frequency at higher stimulus levels.  

(a)  

 

(b)  
 

 

Figure 4.13 The influence of stimulus level on the optimal f2/f1 ratio 
(a) The variation in the predicted 2f1 − f2 DPOAE amplitude with stimulus frequency ratio f2/f1. The 
simulation was performed using f2=2 kHz various L1 levels (40, 50 60 & 70) and L2=L1. (b) The variation in 
the predicted optimum stimulus frequency ratio with stimulus level. Physiological data from Harris et al. 
(1989) and Knight & Kemp (1999) is also shown for reference. The results from Harris et al. are averaged 
across f2 frequencies between 1 and 4 kHz. The level difference used for these experimental measures is 
indicated in the key. 
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(a) Knight & Kemp (2001) 

 

(b) Simulation 

 
Figure 4.14 The dependence of 2f1 − f2 DPOAE amplitude on f2/f1 ratio 
(a) The wave-fixed (distortion) 2f1 − f2 DPOAE amplitude measured from a human ear by Knight & Kemp 
(2001), using L1=L2= 70 dB SPL. The result is averaged across recordings in which 2f1 − f2 ranged between 1 
and 4 kHz. [From Knight & Kemp (2001), figure 5a, with permission from ASA] (b) The simulated 2f1 − f2 
DPOAE amplitude when L1=L2=70 dB SPL and f2=2 kHz, taken from figure 4.13a. 
 

This tendency is demonstrated by figure 4.14 which shows the amplitude of the 2f1 − f2 DPOAE as 

a function of stimulus frequency ratio for a higher stimulus level (L1=L2 = 70 dB SPL). This figure 

provides a comparison between the experimental result recorded by Knight & Kemp (1999) and the 

model simulation. The optimal f2/f1 of 1.55 predicted by the model is significantly greater than the 

stimulus frequency ratio of around 1.2 which maximises the 2f1 − f2 emission in the Knight & 

Kemp study. 

Figure 4.15 shows the influence of stimulus frequency on the optimal f2/f1 ratio predicted by the 

model. As the 2f1 − f2 DP frequency is increased from 1.5 to 3 kHz, the simulated optimal f2/f1 ratio 

decreases from 1.3 to 1.18. This trend is consistent with the results of Harris et al. (1989) who 

found that the optimal f2/f1 ratio reduces from around 1.27 to 1.21 as the DP frequency increases 

from 1 to 4 kHz for stimulus levels between 65 and 85 dB SPL (L1=L2). However, the model 

appears to overestimate the rate at which the optimal f2/f1 ratio increases as stimulus frequency 

decreases. 
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Figure 4.15 The influence of DP frequency on the optimal f2/f1 ratio 
(a) The variation in the predicted 2f1 − f2 DPOAE amplitude with stimulus frequency ratio f2/f1. The 
simulation was performed using various 2f1 − f2 (fDP) frequencies (1.5, 2 and 3 kHz) and L1=L2=50 dB SPL. 
(b) The dependence of the predicted optimal stimulus frequency ratio on DP frequency.  

Origin of the optimal f2/f1 ratio 

The bell-shaped dependence of the 2f1 − f2 DPOAE on the f2/f1 ratio, exhibited by the model 

predictions (figure 4.13 and figure 4.15) and experimental measurements (figure 4.14a) is 

commonly attributed to changes in the amplitude of the primary travelling wave envelopes at the 

DP source region (Gaskill & Brown, 1990; Lukashkin & Russell, 2001). The stimulus frequency 

ratio can influence the levels A1 and A2 of the primary tones f1 and f2 respectively, near the f2 best 

place which corresponds to the 2f1 − f2 DP source region. Figure 4.16 illustrates that as f2/f1 

increases from 1.05 to 1.6, the amplitude difference (A1 − A2) decreases from 0.7 dB to  − 11.7 dB. 

This decrease in the level of A1 relative A2, as the spatial overlap of the primary travelling wave 

decreases, is thought to be responsible for the decline in the emission amplitude as the stimulus 

frequency ratio increases above the optimum f2/f1 value (Gaskill & Brown, 1990; Lukashkin & 

Russell, 2001; Mills, 2002). However, there is not an agreed explanation in the literature for the 

decline of the emission amplitude as the f2/f1 ratio falls below the optimum value. There are two 

predominant arguments for this effect. First, Lukashkin & Russell (2001) propose that the 

dependence of the 2f1 − f2 DPOAE amplitude on the f2/f1 ratio is equivalent to the dependence on 

stimulus level difference (L1 − L2) and can therefore be entirely attributed to the behaviour of the 

nonlinear function in isolation (section 4.1.5). However, figure 4.11 suggests that, at low stimulus 

levels, it is necessary for A1 to exceed A2 by 20 to 25 dB in order 2f1 − f2 DP component of the 

output of the nonlinear function to decline in amplitude. Considering that A1 does not exceed A2 by 

more than 1 or 2 dB for this stimulus paradigm, even at very low f2/f1 ratios (figure 4.16), it is not 

possible to attribute the decline in 2f1 − f2 DPOAE amplitude below the optimum f2/f1 ratio to the 

behaviour of the isolated nonlinear function. The alternative explanation, suggested by Kanis & de 

Boer (1997), is that the decline of the DPOAE amplitude at low f2/f1 ratios occurs due to 

overloading, or saturation, of the nonlinear function leading to mutual suppression of the primary 

responses. They base this suggestion on the observation that a decline in DPOAE amplitude at very 

low f2/f1 ratios is not evident at low stimulus levels. Their explanation is tested in figure 4.17 which 
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shows the simulated dependence of the 2f1 − f2 DPOAE amplitude on f2/f1 ratio. The result was 

evaluated for the full quasilinear model and for a manipulated model which neglects either the DP 

self-suppression or both the mutual suppression of the primary tones and the self-suppression of the 

DP. This figure demonstrates that when the effect of mutual suppression is neglected from the 

quasilinear model, the decline in emission amplitude at low stimulus frequency ratios is no longer 

apparent. Therefore we can confirm that mutual suppression seems predominantly responsible for 

the reduction in 2f1 − f2 DPOAE amplitude at low f2/f1 ratios.  

 

(a) 

 
(b) 

 

Figure 4.16. The influence of f2/f1 ratio on the 
amplitude to the input to the nonlinear function at the 

f2 best place 
(a) An illustration of the levels A1 and A2, which 
correspond to the amplitudes of the f1 and f2 primary 
travelling waves at the location of the f2 best place. 
The labels x1 and x2 denote the best places for f1 and f2 
respectively. [Redrawn from Lukashkin & Russell 
(2001), figure 1]. (b) The effective amplitudes A1 and 
A2, at the f2 best place of the baseline cochlear model, 
when stimuli are presented at L1=L2=50 dB SPL with 
f2 = 2 kHz. These amplitudes correspond to the f1 and 
f2 components of the difference in shear displacement 
between the BM and TM respectively, which serve as 
the input to the nonlinear function representing the 
action of the OHCs at this location.  
 

 
 

Figure 4.17 Simulation of the influence of 
suppression on the optimal f2/f1 ratio 
The amplitude of the 2f1 − f2 DPOAE is simulated 
for a range of f2/f1 ratios in three different 
cochlear models, L1=L2=50 dB SPL and 
2f1 − f2=2 kHz. Results are shown for the full 
quasilinear model (solid line), a modified model 
excluding any self-suppression of the DP 
component (dotted line) and finally a modified 
model which excludes any mutual suppression of 
the primary frequency components, in addition to 
any self-suppression of the DP component 
(dashed line).  
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Figure 4.18 An illustration of the relationship between f2/f1 ratio and primary travelling wave overlap 
Top: A representation of the 2f1 − f2 DPOAE level as a function of f2/f1. Bottom: A picture of the change in 
overlap of the primary travelling wave envelopes corresponding to regions A, B, and C on the top graph.  

In summary, figure 4.18 illustrates the origin of the influence of f2/f1 ratio on 2f1 − f2 DPOAE 

amplitude. On this basis the value of the optimal f2/f1 ratio for a given stimulus level paradigm is 

determined in a rather complicated way by the sharpness of tuning of the primary travelling waves 

and the degree to which the nonlinear function, representing the action of the OHCs, becomes 

saturated when the primary travelling waves are almost superimposed. These factors are also 

expected to influence the rate at which the emission amplitude declines when the f2/f1 ratio deviates 

away from the optimal value. 

4.1.7 Strengths and weaknesses of the model predictions 

This section has reviewed the 2f1 − f2 DPOAE properties which are predicted by the baseline 

cochlear model and revealed that the model has many strengths. For example, the amplitude of the 

predicted 2f1 − f2 emission is consistent with experimental measures when f2 is less than 4 kHz 

(section 4.1.2). The relative amplitude of the different order DPOAEs also appears to be in good 

agreement with that observed in physiological studies (section 4.1.1). The contour plots of 2f1 − f2 

DPOAE amplitude as a function of L1 and L2 are similar to those observed experimentally in terms 

of the range of amplitude values on the plot and the asymmetry in the dependence of the emission 

amplitude on L1 and L2 (section 4.1.3). The saturation threshold and growth rate of the emission 

with increasing stimulus level do not differ significantly from experimental results, at least for the 

stimulus paradigms considered in section 4.1.4. In addition the optimum level difference (L1 − L2) 

for the simulated 2f1 − f2 DPOAE, and its dependence on stimulus level and stimulus frequency, are 

reasonably consistent with data from physiological studies (4.1.5). Finally we note that the 

optimum f2/f1 ratio for the predicted 2f1 − f2 emission is consistent with experimental measures at 

low stimulus levels or high stimulus frequencies. The prediction that this optimum ratio will 
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increase with increasing stimulus level or decreasing stimulus frequency is qualitatively similar to 

trends observed in physiological studies (section 4.1.6).  

The model made a few predictions regarding the behaviour of the 2f1 − f2 DPOAE which were 

difficult to verify against experimental measurements. For example, the model suggests that the 

saturation threshold of the 2f1 − f2 DPOAE should increase as stimulus frequency ratio increases. In 

section 4.1.4 we discuss that, although this tendency has been observed in some physiological 

studies it is not consistently evident at a statistically significant level, perhaps as a consequence of 

the large intersubject variation in DPOAE saturation thresholds. We also observe in section 4.1.4 

that notches occur in the predicted emission growth function for some, but not all, stimulus level 

paradigms and stimulus frequencies. These notches are attributed to phase changes between the 

elements of the DP source region, but it has not been possible to verify their existence in the 

growth function of the wave-fixed (distortion) component recorded from human ear canals. 

The greatest limitations of the model with regard to predicting 2f1 − f2 DPOAE properties are as 

follows. Firstly, the model underestimates the amplitude of the 2f1 − f2 DPOAE when f2 is equal to 

or above 4 kHz. In chapter 6 we see that this is also true of the 2f2 − f1 emission. The origin of this 

weakness, which we were unable to rectify, is discussed in section 4.1.2. The other limitations of 

the model were all associated with the prediction of the optimal f2/f1 ratio, which illustrates the 

sensitivity of this parameter to weaknesses in the model.  For example, although the estimated 

optimal f2/f1 are consistent with physiological measures at low stimulus levels and high stimulus 

frequencies, the model tends to overestimate the optimal f2/f1 ratio at high stimulus levels (L1 and 

L2 > 55 dB SPL) and lower stimulus frequencies (2f1 − f2 less than 3 kHz). Also, at higher stimulus 

levels (e.g. 70 dB SPL) the level of the predicted emission does not decline sufficiently when f2/f1 is 

changed from the optimal value (figure 4.14). Section 4.1.6 identifies that the two factors which 

determine the optimal simulated f2/f1 ratio are the sharpness of tuning of the primary response and 

the degree to which the nonlinear function is saturated, but it is difficult to isolate these factors 

within the model to determine which may be at fault. However we can make some informed 

suggestions by comparing the dependence of DPOAE amplitude on f2/f1 ratio between our model 

and the original Kanis & de Boer model, as the models differ in terms of the change in sharpness of 

tuning with stimulus level and stimulus frequency. This comparison suggests that our model 

overestimates the optimal f2/f1 ratio at high stimulus levels due to the form of the nonlinear function, 

but that the insufficient fall-off in emission amplitude at non-optimal ratio values could be an 

indication that the passive response of the model is too broadly tuned.  The comparison also 

implies that the optimal f2/f1 ratio predicted by our model is over sensitive to changes in stimulus 

frequency because the primary tone responses are too broad at low stimulus frequencies. Overall, 

the model limitations suggest that some improvements in 2f1 − f2 DPOAE prediction could be made 

by reconsidering the sharpness of tuning of the BM travelling wave at low stimulus frequencies and 

the form of the nonlinear function in the future development of the model discussed in chapter 7.  
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In summary, we conclude that the baseline model makes appropriate predictions for a broad range 

of 2f1 − f2 DPOAE properties and so it is valid to extend the application of the model to hypothesis 

testing and to investigate the source mechanisms for this emission. The weaknesses of the model 

suggest that caution should be used when analysing results of simulations which extend over a 

broad range of stimulus frequencies or stimulus levels.  
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4.2 Predictions of a perturbed model 

There is considerable evidence from experimental and modelling studies that the 2f1 − f2 DP is 

generated by two different mechanisms within the cochlea: A wave-fixed (distortion) source 

distributed over a region close to the f2 best place, and a place-fixed (reflection) source located at 

the 2f1 − f2 characteristic place. So far, only the wave-fixed component has been included in our 

predictions of the 2f1 − f2 DPOAE as we have been using a baseline model in which no 

irregularities have been imposed on the cochlear partition impedance to act as place-fixed sites of 

reflection. 

In this section we introduce random irregularities into the active mechanics of the cochlear partition, 

to act as sites of reflection. We refer to the model as “perturbed”, rather than “baseline”, when it 

incorporates such irregularities. We find that the incorporation of these irregularities allows the 

model to replicate some of the DPOAE fine structure characteristics which are observed 

experimentally.  

4.2.1 The impedance irregularities 

Zweig & Shera (1995b) propose that random irregularities in the impedance of the cochlear model 

can be used to generate OAE fine structure, similar to that observed in physiological measurement. 

They explain that, in a system in which Bragg scattering can occur, distributed irregularities in the 

impedance generate coherent reflection of forward travelling waves with wavelength λ when the 

spatial separation between the perturbations is equal to an integer multiple of λ/2. This coherent 

reflection process is illustrated in figure 4.19. If the forward travelling signal is composed of many 

different wavelengths, rather than one, then only the component with a wavelength equal to twice 

the spatial separation of the impedance irregularities will be coherently reflected. If the system 

contains randomly distributed irregularities then a forward travelling wave with wavelength λ will 

be coherently reflected from only those irregularities which are spatially separated by distances 

which are integer multiples of λ/2.  

 

Figure 4.19 An illustration of coherent reflection 
in a uniform system  
In this case the impedance irregularities as 
spatially separated by a distance λ/2, where λ is 
the wave length of the forward travelling wave. 
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The situation in the cochlea is more complicated as the impedance changes with longitudinal 

position and consequentially the wavelength of the travelling wave reduces as it propagates. 

Assuming for simplicity that the amplitude of the forward travelling wave within the cochlea has a 

constant amplitude and a wavelength which varies slowly with distance from the stapes, then it is 

theoretically possible for small amounts of coherent reflection to occur at any location within the 

cochlea given that the randomly distributed impedance irregularities are likely to contain some 

components with a spatial separation equal to half of the instantaneous wavelength. However, 

because the instantaneous wavelength changes as the forward travelling wave propagates, the 

reflected waves originating from different regions of the cochlea will have different wavelengths 

and the net result is an incoherent jumble of small reflected waves. For this reason, coherent 

reflections are mainly thought to occur within the cochlea because the amplitude of the travelling 

wave is not constant. The amplitude of the forward travelling wave is greatest in the vicinity of the 

characteristic place and so the reflected waves from this region dominate the total backward 

travelling wave. As the dominant backward travelling waves originate from a small region of the 

cochlea, and the wavelength of the travelling wave is assumed to vary slowly with distance, these 

reflections will be coherent and form a substantial backward travelling wave. Talmadge et al. (1998) 

note that coherent reflection of forward travelling waves will only occur in a cochlear model if two 

conditions are met. Firstly, the amplitude of the forward travelling wave at the site of reflection 

must exceed the amplitude of the incident wave at other locations and be sufficient to generate a 

reflection given the small scale of the impedance irregularities. Secondly, the peak of the travelling 

wave must be wide enough to incorporate 1 or 2 wavelengths of the travelling wave. It is helpful to 

recall this theory when considering the generation of the place-fixed component of DPOAEs in 

sections 4.2.2 and 6.3. For example, the conditions for coherent reflection outlined by Talmadge et 

al. may not be satisfied if the peak of the travelling wave envelope becomes too low or broad at 

high stimulus levels, as then the amplitude of the reflected waves from the best place of the forward 

travelling wave may fail to dominate those originating from other locations within the cochlear 

model. Similarly the amplitude of the reflected waves could be compromised if the scale of the 

impedance irregularities reduces with stimulus level in the quasilinear model.  

The random irregularities which act as sites of reflection for forward travelling waves could be 

associated with impedance irregularities in either the active mechanics, perhaps from differences in 

the force exerted by neighbouring OHCs (Zweig & Shera, 1995a), or the passive mechanics, 

possibly from spatial variations in the BM radial fibres (Shera & Guinan, 2008). Talmadge et al. 

(1998) introduce random irregularities into the stiffness component of the CP impedance in their 

cochlear model in order to simulate spontaneous OAEs and DPOAE fine structure. Similarly Ku et 

al. (2009) introduced random irregularities into the active component of the CP impedance in order 

to simulate SOAEs. Following the work of Ku et al, we introduce random irregularities into the 

active component of the CP impedance in order to generate the place-fixed (reflection) component 
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of the 2f1 − f2 DP. This is implemented using the OHC gain parameter,γ(x), which was introduced 

in equation (2.20) and takes a value between 0 and 1 (Elliott et al., 2007; Ku et al., 2008). When an 

irregularity is introduced into the cochlear model, we can apply the decomposition process 

described in section 2.3, to estimate the forward and backward components of the total semi-

difference pressure, which we label ( )dp x+ and ( )dp x− respectively. Although this method was 

developed for the linear model, we invoke the quasilinear approximation in order to apply to the 

primary or DP components which arise in response to two tone stimulation of the nonlinear 

cochlear model.  

Given that the CA gain of the cochlear model decreases with distance from the stapes, the 

amplitude of the impedance irregularities distributed along the CP will have to increase in order for 

the model to be capable of generating equal amplitude reflections from basal and apical regions. 

The size of a single step-increase in γ(x) that would be necessary to evoke equal reflections at 

different locations in the model is shown in figure 4.20. When random irregularities are imposed on 

the γ(x) distribution of the quasilinear model, the amplitude of the irregularities is scaled using the 

distribution shown in figure 4.20. This allows sufficient reflection of low frequency travelling 

waves (<4 kHz), such that the place-fixed component of the DP is detectable in the ear canal, 

without causing the model to become unstable when higher frequency stimuli are present. Figure 

4.21 shows the distribution of random irregularities imposed on the OHC gain distribution 

throughout this chapter. The root-mean-square of the variation in the maximum value of γ(x) 

between the 1 and 2 kHz characteristic places is 5%.  

 

Figure 4.20 The gain step size required for a constant 
reflection ratio throughout the model 
The plot shows the step-increase in OHC gain γ(x) 
required at position x, to achieve a reflection ratio of 

0
/ 1.3

d d x
p p

− +

=
=  when the stapes is stimulated at the 

characteristic frequency. The value of γ(x) between the 
base and the step-change is set equal to 1, and the stapes 
boundary condition is set to minimise reflections of the 
backward travelling wave. The reflection ratio 1.3 is 
chosen for this example as it is the highest reflection 
ratio that can be achieved with out introducing 
instability. 

  

 
Figure 4.21 The γ(x) distribution used in the 
perturbed cochlear model 
This distribution results from imposing random 
irregularities on the active γ(x) distribution.  
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The physiological origin of the impedance irregularities could be associated with differences in the 

orientation or force exerted by neighbouring OHCs (Shera & Guinan, 2008). The irregularities are 

thought to occur even in healthy human cochleae, as some disorganisation is evident in the spatial 

distribution of human OHCs in fresh tissue samples, and some OHCs may be missing completely 

(Glueckert et al., 2005). We have not been able to establish from the literature whether or not the 

increased amplitude of the impedance variations between the base and the apex, used in the model, 

are evident in the human cochlea. This is because it is unusual to find descriptions of invasive 

observations within the human cochlea, and those observations of human OHCs which are 

available in the literature do not compare spatially separated sites. It is also possible that impedance 

irregularities may not be visible in the anatomy (Withnell et al., 2003), as they could be associated 

with differences in force exerted by neighbouring OHCs, rather than differences in their spatial 

orientation, and it would not be evident from visual inspection of tissue samples if these variations 

in OHC performance were more exaggerated in the apical region compared to the basal region of 

the cochlea.  

4.2.2 Estimating the place-fixed component 

In this investigation, the place-fixed (reflection) component of the DP is estimated by comparing 

two separate simulations. The first uses a baseline cochlear model to determine the wave-fixed 

(distortion) component of the DPOAE, and the second uses a perturbed model in which the 

irregularities described in section 4.2.1 are imposed on the active cochlear partition impedance to 

estimate the total DPOAE. It is then assumed that the place-fixed (reflection) component 

corresponds to the difference between these simulations such that 

 Place-fixed DP = Total DP - Wave-fixed DP  (4.1) 

This approach has limitations in a nonlinear model. For example, it is possible that the introduction 

of impedance irregularities into the model may not only introduce a place-fixed reflection of the 

DP travelling waves, but could also alter the wave-fixed DP source via reflections which could 

occur in the primary travelling waves. However, in section 5.1.4 we show that the largest 

contribution to the place-fixed DPOAE component originates from impedance irregularities at the 

2f1 − f2 characteristic place. For this reason we proceed with this simple approach to estimating the 

place-fixed DPOAE component.  
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Mauermann & Kollmeier (2004) Simulation 

  
Figure 4.22 2f1 − f2 DPOAE fine structure 
The (a) amplitude and (b) phase of the 2f1 − f2 DPOAE recorded from one ear by Mauermann & Kollmeier 
(2004), using L1=51 and L2=30 dB SPL with f2/f1=1.2. A time windowing procedure was used to separate the 
total DPOAE (grey line) into component with difference phase behaviours: A component with essentially 
constant phase (black solid line) and a component with phase which varies rapidly with 2f1 − f2 frequency 
(black dotted line). [From Mauermann & Kollmeier (2004), figure 1 b and c, with permission from ASA]. 
The (c) amplitude and (d) phase of the predicted 2f1 − f2 DPOAE simulated in the cochlear model, using 
L1=50 and L2=30 dB SPL with f2/f1=1.25. The total emission, the wave-fixed component and the place-fixed 
component are again denoted by the solid grey, the solid black, the dotted black lines respectively. 

4.2.3 The 2f1 − f2 DPOAE fine structure 

In experimental studies, peaks and troughs in the 2f1 − f2 DPOAE amplitude are observed as f2 is 

varied for a fixed stimulus frequency ratio. This amplitude fluctuation is known as ‘fine structure’. 

Figure 4.22 shows the 2f1 − f2 DPOAE fine structure recorded from a human ear canal by 

Mauermann & Kollmeier (2004). The simulated 2f1 − f2 DPOAE fine structure predicted by the 

model is also shown for comparison. The stimulus frequency ratio used in the simulation is higher 

than that used in the experimental study in order maximise the amplitude of the simulated emission 

at this stimulus level. The figure demonstrates that both the physiological measurement and the 

simulation exhibit peaks and troughs in the 2f1 − f2 DPOAE amplitude. These amplitude 

fluctuations exceed 10 dB. This is consistent with the observation of Dhar & Abdala (2007), who 

found that the fine structure trough-to-peak amplitude in their 10 adult subjects was approximately 

16 dB ± 8 dB.  

Mauermann & Kollmeier (2004) use a time windowing technique to separate the total DPOAE into 

two components with different phase behaviours: one component has essentially constant phase, 

whilst the phase of the other component varies rapidly with stimulus frequency. Figure 4.22 shows 

that the wave-fixed component estimated by the model has similar phase behaviour to the 

component with constant phase observed by Mauermann & Kollmeier. These wave-fixed 

components exhibit little amplitude variation as the stimulus frequency changes. In contrast, the 

phase of the predicted place-fixed component varies rapidly as the stimulus frequency changes, in a 

comparable manner to the second component extracted by Mauermann & Kollmeier. Also, unlike 
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the wave-fixed components, the place-fixed components fluctuate in amplitude as the stimulus 

frequency changes in both the model simulation and the experimental measure.  

In many experimental studies of 2f1 − f2 DPOAE fine structure, the spacing between two minima 

occurring at adjacent frequencies of fa and fb has been quantified using the ratio ∆f/fmean, where 

mean a bf f f= and ∆f is given by fb-fa. Smaller values of this ratio indicate narrower fine structure. 

The ratio typically takes a value of around 1/15 for human subjects (Zweig & Shera, 1995b; Dhar 

& Abdala, 2007), but tends to increase as the stimulus frequency decreases. For example, Dhar & 

Abdala (2007) found that if the 2f1 − f2 DP frequency reduced from 2000 to around 750 Hz, the 

∆f/fmean ratio increases from 0.06 ± 0.02 to 0.15 ± 0.02. The fine structure predicted by the model 

for DP frequencies of 2000 and 750 Hz exhibit ∆f/fmean ratio values of 0.08 and 0.13 respectively, 

which is consistent with the results of Dhar & Abdala. 

Origin of the fine structure 

Fine structure in the amplitude of the 2f1 − f2 DPOAE was first reported by Gaskill & Brown (1990) 

and He & Schmiedt (1993). It is thought to arise because the total 2f1 − f2 is formed of a vector sum 

of two components (Brown et al., 1996) which have different phase characteristics (Shera & 

Guinan, 1999). These two components have been identified in various experimental and modelling 

studies (Shaffer et al. (2003),Talmadge et al. (1998) etc) and are evident in the perturbed cochlear 

model (figure 4.22).  

There are two ways in which the wave-fixed and place-fixed DPOAE components could combine 

to form 2f1 − f2 DPOAE fine structure evident in the cochlear model. Firstly, amplitude fluctuations 

in the place-fixed component could directly result in amplitude variations for the total DPOAE. 

Secondly, amplitude fluctuations in the total 2f1 − f2 DPOAE could arise from alternating 

constructive and destructive summation between the wave-fixed and place-fixed components, 

which is expected to occur as a consequence of their different phase characteristics. Figure 4.22 

suggests that both of these effects can influence the formation of 2f1 − f2 DPOAE fine structure at 

different stimulus frequencies. For example there are DP frequencies, in both the model simulation 

(near 2500 Hz) and the physiological measurement (around 1500 Hz), at which the amplitude of 

the place-fixed component approaches that of the wave-fixed component and under these 

conditions the fine structure of the total DPOAE appears to exhibit peaks and troughs at 

frequencies which correspond to fluctuations in the amplitude of the place-fixed component. This 

indicates that at these DP frequencies, the DPOAE fine structure arises predominantly from 

amplitude fluctuations in the place-fixed component. The model simulation suggests that the level 

of the place-fixed component must exceed that of the wave-fixed component by at least 5 to 10 dB 

if this effect is to be the primary cause of the fine structure.  
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Figure 4.23 The predicted influence of stimulus 
level on 2f1 − f2 DPOAE fine structure 
(a) The simulated fine structure using f2/f1 = 1.2 
and stimulus levels of 40 or 50 dB SPL (L1=L2). 
The circular and square markers indicate 
corresponding peaks an troughs in the two 
simulations. (b) The peak-to-tough fine structure 
amplitude for a range of stimulus levels (L1=L2) 
evaluated using f2/f1 =1.2 and f2 between 2.4 and 
3 kHz. (c) The frequency corresponding to the 
peak and trough marker in (a) for a range of 
stimulus levels. 

At other DP frequencies, the fine structure is thought to be formed mainly from the constructive 

and destructive summation of the two components. For example, the predicted peak and trough 

observed in the total emission amplitude at DP frequencies of 1.6 and 2.4 kHz respectively 

correspond to relative phase differences between the place-fixed and wave-fixed components of 

2.04 and 5.52 cycles in that order. 

The influence of stimulus parameters on predicted fine structure 

Figure 4.23 shows how the properties of the simulated 2f1 − f2 DPOAE fine structure vary with 

stimulus level. The model predicts that the stimulus level will affect the fine structure in two ways. 

Firstly, the amplitude of the fine structure will reduce as the stimulus level increases. Figure 4.23b 

estimates that the peak-to-trough amplitude will decrease from approximately 13 to 4 dB as the 

stimulus level increases from 45 to 65 dB SPL for these stimulus frequencies (f2/f1=1.2 and f2= 2.4 

to 3 kHz). The cause of this effect within the cochlear model is likely to be associated with the 

change in the relative amplitude of the wave-fixed and place-fixed DPOAE components discussed 

in section 4.2.5. Secondly, the f2 stimulus frequencies at which the peaks and troughs occur will 

shift towards lower frequencies as the stimulus level increases. Figure 4.23c suggests that the peaks 

and troughs can shift by 100 − 150 Hz as the stimulus level increases from 40 to 60 dB SPL. This 

may be due to the basal shift in the best places for f1 and f2 as the stimulus level increases. These 

two trends are also evident in experiment measures. For example, figure 4.24 shows the 2f1 − f2 

DPOAE fine structure recorded by He & Schmiedt (1993). This illustrates that the peak-to-trough 

amplitude of the fine structure decreases from around 15 to 5 dB as the stimulus level increases 

from 45 to 65 dB SPL.  



4. Predicted 2f1 − f2 DPOAE characteristics 
4.2 Predictions of a perturbed model 

137 

 

Figure 4.24 Measured 
influence of stimulus level 
on 2f1 − f2 DPOAE fine 
structure  
The results were observed 
from one ear by He & 
Schmiedt (1993), using 
L1=L2 and f2/f1=1.2.  
[From figure 4 of He & 
Schmiedt (1993), with 
permission from ASA] 

He & Schmiedt also observe that the f2 frequencies at which peaks and troughs occur shift towards 

lower frequencies as the stimulus level increases. In this example, the shift is approximately 200 

Hz for a 20 dB increase in stimulus level. Therefore the influence of stimulus level on the fine 

structure predicted by the model is also observed, on a similar scale, in experimental measurements. 

 4.2.4 Notches in the 2f1 − f2 DPOAE growth function 

In section 4.1.4 we observed that notches can occur in the growth function of the 2f1 − f2 DPOAE 

predicted by a baseline model. These notches occurred for some, but not all, stimulus paradigms 

when the stimulus level was around 50 to 60 dB SPL. They were attributed to changes in the 

relative phase of elements within the source region of the wave-fixed 2f1 − f2 DP as the stimulus 

level increased. However, He & Schmiedt (1993) suggest that notches should also occur as a 

consequence of shifts in fine structure associated with the mixing of the wave-fixed and place-fixed 

components of the DPOAE in the ear canal.  

Figure 4.25a shows the growth of the simulated 2f1 − f2 DPOAE with increasing stimulus level, 

using a paradigm in which L1=L2, f2/f1=1.1 and f2=2.5 kHz. In this case the predicted wave-fixed 

component, evaluated using the baseline model, exhibits no significant notch. There is a change in 

the growth rate of the simulated wave-fixed component when the stimulus level reaches 60 dB, 

associated with the phase changes between elements within the DP source region, but no 

substantial reduction in the amplitude of this component is observed. In contrast, when the growth 

of the total DPOAE is predicted by the perturbed model, a notch appears in the simulated growth 

function at a stimulus level of 60 dB SPL. The total DPOAE predicted by the perturbed model is 

made up of a wave-fixed and a place-fixed component, and the phase difference between these 

components as the stimulus level increases is shown in figure 4.25b.  
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(a) 

 

(b) 
 

 

Figure 4.25 The predicted  growth of the wave-fixed and place-fixed components 
(a) The simulated amplitude of the predicted 2f1 − f2 DPOAE and the wave-fixed and place-fixed 
components for increasing stimulus level (L1=L2 and f2/f1=1.1 and f2=2500 Hz). (b) The phase 
difference between the place-fixed and wave-fixed components shown in (a). 

The notch in the growth function of the total emission, at a stimulus level of 60 dB SPL, is thought 

to arise from destructive summation between the place-fixed and wave-fixed components of the 

DPOAE, as the phase difference between the two components is almost exactly ½ a cycle at this 

stimulus level. It is also interesting to note that the two components are again almost ½ a cycle out 

of phase at a stimulus level of 30 dB SPL, where the predicted amplitude of the total 2f1 − f2 

emission is less than the amplitude of either the wave-fixed or place-fixed components.  

4.2.5 The influence of stimulus parameters on the place-fixed component 

The influence of stimulus level 

Figure 4.25a shows that the amplitude of the predicted 2f1 − f2 DPOAE place-fixed component 

relative to the wave-fixed component decreases as stimulus level increases above 55 dB SPL. This 

is consistent with the experimental observation of Mauermann & Kollmeier (2004), who found that 

the amplitude of the place-fixed component decreased relative to the wave-fixed component at L2 

levels above 50 dB SPL in all of their 6 subjects using a ‘scissor’ stimulus paradigm (section 1.5.2). 

Figure 4.25a suggests that the relative amplitude difference between the DP components which 

occurs from stimulus levels in excess of 60 dB SPL arises because the considerable predicted 

increase in the wave-fixed component amplitude is accompanied by a decrease in the amplitude of 

the simulated place-fixed component.  There are several factors which could be responsible for this 

including changes in source directionality, reduced influence of the irregularities in the active 

micromechanics as the model becomes more passive, and the broadening of the BM response to 

stimulation at higher stimulus levels. 
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Figure 4.26 Simulated  growth of the wave-fixed 
and place-fixed components in an alternative 
perturbed model 
The plot shows the predicted amplitudes of the 
2f1 − f2 DPOAE and the wave-fixed and place-
fixed components with increasing stimulus level 
(L1=L2 and f2/f1=1.1 and f2=2500 Hz). In this 
case a different perturbed model was used, 
compared to that used throughout the rest of this 
thesis. The impedance irregularities were 
introduced into the passive, rather than the 
active, micromechanical impedance.  
  

The first two explanations are unlikely to be primarily responsible for the predicted relative decline 

in the amplitude of the place-fixed component at high stimulus levels. Section 5.1.3 explains that 

any change in source directionality with stimulus level is expected promote forward travelling 

waves propagating towards the place-fixed reflection site at higher levels, not diminish them. In 

addition, figure 4.26 shows the simulated growth of the emission evaluated using a modified 

perturbed cochlear model in which the impedance irregularities were introduced into the passive, 

not the active, micromechanics. This demonstrates that the predicted increase in the wave-fixed 

component amplitude relative to the place-fixed component does not seem to be directly related to 

the reduced influence of irregularities in the active micromechanics at high stimulus levels.  

However, the broadening of the BM response could explain the relative amplitude difference 

between the two DP components as the stimulus level increases. To illustrate this, figure 4.27 

shows the influence of the suppression of the DP travelling wave on the growth of the total 

predicted 2f1 − f2 DPOAE and its wave-fixed and place-fixed components. The CA supplies energy 

to the DP travelling wave over a distributed region of the cochlea, but is most active at a distance of 

13 mm from the stapes for this simulation. Figure 4.27a demonstrates that the CA gain at this 

location reduces from about 1 to less than 0.2 as the stimulus levels (L1=L2) increase from 30 to 70 

dB SPL. Figure 4.27b shows the spatial distribution of the BM response at the DP frequency and 

illustrates that the CA gain reduction is associated with a broadening of the DP travelling wave 

which could lead to a reduction in coherent reflection from the DP characteristic place. Given the 

low amplitude of the DP travelling wave, the origin of the extensive CA suppression at the DP 

frequency at high stimulus levels is likely to result from the primary travelling waves rather than 

self-suppression of the DP component.  The influence of DP suppression on the relative amplitude 

of the wave-fixed and place-fixed components of the DPOAE is confirmed by figure 4.27c, which 

shows the growth of the 2f1 − f2 emission predicted by a modified cochlear model in which the DP 

travelling wave is not influenced by suppression. In this modified simulation the amplitude of both 

the wave-fixed and place-fixed DPOAE components increase with the stimulus level and so no 

substantial relative amplitude different arises. 
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Figure 4.27 The influence of self-suppression on 
the  growth of the 2f1 − f2 DP  
(a) The predicted OHC gain, observed in the 
quasilinear model at a location corresponding the 
point of maximum CA activity at the DP 
frequency in a fully active linear model (a distance 
of 13 mm from the stapes in this case). (b) The 
simulated DP component of the BM velocity 
response to stimulation by two tones, f1 and f2. The 
response is shown for stimulus levels (L1=L2) of 
30 and 70 dB SPL. (c) The predicted growth 
function for the 2f1 − f2 DPOAE in a quasilinear 
model which has been modified so that the DP 
travelling wave is not suppressed by the primary 
tones or influenced by self-suppression. In all 
plots, f2= 2 kHz and f2/f1 =1.2.  
 

The influence of stimulus frequency 

The 2f1 − f2 DPOAE fine structure simulation shown in figure 4.22b demonstrates that the absolute 

amplitude of the predicted place-fixed component varies with stimulus frequency, and that the 

relative amplitude of the place-fixed and wave-fixed components can also vary with stimulus 

frequency. The fluctuations in the absolute amplitude of the predicted place-fixed component are 

expected to arise due to the random size variations in the impedance irregularities imposed on the 

active micromechanics of the cochlear model. Substantial changes in the relative amplitudes of the 

wave-fixed and place-fixed components with stimulus frequency could be associated with several 

different properties of the model, all of which may contribute to a certain degree. Firstly, the 

properties of the middle ear result in changes in the effective level of the stimuli reaching the 

cochlea as the stimulus frequency varies, even when the stimulus levels in the ear canal are kept 

constant. This could be significant because, as discussed above, the stimulus level can affect the 

amplitude of the place-fixed component relative to the wave-fixed component of the DPOAE. 

Secondly, the extent of spatial overlap between the primary travelling waves in the cochlear model 

is likely to change with stimulus frequency, even if the f2/f1 ratio is fixed, due to the change in the 

sharpness of tuning of the BM response with stimulus frequency (section 3.4.2). Changes in spatial 

overlap can influence the relative phase of the elements with the wave-fixed DP source distribution 

and impact on the directionality of the source (section 5.1.3). These alterations in source 
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directionality could lead to changes in the relative amplitude of the wave-fixed and place-fixed 

DPOAE components as a consequence of stimulus frequency variation. 

The influence of stimulus frequency ratio 

Figure 4.28 shows the variation in amplitude of the predicted place-fixed 2f1 − f2 DPOAE 

component with stimulus frequency ratio. This plot contains a simulation, and the experimental 

result of Knight & Kemp (2001) for comparison. The simulation predicts that the amplitude of the 

wave-fixed component will exceed that of the place-fixed component when the stimulus frequency 

ratio is close to the optimal value, between 1.2 and 1.6 for the cochlear model. When f2/f1 exceeds 

1.15, the amplitude of the predicted place-fixed component decreases as the stimulus frequency 

ratio increases. The origin of this effect within the cochlear model is likely to be a change in the 

directionality of the spatially distributed wave-fixed DP source. In section 5.1.1, the source length 

is shown to change as the f2/f1 ratio changes which can impact on the source directionality (section 

5.1.3). This decrease in the amplitude of the predicted place-fixed DPOAE component with 

increasing stimulus frequency ratio is in agreement with the experimental measurement, in which 

the wave-fixed component dominates the place-fixed component for f2/f1 ratios between 1.1 and 

1.35. At very high stimulus frequency ratios, the amplitude of both components declines in the 

simulation and the physiological result. However, at very low f2/f1 values (<1.15) the model 

predicts that the amplitude of the place-fixed DPOAE component should decline as the stimulus 

frequency ratio approaches unity. This is in contrast to the experimental outcome, which suggests 

that the amplitude of this component continues to rise as f2/f1 approaches unity.  

(a) Knight & Kemp (2001) 

 

(b) Simulation 

 
Figure 4.28 The influence of f2/f1 ratio on the wave-fixed and place-fixed DPOAE components 
(a) The amplitude of the wave-fixed and place-fixed components of the 2f1 − f2 DPOAE measured by Knight 
& Kemp using a time windowing technique. The DP frequencies are averaged between 1.1 and 4 kHz, and 
L1=L2=70 dB SPL. [From Knight & Kemp (2001), figure 5, with permission from ASA] (b) The predicted 
amplitude of the total 2f1 − f2 DPOAE and the wave-fixed and place-fixed components. The simulation was 
performed using L1=L2=50 dB SPL and f2=2kHz.  
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Other studies, such as that of Wilson & Lutman (2006), have also observed that at low f2/f1 ratios 

that amplitude of the place-fixed component exceeds that of the wave-fixed component by around 

15 dB. Therefore the model tends to underestimate the amplitude of the place-fixed component, 

relative to the wave-fixed component, at low stimulus frequency ratios below approximately 1.15. 

There could be several explanations for this. For example, it is possible that if the tuning of the BM 

response is too broad in the cochlear model then the wave-fixed DP source region may extend too 

close to the DP characteristic place at low f2/f1 and adversely affect the generation of the place-

fixed component at this location. This suggested weakness of the model would be consistent with 

some of the limitations noted previously in section 4.1.7 regarding the dependence of the wave-

fixed 2f1 − f2 DPOAE on stimulus frequency ratio. It is also possible that self-suppression of the DP 

response may be occurring in the model at low f2/f1 ratios, which would impact the sharpness of 

tuning of the BM response and the CA gain at the DP characteristic place and could therefore 

reduce the amplitude of the place-fixed component.  

 

 



4. Predicted 2f1 − f2 DPOAE characteristics 
4.3 Conclusions regarding 2f1 − f2 DPOAE prediction 

143 

4.3 Conclusions regarding 2f1 − f2 DPOAE prediction 

This chapter provides a response to the following research questions posed in section 1.9 

concerning the predicted 2f1 − f2 DPOAE: 

o What are the strengths and weaknesses of the model regarding 2f1 − f2 DPOAE prediction? 

o What explanation does the model provide for the dependence of the 2f1 − f2 DPOAE 

amplitude on the stimulus parameters?  

o What causes notches in the growth of the 2f1 − f2 DPOAE predicted by the model? 

o What is the origin of DPOAE fine structure in our model?  

From sections 4.1 and 4.2 we identify the strengths and weaknesses of the model regarding 2f1 − f2 

DPOAE predictions. Overall we conclude that the model makes appropriate predictions for a broad 

range of 2f1 − f2 emission properties and that it is valid to extend the application of the model to 

investigate source mechanisms for this emission, and to test experimental hypotheses. The 

limitations of the model suggest improvements that could be made in future development which are 

discussed in chapter 7.  Sections 4.1.5 and 4.1.6 provide evidence which is used to either verify or 

challenge existing theories concerning the basis of stimulus effects on DPOAE level. Sections 4.1.4 

and 4.2.4 identify notches in the growth of the predicted 2f1 − f2 DPOAE, including a notch in the 

growth of the estimated wave-fixed DPOAE component for a small range of stimulus paradigms. A 

possible explanation for this notch is suggested, based on the work of Mills (2002).  Finally, 

section 4.2.3 illustrates the predicted 2f1 − f2 DPOAE fine structure and discusses the two ways in 

which this fine structure could be formed in the model from combination of the wave-fixed and 

place-fixed components.  

The main contributions of this chapter are listed below and correspond to the summary given in 

section 1.9(iii-v).  

• A comprehensive prediction of 2f1 − f2 DPOAE characteristics for a broad range of stimulus 

parameters, using a model which can estimate both the wave-fixed and place-fixed 

components of the emission 

• Confirmation that the Lukashkin & Russell (2001) explanation for the reduction in the 2f1 − f2 

DPOAE amplitude when L1>>L2, which leads to the occurrence of an optimal stimulus level 

difference for this DP, can be extended to a coupled cochlear model (section 4.1.5) 

• New evidence for attributing the reduction of 2f1 − f2 DPOAE amplitude at low f2/f1 ratios to 

the effect of mutual suppression of the primary tones  (section 4.1.6) 

• Identification and explanation of predicted notches in the growth of the estimated wave-fixed  

2f1 − f2 DPOAE component for a small range of stimulus paradigms (section 4.1.4) 
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5. Predicted 2f1 − f2 DPOAE source and transmission 

mechanisms 

Having gained an understanding of the strengths and weaknesses of the model with regarding 

2f1 − f2 DPOAE prediction, in this chapter the model is applied to address the remaining research 

questions posed in section 1.9 concerning the 2f1 − f2 DPOAE.  This includes an investigation of the 

mechanism and location of the 2f1 − f2 DP source within the cochlear model. As the cochlear origin 

of the 2f1 − f2 DPOAE has been studied extensively in human subjects, these results provide useful 

verification of the generation mechanisms within the model. 

We also apply the model to hypothesis testing in section 5.2. Two particular hypotheses are 

considered: those relating to the Allen & Fahey (1998) and the He et al. (2008) experiments. These 

studies were chosen as illustrations of cases in which the model either challenges or supports the 

experimental hypothesis. These experimental studies are also interesting because they have been 

used in the literature to inform on the transmission mechanism by which the 2f1 − f2 DP propagates 

out of the cochlea from its generation site. 
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5.1 Investigation of source mechanism and location 

The source mechanism for the 2f1 − f2 DP has been detailed extensively in the literature. Figure 5.1 

illustrates this generation mechanism, which consists of two components: a wave-fixed source 

positioned in the vicinity of the f2 best place, and a place-fixed source located at the DP 

characteristic place. This simple picture is likely to be complicated in reality by multiple reflections 

between the base and the DP characteristic place (Stover et al., 1996).  

In this section we determine the source of the 2f1 − f2 distortion product in the model, and confirm 

that it is consistent with the two source illustration given in figure 5.1. We assume that the wave-

fixed component corresponds to the 2f1 − f2 DPOAE which is predicted by the baseline model, and 

that the place-fixed component can be estimated by comparing the emission simulated by the 

perturbed model with that simulated by the baseline model (section 4.2.2). We start by considering 

the location and distribution of the wave-fixed component, and its directional properties. We then 

investigate the location of the place-fixed source in the perturbed cochlear model. This approach 

allows us to develop analysis tools which will be useful for investigating the source of the 2f2 − f1 

DPOAE, which is less well understood, in chapter 6.  

 

 
Figure 5.1 Illustration of the two source components for a lower side band emission 
This picture is based on figure 1 of Shaffer et al. (2003) and refers only to lower side band emissions, such as 
the 2f1 − f2 DPOAE. The grey triangles represent the travelling wave envelopes evoked by the stimulus tones 
f1 and f2. The black triangle denotes the distortion product (fdp) travelling wave, and the grey shaded region 
shows the predicted region of origin for the distortion source. Distortion products at other frequencies (not 
2f1 − f2) have been neglected for clarity. 
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Figure 5.2 The 2f1 − f2 DP component of the OHC pressure output 
Plots (a) and (c) show the DP component of the OHC pressure output. The BM velocity response is also 
shown in (b) and (d) where the frequency components f2, f1, and 2f1 − f2 are represented by the grey dotted, 
grey dashed, and solid black lines respectively. In each case f2 = 2 kHz, f2/f1 = 1.25 and the stimulus levels 
are either (a and b) L1=L2=40 dB SPL or (c and d) L1=L2=60 dB SPL. The best places for f2, f1, and the 
2f2 − f1 characteristic place are indicated by the circle, square, and triangle markers respectively. 

5.1.1 The 2f1 − f2 wave-fixed source distribution 

We assume that the wave-fixed distortion mechanism is entirely responsible for generating the 

2f1 − f2 DPOAE in a baseline cochlear model. However, in principle, there could also be a wave-

fixed reflection component generated by impedance irregularities introduced by the nonlinearity. 

Appendix D.2 demonstrates that these wave-fixed impedance irregularities are most prominent at 

moderate stimulus levels, but negligible at low or high stimulus levels. It is difficult to distinguish 

between the distortion and nonlinear reflection components of the wave-fixed DP in the cochlear 

model, as both are expected to exhibit the same phase behaviour when the stimulus frequency is 

varied. We assume, however, that the distortion source contribution dominates the wave-fixed 

emission, which is essentially sourced by the distribution of the OHC pressure output at the DP 

frequency.  

The 2f1 − f2 component of the OHC pressure output 

Figure 5.2 shows the simulated distribution of the 2f1 − f2 component of the OHC pressure output, 

and the corresponding BM velocity response, for two different stimulus levels. It is helpful to recall 

the distinction between ‘characteristic’ and ‘best’ place when inspecting this figure. For a given 

stimulus frequency presented at the stapes we define the ‘characteristic’ and ‘best’ places as the 

locations on the cochlear partition corresponding to the peak in the travelling wave envelope 

predicted by either a linear active or quasilinear cochlear model respectively. Therefore the 

‘characteristic’ place is independent of stimulus level whilst the ‘best’ place is not. The best places 

for the f1 and f2 stimulus tones are easily identified from the primary travelling wave responses in 
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the quasilinear cochlear model. However, as the DP travelling wave is evoked by internal 

distributed source rather than a stapes stimulus, the best place for this frequency may not 

correspond to the peak of the DP travelling wave envelope. For this reason the DP characteristic 

place, rather than the DP best place, is indicated on the figures. Figure 5.2(a and c) illustrates that 

there is a peak in the amplitude of the 2f1 − f2 OHC pressure output near the f2 best place, and that 

the distribution is broader for the higher stimulus level compared to the lower levels. It also 

demonstrates that the distribution of the 2f1 − f2 component of the BM velocity, exhibits two peaks: 

One at the f2 best place where the source amplitude is greatest, and one at the DP characteristic 

place. This simulation result is consistent with the source illustration shown in figure 5.1, as it 

indicates that the DP pressure output of the OHCs generates a forward travelling wave which 

propagates to the 2f1 − f2 characteristic place.  

The effective wave-fixed (distortion) source distribution 

Although figure 5.2 (a and c) illustrates the distribution of the 2f1 − f2 OHC pressure output, it does 

not inform us as to whether this distribution is capable of generating DP backward travelling waves 

which would be able to propagate out of the cochlea and be detectable in the ear canal. For this 

reason, the effective source region for the wave-fixed component of the 2f1 − f2 DPOAE is 

estimated by taking each individual element of the OHC pressure source distribution described in 

figure 5.2, and evaluating the level of the DPOAE which is evoked by that element in isolation. We 

then identify the dominant source region as the area of the model over which the individual source 

elements evoke a DPOAE level which is within 10 dB of the maximum level evoked by any single 

element. This approach finds the most influential source elements, but collectively their 

performance will depend on the phase relationships which determine the interactions between them. 

The dark grey shaded area in Figure 5.3a shows the estimated effective source region for the wave-

fixed 2f1 − f2 DPOAE component generated by 50 dB SPL stimuli (L1=L2) using a variety of f2/f1 

ratios and fixed f2 (2 kHz). This region increases in length from 1.5 to 2.5 mm as the stimulus 

frequency ratio reduces from 1.4 to 1.01. The figure also shows that the location of the distributed 

source region straddles the f2 best place and considerable contributions to the amplitude of the 

wave-fixed DPOAE are generated on either side of this location. The exact width of the source 

region depends on the boundary definition used, but the estimate of 1.5 to 2.5 mm for a stimulus 

level of 50 dB SPL equates to 0.04L to 0.07L, where L is the cochlear model length. This estimate 

is in good agreement with that of Zhang & Mountain (2008), who found that that the length of the 

source region in their model grew from <0.05L to 0.1L as the stimulus frequency ratio reduced 

from 1.4 to less than 1.1 (figure 1.22a).  

The light grey shaded region in figure 5.3a corresponds to the area of the model over which the 

2f1 − f2 DP component of the OHC pressure output is within 10 dB of the maximum value. For the 
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2f1 − f2 DP, this region is expected to essentially coincide with the dark grey shaded effective 

source area as the travelling waves at 2f1 − f2 are able to propagate throughout this area of the 

model. However, when we consider the 2f2 − f1 DPOAE in chapter 6, we anticipate that some 

differences between the dark and light shaded regions will emerge. 

Figure 5.3b shows that the estimated length of the effective 2f1 − f2 DP source region increases 

from about 1 to 2 mm as the stimulus level (L1=L2) increases from 30 to 80 dB SPL for a stimulus 

frequency ratio of 1.2. This equates to an increase from 0.03L to 0.06L, and is associated with the 

broadening of the travelling wave envelope for higher stimulus levels which increases the spatial 

overlap between the f1 and f2 travelling waves. In summary, figure 5.3 demonstrates that the width 

of the source region tends to increase if either the stimulus level is increased, or the stimulus 

frequency ratio is decreased.  

 

 (a) 

 
(b) 

 
Figure 5.3 The predicted location and length of the 2f1 − f2 DP source region  
(a) The simulated length and location of the 2f1 − f2 wave-fixed DPOAE source for a variety of the f2/f1 ratios 
using L1=L2= 50 dB SPL and 2f1 − f2 = 2 kHz. The dark grey shaded region highlights this source region, 
which is bounded by the solid black lines. The light grey shaded region illustrates the source region estimated 
from the DP component of the OHC pressure output only. (b) The simulated length and location of the 
2f1 − f2 wave-fixed DPOAE source region for a variety of stimulus levels, using f2/f1=1.2 and 2f1 − f2 = 2 kHz. 
In both plots, the black dashed and dotted lines correspond to the f2 best place and 2f1 − f2 characteristic place 
respectively.  
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Figure 5.4 The wave number of the travelling wave 
The (a) real and (b) imaginary components of the wavenumber of the travelling wave in the quasilinear 
model, when it is stimulated by a single 2 kHz tone at a level of either 20 or 80 dB SPL. 

The effective 2f1 − f2 DP source region shown in figure 5.3 suggests that significant contribution to 

the wave-fixed DPOAE can be generated from a location that is apical of the f2 best place. This can 

occur in the model because the f2 travelling wave does not convert from a propagating travelling 

wave to an evanescent wave immediately upon reaching its best place. Instead of a discrete change 

from travelling wave to evanescent behaviour, there is a finite region of the model over which the 

amplitude of the real component of the wavenumber falls off towards zero (corresponding to a 

decline in the amplitude of the f2 travelling wave) and the negative imaginary part of the 

wavenumber builds up (signifying the transfer to an evanescent wave). This is illustrated in figure 

5.4 which shows the real and imaginary parts of the wavenumber of a travelling wave evoked by a 

2 kHz single tone stimulus in the quasilinear model. Therefore, beyond the f2 best place, it is still 

possible for the residual f2 travelling wave to interact with the f1 travelling wave and contribute to 

the wave-fixed DPOAE source.  

Interactions between individual source elements 

Figure 5.3 indicates the effective amplitude of individual elements within the DP source region, but 

does not offer insight into whether these elements are likely to sum together constructively or 

destructively to form the total 2f1 − f2 DPOAE. Instead we investigate whether any substantial 

destructive summation is occurring within the source region by modifying the model such that the 

length of the 2f1 − f2 OHC pressure source is gradually extended from the base of the model whilst 

monitoring the level of the DPOAE predicted by the model. This technique is illustrated in figure 

5.5 and, for this stimulus paradigm, the predicted 2f1 − f2 DPOAE amplitude increases 

monotonically with the length of the source region. The monotonic increase suggests that there is 

no significant destructive interference occurring between the distributed elements of the source 
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region. However we observed in figure 4.6 that, at higher stimulus levels, this approach can detect 

destructive summation occurring between different elements within the source distribution.  

5.1.2 Relative amplitude of different DPOAE frequency components 

The 2f1 − f2 DP is the largest DPOAE observed in humans. Figure 4.1 shows the amplitude of 

various frequency components recorded in the human ear canal during the presentation of two 

simultaneous pure tones. In this section we discuss the origin of the relative amplitudes of these 

DPOAEs. As part of this investigation we mention the source of the 2f2 − f1 DP, which is described 

in much more detail in chapter 6.  

The difference in amplitude between DPs of different orders appears to originate from differences 

in the amplitude of the wave-fixed DP pressure source, and will therefore by influenced by the 

choice of nonlinear function.  For example, figure 5.6 shows the simulated internal pressure source 

distribution which generates the wave-fixed components of the 3rd and 5th order DPs in the cochlear 

model. The maximum amplitude of the pressure source, which occurs in the vicinity of the f2 best 

place, is greater for the lower order DPs, compared to the higher order DPs.  

(a) 

 
(b) 

 

Figure 5.5 The influence of source length on the 
predicted DPOAE amplitude 
At each location the predicted amplitude and 
phase of the 2f1 − f2 DP wave-fixed source is 
described by the pressure output of the OHCs at 
the DP frequency. In this simulation the source is 
“switched-off” throughout most of the model, and 
then it is gradually switched on from the base of 
the model as illustrated in (a). As the source 
length increases, the total predicted wave-fixed 
DPOAE is estimated and shown in (b). The 
source length at which the source region first 
incorporates the f2 best place is indicated by the 
dotted line in (b). For this simulation L1=L2=50 
dB SPL and f2= 2kHz. 
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The difference in amplitude between upper and lower side band emissions of the same order is 

likely to arise as a consequence of the difference in the breadth of the wave-fixed pressure source 

distribution. This difference can be seen in the spatial distributions of the 2f1 − f2 and 2f2 − f1 DP 

wave-fixed pressure sources in figure 5.6.  On the apical side of the f2 best place the amplitude of 

the pressure source falls-off over a shorter distance for the upper- compared to the lower- side band 

emission. In addition figure 5.7 shows the predicted contributions to the total DPOAE from each 

component of the DP source term, which takes into account not only the pressure source 

distribution but also the propagation of DP from the source region to the base of the cochlea. This 

figure should be interpreted with caution, as any interference between neighbouring source 

elements is neglected.  However, it confirms that the source elements which contribute most 

significantly to the DPOAE observed in the ear canal are positioned across a broader region for the 

2f1 − f2 DP compared to the 2f2 − f1 DP.  

 

Figure 5.6 The source distribution for different 
DP frequencies 
(a) The f1 and f2 components of the predicted BM 
velocity response evoked by two stimulus pure 
tones at frequencies f1 and f2, in the baseline 
model The stimulus levels L1 and L2 were set 
equal to 65 and 55 dB SPL respectively and 
f2=2200 Hz and f1=1800 Hz. (b) The predicted 
quasilinear OHC output pressure at various DP 
frequencies, generated by the stimulus tones 
described in (a). This pressure acts as the internal 
pressure source distribution for travelling waves 
at the DP frequencies. Other DP frequencies are 
also expected to occur in the OHC output 
pressure, but these have been neglected for 
simplicity. In (a) and (b) the thin dotted lines 
indicate the location at which the BM velocity 
amplitude is greatest for each stimulus tone.  

 

Figure 5.7 The contribution to the total DPOAE 
from individual wave-fixed source elements 
The (a) amplitude and (b) of the predicted 
DPOAE detected in the ear canal of the model 
when the DP source from one element only is 
“switched on”. The stimulus parameters are the 
same as those described in figure 5.6. The plot 
shows the amplitude of the resulting simulated 
DPOAE as a function of the location of the DP 
source element. Results shows shown for the 
2f1 − f2 (solid line) and the 2f2 − f1 (dashed line) 
DPOAEs. The characteristic place of 2f1 − f2 and 
2f2 − f1 are denoted by the circle and cross 
markers respectively.  The vertical dotted lines 
indicate the best places of the f2 and f1 primary 
travelling waves. 
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5.1.3 Directionality of the 2f1 − f2 wave-fixed component 

Shera & Guinan (2008) explain that if the source elements comprising a distributed source have a 

phase distribution typical of a forward travelling wave in the cochlea, then the source will be highly 

directional. We investigate the directionality of the DP source region using two approaches. First, 

the amplitude of the travelling wave on the basal and apical sides of the distributed source region is 

compared to the amplitudes observed for a point source. Secondly, the forward-backward 

decomposition method (section 2.3) is used to support our conclusions. 

The influence of source length 

Figure 5.8 shows the amplitude of the travelling wave evoked by an internal source, observed at the 

base and at the characteristic place in the active linear cochlear model. The source is positioned 

between the base and the characteristic place, and the length of the source is gradually increased. 

The amplitude of the evoked travelling wave at the base and characteristic place is given in units of 

dB relative to the amplitude of the travelling wave evoked by a point source in the centre of the 

extending region. Figure 5.8a demonstrates that if the source has uniform amplitude and phase, 

then the source exhibits no directionality. In this case, the amplitude of both the forward and 

backward travelling waves evoked by the internal source increase equally as the source length 

extends. However, figure 5.8b shows that if the internal source is given the phase distribution of a 

forward travelling wave then the source becomes directional as the source length increases. In this 

case the amplitude of the forward travelling wave exceeds that of the backward travelling wave, 

relative to the waves generated by a point source.  

 
Figure 5.8 The directionality of an extended source 
These plots show the predicted BM velocity at the base (dashed lines) and at the characteristic place (solid 
lines) in an active linear model, evoked by an internal 1.3 kHz velocity source distribution of increasing 
length. The source starts as a 10nm/s velocity source presented to one micromechanical element, at a distance 
halfway between the stapes and the characteristic place. The source is gradually extended by increasing the 
number of elements to which the 10 nm/s velocity stimulus is presented. The phase of the source along its 
length is either (a) uniform or (b) consistent with the phase of a travelling wave, so that the source phase at an 

element located at xi, is given by 
0

( ) ( ') '
sx

sx k x dxφ = ∫  
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Figure 5.9 The (a) amplitude and (b) phase of the 
predicted 2f1 − f2 component of the OHC pressure 
output 
This simulation was performed using L1=L2=50 
dB SPL, f2=2 kHz and f2/f1= 1.2. The phase is 
referenced to the phase at the base. The dotted 
line denotes the phase of a forward travelling 
wave initiated by a 2 kHz single tone stimulus at 
the stapes, for comparison.  
 

Figure 5.9 shows the amplitude and phase of the 2f1 − f2 component of the OHC pressure output, 

which forms the basis of the wave-fixed source within the baseline cochlear model. It illustrates 

that the phase behaviour of this pressure is similar to that of a forward travelling wave. For this 

reason, as the source length increases, we would expect the wave-fixed DP source to become more 

directional such that it preferentially evokes forward travelling waves rather than backward 

travelling waves. Given the effective 2f1 − f2 source distributions shown in figure 5.3, we anticipate 

that the changing source directionality will act to enhance forward travelling waves relative to 

backward travelling waves as the stimulus level increases or the f2/f1 ratio decreases. 

Using forward-backward travelling wave decomposition 

Figure 5.10 shows the estimated forward and backward travelling components of the DP travelling 

wave that are evoked by two different stimulus levels, using the forward-backward decomposition 

method (section 2.3). Although both forward and backward travelling waves are evident in the 

region between the base and the f2 best place, the amplitude of the forward travelling wave in this 

region falls below the error floor of the decomposition method if the stapes boundary condition is 

adjusted to minimise reflections of backward travelling waves. On the apical side of the f2 best 

place, only a forward travelling DP wave is evident as the amplitude of the backward travelling 

wave decreases below the error floor. If the amplitude of the forward travelling DP wave, dp+ , near 

the DP characteristic place is compared to the amplitude of the backward travelling DP wave, dp− , 

on the basal side of the f2 best place then the ratio /d dp p+ −  is approximately equal to 1.3 for the 50 

dB SPL stimulus level. However, the ratio increases so that /d dp p+ −  is around 1.6 for the 60 dB 

SPL stimulus level, indicating that the wave-fixed source has become more directional as the 

stimulus level has increased.  
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Figure 5.10 The forward and backward travelling components of the 2f1 − f2 DP  
(a) The amplitude of the forward and backward travelling waves at the DP frequency. The amplitude of the f1 
and f2 travelling waves are also shown (grey lines) for reference. (b) The coefficients of the DP forward and 
backward travelling wave. The simulations are performed using L1=L2=50 dB SPL, f2=2 kHz and f2/f1=1.2. In 
(c and d) the same responses are obtained except that a stimulus level of L1=L2=60 dB SPL was used. The 
arrow marks the f2 best place in each of the plots. 

The use of forward-backward travelling wave decomposition to investigate changes in source 

directionality has its limitations, and the most significant is that the amplitude growth of the DP 

forward travelling is nonlinear and this may prevent significant changes in directionality from 

being detected at higher stimulus levels. However, the result is consistent with the previous 

assessment of directionality based on source length, which suggests that the directionality of the 

wave-fixed source should increase with stimulus level due to an increased source length.  

5.1.4 Origin of the 2f1 − f2 DPOAE place-fixed component  

The predicted place-fixed DP component is evaluated by introducing random irregularities into the 

active component of the CP impedance, to form a perturbed cochlear model, as described in section 

4.2. This should allow the forward travelling wave evoked by the wave-fixed DP source in the 

region of the f2 best place, to be reflected when it reaches the 2f1 − f2 characteristic place. However, 

the introduction of the irregularities could also modify the DP component of the OHC pressure 

output, through reflections of the f1and f2 primary travelling waves at their best places. Therefore it 

is important to determine the dominant mechanism behind what we have classified as the place-

fixed DP component.  

The solid line in figure 5.11 shows the amplitude of the place-fixed DPOAE component, evoked by 

imposing a single step increase in the active OHC impedance so that γ(x) increases by 0.1 at a 
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single location in the cochlear model. This has been obtained by substituting the results of the 

baseline model from those of the model incorporating the irregularity. The location of the 

impedance step is moved progressively from the base to the apex of the model, and the amplitude 

of the place-fixed DPOAE is evaluated for each position as described in section 4.2.2. The figure 

reveals that although a small place-fixed component is measured when the step-up is located near 

the f1 or f2 best places, the place-fixed component from the 2f1 − f2 characteristic place is about 17 

dB larger. The small place-fixed component which is evoked by an irregularity positioned near the 

f2 or f1 best places results from reflections in the primary travelling waves which then modify the 

input to the nonlinear function. This is evidenced by the dotted line in figure 5.11 which 

demonstrates that irregularities at the f1 or f2 best places do not significantly influence the predicted 

DP if reflection of the primary travelling waves is neglected from the simulation. Overall we 

conclude that the place-fixed component of the 2f1 − f2 DPOAE estimated by the perturbed model, 

originates primarily from a linear reflection mechanism located at the 2f1 − f2 characteristic place.  

 
Figure 5.11 The location of the place-fixed (reflection) 2f1 − f2 DP source mechanism 
This plot shows the predicted amplitude of the place-fixed component of the 2f1 − f2 DPOAE generated by 
imposing a single step into the active impedance of the cochlear model at various locations, x(m). The 
stimulus parameters were L1=L2=50 dB SPL, f2= 2 kHz and f2/f1=1.3. The best places for f1, f2 and the 2f1 − f2 

characteristic place are indicated by xf1, xf2 and x2f1 − f2 respectively. The solid line corresponds to the result 
from a model in which the irregularity affects the primary and DP travelling waves. In contrast the dotted line 
corresponds to a model in which the irregularity affects only the DP, not the primary, travelling waves.  
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5.2 Application of the model to hypothesis testing 

In this section we consider how the model can be applied to hypothesis testing in order to gain a 

better understanding of the implications of some experimental results. Two examples are given: 

The Allen & Fahey (1998) experiment and the He et al. (2008) experiment. These studies were 

chosen as illustrations of cases in which the model either challenges or supports the experimental 

hypothesis respectively. This application also provides further verification of the model predictions 

as they are in good agreement with simulations performed in other studies, at least as far as those 

other models have been taken. In this section we also seek to explore the results of these 

experiments in more depth. 

5.2.1 The Allen-Fahey experiment 

The Allen-Fahey experiment, described in section 1.7.3 was originally designed to quantify the 

gain of the CA, but was unsuccessful. Several explanations for the null result of this experiment 

have been proposed in the literature:  

(i) There is no cochlear amplifier (Allen & Fahey, 1992) 

(ii) Distortion products travel out of the cochlea via fluid compression waves, not reverse 

travelling waves, and therefore the principle of the method is flawed (Ren & Nuttal, 

2006)  

(iii) The contribution of the reflection source (place-fixed) mechanism is neglected 

(iv) There may be some suppression of the DP for small f2/f1 ratios (Shera & Guinan, 2007) 

(v) There may be wave interference occurring between the DP and the primaries, or 

between DPs of different frequencies (de Boer et al., 2005) 

(vi) The directionality of the distortion source (wave-fixed) mechanism may change with 

f2/f1 ratio (Shera & Guinan, 2007), as a result of the distributed nature of the source 

region (Neely & Liu, 2008), which would invalidate the underlying assumptions of the 

method  

In the past, the cochlear models of Kanis (1995) and Neely & Liu (2008) have been used to 

discount explanation (i) on the basis that the null result of the Allen-Fahey experiment can be 

replicated using a cochlear model which incorporates an amplifier mechanism. Explanation (ii) has 

also been rebuffed because, so far, cochlear models have only been able to replicate the Allen-

Fahey experiment result if the reverse propagation of DPs towards the stapes is dominated by the 

travelling wave mechanism rather than a compression wave or a hybrid mechanism (Shera et al., 

2007). Further objections to the backward propagation of DPs out of the cochlea via fluid 

compression waves were discussed in section 1.4.4. The other explanations (iii) − (iv) are more 
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difficult to assess based on the literature, and for this reason we apply our cochlear model to 

simulate the Allen-Fahey experiment in order to determine which of these suggestions is likely to 

be most influential. 

We start by replicating the Allen-Fahey experiment in the baseline cochlear model. Figure 5.12a 

shows the result that Allen & Fahey anticipated in their 1992 experiment, based on the assumption 

that the cochlear amplifier enhances the travelling wave amplitude by a factor G. As explained in 

section 1.7.3, the experiment involves presenting two tones (f1 and f2) in the ear canal, and 

adjusting the stimulus levels (L1=L2) such that a pre-specified response level occurs at the 

characteristic place corresponding to the 2f1 − f2 DP frequency. During the experiment, the 2f1 − f2 

DP frequency is fixed and the level of the DPOAE in the ear canal is monitored for a range of f1 

values. Allen and Fahey argue that the shift in the relative position of the DP source and the region 

over which the CA amplifies the BM travelling wave at the DP frequency as the f2/f1 reduces 

towards unity, should result in a G2 increase in the DPOAE amplitude detected in the ear canal 

where G is the gain of the CA. Therefore figure 5.12a illustrates that the DP amplitude was 

anticipated to increase as f1 is moved towards the DP frequency. It should also be noted that the 

stimulus level L1 is expected to decrease as f1 approaches the DP frequency as the spatial overlap 

between the f1 and f2 primary travelling waves increases, enhancing the DP source pressure and 

reducing the stimulus levels required.  

Figure 5.12b shows the result of the original Allen-Fahey experiment. In contrast to the anticipated 

result, the level of the DPOAE in the ear canal remains essentially constant for all f1 frequencies. 

Therefore Allen & Fahey concluded that G was close to 1, or in other words, there is no cochlear 

amplifier. Kanis (1995) demonstrated that the original Allen & Fahey experiment may not have 

included values of f1 sufficiently close to 2f1 − f2 to detect the value of G correctly. However 

replications of the experiment, which included smaller f2/f1 ratios, were consistent with the null 

result of Allen & Fahey (de Boer et al., 2005; Shera & Guinan, 2007). The results of the simulated 

experiment performed by Neely & Liu (2008), using a cochlear model in which the CA provides a 

gain of 47 dB to the BM displacement, is shown in figure 5.12c. This demonstrates that, contrary to 

the expected result (figure 5.12a), the predicted DPOAE amplitude declines as f1 approaches the 

DP frequency. Neely & Liu conclude that the Allen-Fahey experiment does not provide an accurate 

method for quantifying the gain of the CA.  

Our simulation of the Allen-Fahey experiment is shown in figure 5.12d. It differs from that of 

Neely & Liu mainly in the behaviour of the f1 pressure amplitude. This difference arises because, in 

our simulation, it is the DP component of the response rather than the total response at the DP 

characteristic place which is kept constant throughout the simulation. For this reason, the f1 

pressure component does not follow the iso-displacement curve as f1 approaches the DP frequency 
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in our simulation. The conclusion from our model simulation, that the DPOAE amplitude should 

fall off as f1 tends towards the DP frequency, is the same as that of Neely & Liu. 

 

 (a) Illustration  

 
 

(b) Allen & Fahey experimental result 

 

(c) The simulation by Neely & Liu 

 

(d) Our simulation 

 
Figure 5.12 The result of the Allen-Fahey experiment  
(a) Illustration of the anticipated result of the Allen-Fahey experiment, based on the explanation given in 
section 1.7.3. As the stimulus frequency ratio f2/f1 decreases, and f1 tends towards the DP frequency, the DP 
pressure in the ear canal is expected to increase by either a factor of G or G2 where G is the gain of the 
cochlear amplifier. (b) The experimental results recorded in cats by Allen & Fahey. [From Allen & Fahey 
(1992), figure 5, with permission from ASA]. (c) The simulation performed by Neely & Liu, using a model 
of the cat cochlea [From Neely & Liu (2008), figure 4 with permission of the authors and World Scientific]. 
(d) Our simulation. The stimulus levels (L1=L2) were adjusted for each f1 frequency, such that the 2f1 − f2 DP 
component of the shear displacement was fixed at  − 25 dB re 1 nm, at the 4 kHz characteristic place. 
Throughout the simulation the DP frequency (2f1 − f2) was equal to 4 kHz, and the f1 frequency was varied 
from 4020 to 7000 Hz.  
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Explanations for the null Allen-Fahey result 

As we simulated the Allen-Fahey result in the baseline cochlear model, in which there are no place-

fixed sites of reflection for forward travelling waves, we can conclude that explanation (iii) is not 

important: The null result of the Allen-Fahey experiment is not associated with neglecting the 

place-fixed component of the 2f1 − f2 DP from the experimental design.  

To eliminate explanation (iv) the cochlear model was manipulated to neglect self-suppression of 

the DP travelling wave and mutual suppression of the primary responses. Figure 5.13 shows the 

simulation of the Allen-Fahey experiment using this manipulated model. It demonstrates that 

although these suppression effects can alter the amplitude of the 2f1 − f2 DPOAE by up to 

approximately 5 dB, this change is not sufficient to explain the decline in DPOAE amplitude of 

over 50 dB which is observed as the f1 frequency is reduced from 7000 to 4000 Hz in the full 

quasilinear model. For this reason, suppression can be excluded as the dominant cause of the null 

Allen-Fahey experiment result in the cochlear model. This is similar to the conclusion of de Boer et 

al. (2005) who verified experimentally that there was little change in the degree of mutual 

suppression between the primary tones as the stimulus frequency ratio decreased in their replication 

of Allen-Fahey experiment in the guinea pig cochlea. 

Our simulation, and the earlier work of Kanis (1995), allows explanation (v) to also be dismissed. 

This is because it was not necessary to incorporate other DP components, such as the 2f2 − f1 or the 

3f1 − 2f1, in order to replicate the null result of the Allen-Fahey experiment. The interaction 

between the 2f1 − f2 DP and the primary tones is also negligible as the result of the simulation is 

altered by less than 1 dB if the 2f1 − f2 DP component is permitted to modify the estimation of the 

primary responses in the quasilinear iterative process.  

Figure 5.13 The influence of suppression on the 
Allen-Fahey result 
The plot shows the simulated Allen-Fahey 
experiment performed in the full quasilinear 
model (solid line), and in the model when it is 
manipulated to exclude self-suppression of the 
DP component (dotted line) and to exclude 
mutual suppression of the primary responses in 
addition to self-suppression of the DP 
component (dashed line). Both of these plots are 
equivalent to that shown in figure 5.12d, except 
that the iso-displacement and f1 pressure 
variations have been neglected for simplicity. 
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As all other explanations have been rebuffed, this leaves only explanation (vi) which suggests that 

the directionality of the source region changes as the stimulus frequency ratio reduces. It is, 

however, not possible to alter the directionality of the source region in the model to confirm this 

finding since it is such an intrinsic part of the nonlinear distortion generation and longitudinal 

coupling within the model. Instead, some support for this explanation can be derived from the 

evidence presented in section 5.1.3, that the length of the distributed wave-fixed source region 

tends to increase as the stimulus frequency ratio reduces towards unity, and that this is expected to 

change the directionality of the source region. For example, as the f2/f1 ratio reduces and the source 

length increases, the DP travelling waves it evokes tend to be emitted preferentially towards the 

apex rather than towards the base. Allen & Fahey, anticipating no change in source directionality as 

f2/f1 decreases, expected the level of the 2f1 − f2 DPOAE recorded in the ear canal to increase by a 

factor of G2 as f2/f1 reduced to unity. However, the model predicts that the extending source region 

will increasingly tend to emit DP travelling waves preferentially towards the DP characteristic 

place, rather than the base, as the stimulus frequency ratio reduces towards unity. This would lower 

the level of the 2f1 − f2 DPOAE, compared to the expectation of Allen & Fahey, because the 

amplitude of the backward travelling wave is reduced and lower stimulus levels are needed to 

evoke the required response at the DP characteristic place. For this reason, the Allen & Fahey 

experiment may underestimate the gain of the CA as a consequence of changes in source 

directionality with changes in the stimulus frequency ratio.  

5.2.2 Fluid compression waves and the He et al. experiment 

The He et al. (2008) study is one of several recent experiments which measure the phase behaviour 

of the BM motion at the 2f1 − f2 DP frequency between the base and the f2 best place, in an attempt 

to detect the phase pattern expected for a backward travelling wave. Along with other studies (Ren, 

2004; de Boer et al., 2008) this experiment detects phase behaviour which is typical of a forward 

(not a backward) travelling wave in this region, and therefore casts doubt on the theory that DPs 

propagate out of the cochlea via backward travelling waves. We have simulated the He et al. 

experiment in our cochlear model, in which the only mechanism for reverse propagation of DPs out 

of the cochlear is via reverse travelling waves. We find, in agreement with the model of de Boer et 

al. (2008), that the phase behaviour observed by He et al. is indeed at odds with the theory of 

reverse DP propagation via backward travelling waves.  
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Figure 5.14 Illustration of the observation 
locations used by He et al. 

In their experiment, the gerbil cochlea is 
stimulated by two tones which generate a 2f1 − f2 
distortion product in the grey region indicated. 
Observations of the BM at then made at locations 

xm and xn which have characteristic frequencies of 
15 kHz and 12 kHz respectively. 
[From figure 1 of He et al. (2008), with universal 
permission].  
 

Overview of the He et al. (2008) experiment 

He et al. (2008) observed the amplitude and phase of the BM velocity at two different locations (xm 

and xn) in the gerbil cochlea, as illustrated in figure 5.14. The cochlea was stimulated by two pure 

tones (f1 and f2) and 2f1 − f2 DP travelling waves are generated in the vicinity of the f2 best place. 

The value of f2 is selected so that the source region of the 2f1 − f2 DP lies between xn and the DP 

characteristic place. The principle of the experiment is that the direction of the 2f1 − f2 travelling 

wave emitted from the DP source region can be identified from the phase measurements at xm and 

xn. The analysis exploits the observation that the travelling wave accumulates phase lag as it 

propagates. On this basis, He et al. hypothesise that the 2f1 − f2 backward travelling wave, should 

exhibit the following properties: 

• The phase lag at xm should be greater than the phase lag at xn 

• If the source location moves closer to xn as the f2 frequency increases, then the phase lag 

should decrease at both xm and xn  

The reasoning behind these hypotheses is illustrated in figure 5.15 which shows the phase of a 

travelling wave evoked by an internal 2 kHz source. The source is placed at different locations 

within the linear active cochlear model and the phase of the resulting travelling wave is observed at 

xm and xn. This demonstrates that a backward travelling wave evoked by an internal point source of 

fixed frequency exhibits the phase characteristics anticipated by He et al. in a linear cochlear model: 

the phase lag of the travelling wave is greater at xm compared to xn. In addition, when the source 

location is moved further away from xn, the phase lag observed at both xm and xn increases. Similar 

results are obtained in a quasilinear model, and in a scenario in which the source frequency is 

related to the source location such that the frequency increases as the location moves closer to the 

base.  
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Figure 5.15 The phase of the BM velocity 
response to an internal 2 kHz source in the 
linear active cochlear model 
The locations xm, xn and x2kHz correspond to the 
observation points in figure 5.14 and the 2 kHz 
characteristic place respectively. Each solid 
line corresponds to a different source location, 
as indicated by the black dotes. When the 
source is located at the base of the model, the 
travelling propagates from the base to the 
apex, accumulating increasing phase lag in this 
direction. When an internal source is located 
between xn and x2kHz, the phase of the 
travelling wave is greater at xm compared to xn. 
If the internal source location is moved closer 
to xn, then the phase lag observed at either xm 
or xn increases. 

The results of the experiment 

He et al. perform two experiments. The first uses a single tone stimulus at frequency f0 presented in 

the ear canal. This generates the expected forward travelling wave on the cochlear partition, and the 

phase of this wave is detected at the observation points xm and xn. To summarise, the results 

demonstrate a greater phase lag at xn compared to xm and greater phase lag at both sites as the 

stimulus frequency increases. These results are consistent with those anticipated for a forward 

travelling wave, and were used by He et al. to verify their observation techniques. This experiment 

was simulated in the model to demonstrate that the predicted response was qualitatively similar to 

that observed by He et al, as shown in appendix I.  

In the second experiment, two tones were presented in the ear canal at frequencies f1 and f2 such 

that a 2f1 − f2 DP would be generated within the cochlea. Other DPs would also be expected to arise, 

but are neglected from this discussion for simplicity. The wave-fixed (distortion) component of the 

2f1 − f2 DP is thought to arise from a distributed region in the vicinity of the f2 best place (section 

5.1.1). As sites xm and xn correspond to locations with characteristic frequencies of 15 kHz and 12 

kHz respectively in the gerbil cochlea, the 2f1 − f2 DP generation region is expected to be between 

xn and the DP characteristic place provided that 2f1 − f2 is less than 10.9 kHz. For this reason, the 

DP phase measurements observed at locations xm and xn are expected to correspond to a backward 

travelling wave when 2f1 − f2 is less than 10.9 kHz. The results observed by He et al. are displayed 

in figure 5.16. These plots do not show the phase behaviour expected of a backward travelling 

wave when 2f1 − f2 is less than 10.9 kHz. Instead the phase behaviour of the DP travelling wave 

observed at the two sites appears to be consistent with a forward travelling wave.  
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Figure 5.16 The result of the He et al. (2008) experiment 
The magnitude (A and B) and phase (C and D) of the 2f1 − f2 distortion component of the BM response to 
two stimulation of the gerbil cochlea, observed at two spatially separated locations. The observation locations 
xm and xn are located at the 15 kHz and 12 kHz characteristic places respectively, which are spatially 
separated by approximately 0.6 mm. Responses to stimulus levels (L1=L2) of 40, 50, 60, and 70 dB SPL are 
denoted by dash-dot, dashed, dotted and solid black lines in that order. The stimulus frequency ratio f2/f1 
=1.05 is held constant throughout the experiment. The grey dotted lines in A and B show the amplitude of the 
response to a 60 dB SPL single pure tone stimulus (scale on the right hand side) for reference. Plots A and C 
correspond to the more apical site whilst B and D were observed the basal location. C and D show the phase 
of the responses given in A and B relative to 2φ1 − φ2 where φ1 and φ1 correspond to the phase of the stapes 
motion at f1 and f2 in that order. E gives the phase of BM velocity at site 2, relative to site 1. The dashed lines 
in C,D and E indicate the results that are anticipated for a backward DP travelling wave. F shows the delay 
(∆φ) in propagation of the DP travelling wave, at each DP frequency, between sites 1 and 2, calculated using 
the phase data in E and the stimulus frequency (e.g. delay= − ∆φ/fdp where ∆φ is the phase change and 
fdp=2f1 − f2). G and H give the group velocity and wavelength of the travelling wave respectively, which are 
estimated from the delay (F) and the known distance between the observation sites. [figure 2 of He et al. 
(2008), with universal permission] 
 

The baseline model simulation of the two tone He et al. experiment is shown in figure 5.17. The 

simulation is not expected to be quantitatively comparable to the physiological result of He et al. 

because of animal differences and differences in observation location. The observation sites for the 

simulation were positioned distances of 10.5 and 11.3 mm from the stapes which correspond to 

locations with characteristic frequencies of 4 and 3.5 kHz respectively. These sites were selected so 

that it would be possible to detect a backward travelling wave in the two tone experiment using the 

range of frequencies over which the model predictions of distortion products appears to be 

strongest (f2 between 1 and 4 kHz and f2/f1 = 1.2). Although only one stimulus level (40 dB SPL) is 
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shown in the simulation for simplicity, similar results were obtained using higher levels. As the xn 

site is located at the 3.5 kHz characteristic place, then the wave-fixed (distortion) DP source is 

expected to be on the apical side of the two observation points provided that 2f1 − f2 is less than 2.3 

kHz.  Plots C and D, in figure 5.17, show that as the DP frequency decreases below 2.3 kHz the 

simulated phase lag on the DP travelling wave observed at xm and xn increases. Also, plot E 

suggests that when 2f1 − f2 is below 2.3 kHz, the phase of the simulated DP travelling wave 

observed at xn slightly leads that observed at xm. These model predictions are consistent with the 

hypotheses of He et al, but at odds with their experimental results shown in figure 5.16. 

 
Figure 5.17 The simulated He et al. (2008) experiment 
The model simulation of the 2f1 − f2 distortion component of the BM velocity response to two tone 
stimulation, observed at two spatially separated locations. The observation locations xm and xn are located at 
the 4 kHz and 3.5 kHz characteristic places respectively, which are spatially separated by approximately 0.8 
mm. The stimulus levels, L1=L2, were set to 40 dB SPL and f2/f1=1.2. A and B show the magnitude of the DP 
response at sites xn and xm respectively. C and D show the phase of the responses shown in A and B relative 
to 2φ1 − φ2 where φ1 and φ1 correspond to the phase of the stapes motion at f1 and f2 in that order. The black 
arrows indicate the frequency below which the 2f1 − f2 wave-fixed generation site is expected to be further 
from the base than the observation site. E gives the phase of BM velocity at site xn, relative to site xm. F 
shows the delay (∆φ) in propagation of the DP travelling wave, at each DP frequency, between sites 1 and 2, 
calculated using the phase data in E and the stimulus frequency (e.g. delay= − ∆φ/fdp where ∆φ is the phase 
change and fdp=2f1 − f2). G and H give the group velocity and wavelength of the travelling wave respectively, 
which are estimated from the delay (F) and the known distance between the observation sites. 
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(a) The output of the DP source is predominantly a 
backward travelling wave (black arrows) which passes 
through xn before reaching xm. 

 
 
(b) The output of the DP source is predominantly a fluid 
compression wave (grey arrows), which vibrates the 
stapes and initiates a forward travelling wave (black 
arrows) which passes through xm before reaching xn. 
 

 

Figure 5.18 Possible reverse DP 
propagation mechanisms in the He et al. 

experiment 
In these illustrations, the cochlea is 
stimulated by two pure tones 
simultaneously to generate a distortion 
product (DP) at the location indicated by 
the light grey marker. The phase of the BM 
velocity at the DP frequency is observed at 
locations xm and xn, corresponding to the 
black and dark grey markers respectively.  
The phase lag of the BM velocity 
component at the DP frequency is expected 
to be either (a) smaller at xn compared to xm 
or (b) greater at xn compared to xm. If f2 is 
increased, and f2/f1 is fixed, then the DP 
source moves closer to xn and the 2f1 − f2 
characteristic place moves towards the 
base. This is would lead to either a (a) 
decreased or (b) increased phase lag at xm 
and xn as f2 increases. 

He et al. conclude that, as their experiment failed to detect a DP backward travelling wave between 

the DP source region and the base of the cochlear model, the 2f1 − f2 DP must primarily propagate 

out of the cochlea fast via fluid compression waves rather than slow backward travelling waves. 

They propose that the fast fluid compression wave results in motion of the stapes which, in turn, 

gives rise to a DP forward travelling wave which propagates from the base to the DP characteristic 

place. Figure 5.18 illustrates the He et al. fast compression wave theory, and compares it to the 

alternative backward travelling wave mechanism. 

The unresolved problem 

Attempts to reconcile the phase measurements of He et al. (figure 5.16) and others (Ren, 2004; de 

Boer et al., 2008) with the predictions of conventional ‘local’ cochlear models (figure 5.17) like 

ours have, so far, been unsuccessful. These models only support BM travelling waves, not fluid 

compression waves, and the velocity of the BM is determined only by the local pressure difference 

across it (de Boer & Nuttal, 2008). De Boer et al. (2008) implemented a similar experiment to that 

of He et al. and made several modifications to their conventional cochlear model in an attempt to 

better simulate the observed phase behaviour.  This included introducing impedance irregularities 

into their baseline model in order to generate both place-fixed and wave-fixed DP travelling waves, 

and investigating the effect of broadening the region over which the CA acts to enhance CA motion.  

They found that introducing impedance irregularities had no significant impact on the phase 

behaviour predicted by the model.  We can confirm that there is also no notable difference in the 

nature of the predicted DP phase behaviour between the baseline and perturbed versions of our 

model. In addition, de Boer et al. (2008) concluded that broadening the CA region did not 
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adequately explain the discrepancy between the model prediction and the experimental outcome, 

because this adaptation was not consistent with the original physiological single tone measurements 

from the guinea pig cochlea on which their model was based.  

We investigated whether reflection of backward travelling waves at the stapes, or errors in phase 

unwrapping of the physiological recordings could explain the absence of a backward travelling 

wave in the results of He et al. We found that maximising the stapes reflection of backward 

travelling waves in our baseline cochlear model did not substantially alter the DP phase behaviour 

simulated by the model.  The unwrapping algorithm, used to ensure that the phases recorded in the 

experiment formed a continuous curve, is sensitive to noise which can obscure the 2π radian jumps 

in phase that need to be detected in order to stitch together the continuous phase curve. Although in 

simulations the phase results are subject to very little noise, making the unwrapping reliable, it is 

not known how reliable the unwrapping is for the noisier experimental results. For this reason we 

sampled the simulated phase results at intervals of approximately 400 Hz, similar to the interval 

used by He et al., and superimposed random fluctuations on the predicted phase to act as noise. The 

amplitude of the noise was gradually increased and we found that the nature of the predicted phase 

behaviour was not influenced by errors in the unwrapping algorithm until the phase noise exceeded 

2± π radians. When these high noise fluctuations are superimposed on the predicted 2f1 − f2 DP 

phase behaviour, the results become erratic and do not lead to a better replication of the He et al. 

results. Therefore, we have found no evidence that the phase behaviour observed by He et al. is 

influenced by errors in the unwrapping algorithm.  

The failure of conventional local cochlear models to replicate the phase behaviour of the 2f1 − f2 DP 

observed experimentally by He et al. and others presents a considerable challenge to our type of 

model. On the other hand, these conventional travelling wave models appear to explain features of 

the 2f1 − f2 DPOAE characteristics which cannot be accounted for by a fluid compression wave 

model or a hybrid model supporting both backward travelling waves and fluid compression waves, 

such as predicting the results of the Allen-Fahey experiment (Shera et al., 2007). De Boer et 

al.(2008) suggest that it may be possible to address this challenge by pursuing a travelling wave 

model with ‘non-local’ micromechanical properties. For example, de Boer & Nuttal (2008) 

successfully replicate the phase behaviour observed by He et al. using a ‘feedforward’ cochlear 

model, in which travelling waves propagate more readily in the forward direction compared to the 

backward direction. However, a side-effect of the feedforward mechanism is that backward 

travelling waves can be strongly attenuated, compromising both the predicted amplitude of the 

DPOAEs and the influence of coherent reflection within the cochlear model (de Boer & Nuttal, 

2008; de Boer et al., 2008). For this reason, the application of cochlear modelling to explain the 

2f1 − f2 DP phase behaviour observed by He et al. and others remains an active area of research.  
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5.3 Conclusions regarding the predicted 2f1 − f2 DPOAE source 

and transmission mechanisms 

In this chapter the source mechanism for the 2f1 − f2 DPOAE within the cochlear model studied, 

and we find results consistent with the theory summarised in sections 1.4.3.  The model predicts 

that there is a distributed source of the 2f1 − f2 wave-fixed component occupying an area which 

includes the f2 characteristic place.  The length of this estimated region increases as the stimulus 

level increases or stimulus frequency ratio decreases towards unity. This wave-fixed source is 

directional relative to a point source, and its tendency to emit forward travelling waves in 

preference to backward travelling waves is greater for increased source lengths. The place-fixed 

component of the 2f1 − f2 DPOAE is found to originate primarily from impedance perturbations 

located in the vicinity of the DP characteristic place within the model. These results serve to verify 

the generation mechanisms of the 2f1 − f2 DP in the cochlear model, and suggest that it could 

provide useful insight into the generation of the 2f2 − f1 DP which is less well understood. 

This chapter also addresses the following research questions posed in section 1.9 concerning the 

2f1 − f2 DPOAE: 

o What forward and backward DP travelling waves are generated within the model in response 

to two tone stimulation?  

o What explanation does our cochlear model, which contains a cochlear amplifier, offer for the 

null result of the Allen & Fahey experiment? 

o Can the model provide insight into the results of Ren and colleagues who are unable to detect 

backward travelling waves on the BM at DP frequencies? 

Consideration of these questions produced the main contributions of this chapter, listed below, 

which correspond to those summarised in section 1.9 (vi-vii). 

• The development of analysis tools for probing the source mechanism for the 2f1 − f2 DPOAE 

within the model.  This includes the use of the decomposition method to estimate the 

predicted forward and backward DP travelling wave components, the results of which provide 

supporting evidence for the directionality of the DP source region (section 5.1.3). 

• An analysis of the explanations cited in the literature for the outcome of the Allen-Fahey 

experiment. The results confirm that the null result observed in this physiological study is 

likely to be a consequence of changes in the directionality of the wave-fixed DP source as the 

stimulus paradigm is varied (section 5.2.1).  

• Verification of the challenge to conventional cochlear models presented by the phase 

measurements of He et al. (2008), in which DPs propagate out of the cochlea via backward 

travelling waves (section 5.2.2) 
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6. Predicted 2f2 − f1 DPOAE characteristics 

Distortion product otoacoustic emissions (DPOAEs) can be classified as ‘upper’ or ‘lower’ side-

band emissions according to their frequency relative to the stimulus tones f1 and f2 (f2>f1). The 

2f1 − f2 DP is an example of a lower side-band emission, and its measured characteristics and 

simulated properties are discussed in chapters 4 and 5. The 2f2 − f1 DPOAE is the largest upper side 

band emission detected in human ears. As upper and lower side-band emissions are thought to arise 

from generation mechanisms at different locations within the cochlea, it could prove insightful to 

investigate the source of the 2f2 − f1 DP within the cochlear model.  

In this chapter we address the research questions posed in section 1.9 which relate to the 2f2 − f1 

DPOAE. The outcome is a summary of the 2f2 − f1 DPOAE characteristics predicted by the model 

compared to physiological results, and a description of the emission source within the cochlear 

model. The generation mechanism for the 2f2 − f1 DP is interesting because the wave-fixed source 

of the upper side band DP is very close to its own characteristic place (figure 1.21b). This differs 

from the 2f1 − f2 DP wave-fixed source region which is spatially separated from its own 

characteristic place (figure 1.21a). However, the close proximity of the 2f2 − f1 characteristic place 

and the wave-fixed source makes it more difficult to interpret simulated results for this emission 
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6.1 The measured and predicted characteristics of the 2f2 − f1 

distortion product 

In this section we summarise the measured characteristics of the 2f2 − f1 DPOAE described in the 

literature, and also demonstrate the strengths and weaknesses of the model with regard to 

predicting these properties. We consider the properties of the wave-fixed and place-fixed 

components of the predicted emission, as well as the behaviour of the total 2f2 − f1 DP. We 

conclude that, although it has some limitations, the model adequately predicts a range of 2f2 − f1 

DPOAE characteristics and is therefore useful for gaining further insight into the mechanisms 

underlying the generation of this emission within the cochlea.  

6.1.1 Detection 

The 2f2 − f1 DPOAE can be observed in up to 90% of human ears (Horn et al., 2008), but this is 

dependent on the stimulus paradigm and this emission is not as prevalent as the 2f1 − f2 DPOAE 

(Moulin et al., 1993; Erminy et al., 1998; Lasky, 1998a, 1998b; Moulin, 2000; Fitzgerald & Prieve, 

2005). In addition, Fitzgerald & Prieve (2005) found that the intra-subject variation in emission 

amplitude was greater for the 2f2 − f1 compared to the 2f1 − f2 DPOAE 

The 2f2 − f1 DPOAE has also been observed in a variety of mammals such as the rabbit (Lonsbury-

Martin et al., 1987) and the gerbil (Brown & Kemp, 1985; Dong & Olsen, 2008). Intracochlear 

measures of the 2f2 − f1 distortion product in the basilar membrane velocity of the chinchilla 

cochlea, and the cochlear fluid pressure of the gerbil have also been obtained (Robles et al., 1997; 

Dong & Olson, 2005; Dong & Olsen, 2008). 

6.1.2 Amplitude 

The absolute amplitude of the 2f2 − f1 DPOAE 

The amplitude of the 2f2 − f1 DPOAE depends on the level, level difference, frequency and 

frequency ratio of the primary tones (Erminy et al., 1998). As an example, figure 6.1a shows the 

average 2f2 − f1 emission amplitude recorded from 108 human ears by Martin et al. (1998). This 

demonstrates that for moderate stimulus levels and an f2/f1 ratio of 1.21, the 2f2 − f1 DPOAE level 

varies between  − 10 and 5 dB SPL across a range of stimulus frequencies. Figure 6.1b shows the 

simulated amplitude of the 2f2 − f1 DPOAE predicted by the perturbed cochlear model.  



6. Predicted 2f2 − f1 DPOAE characteristics 
6.1 The measured and predicted characteristics of the 2f2 − f1 distortion product 

171 

 
Figure 6.1 Amplitude of the 2f2 − f1 DPOAE for a range of DP frequencies 
(a) The physiological measurement of the average DPOAE amplitude in 108 human ears, using f2/f1=1.21 
[from figure 7 of Martin et al. (1998), with permission from ASA]. (b) The predicted amplitude of the 2f2 − f1 
and 2f1 − f2 DPOAEs evoked by stimulus tones f2/f1=1.2. The simulation was performed using a perturbed 
model incorporating random irregularities in the active BM impedance, as described in section 4.2.1. In both 
plots, the amplitudes of the 2f1 − f2 and 2f2 − f1 emissions are denoted by the solid and dotted lines 
respectively. Stimulus levels of L1= L2=75 dB SPL were used. The geometric mean frequency corresponds to 
the square root of f1f2. 

Comparing figure 6.1a and b, establishes that the 2f2 − f1 DPOAE amplitude predicted by the model 

is within ± 5 dB of the amplitude observed in the experimental study at low stimulus frequencies 

( 1 2f f ≤ 1 kHz or f2 < 1.1 kHz). However, the model tends to underestimate the amplitude of the 

2f2 − f1 DPOAE at high stimulus frequencies. For example, when f2 exceeds 4.4 kHz, the predicted 

2f2 − f1 emission level is at least 10 dB smaller than that observed experimentally. The model has a 

similar tendency to underestimate the amplitude of the 2f1 − f2 DPOAE for high stimulus 

frequencies, and the possible reasons for this were discussed in section 4.1.2. 

Intracochlear distortion product measurements 

In contrast to measurements in the ear canal, where the amplitude of the 2f1 − f2 emission exceeds 

that of the 2f2 − f1 DPOAE, intracochlear measures of BM velocity in the chinchilla suggest that the 

2f1 − f2 and 2f2 − f1 DPs have similar magnitude when observed at a location near the characteristic 

places of the primary tones (Robles et al., 1997). For example, figure 6.2 shows the predicted BM 

velocity at the f2 best place in the perturbed cochlear mode, and a Robles et al. (1997) measurement 

from the chinchilla cochlea for comparison. The model is not expected to replicate the absolute 

levels of the DP components observed in the experimental study, due to animal differences in both 

the cochlea and middle ear. However, it is possible to compare the relative amplitudes of the DPs 

between the simulation and the physiological study. Robles et al. observed that the 3rd order DPs 

were approximately equal amplitude and around 20 dB below the level of the primary responses. 

The model simulation is in agreement with this, as the levels of the 3rd order DPs differ by only 2 

dB, and fall approximately 20 dB below the level of the primary responses. 
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 (a) Robles et al. (1997) 

 

(b) Simulation 

 

Figure 6.2 The spectrum of the BM velocity response to two tone stimulation 
(a) The measured BM velocity of the chinchilla cochlea in response to two tone stimulation, observed at the 8 
kHz characteristic place by Robles et al. (1997). [From figure 1b of Robles et al. (1997), with permission 
from Am. Physiol. Soc]. In both cases, the stimuli were presented at L1=L2=70 dB SPL and frequencies 
f1=7.6 kHz and f2=8.4 kHz. (b) The predicted BM velocity evoked by two stimulus tones presented to the ear 
canal of the cochlear model, evaluated for the frequency components 3f2 − 2f1, 2f2 − f1, f2, f1, 2f1 − f2 and 
3f1 − 2f2. The perturbed model incorporates random irregularities as described in section 4.2.1 
 
(a) Moulin (2000) 

 

(b) Simulation 

 
Figure 6.3 The dependence of 2f2 − f1 DPOAE amplitude on f2/f1 ratio 
(a) Variation measured of 2f2 − f1 DPOAE amplitude with stimulus frequency ratio, averaged across 18 
human ears. The stimulus levels were L1=65 and L2=60 dB SPL, f2=3 kHz. [Adapted from Moulin (2000), 
figure 3]. (b) The amplitude of the 2f2 − f1 DPOAE predicted by the model incorporating random 
irregularities as described in section 4.2.1. The stimulus levels were set to L1=L2=50 dB SPL and f2= 3 kHz. 

6.1.3 Influence of stimulus frequency ratio 

General features of the dependence of 2f2 − f1 DPOAE amplitude on f2/f1 ratio 

Figure 6.3 shows the measured and predicted influence of f2/f1 ratio on the 2f2 − f1 DPOAE 

amplitude. The measurement of Moulin (2000) demonstrates that the emission amplitude tends to 

increase as the f2/f1 ratio decreases towards 1. In contrast to the behaviour of the 2f1 − f2 DPOAE, 

there is no substantial decline in the amplitude of the 2f2 − f1 emission as f2/f1 approaches unity in 

the experimental study. This physiological result is consistent with other recordings from humans 
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and chinchilla (Robles et al., 1997; Knight & Kemp, 1999, 2001; Fitzgerald & Prieve, 2005; Horn 

et al., 2008), but the dependence of the 2f2 − f1 DPOAE on stimulus frequency ratio is known to 

vary significantly between individual subjects (Moulin, 2000). The simulation was performed at a 

lower stimulus level compared to the experimental measurement, because section 4.1.6 revealed 

that the model tends to over estimate the optimal f2/f1 ratio at higher stimulus levels for upper side 

band emissions. The predicted amplitude of the 2f2 − f1 DPOAE decreases by about 9 dB as the f2/f1 

ratio increases from 1.05 to 1.3. This is similar behaviour to that observed in the experimental 

study, which shows a decrease in emission amplitude of approximately 12 dB as the f2/f1 ratio 

increases from 1.05 to 1.32. The high intersubject variation in the dependence of 2f2 − f1 DPOAE 

amplitude on f2/f1 ratio is illustrated by the results of Moulin (2000), reproduced in figure 6.4.  In 

this study, the optimal f2/f1 values ranged from ≤1.06 to 1.16. 

In section 4.1.6 the decline in the 2f1 − f2 DPOAE amplitude as the f2/f1 approached unity was 

attributed to the influence of mutual suppression of the primary tones. The absence of this effect on 

the 2f2 − f1 DPOAE in figure 6.3 suggests that the wave-fixed DP sources for the two emissions 

occur at different locations within the cochlea.  

The effect of stimulus level on the influence of the f2/f1 ratio 

Figure 6.5 and figure 6.6 show the predicted and measured dependence of the 2f2 − f1 DPOAE 

amplitude on stimulus frequency ratio for different stimulus levels. The model simulation predicts 

that the optimum f2/f1 ratio for the 2f2 − f1 emission should increase from around 1.01 to 1.1 as the 

stimulus level (L1=L2) increases from 50 to 70 dB SPL.  

 
Figure 6.4 The intersubject variation in the influence of f2/f1 on the 2f2 − f1 DPOAE amplitude 
The plot shows the amplitude of the 2f2 − f1 DPOAE measured in 5 different individuals by Moulin (2000) 
for a range of f2/f1 ratios. The key refers to the different subjects. Measurements were made using L1=65, 
L2=60 dB SPL and f2 = 4 kHz. [From figure 5 of Moulin (2000), with permission from ASA]. 
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It is difficult to determine if this trend is consistent with physiological results, in view of the large 

intersubject variation in the optimal f2/f1 ratio. For example, although the measurements of Knight 

& Kemp (1999) shown in figure 6.6 were only recorded for 4 different f2/f1 ratios (1.05, 1.20, 1.27 

and 1.32), the results suggest that increasing the L1 stimulus level (L1=L2+10dB) from 65 dB SPL 

to 75 dB SPL shifts the optimal stimulus frequency ratio from 1.2 to 1.27. However, such a shift is 

not observed in the Knight & Kemp (1999) results for other stimulus paradigms such as L1=L2 or 

L1=L2 + 5dB. In addition, Fitzgerald & Prieve (2005) comment that they observe an increase in the 

measured optimal f2/f1 ratio as stimulus level increases, although they do not quantify the scale of 

this change. Therefore, the increase in optimal f2/f1 ratio with increasing stimulus level predicted by 

the model for the 2f2 − f1 emission could be consistent with experimental measurements. 

 

 

Figure 6.5 The predicted influence of stimulus level on 
the optimal f2/f1 ratio 
The plot shows 2f2 − f1 DPOAE amplitude as a 
function of f2/f1 ratio for two different stimulus levels, 
using f2= 3 kHz. The model incorporates random 
irregularities as described in section 4.2.1.  
 

 
Figure 6.6. The influence of stimulus level on the 2f1 − f2 and 2f2 − f1 DPOAEs 
The plot shows the average 3rd order DPOAEs recorded from 9 human ears at a range of stimulus levels and 
f2/f1 ratios by Knight & Kemp (1999). The results are averaged across measurements using f2 values between 
1.7 and 2.4 kHz. The average amplitudes of the 2f1 − f2 (dotted line) and 2f2 − f1 (squares) are shown, along 
with the solid lines which represent ±1 standard error from the mean values. [From figure 2 of Knight & 
Kemp (1999), with permission from ASA].  
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Figure 6.7 The predicted influence of 
stimulus frequency on the optimal f2/f1 
ratio 

The plot shows the predicted 2f2 − f1 
DPOAE amplitude, as a function of f2/f1 
ratio for stimulus levels L1=L2=50 dB 
SPL using either f2 = 3 kHz (solid line 
& circles) or f2 = 0.75 kHz (dashed line 
& squares). The perturbed model 
incorporates random irregularities as 
described in section 4.2.1.  
 

The effect of stimulus frequency on the f2/f1 ratio 

Figure 6.7 shows the dependence of the simulated 2f2 − f1 amplitude on f2/f1 ratio for two different 

stimulus frequencies. The model predicts that the optimal f2/f1 ratio for the 2f2 − f1 emission will 

increase from ≤1.01 to 1.2 when the f2 frequency is reduced from 3 to 0.75 kHz. This is in good 

qualitative agreement with the trend observed by Fitzgerald & Prieve (2005) who found that the 

optimal f2/f1 ratio for the 2f2 − f1 DPOAE increases from 1.05 to 1.1 when f2 is decreased from 2 to 

0.7 kHz. However, the scale of the 0.2 increase in the optimal f2/f1 ratio predicted by the model is 

greater than the increases of 0.05 (Fitzgerald & Prieve, 2005) and 0.08 (Moulin, 2000) observed for 

similar stimulus frequency changes in experimental studies. For this reason, the model appears to 

overestimate the influence of stimulus frequency on the optimal f2/f1 ratio compared to 

experimental studies. Fitzgerald & Prieve (2005) suggest that the change in optimal f2/f1 ratio with 

stimulus frequency arises from the sharper tuning of the BM response to higher stimulus 

frequencies which influences the degree of overlap between primary travelling waves. On this basis, 

the tendency of the model to overestimate the influence of stimulus frequency on the optimal f2/f1 

ratio could suggest that the change in sharpness of tuning between the base and apex of the model 

is too great.  This is consistent with the conclusion drawn in section 4.3 regarding the models 

tendency to overestimate the influence of stimulus frequency on the optimal f2/f1 ratio for the 

2f1 − f2 DPOAE. 
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(a) Knight & Kemp (2001) 

 

(b) Model simulation 

 
Figure 6.8 The influence of f2/f1 on the components of the 2f1 − f2 and 2f2 − f1 DPOAEs 
(a) The amplitude of the wave-fixed (thick line) and place-fixed (line thin) for the 2f1 − f2 and 2f2 − f1 
DPOAEs, measured in the human ear canal by Knight & Kemp (2001) using L1=L2=70 dB SPL and DP 
frequencies averaged across 1 to 4 kHz. [From figure 5 of Knight & Kemp (2001), with permission from 
ASA]. (b) The simulated wave-fixed and place-fixed components of the 2f1 − f2 and 2f2 − f1 DPOAEs, using 
f2=3 kHz, and L1=L2=50 dB SPL. 

The wave-fixed and place-fixed components 

Figure 6.8 shows the estimated amplitude of the wave-fixed and place-fixed components of the 

simulated 2f2 − f1 DPOAE across a wide range of stimulus frequency ratios (1.01 to 1.60). The 

experimental measurement made by Knight & Kemp (2001) is also shown for reference. For f2/f1 

values between 1.01 and 1.3, the amplitude of the place-fixed 2f2 − f1 varies by about 10 dB, which 

is comparable to the change of approximately 7 dB in the Knight & Kemp study. However, at 

higher stimulus frequency ratios in excess of 1.3, the amplitude of the place-fixed component falls 

off rapidly in the cochlear model which is not evident in the Knight & Kemp measurement. It is 

difficult to determine if this discrepancy constitutes a significant limitation of the cochlear model, 

as there is little other experimental data available for the components of the 2f2 − f1 emission at 

high stimulus frequency ratios and it is often averaged over several stimulus paradigms (such as 

different level differences or f2 stimulus frequencies). 

6.1.4 Influence of stimulus level difference 

Figure 6.9 shows the dependence of the simulated 2f2 − f1 DPOAE amplitude on the stimulus level 

difference (L1 − L2) predicted by the perturbed model. It suggests that the amplitude of the 

predicted 2f2 − f1 emission amplitude will be maximised for small level differences, between  − 5 

and 5 dB, at moderate stimulus levels (50 to 70 dB SPL). This simulated result is consistent with 

physiological measurements, which demonstrate that the level of the human 2f2 − f1 DPOAE is 

greatest when the level difference is equal to zero (Knight & Kemp, 1999; Fitzgerald & Prieve, 

2005; Horn et al., 2008). This is in contrast to the behaviour of the 2f1 − f2 emission, which is 

enhanced by a stimulus level difference such that L1>L2 (section 4.1.5). 
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Figure 6.9 The predicted dependence of the 2f2 − f1 DPOAE on stimulus level difference 
The simulation was performed using f2/f1=1.2 and L2 equal to either 50 or 70 dB SPL  

 

The optimal stimulus level difference for the 2f1 − f2 DPOAE is attributable to the behaviour of the 

nonlinear function (section 4.1.5) and the same is true of the optimal level difference for the 2f2 − f1 

DPOAE. For example, figure 6.10 shows the levels of the f1 and f2 components of the shear 

displacement at the 2f2 − f1 characteristic place, which serve as the inputs to the nonlinear function. 

The levels of the input to the nonlinear function are labelled A1 and A2 and this location was 

chosen as it corresponds to a site within the 2f2 − f1 DP wave-fixed source region in the cochlear 

model, as shown in section 6.2. The figure illustrates that when the level difference between the 

tones presented in the ear canal (L1 − L2) is 5 dB, which optimises the 2f2 − f1 DPOAE at this L2 

level, then the level difference in the input to the nonlinear function (A1 − A2) is around 0 to 5 dB 

at the DP characteristic place.  

 

 

Figure 6.10 The predicted level of input to the 
nonlinear function at the DP characteristic place 
The plot shows the f1 and f2 inputs to the nonlinear 
function, denoted by A1 and A2, that are evoked at 
the 2f2 − f1 characteristic place in the coupled 
cochlear model by stimulus tones presented in the 
ear canal at levels L1 and L2. The simulation was 
performed by setting L2 equal to 50 dB SPL and 
varying L1 such that the level difference (L1 − L2) 
increased from  − 5 to +20 dB. 
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(a) 

 

(b) 
 

 
Figure 6.11 The level of the 2f2 − f1 DP component output of an isolated nonlinear function 
(a) A contour plot of the 2f2 − f1 DP component output from a single isolated first order Boltzmann function 
stimulated at frequencies f1 and f2 with levels of A1 and A2 respectively. (b) The variation in the DP output as 
A1 −A2 varies for a fixed A2 value of 60 dB. The results are shown for both the 2f2 − f1 (solid line) and 2f1 − f2 
(dotted line) DPs. 

Figure 6.11 shows the simulated amplitude of the 2f2 − f1 DP in the output of a single isolated first 

order Boltzmann function when two tones at frequencies f1 and f2, with levels of A1 and A2 

respectively, are presented at the input. Figure 6.11b demonstrates that the 2f2 − f1 DP component 

of the output is maximised when A1 − A2 is 5 dB, which corresponds to a stimulus level difference 

(L1 − L2) of about 5 dB in the coupled cochlear model. It also shows that the level difference 

(A1 − A2) required to maximise the 2f2 − f1 DP component of the output for an isolated nonlinearity 

is less than the level difference needed to optimise the 2f1 − f2 DP component. This suggests that 

the difference in the optimal level difference for the 2f2 − f1 and 2f1 − f2 DPOAEs observed for the 

coupled model could also arise simply from the properties of the nonlinear function in isolation. 

6.1.5 Growth functions 

The predicted growth of the total 2f2 − f1 DPOAE in a perturbed cochlear model, including both the 

wave-fixed and place-fixed components, is shown in figure 6.12. This demonstrates that the 

simulated place-fixed component dominates the total emission at low stimulus levels, but decreases 

in amplitude at higher levels. The introduction of the place-fixed component to the simulation 

reduces the growth rate from 1.1 dB/dB to 0.3 dB/dB, as a consequence of the contribution from 

the place-fixed component at low stimulus levels. This is in good agreement with the 2f2 − f1 

DPOAE growth rate of around 0.6 − 0.9 dB/dB measured by Horn et al. (2008) using f2/f1 ratios 

between 1.04 and 1.12, given that the growth rate is likely to differ by at least ± 0.4 dB/dB between 

individuals (section 4.1.4). 
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Figure 6.12 The predicted growth of the 2f2 − f1 
DPOAE 
The simulation was performed using f2 = 2 kHz, 
L1=L2, and f2/f1 = 1.10 

 

 

The decline in the amplitude of the 2f2 − f1 place-fixed component at high stimulus levels indicates 

a limitation of the model because it requires that simulations of the 2f2 − f1 emission have to be 

performed at a lower stimulus levels than experimental measures to achieve similar results (e.g. 

fine structure simulations). The same decline was observed in section 4.2.5 for the place-fixed 

component of the 2f1 − f2 emission, but it was not thought indicative of a weakness in the model as 

it has less impact on the simulated fine structure of the lower- compared to the upper- side band 

emission.  In section 4.2.5, the decline of the place-fixed 2f1 − f2 emission at high stimulus levels 

was attributed to suppression of the DP travelling in the vicinity of the DP characteristic place by 

the primary travelling waves. This is also likely to be responsible for the underestimation of the 

place-fixed component of the 2f2 − f1 emission because, if the effect of DP suppression by the 

primary tones is neglected from the model, the amplitude of the place-fixed component increases 

by 37 dB whilst the wave-fixed component changes by less than 2 dB when L1=L2=70 dB SPL.  As 

the suppression of the DP travelling wave by the primary responses has a more substantial 

influence on the upper- rather than the lower- side band emission at high stimulus levels, this 

suggests that there is less spatial separation between the DP characteristic place and the best places 

for the primary tones for the 2f2 − f1 DP compared to the 2f1 − f2 DP.  Overall the predicted growth 

of the upper side band emission indicates that the source of the 2f2 − f1 DP within the cochlear 

model may be more representative of the human ear at low stimulus levels. 
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(a) Simulation 

 

(b) Wilson & Lutman (2006) 

 

 
Figure 6.13 The 2f2 − f1 DPOAE fine structure 
(a) The predicted level and phase of the 2f2 − f1 DPOAE in the ear canal, using L1=L2=50 dB SPL and 
f2/f1=1.2. The perturbed model incorporates irregularities in the active mechanics, as described in section 
4.2.1. (b) Level and phase of the measured 2f2 − f1 DPOAE observed in a human ear canal by Wilson & 
Lutman (2006), using L1=65, L2=60 dB SPL and f2/f1 between 1.05 and 1.32. The wave-fixed and place-fixed 
components were separated using a time-windowing technique. [From figure 2 of Wilson & Lutman (2006), 
with permission of ASA]. In both plots, the open circles correspond to the total DPOAE, and the wave-fixed 
(distortion) and place-fixed (reflection) components are denoted by filled squares and crosses respectively. 

6.1.6 Fine structure 

Figure 6.13 shows the fine structure for the 2f2 − f1 DPOAE predicted by the perturbed cochlear 

model and the experimental measure of Wilson & Lutman (2006) for comparison. The amplitude 

and phase of the wave-fixed and place-fixed components are shown in addition to the total 

emission. In both cases the amplitude of the total predicted 2f2 − f1 DPOAE is seen to fluctuate by 

10 to 20 dB as the DP frequency is swept from 1.4 to 2.2 kHz. The amplitude and phase of the 

wave-fixed component is essentially constant across this frequency range, apart from the decrease 

in the predicted result at 1700 − 1800 Hz which is thought to arise from the properties of the 

middle ear transfer function. In contrast, the place-fixed component of both the simulation and the 

measurement has fluctuating amplitude and phase which varies rapidly as the stimulus frequency 

changes.  

As for the 2f1 − f2 DPOAE fine structure discussed in section 4.2.3, the fine structure illustrated in 

figure 6.13 could arise in two different ways. Firstly, the amplitude fluctuations in the place-fixed 

component could directly give rise to amplitude fluctuations in the total 2f2 − f1 DPOAE. Secondly, 

the difference in phase behaviour could lead to alternating constructive and destructive summation 

between the two components. Both of these mechanisms appear to be evident in the simulated fine 

structure (figure 6.13a). For example, when the emission frequency is close to 1450 or 1900 Hz, the 

peaks and troughs of the predicted fine structure correspond to fluctuations in the place-fixed 
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component. At these frequencies, the simulated fine structure thought to arise predominantly from 

the amplitude fluctuations in the estimated 2f2 − f1 place-fixed component. Only fine structure of 

this origin is evident in the physiological measurement of Wilson & Lutman (2006). However, at 

other emission frequencies peaks and troughs occur in the predicted DPOAE amplitude which do 

not correspond to variations in either the level of either place-fixed or wave-fixed components 

(such as 1550 − 1800 Hz). At these frequencies, fine structure is attributed to the alternating 

constructive and destructive summation of the wave-fixed and place-fixed components. This is 

consistent with the relative phase of the two components predicted by the model. For example, the 

total simulated 2f2 − f1 DPOAE exhibits a peak and a trough at 1625 and 1715 Hz respectively. At 

these locations, the phase difference between the place-fixed and wave-fixed components 

corresponds to 0.99 and 1.52 cycles in that order, which confirms that peaks and troughs can occur 

in the 2f2 − f1 fine structure when the wave-fixed and place-fixed components are either entirely in 

phase or out of phase respectively. Although fine structure of this origin is not evident in the 

Wilson & Lutman (2006) measurement, the analysis of other experimental measures discussed 

below suggests that fine structure of this nature can be recorded in the human ear canal. 

Similarities in fine structure between the 2f2 − f1 and 2f1 − f2 DPOAEs 

Figure 6.14 compares the fine structure of the 2f2 − f1 and 2f1 − f2 DPOAEs. The experimental 

measure of Knight & Kemp (1999) is also shown for reference. The simulated and measured results 

agree that for some but not all, emission frequencies, fine structure peaks and troughs can coincide 

for the 2f2 − f1 and 2f1 − f2 DPOAEs. When they do coincide, the peaks and troughs may not have 

the same amplitude. At DP frequencies which correspond to peaks and troughs in the fine structure 

of both the 2f2 − f1 and 2f1 − f2 emission, analysis of the simulated wave-fixed and place-fixed 

components verifies that the two components are almost either entirely in phase or out of phase 

respectively. For example, a peak is predicted when the DP frequency is equal to 1.25 kHz in the 

simulated fine structure of both emissions. At this DP frequency, the predicted phase difference in 

cycles between the wave-fixed and place-fixed components is 6.05 and 7.06 for the 2f2 − f1 and 

2f1 − f2 emissions respectively, which indicates that the components are essentially in phase at this 

DP frequency. Inspection of other peaks and troughs that occur coincidently in the simulated fine 

structure for both emissions suggests that the fine structure for the two emissions will coincide only 

when the origin of the fine structure is the alternating destructive and constructive summation of 

the wave-fixed and place-fixed component. If instead, the simulated fine structure of one or both of 

the emissions is dominated by amplitude fluctuations in the place-fixed component, the peaks and 

troughs of the predicted fine structure should not occur at the same DP frequencies for both 

DPOAEs. This final suggestion is supported by the measurements of Wilson (2005), who observed 

2f2 − f1 and 2f1 − f2 DPOAE fine structure in cases where the amplitude of the estimated place-fixed 

component dominated that of the wave-fixed component. In these measurements there are very few  
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DP frequencies at which peaks and troughs occur coincidently in the fine structure of both 

emissions. 

The similarity that occurs in the 2f2 − f1 and 2f1 − f2 fine structure has some theoretical implications 

for the origin of the place-fixed component of the 2f2 − f1 DP. For example, it will be shown in 

section 6.2.2 that for a given DP frequency the wave-fixed source will have a phase distribution 

that is essentially the same for both the 2f1 − f2 and 2f2 − f1 DPs. For this reason, coincidences in the 

2f1 − f2 and 2f2 − f1 emission fine structure suggest that the phase lag accumulated by the DP 

travelling wave between the wave-fixed generation site and the reflection site should differ by an 

integer number of cycles between the two emissions.  

(a) 

 
(b) 

 
Figure 6.14 Comparison of the 2f2 − f1 and 2f1 − f2 DPOAE fine structure 
(a) The predicted amplitude of the 2f2 − f1 and 2f1 − f2 DPOAEs in a perturbed model incorporating 
irregularities in the active micromechanics, as described in chapter 4.2.1. Stimulus levels L1=L2= 50 dB SPL 
are used, with f2/f1=1.05. (b) Level of the measured 2f1 − f2 and 2f2 − f1 DPOAE observed in a human ear 
canal by Knight & Kemp (1999). Measurements were made using L1=L2=70 dB SPL and f2/f1=1.05. [From 
figure 6 of Knight & Kemp (1999), with permission from ASA]. 
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The simplest, but not the only, interpretation of this result is that the ratio of fSource/fdp is the same 

for both emissions, where fSource is the best frequency of the wave-fixed source location for the DP 

frequency, fdp. For example, if a 2 kHz DP is measured with a stimulus frequency ratio of 1.05 and 

L1=L2=50 dB SPL, we know from the 2f1 − f2 emission that the fSource/fdp ratio is approximately 

1.105 as it originates from the vicinity of the f2 best place. Assuming that this ratio is also true of 

the 2f2 − f1 DP, we could tentatively suggest that the wave-fixed source of the upper-side band 

emission originates from the vicinity of the 2210 Hz characteristic place when the DP frequency is 

equal to 2 kHz. This would correspond to a distance of 14.3 mm from the stapes which is 0.6 mm 

closer to the base that the 2f2 − f1 characteristic place. Although this deduction is highly speculative, 

it is consistent with the finding in section 6.2.2 which shows that the centre of the distributed 

2f2 − f1 wave-fixed source is located between 14 and 14.5 mm from the base of the cochlear model 

when the DP frequency is 2 kHz and the f2/f1 ratio is set equal to 1.05. 

6.1.7 Strengths and weaknesses of 2f2 − f1 DPOAE predictions 

There are many characteristics of the 2f2 − f1 DPOAE simulated by the model which agree well 

with experimental measures. These predicted properties include the amplitude of the emission for f2 

stimulus frequencies less than around 4.4 kHz (section 6.1.2), the optimal stimulus frequency ratio 

across a range of stimulus levels (section 6.1.3), the optimal stimulus level difference (section 

6.1.4), the rate of growth (section 6.1.5), and the amplitude of the fine structure at low stimulus 

levels (section 6.1.6).  

The model also has some significant weaknesses. As for the 2f1 − f2 DPOAE, the model tends to 

underestimate the amplitude of the 2f2 − f1 emission when the f2 stimulus frequency exceeds 4.4 

kHz (section 6.1.2) and possible explanations for this are discussed in section 4.1.2.The model also 

underestimates the amplitude of the place-fixed 2f2 − f1 DPOAE component, relative to the wave-

fixed component, at high stimulus levels. A consequence of this limitation is that simulations have 

to be performed at lower stimulus levels than those employed in experimental studies in order to 

observe effects such as the 2f2 − f1 DPOAE fine structure (section 6.1.6). Section 4.2.5 explains that 

excessive suppression of the DP travelling wave in the vicinity of the DP characteristic place at 

high stimulus levels may be responsible for this weakness, which could indicate that the peak of the 

primary travelling wave envelope broadens too much as the stimulus increases in the cochlear 

model. 
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6.2 The wave-fixed 2f2 − f1 DPOAE source 

In this section, the origin of the wave-fixed 2f2 − f1 DPOAE within the cochlear model is 

investigated. A summary of the literature regarding the source of the 2f2 − f1 DPOAE is given in 

section 1.4.2. Analysis of group delay, component separation using time-windowing techniques, 

and the results of suppressor tone experiments suggest that this emission has two sources: A wave-

fixed source mechanism, distributed over a region basal of the 2f2 − f1 characteristic place where 

the primary travelling waves overlap, and a place-fixed source located at the 2f2 − f1 characteristic 

place. These two source mechanisms are illustrated for the 2f2 − f1 DPOAE in figure 6.15.  

As the model generally makes valid predictions of the 2f2 − f1 DPOAE characteristics, especially at 

low stimulus levels, we apply the model to provide insight into the generation mechanism 

underlying the wave-fixed component of this emission. We assume that the baseline model 

generates a wave-fixed component which is dominated by a distortion mechanism and that any 

wave-fixed nonlinear reflection that may occur at moderate stimulus levels can be neglected. We 

start by considering the region of the model over which the quasilinear OHC pressure output 

contains a significant DP component. We then evaluate the effective 2f2 − f1 DP source region, 

taking into account the mechanical properties of the cochlear partition which limit the propagation 

of DP travelling waves on the apical side of the DP characteristic place. Finally, in section 6.2.3 we 

use the forward-backward decomposition method to verify the location of the source region for the 

2f2 − f1 DP travelling wave, and find the results to be consistent with those presented in the 

previous sections. 

 

 
 
Figure 6.15 Illustration of the two source components for an upper side band emission 
The grey and black triangles represent travelling waves corresponding to the primary and distortion product 
frequencies respectively. The grey shaded area indicates the likely generation region for the wave-fixed 
component.  
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Figure 6.16 The DP component of the OHC pressure output  
Plots (a and c) show the DP component of the OHC pressure output where the thick solid line and thin dotted 
line correspond to the 2f2 − f1 and 2f1 − f2 DP respectively. The BM velocity response (b and d) where the 
frequency components f2, f1, 2f2 − f1 and 2f1 − f2 are represented by the grey dotted, grey dashed, solid black, 
and thin black dotted lines in that order. In each case f2 = 2 kHz, f2/f1 = 1.25 and the stimulus levels are either 
(a and b) L1=L2=40 dB SPL or (c and d) L1=L2=60 dB SPL. The best places for f2, f1, and the characteristic 
places for 2f2 − f1 and 2f2 − f1 are indicated by the circle, square, cross and triangle markers respectively. 

6.2.1 The 2f2 − f1 OHC pressure source distribution 

Figure 6.16 shows the predicted 2f2 − f1 and 2f1 − f2 DP components of the pressure output of the 

OHCs, and the BM velocity response, for two different stimulus levels. At low stimulus levels (L1 

= L2 = 40 dB SPL) the 2f2 − f1 component of the OHC pressure is greatest at the f2 best place. At 

higher stimulus levels (L1=L2=60 dB SPL) this is still the case, but the f2 best place has shifted 

closer to the 2f2 − f1 characteristic place such that the two locations overlap. The distribution of the 

OHC pressure output differs for the 2f2 − f1 DP compared to the 2f1 − f2 DP. For example, the 

2f2 − f1 component of the OHC pressure output has greater amplitude on the basal side of the f2 best 

place, and smaller amplitude of the apical side of this location, compared to the 2f1 − f2 component. 

There is also a difference in the simulated DP components of the BM velocity response which is 

most apparent for the 60 dB SPL stimuli. The 2f2 − f1 component of the BM velocity exhibits only 

one peak, in the vicinity of the f2 best place, whilst the 2f1 − f2 component shows peaks at both the 

f2 best place and the 2f1 − f2 characteristic place. This is consistent with the pressure response of the 

gerbil cochlea made by Dong & Olsen (2008), who observed a single peak response for the 2f2 − f1 

DP component compared to a double peaked response for the 2f1 − f2 DP component (figure 1.21). 

Two peaks are expected to occur in the 2f1 − f2 DP component of the BM velocity in association 

with the location of the maximum pressure source near the f2 best place and the large amplitude of 

the DP forward travelling at the 2f1 − f2 characteristic place (Kim et al., 1980). The absence of a 
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two peaks in the 2f2 − f1 BM velocity component suggests that the 2f2 − f1 wave-fixed DP source is 

not spatially separated from the 2f2 − f1 DP characteristic place.  

6.2.2 The wave-fixed pressure source distribution 

It is not possible for the DP pressure output of the OHCs at every location within the cochlear 

model to influence the DPOAE in the ear canal. This is particularly relevant for the 2f2 − f1 DP as 

the maximum 2f2 − f1 component of the OHC pressure output arises at a location which is further 

from the base than the DP characteristic place. However, DP pressure sources on the apical side of 

the DP characteristic place should not simply be dismissed because we have seen that there is not a 

discrete change from travelling wave to evanescent wave at the characteristic place in the model 

(section 5.1.1). For this reason, large 2f2 − f1 pressure sources may be able to contribute 

significantly to the emission detected in the ear canal, even if they are located on the apical side of 

the DP characteristic place. In this section we evaluate the effective wave-fixed 2f2 − f1 DPOAE 

source distribution which can influence the level of the emission in the ear canal using the 

technique described in section 5.1.1. 

Source length and location 

The dark grey shaded area in figure 6.17 shows the predicted effective source length (defined in 

5.1.1) for the wave-fixed component of the 2f2 − f1 DPOAE. The figure also illustrates how the 

length and position of this region changes as the stimulus frequency ratio is increased from 1.01 to 

1.4. The light grey area corresponds to the region over which the simulated 2f2 − f1 component of 

the OHC pressure output is within 10 dB of its maximum value. At f2/f1 values close to 1, the dark 

and light grey regions essentially coincide. However, as f2/f1 increases, the effective source regions 

shifts closer to the base than the region of the maximum OHC pressure output.  

 
Figure 6.17 The location and length of the wave-fixed 2f2 − f1 DP source  
The plots show the simulated length of the 2f2 − f1 DPOAE source with varying f2/f1 ratio using L1=L2=50 
dB SPL and 2f2 − f1 = 2 kHz. (a) The solid black lines indicate the boundaries of the source region, and the 
dotted and dashed lines denote the locations at which the maximum BM velocity occurs at frequencies 
2f2 − f1 and f2 respectively. The dark grey shaded area represents the effective source region, whilst the light 
grey region corresponds to the area of maximal OHC pressure output at the DP frequency. (b) The length of 
the dark grey region, shown in (a), for various stimulus frequency ratios. 
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The length of the effective 2f2 − f1 DP source region predicted by the model, changes by less than 

0.5 mm as the f2/f1 ratio increases from 1.01 to 1.4. A comparison between the predicted effective 

wave-fixed DP source region and the distribution of the DP component of the OHC pressure output, 

for a single stimulus frequency ratio, is shown in figure 6.18. 

Figure 6.17a shows that the effective source region for the 2f2 − f1 DP within the cochlear model is 

distributed between the f2 best place and a location just basal of the 2f2 − f1 characteristic place. 

This is consistent with the observation of Martin et al. (1998), who found that the 2f2 − f1 DPOAE 

was most effectively suppressed by a tone that was higher in frequency than f2. As the apical 

boundary of this dominant source area is close to the f2 best place, this means that a significant 

contribution to the simulated 2f2 − f1 wave-fixed DPOAE originates from a region extending up to 

approximately 1.6 mm further from the base than the 2f2 − f1 characteristic place. This can occur 

because there is a finite region beyond the 2f2 − f1 characteristic place over which the travelling 

wave amplitude is decaying and motion is becoming evanescent. It is also possible that evanescent 

wave coupling may allow the DP component of the OHC pressure output on the apical side of the 

2f2 − f1 characteristic place to contribute to the DPOAE observed in the ear canal of the model. 

Figure 6.19 shows the predicted 2f2 − f1 component of the semi-difference pressure evoked by a 

single element of the source distribution described in figure 6.17a. The location of the source 

element is 1.6 mm further from the base than the 2f2 − f1 characteristic place, and so the amplitude 

of the semi-difference pressure in the immediate vicinity of the source element decays 

exponentially with distance from the source. However, between the 2f2 − f1 characteristic place and 

the base of the model, there is a 2f2 − f1 travelling wave with phase behaviour consistent with that 

of backward propagation towards the stapes.  

 

 

Figure 6.18 Comparison of the effective 
wave-fixed source distribution and the OHC 
pressure output for the 2f2 − f1 DP 
In this plot the effective source distribution 
and OHC pressure output are denoted by 
solid and dotted lines respectively. The two 
different distributions are given in dB 
referenced to different pressure levels for 
ease of comparison, as the absolute level of 
the estimated effective source distribution is 
arbitrary and depends on the number of 
elements used to represent the length of the 
cochlear partition (500 in this example). For 
these simulations L1=L2= 70 dB SPL, f2=2 
kHz and f2/f1=1.1. 
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Figure 6.19 The predicted 2f2 − f1 component of 
the semi-difference pressure evoked by a single 
element pressure source  
The pressure source is located at a distance of 
15.7mm from the stapes, on the apical side of the 
DP characteristic place. The amplitude and 
phase of the source was determined by the DP 
component of the OHC pressure output at this 
location, when the model is stimulated by two 
pure tones L1=L2=50 dB SPL, 2f2 − f1=2 kHz 
and f2/f1=1.2. The characteristic place for the 
2f1 − f2 frequency, and the source location, are 
indicated by the square and circular markers 
respectively. The basal boundary condition of 
the model was modified to minimise reflections. 
 
 

 

Figure 6.20 shows the simulated length of the 2f2 − f1 wave-fixed DPOAE source for a variety of 

the stimulus levels (L1=L2), using f2/f1 equal to 1.1. At low stimulus levels, where the model 

predictions most accurately reflect the measured properties of the 2f2 − f1 emission, the effective 

wave-fixed DP source region spans the area between the 2f2 − f1 characteristic place and the f2 best 

place. As stimulus level increases, the effective wave-fixed DP source region broadens out towards 

the base of the model. The model also suggests that the effective wave-fixed source length 

increases from 1 to 4.5 mm as the stimulus level increases from 30 to 80 dB SPL. 

 

 
Figure 6.20 The predicted length and location of the wave-fixed 2f2 − f1 DPOAE source 
The length of the 2f2 − f1 DPOAE source is predicted for various stimulus levels, using f2/f1=1.1 and 2f2 − f1 = 
2 kHz. (a) The solid black lines indicate the boundaries of the source region, and the dotted and dashed lines 
denote the locations at which the maximum BM velocity occurs at frequencies 2f2 − f1 and f2 respectively. 
The dark grey shaded area represented the source region, whilst the light grey shading indicates the 
distribution that the source region would be expected to occupy if the source was restricted by the limitation 
imposed by the propagation region for the 2f2 − f1 frequency. (b) The length of the dark grey zone shown in 
(a) for difference stimulus levels (L1=L2). 
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Figure 6.21 The influence of individual elements within the wave-fixed source distribution 
The plots show the predicted (a) amplitude and (b) phase of the wave-fixed DPOAE component evoked by 
single pressure source elements at position x. At each position, the source element has the amplitude and 
phase described by the distribution of the DP component of the OHC pressure output evoked by two stimulus 
tones at levels L1=L2= 50 dB SPL, f2/f1=1.1 and DP frequency of 2 kHz. Results are shown for both the 
2f2 − f1 (solid lines) and 2f1 − f2 (dotted lines) DPs, and the arrow indicates the characteristic place of the DP 
frequency. 

 

Source directionality & forward travelling waves 

The directionality of the effective wave-fixed 2f2 − f1 DPOAE source region in the model is likely 

to change with source length in view of its phase distribution, illustrated in figure 6.21, for the 

reasons discussed in section 5.1.3. The length of the effective source region extends as the stimulus 

level increases (figure 6.20) and so the source is expected to preferentially enhance forward 

travelling DP waves, with respect to backward travelling DP waves, as the stimulus level increases.  

So far, we have only considered the effective DP source for backward travelling waves which give 

rise to the wave-fixed component of the 2f2 − f1 DPOAE. However, it is also important to consider 

the effective source region for forward DP travelling waves, given that the place-fixed component 

of the 2f2 − f1 DPOAE tends to dominate the wave-fixed component in experimental studies. 

Wilson & Lutman (2006) suggest that the 2f2 − f1 DPOAE could arise predominantly from 2f2 − f1 

forward travelling waves generated between the base and the DP characteristic place, which are 

then reflected at the characteristic place and propagate out of the cochlea. It is possible that wave-

fixed forward travelling waves at the 2f2 − f1 DP frequency could be generated in two different 

areas of the model at low stimulus levels. Firstly the forward travelling waves could originate 

within the same region as the 2f2 − f1 wave-fixed backward travelling waves, and travel only short 

distances between their generation site and the 2f2 − f1 characteristic place where they are reflected. 

Beyond the DP characteristic place the forward travelling waves should gradually decay away and 

become evanescent waves. Secondly, the DP forward travelling waves could be generated by a 

highly directional source with a preference for emitting forward travelling waves, which is 

distributed over an extended region between the base and the 2f2 − f1 characteristic place. This 

source would have to be highly directional or it would have been detected in the previous 

investigation of the wave-fixed source of backward travelling waves (figure 6.17, for example). To 
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achieve this high degree of directionality it would be expected to be distributed over an extensive 

region of the cochlea.  

In section 6.3.1, we discover that the place-fixed component of the 2f2 − f1 DPOAE originates 

primarily from reflection sites in the vicinity of the DP characteristic place in the model. In order to 

determine the source of the forward travelling wave which gives rise to these reflections, we 

manipulate the model so that the 2f2 − f1 DP component of the OHC pressure output is “switched 

off” over a controlled region of the model and monitor the DP component of the BM velocity at the 

2f2 − f1 characteristic place. When this 2f2 − f1 DP source is switched off between the base and a 

location only 0.7 mm closer to the base than the 2f2 − f1 characteristic place, we observe that there 

is no significant change (< 2 dB) in the amplitude of the 2f2 − f1 component of the BM velocity in 

the region apical to the manipulated zone. This suggests that substantial forward travelling waves 

are not generated by an extensively distributed wave-fixed (distortion) mechanism located between 

the base and the characteristic place. Therefore we conclude that the wave-fixed forward travelling 

waves are generated in the immediate vicinity of the 2f2 − f1 characteristic place and are likely to 

travel only a short distance.  

6.2.3 Forward and backward travelling wave decomposition 

Figure 6.22a shows the estimated forward and backward travelling waves, at the 2f2 − f1 frequency, 

evoked by two stimulus tones at levels L1=L2=50 dB SPL. The basal boundary condition of the 

model was set to minimise reflections from the stapes (appendix C.2). The 0p± coefficients of the 

forward and backward travelling waves are shown in figure 6.22b. Although fluctuation in the 

amplitude of just one of the 0p± coefficients is an indicator that one of the travelling waves 

estimated by the decomposition method is dominated by errors associated with numerical 

inaccuracies or the WKB approximation, fluctuation in the amplitude of both coefficients over a 

region of the cochlear model is suggestive of a internal DP pressure operating in that vicinity 

(appendix B.2.4). The vertical dotted lines in figure 6.22 illustrate the boundaries of the source 

region that could explain the variations in the amplitude of both 0p+ and 0p− in the vicinity of the 

2f2 − f1 characteristic place. Between the stapes and the basal boundary of this estimated source 

region, only a backward travelling DP wave is evident. The apical boundary of the estimated DP 

source region is further from the stapes than the 2f2 − f1 characteristic place, and so the amplitude of 

the travelling waves fall off rapidly beyond this point. Within the estimated DP pressure source 

region, the amplitudes of both the predicted forward and backward travelling waves exceed the 

error floor of the decomposition process. The decomposition method suggests that significant 

forward travelling 2f2 − f1 waves will only arise within the DP source region bounded by the 

vertical dotted lines on figure 6.22, which is consistent with the conclusion of section 6.2.2.  
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Figure 6.22 The estimated forward and backward travelling 2f2 − f1 DP waves 
(a) The estimated forward and backward travelling components of the DP frequency (fDP) semi-difference 
pressure for the 2f2 − f1 distortion product. The f2 and f1 components of the simulated semi-difference 

pressure are also shown for reference. (b) The 
0

p
± coefficients of estimated forward and backward travelling 

waves shown in (a). In both cases, L1=L2= 50 dB SPL, f2=2 kHz, f2/f1=1.1 and the basal boundary condition 
was set to minimise reflections from the stapes. The vertical dotted lines indicate the region of the cochlear 

model over which the coefficients 
0

p
± both vary suggesting the presence of an internal pressure source 

distribution. The arrow denotes the 2f2 − f1 characteristic place, which also happens to correspond to the 
location of the f2 best place for this stimulus paradigm. 
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6.3 The place-fixed component of the 2f2 − f1 DPOAE 

We have simulated the place-fixed component of the 2f2 − f1 DPOAE by introducing irregularities 

into the active micromechanics of the cochlear model. These irregularities could give rise to DP 

backward travelling waves by either of two mechanisms: Reflection of DP forward travelling 

waves, or alterations in the DP component of the OHC pressure output due to reflection of the 

primary travelling waves. As the irregularities are at fixed locations, the phase of the reflected 

waves will change as the phase of the incident wave varies with stimulus frequency. This is true of 

reflections in either the primary or DP travelling waves and therefore the phase behaviour of the 

place-fixed 2f2 − f1 observed in section 6.1.6 cannot be used to differentiate between these two 

possible generation mechanisms. In this section we investigate the location and mechanism behind 

the place-fixed source of the 2f2 − f1 DP in the cochlear model. 

6.3.1 The location and mechanism of the place-fixed source 

To identify the location of the dominant mechanism underlying the place-fixed 2f2 − f1 DPOAE 

within the model, we manipulate the model such that a single 10% impedance irregularity is 

introduced into the active micromechanics at varying distances from the stapes. At each location, 

we check the model for stability and examine the amplitude of the place-fixed DPOAE component 

generated by the inclusion of the single impedance irregularity. Figure 6.23 shows the predicted 

amplitude of the place-fixed 2f2 − f1 DPOAE generated by a single impedance irregularity 

positioned at distance x from the base. We also repeat the simulation with a modified quasilinear 

method in which the impedance irregularity is only introduced to the 2f2 − f1 DP component of the 

model response, and the primary responses are evaluated in a baseline model containing no 

impedance irregularity.  

 

 

Figure 6.23 The location of the 2f2 − f1 DPOAE place-fixed source 
The plot shows the predicted amplitude of the place-fixed (reflection) 2f2 − f1 DPOAE generated by a single 
impedance irregularity at position x(m) which enhances the OHC gain by 0.1 relative to a baseline cochlear 
model at that location. Stimulus parameters L1=L2=50 dB SPL, f2=2 kHz and f2/f1=1.3 are used. The solid line 
shows the place-fixed component which arises when the impedance irregularity affects the primary and DP 
travelling waves. The dotted line indicates the place-fixed component which arises when the impedance 
irregularity only affects the DP travelling wave and the primary responses are evaluated for a baseline 
cochlear model. The characteristic place for 2f2 − f1, and the best places for f2 are indicated by the cross, and 
circle markers respectively. 
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Figure 6.23 demonstrates that when the irregularities are only introduced for the DP component of 

the model response, the predominant source of the place-fixed 2f2 − f1 DPOAE is located at the 

2f2 − f1 characteristic place. It also shows that when the irregularity positioned at the DP 

characteristic place is applied to the primary responses, as well as the 2f2 − f1 DP response, the 

amplitude of the place-fixed component increases by up to 5 dB. In addition, it is possible for 

irregularities positioned at the f2 and f1 best places to generate low level place-fixed 2f2 − f1 DPOAE 

components but these are at least 10 dB smaller than the maximum place-fixed emission 

component which originates from the 2f2 − f1 characteristic place for this stimulus frequency ratio.  

Overall we conclude that place-fixed mechanism for the 2f2 − f1 DP involves reflection of both the 

primary and the 2f2 − f1 travelling waves in the model. The location of this place-fixed source is 

distributed but it predominantly originates from the 2f2 − f1 characteristic place at high f2/f1 ratios.  

6.3.2 The place-fixed component and 2f2 − f1 fine structure 

In section 6.1.6 we observed the predicted 2f2 − f1 DPOAE fine structure simulated in the perturbed 

model. We discussed the origin of the fine structure and concluded that, depending on the 

frequency, it could arise either directly from amplitude fluctuations in the place-fixed component or 

as a consequence of alternative constructive and destructive summation between the wave-fixed 

and place-fixed components. However, section 6.3.1 revealed that there are two contributions to the 

place-fixed component of the 2f2 − f1 DPOAE predicted by the model. Which of these is most 

important to the simulation of the 2f2 − f1 emission fine structure? 

We assess this by manipulating the quasilinear method so that the fine structure can be simulated in 

a version of the perturbed model in which the impedance irregularities only influence the DP, not 

the primary, travelling waves. The results are then compared with those obtained using a fully 

perturbed model in which the primary travelling waves, in addition to the DP travelling waves, are 

influenced by the impedance irregularities. The outcome is shown in figure 6.24. This demonstrates 

that neglecting reflections of the primary travelling waves reduces the amplitude of the place-fixed 

DP component, and therefore it also reduces the amplitude of the total 2f2 − f1 DPOAE. Figure 6.24 

shows that the residual place-fixed component, arising solely from reflections of the DP travelling 

wave, exhibits relatively slow and small amplitude fluctuations as the emission frequency changes, 

relative to the behaviour of the total 2f2 − f1 emission. Therefore substantial amplitude fluctuations 

in the simulated place-fixed component are associated with reflection of the primary travelling 

waves, not the DP travelling wave. For example, the trough in the amplitude of the place-fixed 

component which occurs when 2f2 − f1 is approximately 1850 − 1900 Hz is associated with 

reflection of the primary travelling waves, as it is not present in a model in which these reflections 

are neglected. For this reason, in cases where the fine structure coincides with amplitude 
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fluctuations in the place-fixed component, reflection of the primary travelling waves appears to be 

predominantly responsible for the fine structure. However, at most of the 2f2 − f1 DP frequencies 

shown in figure 6.24 the fine structure of the total emission does not coincide with amplitude 

fluctuations in the place-fixed component, and so the predicted fine structure is attributed to 

interference between the place-fixed and wave-fixed components. In this case, the fine structure is 

not disrupted when reflection of the primary travelling waves is neglected from the model. 

Although the amplitude of the predicted total DPOAE reduces in the modified model, the fine-

structure retains the same peak-to-trough amplitude. We also observe that the frequencies at which 

the peaks and troughs in the predicted 2f2 − f1 fine structure occur shift to lower frequencies by 15 

to 30 Hz when the reflection of primary travelling waves is removed from the model. This 

frequency shift is attributed to a change in the phase behaviour of the simulated place-fixed DP 

response when the reflection of the primary travelling waves is neglected. For example, figure 6.24 

shows that if the place-fixed component originates purely from reflection of the DP travelling wave, 

then the phase lag of this component increases uniformly as the DP frequency increases. However, 

if the place-fixed component is made up of contributions from mechanisms involving reflections of 

both the primary travelling waves and the DP travelling wave, then the phase lag of the estimated 

place-fixed component increases rapidly, but not uniformly, as the DP frequency increases.  

 
 
Figure 6.24 The influence of the place-fixed component on the 2f2 − f1 DPOAE fine structure 
The plot shows the wave-fixed, place-fixed and total predicted 2f2 − f1 DPOAE evoked by stimulus tones 
L1=L2 = 50 dB SPL and f2/f1=1.2. These components were evaluated using a fully perturbed model. In 
addition, the model was modified so that the impedance irregularities only influenced the DP travelling wave, 
and this manipulated model was used to estimate the modified total DPOAE and the modified place-fixed 
component.  
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Overall, figure 6.24 suggests that when the predicted DPOAE fine structure predominantly arises 

from interference between the wave-fixed and place-fixed components, then the reflection of DP 

travelling waves is sufficient for this. Fine structure of this type, originating from interference, can 

be simulated without significant reflections of the primary travelling waves contributing to the 

place-fixed component. In contrast, the contribution of primary travelling wave reflection to the 

place-fixed component of the DPOAE is important in simulating fine structure for stimulus 

paradigms where the amplitude of the place-fixed component dominates that of the wave-fixed 

component, and fine structure of the DPOAE coincides with amplitude fluctuations of the place-

fixed component.  
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6.4 Conclusions regarding the predicted 2f2 − f1 DPOAE 

This chapter provides a response to the following research questions posed in section 1.9 

concerning the 2f2 − f1 upper side band emission: 

o What are the strengths and weaknesses of the model regarding 2f2 − f1 DPOAE prediction? 

o What explanation does the model provide for the dependence of the 2f2 − f1 DPOAE 

amplitudes on the stimulus parameters?  

o What is the origin of 2f2 − f1 DPOAE fine structure in our model? 

o What is the source mechanism for the 2f2 − f1 DPOAE suggested our model? Can these upper 

sideband emissions be simulated by a cochlear model that does not incorporate fluid 

compression waves? 

The most significant outcomes of this chapter arising from consideration of these research 

questions are listed below. The main contribution is the discussion of the predicted source 

mechanism for the 2f2 − f1 DPOAE in sections 6.2 and 6.3, as listed in section 1.9(viii).     

• Confirmation that the properties of the 2f2 − f1 DPOAE can be simulated in a model in which 

DPs propagate out of the cochlea via backward travelling waves. From section 6.1 we 

conclude that the model makes appropriate predictions for a broad range of 2f2 − f1 emission 

properties, especially at low stimulus levels, and that it is valid to extend the application of the 

model to investigate source mechanisms for this emission. Some of the limitations of the 

model were the same as those observed for the 2f2 − f1 DPOAE described in chapter 4, and 

can be used to suggest improvements that could be made in future development of the model 

discussed in chapter 7.   

• Plots of the location of the dominant source region for the wave-fixed component of the 

2f2 − f1 DPOAE within the model, which suggest that the source is distributed over the region 

between the DP characteristic place and the f2 best place for most stimulus paradigms.  

• Description of the location of the dominant place-fixed 2f2 − f1 DPOAE component within the 

model and the different mechanisms by which travelling wave reflection can impact the 

2f2 − f1 DPOAE detected in the ear canal. 
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7. Conclusions and suggestions for future work 

This chapter summarises the strengths and weaknesses of the model and the conclusions that can be 

drawn from the simulations. The most important contributions of the thesis, may be summarised as 

follows: 

(i) Reformulation of the Kanis & de Boer (1993) quasilinear model of the cochlea to ensure 

computational convergence of the iterative process and verify stability of the model. The 

solution is also decomposed into forward and backward travelling wave components to 

facilitate interpretation of the results.  

(ii) The fine tuning of the micromechanical parameters in the cochlear model is extended to 

improve the agreement between experimental responses of the cochlea to single and two tone 

stimuli and those predicted by the model. The effect of the position of the nonlinearity within 

the micromechanical feedback loop has also been clarified (How et al., 2010). 

(iii) A comprehensive comparison of experimental results and the simulated properties of the 

2f1 − f2 and 2f2 − f1 DPOAEs predicted by the baseline and perturbed model. This allows many 

of the DPOAE characteristics to be explained but also determines which features of these 

emissions cannot be understood in such a simple model. This review also serves to establish 

which characteristics of the emissions are most sensitive to flaws in the tuning of the cochlear 

micromechanical model and could therefore be useful in tuning the parameters further. 

(iv) Confirmation of the origin of the optimal stimulus level difference characteristic exhibited by 

both 2f1 − f2 and 2f2 − f1 using a coupled cochlear model. 

(v) The identification and explanation of predicted notches in the wave-fixed component of the 

2f1 − f2 DPOAE growth function in the cochlear model. 

(vi) Clarification of the limitations of the Allen-Fahey experiment. 

(vii) Development of tools for assessing the directionality of wave-fixed DP sources within the 

cochlear model. 

(viii) Suggestions regarding the source mechanism for the 2f2 − f1 DPOAE. 

The work also suggests some future research directions, which are outlined in section 7.3. 
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7.1 Strengths of the model 

The strength of this study lies primarily in the simplicity of the model and the breadth of its 

application. The coupled model, incorporating a nonlinearity and micromechanical impedance 

perturbations, has been applied to predict a broad range of responses to single- and two- tone 

stimulation. The results include predicted effects such as self-suppression of the fundamental 

response and the harmonic responses evoked by single tone stimuli as well as mutual suppression 

and DPOAEs arising from two tone stimulation.  

7.1.1 The properties of the quasilinear model 

The model is based on the Kanis & de Boer (1993) simulation of the human cochlea, although the 

micromechanical parameters have been tuned so that the response better replicates the sharpness of 

tuning and CA gain exhibited by the mammalian cochlea in response to single tone stimulation 

across a range of frequencies. We also developed a state space formulation of the model, based on 

that devised by Elliott et al. (2007), which required construction of the state space matrix equations 

using the system transfer function rather than the equations of motion as these were not explicit for 

the Kanis & de Boer cochlear model. The application of the state space formulation provided a 

method of establishing the stability of the model, which is a prerequisite for the quasilinear method 

to be valid. Kanis & de Boer devised the quasilinear iterative approach for estimating the response 

of the model in the frequency domain. We found that this approach was very time efficient, 

especially when we modified the iterative process to improve the reliability of its convergence. The 

quasilinear responses of the model were compared to state space time domain simulations, and we 

found no evidence of significant discrepancies between the two approaches. Therefore the 

considerable time saving offered by the quasilinear approach, over a time domain approach such as 

the state space time domain method, does not appear to compromise the validity of the estimated 

response. The further advantage of the frequency domain approach is that it allows the model to be 

manipulated to gain insight into the mechanisms underlying DP generation. For example, it was 

possible to apply the impedance irregularities to only the DP travelling wave rather than the DP and 

the primary travelling waves simultaneously.  

Simulations were performed using both the baseline model and a perturbed model, in which 

random irregularities were imposed on the active impedance of the model. This allowed it to be 

used for predicting reflection of forward travelling waves within the cochlear model and the place-

fixed component of DPOAEs. Such impedance perturbations have been applied in other cochlear 

models, but these models have either been limited in other ways, such as neglecting the effect of 

suppression of the primary tones (Talmadge et al., 1998), or they have not yet been applied to the 

simulation of DPOAEs (Ku, 2008). 
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In order to investigate the origin of DPs within the cochlear model we also developed some 

analysis tools, particularly the method for decomposing the travelling wave describing the semi-

difference pressure into forward and backward travelling components. The novel aspects of this 

particular tool include its application to decompose the travelling wave solution, and the 

identification of cases where the method is not accurate. This decomposition method formed part of 

a battery of investigatory strategies which were applied to indicate the directionality of a wave-

fixed DP source. The other strategies included evaluation of changes in source length as the 

stimulus parameters varied and the detection of constructive or destructive summation between 

neighbouring elements within the wave-fixed source distribution.  

7.1.2 The predicted responses to single tone stimulation 

The micromechanical parameters of the cochlear model were tuned to improve the agreement 

between the predicted responses to single tone stimulation, and experimental observations from the 

mammalian cochlea. In addition the parameters of the nonlinear function were selected to achieve 

appropriate levels of 2nd and 3rd order harmonics, relative to the fundamental component, in 

response to a single tone stimulus. The amplitude of the first order Boltzmann function was set to 

increase with distance from the base of the model, so that the saturation threshold of the 

fundamental response to single tone stimulation occurs at 30 dB SPL for a frequencies between 0.5 

and 6 kHz. The resulting active model has a place-frequency map consistent with that of 

Greenwood (1990) throughout most of its length. The model also exhibits nonlinear growth in the 

fundamental component of 0.3 − 0.4 dB/dB between stimulus levels of 40 and 70 dB SPL which is 

in good agreement with the growth rates observed over a similar stimulus range in experimental 

studies which tend to be in the range of 0.12 − 0.5 dB/dB (Robles & Ruggero, 2001). In addition 

the predicted amplitude of the CP displacement at the characteristic place (such as 0.1 to 1 nm for a 

50 dB SPL stimulus) is within the range of physiological measurements in mammalian cochleae 

(e.g. 0.05 to 10 nm) for the same stimulus level (Robles & Ruggero, 2001).  

7.1.3 The predicted responses to two tone stimulation 

The model has been used to simulate a broad range of 2f1 − f2 and 2f2 − f1 DPOAE properties which 

provides a useful basis on which to judge the validity of the model and any explanations which are 

drawn from it.  

The predicted amplitude of the 2f1 − f2 and 2f2 − f1 DPOAEs agrees well with experimental 

measures provided that f2 is below 4 kHz, and the relative amplitude of the two DPs seems to be 

appropriate across a broader stimulus frequency range. The model also replicates well the growth 

rate, optimal stimulus level difference, and fine structure of both DPOAEs. In addition, it estimates 
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appropriate optimal stimulus frequency ratios at low stimulus levels. In view of these successes, the 

model has provided useful insight into the origin of the optimal stimulus parameters (such as level 

difference and frequency ratio). It has also improved our understanding of the null result seen by 

Allen and Fahey in their attempt to use the 2f1 − f2 DPOAE to estimate the gain of the cochlear 

amplifier. The model also makes some predictions regarding the source mechanism and location 

for the 2f2 − f1 DPOAE, although these are difficult to verify against experimental evidence. 
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7.2 Limitations of the model 

This section provides a summary of the weaknesses of the model with regard to simulating the 

cochlear response to single and two tone stimuli. It should be noted that despite all of the 

limitations listed below, the model predicts a variety of cochlear responses to single and two tone 

stimulation that show good agreement with experimental measurements. A cochlear model will 

always be a simplified version of a complex system, and so the model should not be disregarded on 

the basis of these weaknesses. Rather, the limitations indicate areas in which the model could be 

improved or developed. 

7.2.1 The properties of the quasilinear model 

The micromechanical model used was based on that of Kanis & de Boer (1993) and represents an 

empirical fit to the expected cochlear partition impedance, rather than a direct model of the 

mechanics of the organ of Corti. This may be the cause of some of the difficulties in tuning the 

model. In addition to this, our model incorporates the “long-wave” approximation, which assumes 

that the wavelength of the travelling wave is greater than the height of the model. This 

approximation is not valid near the peak of the travelling wave envelope, close to the characteristic 

place of the stimulus frequency, and therefore it may be possible to improve the model by 

increasing the dimensions. It is also worth noting that our model neglects any structural 

longitudinal coupling along the cochlear partition, as longitudinal coupling is assumed to occur 

entirely through the incompressible cochlear fluids. This is a controversial assumption and one that 

could be addressed in future models. We also assume that DPs propagate out of the cochlea via 

backward travelling waves and so fluid compression waves are neglected. Although this has been 

useful for investigating whether the travelling wave mechanism of reverse propagation of DPs out 

of the cochlea is sufficient for replicating the behaviour of DPOAEs, it may prove to be a 

significant limitation of the model in view of recent experimental evidence such as the He et al. 

(2008) experiment described in section 5.2.2.  

The quasilinear approach, which assumes that the primary responses are unaffected by the presence 

of distortion in the cochlear model, may not be valid for all stimulus paradigms. For example, 

Kanis & de Boer (1996) find that the quasilinear estimate of the 2f1 − f2 DP near the base of their 

cochlear model exceeds the time domain estimate by 10 dB when the stimulus frequency ratio is 

close to unity (e.g. f2/f1=1.04). Therefore more extensive comparison between the quasilinear 

frequency domain predictions of the model and those of a time domain approach such as the state 

space method is desirable.  



7. Conclusions and suggestions for future work 
7.2 Limitations of the model 

202 

7.2.2 The predicted responses to single tone stimulation 

The amplitude of the first order Boltzmann function was set so that the fundamental response to 

single tone stimulation has a saturation threshold of 30 dB SPL for stimulus frequencies between 

0.5 and 6 kHz. It was not possible to extend this to higher frequencies, as this resulted in adverse 

effects such as the saturation in the basal region of travelling waves evoked by low frequency 

stimuli. This approach seemed sensible, on the basis that saturation thresholds for TEOAEs and 

DPOAEs vary by less than 10 dB across a range of stimulus frequencies (section 3.5). However, 

other approaches may be more appropriate. For example, it would be possible to set the Boltzmann 

function amplitude such that saturation commences at some defined CP displacement amplitude.  

The active micromechanical parameters of the cochlear model were also tuned so that the gain of 

the CA reduced from 37 dB to 20 dB from the basal to the apical end of the model. However, this 

gain variation is less than that observed in studies of laboratory animals such as the chinchilla 

where the gain reduces from 48 dB to 15 dB for high- and low- frequency stimuli respectively. It 

was not possible to further modify the gain variation in our model without compromising stability 

of the basal region of the cochlea or underestimating the amplitude of low frequency DPOAEs. In 

addition the micromechanical parameters were adjusted so that the Q10dB of the cochlear frequency 

response to low stimulus levels decreased from 11 to 3 between the characteristic places for 10 and 

0.3 kHz respectively. This compares well to the physiological data from mammalian cochleae in 

which the Q10dB values decreases from 8 to 1 between the characteristic places corresponding to 10 

and 0.2 kHz. However, there is some evidence from the DPOAE studies that the tuning of the 

model may be too broad at high stimulus levels and therefore further comparison between the 

tuning of the model and higher level single tone stimuli could be fruitful.  

7.2.3 The predicted responses to two tone stimulation 

Although the amplitude of the 2f1 − f2 and 2f2 − f1 DPOAEs are in good agreement with 

experimental measures when f2 is below 4 kHz, the amplitudes of both emissions are 

underestimated by the model at higher stimulus frequencies. It is unclear where this weakness 

originates within the model, but it is likely to be associated with insufficiencies in the amplitude of 

the BM response to high frequency stimulation, or some aspect of the nonlinear function in the 

basal region of the model such as the amplitude which influences the saturation threshold of the 

BM response. 

There are some discrepancies between the DPOAE properties predicted by the model, and those 

observed in physiological studies, which may indicate that the frequency response of the model at 

high stimulus levels is too broadly tuned. These discrepancies are evident in the dependence of the 
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2f1 − f2 and 2f2 − f1 DPOAEs on stimulus frequency ratio at moderate and high stimulus levels, but 

this limitation of the model could also be responsible for the fall off in the level of the place-fixed 

2f1 − f2 DPOAE place-fixed component at low stimulus frequency ratios, and in the decline in the 

amplitude of the place-fixed 2f2 − f1 DPOAE component relative to the wave-fixed component at 

high stimulus levels.  
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7.3 The assumed micromechanical model 

The model used for predicting human DPOAEs in chapters 4, 5 and 6 consists of a first order 

Boltzmann function positioned before the filter representing the dynamics of the OHC within the 

micromechanical feedback loop.  The input to the nonlinear function is determined by the 

difference in shear displacement between the tectorial membrane and the organ of Corti. In 

addition, the micromechanical parameters were selected so that that the gain of cochlear amplifier 

and sharpness of the BM tuning reduced between the base and the apex of the model.  The reasons 

for these choices are discussed in chapter 3, but in this section we consider whether any of these 

assumptions could influence the conclusions that have been drawn from the model predictions. 

7.3.1 The nonlinear function 

The nonlinearity associated with the OHC mechanoelectrical transduction process is thought to be 

primarily responsible for the nonlinear behaviour of the cochlea (Ashmore, 2008).  This 

nonlinearity is most accurately described by either a 3rd order polynomial function (Chertoff et al.., 

1996) or a second order Boltzmann function (Bian et al.., 2002). However it is common to use a 

more basic sigmoidal nonlinear function, such as the first order Boltzmann function, when 

constructing a cochlear model to simulate DPOAE generation in the interest of simplicity (Kanis & 

de Boer, 1997; Vetesnik et al., 2006; Liu & Neely, 2010).  In this section we consider whether the 

conclusions drawn from the model would have been different if a more physiological nonlinear 

function, such as a second order Boltzmann function, had been employed instead of the first order 

Boltzmann function. 

Several properties of the model are sensitive to the choice of the nonlinear function: The relative 

amplitude of different order DPs, the relative amplitude of the two third order DPs, the shape of 

contour lines showing the dependence of the DP amplitude on the input level for an isolated 

nonlinear function, the length of the wave-fixed DP source region, the phase distribution of the 

wave-fixed distortion source, the growth of the DPOAE with stimulus level, and the influence of 

stimulus level on both the optimal L1 − L2 difference and the optimal f2/f1 ratio.  However, few of 

these sensitivities are thought to impact the conclusions drawn in this thesis.  For example, none of 

our conclusions are based on the value of the relative amplitude of the various DP frequency 

components.  In addition, mutual suppression of the primary responses if not unique to the first 

order Boltzmann nonlinearity and this suppression is expected to increase with either increasing 

stimulus level, or decreasing f2/f1 ratio, no matter which nonlinear function used in the 

micromechanical feedback.  In association with this, although the estimated length of the wave-

fixed DP source region is likely to depend on the choice of the nonlinear function, this length 

should increase with decreasing f2/f1 irrespective of the form of the nonlinearity.  For these reasons 
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the conclusions regarding the origin of the optimal L1 − L2 difference, optimal f2/f1 ratio and the 

limitations of the Allen & Fahey experiment are not thought to be dependent on the choice of the 

nonlinear function.   

It is worth noting that as the form of the nonlinearity influences the dependence of DPOAE 

amplitude on stimulus level, the shape of the contour lines shown in figures 4.3, 4.11 and 6.11 are 

contingent upon the choice of the nonlinear function. Despite the fact that these plots were 

simulated using a first order Boltzmann function, the predictions of the coupled model are in 

reasonably good agreement with experimental measures (figure 4.3) and therefore unlikely to have 

been substantially adversely affected by the choice of the nonlinear function.  However, the 

dependence of the contour plots on the form of the nonlinearity does suggest that the notches 

observed in the wave-fixed DP growth function may be dependent on the form of the nonlinearity.  

For this reason the simulated notches should not be used to infer the exact depth of notch that could 

be observed from a human ear, or the specific stimulus paradigm at which it may be observed. 

Finally, it has already been suggested that the tendency of the model to overestimate the 

dependence of the optimal f2/f1 ratio on stimulus level may be associated with the use of the first 

order Boltzmann function (sections 4.1.7 and 6.1.7).  This weakness indicates that the model may 

saturate too rapidly as the stimulus level increases and implies that the model may be improved by 

use of an alternative nonlinear function. 

Sections 4.1.7 and 6.1.7 demonstrate that the cochlear model makes appropriate predictions for 

many properties of human DPOAEs, which illustrates the usefulness of the first order Boltzmann 

function in the model despite its simplicity. Overall there is no evidence to suggest that the 

conclusions of the thesis can not be extended qualitatively to cochlear models incorporating a 

physiological nonlinearity, such as a second order Boltzmann function, in the micromechanical 

feedback loop or to the human cochlea itself.  

7.3.2 Other aspects of the micromechanical feedback loop 

In the model, nonlinear function was positioned before the filter representing the dynamics of the 

OHC within the micromechanical feedback loop and the input to the nonlinear function was 

determined by the difference in shear displacement between the tectorial membrane and the organ 

of Corti. These choices were made for a variety of reasons including anatomical considerations and 

physiological OHCs measurements (section 3.5.1). It is unlikely that the chosen position of the 

nonlinear function within the micromechanical feedback loop should have a considerable impact on 

the conclusions drawn from the model. This because, although the position of the nonlinear 

function within the micromechanical feedback loop can have a substantial influence on the 

amplitude of harmonic distortion within the cochlear model, this has essentially been compensated 
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for in the selection of the nonlinear function parameters (table 3.1). Similarly the use of the shear 

displacement between the tectorial membrane and organ of Corti to determine the input to the 

nonlinear function is not thought to significantly influence the conclusions. The predicted 

amplitude of the both the 2f1 − f2 and 2f2 − f1 DPs are not sensitive to the vertical or shear nature of 

this input (section 3.3) and an alternative input would be difficult to justify anatomically. 

7.3.3 The tuning of the micromechanical parameters 

The micromechanical parameters used in the model are based on those proposed by Kanis & de 

Boer (1993) which allow the model to replicate several aspects of the response of the human 

cochlea to single tone stimulation (section 3.4). These parameters were modified so that the 

response of the model was more consistent with physiological measurements across a broader 

range of stimulus frequencies (section 3.4.2). The model is profoundly influenced by the tuning of 

the micromechanical parameters, which could affect all aspects of the predicted response from the 

place-frequency map of the fully active model, to the sourcing and propagation of the DPs.  For 

this reason, sections 7.2 and 7.4 discuss some changes to the micromechanical parameters which 

could be used in future development of the model.  However, we do not expect the conclusions of 

the thesis to be dependent on the choice of micromechanical parameters so long as they have been 

selected to appropriately simulate the response of the human cochlea to single- and two- tone 

stimulation at a variety of intensity levels and frequencies.  
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7.4 Suggestions for future work 

The strengths and weaknesses observed in the model, and the resulting predictions regarding the 

properties of DPOAEs, suggest some directions for future work which are discussed in this section.  

7.4.1 Development of the model 

The micromechanical parameters of any cochlear model are subject to review in the light of 

discrepancies that arise between simulated and experimental data. Therefore it may be possible to 

adjust the parameters further to address some of the observed limitations. For example, the 

sharpness of tuning of the BM response, and the parameters of the nonlinear function, were 

selected for the model to ensure that the simulated response to single tone stimulation produces 

responses that were consistent with invasive measures from within animal cochleae. However, in 

future it may be more appropriate to choose micromechanical parameters for a cochlear model 

which attempt to compromise between optimising accuracy of both single tone and two tone 

simulations. We would recommend that the predicted behaviour of the optimum f2/f1 ratio for the 

2f1 − f2 DP be used when determining the micromechanical parameters for a cochlear model on the 

basis of the response to two stimulus tones, as these simulations are very sensitive to both the 

sharpness of tuning the BM response and the rate at which the nonlinear function becomes 

saturated with increasing stimulus level.  

We have used a local coupled cochlear model, in which the velocity of the BM is determined only 

by the local pressure difference across it, however there could be benefits in using an alternative 

‘feedforward’ model in which forward travelling waves are amplified and backward travelling 

waves attenuated (de Boer et al., 2008). A feedforward mechanism is suggested by the oblique 

orientation of OHCs in the organ of Corti (Geisler & Sang, 1995), and has been used in cochlear 

modelling by de Boer & Nuttal (2008) to simulate the DP phase behaviour observed by He et al. 

(2008) which cannot be replicated by a local cochlear model. However, a side-effect of the 

feedforward mechanism is that backward travelling waves can be strongly attenuated and this can 

compromise both the predicted amplitude of the DPOAEs and the influence of coherent reflection 

within the cochlear model (de Boer & Nuttal, 2008; de Boer et al., 2008). For this reason, 

considerable work would be required to investigate the usefulness of cochlear models which 

incorporate a feedforward mechanism.  

Our model is based on that of Kanis & de Boer (1993), which was derived from the earlier model 

of Neely & Kim (1986). The earlier model was linear, but was amongst the first to incorporate a 

locally active region on the basal side of the travelling wave peak. Models of this type represent an 

empirical fit to the expected cochlear partition impedance rather than directly epitomizing the 
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mechanics of the organ of Corti. Our model has inherited some of the limitations of this original 

model in addition to its many attributes. For example, a common criticism of the Neely & Kim 

model is that the OHCs have nothing to react off. For example, Fukazawa (1997) comments that in 

a model of this type the force of the OHCs should not able to change the movement of the cochlear 

partition, because the force is an ‘internal’ one. Another limitation raised by Ku (2008) is that 

models of the Neely & Kim variety achieve the desired half octave shift in the characteristic 

frequency between the passive and active response through a change in the micromechanical tuning 

by altering the stiffness, but that this shift is more likely to occur as a direct consequence of the 

amplification. In addition, the model reduces the complex behaviour of the OHCs to that of a 

simplistic micromechanical feedback loop consisting of two linear filters and a single nonlinear 

function. This is unlikely to do sufficient justice to the many processes associated with these cells 

such as hair bundle motility (Martin & Hudspeth, 1999; Jia & He, 2005), resonance differences 

between the tectorial membrane (TM) and stereocilia (Kanis & de Boer, 1993), frequency-

dependent phase shifts between the OHC pressure output and the radial displacement of the BM 

and TM (Neely & Kim, 1986) as well as processes within the OHC (Santos-Sacchi, 1989). In 

addition, there are multiple nonlinearities within the physiological OHC feedback loop, as both the 

mechanoelectrical and electromechanical transduction processes exhibit nonlinear behaviour 

(Dallos, 1985; Kros et al., 1992; Kakehata & Santos-Sacchi, 1996), which are reduced to a single 

nonlinear function in the model. In order to address these limitations and criticisms in future 

cochlear modelling work, it may be necessary to take a more direct approach to modelling the 

mechanics of the organ of Corti rather than developing an empirical fit to the expected impedance 

of cochlear partition. 

7.4.2 Simulations 

So far, the application of the model has been limited to the simulation of experiments in which only 

two stimulus tones are presented to the ear canal of the model. However, interest has been growing 

in the use of DPOAE suppression techniques to estimate cochlear amplifier gain (e.g. Neely et al., 

2003b) or to investigate the source of the 2f2 − f1 DPOAE (e.g. Martin et al., 1998). It would be 

useful to modify the MATLAB code in order to simulate these three tone experiments to determine 

which experimental methods may be the most fruitful. However, it would be particularly important 

to validate any predictions made by the quasilinear process under these circumstances as the 

amplitude of the third tone may be comparable to the primary or DP amplitude so that the 

quasilinear approximation may not be appropriate. 

In addition, if the application of the model were extended to accommodate a third stimulus tone, it 

would be possible to investigate the experimental observation that 2f1 − f2 DPOAEs can be 
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suppressed or enhanced by third stimulus tone which has a frequency higher than f2 (Lonsbury-

Martin & Martin, 2008) . 

7.4.3 Experiments 

The model predicts notches in the growth function of the 2f1 − f2 DPOAE wave-fixed component at 

moderate stimulus levels. In the model, these notches originate from a change in the phase 

relationship between neighbouring elements of the wave-fixed source distribution which result in 

an alteration of source directionality as the stimulus level increases. However, it has not been 

possible to verify this result by comparison with experimental data as DPOAE component 

separation is usually performed with a time windowing techniques across a range of f2 frequencies 

in physiological studies. Unfortunately the stimulus level and amplitude of the notch predicted by 

the model is highly sensitive to stimulus frequency, possibly because it is related to the relative 

phase of the primary travelling waves, and so wave-fixed growth functions that have been obtained 

using time-windowing techniques and averaged across many f2 frequencies cannot be expected to 

exhibit the notch. It may prove interesting to measure the 2f1 − f2 DPOAE growth function in 

human subjects using an alternative component separation technique, such as a suppressor tone to 

reduce the place-fixed component. The presence of notches in the 2f1 − f2 DPOAE wave-fixed 

component could have implications for the application of DPOAE growth functions which are 

occasionally proposed as a tool for estimating psychoacoustic hearing threshold level or loudness 

growth.  

7.4.4 Longer term uses of the model 

If some of the limitations of the current model can be resolved, it may be possible to use the model 

to design novel stimulus paradigms that, for example, generate specific excitation patterns on the 

cochlea. Novel methods may thus be computationally developed for achieving the long-term goal 

of using OAEs to accurately measure the frequency variation of cochlear amplifier gain or even 

hearing loss. One of the significant advantages to using OAEs to investigate the properties of the 

cochlea, instead of direct measurements of BM velocity for example, is that they are non-invasive 

and the physiological health of the cochlear is not compromised. The work of this thesis has 

demonstrated the complexity of the interactions that generate DPOAEs, such as those between the 

distributed nonlinearity and the propagation of the various wave components. In many cases simple 

explanations of specific effects, which take into account one part of this complex interaction but 

not another, are not adequate to explain the experimental results. It has been shown that a model 

can be used to tease apart some of these interactions. Continued development of models that can be 

used to test various theories of cochlear function is thus an important goal.  
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Appendices 

A. Derivation of the one-dimensional wave equation 

In this section the approximations, boundary conditions and equations of motion for the cochlear 

model are described, so that the one-dimensional wave equation can be derived. 

A.1 Approximations of the two-dimensional box model 

The simple three dimensional ‘box’ model of the cochlea, illustrated in Figure A.1, incorporates the 

following approximations: 

(i) The cochlear walls are immobile (Shera & Zweig, 1992)  

(ii) The effect of “fluid ducts” can be neglected (Shera & Zweig, 1992; Voss et al., 1996)  

(iii) The spiral shape of the cochlea is straightened out. This may introduce some errors in the 

apical region of the model (Viergever, 1978; Cai et al., 2005), where the cochlea curvature 

is greatest, but this is neglected as there is limited physiological data available for the 

apical region 

(iv) Reissner’s membrane is neglected as it is acoustically transparent (Dallos, 1992; Gelfand, 

1998) 

(v) The two cochlear channels have equal cross-sectional area and shape (de Boer, 1996)  

(vi) The cross-sectional area of the channels in the human cochlea actually differs in the region 

very close to the base, as shown in Figure A.2, but this is neglected for simplicity  

 

Figure A.1 A three-dimensional ‘box’ model of the cochlea 

 

(vii) The effective height of the channels (the ratio of the cross-sectional area to the width of the 

channel) is assumed to be constant, neglecting any variation with distance from the base 
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Figure A.2 shows that the height of the lower channel is about 1mm throughout most of the 

cochlea (Rebscher et al., 1996)  

(viii) The cochlear fluids have negligible viscosity, so that only the cochlear partition (CP) 

motion dissipates energy (de Boer, 1996). Cochlear input impedance is not significantly 

affected by the introduction of the fluid viscosity for frequencies > 500 Hz (Koshigo et al., 

1983; Puria & Allen, 1991) 

(ix) The cochlear fluids and CP are incompressible (de Boer, 1996)  

(x) There is no structural longitudinal coupling along the CP, and elements along the CP 

interact through fluid coupling only (de Boer, 1996). This is a controversial assumption 

based on the work of Voldrich (1978) who observed that, in guinea pig cochleae, 

displacement of the BM did not spread along the membrane in the longitudinal direction 

(Naidu & Mountain, 2001). Other studies have observed significant longitudinal coupling 

which acts to increase the stiffness of the cochlear partition and broadens the peak of the 

travelling wave envelope in the region of the characteristic place in cochlear models (von 

Békésy, 1960; Naidu & Mountain, 2001). However, the space constant for the longitudinal 

coupling of the cochlear partition has a measured value between 20 and 44µm (Naidu & 

Mountain, 2001; Emadi et al., 2004), which is small compared to the width of the 

individual micromechanical elements in our model (approximately 70µm, corresponding to 

about 10 outer hair cells). Therefore coupling is neglected and the micromechanical 

elements are assumed to interact only through the fluid  

 

In order to reduce a the three-dimensional box model into a two-dimensional model, any radial 

motion (across the width of the CP) is neglected and parameters of the CP (such as mass) are 

averaged across its width (de Boer, 1996). 
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Figure A.2 The cross sectional area of the (a) upper and (b) lower channels of the human cochlea 
The areas were estimated from MRI imagines [From Thorne et al. (1999) figure 6, with permission from 
John Wiley & Sons] 
 

 
Figure A.3 The height of the human scala tympani  
The measurements are collated from three different studies [From figure 4 of Rebscher et al. (1996), with 
permission from Inform Healthcare] 

A.2 The variables 

In the two-dimensional box model of the cochlea, shown in figure 2.1, the fluid velocities in the 

x −  and z −  directions are denoted by uf(x,z,t) and vf(x,z,t) respectively. The vertical velocity of the 

cochlear partition (CP) is given by v(x,t) and the fluid pressure, pf(x,z,t), is also shown.  

The fluid pressure within the cochlear channels can be represented as a superposition of two 

different states, which differ in the relative forces applied to the cochlear windows in each case.  
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(i) The symmetric mode: Identical forces are applied to both the oval and round windows, 

so that a symmetrical fast compression wave travels along both the upper and the lower 

channel simultaneously (Lineton, 2001). As this mode does not result in any pressure 

difference across the CP, it does not induce a travelling wave (Patuzzi, 1996). 

(ii) The asymmetric mode: Equal and opposite forces are applied to the oval and round 

windows (Lineton, 2001). This asymmetry exerts a pressure difference across the CP and 

induces a travelling wave. 

As it is only the second state that induces a travelling wave, only the pressure difference across the 

CP is important for deriving the wave equation. As a consequence of this, the notation can be 

simplified by defining the semi-difference pressure, pd, as shown below. 

 ( )),,(),,(),,( 2
1 tzxptzxptzxp ffd −−=  (A.1) 

In the asymmetrical state, the forces applied to the cochlear windows are equal and opposite. 

Therefore the expression for pd becomes 

 ),,(),,( tzxptzxp fd =  (A.2) 

A.3 The long-wave approximation 

The “long-wave” approximation states that the wavelength of the travelling wave, λTW, is much 

greater than the height of the cochlear channel, so that H/λTW < 2π (de Boer, 1996). Using this 

approximation, the fluid velocity can be related to the CP velocity as shown in (A.3). This 

effectively reduces the two-dimensional model into a one- dimensional model as the variable 

/fv z∂ ∂ , used in the wave equation derivation (appendix A.5) is dependent on only one spatial co-

ordinate, x.  

 ( ) ),(1),,( txvtzxv H
z

f −=  (A.3) 

The travelling wave slows down, and its wavelength decreases, as it approaches its characteristic 

place (Nobili et al., 1998), so the long-wave approximation is not expected to be valid in the 

immediate vicinity of the peak of the travelling wave envelope. It is worth noting that the finite 

difference method, used to numerically evaluate the wave equation solution for a discrete cochlear 

model (section 2.1.2), is also limited in this region as the wavelength of the travelling wave may 

become shorter than the width of a discrete element (0.07 mm). However despite these limitations, 

the responses of the one-dimensional model successfully replicate the responses of more complex 

models which do not assume the long-wave approximation, provided that observations are made at 
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a location where the approximation is valid (Shera et al., 2004). Therefore we proceed with the 

one-dimensional model for simplicity. 

A.4 Model boundary conditions 

The boundary conditions of the cochlear model are listed below: 

• The velocity across the area of the stapes footplate is assumed to be uniform 

• The stapes footplate velocity is equal, and opposite, to the round window velocity 

• Only vertical fluid flow is permitted through the Helicotrema 

• The semi-difference pressure at the Helicotrema is zero  

 0),( =tLpd  (A.4) 

• Continuity at the CP requires that vf(x,0,t) = v(x,t) 

• Continuity at the ceiling of the cochlear channel requires that uf(x,H,t)=0 

• Conservation of momentum at the stapes requires that 
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A.5 The wave equation 

The principles of conservation of mass (A.6) and momentum (A.7) are used to derive the wave 

equation, as described by de Boer (1996).  
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Differentiating (A.6) with respect to t and (A.7) with respect to x, allows these two equations to be 

combined such that  

 2

2

( , ) ( , )dp x t v x t

x H t

ρ∂ ∂
= −

∂ ∂
 (A.8) 

For a linear model, this can be re-written in the frequency domain by substituting v t i vω∂ ∂ =  for 

harmonic oscillations with angular frequency ω. 
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An impedance for the CP, ZCP(x,ω), can also be defined for a linear model to relate the CP velocity 

to the semi-difference pressure as shown below 
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Substituting (A.10), into (A.9), produces the following one-dimensional wave equation for a linear 

cochlear model in the frequency domain. The physical interpretation of k(x,ω), based on the WKB 

solution to the wave equation (section 2.1.2), is that Re(k) corresponds to the wavenumber of the 

travelling wave whilst Im(k) describes the exponential growth rate of the travelling wave amplitude. 

On this basis cTW can be interpreted as the travelling wave velocity. 
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Provided there is no internal pressure source, equation (A.11) applies everywhere in the cochlea 

apart from the basal and apical boundaries. For harmonic oscillation these boundary conditions 

become… 

At the stapes: 
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(A.14) 

 

At the Helicotrema: 

 

( , ) 0dp L ω =  (A.15) 
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A.6 The source term 

If there is a distributed pressure source S(x,ω) acting on the cochlear partition then, in a linear 

model, the vertical velocity of the cochlear partition has two components: One arising from the 

semi-difference pressure caused by the stapes vibration (v0), and another that results directly from 

the distributed pressure source (vs). They combine such that 

 ),(),(),( 0 ωωω xvxvxv s+=  (A.16) 

where 
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Substitution of (A.16) into (A.9) gives the wave equation in the presence of a distributed pressure 

source … 
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B Solution methods 

B.1 The finite difference method 

This technique, devised by Neely (1981), discretizes the cochlear model in order to solve the linear 

wave equation (A.11) numerically. This is achieved by converting the differential equations (A.11), 

(A.14) and (A.15) into a single matrix equation which can be solved by computer software such as 

MATLAB.  

To apply the finite difference method, the length of the cochlea is divided into N-1 elements, so 

that N points compose the cochlea in the x-direction. The first point is the oval window (or stapes 

footplate), and the final point is the Helicotrema. The length of a single element, ∆, is given by 

∆=L/(N-1). The matrix equation is formed by using Taylor series expansion to replace the 

2 2
dp x∂ ∂  term by its finite difference approximation in (A.11), so that equation of motion for the 

q
th element becomes… 

 
{ } 2

2

1
( 1) 2 ( ) ( 1) ( , ) ( , ) 0d d d dp q p q p q k q p q+ − + − + ⋅ =

∆
ω ω  

(B.1) 

 

The boundary conditions can also be re-written for first and last elements as shown in (B.2) and 

(B.3). In (B.2) the stapes velocity, ust, is written as a linear combination of two components (Elliott 

et al., 2007): The velocity arising from external excitation ( )in

stu  such as the pressure stimulus in the 

ear canal, and the component resulting from the internal pressure response of the cochlea at the 

base ( )out

stu . 

 
{ } ( )1

(2) (1) in out

d d st st stp p i u i u uωρ ωρ− = − ⋅ = − ⋅ +
∆

 
(B.2) 

 

 0)( =Npd  (B.3) 

By considering the pressure at the stapes also as a linear combination of the two components 

arising from the external excitation ( )in

stp and the internal pressure response of the cochlea at the 

base ( )out

stp , the specific acoustic impedance of the stapes, Zst, can be defined as shown in (B.4) 

(Lineton, 2001). Assuming the round window impedance is very small so that )1(2 d

out

st pp −= , 

the finite difference basal boundary condition can be re-written as shown in (B.5).  

 
( ) st

st

st

p
Z

u
ω ≡ −  (B.4) 
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{ }1 2

(2) (1) (1) in

d d d st

st

i
p p p i u

Z

ωρ
ωρ− − = −

∆
 (B.5) 

Equations (B.1), (B.3), and (B.5) can be combined to give the following matrix equation, where C 

and M denote the fluid coupling and mobility matrices respectively. In this expression the specific 

acoustic admittances are defined as Yst = 1/Zst and YCP=1/ZCP. 

(B.6) 
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   
   
   
   
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   
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   

ωρ

 

The finite difference method is expected to produce an erroneous solution to the wave equation if 

an insufficient number of elements is used to represent the length of the cochlea (N). For example, 

Kanis & de Boer (1993) comment that discretization errors become apparent in their model when 

the number of elements falls below 15 per mm. This would equate to a minimum N of 525 in a full 

length cochlear model. Figure B.1 and Figure B.2 illustrate that N > 500 is required to minimise 

discretization errors in our implementation of the linear active Kanis & de Boer cochlear model. 

Since the minimum wavelength of the model is about 0.5 mm, this corresponds to approximately 7 

elements when N = 500.  

 

Figure B.1 The influence of the number of elements (N) used in the finite difference method 
The plot shows the maximum change in amplitude of the pd(x,ω) distribution predicted by the finite 
difference method using N elements compared to N+100 elements  
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Figure B.2 The influence of N of the predicted semi-difference pressure distribution 
The plot shows the magnitude of the semi-difference pressure evoked by a 2 kHz stimulus in the linear active 
Kanis & de Boer (1993) cochlear model for a variety of N values, where N indicates the number of elements 
used to represent the length of the cochlear partition 

B.2 The Wentzel, Kramers and Brillouin (WKB) method 

The WKB method is a mathematical technique for obtaining an approximate solution to linear 

second order differential equations, of the form shown in (B.7), which arise in many fields of 

physics (Quantum mechanics, diffusion theory etc). It is described by many authors (e.g. Bellman, 

1972; Bender & Orszag, 1999), but the summary presented here is based on the synopsis of 

Matthews & Walker (1970). 

 2

2

( )
( ) ( ) 0

d y x
F x y x

dx
+ =  

(B.7) 

 

In this section the WKB solution is derived and the validity of applying the WKB technique to 

cochlear models is discussed, with respect to the one-dimensional cochlear model.  

B.2.1 Derivation of the WKB solution 

The WKB method provides an approximate solution to (B.7), where y(x) is a system variable, x is a 

spatial coordinate and F(x) is a variable which is positive for x≥0 and must have the dimensions of 

(length) − 1 (Bellman, 1972). The estimated solution is derived by considering a trial solution of the 

form shown in (B.8), which is suggested by the result that would be expected if F(x) was constant. 

 { }exp ( )y i xφ=  (B.8) 

For this trial solution, the differential equation becomes 

 2( '( )) ''( ) ( ) 0x i x F x− + + =φ φ  (B.9) 
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where the apostrophe indicates differentiation with respect to x.  

Assuming that ''( )xφ  is small, (B.9) can be approximated by 

 '( ) ( )x F x≈ ±φ  (B.10) 

Therefore, to a first approximation, the trial solution is given by  

 { }( ) exp ( )y x i xφ≈  where
0

( ) ( )  
x

x F x dx≈ ±∫ ɶ ɶφ  (B.11) 

Iteration can be used to determine a second approximation as (B.11) indicates that 

 1
''( ) '( )

2
x F x

F
≈φ  (B.12) 

and substituting (B.12) into (B.9), gives 

 2 '( )
( '( )) ( )

2 ( )

i F x
x F x

F x
≈ ±φ  (B.13) 

so that 
 

0 0
( ) ( )

1/4

1
( )

x x

i F x dx i F x dx

y x c e c e
F

−+ − ∫ ∫≈ + 
 

ɶ ɶ ɶ ɶ
 (B.14) 

where c+ and c- are constants.  

Considering (B.9) and (B.12), the earlier assumption that φ’’(x) is “small” can be expressed as 

 1 '( )
''( ) ( )

2 ( )

F x
x F x

F x
≈ <<φ  (B.15) 

Equation (B.11) indicates that 1/√F is approximately 2π “wavelengths” or one “exponential length” 

of the trial solution. Therefore the approximation that ''( )xφ is small is valid if F(x) is either 

constant or slowly varying, such that the change in F(x) over one wavelength is small compared to 

|F|.  

In summary the solution to a second order differential equation, such as (B.7), can be approximated 

by the sum of two independent solutions, or ‘basis’ functions, which can be added together with 

arbitrary constants to form the general solution. The basis functions for (B.7) are given in (B.16).  

  ( )0
1/4 0

( ) exp ( )
( )

x

x i F x dx
F x

+
+ = − ∫ ɶ ɶ

ϕ
ϕ  

( )0
1/4 0

( ) exp ( )
( )

x

x i F x dx
F x

−
− = + ∫ ɶ ɶ

ϕ
ϕ  

(B.16) 
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These basis functions can be used to form the general solution (B.17), where 0
±ϕ are constants 

chosen to normalise the basis functions as shown in (B.18). 

 ( ) ( ) ( )y x c x c xϕ ϕ+ + − −≈ +  (B.17) 

 2

0

( ) 1x dxϕ
∞

+ =∫  and 
2

0

( ) 1x dxϕ
∞

− =∫  (B.18) 

The WKB solution, (B.17), will not be valid if F(x) changes too rapidly such that (B.15) is not 

valid. In addition, if F(x) passes through zero at some location (e.g. x0), then care must be taken to 

ensure that the approximate solutions either side of x0 are consistent3. 

B.2.2 Physical interpretation of the WKB solution for cochlear models 

For a cochlear model, the WKB solution to the wave equation (A.11) can be written as shown in 

(B.19), where 0p±  are constants, with normalised basis functions (B.20). It should be noted that a 

common convention in cochlear applications of the WKB solution is for the basis functions to be 

normalised using (B.21) (Talmadge et al., 1998). 

 

( ) ( )0 0
0 00 0

( ) exp ( ) exp ( )
( ) ( )

x x

d

k k
p x p i k x dx p i k x dx

k x k x

+ −= − + +∫ ∫ɶ ɶ ɶ ɶ  

(B.19) 

 

( )0

0
( ) exp ( )

( )

x

x i k x dx
k x

+
+ = − ∫ ɶ ɶ

ϕ
ϕ and ( )0

0
( ) exp ( )

( )

x

x i k x dx
k x

−
− = + ∫ ɶ ɶ

ϕ
ϕ  

(B.20) 

  

( )0

0
0

0 0 0

exp ( ) 1
( )

( 0)

x

x

i k x dx
k x

k x k

±

=

+ −

=

⇒ = = = ≡

∫ ɶ ɶ∓
ϕ

ϕ ϕ

 (B.21) 

To determine the physical interpretation of the basis functions, a model incorporating a uniform CP 

impedance is considered. In this scenario k(x) would be a complex constant with real and imaginary 

parts ηk and χk respectively (B.22), and so the basis functions could be re-written in the form of 

(B.23). 

 
k kk i= +η χ  (B.22) 

 ( ) k kx i x
x e e

−+ ∝ χ ηϕ and ( ) ek kx i x
x e

− +− ∝ χ ηϕ  
(B.23) 

                                                      
3 This is because F(x) was defined as greater than zero for x>0 in the derivation, and so a change in sign of 
F(x) can be problematic 
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There are two components to the basis functions shown in (B.23): One part which oscillates along 

the x − axis, with a spatial wavelength of 2π/ηk, and another component which varies in amplitude 

along the x − axis with an exponential growth rate of 1/χk. Therefore the basis functions correspond 

to travelling waves with wavenumber ηk. As ηk is positive the basis functions,ϕ + andϕ − , 

correspond to forward and backward travelling waves respectively. 

In a realistic cochlear model, k(x) is a complex function of x. As this complex function can still be 

broken down into real and imaginary components, then the basis functions continue to be 

interpreted as forward and backward travelling waves. In this case the wavenumber is given by the 

real part of k(x), and varies with x.  

Shera et al. (2004) note that there is long-standing controversy in cochlear mechanics regarding 

whether the forward and backward travelling waves discussed above actually occur in the cochlea. 

For example, it may be possible to find alternative basis functions to form a solution to the cochlear 

wave equation (2.1). In addition other approaches avoid the wave equation completely, such as that 

of Nobili et al. (2003) who interpret the response of the cochlea as a weighted sum of motions of 

individual BM oscillators which interact with each other via the incompressible cochlear fluid. 

Shera et al. (2004) argue that these different interpretations represent alternative conceptual 

frameworks for the same underlying physics and that the travelling wave concept is no less 

physically appropriate than other interpretations whilst being easier to visualise. For this reason we 

continue to represent the physics of the cochlear model with a wave equation, the solutions to 

which are interpreted as travelling waves.  

B.2.3 The validity of the WKB method 

The WKB is an approximation method and equation (B.19) is actually a truncation of an 

exponential power series which forms the full WKB approximate solution to the cochlear wave 

equation. Bender & Orszag (1999) explain that the full WKB approximate solution can be written 

as  

 

0

( ) exp ( )d m

m

p x S x
∞

=

 
≈  

 
∑  (B.24) 
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The first three terms in the series are given by  

 
0 0
( ) ( )

x

S x k x dx= ±∫ ɶ ɶ  

 

1

1
( ) ln ( )

2
S x k x= −  
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22
2 2

2 3 2 50

1 5
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8 ( ) 32 ( )

x d d
S k x k x dx

k x dx k x dx

   = −  
   

∫ ɶ ɶ ɶ
ɶ ɶ ɶ ɶ

 

(B.25) 

It can be seen that equation (B.19) corresponds to sum of the first two terms in the WKB series. In 

order for this series to provide an asymptotic solution for pd(x), the magnitude of the successive 

terms must decrease. Applying this condition to the first two terms in the series, 1 0( ) ( )S x S x<< , 

produces an expression equivalent to that given in (B.15). In addition, Bender & Orszag (1999) 

note that it is only appropriate to truncate the full WKB series approximation after 1( )S x  if  

  
2 ( ) 1S x <<  (B.26) 

In this section we assess the validity of the WKB method in two ways. First the conditions for the 

use of the WKB approximation, equations (B.15) and (B.26), are evaluated. Then we compare the 

estimated WKB solution with that obtained using the finite difference technique. 

The WKB condition 

The condition of the WKB approximation (B.15), can be re-written for a cochlear model as shown 

below (de Boer, 1996). This condition is equivalent to stating that there is no significant reflection 

of travelling waves in the cochlear model.  

 

2

1 ( )
1

dk x

k dx
<<  (B.27) 

Figure B.3a shows examples of the magnitude of this WKB condition parameter, for two different 

micromechanical cochlear models. This illustrates that for a single stimulus tone, the WKB 

solution is likely to be least accurate near the base, and in the vicinity of the characteristic place. At 

the base, both the real and imaginary parts of k(x) are small and so the term 1/k2 in (B.27) becomes 

large, as illustrated in Figure B.4a, and causes the condition to be violated. In contrast, at the 

characteristic place it is the dk/dx term which becomes large (Figure B.4b) and threatens the 

validity of (B.27). In addition, the WKB condition can be violated for low frequency stimuli (<500 

Hz) at basal locations within the cochlear model, as illustrated in Figure B.3b. Despite this 

violation, the WKB results appear to be perfectly reasonable in this region, as illustrated in Figure 

B.6. 
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 (a) Spatial distributions of the WKB condition for a 
2kHz stimulus 
 

 

(b) Frequency distributions of the WKB condition 
at two different locations along the cochlear 
partition  

 
 

Figure B.3 The WKB approximation condition given in equation (B.27) 
The plots show the amplitude of the WKB approximation condition for (a) a 2kHz stimulus and (b) a range 
of stimulus frequencies observed at two different locations along the cochlear partition. The results are shown 
for two different linear micromechanical models: The Kanis & de Boer (1993) model and a modified model 
described in section 3.5. In (a) the results for both passive and active variants of the models are shown, but in 
(b) the passive distributions are neglected for simplicity.  
 

 

Figure B.4 The distributions of (a) 21 k  and (b) /dk dx , 

These distributions are plotted for a 2 kHz stimulus tone in the original Kanis & de Boer linear active 
cochlear model with N=1000.  
 

The other condition which should be satisfied in order for the WKB approximation to be truncated 

after the first two terms, (B.26), is satisfied within the linear active cochlear model. This is 

demonstrated by Figure B.5, which shows the spatial distribution of 2 ( )S x , for a 2 kHz stimulus. 

It also illustrates that variation in 2 ( )S x  for a variety of stimulus frequencies at two different 

locations within the cochlear model. The results suggest that 2 ( )S x  is consistently less than 1 

throughout the cochlear model, and so it is appropriate to truncate the approximate WKB solution 

after the first two terms of the series.  



Appendices 
B Solution methods 

226 

 

Figure B.5 The WKB approximation condition (B.26)  
The WKB approximation is evaluated for (a) a 2kHz stimulus and (b) a range of stimulus frequencies 
observed at two different locations along the cochlear partition. The results in (a) are shown for two different 
linear micromechanical models: The Kanis & de Boer (1993) model and a modified model described in 
section 3.5. In (b) the results for only the Kanis & de Boer model are shown for simplicity. 

Overall, the nature of the inequalities in the WKB conditions is such that there is no objectively 

defined level at which the term on the left hand side of (B.26) or (B.27) become “much less” than 1. 

However, as the left hand side remains less than 1 for a broad range of stimulus frequencies (0.25 

to 15 kHz) throughout most of the cochlear model, we conclude that the WKB solution can be used 

reliably provided that it is verified against another approach, such as the finite difference method.  

Comparison the finite difference solution 

The validity of the WKB solution can also be investigated by comparing predictions with those of 

the finite difference method. However, both approaches are subject to discretization errors when 

the WKB solution is evaluated numerically. To minimise these errors, the two solutions are 

compared using a high value of N (N=3000), as shown in Figure B.6. 

For stimulus frequencies >1 kHz, the two solutions differ by less than 1.3 dB. Below this frequency, 

the difference increases to around 2 dB. The discretization errors, shown in Figure B.1, could 

account for up to 0.5 dB of this difference, leaving a small error which may be associated with the 

WKB approximation. However, as this residual error is of the same order as the discretization error, 

it is not thought to be significant. This result is consistent with the extensive validation of the 

application of the WKB solution to cochlear models in the literature. For example, Zweig et al. 

(1976) and Steele & Taber (1979) confirm that the WKB solution agrees with accurate numerical 

solutions for one- and two-dimensional cochlear models respectively. De Boer & Viergever (1982) 

also confirm that there is “generally” good agreement between the WKB and ‘exact’ solutions for 

two- and three-dimensional cochlear models, even in cases where the condition of absent 

reflections is violated. 
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Figure B.6 Comparison of the finite difference and WKB approximation estimated results 
The plot shows the response of the modified cochlear model estimated using the discrete method (solid lines) 
and WKB approximation (dotted lines) for sinusoidal stapes stimulation at a various frequencies. Details of 
the model can be found in section 3.5. 
 

B.2.4 Internal sources 

It is important to consider the application of the WKB method to linear models containing internal 

sources or sites of reflection, as this is important when studying the cochlear origins of otoacoustic 

emissions and the generation of distortion in the cochlea. The approach described in this section is 

based on the explanation given by Talmadge et al. (1998).  

When an internal source distribution S(x,ω) is present, the cochlear wave equation can be written as 

shown in (A.17). The source distribution is complex, with dimensions of pressure. The solution can 

be estimated by a linear sum of the two basis functions given in (B.20). However, the coefficients 

of the basis functions, 0 0 and p p+ − , are no longer constants. Instead they become function of x over 

the source region. Therefore the WKB solution for a cochlear model with an internal source 

distribution is of the form given in (B.28). In these expressions k0 is the wavenumber at the base of 

the cochlear model, and is introduced to normalise the basis functions (see appendix B.2.2). The 

coefficients 0 0( ) and ( )p x p x+ −  should only vary with x in regions where there are sources, and are, 

in principle, constant elsewhere.  

 

 ( ) ( ){ }0
0 00 0

( ) ( ) exp ( ') ' ( ) exp ( ') '
( )

x x

d

k
p x p x i k x dx p x i k x dx

k x

+ −= ⋅ − + ⋅ +∫ ∫  (B.28) 

The WKB solution can also be applied to a model containing impedance perturbations, as well as 

internal sources. On the face of it, a model containing impedance irregularities is likely to violate 

the WKB condition requiring no significant reflections (B.27). However, provided that the 

distribution of impedance perturbations is known, then these irregularities can be viewed as 

distribution of internal sources in a “smooth” cochlear model so that the WKB approximation 

remains valid (Talmadge et al., 1998). For example the complex wavenumber for the model 

containing the impedance perturbations, k(x) can be written as a sum of the wavenumber for the 
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“smooth” model and a perturbation parameter δk(x) which characterises the effect of the impedance 

irregularities, as shown below. 

 2 2 2( ) ( ) ( )smoothk x k x k xδ= +  (B.29) 

This allows the wave equation to be arranged such that the impedance perturbations appear as a 

source term, as demonstrated in (B.30). 

 2
2

2

Source term

( )
( ) ( ) ( ) ( )smooth

p x
k x p x k x p x

x
δ

∂
+ = −

∂ �							

 (B.30) 
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C The middle ear and ear canal 

In this section the basal boundary condition of the cochlear model, and the transmission of sound 

through the middle ear are considered. 

C.1 The ear canal and middle ear 

The ear canal and middle ear influence the transmission of sound in and out of the cochlea. 

Therefore, in order to predict DPOAEs, recorded in the ear canal, a model of these two components 

is needed. The model used is essentially a replica of that described by Ku (2008), which is based on 

the middle ear model of Kringlebotn (1988). It involves a sequence of two-port networks: one 

representing the ear canal and the second corresponding to the middle ear. Details of these models 

are given by Ku (2008). In summary, illustrations of these two port networks are shown in  

Figure C.1. The ear canal is modelled as tube, of diameter 0.007m and 3.85 × 10 − 5 m2 cross-

sectional area, in which sound propagates as plane waves. A foam earplug, with damping Rplug, can 

also be incorporated into the ear canal model. The middle ear representation is formed by a 

collection of mass-spring-damper models corresponding to the atrium and mastoid cells, the 

tympanic cavity, the eardrum, the eardrum suspension, the eardrum rim, the malleus and the incus, 

the coupling between the ossicles, the stapes, the stapedial tendon and the oval window. The 

impedances used to constructed the matrix elements of the middle ear two-port network are formed 

from these constituent mass-spring-damper models and some additional transformer ratios which 

arise from the difference in the cross-sectional area between the eardrum and stapes footplate and 

the difference in lengths of the malleus and the incus. All of the parameters are listed in Table C.1. 

(a) 

 

(b) 
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Figure C.1 Two-port models of (a) the ear canal and (b) the middle ear 
In this plots, p and Q denote the pressure and volume velocity respectively. The parameters associated with 
the earcanal, eardrum and stapes are labelled ec, ed, and st respectively. Rplug represents the damping effect 
introduced by a foam plug into the ear canal. [From Ku (2008), figure A5]. In (a) the matrix elements Teced 
are formed by considering a tubular model of ear canal, in which sound propagates as plane waves. In (b) the 
matrix elements Tedst are determine from an array of mass-spring-damper models representing the different 
mechanisms in the middle ear, and the transformer ratios arising from area and lever arm ratios.  
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The transfer function for the ear canal and middle ear model is shown in Figure C.2. It should be 

noted that the inertial mass of the stapes and the resistance of the coupling between the malleus and 

the incus have both been reduced by a factor of 10, compared to the values used by Ku (2008), in 

order to better match the measured values for the backward transfer function. 

 
Mechanical quantity being modelled Inertia 

(Ns
2
/m

5
) 

Compliance 

(m
5
/N) 

Resistance 

(Ns/m
5
) 

Antrum and mastoid cells 1×102 3.9×10 − 11 6×106 

Tympanic cavity 0 4×10 − 12 0 
Eardrum 7.5×102 0 0 
Suspension of the eardrum 6.6×103 3×10 − 12 2×106 
Rim of the eardrum 0 1.3×10 − 11 1.2×107 

Coupling between the malleus and the incus 0 3.8×10 − 12 1.2×106 
Ossicles (the malleus and incus) 2.2×103 ∞ 2×107 
Coupling between the incus and the stapes 0 5.6×10 − 12 6×108 
Stapes, stapedius tendon and oval window 4.6×102 5.6×10 − 12 0 

Table C.1 The parameters of the middle ear 
These impedance, compliance and resistance terms used to form the multiple mass-spring-damper models 
which collective constitute the middle ear model. [Adapted from Table A.4, Ku, 2008). 
 

 

Figure C.2 Comparison of the middle ear and ear canal model with experimental measures 
The (a) forward and (b) backward transfer functions for the ear canal and middle ear models (thick black 
line) ar shown along with the experimental measurements from human cadavers [Puria, 2003). Thin black 
lines show the average (solid line) and min/max values (dotted lines) for the experimental data. The transfer 
functions are defined as ratios of the pressure at the stapes (pst) and ear canal pressure (pec) are shown above. 
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C.2 The basal boundary condition 

In order to implement the basal boundary condition of the cochlear model, it is necessary to form 

an expression for the specific acoustic impedance of the stapes, Zst, defined in (B.4). This 

impedance is equivalent to the ‘reverse middle ear impedance’ used by Ku (2008) in his 

formulation of the state space cochlear model. As it was not possible to formulate the state space 

basal boundary condition from the two-port network discussed above, Ku used a simple mass-

spring-damper model to represent the stapes impedance Zst. In order to allow comparison between 

the predictions of the quasilinear and state space models, we also choose to use a mass-spring-

damper model to characterise the stapes impedance. Although this mass-spring-damper model of 

the stapes is generally used throughout this thesis, an alternative expression is occasionally used to 

minimise reflections at the basal boundary. This “reflectionless” condition is not intended to be 

realistic, but is used to limit the number of sources of backward travelling waves in the model 

(Kanis & de Boer, 1994; de Boer et al., 2008) and to aid the interpretation of distortion product 

generation in some circumstances. The implementation of the mass-spring-damper and 

“reflectionless” stapes models are described below. 

(i)  A mass-spring-damper model 

In general, a simple mass-spring-damper model is used to represent the stapes impedance (Neely & 

Kim, 1986), so that Zst takes the form shown below, where mst = 1.4 kgm-2 , cst = 32000 kgm-2s-2 

and sst = 2.6×108 kgm-2s-1. These values are based on those measured in human cadavers by Puria 

(2003), and assuming a stapes surface area of 3.2 mm2 (Ku, 2008). 

 
( ) st

st st st

s
Z im c

i
ω ω

ω
= + +  (C.1) 

This expression for the impedance of the stapes results in a reflection of backward travelling waves 

generated within the cochlear model, as shown in Figure C.3 

(ii)  An expression to minimise reflections 

To minimise reflections at the base of the cochlear model, the stapes impedance is set equal to the 

impedance encountered by a backward travelling wave as it approaches the base (Lineton, 2001). 

Using the WKB approximation, the semi-difference pressure of a backward travelling wave, can be 

written as shown below (see appendix B.2 for further details). The dependence on ω has been 

neglected for simplicity.  

 

( )0( ) exp ( ') '
( )

d

p
p x i k x dx

k x

−
− = + ∫  (C.2) 
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Figure C.3 The reflection coefficient for 
backward travelling waves at the stapes 
The reflection coefficient (Rstapes) for 
travelling waves propagating towards the 
stapes, at the basal boundary was evaluated 

using 0

0
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2
x st
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=

−
=
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+
, where Zst is the 

stapes impedance defined in equation (C.1), 

and 0x
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=  is the characteristic impedance for 

backward travelling waves such that  
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The reflection coefficient for the cochlear 
model (thick line) and that calculated by 
Puria (2000) from measurements of human 
ears (thin dotted line) are both shown 
 

 

An expression for the longitudinal fluid velocity towards the base, ( )fu x− , can be obtained from 

(C.2) using conversation of momentum (A.7), so that 

 ( )
( )

( ) 1 ( )
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2 ( )

d
f
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dp xi
u x

dx

ip x dk x
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ρω
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 (C.3) 

The impedance for the backward travelling wave is then given by 

 1
( ) 1 ( )

( ) ( )
( ) 2 ( )

d

f

p x dk x
Z x i ik x

u x k x dx
ρω

−−
−

−

 
≡ − = + 

 
 (C.4) 

So for a reflectionless boundary condition, 2 ( 0)stZ Z x−= = where ( )Z x− is given in (C.4). It 

should be noted that (C.4) can also be rearranged as shown below (Viergever & de Boer, 1987). If 

the WKB condition (B.27) were to strictly hold and k was real and equal to ω/cTW , where cTW is the 

travelling wave velocity, then the expression for the impedance of the backward travelling wave 

reduces to the characteristic impedance ( ) ( )TWZ x c xρ− = (Kinsler & Frey, 1962). 

 12

2 2

( )
( ) 1

( ) 2 ( )

i dk x
Z x

k x k x dx

ρω
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−  
= − 
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 (C.5) 
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Figure C.4 The cochlear input impedance  
The plots show the cochlear input impedance 
Zc for the model (thick line), evaluated using 
the impedance for a forward travelling wave 
at the base of the model 
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The human cochlear input impedance 
measurements of Puria (2000) are also 
shown. Thin black lines show the average 
(solid line) and min/max values (dotted lines) 
for the experimental data. 
 

In general, the mass-spring-damper representation of the stapes is used throughout this thesis. 

However, on specified occasions the impedance of the stapes is set to minimise reflections at the 

basal boundary to aid interpretation. 

It should be noted that the input impedance of the cochlear model can be deduced using similar 

expressions to those shown above. This input impedance for the model is shown in Figure C.4, and 

experimental results are also shown for comparison.  

C.3 Impact of the middle ear on predicted otoacoustic emissions 

Puria (2003) studied the effect of the middle ear on otoacoustic emissions, using measurements 

obtained from the temporal bones of 5 human cadaver temporal bones. His results are summarised 

in Figure C.5a, which shows the dependence on stimulus frequency of the middle ear “round-trip” 

pressure gain, 2f1 − f2 DPOAE amplitude and CEOAE amplitude. The band pass nature of the 

middle ear pressure gain was calculated by Puria from the previous results shown in Figure C.2, 

and demonstrates that the middle ear round-trip gain falls off as the stimulus frequency increases 

above 1 kHz. Figure C.5 demonstrates that the CEOAE amplitude also falls off with increasing 

stimulus frequency above 1 kHz, suggesting that this could be associated with the reduction in the 

middle ear transfer function. However, the DPOAE amplitude is not substantially influenced by the 

stimulus frequency, compared to the behaviour of the middle ear gain or CEOAE amplitude. There 

are several factors that could have influenced this result, such as the comparison between DPOAEs 

from young living ears with the middle ear gain of older cadaver ears and the difference in 

frequency between the input and output for DPOAEs. However Puria (2003) comments that there 

is little evidence to suggest that aging or death significantly affects the behaviour of the middle ear 
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response at any frequencies other than 4 − 5 kHz. In addition, there is reportedly little change in the 

round-trip middle ear gain if the frequency difference between the input and output signal for 

DPOAEs is taken into account. Therefore, the origin of the difference between the frequency 

dependence of the middle ear round-trip gain and the level of the DPOAE measurement remains 

unclear. 

Figure C.5b shows the round-trip pressure gain for the middle ear model and the level of the 2f1 − f2 

DPOAE predicted by the model. In contrast to the experimental observation of Puria (2003), the 

model predicts that the DPOAE amplitude will fall off with increasing frequency above 1 kHz, in a 

manner similar to the fall off exhibited by the middle ear round-trip gain. Figure C.5b also shows 

the 2f1 − f2 component of the BM velocity at the base of the model, which demonstrates a relatively 

constant amplitude as the distortion product frequency increases. Overall the predicted frequency 

dependence of the 2f1 − f2 DPOAE amplitude differs from that observed experimentally. This 

difference could arise from errors either in the middle ear model, or in the nonlinear properties of 

the micromechanical model near the base. As Figure C.3, Figure C.4 and  

Figure C.1 indicate that the responses of the middle ear model are a good replication of 

experimental measures, and any further reasonable attempts to improve the middle ear model (such 

as adjusting the reflection of backward travelling waves at the stapes) has no significant effect on 

the levels of the high frequency DPOAEs. For this reason we conclude that the nonlinear properties 

of the micromechanical model near the base are responsible for the discrepancy.  

(a) 

 

(b) 

 
Figure C.5 The round-trip middle ear pressure gain and OAE amplitudes  
(a) The “round-trip” pressure gain of the human middle ear measured by Puria (2003). The thick line 
indicates the average measurement from the 5 subjects, and the thin lines denote the range of measured 
values. The dash-dot and dashed lines show the levels of DPOAEs and CEOAEs recorded from healthy 
human subjects by Smurzynski and Kim (1992). The level of the DPOAE measures has been reduced by 14 
dB for display purposes. [From Puria (2003), figure 5, with permission from ASA]. (b) The middle ear 
round-trip pressure gain for the model (solid line), the predicted 2f1 − f2 DPOAE amplitude (dash-dot line), 
and the 2f1 − f2 components of the BM velocity at the base of the model (dotted line). The units of the 
DPOAE and BM distortion product are dB SPL − 25dB and dB re 1µm/s + 40 dB respectively.  
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D Testing for reflections 

We have assumed that the baseline cochlear model, in no irregularities have been deliberately 

introduced into the impedance distribution, contains no significant sources of reflection. As this 

influences our interpretation of the wave decomposition results in section 2.3.2, and our 

interpretation of the DP wave-fixed source mechanism in section 5.1 and 6.2, this assumption 

should be checked.  

In a cochlear model with uniform CP impedance, travelling waves initiated at the stapes would not 

be reflected along the CP. However in a cochlear model, the CP impedance is a function of position 

from the base, and therefore it is feasible that reflections may occur. The amplitude of these 

reflections is expected to depend on the rate and magnitude of the impedance changes. In addition, 

it is conceivable that the changes in impedance between adjacent elements in a discrete cochlear 

model may be sufficient to generate significant reflections. In this section a battery of tests, rather 

than a single test, is applied to determine the significance of reflections in the baseline cochlear 

model. This approach is taken because each of the tests has limitations and is subjective to some 

degree.  

D.1 Reflections in a linear active cochlear model 

In this section, the discrete linear active Kanis & de Boer cochlear model is tested to determine if it 

contains significant sources of reflection. Unfortunately it is not possible to cite the accuracy of the 

WKB solution in a discrete cochlear model as evidence of a lack of reflections, as the WKB result 

can be accurate even if the condition for no reflections is violated (de Boer & Viergever, 1984). 

Instead, the following evidence is presented to demonstrate that no substantial reflections occur in 

the model. 

(i) The WKB approximation condition is satisfied 

 

In appendix B.2.3, the validity of the WKB approximation, (B.22), is investigated. The 

conclusion is that the approximation is appropriate for a broad range of stimulus frequencies. 

As the WKB approximation is equivalent to the condition for absent reflections, this suggests 

that there should be no substantial reflections in the linear Kanis & de Boer cochlear model. 

However, further evidence is needed to demonstrate an absence of significant reflections in the 

model due to the ambiguous nature of the inequality in the WKB condition discussed in 

appendix B.2.3.  
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(ii) The wavenumber spectrum of the model response is one-sided 

 

In a homogenous system the inverse Fourier transform of the BM velocity, V(k), has a narrow 

peak around k0 where k0 is the constant real wavenumber of the travelling wave. De Boer & 

Viergever (1984) explain that as inhomogeneity is introduced and increases, the distribution of 

V(k) widens, eventually to the extent that it crosses the k=0 axis indicating that reflections are 

present. When analysing the inverse Fourier transform, it is appropriate to neglect 

wavenumbers for which ( )V k  is more than 50dB below the peak ( )V k  value, as these low 

magnitude components are comparable with the artefacts introduced by spatial windowing as a 

finite sample of length L is used. Figure D.1 shows the magnitude of ( )V k  obtained by 

numerically taking the Fourier transform of the BM velocity, v(x), predicted by the linear 

active Kanis & de Boer cochlear model in response to a stimulus presented at the stapes. This 

demonstrates that the magnitude of ( )V k  for negative k is negligible compared to its 

amplitude for positive k values. The figure also illustrates that if a step decrease in the active 

impedance of 5% is introduced at the characteristic place, then reflections do occur as the 

amplitude of the ( )V k  components corresponding to negative k values increases.  

 

 

 

 

 

Figure D.1 Negative components in the wavenumber spectrum 
(a) The wavenumber spectrum of the response of the original Kanis & de Boer linear active model, 
found by taking the inverse Fourier transform of the estimated CP velocity response to a 1 kHz 
stapes stimulation obtained using the finite difference method (N=1000). Two spectra are shown: 
One for a “smooth” model, in which no impedance perturbations have been introduced (solid line), 
and the other (dotted line) for the same model containing a step-down change in the OHC gain, γ(x), 
as illustrated in (b). 
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(iii) The input impedance of the model is a smooth function of stimulus frequency 

 

The cochlear input impedance, Zc, is defined in terms of the semi-difference pressure, pd, and 

longitudinal fluid velocity, uf, as shown below (Shera & Zweig, 1993). Any reflections arising 

in the model influence the pressure and the fluid velocity near the stapes, and therefore 

influence the cochlear input impedance. 

 

0

( , )
( )

( , )
d

c

f x

p x
Z

u x

ω
ω

ω
=

≡  (D.1) 

In a model with no reflections, Zc is expected to be a smooth function of frequency. Figure D.2 

demonstrates that this is the case for the discrete linear active Kanis & de Boer cochlear model. 

In contrast, variations of up to 10 dB can be observed in the magnitude of Zc when 

irregularities in the active impedance are introduced to the model to act as sources of reflection. 

 

 

Figure D.2 Ripples in the cochlear model 
input impedance 
The (a) magnitude and (b) phase of the 
cochlear input impedance, Zc, for a range 
of stimulus frequencies presented to the 
linear active Kanis & de Boer cochlear 
model. The solid lines are results for a 
model where no impedance irregularities 
are introduced. The dotted line denotes a 
model where a random 5% variation in 
the OHC gain, γ(x), has been imposed 
along the CP to act as sources of 
reflection. The distribution γ(x) for each 
case is shown in (c). 
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(a) 

 
(b) 

 

Figure D.3 The effect of 
truncating the cochlear model 
(a) An illustration of the 
truncation of the cochlear 
model at the location of the 
black dashed line. Stimulation 
is applied at the stapes, 
initiating a travelling wave in 
the direction of the black 
arrow. If a source of reflection 
is present in the vicinity of the 
characteristic place, this may 
result in a backward travelling 
reflected wave, denoted by the 
grey arrow. However, this 
reflected wave should be 
eliminated by introducing a 
reflectionless truncation at the 
black dashed line. (b) The 
responses of the full (dotted 
lines) and truncated (solid 
lines) linear active Kanis & de 
Boer model, calculated with 
the finite difference method 
and N=1000. 
 

 

(iv) Truncating the model does not significantly alter the basal response 

 

Reflections are most likely to occur from the vicinity of the characteristic place, as this is the 

region where the spatial variation in the wavenumber is the greatest. This can be investigated 

by truncating the model, with a ‘reflectionless’ boundary condition basal to the characteristic 

place. If no significant reflections are propagating between the characteristic place and the base 

in the full model, then the response should be unaffected by the truncation. The process is 

illustrated in Figure D.3a. This approach would fail to detect local reflections from the 

characteristic place, which do not propagate basally as far as the un-shaded region. However, 

local reflections are neglected in this analysis on the basis that reflections which are unable to 

propagate a substantial distance are unlikely to be significant.  

When a truncation is imposed at location xtrun, the number of elements used to represent the 

length of the discrete model reduces from N to Ntrun. Conservation of momentum at the 

truncation leads to the boundary condition (D.2) in the finite difference method notation. This 

boundary should minimise reflections if the CP impedance immediately adjacent to the 

truncation, ( 1)CP trunZ N − , is set equal to the impedance of the forward travelling wave at this 

location ( 1)trunZ N+ −  defined in (D.3). 

 ( ) ( 1) ( 1)
( 1)

( 1)
d trun d trun d trun

f trun

CP trun

p N p N i p N
i u N

Z N

ωρ
ωρ

− − −
= − − = −
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where for the jth element,  

 
1
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j

Z N i HZ N
k N

ρω
ωρ= =  (D.4) 

 

This method can be used to impose a reflectionless boundary condition at any point along the 

CP. Introducing the truncation 2.5 mm basal of the characteristic place, elicits a change of less 

than ¼ dB in the velocity response of the cochlear partition across a range of stimulus 

frequencies (Figure D.3b). This implies that there are no sites of significant reflection in the 

vicinity of the characteristic place, as the response in the basal region is not affected by the 

truncation. 

It should be noted that at locations very close to the characteristic place, numerical errors can 

occur in the implementation of the finite difference equations as a consequence of the rapid 

spatial variation in parameters such as the characteristic impedance Zchar. These errors can be 

substantially reduced by increasing N, the number of elements in the discrete model. 

 

In conclusion, there are no substantial reflections occurring within the discrete linear active Kanis 

& de Boer cochlear model, for N=1000. As the impedance variations are greater in the active 

model, compared to the passive model, we can infer that significant reflections are also absent in 

the discrete linear passive Kanis & de Boer model.  

D.2 Quasilinear cochlear models 

We have established that, for a linear cochlear model, reflections can be neglected in both the 

passive and active case. In contrast, Figure D.4 and Figure D.5 illustrate that backward travelling 

waves arise in a baseline quasilinear cochlear model, in which no impedance irregularities have 

been deliberated introduced, at moderate stimulus levels (40 − 80 dB SPL). This is due to the 

spatial variations in the active impedance which are introduced by the effects of self-suppression. 

For example, Figure D.4 shows the inverse Fourier transform of the velocity distribution obtained 

by allowing the quasilinear method to converge for a single frequency excitation at 2 kHz. This 

graph demonstrates that some of the k<0 components of the V(k) spectrum have amplitudes within 

40 dB of the optimal k>0 components for stimuli at 60 and 80 dB SPL, indicating that negative 

wavenumbers cannot be neglected. In addition the input impedance of the Kanis & de Boer model, 

shown in Figure D.5, exhibits peaks and troughs for the 60 dB SPL stimulus. These results indicate 

the presence of backward travelling waves, which may arise as a consequence of impedance 
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perturbations due to self-suppression acting as sites of reflection. Figure D.6 demonstrates that the 

nonlinearity causes the amplitude of the WKB condition parameter 2
1 dk

dxk
to increase in the region 

basal to the characteristic place, relative to a linear model with comparable CA gain. Despite this 

behaviour at moderate stimulus levels, it should be noted at for low levels (< 40 dB SPL) and very 

high levels (> 80 dB SPL) no significant reflections occurring within the cochlear model are 

evident in either the wavenumber spectrum (Figure D.4) or the input impedance (Figure D.5). 

 
Figure D.4 The inverse Fourier transform of the quasilinear fundamental velocity distribution 
The plots show the inverse Fourier transform, V(k), of the fundamental velocity distribution v(x) evoked by a 
2 kHz tone in the (a) modified Neely & Kim model and (b) the Kanis & de Boer model. The result is 
obtained using the quasilinear method, and a discrete model with N=1000. 
 

 
Figure D.5 The estimated input impedance for the quasilinear cochlear model 
The input impedance, Zc, of the quasilinear Kanis & de Boer cochlear model is shown for a range of stimulus 
levels, evaluated using the finite difference method with N=1000. 
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Figure D.6 The WKB approximation condition for the quasilinear model 
(a) The velocity response and (b) amplitude of the WKB condition parameter for the Kanis & de Boer model 
stimulated at 5 kHz. Results are shown for a 60 dB SPL stimulus in the QL model (solid black line) and 
linear model using γ = 0.74 (dotted black line) and γ = 1 (solid grey line). The (c) magnitude and (d) phase of 
the complex wavenumber, k(x), are also shown. The calculations were performed using N=1000. 
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E Quasilinear iterative procedures 

In this appendix, the details of the quasilinear iteration used in this thesis are presented. This is 

partly for completion and partly because it differs in some details from the method described by 

Kanis & de Boer. These differences were introduced to make the process more consistent and were 

found to significantly improve the convergence properties of the iterative procedure.  

In appendix E.1 − E.5, the quasilinear method is discussed with reference to the original 

micromechanical model of Kanis & de Boer. Appendix E.6 discusses the application of this method 

to a different micromechanical model, that of Neely & Kim (1986).  

E.1 Fundamental component of the response to a single tone stimulus 

An illustration of the Kanis & de Boer (1993) iterative process used to estimate the fundamental 

response of the quasilinear model to a stimulus with angular frequency ω is shown in Figure E.1. 

The process stops when the estimate of v(x,ω) varies by less than 0.1% between iterative cycles. 

When implementing this procedure in MATLAB it is necessary to construct a time vector t, 

ranging between 0 and 2π/ω, with Nt samples per period. Kanis & de Boer recommend using Nt 

equal to 24, but as numerical integration errors can occur at high stimulus levels we use a t of 

variable sample length. This is achieved by evaluating step 2 of the process several times with 

increasing values of Nt in a single iterative cycle. Step 2 is considered complete only when a value 

of Nt is found for which further increases in Nt produce no significant change in the estimated 

pressure output of the OHCs. For example, when evaluating the response of the Kanis & de Boer 

quasilinear model to a 5 kHz stimulus, we find that Nt equal to 24 is sufficient for stimulus levels 

up to 60 dB SPL, but that higher values of Nt are required for greater stimulus levels.  

As the position of the nonlinearity within the feedback loop influences the calculation of 

( , , )QL

OHCp x nω in step 2, either equation (E.1) or (E.2) should be used depending on whether the 

nonlinearity (F) is placed before or after or filter 2 respectively (see section 3.2).  

 
( ) ( )

0

1
( , ) ( , ) ( , ) exp( ) exp

T
QL lin

OHC OHCp x Z x F v x i t i t dt
T

= ⋅ ⋅ ⋅ −∫ω ω ω ω ω  (E.1) 

 

( ) ( )
0

1
( , ) ( , ) ( , ) exp( ) exp

T
QL lin

OHC OHCp x F Z x v x i t i t dt
T

= ⋅ ⋅ ⋅ −∫ω ω ω ω ω  (E.2) 

Kanis & de Boer employ averaging between iterative cycles to improve the rate of the convergence 

of the procedure. We observed by trial and error indicated that using an averaging ratio of 0.3×new 

+ 0.7×old, appeared to produce consistently rapid convergence across a range of stimulus levels. 
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Step 0: An initial estimate of the CP impedance is made by assuming the model is 

fully active 

( , , 1) ( , ) ( , )QL pass lin

CP CP OHCZ x n Z x Z x= = −ω ω ω  

 

 

Step 1: The finite difference method is used to  

determine ( , , )dp x nω and, ( , , )v x nω  given ( , , )QL

CPZ x nω  

 

 

Step 2: The response of the OHCs is calculated in the following stages… 

(i) A time domain input to the nonlinearity is constructed from the fundamental 

component of the CP velocity 

( )( , , ) 2 Re ( , ) ( , , ) exp( )lin lin

OHC OHCp x t n Z x v x n i tω ω ω= ⋅ ⋅  

(ii) The time domain signal is passed through the hyperbolic tangent nonlinear 

function and the fundamental component of the output extracted… 

{ }
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1
( , , ) tanh ( , , ) /

T
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OHC ref OHC refp x n p p x t n p e dt
T

= ⋅∫ ωω  

 

 

Step 3: A new estimate of the CP impedance is formed 
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Figure E.1 The quasilinear iterative process for evaluating the fundamental response 

The scaling parameter pref, which has dimensions of pressure, is set equal to 2 by Kanis & de Boer (1993). 

Steps 1 to 3 are repeated until the estimate of v varies by less than 0.1%. The parameter n denoted the nth 

iterative cycles 
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E.2 The harmonic response to a single tone stimulus 

Given the predicted fundamental response to a single tone stimulus, it is possible to extend the 

quasilinear method to estimate the harmonic responses as described below.  

The mth harmonic component of QL

OHCp  can be regarded theoretically in two different ways. First, 

there is the harmonic component generated by the BM motion at the fundamental frequency which 

acts as an internal source for the harmonic response. This component of QL

OHCp  is labelled ,
QL

OHC Ap  

and is calculated using (E.3) and (E.4), where the time period T is equal to 2π/ω and F(] 

corresponds to the nonlinearity. 

 

( ) ( ), ,0

1
( , ) ( , ) exp

T
QL lin

OHC A OHC Ap x m F p x t im t dt
T

= ⋅ −∫ω ω  (E.3) 

where  ( ), ( , ) 2 Re ( , ) ( , ) exp( )lin lin

OHC A OHCp x t Z x v x i tω ω ω= ⋅ ⋅  (E.4) 

Second, it is useful to calculate the total quasilinear pressure output of the OHCs at harmonic 

frequency mω, including the effects of any self-suppression of the harmonic response. This total 

quasilinear pressure is labelled ,
QL

OHC Bp , and is evaluated using (E.5) and (E.6). The extent of the 

self-suppression of the harmonic response can be estimated from the difference between ,
QL

OHC Bp  

and ,
QL

OHC Ap , denoted by QL

OHCp∆ , and is used to define the harmonic quasilinear impedance of the 

OHC complex, as shown in (E.7). 

 

( ) ( ), ,0

1
( , ) ( , ) exp

T
QL lin

OHC B OHC Bp x m F p x t im t dt
T

= ⋅ −∫ω ω  (E.5) 

where  

,

( , ) ( , ) exp( )
( , ) 2 Re

( , ) ( , ) exp( )

lin

OHClin

OHC B lin

OHC

Z x v x i t
p x t

Z x m v x m im t

ω ω ω

ω ω ω

 ⋅ ⋅
=   + ⋅ ⋅ 

 (E.6) 

and 
, ,( , )

( , )
( , ) ( , )

QL QLQL
OHC B OHC AQL OHC

OHC

p pp x m
Z x m

v x m v x m

ω
ω

ω ω

−∆
≡ =  (E.7) 

The Kanis & de Boer (1993) iterative process for evaluating the harmonic response is illustrated in 

Figure E.2. It uses the wave equation for the harmonic component shown in (E.8). This is 

analogous to the fundamental wave equation given in (A.17), but in this case the distributed source 

is the harmonic component of ,
QL

OHC Bp . 
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 2

,2

( , ) 2 1 2
( , ) ( , )

( , ) 2 ( , )
QLd

d OHC Bpass pass

CP CP

p x m im im
p x m p x m

x HZ x m HZ x m

∂
− ⋅ = ⋅

∂
ω ωρ ωρ

ω ω
ω ω

 (E.8) 

Alternatively the wave equation for the harmonic response can be re-arranged into the form shown 

in (E.9). If this wave equation is used, instead of (E.8), the iterative process then requires an 

additional step within each cycle, compared to the original Kanis & de Boer approach, as shown in 

Figure E.2 The convergence of this modified iterative procedure is more rapid than the original, as 

illustrated in Figure E.3. A possible explanation for this improvement is discussed in appendix E.3.  

 2

,2

( , ) 2 1 2
( , ) ( , )

( , ) 2 ( , )
QLd

d OHC AQL QL

CP CP

p x m im im
p x m p x m

x HZ x m HZ x m

∂
− ⋅ = ⋅

∂
ω ωρ ωρ

ω ω
ω ω

 (E.9) 

In summary, our approach to evaluating the harmonic components is identical to that of the 

quasilinear method proposed by Kanis & de Boer, apart from the rearrangement of (E.8) into (E.9). 

In our investigation the iteration process continues until the estimated fundamental, harmonic and 

DP responses vary by less than 1% between cycles. The process also stops after 50 iterations, even 

if this condition is not met, provided that the harmonic response is 100 dB below that of the 

fundamental component. For the stimulus frequencies considered in this investigation, up to 63 

iterations were required to establish the fundamental, 2nd, and 3rd order components of the BM 

displacement evoked by a single tone stimulus in a cochlear model incorporating a Boltzmann 

nonlinearity. This calculation is achieved on a 2.4 GHz computer in less than 60 seconds which is 

significantly less than the computational time of 2 to 4 hours required to allow a time domain 

simulation to reach steady state Ku (2008).  
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Step 0: Estimate the fundamental response ( , , )v x nω , make an initial estimate of the CP impedance for 

mω by assuming the model is fully active at this frequency 

( , , 1) ( , ) ( , )QL pass lin

CP CP OHCZ x m n Z x m Z x m= = −ω ω ω  

then evaluate 

( ){ },

0

1
( , , 1) tanh 2Re ( , ) ( , , ) exp( )

T

QL lin im t

OHC A OHCp x m n Z x v x n i t e dt
T

ωω ω ω ω= = ⋅ ⋅ ⋅∫  

 

Step 1: Equations (A.11) and (A.10) are used to re-estimate ( , , )dp x nω  and ( , , )v x nω , given 

( , , )QL

CPZ x nω . In addition, equations (E.9) and (A.10) are used to determine ( , , )dp x m nω and 

( , , )v x m nω , given ( , , )QL

CPZ x m nω . 

 
Step 2: The OHC response is calculated 

( )
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( )
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,
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2 Re ( , ) ( , , ) exp( )1 1
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Step 3: A new estimate of the CP impedance at the fundamental frequency is formed 

( , , 1)
( , , 1)

( , , )

QL
QL pass OHC
CP CP

p x n
Z x n Z

v x n

+
+ = −

ω
ω

ω
 

 

Step 4: In the original Kanis & de Boer method 

, ( , , )QL

OHC Bp x m nω is used to solve (E.8) to obtain 

( , , 1)dp x m nω + and 

,
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Step 4: In the modified method 

,

,

( , , 1)

( , , 1)
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OHC
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Step 5: Stop iteration when, at every location, either 

( , , ) ( , , 1)
0.01

( , , )

v x m n v x m n

v x m n

ω ω
ω

− −
<  or 10

( , , )
20 log 100dB

max ( , , )

v x m n

v x n

ω
ω

 
⋅ < −  

 
for n>50 

 
Figure E.2 The quasilinear iterative process for estimating the mth order harmonic component of the response 
to a single tone stimulus 
The nonlinearity scaling parameter pref, which has dimensions of pressure, is set equal to 2 by Kanis & de 
Boer (1993). It is necessary to employ boundary conditions for the harmonic component and so we assume 

that ( , , ) 0
d

p x L m n= =ω at the helicotrema and that the stapes velocity associated with the external 

stimulus, introduced in (B.2), is zero: ( ) 0in

st
u m =ω
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Figure E.3 The convergence of the quasilinear iterative estimate of the harmonic response 
The (a) amplitude and (b) phase of the response of the Kanis & de Boer micromechanical model after 
convergence to a stimulus stapes velocity of 80 dB re 10 − 8m/s at 6 kHz. The fundamental (black lines) and 
3rd order (grey lines) components were estimated using either the original (dotted lines) or modified (solid 
lines) iterative methods. (c) & (d) The rate of convergence of the 3rd harmonic estimate, at a location 0.0003 
m from the stapes, is illustrated. The total number of iterations required for the whole distribution to 
converge was 218 for the original method, and 11 for the modified method. 

E.3 Improved convergence of the iterative process 

The modified iteration procedure, for estimating the harmonic components of the response to a 

single tone stimulus with the quasilinear method, exhibits more rapid convergence that the original 

iteration scheme. The quasilinear method uses a fixed-point iteration process, which is described in 

simple terms by (E.10). This process will converge, as shown in Figure E.4, provided that condition 

(E.11) is satisfied, and the convergence is more rapid for smaller gradients (Bostock & Chandler, 

1990). 

 
1 { }n nz g z+ =  (E.10) 

 ( )
1

dg z

dz
<  (E.11) 

The analogy between this simple convergence formula and the quasilinear method is not obvious 

because of the complex and coupled nature of the cochlear model solution. If zn corresponds to the 

CP velocity at location xi, where i takes a value between 1 and N, then g(zn) corresponds to the CP 

velocity v(xi) predicted by the following iterative cycle, using the equations shown in Figure E.2.  
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Figure E.4 An illustration of a fixed-point iteration scheme 
This iterative method finds the solution to z=g(z). An initial estimate of the solution, z1, is gradually 
improved by repeatedly settings zn+1 equal to g(zn). The process will convergence provided that condition 
(E.11) is satisfied. 

 

For a problem with complex variables we can apply (E.10) and (E.11) to the real and imaginary 

components separately, to generate the following convergence condition 

 Re[ ( )] Im[ ( )]
1 and 1

Re[ ] Im[ ]

g z g z

z z

∂ ∂
< <

∂ ∂
 (E.12) 

 As the cochlear model consists of coupled micromechanical elements, the rate of convergence for 

the solution at one location along the CP may be influenced by the value of the solution at all the 

other N-1 locations which also change every iterative cycle. Therefore we have been unable to 

prove whether the fixed-point iteration method is guaranteed to converge to a solution at a given 

location, without prior knowledge of the solution at all other locations. However, when the solution 

at all locations has been estimated, it is possible to evaluate the partial derivates in (E.12) to 

determine if one application of the fixed-point iteration method can be expected to converge more 

rapidly than the other. For example, when the predicted solution v(x) has been obtained, the 

function g[v(xi)] can be estimated by repeatedly calculating g[v(xi)] for a range of v(xi) values close 

to the known v(xi) solution. The resulting g[v(xi)] functions at a location 0.0075 m from the base, 

for the two alternative iteration schemes, are shown in Figure E.5. The gradient values shown in 

this figure indicate that although the convergence condition (E.12) is satisfied for both the original 

and modified iterative processes, the gradient for the modified scheme is much smaller suggesting 

this process should converge more rapidly. This is consistent with the observation that in practice, 

the original method requires more iterative cycles to reach an estimated solution compared to the 

modified process.  
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Figure E.5 The convergence properties of the iterative procedure 
Plots of y=g[v(xi)] are shown for the original (a & b) and modified (c & d) fixed-point iteration schemes, for 
the location 0.0003 m from the stapes, when the Kanis & de Boer model is stimulated with a stapes velocity 
of 80 dB re 10 − 8 m/s at 6 kHz. This is the same location as featured in Figure E.3. The dotted line shows 
y=v(xi) for reference. 

E.4 Two tone suppression 

The iterative process used to establish the quasilinear response of a cochlear model to two tone 

stimulation (ω1 and ω2) is shown in Figure E.6. Only the primary responses, at frequencies ω1 and 

ω2 are estimated at this stage. However, distortion components can also be determined using the 

quasilinear method as shown in appendix E.5.  

E.5 Estimating distortion products 

The quasilinear procedure for estimating distortion products, arising when the cochlear model is 

stimulated by two tones (f1 and f2) simultaneously, is illustrated in Figure E.7. The estimation of 

distortion products involves a sequence of three iterative procedures: the two single tone responses, 

the two tone suppression and finally the distortion product response. The third stage is analogous to 

the iterative process used to predict the harmonic response to a single tone stimulus. 
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Step 0: A time period, T, is selected which will contain an integer number of cycles of 

both stimuli (f1 and f2). The fundamental response of cochlear model to each tone 
individually is then established using the quasilinear method (appendix E.1). This 

provides estimates of 1( , , 1)QL

CPZ x nω = and 2( , , 1)QL

CPZ x nω =  

 
 

Step 1: The finite difference method is used to  

determine 1 and 2( , , )dp x nω and, 1 and 2( , , )v x nω  given 1 and 2( , , )QL

CPZ x nω  

 
 
Step 2: The response of the OHCs is calculated in the following stages… 
(i) A time domain input to the nonlinearity is constructed from the ω1 and ω2 
components of the CP velocity 

( )
1,2

( , , ) 2 Re ( , ) ( , , ) exp( )lin lin

OHC OHC l l l

l

p x t n Z x v x n i tω ω ω
=

= ⋅ ⋅∑  

(ii) The time domain signal is passed through the hyperbolic tangent nonlinear function 
and the fundamental component of the output extracted… 

 { }
0

1
( , , ) tanh ( , , ) / l

T

i tQL lin

OHC l ref OHC refp x n p p x t n p e dt
T

= ⋅∫ ωω  for l = 1 or 2 

 
 

Step 3: A new estimate of the CP impedance is formed 

( , , )
( , , 1) ( , )

( , , )

QL
QL OHC l
CP l pass l

l

p x n
Z x n Z x

v x n

ω
ω ω

ω
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Step 4: Stop iteration when, at every location, either 

( , , ) ( , , 1)
0.001

( , , )
l l

l

v x n v x n

v x n

ω ω
ω

− −
<  for l = 1 or 2  
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( , , )
20 log 100 dB

max ( , , )
l

l

v x n

v x n

 ω
⋅ < −  ω 

 

 
Figure E.6 The quasilinear iterative process for estimating the primary quasilinear responses to two tone 
stimulation 
The two stimulus tones have angular frequencies ω1 and ω2. The scaling parameter pref, which has 
dimensions of pressure, is set equal to 2 by Kanis & de Boer (1993). 
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Step 0: A time period, T, is selected which will contain an integer number of cycles of both stimuli (f1 and 

f2). The fundamental response of cochlear model to each tone individually is then established using the 
quasilinear method (appendix E.1). Then the two tone quasilinear iteration is performed (appendix E.4) to 

provide estimates of  

1( , , 1)QL

CPZ x nω = and 2( , , 1)QL

CPZ x nω =  

 The estimated primary velocity responses ( , , )lv x nω , where l = 1 or 2, can be used to make an initial 

estimate of the CP impedance at the distortion product frequency ωdp by assuming the model is fully active at 
this frequency 

( , , 1) ( , ) ( , )QL pass lin

CP dp CP dp OHC dpZ x n Z x Z x= = −ω ω ω  

The distributed pressure source for the distortion product can then be estimated 

( ),
1,20

1
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p x n Z x v x n i t e dt
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ωω ω ω ω
=

 
= = ⋅ ⋅ ⋅ 

 
∑∫  

 

Step 1: Equations (A.11) and (A.10) are used to re-estimate ( , , )d lp x nω  and ( , , )lv x nω , given 

( , , )QL

CP lZ x nω , for l =1 and 2 In addition, equations (E.9) and (A.10) are used to determine 

( , , )d dpp x nω and ( , , )dpv x nω , given ( , , )QL

CP dpZ x nω . 

 
Step 2: The OHC response is calculated 
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Step 3: A new estimates of the CP impedance are formed …  
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for n>50 

Figure E.7 the quasilinear iterative process for estimating the distortion product evoked by two tone 
stimulation 
The stimulus tones (ω1 and ω2), evoke the DP, ωdp. The scaling parameter pref, which has dimensions of 
pressure, is set equal to 2 by Kanis & de Boer (1993). 
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Figure E.8 The micromechanical model of Neely & Kim  
This plot is based on figure 2.1 of Ku (2008). The micromechanical parameters (k1, c1, m1, m2, k3, c3, k4, c4) 
are defined in Table E.1(i). The vertical displacement of the BM and the radial displacement of the tectorial 
membrane are denoted by ξb and ξt respectively. The gain between the organ of Corti and the reticular 
laminar, g, is set equal to 1 (Neely & Kim, 1986). In addition, s=iω, where ω is the angular frequency of the 
stimulus. Neely & Kim define four impedances in their model: The passive impedance of the OC (Z1 = 
sm1+c1+k1/s), the passive impedance of the TM (Z2 = sm2 + c2 + k2/s), the coupling between the TM and OC 
(Z3 = c3 + k3/s), and the phase shift between the shear displacement input to the OHCs and the active pressure 
output (Z4 = c4 + k4/s). 

E.6 The quasilinear Neely & Kim model 

A single micromechanical element in the Neely & Kim (1986) model can be represented as shown 

in Figure E.8, where the parameters are defined in Table E.1. The micromechanical feedback loop 

for the linear active Neely & Kim model can also be illustrated by the block diagram given in 

Figure E.9a. In this diagram the filters are defined in terms of the impedances given in the caption 

to Figure E.8.  
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Micromechanical 

parameter 

Interpretation (i) 

Original Neely & Kim 

model 

(ii) 

Original 

Kanis & 

de Boer 

model 

(iii) 

Modified 

model 

b 

The ratio of the average 
displacement across the 
width of the CP to the 
maximum displacement 
over the width of the BM 

0.4 0.4 0.4 

g The BM to IHC lever gain 1 1 1 

m1 
The mass of the OC 3×10

-2 
kgm

-2
 KB

bm  
KB

bm  

k1 
The compliance of the OC 1.1×10

10
e

-400x 
Nm

-3
 KB

bk  
KB

bk  

c1 
The damping of the OC 200+1.5×10

4
e

-200x
Nsm

-3
 KB

bc  
KB

bc  

k2 The compliance of the TM 7×10
7
e

-440x
Nm

-3
 0 0 

c2 The damping of the TM 100e
-220x

Nsm
-3

 0 0 

m2 Mass of the TM 5×10
-3

kgm
-2

 - - 

k3/m2 

The ratio of the 
compliance in the 
coupling between the OC 
and TM to the mass of the 
TM 

- 
2 2

n
σ ω  

2 2

1n
Qσ ω  

c3/m2 

The ratio of the damping 
in the coupling between 
the OC and TM to the 
mass of the TM 

- 
sc n

δ ω  1sc n
Qδ ω  

c4 

The damping associated 
with the action of the 
OHCs 

100e
-80x

Nsm
-3

 0 0 n
be d ω  0 0 2n

be d Qω  

k4 

The compliance associated 
with the action of the 
OHCs 

6.15×10
9
e

-400x
Nsm

-3
 

2

0 0 n
be d ω  

2

0 0 2n
be d Qω

Table E.1 The micromechanical parameters of Neely & Kim (1986) model related to other cochlear models  
(i) Neely & Kim model of the cat cochlea in S.I units (Elliott et al., 2007), (ii) the original Kanis & de Boer 
model as formulated in appendix F.4, and (iii) the parameters of the modified model presented in section 3.4. 
The interpretation of the parameters is based on that given by Neely & Kim (1986), in terms of the cochlear 
partition (CP), organ of Corti (OC), tectorial membrane (TM), and outer hair cells (OHCs). The factors mKB, 
cKB, kKB, σ, δsc, e0, d0 and ωn are defined in section 2.2.1. The distributions Q1 andQ2 are defined in section 
3.4.  
 

A nonlinear model can be developed from the linear active Neely & Kim model by inserting a 

nonlinear function into the micromechanical feedback loop as shown in Figure E.9 b and c. Such a 

model can be solved using the quasilinear method described in the previous sections, given the 

following modification. In step 1 of the quasilinear iterative process described in E.1, it is 

necessary to evaluate the difference in shear displacement between the tectorial membrane (TM) 

and organ of Corti (OC), ξ, in addition to the variables pd and v, using (E.13) (Neely & Kim, 1986). 

 
2

2 3

( , ) ( , , )
( , , )

( , ) ( , )
lever

w

g Z x v x n
x n

b Z x Z x i
=

+
ω ω

ξ ω
ω ω ω

 (E.13) 
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(a) 

 

 

(b) 

 

(c) 

 
Figure E.9 Representations of single micromechanical element in the Neely & Kim (1986) model 
The block diagrams represent (a) linear active model of Neely & Kim. Filter 1 denotes the passive admittance 
of the organ of Corti (1/Z1), filter 2 describes the dynamics of the OHC (Z4) and filter 3 arises from the 
interaction between the TM and OC (gZ2/(b(Z2+Z3))). Impedances Z1, Z2, Z3 and Z4 are defined in the caption 
of Figure E.8. A nonlinear model can be developed by inserting a nonlinear function either (b) before or (c) 
after filter 2.  
 

This shear displacement then acts as the input to the OHCs, so that the quasilinear pressure 

output ( , , )QL

OHCp x nω in step 2, can be calculated using either equation (E.14) or (E.15) depending 

on whether the nonlinearity is placed before or after or filter 2 respectively 

 
( ) ( )40

1
( , , ) ( , ) ( , , ) exp( ) exp

T
QL

OHCp x n Z x F x n i t i t dt
T

= ⋅ ⋅ ⋅ −∫ω ω ξ ω ω ω  (E.14) 

 
( ) ( )40

1
( , , ) ( , ) ( , , ) exp( ) exp

T
QL

OHCp x n F Z x x n i t i t dt
T

= ⋅ ⋅ ⋅ −∫ω ω ξ ω ω ω  (E.15) 

Finally, in step 3 of the iterative process the quasilinear impedance of the CP can be estimated 

using  

 
2

2 3

( , , )
( , , 1)

( , , )

QL
QL pass lever OHC
CP CP

w

g p x nZ
Z x n Z

b Z Z i x n
+ = −

+
ω

ω
ωξ ω

 (E. 16) 

In summary, the quasilinear method can be used to estimate the response of the nonlinear Neely & 

Kim coupled cochlear model. However, the process must be adapted to account for the fact that in 

the Neely & Kim formulation the input to the OHCs is the difference in the shear displacement 

between the TM and OC. This is in contrast to the Kanis & de Boer formulation, where the input to 

the OHCs is associated with the vertical displacement of the cochlear partition. The use of different 

variables to stimulate the OHCs means that the quasilinear response of the model will be different 

in each formulation even if equivalent micromechanical parameters are used.  
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F. State space representation of the Kanis & de Boer cochlear 

model 

In this section the state space model of the Kanis & de Boer micromechanical cochlear model is 

described. First a general method for obtaining the frequency domain state space framework for a 

linear system, from the system transfer function, is reviewed. This is then applied to the uncoupled, 

linear, active Kanis & de Boer micromechanical model. This state space model is used as the basis 

of the coupled linear active state space model in appendix F.3. Finally, the state space 

representation of the uncoupled linear active model is used to determine a relationship between two 

different micromechanical models considered in appendix F.4. 

F.1 A frequency domain state space representation of a linear system 

Furuta et al. (1988) describe a method for constructing a frequency domain state space 

representation of a linear system from its transfer function. In this section the approach is 

summarised for a general system and it is applied to the Kanis & de Boer linear active cochlear 

model. 

If a system is stimulated by a sinusoidal pressure input p, at an angular frequency ω, and generates 

an output velocity v, then the system transfer function (Hss) is defined below. In this case, s = iω, 

but in general s may contain real and imaginary components to allow unstable systems to be 

characterised.  

 ( )
( )

( ) ss

v s
H s

p s
≡  (F.1) 

The state space model for a system can be written in the time domain as  

 ( ) ( ) ( )

( ) ( ) ( )

t t p t

v t t p t

= +

= +

ɺw Aw B

Cw D
 (F.2) 

where w is the state vector, incorporating the displacement of one of the system components, w, 

and several orders of its time derivative such that 

 
1 1 1 1[ ]T w w w w= ɺ ɺɺ ɺɺɺw  (F.3) 

In the present case v(t) is not directly proportional to p(t), so the “feed through” matrix D is zero. 
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If each element of the state vector w(t) is now proportional to est, the state space equations written 

as  

 ( ) ( ) ( )s s s p s= +w Aw B  

and ( ) ( )v s s= Cw  
(F.4)  

Equation (F.4) can be rearranged to give an expression for Hss(s) in terms of the state space 

matrices A, B, C and D as shown below. In this equation ‘adj’ and ‘det’ refer to the adjoint and 

determinant matrix functions respectively and I denotes the identity matrix. 

 

( ) ( )
( )

1  adj
( )

detss

s
H s s

s

− −
= − =

−

C I A B
C I A B

I A
 (F.5) 

The determinant of (sI − A] gives a denominator polynomial of order q in s, while every element of 

the adjoint matrix of (sI  −  A] gives a numerator polynomial of order 1q≤ −  in s (Furuta et al., 

1988). Therefore equation (F.5) can be re-written as (F.6), where φss(s) is a lower order polynomial 

than χss(s).  

 ( )
( )

( )
ss

ss

ss

s
H s

s
=

φ
χ

 (F.6) 

Equations (F.5) and (F.6) can be used to determine the elements of the state space matrices A, B, C 

and D using the following procedure. First, note that the variables G(s) is Figure F.1 such that 

 

1
1 1 0

( ) 1 1

( ) ( )
ss

n n

ss n

G s

p s s s s s−
−

= =
+ + + +⋯χ α α α

 (F.7) 

and 1 2
1 2 1 0

( )
( )

( )
n n

ss n n

ss

v s
s s s s

G s

− −
− −= = + + +⋯φ β β β β  (F.8) 

 

 

 
Figure F.1 Representation of the transfer function given in equation (F.6) for a single micromechanical 

element of a cochlear model. 
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Cross multiplying (F.7), and multiplying both sides by est, we can define w(s)est
 as w(t) so that 

sw(s)est is equal to dw(t)/dt etc. Therefore (F.7) can be written in the time domain as 

 1

0 1 1 1

1

0 1 1 1

( )
( ) ( )

( )
( ) ( )

q q

q q q

q q

qq q

dw t d w d w
w t p t

dt dt dt

d w dw t d w
w t p t

dt dt dt

−

− −

−

− −

+ + + + =

⇒ = − − − − +

⋯

⋯

α α α

α α α

 (F.9) 

Secondly, Figure F.1 also shows that 

 ( ) ( ) ( )ssv s s w s= φ  (F.10) 

which, using a similar method to that described above, can also be represented in the time domain 

as 

 1

1 1 01

( ) ( )
( )

q

q q

d w t dw t
v t

dt dt

−

− −
= + + +⋯β β β  (F.11) 

If a state vector 1 2 3, , ,T

qw w w w =  …w  is now selected, such that 2 1w w= ɺ , 3 2 1w w w= =ɺ ɺɺ etc, 

then (F.9) and (F.11) can be written in the matrix forms  

 
1 1

2 2

3 3

1 0 1 1 1

0 1 0 0 0

0 0 1 0 0

0 ( )

0 1 0

1q q q

w w

w w
d

w w p t
dt

w w− − −

       
       
       
       = −
       
       
       − − −       

⋯

⋮ ⋱ ⋮

⋮ ⋮

⋯ ⋯α α α

 (F.12) 

and 
1

2

30 1 1

1

( ) q

q

w

w

wv t

w

−

−

 
 
 
  =    
 
  

⋯ ⋯

⋮

β β β  (F.13) 

Therefore the state space matrices are given by  
 

 

0 1 1

0 1 0 0

0 0 1 0

0

1

q−

 
 
 
 =
 
 
 − − − 

⋯

⋮ ⋱

⋮

⋯ ⋯α α α

A ,

0

0

0

1

 
 
 
 =
 
 
  

B ⋮ , 

and 0 1 1q− =  ⋯ ⋯β β βC  

(F.14) 
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The general method described in the previous section can be applied to a single micromechanical 

element of the linear Kanis & de Boer cochlear model in order to assess the stability of the 

uncoupled model and contribute to the construction of a coupled state space model.  

F.2 The uncoupled linear active Kanis & de Boer micromechanical model 

The general technique for formulating a state space model of a linear system in the frequency 

domain, given in appendix F.1. In this section, the technique is applied to obtain a state space 

model of a single micromechanical element in the linear active Kanis & de Boer cochlear model. 

This is then used to evaluate the response to of the uncoupled model to sinusoidal stimulation and 

to determine the stability of the system. 

F.2.1 The state space representation 

The linear active Kanis & de Boer cochlear model is described by two impedances ( , )pass

CPZ x s and 

( , )lin

OHCZ x s , where s=iω in this case, defined in (F.15) and (F.16). The variables ( )KBm x , ( )KBc x , 

and ( )KBk x  represent the mass, resistance and stiffness per unit area of the basilar membrane (BM) 

respectively, and details of the other parameters can be found in section 2.2.1.  

 ( )
( , ) ( ) ( )pass KB

CP KB KB

k x
Z x s sm x c x

s
= + +  (F.15)  

 

0 2

1 ( , )
( , ) ( )

( , )
( , )

lin

OHC o n

SC

ib x s
Z x s e x d

i b x s
b x s

ω
σ

δ

 
 

+ 
= ⋅  

  + −    

 (F.16) 

where 
( , )

n

s
ib x s

ω
=  

 

 

The overall system transfer function (F.17) is a function of these two impedances. The input to the 

overall micromechanical element is the transmembrane pressure, p(s), and the output is the vertical 

velocity of the CP, v(s). The parameter γ(x) controls the gain of the activity in the model so that 

γ(x)=0 and γ(x)=1 for a passive and an active model respectively (Neely & Kim, 1986).  

 ( , ) 1
( , )

( , ) ( , ) ( ) ( , )ss pass lin

CP OHC

v x s
H x s

p x s Z x s x Z x s
≡ =

−γ
 (F.17) 
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In order to construct the state space matrices for a single micromechanical element of the Kanis & 

de Boer model, the polynomials χss(s) and φss(s) (defined in appendix F.1) must be formed. This is 

achieved by expanding (F.17) in powers of s and comparing the result to (F.6), to give  

 [ ]4 3
0 0

2 2 2 2
0 0

2 2 2 2

( ) /

/

/ /

ss sc n KB KB n KB

KB n KB sc n KB n KB

KB n KB sc n KB KB n KB

s s s m c e d m

s m c k e d m

s c k m k m

= + + −

 + + + − 

 + + + 

χ δ ω γ ω

σ ω δ ω γ ω

σ ω δ ω σ ω

 (F.18) 

and 3 2 2 2( ) / / /KB sc n KB n KBs s m s m s mφ δ ω σ ω= + +  (F.19) 

The coefficients of these polynomials are listed below by comparison with (F.9) and (F.11), and 

these parameters can be used to construct the state space matrices A, B, C and D as shown in (F.14). 

 

( )

( )

( )

2 2

0

2 2

1

2 2 2
0 0

2

0 0
3

n KB

KB

sc n n KB

KB

KB sc n KB n KB n

KB

KB sc KB n n

KB

k

m

k c

m

k c m e d

m

c m e d

m

σ ω
α

δ ω σ ω
α

δ ω σ ω γ ω
α

δ ω γ ω
α

=

+
=

+ + −
=

+ −
=

 

0

2 2

1

2

3

0

1

n

KB

sc n

KB

KB

m

m

m

β

σ ω
β

δ ω
β

β

=

=

=

=

 (F.20) 

The vertical velocity of the BM, v(s), can be calculated from the state space representation using 

 ( ) 1
( ) ( )v s s p s

−
= −C I A B  (F.21) 

The state space representation for the uncoupled Kanis & de Boer cochlear model is validated by 

comparing the resulting velocity response, with s=iω, to that obtain by direct application of the 

transfer function as shown in Figure F.2. The responses differ by less than 3×10 − 14dB across a 

range of stimulus frequencies. 
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Figure F.2 The response of a single micromechanical element in the Kanis & de Boer cochlear model 
The responses is calculated using the conventional method (grey line) and the state space approach (black 
dotted line).  

 

F.2.2 The stability of the uncoupled Kanis & de Boer model 

The eigenvalues, λ, of the system matrix A correspond to the poles of the system. The poles are 

complex such that λ = σ + iω, and the system is known to be stable if the real part (σ) of all the 

poles are negative. Figure F.3 shows the poles for a single micromechanical element in the 

uncoupled linear active Kanis & de Boer cochlear model, located 8.3 mm from the stapes where the 

characteristic frequency is 6 kHz. The poles are shown for a variety of gains, γ, as defined in (2.20). 

Provided that γ ≤ 1, the real parts of these poles are negative which indicates the system is stable. 

However, when γ >1.07 the micromechanical element becomes unstable when stimulated at a 

frequency close to its characteristic frequency. For example, an unstable pole arises at a frequency 

of 5.9 kHz when γ =1.2 for this single element located at the 6 kHz characteristic place.  
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Figure F.3 The poles (×) for a single 
micromechanical element in the Kanis & de Boer 
cochlear model 
The element is located 8.3mm from the stapes 
(the 6 kHz characteristic place), for a variety of γ 
values. The arrows indicate the motion of the 
poles as γ increases. 
 

 

F.3 The coupled linear active Kanis & de Boer cochlear model 

In this section a state space representation of the linear coupled Kanis & de Boer cochlear model is 

constructed using the formulation for the uncoupled micromechanical elements (appendix F.2), and 

the longitudinal fluid coupling method of Elliott et al. (2007).  

F.3.1 Defining the state space vectors and matrices 

For the jth micromechanical element, the state vector for that individual element is shown below, 

where wj is the vertical displacement of the BM.  

 T

j j j j jw w w w =  ɺ ɺɺ ɺɺɺw  (F.22) 

The state vector for the complete coupled model is now defined as 

 
1 2( ) ( ) ( ) ( )T T T T

Nt t t t =  ⋯w w w w  
(F.23) 

Each micromechanical element is stimulated by the input to that element pj(t) and generates a 

vertical velocity vj(t). The input and output vectors for the complete model are now defined as 

 [ ]1 2( ) ( ) ( ) ( )T

Nt p t p t p t=p ⋯  (F.24) 

 [ ]1 2( ) ( ) ( ) ( )T

Nt v t v t v t=v ⋯  (F.25) 

Elliott et al. (2007) explain that, for each micromechanical element, the dynamics can be expressed 

in state space as 
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 ( ) ( ) ( )j j j j jt t p t= +ɺx A w B  (F.26) 

 ( ) ( )j j jv t t= C w  (F.27) 

So that all of the elemental uncoupled state space models can be gathered together in the following 

matrix equation 

 ( ) ( ) ( )E Et t t= +ɺw A w B p  (F.28) 

 ( ) ( )Et t=v C w  (F.29) 

where 

 
1 1 1

2 2 2

0 0 0

0 0 0
, ,

0 0 0

0 0 0

E E E

N N N

     
     
     = = =
     
     
     

A B C

A B C
A B C

A B C

⋮ ⋮ ⋮

⋮ ⋱ ⋮ ⋱ ⋮ ⋱

⋯ ⋯ ⋯

 

(F.30) 

  

F.3.2 The basal and apical boundaries 

Each micromechanical element 1<j< N-1 describes the behaviour of the CP, but j=1 and j=N 

correspond to the systems representing the stapes footplate and helicotrema fluid respectively. At 

the stapes,  

 
1

2
1

( ) 1
( )

( ) ( )ME

ME ME ME ME

v s s
H s

p s Z s s m sc k
= = =

+ +
 

(F.31) 

where ust(s) is the stapes velocity, p1(s) is the pressure difference across the BM at the base of the 

cochlea, HME(s) is the middle ear transfer function, ZME(s) is the middle ear impedance and mME, cME, 

and kME denote the middle ear mass damping and stiffness respectively.  

A state space model for the stapes can be formed from (F.31), as shown below. 

 
1 1 1 1 1p= +ɺw A w B and 1 1 1v = C w  (F.32) 

where 

 

1

0 1

ME ME

ME ME

k c
m m

 
 =
 − −
 

A , 1

0

1

 
=  

 
B  and [ ]1 0 1/ MEm=C  

(F.33) 

At the helicotrema, the semi-difference pressure is set to zero. Therefore, for simplicity, all the 

elements of AN, BN and CN are set to zero.  
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F.3.3 The longitudinal fluid coupling 

The longitudinal fluid coupling and boundary conditions can be described by the differential 

equations described in appendix A in finite difference form.  

 2
1 1

2 2

( ) 2 ( ) ( )2 2
( ) 0 ( ) 0n n np t p t p tp

v t v t
x H H

ρ ρ− +− +∂
+ = ⇒ + =

∂ ∆
ɺ ɺ  (F.34) 

 At the base 

2 1

0

( ) ( )( )
2 ( ) 2 ( ) 2 ( ) 2 ( )out in out in

x

p t p tp t
v t v t v t v t

x
ρ ρ ρ ρ

=

−∂
+ = − ⇒ + = −

∂ ∆
ɺ ɺ ɺ ɺ  

(F.35) 

 At the helicotrema 

( ) 0 ( ) 0Nx L
p t p t

=
= ⇒ =  

(F.36) 

These equations can be written in matrix form, in a similar way to that described in appendix B. 

 ( ) ( ) ( )t t t− =Fp v qɺ  (F.37) 

where 

 

2

2

1 2 1 0

0 1 2 1

02

0 1 2 1

2
0

H H

H

H

ρ

ρ

∆ ∆ 
 
 

− 
 −
 =

∆  
 − 
 − ∆
 
 

F
⋱ ⋱ ⋱ ⋱

 and 

( )

0

0

0

inv t 
 
 
 

=  
 
 
 
 

q

ɺ

⋮

⋮

 (F.38) 

Assuming matrix F is invertible, then (F.37) can be re-written as shown below, where (F.29) has 

been used to eliminate ( )v tɺ . 

 ( ) ( ) ( ) ( ) ( )Et t t t t= + = +-1 -1 -1 -1
p F q F v F q F C xɺ ɺ  (F.39) 

Substituting (F.39) into (F.28) now gives 

 ( )
( )

( ) ( )

1 1

1 1

1 11 1 1

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

E E E

E E E E

E E E E E E

t t t t

t t t

t t t

− −

− −

− −− − −

= + +

⇒ − = +

⇒ = − + −

ɺ ɺ

ɺ

ɺ

w A w B F q F C w

I B F C w A w B F q

w I B F C A w I B F C B F q

 

(F.40) 

Therefore 

 ( ) ( ) ( )full fullt t t= +ɺw A w B u  (F.41) 

where 
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 ( ) 11
full E E E

−−= −A I B F C A  ( ) 11
full E E E

−−= −B I B F C B and 1( ) ( )t t−=u F q  
(F.42) 

The frequency response of the state space system can be obtained by assuming that each element of 

w(t) is proportional to eiωt, so that w(t) can be written as w(ω)eiωt. It is then possible to solve (F.42) 

and (F.29) to obtain an estimate of v(ω).  

 

( )
( ) 1

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

full full

full full

E E full full

i

i

i
−

= +

⇒ − =

∴ = = −

ω ω ω ω

ω ω ω

ω ω ω ω

w A w B u

I A w B u

v C x C I A B u

 (F.43) 

In practice, the matrices inverted in (F.42) and (F.43) can be ill-conditioned, making the 

calculations susceptible to computational errors. The MATLAB function ‘balance’ can improve the 

condition of a matrix. For example, an ill-conditioned matrix Qc can be reconstructed by two 

matrices Qa and Qb which are better conditioned than Qc using the command… 

 [ ] ( ), balancea b c=Q Q Q  (F.44) 

The matrices are related according to 1
c a b a

−=Q Q Q Q , so that is it possible to 

use 1 1
a b a

− −
Q Q Q instead of 1

c

−
Q  to reduce computational error in calculations.  

The frequency domain response computed from the state space model is compared to that 

calculated with the finite difference solution for the coupled linear active Kanis & de Boer model, 

in Figure F.4. The accuracy of the state space solution is limited in the apical region of the cochlear 

model for higher frequencies. Numerical errors in the computation process involved in estimating 

the state space response appear to introduce an effective ‘noise floor’ approximately 300 dB below 

the peak BM velocity amplitude. Excluding this region, the responses predicted by the two 

alternative approaches differ by less than 0.02 dB for these example responses. 

F.3.4 The stability of the coupled Kanis & de Boer cochlear model 

The stability of the coupled Kanis & de Boer cochlear model can be assessed using the state space 

formulation. The eigenvalues of the system matrix Afull, correspond to the poles of the system, and 

the system is known to be stable if the real part of every eigenvalue is negative. In this section we 

consider the stability of the model for a variety of OHC gain distributions, γ(x); A uniform γ(x) 

distribution, a distribution of γ(x) resulting from self-suppression in the quasilinear model, and a 

non-uniform γ(x) distribution in which irregularities have been introduced to act as sources of 

reflection.  
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Figure F.4 Comparison of the state space and finite different solutions for the linear active model 
The plots show the state space (solid black line) and finite difference (dotted grey line) solutions for the 
coupled linear active Kanis & de Boer cochlear model  
 

The coupled linear active model 

Figure F.5 shows the poles of the coupled model for a variety of uniform OHC gain distributions, γ. 

The real parts of the poles are plotted as a function of the characteristic frequency, which is 

proportional to the imaginary component of the pole. Although the results for each γ appear to be a 

continuous line, they are actually composed of 500 discrete pole positions. In general, the real parts 

of the all poles are negative for γ≤1. The exceptions to this are two low frequency poles whose real 

parts become positive when γ exceeds 0.7. This low frequency instability can be eliminated by 

imposing a maximum γ(x) distribution on the model, such as that shown in Figure F.6. In contrast, 

for values of γ>1, the real part of a large number of the poles becomes positive which indicates that 

the model is unstable.  

  

 



Appendices 
F. State space representation of the Kanis & de Boer cochlear model 

266 

 
Figure F.5 The influence of OHC gain on the poles of the Kanis & de Boer cochlear model 
The poles of the coupled linear active Kanis & de Boer cochlear model are shown for various values of γ(x), 
where γ(x) is constant along the length of the model. For each γ value, 1000 poles depict the behaviour of the 
model. The grey arrows indicate the movement of the poles as the value of γ increases. 
 
 

 
Figure F.6 The baseline distribution of OHC gain  
The plot shows a distribution of γ(x) which eliminates instability in the Kanis & de Boer coupled cochlear 
model at extremely low stimulus frequencies (e.g. 97 and 107 Hz). 
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Figure F.7 The poles of the quasilinear Kanis & de Boer cochlear model 
(a) to (d): The poles of the coupled linear active Kanis & de Boer state space system matrix, for different 
γQL(x) distributions evoked by a 6 kHz stimulus applied at different stimulus levels (in units of dB re 
10 − 8m/s). The γQL(x) distributions were obtained using the quasilinear method described in appendix E, and 
are shown in (e). 
 

The coupled quasilinear model 

The state space model can be used to predict the stability of the quasilinear coupled system, in 

which variations in OHC gain, γQL(x), arise due to self-suppression. For example, Figure F.7 shows 

the poles of the linear active Kanis & de Boer state space model, for a variety of γQL(x) distributions 

which correspond to a range of stimulus levels. These graphs illustrate that the real part of the pole 

(σ) varies as the stimulus level increases, but that the model remains stable as σ remains negative 

for all of the poles provided that the maximum gain distribution shown in Figure F.6 is imposed. 

  
The coupled linear model with random gain irregularities 

The state space model can be used to predict the stability of the linear coupled system, where 

variations in OHC gain, γ(x), are deliberately introduced to act as sources of reflection. For 

example, in section 2.5.2, the linear active Kanis & de Boer cochlear model was found to become 

unstable if γ(x) either steps-up by 0.5 or steps-down by 0.05. Non-uniform variation in γ(x) can be 

introduced using the MATLAB formula 

 
( ) 1 smooth[ ( )]

2
x x

ν
γ ν ε= + − ⋅  (F.45) 

where ε(x) is a distribution of numbers with values between 0 and 1 produced by the MATLAB 

random number generator and ν is the magnitude of the gain variations. The average value of γ(x), 

along the length of the cochlear partition, remains unchanged by the introduction of random 

variations. However, the local value of γ(x) does exceed 1 at some locations. The poles for the 
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coupled model containing this non-uniform distribution of γ(x) are shown in Figure F.8. Random 

variations in the gain of up to 7% can be accommodated before the model becomes unstable.  

F.4 Comparing two micromechanical models 

Kanis & de Boer (1993) comment that their micromechanical cochlear model is similar to, but 

simplier than, the micromechanical model of Neely & Kim (1986). However, it is difficult to 

determine the relationship between the two models, as the dynamic components of the active 

impedance are not explicitly expressed in the Kanis & de Boer model. By casting both uncoupled 

models into the frequency domain state space framework, however, it is possible to compare the 

matrix elements and establish a relationship between the micromechanical parameters.  

 

 
Figure F.8 The poles of the perturbed linear active Kanis & de Boer cochlear model 
The plot shows the poles of the linear active Kanis & de Boer model, with a non-uniform distribution of the 
OHC gain γ. The dashed circle indicates a pole for which the real part is positive. 
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The state space representation of the Neely & Kim micromechanical model was developed by 

Elliott et al. (2007) from the equations of motion. If the Neely & Kim micromechanical model is 

re-cast into state space formulation using the system transfer function, so that the results are 

comparable with those previously obtained for the Kanis & de Boer cochlear model (appendix F.2), 

then the state space vector takes the form [ ]1 1 1 1
T z z z z=x ɺ ɺɺ ɺɺɺ  and the state space matrices are 

given by 

 

0 1 1

0 1 0 0

0 0 1 0

0

1

n

A

α α α −

 
 
 
 =
 
 
 − − − 

⋯

⋮ ⋱

⋮

⋯ ⋯

,

0

0

0

1

B

 
 
 
 =
 
 
  

⋮ , [ ]0 1 1nC β β β −= ⋯ ⋯ , and D = 0 

(F.46) 

where, in this case, 
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(F.47) 

Comparing the α and β coefficients in (F.20) with those given in (F.47), allows the Kanis & de 

Boer cochlear model to be re-written in the formulation used by Neely & Kim using the 

relationships given in Table F.1.  

Origin of relationship Relationship 

In order to balance the γ terms when equating 
the α0 and α1 coefficients, it is assumed that… 

2 0k =  & 2 0c =  

Equating β3 coefficients: 
1 KBm bm=  

Equating β1 coefficients: 2 23

2
n

k

m
σ ω=  

Equating β2 coefficients: 
3

2
sc n

c

m
δ ω=  

Equating α0 coefficients: 
1 KBk bk=  

Equating α1 coefficients: 
1 KBc bc=  

Equating α3 coefficient γ terms: 
4 0 0 nc be d ω=  

Equating α2 coefficient γ terms: 2
4 0 0 nk e d bω=  

Table F.1 The relationship between the micromechanical parameters or Kanis & de Boer and Neely & Kim 
models 
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Figure F.9 The micromechanical model of Kanis & de Boer  
The plot is based on figure 2.1 of Ku (2008) and the micromechanical parameters (k1, c1, m1, m2, k3, c3, k4, 
c4) are defined in terms of the original Kanis & de Boer parameters in Table F.1. The vertical displacement of 
the BM and the radial displacement of the tectorial membrane are denoted by ξb and ξt respectively. The gain 
between the organ of Corti and the reticular laminar, g, is set equal to 1 (Neely & Kim, 1986). In addition, 
s=iω, where ω is the angular frequency of the stimulus.  

Using these relationships, the Kanis & de Boer micromechanical model could be represented by a 

block diagram as shown in Figure F.9. It is not possible to explicitly specify the parameters m2, c3 

and k3 in terms of the Kanis & de Boer micromechanical quanities. Therefore we assign m2(x) a 

small, constant value throughout the length of the CP (1×10 − 5 kgm-2) and use the equations in 

Table F.1 to calculate the resultant values of c3 and k3. 

The response of a linear active cochlear model, using the micromechanics of Kanis & de Boer, is 

not dependent on which formulation is used. For example, the predicted response is the same for 

the original Kanis & de Boer model as it is when for the Neely & Kim model modified to 

incorporate the micromechanics of Kanis & de Boer. However, care must be taken when 

considering nonlinear models, as the input to the nonlinearity representing the action of the OHCs 

differs between the formulations as described in appendix E.5.  

F.5 A time domain solution for a nonlinear model 

Elliott et al. (2007) describe a state space formulation of the Neely & Kim (1986) cochlear model. 

They illustrate how the model can be adapted to incorporate a nonlinear function to represent the 

action of the OHCs, and use a MATLAB ordinary differential equation solver, ode45, to obtain the 

time domain response of the system using an iterative method. The steady state response predicted 

by this time domain state space method, can be compared with the estimated response obtained 

used the quasilinear method.  
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The MATLAB program used to obtain the time domain state space solution for the nonlinear 

cochlear model was provided by Ku (2008). It was modified so that the micromechanical 

parameters equated to those used by Kanis & de Boer, using the relationships given in Table F.1. A 

hyperbolic tangent function was used to represent the nonlinear action of the OHCs. The 

micromechanical feedback loop was arranged so that the nonlinearity is positioned before the filter 

describing the dynamics of the OHCs, and the input to the OHCs is determined by the difference in 

shear displacement between the tectorial membrane and the BM.  

The steady state response of the state space model is compared to the estimated quasilinear 

response in section 2.5. Discrepancies may occur between the two predictions if the quasilinear 

approximation is invalid. However, differences may also arise due to errors in the state space 

response. These inaccuracies predominantly arise due to the failure of the model to reach a steady 

state at all locations with the observation time, and the effect of time windowing in the analysis of 

the response. Use of longer observation times allows both of these errors to be minimised, but 

requires significantly longer computational time. 

For example, when the state space model is stimulated by a 6 kHz stimulus tone, a 2.4 GHz 

computer requires approximately 4 to 7 hours to evaluate the first 30 ms of the response depending 

on the stimulus level. We assume that the response has reached steady state within the 30 ms 

observation period. However, this is not necessarily true at all locations for all components. For 

example, Figure F.10 shows the amplitude of the fundamental and 3rd harmonic components of the 

state space response to a 6 kHz stimulus presented at 60 dB at two different locations within the 

cochlear model. The characteristic place, 8 mm from the stapes, both the fundamental and 3rd 

harmonic components appear to have reached a steady state within 30 ms. However at a more basal 

location, 2 mm from the stapes, the amplitude of the 3rd harmonic component does not reach a 

steady state within the 30 ms observation time. Therefore the harmonic response predicted by the 

state space model is likely to be erroneous at the basal location unless a longer observation period 

is employed. However, at the locations where steady state is not achieved within the observation 

period, the amplitude of the harmonic components is very small (< − 100 dB) relative to the 

fundamental component. For this reason, despite the limitations, the observation time is not 

generally extended beyond 30 or 40 ms. 
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Figure F.10 The change over time of the fundamental and harmonic components of the state space time 
domain model 
The plot shows the fundamental (solid line) and 3rd harmonic (dashed line) components of the response of 
state space model to a 6 kHz stimulus tone presented at 60 dB re 10 − 16 m-2s-1 in the ear canal. The amplitude 
of the components is observed at two different locations (a) the characteristic place for 6 kHz (8 mm from the 
stapes) and (b) a location basal to the characteristic place (2 mm from the stapes).  
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G Asymmetric and symmetric nonlinear functions 

G.1 The harmonic components predicted by a nonlinear function 

The hyperbolic tangent function is symmetric so that, for an input u, it satisfies the relation (G.1) as 

illustrated in Figure G.1. The first order Boltzmann function is not symmetric as it does not satisfy 

this relation.  

 tanh( ) tanh( )u u− = −  (G.1) 

To demonstrate that no even-order harmonics are produced by a symmetric nonlinear function 

acting on a sinusoidal input, consider the input ( ) cos( )x t A tω=  The nonlinear function F, acts on 

this input to produce the Fourier components Xk defined in (G.2). 

 

[ ]

[ ]

/2

/2

0 /2

/2 0

1
( ) exp( 2 / )

1 1
( ) exp( 2 / ) dt [ ( )]exp( 2 / ) dt

T

k

T

T

T

X F x t i kt T dt
T

F x t i kt T F x t i kt T
T T

π

π π

−

−

= ⋅ −

= − + −

∫

∫ ∫
 (G.2) 

Substituting ' / 2t t T= +  into the first term gives 

 

[ ] ( )
/2

0

/2

0

1
( ' / 2) exp( 2 / ) exp  dt'

1
[ ( )]exp( 2 / ) dt

T

k

T

X F x t T i kt T i k
T

F x t i kt T
T

π π

π

= − −

+ −

∫

∫
 (G.3) 

 

 

Figure G.1 Illustrations of a first order Boltzmann function 
The two lines denote β=5 (solid line), and a hyperbolic tangent function (dotted line). 
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The cosine nature of x(t) means that ( / 2) ( )x t T x t+ = −  (Bostock & Chandler, 1990), and so the 

output of the symmetric nonlinearity becomes [ ( / 2)] [ ( )] [ ( )]F x t T F x t F x t− = − = − . Therefore 

 

( )( ) [ ]
/2

0

1
1 exp ( ) exp( 2 / ) dt

T

k
X i k F x t i kt T

T
π π= − −∫  (G. 4) 

This indicates that whenever k=2n, where n is an integer, Xk will equal zero and so no even-order 

harmonic components can be generated. 

G.2 Parameters for the first order Boltzmann function 

Figure G.2 shows examples of the OHC response functions measured in the ear of a Bullfrog, a 

mouse, and another mammal (Pickles, 1982; Dallos, 1996) together with a first order Boltzmann 

function. In each case, the α and β parameters of the Boltzmann function have been adjusted to 

match the physiological measurements using trial an error. The use of the first order Boltzmann 

function should be treated with caution in these cases, because the input and output variables 

shown in Figure G.2 have different units, but the Boltzmann function was defined in section 3.1.1 

in such a manner that the input and output variables are expected to have the same dimensions. For 

this reason we do not attempt to estimate the value of α, the parameter which determines the 

amplitude of the Boltzmann function, from these graphs. However, it is interesting to note that the 

dimensionless Boltzmann function parameter β takes a value between 4 and 5 in each of the cases 

shown in Figure G.2. Overall, it is likely that β could assume any value from 1 up to about 5, as the 

smaller value of 1.7 used by Cooper (1998) was useful in modelling the uncoupled response of the 

guinea pig cochlea.  
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Figure G.2 OHC input-output functions 
The plots show Boltzmann functions (dotted lines) fitted subjectively to experimental transfer functions 
(solid lines) for outer hair cells (OHCs) of a) A Bullfrog (Data from Hudspeth & Corey 1977, cited in 
Pickles, 1982) using Boltzmann constants α=8.5, β=4 and γ=0.35, b) A Mammalian OHC (Dallos, 1996) 
using Boltzmann constants α=29,β=4.5 and γ=0.09, c) A Mouse OHC (Data from ~Russell, Cody & 
Richardson (1986), cited in Dallos, 1996) using α=4.5, β=5 and γ=5.5. 
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H How et al. (2010) 

The text, figures and simulations presented in this journal letter were developed by myself. 

Guidance and editorial assistance were provided by S J Elliott and B Lineton 
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I The He et al. experiment 

The He et al. experiment is described in section 5.2.2, and was designed to determine the direction 

of the 2f1 − f2 DP travelling wave evoked by two tone stimulation of the gerbil cochlea. 

The first stage of the experiment recorded measurements at two internal locations, following single 

tone stimulation of the cochlea via a tone presented in the ear canal. The results are shown in 

Figure I.1. The experiment was simulated on the cochlear model, and the predicted results are 

displayed in Figure I.2. Although only one stimulus level (40 dB SPL) is shown in the simulation 

for simplicity, similar results were obtained using higher levels. The simulation and physiological 

result of He et al. are not quantitatively similar because of animal differences and differences in 

observation location. The observation sites for the simulation were positioned distances of 10.5 and 

11.3 mm from the stapes. The characteristic frequencies of these sites are 4 and 3.5 kHz 

respectively. They were selected so that it would be possible to detect a backward travelling wave 

in the two tone experiment using the range of frequencies over which the model predictions of 

distortion products appears to be strongest (f2 between 1 and 4 kHz).  

The results of the simulation and experimental study, using a single tone stimulus, are qualitatively 

similar in several ways. For example, both the model simulation and physiological study exhibit 

peaks in the frequency response of the two locations (A and C) at the “best” frequency. Both cases 

also demonstrate that the response amplitude reduces as the stimulus frequency deviates from the 

best frequency, but the effect is asymmetric and the fall-off in amplitude is more rapid when the 

stimulus frequency increases above the best frequency compared to decreases in stimulus 

frequency. In Figure I.1.and Figure I.2, the phase lag at the observation sites increases as the 

stimulus frequency increases (B and D). In the model, the phase lag at each site is essentially the 

same other than at frequencies close to the best frequency of each place and so the estimates of 

phase difference, delay, group velocity at travelling wave wavelength (E, F, G and H) are only 

meaningful for stimulus frequencies between approximately 2.5 and 4 kHz. For this frequency 

range, increases in stimulus frequency tend to increase the phase difference, delay and travelling 

wave wavelength between the observation sites calculated for both the model simulation and the 

experimental results. In addition, the travelling wave velocity between the observation sites 

increases with stimulus frequency in both cases. These qualitative similarities between the model 

predictions and experimental outcomes of the single tone He et al. experiment lead us to conclude 

that the model could provide useful insight into the two tone He et al. experiment.  
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Figure I.1 The He et al. single tone 
stimulus experimental measurements 
 
The BM velocity at locations 1 and 2 
following presentation of single tones (at 
frequency f0) in the ear canal at levels of 
40, 50, 60 and 70 dB SPL indicated by 
dash-dot, dashed, dotted and solid lines 
respectively.  
 
A and B show the amplitude and phase of 
the BM velocity at site 2 which has a 
‘best frequency’ (BF) of ~12kHz. C and 
D show the amplitude and phase of the 
BM velocity at site 1, which has a BF of 
~15kHz.  
 
The phase of BM velocity at site 2, 
relative to site 1, is given in E. The delay 
in propagation of the travelling wave, at 
each stimulus frequency, between sites 1 
and 2 is shown in F and is calculated 
using the phase data in E and the stimulus 
frequency (e.g. delay= − ∆φ/f where ∆φ is 
the phase change and f the stimulus 
frequency). The group velocity and 
wavelength of the travelling wave (G and 
H respectively) is calculated from the 
delay (F) and the known distance between 
the observation sites. 
 
[From He et al. (2008), figure 3, with 
universal permission] 
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Figure I.2 The simulated He et al 
single tone stimulus experiment 
 
Model simulation of the He et al. 
experiment. A single pure tone was 
presented to the ear canal of the 
model at 40 dB SPL and observed at 
sites 1 and 2 located at distances of 
10.5 and 11.3 mm from the stapes 
respectively. A and C show the 
amplitude of the response observed at 
sites 2 and 1 respectively. B and D 
show the phase of the response 
corresponding to responses shown in 
A and B relative to the stapes motion. 
E gives the phase of BM velocity at 
site 2, relative to site 1. F shows the 
delay in propagation of the travelling 
wave, at each stimulus frequency, 
between sites 1 and 2, calculated 
using the phase data in E and the 
stimulus frequency (e.g. 
delay= − ∆φ/f where ∆φ is the phase 
change and f the stimulus frequency). 
G and H give the group velocity and 
wavelength of the travelling wave 
respectively, calculated from the 
delay (F) and the known distance 
between the observation sites. 
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