RAPID COMMUNICATIONS

PHYSICAL REVIEW A 81, 031802(R) (2010)

Continuous quantum measurement of a light-matter system
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Continuous measurements on correlated quantum systems, in addition to providing information on the state
vector of the system in question, induce evolution in the unmeasured degrees of freedom conditioned on the
measurement outcome. However, experimentally accessing these nontrivial regimes requires high-efficiency
measurements over time scales much longer than the temporal resolution of the measurement apparatus. We
report the observation of such a continuous conditioned evolution in the state of a light-collective atomic

excitation system undergoing photoelectric measurement.
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Continuous measurements provide information on the
conditional evolution of the state of a quantum system (see, e.g,
Refs. [1,2]), but examples of such measurements are rare in the
literature. It has been observed that photoelectric detection of
a field emitted from an optical cavity causes abrupt changes in
the state of the intracavity field [3-5]. The quantum theory of
continuous measurements also predicts dissipative conditional
evolution during periods in which no detection events are
registered. However, for such a conditioned evolution to be
observed, the detection apparatus must have high efficiency.
Otherwise, a lack of detection cannot be interpreted as the
absence of a field excitation, and, hence, one obtains little
information about the underlying state. Therefore, observation
of the complete conditional dynamics is difficult. Conditional
dynamics has been observed, however, in a superconducting
qubit system [6].

The goal is to continuously monitor, with high efficiency
and temporal resolution, a system with significant quantum
correlations. It is often difficult to meet this challenge in
experimentally accessible systems. For example, parametric
down-conversion has been a successful paradigm for a variety
of investigations involving correlated quantum states [7]. It
does not, however, readily lend itself to continuous quantum
measurement. To understand this, consider a laser pulse
incident on a nonlinear crystal. The nonlinear interaction yields
a state for the down-converted fields of the form |y) ~ |vac) +
x [didt’ f(t, t’)lﬁj(t)l@f(t’) [vac) + O(x?), where the inter-
action strength x « 1, lﬁj (1) and @l.f(t/) are continuous
boson operators for the signal and idler fields, respectively,
and the two-photon amplitude f(¢,¢') is, in general, a
nonseparable function of ¢ and #'. This nonseparability is
often referred to as time-frequency entanglement and has
an associated time scale much shorter than photodetector
resolution times [8,9]. The degree of spectral filtering re-
quired would result in an unacceptably low detection effi-
ciency, which as we note below, makes conditional evolution
unobservable.

A cold atomic ensemble can provide a system analogous
to parametric amplification while ensuring that the joint
signal-idler amplitude remains separable. In this Rapid Com-
muniation, we consider an ensemble of N >> 1 atoms in a A
level configuration with ground levels |b) and |a) and excited
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level |c) initially prepared in level |b). A weak write pulse
nearly resonant on the |b) <> |c) transition impinges on the
ensemble. This write field induces Raman scattering of signal
photons nearly resonant on the |a) <> |c¢) transition with a
temporal envelope identical to that of the write pulse [10].
Independently of the time at which a signal photon might be
emitted, the Raman scattering imprints an idler excitation onto
aunique spatial spin-wave mode [ 10]. After the write process is
complete, the state of the idler spin wave can then be mapped to
an idler field mode through application of a read field resonant
on the |a) <> |c) transition. The scattering dynamics are thus
equivalent to those of a two-mode parametric amplifier, i.e.,
the signal-idler amplitude remains separable. Furthermore, by
extending the write process over a long period (0.8 us), we
are able to ensure that the photodetectors employed have a
temporal resolution much shorter than the emitted signal field.

A remaining challenge here is to achieve the required
high detection efficiency. By optimizing the write/read and
signal/idler spatial modes, we obtain a measured signal
detection efficiency of 0.17, which may be compared with
0.08 in Ref. [11]. Ideally, the retrieval efficiency should
be independent of storage time over the duration of an
experimental trial. To achieve this we must compensate
ambient magnetic fields which induce dephasing of the spin
waves due to Larmor precession. Spin wave lifetimes of several
milliseconds have been demonstrated by employing magnet-
ically insensitive coherences and optical pumping [12,13].
This technique cannot be used here, however, since it would
involve the application of a bias field resulting in oscillations of
the retrieval efficiency as a function of storage time [12]. We
therefore obtain sufficiently long memory lifetimes (25 us) by
minimizing the ambient magnetic fields.

We consider a source of correlated signal and idler fields
with the assumption that the two-photon amplitude is separa-
ble: f(t,t") = g;(t)p;(t"). We define the single-mode signal
and idler annihilation operators d;; = ffooo dt(p;f‘,i(t)lﬁs,,-(t).
The state produced by the effective two-mode parametric
amplification process of the write-read process is given by [7]
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lvac) + O(x?), (1)
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FIG. 1. (Color online) Schematic of experimental setup with the
inset showing the atomic level scheme. Here, 1/2 and PBS are
half-wave plate and polarizing beam-splitter for the signal field,
respectively, and D1 and D2 are single-photon detectors. See text
for a discussion.

where x is the interaction parameter, and the higher-order
terms O(x>) account for multiple signal mode excitations and
emission into other temporal modes arriving at the detector.
The signal field undergoes a continuous photon-counting
measurement as it impinges on detector D1 with efficiency
€; (see Fig. 1). We model the photodetector as one of
unit efficiency preceded by a beam splitter with intensity
transmittance €. In the absence of a detection event in the
interval (—o0, t.), the vector |W(x)) is projected into the
subspace in which no photons arrive at the hypothetical
unit efficiency detector before the conditioning time #.. We
calculate the effects of the conditioning by applying the projec-

tion operator: exp(— f:oo dtl/?}g,(t)&m(t)) :to |W(x)). Here,
Upi(t) = J&Us(t) + VT —€61(t) and & (t) is a bosonic

noise operator associated with detector D1. This projection
thus yields the conditioned state

vﬂo(lc ) [We(t))
[vT = &nt) tanh()" &"(1) "
0(x3>+2 cos NN

|vac) ,

©))

where the increasing function u(t.) = fioo dt|es(t)|?, with
u(oo) = 1. Provided the detection efficiency €, is not neg-
ligibly small, conditioning effectively results in a state with a
reduced interaction parameter, where the signal mode d; has
been replaced by the conditioned bosonic mode

()1 — M(tc)
pe)d — &)y, ‘/
[—en <tc) (te) + o™

in which the prior signal field, that arriving before ¢,
is replaced by the vacuum noise field V(z.), and the
postsignal field, arriving after 7., is defined by a(t.) =
[ dtor )5 (0) /T = (o).

Taking the norm of Eq. (2), we find the probability for no
photoelectric event registered before ¢,

é(l‘c) = -

+ 0. )

mo(te) = ;
¢ 1+ eulte) sinh? X

Conditioned on the absence of a signal event in the interval
(—o00,t.), we can calculate the probability of registering at
least one photoelectric detection event in the idler channel

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 81, 031802(R) (2010)

by taking the expectation value of the projection operator
ﬁ,- =1- exp(—a?jﬁ,-) : with respect to the conditioned state
of Eq. (2), where 3,- = ﬁi&i + 1= e,-éi, €; is the efficiency
of the idler detector, and éi is an idler noise operator. The
second term of the operator P; projects onto the subspace
in which no idler photons are detected. Similarly, one finds
the probability of detecting a signal between times #; and
t, pso(t1, t;t.), corresponding to the expectation value
of Py(t1. 1) =t 1 —exp(— [* dt}, (1)1 (1)) :. Finally, the
joint conditioned probability that a photoelectric event is
registered at both the id/er detector (at any time during the trial)
and the signal detector between times #; and #, corresponds
to the expectation value of f’i f’s(tl, t,). Dark counts on the
signal and idler channels can be modelled by taking the
noise fields associated with &(r) and & to be in coherent
states; the dark count rates would be given by B; = (éjé,-)
and B(t), 1) = ftT dt{E](1E(1)). In the weak excitation

limit where B; ~ By(t;, 1) ~ sinh® x < 1, these conditioned
detection probabilities are, to first order in sinh? ¥,

Psioltt, 12 1e) ~ € [u(tz) — p(t)] sinh® x
+ B(t1, tp), (52)
pip(te) ~ € [1 — e;u(t)]sinh® x + B;,  (5b)
psip(ti, 03 1e) ~ €g6; [u(tz) — plt)]sinh® x.  (5¢)

As intuitively expected, the conditioned idler probability,
pio(t;), becomes progressively smaller as the conditioning
interval increases. By contrast, the probabilities pg (1, t2; 2.)
and py;io(t1, 125 1.) are proportional to the detection window
u(ty) — u(ty) and are identical to the corresponding uncondi-
tioned probabilities. The conditioning only manifests itself in
Dsio(ti, 13 1) and pyijo(ty, t2; t.) through the requirement that
the detection window occurs after ¢, and u(t,) — u(t)) < 1 —
u(t.). From Egs. (5) we can also determine the unconditioned,
integrated probabilities (¢., t; — —00), (f, — o0) [11]:

ps ~ € sinh’ x + B, (6a)
pi ~ € sinh’ x + B;, (6b)
Dsi N €€ sinh? X- (6¢)

From these detection probabilities, one can define the experi-
mentally measurable effective signal efficiency as

B
e =pifpi=e(l-—2 ), 7
o = Palp ( € sinh? x + B,-) @
which is reduced by background idler counts B;. Inspection of
Eqgs. (5) and (7) reveals that this efficiency can also be obtained
through the conditioned idler detection probability as

¢ = _ L dpio(te) ®)
pi dup

This correspondence between the predictions of conditioned
and unconditioned quantum dynamics provides a quantitative
measure to experimentally test the dynamics of conditional

quantum measurement.
To implement such a test, we prepare an optically thick
atomic cloud of 3°Rb by switching on a magneto-optical trap
(MQOT) for a period of 14 ms (Fig. 1). The atomic ground levels
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{la);|b)} correspond to the 58,2, F,, = {2, 3} hyperfine
levels, while the excited level |c) represents the 5Py, F, =3
level of the D, line at 795 nm. After switching off the MOT
fields, the experimental sequence begins with all of the atoms
pumped into level |b) by sequentially switching off first the
trapping light followed 10 us later by the repumping light.
The quadrupole magnetic field of the MOT is extinguished
for the 2.5 ms duration of the measurement sequence.
Compensation of the ambient magnetic field is provided by
three pairs of Helmholtz coils.

The measurement sequence consists of 1666 cycles of
duration 1.5 us. The cycle begins when a weak, approxi-
mately square, linearly polarized write laser pulse, tuned to
the |b) <> |c) transition, illuminates the ensemble for T =
0.8 us; thatis, in each cycle u(f, = 0) = Oand u(7) = 1. The
light pulse generates an orthogonally polarized signal field
by spontaneous Raman scattering on the |c) <> |a) transition
together with spin wave excitation of the atomic medium
associated with the |b) < |a) hyperfine coherence [14]. After
a 200 ns delay, a 200 ns long read pulse, tuned to the
la) <> |c) transition, illuminates the atoms. This read field,
with power 170 ©W and linear polarization orthogonal to that
of the write pulse, converts the atomic spin excitation into
an orthogonally polarized idler field, which is emitted on the
|c) <> |b) transition. Both the write-read and signal-idler pairs
of mode-matched fields are counterpropagating, with Gaussian
waists of 400 pm for the former and 130 pm for the latter. The
signal and idler fields are measured by single photon detectors
D1 and D2, respectively.

The photoelectric detection events for the signal and idler
fields are measured and recorded with 2 ns time resolution,
allowing conditioned and unconditioned detection probabili-
ties to be determined. The unconditioned detection probability
for the idler field is defined by the ratio of the number of
cycles, N;, with at least one photoelectric detection event
recorded to the total number of cycles: P; = N;/Nr. The
conditioned probability is determined similarly, except that all
cycles in which a signal photoelectric event has been recorded
prior to time 7. are omitted, hence P;o(f.) = Njjo(t.)/Nr. In
order to test the predictions of the conditional quantum theory,
we measure both the unconditioned signal-idler coincidence
probability, P;; = Nj;/Nr, and the gradient of the conditional
idler detection probability, Djo(t.) = —d P;jo/du(t.), as a
function of u(t.), which according to Eq. (8), must be equal
to €, P;. By varying €, using the half-wave plate placed in the
signal beam path before the polarizer (Fig. 1), we measure
a set of values for Py;. For each plate setting, we construct
Dijjo(te)

Pio(te) — Pijo(tc + At)
wulte + At) — u(te)

Djjo(t) =

k)

where At is a sufficiently small time interval that the
determined D;|o(t.) does not depend on its value. The results
are presented in Fig. 2 and show very good agreement
between the conditional measurement data, D;jy(%.)/P;, and
the unconditional data, Py;/P;, which Eqgs. (7) and (8) predict
should be equal. The error bars on conditional data are based
on the statistics of the photoelectric counting events, while
statistical errors on the unconditioned data are negligible.
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FIG. 2. (Color online) Experimental data for D;o(t.)/ P; (discrete
data) and Py;/ P; (solid lines) vs. signal field gate function w(z.) for
five different settings of the half-wave plate (Fig. 1). According to
conditional quantum theory, these should be equal, Egs. (7) and (8).
Data shown from top to bottom correspond to decreasing measured
signal efficiencies. The data acquisition time was 5 h.

At high measured efficiencies, there is a small systematic
discrepancy in excess of the statistical errors that requires
a careful examination in order to exclude spurious effects
which could potentially mimic the predictions of conditional
quantum theory. The two most relevant processes are (1) the
residual effects of Raman scattering of the write pulse and
(2) the Larmor precession of the hyperfine coherences in the
uncompensated magnetic field. Although Raman scattering
is responsible for the creation of the signal photon and
the accompanying spin excitation, excessive scattering into
undetected field modes can slightly deplete the population of
level |b) during the write process and therefore reduce the
efficiency with which spin waves generated early in the write
process are retrieved. We can model this effect using the time-
dependent retrieval efficiency (1 — u) = €; exp[—a (1l — w)],
where 1 — u is proportional to the time a spin wave is exposed
to the deleterious effects of the write beam. This would man-
ifest itself in an increasing time-dependent correction to €, in
Eq. (8) and as a reduced joint signal-idler coincidence detec-
tion probability at small values of x. Based on this picture, we
canmodel pg;(u, u + Ap)/Apn ~ pyexp(—a(l — w)), where
« is proportional to the write pulse energy, as shown by the data
in Fig. 3. As can be seen from Fig. 3, for the 0.1 W power at
which data in Fig. 2 were taken, these effects are not significant.
Similarly, the Larmor precession reduces p;; for small values
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FIG. 3. (Coloronline) Coefficient « as the function of write beam
power (see text). The vertical dashed line shows the value of write
beam power at which the data in Fig. 2 were taken.
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of u(t.), according to py; ~ exp(—y (1l — /1,)2) [15,16]. For
the measured coherence time, 7. ~ 25 us, and maximum
write-read delay, T; ~ 1 us, the expected decoherence effect
is negligible (y = (T;/7.)* ~ 0.004).
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In summary, we have observed conditional dynamics of
a correlated atomic spin wave-light system. This work was
supported by the National Science Foundation and the Air
Force Office of Scientific Research.
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