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We propose a non-parametric bootstrap framework for MSE estimation
for small area averages, quantiles and poverty indicators estimated with the
M-quantile small area model. Because the small area statistics we consider
in this paper can be expressed as functionals of the Chambers-Dunstan esti-
mator of the population distribution function, the proposed non-parametric
bootstrap presents an extension of the work by Lombardia et al. (2003).
Alternative bootstrap schemes, based on resampling empirical or smoothed
residuals, are studied and the asymptotic properties are discussed in the light
of the work by Lombardia et al. (2003). Emphasis is also placed on second or-
der properties of MSE estimators with results suggesting that the bootstrap
MSE estimator is more stable than corresponding analytic MSE estimators.
The proposed bootstrap is evaluated in a series of simulation studies under
different parametric assumptions for the model error terms and different sce-
narios for the area-specific sample and population sizes. We finally present
results from the application of the proposed MSE estimator to real income
data from the European Survey of Income and Living Conditions (EU-SILC)
in Italy and provide information on the availability of R functions that can
be used for implementing the proposed estimation procedures in practice.

Keywords: Chambers-Dunstan estimator, Income distribution, Domain
estimation, Poverty mapping, Resampling methods, Robust estimation

1. Introduction

Sample surveys provide an effective way of obtaining estimates for pop-
ulation characteristics. Estimation, however, can become difficult when the
focus is on domains (areas) with small sample sizes. The term ‘small areas’
is typically used to describe domains whose sample sizes are not large enough
to allow sufficiently precise direct estimation, i.e. estimation based only on
the sample data from the domain (Rao, 2003). When direct estimation is not
possible, one has to rely upon alternative model-based methods for produc-
ing small area estimates. Small area estimation is conventionally concerned
with the estimation of small area averages and totals. More recently empha-
sis has been also placed on the estimation of poverty indicators and of key
quantiles of the small area distribution function (Molina et al., 2010) using
the M-quantile small area model (Chambers and Tzavidis, 2006).

Estimating the precision of small area estimates is both an important and
challenging task. Despite the fact that MSE estimation for M-quantile small
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area averages has been studied fairly extensively (Chambers and Tzavidis,
2006; Chambers et al., 2009), MSE estimation for more complex small area
statistics e.g. for poverty indicators estimated with the M-quantile model is
unexplored. What is more, analytic MSE estimation for complex statistics
is difficult. For example, all small area statistics we consider in this pa-
per can be expressed as functionals of the population distribution function,
which can be consistently estimated by using the Chambers-Dunstan estima-
tor (Chambers and Dunstan, 1986). Although the asymptotic behaviour of
this estimator was studied by Chambers and Dunstan (1986) and asymptotic
expressions for the bias and the variance were derived by Chambers et al.
(1992), the use of these expressions has proven to be impractical. This mo-
tivates the work in this paper in which we propose a unified non-parametric
bootstrap framework for MSE estimation for small area averages, quantiles
and poverty indicators - in particular, for the Head Count Ratio (HCR) and
for the Poverty Gap (PG)- estimated with the M-quantile small area model.
The proposed bootstrap is based on resampling empirical or smoothed M-
quantile model residuals and presents an extension of the work by Lombardia
et al. (2003) to small area estimation with the M-quantile model. The choice
of a non-parametric bootstrap scheme, instead of a parametric one, is dic-
tated by the fact that the M-quantile small area model does not make explicit
parametric assumptions about the model error terms. This is in contrast to
the conventional unit level area random effects model which assumes that
the unit level and area level error terms are Gaussian. MSE estimation us-
ing parametric, instead of non-parametric, bootstrap has been recently used
by Sinha and Rao (2009) for estimating the MSE of the Robust Empirical
Best Linear Unbiased Predictor (REBLUP) of the small area average and by
Molina and Rao (2010) for estimating the MSE of small area poverty indi-
cators estimated by using the Empirical Best Prediction (EBP) approach.

The complexity of the small area target parameters we consider in this
paper is only one way of motivating the use of bootstrap. There is one addi-
tional reason as to why one may consider using a bootstrap MSE estimator.
As we mentioned above, analytic MSE estimation for M-quantile estimates
of small area averages has been already proposed. Although this estimator
is bias robust against mispecifications of the model assumptions, one of its
main criticisms is that it can be unstable when used with small area-specific
sample sizes. Second order properties of MSE estimators are, however, also
very important. For this reason, a further aim of this paper is to also study
the stability of the non-parametric bootstrap MSE estimator and compare
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this to the stability of corresponding analytic MSE estimators.
The paper is organised as follows. In Section 2 we review the M-quantile

small area model and present point estimation for small area averages, poverty
indicators and quantiles. Analytic MSE estimation for estimates of small area
averages is reviewed. Although the emphasis here is on MSE estimation,
rather than on point estimation, we must stress that estimation of poverty
indicators under the M-quantile model is presented for the first time in this
paper. However, comparisons with alternative poverty estimation approaches
-e.g. the EBP method of Molina and Rao (2010)- will be discussed elsewhere.
In Section 3 we present the non-parametric bootstrap scheme and provide
a sketch of its asymptotic properties. In Section 4 the performance of the
proposed MSE estimator is empirically evaluated under different paramet-
ric assumptions for the model error terms and for the small area sample and
population sizes. For the case of small area averages the bootstrap MSE esti-
mator is also compared to the analytic MSE estimator proposed by Chambers
and Tzavidis (2006) and Tzavidis et al. (2010). Using real income data from
the EU-SILC survey in Italy, in Section 5 we apply the bootstrap MSE es-
timator for computing the accuracy of estimates of income averages, income
quantiles and poverty indicators for Provinces in Tuscany. Access to software
that implements the proposed estimation procedures is important for users
of small area estimation methods and Section 6 provides information on the
availability of R functions. Finally, in Section 7 we conclude the paper with
some final remarks.

2. Small area estimation by using the M-quantile model

In what follows we assume that a vector of p auxiliary variable xij is
known for each population unit i in small area j = 1, . . . ,m and that values
of the variable of interest y are available from a random sample, s, that
includes units from all the small areas of interest. We denote the population
size, sample size, sampled part of the population and non sampled part of
the population in area j respectively by Nj, nj, sj and rj. We assume that
the sum over the areas of Nj and nj is equal to N and n respectively. We
further assume that conditional on covariate information for example, design
variables, the sampling design is ignorable.

A recently proposed approach to small area estimation is based on the use
of a quantile/M-quantile regression model (Chambers and Tzavidis, 2006).
The classical regression model summarises the behaviour of the mean of a
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random variable y at each point in a set of covariates x. Instead, quantile
regression summarises the behaviour of different parts (e.g. quantiles) of the
conditioned distribution of y at each point in the set of the x’s. In the linear
case, quantile regression leads to a family of hyper-planes indexed by a real
number q ∈ (0, 1). For a given value of q, the corresponding model shows
how the qth quantile of the conditional distribution of y varies with x. For
example, for q = 0.1 the quantile regression hyperplane separates the lower
10% of the conditional distribution from the remaining 90%.

Let us for the moment and for notational simplicity drop subscript j.
Suppose that (xTi , yi), i = 1, · · · , n denotes the observed values for a random
sample consisting of n units, where xTi are row p-vectors of a known design
matrix X and yi is a scalar response variable corresponding to a realisation
of a continuous random variable with unknown continuous cumulative distri-
bution function F . A linear regression model for the qth conditional quantile
of yi given xi is

Qyi(q|xi) = xi
Tβ(q).

An estimate of the qth regression parameter β(q) is obtained by minimizing

n∑
i=1

{
|yi − xTi β(q)|

[
(1− q)I(yi − xTi β(q) ≤ 0) + qI(yi − xTi β(q) > 0)

]}
.

Quantile regression presents a generalization of median regression and
expectile regression (Newey and Powell, 1987) a ‘quantile-like’ generaliza-
tion of mean regression. M-quantile regression (Breckling and Chambers,
1988) integrates these concepts within a framework defined by a ‘quantile-
like’ generalization of regression based on influence functions (M-regression).
The M-quantile of order q for the conditional density of y given the set of
covariates x, f(y|x), is defined as the solution MQy(q|x;ψ) of the estimating
equation

∫
ψq{y−MQy(q|x;ψ)}f(y|x)dy = 0, where ψq denotes an asymmet-

ric influence function, which is the derivative of an asymmetric loss function
ρq. A linear M-quantile regression model yi given xi is one where we assume
that

MQy(q|xi;ψ) = xi
Tβψ(q), (1)

and estimates of βψ(q) are obtained by minimizing

n∑
i=1

ρq
(
yi − xi

Tβψ(q)
)
. (2)
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Different regression models can be defined as special cases of (2). In partic-
ular, by varying the specifications of the asymmetric loss function ρq we ob-
tain the expectile, M-quantile and quantile regression models as special cases.
When ρq is the square loss function we obtain the linear expectile regression
model if q 6= 0.5 (Newey and Powell, 1987) and the standard linear regression
model if q = 0.5. When ρq is the loss function described by Koenker and Bas-
sett (1978) we obtain the linear quantile regression. Throughout this paper
we will take the linear M-quantile regression model to be defined by when ρq
is the Huber loss function (Breckling and Chambers, 1988). Setting the first
derivative of (2) equal to zero leads to the following estimating equations

n∑
i=1

ψq(riq)xi = 0,

where riq = yi − xTi βψ(q), ψq(riq) = 2ψ(s−1riq){qI(riq > 0) + (1− q)I(riq ≤
0)} and s > 0 is a suitable estimate of scale. For example, in the case
of robust regression, s = median|riq|/0.6745. Since the focus of our paper
is on M-type estimation, we use the Huber Proposal 2 influence function,
ψ(u) = uI(−c ≤ u ≤ c) + c · sgn(u). Provided that the tuning constant c
is strictly greater than zero, estimates of βψ(q) are obtained using iterative
weighted least squares (IWLS).

2.1. Estimators of small area averages

Chambers and Tzavidis (2006) extended the use of M-quantile regression
models to small area estimation. Following their development (see also Kokic
et al., 1997; Aragon et al., 2005), these authors characterize the conditional
variability across the population of interest by the M-quantile coefficients
of the population units. For unit i with values yi and xi, this coefficient is
the value θi such that MQy(θi|xi;ψ) = yi The M-quantile coefficients are
determined at the population level. Consequently, if a hierarchical structure
does explain part of the variability in the population data, then we expect
units within clusters (domains) defined by this hierarchy to have similar
M-quantile coefficients. When the conditional M-quantiles are assumed to
follow the linear model (1), with βψ(q) a sufficiently smooth function of q,
Chambers and Tzavidis (2006) suggested a plug in (näıve) estimator of the
average value of y in area j

m̂MQ
j = N−1j

[∑
i∈sj

yi +
∑
i∈rj

xTi β̂ψ(θ̂j)
]
, j = 1, . . . ,m, (3)
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where θ̂j is an estimate of the average value of the M-quantile coefficients

of the units in area j. The area-specific M-quantile coefficients, θ̂j, can be
viewed as pseudo-random effects. Empirical work indeed indicates that the
area-specific M-quantile coefficients are positively and highly correlated with
the estimated random area-specific effects obtained with the nested error re-
gression small area model. Chambers and Tzavidis (2006) also observed that
the näıve M-quantile estimator (3) can be biased, especially in the presence
of heteroskedastic and/or asymmetric errors. This observation motivated
the work in Tzavidis et al. (2010). In particular, these authors proposed
a bias adjusted M-quantile estimator for the small area average that is de-
rived by using an estimator of the finite population distribution function such
as the Chambers-Dunstan estimator (Chambers and Dunstan, 1986). The
Chambers-Dunstan estimator of the small area distribution function is of the
form

F̂CD
j (t) = N−1j

[∑
i∈sj

I(yi ≤ t) + n−1j
∑
k∈rj

∑
i∈sj

I(xTk β̂ψ(θ̂j) + ei ≤ t)
]
.

Estimates of θj and βψ(θj) are obtained following Chambers and Tzavidis

(2006) and ei = yi − xTi β̂ψ(θ̂j) are model residuals. The M-quantile bias-
adjusted estimator of the average of y in small area j is then defined as

m̂CD
j =

∫ +∞

−∞
y dF̂CD

j (y)

= N−1j

[∑
i∈sj

yi +
∑
i∈rj

ŷi + (1− fj)
∑
i∈sj

ei

]
.

(4)

where fj = njN
−1
j is the sampling fraction in area j and ŷi = xTi β̂ψ(θ̂j),

i ∈ rj. The bias correction in (4) means that this estimator has higher
variability than (3). Nevertheless, because of its bias robust properties, (4) is
usually preferred, over the näıve M-quantile estimator, in practice. Finally, as
we will also see in the next section, by using the Chambers-Dunstan estimator
one can define a general framework for small area estimation that extends
beyond the estimation of small area averages.

Analytic MSE estimation for M-quantile estimators of small area averages
is described in Chambers and Tzavidis (2006) and Chambers et al. (2009). In
particular, Chambers et al. (2009) proposed an analytic mean squared error
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estimator that is a first order approximation to the mean squared error of
estimator (4). These authors noted that since an iteratively reweighted least
squares algorithm is used to calculate the M-quantile regression fit at θ̂j,

β̂ψ(θ̂j) = (XT
s WsjXs)

−1XT
s Wsjys

where Xs and ys denote the matrix of sample x values and the vector of
sample y values respectively, and Wsj denotes the diagonal weight matrix
of order n that defines the estimator of the M-quantile regression coefficient
with q = θ̂j. It immediately follows that (4) can be written

m̂CD
j = wT

sj
ys, (5)

where wsj = (wij) = n−1j ∆sj + (1 − N−1j nj)WjXs(X
T
s WjXs)

−1(xrj − xsj)
with ∆sj denoting the n-vector that ‘picks out’ the sample units from area
j. Here xsj and xrj denote the sample and non-sample means of x in area j.
Also, these weights are ‘locally calibrated’ on x since∑

i∈s

wijxi = x̄sj + (1− fj)(x̄rj − x̄sj) = x̄j.

A first order approximation to the mean squared error of (5) then treats
the weights as fixed and applies standard methods of robust mean squared
error estimation for linear estimators of population quantities (Royall and
Cumberland, 1978). With this approach, the prediction variance of m̂CD

j is
estimated by

V̂ ar(m̂CD
j ) =

m∑
g=1

∑
i∈sg

λijg
(
yi − xiβ̂ψ(θ̂g)

)2
, (6)

where λijg = [(wij − 1)2 + (nj − 1)−1(Nj − nj)]I(g = j) + w2
igI(g 6= j).

Empirical studies show that the analytic MSE estimator (6) is bias robust
against misspecification of the model (Chambers et al., 2009). However, its
main criticism is that it can be unstable especially with small area-specific
sample sizes.

2.2. Estimators of small area poverty indicators and quantiles

Although small area averages are widely used in small area applications,
relying only on averages may not be very informative. This is the case for
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example in economic applications where estimates of average income may not
provide an accurate picture of the area wealth due to the high within area
inequality. Our goal in this section is to also express quantiles and specific
poverty indicators as functionals of the Chambers-Dunstan estimator of the
population distribution function.

With regards to the estimation of small area quantiles, an estimate of
quantile φ for small area j is the value q̂(j;φ) obtained by a numerical solution
to the following estimating equation∫ q̂(j;φ)

−∞
dF̂CD

j (t) = φ. (7)

Estimating poverty indicators at disaggregated geographical levels is also
important. In this paper we focus on the estimation of the incidence of
poverty or Head Count Ratio (HCR) and of the Poverty Gap (PG) as defined
by Foster et al. (1984). Denoting by t the poverty line, different poverty
indicators are defined by using

Fα,i =
(t− yi

t

)α
I(yi ≤ t) i = 1, . . . N.

The population poverty indicators in small area j, Fα,j, can then be decom-
posed as follows,

Fα,j = N−1j

[∑
i∈sj

Fα,i +
∑
i∈rj

Fα,i

]
.

In particular, setting α = 0, F0,j defines the HCR while setting α = 1
F1,j defines the PG in small area j. Hence, one approach for estimating
the HCR in small area j is by using the Chambers-Dunstan estimator of
the distribution function and the M-quantile model for predicting for out of
sample units as follows,

F̂0,j = N−1j

[∑
i∈sj

I(yi ≤ t) + n−1j
∑
k∈rj

∑
i∈sj

I(xTk β̂ψ(θ̂j) + ei ≤ t)
]
. (8)

Similarly, an estimator of the poverty gap for area j

F̂1,j = N−1j

[∑
i∈sj

(t− yi
t

)
I(yi ≤ t)

+ n−1j
∑
k∈rj

∑
i∈sj

(t− xTk β̂ψ(θ̂j)− ei
t

)
I(xTk β̂ψ(θ̂j) + ei ≤ t)

]
. (9)
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In practice the HCR and PG for area j can be estimated by using a Monte
Carlo approach. The estimation procedure is as follows:

1 Fit the M-quantile small area model using the sample values ys and
obtain estimates θ̂j, β̂ψ(θ̂j), of θj and βψ(θj).

2 Draw an out of sample vector using

y∗k = xTk β̂ψ(θ̂j) + e∗k, k ∈ rj,

where e∗k, k ∈ rj is a vector of size Nj − nj drawn from the empirical
distribution function of the estimated M-quantile model residuals.

3 Repeat the process H times. Each time combine the sample data and
out of sample data for estimating F0,j and F1,j.

4 Average the results over H simulations.

The M-quantile approach for estimating poverty indicators is similar in spirit
to the EBP approach proposed by Molina and Rao (2010). Note for example
that y∗k, k ∈ rj is generated using xTk β̂ψ(θ̂j) i.e. from the conditional M-

quantile model, where θ̂j plays the role of the area random effects in the
M-quantile modelling framework.

3. Non-parametric bootstrap MSE estimation

All small area target parameters we presented in Section 2 have been
expressed as functionals of the Chambers-Dunstan estimator of the popula-
tion distribution function. Unlike MSE estimation for small area averages,
analytic MSE estimation for small area poverty indicators and quantiles is
complex. In this section we present a nonparametric bootstrap framework
for MSE estimation of small area parameters estimated with the M-quantile
model and the Chambers-Dunstan estimator.

Let us start with the M-quantile small area model

yij = xTijβψ(θj) + εij

where βψ(θj) is the unknown vector of M-quantile regression parameters
for the unknown area-specific M-quantile coefficient θj, and εij is the unit
level random error term with distribution function G for which no explicit
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parametric assumptions are being made. Using the sample data we obtain
estimates θ̂j, β̂ψ(θ̂j), of θj and βψ(θj), and estimated model residuals eij =

yij − xTijβ̂ψ(θ̂j). The target is to estimate the small area finite population
distribution function, or to be more precise a functional of this distribution
function τ , by using the Chambers-Dunstan estimator and the M-quantile
small area model,

F̂CD
j (t) = N−1j

[∑
i∈sj

I(yij ≤ t) +
∑
k∈rj

Ĝ
(
t− xTijβ̂ψ(θ̂j)

)]
, (10)

where Ĝ(u) is the empirical distribution, Ĝ(u) = n−1j
∑

i∈sj I(eij ≤ u), of the

model residuals eij. Using (10), we obtain estimates of the small area target
parameters we presented in Section 2, which we collectively denote by τ̂ .

Given an estimator Ĝest(u) of the distribution of the residuals G(u) =
Pr(ε ≤ u), a bootstrap population, consistent with the M-quantile small
area model, Ω∗ = {y∗ij,xij}, can be generated by sampling from Ĝest(u) to
obtain ε∗ij,

y∗ij = xTijβ̂ψ(θ̂j) + ε∗ij, i = 1, . . . , Nj, j = 1, . . . ,m.

For defining Ĝest(u) we consider two approaches: (1) sampling from the
empirical distribution function of the model residuals or (2) sampling from
a smoothed distribution function of the model residuals. For each of the two
above mentioned approaches, sampling can be done in two ways namely, by
sampling from the distribution of all residuals without conditioning on the
small area (unconditional approach) or by sampling from the distribution
of the residuals within small area j (conditional approach). The empirical
distribution of the residuals for the unconditional approach is

Ĝest(t) = n−1
m∑
j=1

∑
i∈sj

I(eij − ēs ≤ t), (11)

where ēs is the sample mean of the residuals eij, while for the conditional
approach the empirical distribution is

Ĝjest(t) = n−1j
∑
i∈sj

I(eij − ēsj ≤ t),

where ēsj is the sample mean of the residuals in area j. The corresponding
smoothed estimators of the distribution of the residuals for the unconditional
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and the conditional approaches are respectively

Ĝest = n−1
m∑
j=1

∑
i∈sj

K
(
h−1(t− eij + ēs)

)
, (12)

and
Ĝjest(t) = n−1j

∑
i∈sj

K
(
h−1j (t− eij + ēsj)

)
,

where h > 0 (or hj) is a smoothing parameter and K is the distribution func-
tion corresponding to a bounded symmetric kernel density k. Hence, there
are four possible approaches for defining ε∗ij. We suggest, however, using the
unconditional, empirical or smoothed, approach. The reason is that in appli-
cations of small area estimation sampling from the conditional distribution
would rely on potentially a very small number of data points which can cause
Ĝest(t) to be unstable. Let us now define the finite distribution function for
the bootstrap population as follows

F ∗j (t) = N−1j

[∑
i∈sj

I(y∗ij ≤ t) +
∑
i∈rj

I(y∗ij ≤ t)
]
.

The bootstrap population distribution function can be estimated by selecting
a without replacement sample from the bootstrap population and by using
the Chambers-Dunstan estimator

F̂ ∗,CDj (t) = N−1j

[∑
i∈sj

I(y∗ij ≤ t) +
∑
k∈rj

Ĝ∗
(
t− xTijβ̂

∗
ψ(θ̂∗j)

)]
, (13)

where β̂
∗
ψ(θ̂∗j ) are bootstrap sample estimates of the M-quantile model pa-

rameters and Ĝ∗ = n−1j
∑

i∈sj I(e∗ij ≤ u). Using (13) we obtain bootstrap
estimates, τ̂ ∗, of the bootstrap population small area parameters τ ∗.

The steps of the bootstrap procedure are as follows: starting from sam-
ple s, selected from a finite population Ω without replacement, we fit the
M-quantile small area model and obtain estimates of θj and βψ(θj) which
are used to compute the model residuals. We then generate B bootstrap
populations, Ω∗b, using one of the previously described methods for estimat-
ing the distribution of the residuals, G(u). From each bootstrap population,
Ω∗b, we select L bootstrap samples using simple random sampling within the
small areas and without replacement in a way such that n∗j = nj. Using the
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bootstrap samples we obtain estimates of τ . Bootstrap estimators of the bias
and variance of the estimated target small area parameter, τ̂ , derived from
the distribution function in area j are defined respectively by

B̂ias(τ̂j) = B−1L−1
B∑
b=1

L∑
l=1

(
τ̂ ∗blj − τ ∗bj

)
,

V̂ar(τ̂j) = B−1L−1
B∑
b=1

L∑
l=1

(
τ̂ ∗blj − ¯̂τ ∗blj

)2
,

where τ ∗bj is the small area parameter of the bth bootstrap population, τ̂ ∗blj

is the small area parameter estimated by using (13) with the lth sample of
the bth bootstrap population and ¯̂τ ∗blj = L−1

∑L
l=1 τ̂

∗bl
j . The bootstrap MSE

estimator of the estimated small area target parameter is then defined as

M̂SE (τ̂j) = V̂ar(τ̂j) + B̂ias(τ̂j)
2. (14)

3.1. A note on asymptotic properties

The asymptotic properties of the smoothed bootstrap method, under a
linear model, have been studied by Lombardia et al. (2003). Here we com-
ment on the validity of the assumptions by Lombardia et al. (2003) under the
M-quantile model. To start with, we note that the superpopulation model
assumed by Lombardia et al. (2003) is a special case of the linear M-quantile
model when a squared loss function is used in (2) and q = 0.5 (see Breckling
and Chambers, 1988; Newey and Powell, 1987). Under this model and using
the assumptions on page 371 of their paper Lombardia et al. (2003) showed
that the smoothed bootstrap estimator F̂ ∗,CD(t) is consistent, in that its be-
haviour relative to the smoothed bootstrap population distribution function
F ∗(t) is identical to the relationship between F̂CD(t) and the correspond-
ing population distribution function F (t). The asymptotic behaviour of the
latter was studied by Chambers et al. (1992) under assumptions relating
to the superpopulation model density and the asymptotic behavior of the
sampling fraction (H1-H3 on page 371 of Lombardia et al. (2003)). More-
over, Lombardia et al. (2003) show that the smoothed bootstrap estimator
is asymptotically normally distributed. The assumptions made by Lombar-
dia et al. (2003) relate to the kernel function, the bandwidth parameter and
the density g of G. In our case the assumptions about the kernel density
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k and the bandwidth parameter h (K1 and K2 on page 371 of Lombardia
et al. (2003)) hold and in our empirical evaluations we use the same kernel
function and bandwidth selection method as those used by Lombardia et al.
(2003). In addition, the assumptions about the superpopulation model and
the asymptotic behavior of the sampling fraction (H1 to H4 on page 371)
are reasonable assumptions also under the M-quantile linear model. Finally,
conditional on the small areas the assumption of independence of the errors
is also reasonable.

4. Empirical evaluations

In this section we use model-based Monte-Carlo simulations to empirically
evaluate the performance of the bootstrap MSE estimator (14) when used to
estimate the MSE of the M-quantile estimators of (a) the small area average
(4), (b) the small area quantile (7), (c) the head count ratio (HCR) (8) and
(d) the poverty gap (PG) (9). Moreover, since analytic MSE estimation for
M-quantile estimates of small area averages is possible, the proposed boot-
strap MSE estimator is also contrasted to the corresponding analytic MSE
estimator (6) both in terms of bias and stability. The behaviour of the alter-
native MSE estimators is assessed under two different parametric assump-
tions for the model error terms namely, Normal and Chi-square errors, and
two scenarios for the area-specific sample and population sizes. Finally, we
also present results on how well estimators of small area averages, quantiles
and poverty indicators estimate the corresponding population parameters.

In what follows subscript j identifies small areas, j = 1, . . . ,m and sub-
script i identifies units in a given area, i = 1, . . . , nj. Population data
Ω = (x, y) in m = 30 small areas are generated under two parametric sce-
narios for the model error terms. Population data under the first parametric
scenario were generated by using a unit level area random effects model with
normally distributed random area effects and unit level errors as follows

yij = 3000− 150 ∗ xij + γj + εij,

where γj ∼ N(0, 2002), εij ∼ N(0, 8002), xij ∼ N(µj, 1), µj ∼ U [4, 10] and
µj was held fixed over simulations. Similarly, under the second parametric
scenario population data were generated using

yij = 11− xij + γj + εij,
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where now γj ∼ χ2(1), εij ∼ χ2(6) and xij was generated as in the first
scenario but with µj ∼ U [8, 11].

For each Monte Carlo simulation a within small areas random sample
is selected from the corresponding generated population. Two scenarios for
the population and sample sizes are investigated. Under the first scenario
(denoted in the tables of results by λ = 0) the total population size is N =
8400 with small area-specific population sizes ranging between 150 ≤ Nj ≤
440. The total sample size is n = 840 and the area-specific sample sizes
are ranging between 15 ≤ nj ≤ 44. Under the second scenario (denoted
in the tables of results by λ = 1) the total population size is N = 2820
with area-specific population sizes ranging between 50 ≤ Nj ≤ 150 and the
total sample size is n = 282 with area-specific sample sizes ranging between
5 ≤ nj ≤ 15.

Using the sample data we obtain point estimates of small area averages
with (4), of the 0.25, 0.50 and 0.75 percentiles of the distribution of y with
(7) and of the HCR and PG with (8) and (9) respectively. For small area av-
erages MSE estimation is performed using both the analytic MSE (6) and the
bootstrap MSE estimator (14). For estimators of small area percentiles and
poverty indicators MSE estimation is performed using the bootstrap MSE
estimator (14). We run in total H = 500 Monte-Carlo simulations. For boot-
strap MSE estimation we used one bootstrap population (B = 1) from which
we drew 400 bootstrap samples (L = 400). Because the evaluation of the
bootstrap MSE estimator is taking place within a Monte-Carlo framework,
the generation of a new Monte-Carlo population and of a new bootstrap
population in each iteration is imitating the generation of many bootstrap
populations. For the bootstrap MSE estimation we used the unconditional
approach with both the empirical (11) and smoothed (12) versions of the
error distribution. For the smoothed case, we use the Epanechnikov kernel
density, k(u) = (3/4)(1−u2)I(|u| < 1), where the smoothing parameter h in
(12) was chosen so that it minimizes the cross-validation criterion suggested
by Bowman et al. (1998). That is, h was chosen in order to minimize

CV (h) = n−1
m∑
j=1

∑
i∈sj

∫ [
I(eij − ēs) ≤ t−G−i(t)

]2
dt,

where G−i(t) is the version of G(t) that omits sample unit i (Li and Racine
(2007), section 1.5). To compute the smoothing parameter h in (12) we
used the np package (Hayfield and Racine, 2008) in the R environment (R
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Development Core Team, 2010).
Denoting by τj the true and unknown parameter and by τ̂j the corre-

sponding estimate, the performance of MSE estimators is evaluated using
the relative bias and Root MSE (RMSE) defined by

RBIAS(τ̂j) = H−1
H∑
h=1

( τ̂j,h − τj,h
τj,h

)
RMSE(τ̂j) =

[
H−1

H∑
h=1

(τ̂j,h − τj,h)2
]1/2

Finally, coverage rates of 95% confidence intervals constructed by using the
bootstrap MSE estimator are computed. Although the detailed results of
coverage rates are not reported in the tables of results, we do provide sum-
mary results of coverage rates in our commentary.

4.1. Results for small area averages

Table 1 presents the results for MSE estimation of M-quantile small area
averages obtained with (4), under the two parametric scenarios and the two
scenarios for the area-specific sample and population sizes, using the analytic
MSE estimator (6) and the bootstrap MSE estimator (14). For bootstrap
estimation we used the smoothed unconditional approach for estimating the
distribution of the residuals. Results from the implementation of the em-
pirical unconditional approach have been also produced but in the economy
of space are not reported here. The table reports the distribution over ar-
eas of the empirical, Monte Carlo RMSE, the estimated RMSE, the relative
bias (%) of the estimated RMSE and the RMSE of the RMSE estimators,
which is used for assessing the stability of the bootstrap and analytic MSE
estimators.

These results suggest that for all scenarios we studied the analytic and
the bootstrap MSE estimators track very well the empirical MSE and have on
average reasonably low relative bias. However, the bootstrap MSE estimator
appears to be notably more stable. In particular, the RMSE of the bootstrap
MSE estimator is approximately half that of the analytic estimator (scenario
with λ = 0) and differences become more pronounced for the smaller area
sample sizes (scenario λ = 1). Therefore, there is evidence to suggest that
the bootstrap MSE estimator is more stable than the analytic MSE estimator
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Averages, Smoothed Approach Min. 1st Qu. Median Mean 3rd Qu. Max.
Normal scenario, λ = 0
True 113.4 125.8 147.6 147.9 168.6 189.5
Estimated(Analytic) 113.4 125.5 140.4 146.1 165.1 190.3
Estimated(Bootstrap) 112.6 125.4 140.0 147.5 167.9 193.8
Rel. Bias(%)(Analytic) −10.08 −3.35 −1.627 −0.988 0.594 8.59
Rel. Bias(%)(Bootstrap) −10.15 −2.709 −0.908 −0.189 1.802 11.19
RMSE(Analytic) 11.23 15.69 21.540 22.420 28.400 39.82
RMSE(Bootstrap) 6.858 8.278 10.700 11.040 12.280 20.16
Normal scenario, λ = 1
True 177.6 219.5 249.4 255.6 291.1 333.3
Estimated(Analytic) 188.3 206.5 232.5 237.2 262.6 298.3
Estimated(Bootstrap) 186.5 208.9 236.1 245.3 273.4 324.1
Rel. Bias(%)(Analytic) −16.29 −10.06 −6.24 −6.53 −4.65 6.05
Rel. Bias(%)(Bootstrap) −10.26 −5.78 −4.52 −3.78 −2.06 5.03
RMSE(Analytic) 36.10 45.98 60.510 67.160 84.570 117.700
RMSE(Bootstrap) 14.76 21.460 27.650 28.170 34.050 45.850
χ2 scenario, λ = 0
True 0.506 0.564 0.645 0.644 0.718 0.845
Estimated(Analytic) 0.484 0.542 0.614 0.634 0.717 0.822
Estimated(Bootstrap) 0.488 0.542 0.607 0.639 0.728 0.841
Rel. Bias(%)(Analytic) −11.24 −6.043 −1.665 −1.505 2.587 9.16
Rel. Bias(%)(Bootstrap) −8.323 −4.866 −0.323 −0.818 2.448 12.22
RMSE(Analytic) 0.0804 0.0972 0.1246 0.1346 0.1707 0.2162
RMSE(Bootstrap) 0.0353 0.0483 0.0587 0.0605 0.0714 0.1028
χ2 scenario, λ = 1
True 0.752 0.936 1.059 1.098 1.271 1.494
Estimated(Analytic) 0.789 0.890 1.005 1.019 1.122 1.269
Estimated(Bootstrap) 0.812 0.915 1.025 1.069 1.192 1.415
Rel. Bias(%)(Analytic) −15.04 −9.198 −7.173 −6.531 −3.994 7.424
Rel. Bias(%)(Bootstrap) −7.241 −4.934 −1.836 −2.478 −0.773 7.953
RMSE(Analytic) 0.2156 0.2642 0.328 0.3693 0.4524 0.6686
RMSE(Bootstrap) 0.0846 0.1089 0.1344 0.1482 0.1781 0.2729

Table 1: Distribution over areas and simulations of the empirical, Monte Carlo RMSE,
of the estimated RMSE (analytic and bootstrap), of the relative bias (%) of the RMSE
estimators and of the RMSE of the RMSE estimators for M-quantile estimators of small
area averages. Bootstrap results are produced using the unconditional smoothed approach.
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proposed by Chambers and Tzavidis (2006) and hence it should be preferred
in practical applications. The results using the empirical distribution, instead
of the smoothed distribution of the residuals, are consistent with the results
we present here. Figure 1 present averages, over simulations, of true and
estimated, using (4), small area means. In the economy of space we present
results only for the χ2 scenario and the Normal scenario with the smaller
area sample sizes (λ = 1). These results show that estimates of small area
averages are close to population values. The results for other scenarios are
consistent with the ones we present here. Results for coverage rates of 95%
confidence intervals for estimates of small area averages constructed by using
the bootstrap MSE estimator are on average close to 95% for both parametric
scenarios and for both scenarios of the area sample and population sizes.

4.2. Results for small area poverty indicators and percentiles

Tables 2 and 3 present results on the performance of the bootstrap MSE
estimator (14) when used to estimate the MSE of estimates of HCR and
PG obtained with (8) and (9) respectively. Bootstrap MSE estimation is
implemented using the smoothed unconditional approach for estimating the
distribution of the residuals. Results from the implementation of the empir-
ical unconditional approach have been also produced but in the economy of
space are not reported here. The tables report the distribution over areas of
the empirical, Monte Carlo RMSE, the estimated RMSE, the relative bias
of the bootstrap MSE and the RMSE of the RMSE estimator, which is used
for assessing the stability of the bootstrap MSE estimator.

From tables 2 and 3 we see that the estimated RMSE for HCR and PG
tracks well the entire distribution of the empirical RMSE, both for the Normal
and χ2 scenarios. For the normal scenario, these results also show evidence of
substantial relative bias ranging on average between (-16% , - 7.6%), which
may be due to the large values of the error variance components we used
for generating the Monte-Carlo population creating some instability when
estimating an indicator. For the chi-square scenario the relative bias is sub-
stantially lower ranging on average between (-6.9% , -0.19%). In any case
the results on the relative bias must be interpreted with care since the values
of the MSEs are small and hence even small differences will result in sub-
stantial relative bias. This is the case even with values that agree up to the
second decimal place. As expected, the variability of the RMSE estimator is
greater when the sample size is smaller, however, given the decrease in the
area sample sizes (see scenario λ = 1) the stability of the MSE estimator
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HCR, Smoothed Approach Min. 1st Qu. Median Mean 3rd Qu. Max.
Normal scenario, λ = 0
True 0.023 0.034 0.036 0.041 0.051 0.064
Estimated 0.018 0.027 0.032 0.035 0.043 0.062
Rel. Bias(%) −24.320 −18.080 −14.130 −14.220 −10.850 −3.635
RMSE 0.009 0.012 0.0129 0.013 0.0141 0.0173
Normal scenario, λ = 1
True 0.032 0.050 0.058 0.063 0.076 0.104
Estimated 0.027 0.046 0.053 0.059 0.073 0.102
Rel. Bias(%) −20.700 −11.680 −7.849 −7.665 −2.307 5.204
RMSE 0.0136 0.019 0.0217 0.0217 0.0243 0.0293
χ2 scenario, λ = 0
True 0.053 0.057 0.062 0.063 0.069 0.079
Estimated 0.050 0.052 0.056 0.059 0.065 0.076
Rel. Bias(%) −19.650 −8.425 −7.186 −6.936 −3.731 1.599
RMSE 0.0135 0.0148 0.0158 0.0163 0.0173 0.0223
χ2 scenario, λ = 1
True 0.076 0.084 0.093 0.096 0.107 0.127
Estimated 0.078 0.085 0.094 0.096 0.107 0.126
Rel. Bias(%) −5.036 −1.139 0.121 0.195 2.190 5.811
RMSE 0.0146 0.0165 0.0181 0.0188 0.0199 0.0288

Table 2: Distribution over areas and simulations of the empirical, Monte Carlo RMSE,
of the bootstrap RMSE and of the relative Bias (%) and RMSE of the bootstrap RMSE
estimator for the HCR. Results are produced using the unconditional smoothed approach.
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PG, Smoothed Approach Min. 1st Qu. Median Mean 3rd Qu. Max.
Normal scenario, λ = 0
True 0.008 0.013 0.015 0.018 0.024 0.038
Estimated 0.006 0.011 0.012 0.015 0.019 0.034
Rel. Bias(%) −28.200 −20.360 −16.610 −16.990 −13.580 −7.395
RMSE 0.0034 0.0054 0.006 0.0066 0.0078 0.0115
Normal scenario, λ = 1
True 0.011 0.020 0.024 0.028 0.036 0.058
Estimated 0.009 0.017 0.021 0.025 0.032 0.056
Rel. Bias(%) −22.200 −15.000 −11.310 −12.060 −9.022 −1.492
RMSE 0.0051 0.0093 0.0111 0.0116 0.0149 0.0176
χ2 scenario, λ = 0
True 0.049 0.056 0.062 0.062 0.067 0.079
Estimated 0.046 0.052 0.056 0.058 0.065 0.075
Rel. Bias(%) −16.430 −7.964 −5.567 −5.587 −2.205 2.723
RMSE 0.0128 0.0137 0.0143 0.0148 0.0153 0.0214
χ2 scenario, λ = 1
True 0.073 0.081 0.093 0.094 0.103 0.120
Estimated 0.071 0.082 0.093 0.095 0.106 0.124
Rel. Bias(%) −5.595 −1.016 0.072 0.261 2.476 5.046
RMSE 0.0146 0.0168 0.0188 0.0195 0.0214 0.0305

Table 3: Distribution over areas and simulations of the empirical, Monte Carlo RMSE,
of the bootstrap RMSE and of the relative Bias (%) and RMSE of the bootstrap RMSE
estimator for the PG. Results are produced using the unconditional smoothed approach.
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remains satisfactory. These stability results will be only effectively evaluated
when compared to alternative MSE estimators of the HCR and PG. Cur-
rently, the only alternative available is the parametric bootstrap proposed
by Molina and Rao (2010). Figure 1 present averages, over simulations, of
true and estimated, using (8) and (9), small area HCRs and PGs. In the
economy of space we present results only for the χ2 scenario and the Normal
senario with the smaller area sample sizes (λ = 1). These results show that
estimates of small area HCRs and PGs are close to population values. The
results for other scenarios are consistent with the ones we present here.

In tables 4, 5 and 6 we present MSE estimation results for the percentiles
of y and more specifically for q = 0.25, 0.5, 0.75 estimated with (7). The ta-
bles report the distribution over areas of the empirical, Monte Carlo RMSE,
the estimated RMSE, the relative bias of the bootstrap RMSE and the RMSE
of the RMSE estimators, which is used for assessing the stability of the
bootstrap MSE estimator. Bootstrap MSE estimation is implemented using
the smoothed unconditional approach for estimating the distribution of the
residuals. Results from the implementation of the empirical unconditional
approach have been also produced but in the economy of space are not re-
ported here. The bootstrap MSE estimator tracks well the distribution of
the empirical MSE of the three percentiles under both parametric scenarios
and both scenarios for the small area sample sizes. Some underestimation
is present but in terms of percentage relative bias this underestimation is
not excessive. Figure 2 presents averages, over simulations, of true and es-
timated, using (7), small area percentile estimates of q = 0.25, 0.5, 0.75. In
the economy of space we present results only for the χ2 and Normal scenario
with the smaller area sample sizes (λ = 1). These results show that estimates
of small area percentiles are close to population values. The results for other
scenarios are consistent with the ones we present here.

Coverage rates of 95% confidence intervals for estimates of small area
quantiles constructed by using the bootstrap MSE estimator range on aver-
age between 93% to 95% for both parametric scenarios and for both scenarios
of the area sample and population sizes. The coverage rates of 95% confi-
dence intervals for estimates of small area poverty indicators (HCR and PG)
constructed by using the bootstrap MSE estimator range on average between
90% to 94% for both parametric scenarios and for both scenarios of the area
sample and population sizes.

The results we presented in the section indicate that the bootstrap MSE
can be reliably used for estimating the MSE of M-quantile small area av-
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Q25, Smoothed Approach Min. 1st Qu. Median Mean 3rd Qu. Max.
Normal scenario, λ = 0
True 154.20 172.90 195.6 201.8 233.3 261.0
Estimated 151.50 169.10 189.8 198.6 226.9 260.4
Rel. Bias(%) −6.191 −3.562 −1.256 −1.605 −0.075 2.771
RMSE 15.120 19.320 22.450 23.610 28.320 32.170
Normal scenario, λ = 1
True 247.6 288.1 340.7 344.0 388.6 447.5
Estimated 254.5 280.9 317.9 330.7 368.9 442.4
Rel. Bias(%) −9.946 −6.122 −4.661 −3.707 −1.499 2.793
RMSE 37.230 45.250 54.150 55.190 64.000 78.640
χ2 scenario, λ = 0
True 0.435 0.496 0.582 0.591 0.669 0.770
Estimated 0.448 0.500 0.560 0.589 0.673 0.772
Rel. Bias(%) −9.965 −2.371 −0.116 −0.076 2.061 7.073
RMSE 0.0406 0.0497 0.0593 0.0632 0.0778 0.0909
χ2 scenario, λ = 1
True 0.757 0.881 1.035 1.037 1.168 1.440
Estimated 0.754 0.850 0.969 1.007 1.121 1.350
Rel. Bias(%) −8.593 −5.135 −1.655 −2.714 −0.933 4.078
RMSE 0.0892 0.1176 0.1537 0.1478 0.1736 0.2227

Table 4: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of
the bootstrap RMSE and of the relative Bias (%) and the RMSE of the bootstrap RMSE
estimator for the 0.25 percentile. Results are produced using the unconditional smoothed
approach.
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Q50, Smoothed Approach Min. 1st Qu. Median Mean 3rd Qu. Max.
Normal scenario, λ = 0
True 135.90 157.40 182.80 184.20 212.8 242.4
Estimated 137.20 152.70 170.90 179.10 203.5 234.6
Rel. Bias(%) −8.635 −4.863 −3.489 −2.743 −0.416 4.99
RMSE 12.970 16.240 19.980 20.380 24.270 27.85
Normal scenario, λ = 1
True 232.0 266.2 307.3 313.9 351.2 414.7
Estimated 221.3 246.1 277.7 290.5 324.4 383.1
Rel. Bias(%) −13.48 −9.774 −7.326 −7.272 −5.344 1.019
RMSE 31.35 38.810 47.620 48.710 56.740 72.920
χ2 scenario, λ = 0
True 0.546 0.626 0.716 0.730 0.827 0.958
Estimated 0.541 0.602 0.675 0.707 0.805 0.929
Rel. Bias(%) −10.210 −4.987 −3.212 −3.069 −1.707 4.202
RMSE 0.0474 0.0598 0.0802 0.0804 0.0916 0.1129
χ2 scenario, λ = 1
True 0.926 1.071 1.234 1.259 1.397 1.680
Estimated 0.879 0.973 1.113 1.155 1.286 1.544
Rel. Bias(%) −13.71 −9.968 −8.144 −8.165 −6.568 −2.795
RMSE 0.1239 0.1632 0.194 0.2015 0.2317 0.2935

Table 5: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of
the bootstrap RMSE and of the relative Bias (%) and the RMSE of the bootstrap RMSE
estimator for the 0.5 percentile. Results are produced using the unconditional smoothed
approach.
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Q75, Smoothed Approach Min. 1st Qu. Median Mean 3rd Qu. Max.
Normal scenario, λ = 0
True 151.60 171.90 200.8 204.7 235.3 268.4
Estimated 150.70 168.00 186.5 197.3 224.8 260.4
Rel. Bias(%) −11.44 −6.018 −2.583 −3.553 −1.398 1.712
RMSE 15.64 19.210 25.540 24.560 28.830 32.750
Normal scenario, λ = 1
True 270.4 299.3 335.6 348.1 393.9 473.6
Estimated 249.3 278.9 312.9 326.6 367.8 432.6
Rel. Bias(%) −11.62 −8.069 −6.231 −6.132 −4.508 0.226
RMSE 38.45 46.160 52.640 55.770 64.340 86.540
χ2 scenario, λ = 0
True 0.802 0.880 1.001 1.024 1.180 1.322
Estimated 0.768 0.846 0.956 1.001 1.137 1.317
Rel. Bias(%) −9.388 −4.126 −3.067 −2.239 0.081 5.385
RMSE 0.0936 0.1029 0.1224 0.1291 0.1519 0.1864
χ2 scenario, λ = 1
True 1.262 1.482 1.659 1.681 1.873 2.187
Estimated 1.246 1.366 1.522 1.573 1.748 2.007
Rel. Bias(%) −11.13 −8.644 −7.011 −6.308 −4.609 2.358
RMSE 0.1942 0.2372 0.2691 0.2713 0.3092 0.3556

Table 6: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of
the bootstrap RMSE and of the relative Bias (%) and the RMSE of the bootstrap RMSE
estimator for the 0.75 percentile. Results are produced using the unconditional smoothed
approach.
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erages, percentiles and poverty indicators. One way of potentially improv-
ing the performance of the bootstrap MSE estimator is by generating more
than one bootstrap population. Generating more than one bootstrap popula-
tion within a Monte-Carlo simulation study, however, significantly increases
the computational effort. Having said this, when the proposed bootstrap
MSE estimator is used in applications with real data we suggest generating
B ∈ [50, 100] bootstrap populations.
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Figure 1: Point estimates and true values for small area averages, HCRs and PGs. The
first row of plots refers to the Normal scenario with sample size λ = 1, the second row
refers to χ2 scenario with sample size λ = 1.

5. An Application: Estimating the income distribution and poverty
indicators for provinces in Tuscany

The aim of this section is to provide a picture of the economic conditions in
Tuscan provinces. This is achieved by computing province-specific estimates
of average equivalised income, of key percentiles of the income distribution
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Figure 2: Point estimates and true values for small area percentiles (q = 0.25, 0.5, 0.75).
The first row of plots refers to the Normal scenario with sample size λ = 1, the second
row refers to χ2 scenario with sample size λ = 1.
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function (25th, 50th, 75th) and of two poverty indicators namely, the HCR
and PG as well as corresponding MSE estimates. Small area estimation is
performed by using data from the 2006 European Survey on Income and
Living Conditions (EU-SILC) in Italy and the 2001 Census microdata for
the region of Tuscany. Provinces within regions are unplanned domains and
the sample sizes for provinces in Tuscany range from 59 households in the
Grosseto province to 445 households in the Florence Province with an average
sample size of 149 households (median 123 households). The population of
households in the different provinces, using 2001 Census data, ranges from
80,810 households in the province of Massa-Carrara to 376,300 in the province
of Florence with the total number of households in Tuscany being 1,388,252.

We start by first building a small area working model that is estimated
using the EU-SILC survey data. The response variable is the household
equivalized income. The explanatory variables we considered are those that
are common to the survey and Census datasets. This includes explanatory
variables that relate to the head of the household namely, gender, age, occu-
pational status and years in education, and explanatory variables that relate
to the household namely, the ownership status of the house and the num-
ber of household members. Fitting a two-level (households within provinces)
random effects model using the above explanatory variables and performing
residual analysis reveals departures from the assumed normality of the level
1 and level 2 error terms. For this reason, we decided to use an oultier ro-
bust model, in this case the M-quantile small area model (see Section 2). A
logarithmic transformation of income is not easily applicable since there are
negative income values in our survey data. Small area estimates of average
household income are derived using (4). Small area estimates of the three in-
come percentiles are derived by using (7). Finally, estimates of HCR and PG
are obtained by using (8) and (9) respectively. For estimating the poverty
indicators the poverty line is computed at regional level as 60% of the median
household equivalised income. Corresponding estimates of the MSE are ob-
tained by using the bootstrap MSE estimator (14), which is implemented by
generating B = 50 bootstrap populations and selecting L = 100 bootstrap
samples from each bootstrap population.

The results are summarized in tables 7 and 8 and in figures 3 and 4,
which present point estimates and corresponding estimates of RMSE. A clear
picture about the wealth of Tuscan provinces emerges with the provinces
of Siena and Florence being the wealthiest and the provinces of Massa-
Carrara and Lucca the least wealthy (darker colors indicate higher wealth
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Figure 3: Estimates of the income percentiles for provinces in Tuscany

and lower poverty). In particular, the provinces of Massa-Carrara and Lucca
have clearly the lowest average equivalised household income whereas the
provinces of Siena and Firenze the highest. Massa-Carrara and Lucca also
have the highest number of households below the poverty line whereas Siena
and Firenze the lowest and this picture remains the same when we look at the
spatial distribution of PG. Examining the percentiles of the province-specific
income distributions we note that estimates of average income are higher
than estimates of median income, which highlights the right asymmetry of
the income distributions. Using the percentile estimates of income we can
draw some further conclusions. Looking at the average income and the HCR
we note that the province of Grosseto is among the least wealthy Tuscan
provinces. However, when examining the estimate of the third quartile for
Grosseto we note that this is similar to the estimate of the third quartile of
Arezzo, which is one of the wealthiest provinces. This indicates the presence
of inequality in Grosseto. Some evidence of inequality also exists for the
provinces of Livorno and Pisa.

6. R functions for point and MSE estimation

R functions that implement small area estimation with the M-quantile
model are available upon request from the authors. In particular, function
mq.sae produces M-quantile estimates of small area averages using (4) and
MSE estimation using the analytic MSE estimator (6). Function mq.sae.quant
produces M-quantile estimates of the small area quantiles of the distribution
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Figure 4: Estimates of the average income, Head Count Ratio and Poverty Gap for
provinces in Tuscany

PROVINCE MEAN RMSE HCR RMSE PG RMSE
MASSA 14128.26 664.84 0.280 0.039 0.117 0.022
LUCCA 15867.69 766.81 0.239 0.026 0.094 0.015
PISTOIA 18980.76 1119.33 0.195 0.019 0.073 0.011
FIRENZE 19184.92 498.35 0.166 0.012 0.061 0.007
LIVORNO 17875.01 919.41 0.193 0.020 0.075 0.012
PISA 18550.16 876.38 0.175 0.018 0.065 0.010
AREZZO 18665.97 1014.42 0.182 0.018 0.068 0.010
SIENA 20228.98 1113.91 0.161 0.023 0.060 0.012
GROSSETO 16152.47 1151.83 0.231 0.029 0.093 0.019
PRATO 17702.87 632.74 0.172 0.021 0.062 0.011

Table 7: Point estimates and corresponding RRMSEs of small area averages, HCRs and
PGs for Provinces in Tuscany
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PROVINCE Q1 RMSE Q2 RMSE Q3 RMSE
MASSA 8837.42 712.33 13498.69 831.75 18528.25 1164.96
LUCCA 9715.74 640.71 14733.29 690.70 20650.60 1087.89
PISTOIA 11412.26 669.47 16124.78 685.77 22243.96 1017.31
FIRENZE 12628.02 335.54 17364.81 377.37 23328.47 547.68
LIVORNO 11338.34 610.02 16662.83 701.85 22991.71 983.31
PISA 11571.98 618.04 17161.42 681.67 23867.96 989.89
AREZZO 12205.01 578.72 16724.22 638.74 22100.72 949.08
SIENA 12639.00 662.31 18373.53 703.94 25471.22 1087.76
GROSSETO 9924.80 924.38 15456.41 1016.58 22069.22 1483.27
PRATO 12779.53 669.54 16968.74 708.72 21796.88 1101.34

Table 8: Point estimates and corresponding RRMSEs of small area quartiles for Provinces
in Tuscany

of y using (7) and bootstrap MSE estimation using MSE estimator (14).
Function mq.sae.poverty produces M-quantile estimates of the small area
HCR and PG using respectively (8) and (9) and bootstrap MSE estimation
using MSE estimator (14). Options for using empirical or smoothed, condi-
tional and unconditional residuals for generating the bootstrap population
are available. The details of each function are provided in the appendix at
the end of the paper.

7. Conclusions

In this paper we propose the use of non-parametric bootstrap for esti-
mating the MSE for small area averages, quantiles and poverty indicators
estimated with the M-quantile model and the Chambers-Dunstan estimator.
Given that analytic MSE estimation for quantiles and poverty indicators is
difficult, the proposed MSE estimator provides one practical approach for
MSE estimation of complex small area statistics. As illustrated in the em-
pirical section, the proposed bootstrap MSE estimator approximates well the
‘true’ MSE error of the target parameters. In addition, these results show
that bootstrap MSE estimation is notably more stable than corresponding
analytic estimation. The practical implementation of the estimation proce-
dures we describe in this paper is assisted by the availability of R functions.
In work we will be conducting in the near future we aim to implement the
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bootstrap MSE estimator for estimating the accuracy of quantiles estimates
of the income distribution function and of poverty indicators for UK Local
Authority Districts using data from the UK Family Resources Survey and
UK Census micro-data.
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Appendix A. Specifications of R functions

Appendix A.1. Estimation of small area means with mq.sae

• Required Packages: MASS

• mq.sae(y,x,regioncode.s,m,p,x.outs,regioncode.r,tol.value,maxit.value,k.value)

The function provides estimates of small area averages using (3) and (4) and
corresponding analytic estimates of MSE using (6). Key arguments required are
the response variable y, the matrix of covariates x, covariate information for out
of sample areas x.outs, the number of small areas m and values relating to the
convergence of the algorithm.

Appendix A.2. Estimation of small area quantiles with mq.sae.quant

• Required Packages: MASS and np

• mq.sae.quant(q,y,x,x.outs,regioncode.s,regioncode.r,MSE,B,R,method,maxit)

The function provides estimates of small area quantiles using (7) and correspond-
ing bootstrap estimates of MSE using (14). Key arguments required are the re-
sponse variable y, the matrix of covariates x, covariate information for out of
sample areas x.outs and values relating to the convergence of the algorithm. If
MSE = TRUE bootstrap MSE estimates are produced. B denotes the number
of bootstrap populations and R denotes the number of bootstrap samples from
each bootstrap population. Finally method defines the type of residuals used for
generating the bootstrap population: ‘su’ (smooth unconditional),‘eu’ (empriri-
cal unconditional),‘sc’ (smooth conditional),‘ec’ (empirical unconditional). The
default is set to ’eu’, which is computationally faster.
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Appendix A.3. Estimation of small area poverty indicators with mq.sae.poverty

• Required Packages: MASS and np

• mq.sae.poverty(y,x,x.outs,regioncode.s,regioncode.r,L,MSE,B,R,method)

The function provides estimates of small area HCRs and PGs using (8) and (9) and
corresponding bootstrap estimates of MSE using (14). Key arguments required are
the response variable y, the matrix of covariates x, covariate information for out
of sample areas x.outs and values relating to the convergence of the algorithm. L
specifies the number of Monte Carlo runs for estimating HCR and PG using the
estimation method in Section 2.2. If MSE = TRUE bootstrap MSE estimates are
produced. B denotes the number of bootstrap populations and R denotes the num-
ber of bootstrap samples from each bootstrap population. Finally method defines
the type of residuals used for generating the bootstrap population: ‘su’ (smooth
unconditional),‘eu’ (emprirical unconditional),‘sc’ (smooth conditional),‘ec’ (em-
pirical unconditional). The default is set to ’eu’, which is computationally faster.
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