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Let F be a nonarchimedean local field of characteristic zero and let G D SL.N / D
SL.N; F /. This article is devoted to studying subspaces of the tempered dual of
SL.N / which have an especially intricate geometric structure, and to computing,
with full arithmetic details, their K-theory. Our results illustrate, in a special case,
part (3) of the recent conjecture in [2].

The subspaces of the tempered dual which are especially interesting for us contain
%//'8#'( representations. A tempered representation of SL.N / is %//'8#'( if its Harish-
Chandra character is not identically zero on the elliptic set.

An element in the discrete series of SL.N / is an isolated point in the tempered
dual of SL.N / and contributes one generator to K0 of the reduced C*-algebra of
SL.N /.

Now SL.N / admits elliptic representations which are not discrete series: we
investigate, with full arithmetic details, the contribution of the elliptic representations
of SL.N / to the K-theory of the reduced C*-algebra AN of SL.N /.

According to [7], AN is a C*-direct sum of fixed C*-algebras. Among these fixed
algebras, we will focus on those whose duals contain elliptic representations. Let n
be a divisor of N with 1 ! n ! N and suppose that the group UF of integer units
admits a character of order n. Then the relevant fixed algebras are of the form

C.T n=T ;K/Z=nZ " AN :
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Here, K is the C*-algebra of compact operators on standard Hilbert space, T n=T
is the quotient of the compact torus T n via the diagonal action of T . The compact
group T n=T arises as the maximal compact subgroup of the standard maximal torus
of the Langlands dual PGL.n;C/. We prove (Theorem 3.1) that this fixed C*-algebra
is strongly Morita equivalent to the crossed product

C.T n=T / Ì Z=nZ:

The reduced C*-algebra AN is liminal, and its primitive ideal space is in canonical
bijection with the tempered dual of SL.N /. Transporting the Jacobson topology on
the primitive ideal space, we obtain a locally compact topology on the tempered dual
of SL.N /, see [5], 3.1.1, 4.4.1, 18.3.2.

Let Tn denote the C*-dual of C.T n=T ;K/Z=nZ. Then Tn is a non-Hausdorff
space, and has a very special structure as topological space. Whenn is a prime number
`, then T` will contain multiple points. When n is non-prime, Tn will contain not
only multiple points, but also &+/#'8/% )+,)8"(%). This crossed product C*-algebra
is a noncommutative unital C*-algebra which fits perfectly into the framework of
noncommutative geometry. In the tempered dual of SL.N /, there are connected
compact non-Hausdorff spaces, laced with multiple subspaces, and simply described
by crossed product C*-algebras.

The K-theory of the fixed C*-algebra is then given by the K-theory of the crossed
product C*-algebra. To compute (modulo torsion) the K-theory of this noncommu-
tative C*-algebra, we apply the Chern character for discrete groups [3]. This leads
to the cohomology of the %9#%17%7 :+0#'%1# .T n=T /==.Z=nZ/. This in turn leads
to a problem in classical algebraic topology, namely the determination of the cyclic
invariants in the cohomology of the n-torus.

The ordinary quotient will be denoted by X.n/:

X.n/ ´ .T n=T /=.Z=nZ/:

This is a compact connected orbifold. Note that X.1/ D pt . The orbifold X.n; k; !/
which appears in the following theorem is defined in Section 4. The notation is such
that X.n; n; 1/ is the ordinary quotient X.n/ and each X.n; 1; !/ is a point. The
highest common factor of n and k is denoted .n; k/.

?7/"$/+ =<=< ;$% %9#%17%7 :+0#'%1# .T n=T /==.Z=nZ/ ') " 7')-0'1# +1'01 0< (0&=
8"(# (011%(#%7 06,'<0/7)>

.T n=T /==.Z=nZ/ D F
X.n; k; !/

;$% 7')-0'1# +1'01 ') 0?%6 "// 1 ! k ! n "17 "// n=.k; n/#$ 600#) 0< +1'#4 ! '1 C2

We apply the Chern character for discrete groups [3], and obtain



R-groups and geometric structure in the representation theory of SL.N / 267

?7/"$/+ =<@< ;$% 3=#$%064 @60+8) K0 "17 K1 "6% @'?%1 ,4

K0.C.T
n=T /;K/Z=nZ ˝Z C ' L

H ev.X.n; k; !/I C/;

K1.C.T
n=T /;K/Z=nZ ˝Z C ' L

H odd.X.n; k; !/I C/:

;$% 7'6%(# )+&) "6% 0?%6 "// 1 ! k ! n "17 "// n=.k; n/#$ 600#) 0< +1'#4 ! '1 C2

For the ordinary quotient X.n/ we have the following explicit formula (Theo-
rems 6.1 and 6.3). Let H • ´ H ev ˚H odd and let ! denote the Euler totient.

?7/"$/+ =<A< A%# X.n/ 7%10#% #$% 067'1"64 :+0#'%1# .T n=T /=.Z=nZ/2 ;$%1 5%
$"?%

dimC H B.X.n/I C/ D 1

2n

X

d jn; d 077

!.d/2n=d :

Theorem 1.1 lends itself to an interpretation in terms of representation theory.
When n D ` a prime number, the elliptic representations of SL.`/ are discussed
in Section 2. The extended quotient .T `=T /==.Z=`Z/ is the disjoint union of the
ordinary quotient X.`/ and `.` # 1/ isolated points. We consider the canonical
projection " of the extended quotient onto the ordinary quotient:

" W .T `=T /==.Z=`Z/ ! X.`/:

The points #1; : : : ; #` constructed in Section 2, are precisely the Z=`Z fixed points in
T `=T . These are ` points of reducibility, each of which admits ` elliptic constituents.
Note also that, in the canonical projection " , the fibre "!1.#j / of each point #j

contains ` points. We may say that the extended quotient encodes, or provides a
model of, reducibility. This is a very special case of the recent conjecture in [2].

When n is non-prime, we have points of reducibility, each of which admits elliptic
constituents. In addition to the points of reducibility, there is a subspace of reducibil-
ity. There are continua ofL-packets. Theorem 1.2 describes the contribution, modulo
torsion, of all these L-packets to K0 and K1.

Let the infinitesimal character of the elliptic representation $ be the cuspidal pair
.M; %/, where % is an irreducible cuspidal representation of M with unitary central
character. Then $ is a constituent of the induced representation iGM .%/. Let s be the
point in the Bernstein spectrum which contains the cuspidal pair .M; %/. To conform
to the notation in [2], we will write Es ´ T n=T , W s D Z=nZ. The standard
projection will be denoted

"s W Es==W s ! Es=W s:

The space of tempered representations of G determined by s will be denoted
Irrtemp.G/s, and the infinitesimal character will be denoted inf.ch.
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?7/"$/+ =<B< ;$%6% ') " (01#'1+0+) ,'-%(#'01

&s W Es==W s ! Irrtemp.G/s

)+($ #$"#

"s D .inf:ch:/ B &s:

;$') (01!6&)C '1 " )8%('"/ (")%C 8"6# (3) 0< #$% (01-%(#+6% '1 [2]2

In Section 2 of this article, we review elliptic representations of the special linear
algebraic group SL.N; F / over ap-adic fieldF . Section 3 concerns fixed C*-algebras
and crossed products. The extended quotient .T n=T /==.Z=nZ/ is computed in
Section 4. The formation of the R-groups is described in Section 5. In Section 6 we
compute the cyclic invariants in the cohomology of the n-torus.

We would like to thank Paul Baum for several valuable discussions, Anne-Marie
Aubert for her careful reading of the manuscript, Kuok Fai Chao and the referee for
several constructive comments.

@< ?7/ /''-4,-* $/4$/5/%,&,-"%5 "( 89.N/

Let F be a nonarchimedean local field of characteristic zero. Let G be a connected
reductive linear group over F . Let G D G.F / be the F -rational points of G . We
say that an element x of G is %//'8#'( if its centralizer is compact modulo the center
of G. We let Ge denote the set of regular elliptic elements of G.

Let E2.G/ denote the set of equivalence classes of irreducible discrete series rep-
resentations ofG, and denote by Et .G/ be the set of equivalence classes of irreducible
tempered representations ofG. Then E2.G/ " Et .G/. If " 2 Et .G/, then we denote
its character by‚! . Since‚! can be viewed as a locally integrable function, we can
consider its restriction to Ge , which we denote by ‚e

! . We say that " is elliptic if
‚e

! ¤ 0. The set of elliptic representations includes the discrete series.
Here is a classical example where elliptic representations occur [1]. We consider

the group SL.`; F / with ` a prime not equal to the residual characteristic of F . Let
K=F be a cyclic of order ` extension of F . The reciprocity law in local class field
theory is an isomorphism

F "=NK=F K
" Š '.K=F / D Z=`Z;

where '.K=F / is the Galois group of K over F . Let now &`.C/ be the group of
`th roots of unity in C. A choice of isomorphism Z=`Z Š &`.C/ then produces a
character ( of F " of order ` as follows:

( W F " ! F "=NK=F K
" Š Z=`Z Š &`.C/:
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Let B be the standard Borel subgroup of SL.`/, let T be the standard maximal
torus, and let B D T % N be its Levi decomposition. Let # be the character of T
defined by

# ´ 1˝ ( ˝ % % % ˝ (`!1

and let
".#/ ´ IndG

B .# ˝ 1/

be the unitarily induced representation of SL.`/.
Now ".#/ is a representation in the minimal unitary principal series of SL.`/.

It has ` distinct irreducible elliptic components and the Galois group '.K=F / acts
simply transitively on the set of irreducible components. The set of irreducible com-
ponents of ".#/ is an L-packet.

Let
".#/ D "1 ˚ % % % ˚ "`

be the ` components of ".#/. The character ‚ of ".#/, as character of a principal
series representation, ?"1')$%) 01 #$% %//'8#'( )%#. The character ‚1 of "1 on the
elliptic set is therefore ("1(%//%7 0+# by the sum ‚2 C % % % C‚` of the characters of
the relatives "2; : : : ;"` of "1.

Let ! denote an `th root of unity in C. All the `th roots are allowed, including
! D 1. In the definition of # , we now replace ( by ( ˝ !val. This will create `
characters, which we will denote by #1; : : : ; #`, where #1 D # . For each of these
characters, the R-group is given as follows:

R.#j / D Z=`Z

for all 1 ! j ! `, and the induced representation ".#j / admits ` elliptic constituents.
If P D MU is a standard parabolic subgroup of G then iGM .%/ will denote the

induced representation IndG
MU .% ˝1/ (normalized induction). TheR-group attached

to % will be denoted R.%/.
Let P D MU be the standard parabolic subgroup of G ´ SL.N; F / described

as follows. Let N D mn, let zM be the Levi subgroup GL.m/n " GL.N; F / and let
M D zM \ SL.N; F /.

We will use the framework, notation and main result in [6]. Let % 2 E2.M/ and
let "" 2 E2. zM/with "" jM & % . LetW.M/ ´ NG.M/=M denote the Weyl group
of M , so that W.M/ is the symmetric group on n letters. Let

NL."" / ´ f) 2 !F " j "" ˝ ) ' w"" for some w 2 W g;
X."" / ´ f) 2 !F " j "" ˝ ) ' ""g:

By [6], Theorem 2.4, the R-group of % is given by

R.%/ ' NL."" /=X."" /:
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We follow [6], Theorem 3.4. Let ) be a smooth character of F " such that )n 2
X."1/ and )j … X."1/ for 1 ! j ! n # 1. Set

"" ' "1 ˝ )"1 ˝ )2"1 ˝ % % % ˝ )n!1"1; "" jM & %; (1)

with "1 2 E2.GL.m//, )"1 ´ .) B det/˝ "1. Then we have

NL."" /=X."" / D h)i

and so R.%/ ' Z=nZ. The elliptic representations are the constituents of iGM .%/
with "" as in equation (1).

A< C-D/6 &'3/;$&5 &%6 *$"55/6 4$"6#*,5

Let M denote the Levi subgroup which occurs in Section 2. Denote by ‰1.M/
the group of unramified unitary characters of M . Now M " SL.N; F / comprises
blocks x1; : : : ; xn with xi 2 GL.m; F / and

Q
det.xi / D 1. Each unramified unitary

character  2 ‰1.M/ can be expressed as

 W diag.x1; : : : ; xn/ !
nQ

j D1

z
val.det xj /

j ;

with z1; z2; : : : ; zn 2 T , i.e., jzi j D 1. Such unramified unitary characters  corre-
spond to coordinates .z1 W z2 W % % % W zn/ with each zi 2 T . Since

nQ
iD1

.zzi /
val.det xi / D

nQ
iD1

z
val.det xi /
i

we have $0&0@%1%0+) coordinates. We have the isomorphism

‰1.M/ Š f.z1 W z2 W % % % W zn/ j jzi j D 1; 1 ! i ! ng D T n=T :

If M is the standard maximal torus T of SL.N / then ‰1.T / is the maximal
(0&8"(# torus in the dual torus

T _ " G_ D PGL.N;C/;

where G_ is the Langlands dual group.
Let % , "" , "1 be as in equation (1). Let g be the order of the group of unramified

characters * of F " such that .* B det/˝ "1 ' "1. Now let

E ´ f ˝ % j  2 ‰1.M/g:

The base point % 2 E determines a homeomorpism

E ' T n=T ; .zvalBdet
1 ˝ % % % ˝ zvalBdet

n /˝ % 7! .zg
1 W % % % W zg

n /:
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From this point onwards, we will require that the 6%)#6'(#'01 0< ) #0 #$% @60+8
UF 0< '1#%@%6 +1'#) ') 0< 067%6 n2 Let W.M/ denote the Weyl group of M and let
W.M;E/ be the subgroup of W.M/ which leaves E globally invariant. Then we
have W.M;E/ D W.%/ D R.%/ D Z=nZ.

Let K D K.H/ denote the C*-algebra of compact operators on the standard
Hilbert space H . Let a.w;+/ denote normalized intertwining operators. The fixed
C*-algebra C.E;K/W.M;E/ is given by

ff 2 C.E;K/ j f .w+/ D a.w;+#/f .+/a.w;+#/!1; w 2 W.M;E/g:

This fixed C*-algebra is a C*-direct summand of the reduced C*-algebra AN of
SL.N /, see [7].

?7/"$/+ A<=< A%#G D SL.N; F /C "17M ,% " A%?' )+,@60+8 (01)')#'1@ 0< n ,/0(D)
0< #$% )"&% )'E%m2 A%# % 2 E2.M/2 F))+&% #$"# #$% '17+(%7 6%86%)%1#"#'01 iGM .%/
$") %//'8#'( (01)#'#+%1#)C #$%1 #$% !9%7 .G="/@%,6"C.E;K/W.M;E/ ') )#601@/4 !06'#"
%:+'?"/%1# #0 #$% (60))%7 8607+(# .G="/@%,6" C.E/ Ì Z=nZ2

H600<2 For the commuting algebra of iMG.%/, we have [12]

EndG..iMG.%// D CŒR.%/,:

Letw0 be a generator ofR.%/, then the normalized intertwining operator a.w0; %/
is a unitary operator of order n. By the spectral theorem for unitary operators, we
have

a.w0; %/ D
n!1P
j D0

!j Ej

where ! D exp.2" i=n/ and Ej are the projections onto the irreducible subspaces of
the induced representation iMG.%/. The unitary representation

R.%/ ! U.H/; w 7! a.w; %/

contains each character ofR.%/ countably many times. Therefore condition (***) in
[10], p. 301, is satisfied. The condition (**) in [10], p. 300, is trivially satisfied since
W.%/ D R.%/.

We haveW.%/ D Z=nZ. Then a subgroupW.-/ of order d is given byW.-/ D
kZ mod n with dk D n. In that case, we have

a.w0; %/jW.#/ D
n!1P
j D0

!kjEj :

We compare the two unitary representations

!1 W W.-/ ! U.H/; w 7! a.w; %/jW.#/;
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!2 W W.-/ ! U.H/; w 7! a.w; -/:

Each representation contains every character of W.-/. They are :+")'=%:+'?"/%1# as
in [10]. Choose an increasing sequence .en/ of finite-rank projections in L.H/which
converge strongly to I and commute with each projection Ej . The compressions of
!1;!2 to enH remain quasi-equivalent. Condition (*) in [10], p. 299, is satisfied.

All three conditions of [10], Theorem 2.13, are satisfied. We therefore have a
strong Morita equivalence

.C.E/˝ K/W.M;E/ ' C.E/ ÌR.%/ D C.E/ Ì Z=nZ:

We will need a special case of the Chern character for discrete groups [3].

?7/"$/+ A<@< I% $"?% "1 ')0&068$')&

Ki .C.E/ Ì Z=nZ/˝Z C Š L
j 2N

H 2j Ci .E==.Z=nZ/I C/

5'#$ i D 0; 1C 5$%6% E==.Z=nZ/ 7%10#%) #$% %9#%17%7 :+0#'%1# 0< E ,4 Z=nZ2

When N is a prime number `, this result already appeared in [8], [10].

B< ?7/ ("$+&,-"% "( ,7/ !D/6 5/,5

Extended quotients were introduced by Baum and Connes [3] in the context of the
Chern character for discrete groups. Extended quotients were used in [9], [8] in the
context of the reduced group C*-algebras of GL.N / and SL.`/where ` is prime. The
results in this section extend results in [8], [10].

E/!%-,-"% B<=< Let X be a compact Hausdorff topological space. Let ' be a finite
",%/'"1 group acting on X by a (left) continuous action. Let

zX D f.x; ./ 2 X ' ' j .x D xg

with the group action on zX given by

g % .x; ./ D .gx; ./

for g 2 ' . Then the %9#%17%7 :+0#'%1# is given by

X==' ´ zX=' D F
$2%

X$='

where X$ is the . -fixed set.
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The extended quotient will always contain the ordinary quotient. The standard
projection " W X==' ! X=' is induced by the map .x; ./ 7! x. We note the
following elementary fact, which will be useful later (in Lemma 5.2): let y D 'x be
a point in X=' . Then the cardinality of the pre-image "!1y is equal to the order of
the isotropy group 'x:

j"!1yj D j'xj:
We will write X D E D T n=T , where T acts diagonally on T n, i.e.,

t .t1; t2; : : : ; tn/ D .t t1; t t2; : : : ; t tn/; t; ti 2 T :

We have the action of the finite group ' D Z=nZ on T n=T given by cyclic permu-
tation. The two actions of T and of Z=nZ on T n commute. We will write .k; n/ for
the highest common factor of k and n.

?7/"$/+ B<@< ;$% %9#%17%7 :+0#'%1# .T n=T /==.Z=nZ/ ') " 7')-0'1# +1'01 0< (0&=
8"(# (011%(#%7 06,'<0/7)>

.T n=T /==.Z=nZ/ ' F
1!k!n

!n=.k;n/D1

X.n; k; !/:

J%6% ! ') " n=.k; n/#$ 600# 0< +1'#4 '1 C2

H600<2 Let . be the standard n-cycle defined by ..i/ D i C 1 mod n. Then .k

is the product of n=d cycles of order d D n=.n; k/. Let ! be a d th root of unity
in C. All d th roots of unity are allowed, including ! D 1. The element t .!/ D
t .!I z1; : : : ; zn/ 2 T n is defined by imposing the relations

ziCk D !!1zi ;

all suffices mod n. This condition allows n=d of the complex numbers z1; : : : ; zn

to vary freely, subject only to the condition that each zj has modulus 1. The crucial
point is that

.k % t .!/ D !t.!/

Then ! determines a .k-fixed set in T n=T , namely the set Y.n; k; !/ of all cosets
t .!/ % T . The set Y.n; k; !/ is an .n=d # 1/-dimensional subspace of fixed points.

Note that Y.n; k; !/, as a coset of the closed subgroup Y.n; k; 1/ in the compact
Lie group E, is homeomorphic (by translation in E) to Y.n; k; 1/. The translation
is by the element t .! W 1; : : : ; 1/. If !1; !2 are distinct d th roots of unity, then
Y.n; k; !1/;Y.n; k; !2/ are disjoint.

We define the quotient space

X.n; k; !/ ´ Y.n; k; !/=.Z=nZ/

and apply Definition 4.1.
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When k D n, we must have ! D 1. In that case, the orbifold is the ordinary
quotient: X.n; n; 1/ D X.n/.

Let .n; k/ D 1. The number of such k in 1 ! k ! n is !.n/. In this case, ! is
an nth root of unity and X.n; k; !/ is a point. There are n such roots of unity in C.
Therefore, the extended quotient .T n=T /==.Z=nZ/ always contains !.n/n isolated
points.

Theorem 1.1 is a consequence of Theorems 3.1, 3.2 and 4.2. If, in Theorem 1.1,
we take n to be a prime number `, then we recover the following result in [8], p. 30:
the extended quotient .T `=T /==.Z=`Z/ is the disjoint union of the ordinary quotient
X.`/ and .` # 1/` points.

F< ?7/ ("$+&,-"% "( ,7/ R23$"#45

We continue with the notation of Section 3. Let % , "" , "1, ) be as in equation (1).
The n-tuple t ´ .z1; : : : ; zn/ 2 T n determines an element Œt , 2 E. We can interpret
Œt , as the unramified character

*t ´ .zvalBdet
1 ; : : : ; zvalBdet

n /:

Let ' D Z=nZ, and let 'Œt& denote the isotropy subgroup of ' .

9/++& F<=< ;$% ')0#6084 )+,@60+8 'Œt& ') ')0&068$'( #0 #$% R=@60+8 0< *t ˝ % >

'Œt& ' R.*t ˝ %/:

H600<2 Let the order of 'Œt& be d . Then d is a divisor of n. Let . be a generator of
'Œt&. Then . is a product of n=d disjoint d -cycles, as in Section 4. We must have
t D t .!/with ! a d th root of unity in C. Note that . % t .!/ D !t.!/. Then we have

R.*t ˝ %/ D NL.*t ˝ "" /=X.*t ˝ "" /

D f˛ 2 !F " j w"" ' "" ˝ ˛ for some w in W g=X.*t ˝ "" /

D h!valBdet ˝ )n=d i
D Z=dZ

D 'Œt&

since, modulo X.*t ˝ "" /, the character )n=d has order d .

9/++& F<@< K1 #$% )#"17"67 860-%(#'01 p W E==' ! E=' C #$% ("67'1"/'#4 0< #$%
!,6% 0< Œt , ') #$% 067%6 0< #$% R=@60+8 0< *t ˝ % 2

H600<2 This follows from Lemma 5.1.
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We will assume that % is a (+)8'7"/ representation of M with unitary central
character. Let s be the point in the Bernstein spectrum of SL.N / which contains
the cuspidal pair .M; %/. To conform to the notation in [2], we will write Es ´
T n=T ; W s D Z=nZ. The standard projection will be denoted

"s W Es==W s ! Es=W s:

The space of tempered representations of G determined by s will be denoted by
Irrtemp.G/s, and the infinitesimal character will be denoted inf:ch:

?7/"$/+ F<A< I% $"?% " (0&&+#"#'?% 7'"@6"&

E==W s 's
!!

!s

""

Irrtemp.G/s

inf:ch:

""
E=W s !! E=W s

'1 5$'($ #$% &"8 &s ') " (01#'1+0+) ,'-%(#'012 ;$') (01!6&)C '1 " )8%('"/ (")%C 8"6#
(3) 0< #$% (01-%(#+6% '1 [2]2

H600<2 We have
CŒR.%/, ' EndG.iGM .%//:

This implies that the characters of the cyclic group R.%/ parametrize the irreducible
constituents of iGM .%/. This leads to a labelling of the irreducible constituents of
iGM .%/, which we will write as iGM .% W r/ with 0 ! r < n.

The map &s is defined as follows:

&s W .t; . rd / 7! iGM .*t ˝ % W r/:

We now apply Lemma 5.2.
Theorem 3.2 in [7] relates the natural topology on the Harish-Chandra parameter

space to the Jacobson topology on the tempered dual of a reductive p-adic group. As
a consequence, the map &s is continuous.

G< H1*'-* -%.&$-&%,5

We will consider the map

˛ W T n ! .T n=T / ' T ; .t1; : : : ; tn/ 7! ..t1 W % % % W tn/; t1t2 : : : tn/;

where .t1 W % % % W tn/ is the image of .t1; : : : ; tn/ via the map T n ! T n=T . The map
˛ is a homomorphism of Lie groups. The kernel of this map is

Gn ´ f!In j !n D 1g:
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We therefore have the isomorphism of compact connected Lie groups:

T n=Gn Š .T n=T / ' T : (2)

This isomorphism is equivariant with respect to the Z=nZ-action, and we infer that

.T n=Gn/=.Z=nZ/ Š .T n=T /=.Z=nZ/ ' T : (3)

?7/"$/+ G<=< A%#H B.#I C/ 7%10#% #$% #0#"/ (0$0&0/0@4 @60+82 I% $"?%

dimCH B.X.n/I C/ D 1
2 % dimCH B.T nI C/Z=nZ:

H600<2 The cohomology of the orbit space is given by the fixed set of the cohomology
of the original space [4], Corollary 2.3, p. 38. We have

H j .T n=GnI C/ Š H j .T nI C/Gn Š H j .T nI C/ (4)

since the action of Gn on T n is homotopic to the identity. We spell this out. Let z ´
.z1; : : : ; zn/ and define H.z; t/ D !t % z D .!tz1; : : : ; !

tzn/. Then H.z; 0/ D z,
H.z; 1/ D ! % z. Also, H is equivariant with respect to the permutation action of
Z=nZ. That is to say, if $ 2 Z=nZ then H.$ % z; t/ D $ %H.z; t/. This allows us to
proceed as follows:

H j .T nI C/Z=nZ Š H j .T n=GnI C/Z=nZ

Š H j ..T n=T / ' T I C/Z=nZ

Š H j ..T n=T /=.Z=nZ/ ' T I C/:

(5)

We apply the Künneth theorem in cohomology (there is no torsion):

.H j .T nI C//Z=nZ Š H j .X.n/I C/˚H j !1.X.n/I C/ with 0 < j ! n;

.Hn.T nI C//Z=nZ ' Hn!1.X.n/I C/;

H ev.T nI C/Z=nZ D H •.X.n/I C/;

H 0.T nI C/Z=nZ Š H 0.X.n/I C/ ' C;

H odd.T nI C/Z=nZ D H •.X.n/I C/:
!

We now have to find the cyclic invariants in H •.T nI C/. The cohomology ring
H •.T n;C/ is the exterior algebra

V
V of a complex n-dimensional vector space V ,

as can be seen by considering differential forms d/1 ^ % % % ^ d/r . The vector space
V admits a basis ˛1 D d/1; : : : ; ˛n D d/n. The action of Z=nZ on

V
V is induced

by permuting the elements ˛1; : : : ; ˛n, i.e., by the regular representation - of the
cyclic group Z=nZ. This representation of Z=nZ on

V
V will be denoted

V
-. The

dimension of the space of cyclic invariants inH •.T n;C/ is equal to the multiplicity
of the unit representation 1 in

V
-. To determine this, we use the theory of group

characters.
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9/++& G<@< ;$% 7'&%1)'01 0< #$% )+,)8"(% 0< (4(/'( '1?"6'"1#) ') @'?%1 ,4

.*V
#; 1/ D 1

n .*
V

#.0/C *V
#.1/C % % % C *V

#.n # 1//:

H600<2 This is a standard result in the theory of group characters [11].

?7/"$/+ G<A< ;$% 7'&%1)'01 0< #$% )8"(% 0< (4(/'( '1?"6'"1#) '1H B.T n;C/ ') @'?%1
,4 #$% <06&+/"

g.n/ ´ 1

n

X

d jn; d 077

!.d/2n=d

H600<2 We note first that

*V
#.0/ D Trace 1V

V D dimC
V
V D 2n:

To evaluate the remaining terms, we need to recall the definition of the elementary
symmetric functions ej :

nQ
j D1

.+ # j̨ / D +n # +n!1e1 C +n!2e2 # % % % C .#1/nen:

If we need to mark the dependence on ˛1; : : : ; ˛n we will write ej D ej .˛1; : : : ; ˛n/.
Set j̨ D !j !1; ! D exp.2" i=n/. Then we get

+n # 1 D
nQ

j D1

.+ # j̨ / D +n # +n!1e1 C +n!2e2 # % % % C .#1/nen:

Let d jn, let 0 be a 86'&'#'?% d th root of unity. Let j̨ D 0j !1. We have

.+d # 1/n=d D .+d # 1/ : : : .+d # 1/ D
nQ

j D1

.+ # j̨ /: (6)

Set + D #1. If d is even, we obtain

0 D 1C e1.1; 0; 0
2; : : : /C e2.1; 0; 0

2; : : : /C % % % C en.1; 0; 0
2; : : : /: (7)

If d is odd, we obtain

2n=d D 1C e1.1; 0; 0
2; : : : /C e2.1; 0; 0

2; : : : /C % % % C en.1; 0; 0
2; : : : /: (8)

We observe that the regular representation - of the cyclic group Z=nZ is a direct
sum of the characters m 7! !rm with 0 ! r ! n. This direct sum decomposition
allows us to choose a basis v1; : : : ; vn in V such that the representation

V
- is diag-

onalized by the wedge products vj1
^ % % % ^ vjl

. This in turn allows us to compute the
character of

V
- in terms of the elementary symmetric functions e1; : : : ; en.
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With 0 D !r as above, we have

*V
#.r/ D 1C e1.1; 0; 0

2; : : : /C e2.1; 0; 0
2; : : : /C % % % C en.1; 0; 0

2; : : : /:

We now sum the values of the character *V
#. Let d ´ n=.r; n/. Then 0 is

a primitive d th root of unity. If d is even then *V
#.r/ D 0. If d is odd, then

*V
#.r/ D 2n=d . There are !.d/ such terms. So we have

*V
#.0/C *V

#.1/C % % % C *V
#.n # 1/ D

X

d jn; d odd

!.d/2n=d : (9)

We now apply Lemma 6.2.

The sequence n 7! g.n/=2, n D 1; 2; 3; 4; : : : , is

1; 1; 2; 2; 4; 6; 10; 16; 30; 52; 94; 172; 316; 586; 1096; 2048; 3856; 7286; : : : :

as in http://www.research.att.com/~njas/sequences/A000016. Thanks to Kasper An-
dersen for alerting us to this web site.
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