R-groups and geometric structure in the representation theory of $\operatorname{SL}(N)$

Jamila Jawdat and Roger Plymen

Abstract

Let F be a nonarchimedean local field of characteristic zero and let $G=\operatorname{SL}(N)=$ $\mathrm{SL}(N, F)$. This article is devoted to studying the influence of the elliptic representations of $\operatorname{SL}(N)$ on the K-theory. We provide full arithmetic details. This study reveals an intricate geometric structure. One point of interest is that the R-group is realized as an isotropy group. Our results illustrate, in a special case, part (3) of the recent conjecture in [2].

Mathematics Subject Classification (2010). 22E50, 46L80.
Keywords. Local field, special linear group, elliptic representations, L-packets, K-theory, reduced C^{*}-algebra.

1. Introduction

Let F be a nonarchimedean local field of characteristic zero and let $G=\operatorname{SL}(N)=$ SL (N, F). This article is devoted to studying subspaces of the tempered dual of SL (N) which have an especially intricate geometric structure, and to computing, with full arithmetic details, their K-theory. Our results illustrate, in a special case, part (3) of the recent conjecture in [2].

The subspaces of the tempered dual which are especially interesting for us contain elliptic representations. A tempered representation of $\operatorname{SL}(N)$ is elliptic if its HarishChandra character is not identically zero on the elliptic set.

An element in the discrete series of $\operatorname{SL}(N)$ is an isolated point in the tempered dual of $\operatorname{SL}(N)$ and contributes one generator to K_{0} of the reduced C^{*}-algebra of SL(N).

Now $\operatorname{SL}(N)$ admits elliptic representations which are not discrete series: we investigate, with full arithmetic details, the contribution of the elliptic representations of $\operatorname{SL}(N)$ to the K-theory of the reduced C^{*}-algebra \mathfrak{A}_{N} of $\operatorname{SL}(N)$.

According to [7], \mathfrak{A}_{N} is a C^{*}-direct sum of fixed C^{*}-algebras. Among these fixed algebras, we will focus on those whose duals contain elliptic representations. Let n be a divisor of N with $1 \leq n \leq N$ and suppose that the group U_{F} of integer units admits a character of order n. Then the relevant fixed algebras are of the form

$$
C\left(\mathbb{T}^{n} / \mathbb{T}, \mathfrak{K}\right)^{\mathbb{Z} / n \mathbb{Z}} \subset \mathfrak{N}_{N} .
$$

Here, Ω is the C^{*}-algebra of compact operators on standard Hilbert space, $\mathbb{T}^{n} / \mathbb{T}$ is the quotient of the compact torus \mathbb{T}^{n} via the diagonal action of \mathbb{T}. The compact group $\mathbb{T}^{n} / \mathbb{T}$ arises as the maximal compact subgroup of the standard maximal torus of the Langlands dual PGL (n, \mathbb{C}). We prove (Theorem 3.1) that this fixed C^{*}-algebra is strongly Morita equivalent to the crossed product

$$
C\left(\mathbb{T}^{n} / \mathbb{T}\right) \rtimes \mathbb{Z} / n \mathbb{Z}
$$

The reduced C^{*}-algebra \mathfrak{A}_{N} is liminal, and its primitive ideal space is in canonical bijection with the tempered dual of $\operatorname{SL}(N)$. Transporting the Jacobson topology on the primitive ideal space, we obtain a locally compact topology on the tempered dual of $\operatorname{SL}(N)$, see [5], 3.1.1, 4.4.1, 18.3.2.

Let \mathbb{I}_{n} denote the C^{*}-dual of $C\left(\mathbb{T}^{n} / \mathbb{T}, \mathfrak{R}\right)^{\mathbb{Z} / n \mathbb{Z}}$. Then \mathfrak{T}_{n} is a non-Hausdorff space, and has a very special structure as topological space. When n is a prime number ℓ, then \mathfrak{T}_{ℓ} will contain multiple points. When n is non-prime, \mathfrak{F}_{n} will contain not only multiple points, but also multiple subspaces. This crossed product C^{*}-algebra is a noncommutative unital C^{*}-algebra which fits perfectly into the framework of noncommutative geometry. In the tempered dual of $\operatorname{SL}(N)$, there are connected compact non-Hausdorff spaces, laced with multiple subspaces, and simply described by crossed product C^{*}-algebras.

The K-theory of the fixed C^{*}-algebra is then given by the K-theory of the crossed product C^{*}-algebra. To compute (modulo torsion) the K-theory of this noncommutative C^{*}-algebra, we apply the Chern character for discrete groups [3]. This leads to the cohomology of the extended quotient $\left(\mathbb{T}^{n} / \mathbb{\mathbb { T }}\right) / /(\mathbb{Z} / n \mathbb{Z})$. This in turn leads to a problem in classical algebraic topology, namely the determination of the cyclic invariants in the cohomology of the n-torus.

The ordinary quotient will be denoted by $\mathfrak{X}(n)$:

$$
\mathfrak{X}(n):=\left(\mathbb{T}^{n} / \mathbb{T}\right) /(\mathbb{Z} / n \mathbb{Z}) .
$$

This is a compact connected orbifold. Note that $\mathfrak{X}(1)=p t$. The orbifold $\mathfrak{X}(n, k, \omega)$ which appears in the following theorem is defined in Section 4. The notation is such that $\mathfrak{X}(n, n, 1)$ is the ordinary quotient $\mathfrak{X}(n)$ and each $\mathfrak{X}(n, 1, \omega)$ is a point. The highest common factor of n and k is denoted (n, k).

Theorem 1.1. The extended quotient $\left(\mathbb{T}^{n} / \mathbb{\mathbb { T }}\right) / /(\mathbb{Z} / n \mathbb{Z})$ is a disjoint union of compact connected orbifolds:

$$
\left(\mathbb{T}^{n} / \mathbb{\mathbb { C }}\right) / /(\mathbb{Z} / n \mathbb{Z})=\bigsqcup \mathfrak{X}(n, k, \omega)
$$

The disjoint union is over all $1 \leq k \leq n$ and all $n /(k, n)$ th roots of unity ω in \mathbb{C}.

We apply the Chern character for discrete groups [3], and obtain

Theorem 1.2. The K-theory groups K_{0} and K_{1} are given by

$$
\begin{aligned}
& K_{0}\left(C\left(\mathbb{T}^{n} / \mathbb{T}\right), \mathbb{R}\right)^{\mathbb{Z} / n \mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} \simeq \bigoplus H^{\mathrm{ev}}(\mathfrak{X}(n, k, \omega) ; \mathbb{C}), \\
& K_{1}\left(C\left(\mathbb{T}^{n} / \mathbb{T}\right), \mathfrak{R}\right)^{\mathbb{Z} / n \mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} \simeq \bigoplus H^{\text {odd }}(\mathfrak{X}(n, k, \omega) ; \mathbb{C}) .
\end{aligned}
$$

The direct sums are over all $1 \leq k \leq n$ and all $n /(k, n)$ th roots of unity ω in \mathbb{C}.
For the ordinary quotient $\mathfrak{X}(n)$ we have the following explicit formula (Theorems 6.1 and 6.3). Let $H^{\bullet}:=H^{\text {ev }} \oplus H^{\text {odd }}$ and let ϕ denote the Euler totient.

Theorem 1.3. Let $\mathfrak{X}(n)$ denote the ordinary quotient $\left(\mathbb{T}^{n} / \mathbb{T}\right) /(\mathbb{Z} / n \mathbb{Z})$. Then we have

$$
\operatorname{dim}_{\mathbb{C}} H^{\bullet}(\nsupseteq(n) ; \mathbb{C})=\frac{1}{2 n} \sum_{d \mid n, d \text { odd }} \phi(d) 2^{n / d}
$$

Theorem 1.1 lends itself to an interpretation in terms of representation theory. When $n=\ell$ a prime number, the elliptic representations of $\operatorname{SL}(\ell)$ are discussed in Section 2. The extended quotient $\left(\mathbb{T}^{\ell} / \mathbb{\mathbb { T }}\right) / /(\mathbb{Z} / \ell Z)$ is the disjoint union of the ordinary quotient $\mathfrak{X}(\ell)$ and $\ell(\ell-1)$ isolated points. We consider the canonical projection π of the extended quotient onto the ordinary quotient:

$$
\pi:\left(\mathbb{T}^{\ell} / \mathbb{\mathbb { }}\right) / /(\mathbb{Z} / \ell \mathbb{Z}) \rightarrow \mathfrak{X}(\ell)
$$

The points $\tau_{1}, \ldots, \tau_{\ell}$ constructed in Section 2 , are precisely the $\mathbb{Z} / \ell \mathbb{Z}$ fixed points in $\mathbb{T}^{\ell} / \mathbb{T}$. These are ℓ points of reducibility, each of which admits ℓ elliptic constituents. Note also that, in the canonical projection π, the fibre $\pi^{-1}\left(\tau_{j}\right)$ of each point τ_{j} contains ℓ points. We may say that the extended quotient encodes, or provides a model of, reducibility. This is a very special case of the recent conjecture in [2].

When n is non-prime, we have points of reducibility, each of which admits elliptic constituents. In addition to the points of reducibility, there is a subspace of reducibility. There are continua of L-packets. Theorem 1.2 describes the contribution, modulo torsion, of all these L-packets to K_{0} and K_{1}.

Let the infinitesimal character of the elliptic representation ϵ be the cuspidal pair (M, σ), where σ is an irreducible cuspidal representation of M with unitary central character. Then ϵ is a constituent of the induced representation $i_{G M}(\sigma)$. Let \mathfrak{s} be the point in the Bernstein spectrum which contains the cuspidal pair (M, σ). To conform to the notation in [2], we will write $E^{\mathfrak{s}}:=\mathbb{T}^{n} / \mathbb{T}, W^{\mathfrak{s}}=\mathbb{Z} / n \mathbb{Z}$. The standard projection will be denoted

$$
\pi^{\mathfrak{s}}: E^{\mathfrak{s}} / / W^{\mathfrak{s}} \rightarrow E^{\mathfrak{s}} / W^{\mathfrak{s}}
$$

The space of tempered representations of G determined by \mathfrak{s} will be denoted $\operatorname{Irr}^{\text {temp }}(G)^{\mathfrak{s}}$, and the infinitesimal character will be denoted inf.ch.

Theorem 1.4. There is a continuous bijection

$$
\mu^{\mathfrak{s}}: E^{\mathfrak{s}} / / W^{\mathfrak{s}} \rightarrow \operatorname{Irr}^{\operatorname{temp}}(G)^{\mathfrak{s}}
$$

such that

$$
\pi^{\mathfrak{s}}=(\text { inf.ch. }) \circ \mu^{\mathfrak{F}}
$$

This confirms, in a special case, part (3) of the conjecture in [2].
In Section 2 of this article, we review elliptic representations of the special linear algebraic group $\operatorname{SL}(N, F)$ over a p-adic field F. Section 3 concerns fixed C^{*}-algebras and crossed products. The extended quotient $\left(\mathbb{T}^{n} / \mathbb{\mathbb { T }}\right) / /(\mathbb{Z} / n \mathbb{Z})$ is computed in Section 4. The formation of the R-groups is described in Section 5. In Section 6 we compute the cyclic invariants in the cohomology of the n-torus.

We would like to thank Paul Baum for several valuable discussions, Anne-Marie Aubert for her careful reading of the manuscript, Kuok Fai Chao and the referee for several constructive comments.

2. The elliptic representations of $\operatorname{SL}(N)$

Let F be a nonarchimedean local field of characteristic zero. Let \boldsymbol{G} be a connected reductive linear group over F. Let $G=G(F)$ be the F-rational points of \boldsymbol{G}. We say that an element x of G is elliptic if its centralizer is compact modulo the center of G. We let G^{e} denote the set of regular elliptic elements of G.

Let $\varepsilon_{2}(G)$ denote the set of equivalence classes of irreducible discrete series representations of G, and denote by $\mathcal{E}_{t}(G)$ be the set of equivalence classes of irreducible tempered representations of G. Then $\mathcal{E}_{2}(G) \subset \mathcal{E}_{t}(G)$. If $\pi \in \mathcal{E}_{t}(G)$, then we denote its character by Θ_{π}. Since Θ_{π} can be viewed as a locally integrable function, we can consider its restriction to G^{e}, which we denote by Θ_{π}^{e}. We say that π is elliptic if $\Theta_{\pi}^{e} \neq 0$. The set of elliptic representations includes the discrete series.

Here is a classical example where elliptic representations occur [1]. We consider the group $\operatorname{SL}(\ell, F)$ with ℓ a prime not equal to the residual characteristic of F. Let K / F be a cyclic of order ℓ extension of F. The reciprocity law in local class field theory is an isomorphism

$$
F^{\times} / N_{K / F} K^{\times} \cong \Gamma(K / F)=\mathbb{Z} / \ell \mathbb{Z}
$$

where $\Gamma(K / F)$ is the Galois group of K over F. Let now $\mu_{\ell}(\mathbb{C})$ be the group of ℓ th roots of unity in \mathbb{C}. A choice of isomorphism $\mathbb{Z} / \ell \mathbb{Z} \cong \mu_{\ell}(\mathbb{C})$ then produces a character κ of F^{\times}of order ℓ as follows:

$$
\kappa: F^{\times} \rightarrow F^{\times} / N_{K / F} K^{\times} \cong \mathbb{Z} / \ell \mathbb{Z} \cong \mu_{\ell}(\mathbb{C})
$$

Let B be the standard Borel subgroup of $\operatorname{SL}(\ell)$, let T be the standard maximal torus, and let $B=T \cdot N$ be its Levi decomposition. Let τ be the character of T defined by

$$
\tau:=1 \otimes \kappa \otimes \cdots \otimes \kappa^{\ell-1}
$$

and let

$$
\pi(\tau):=\operatorname{Ind}_{B}^{G}(\tau \otimes 1)
$$

be the unitarily induced representation of $\operatorname{SL}(\ell)$.
Now $\pi(\tau)$ is a representation in the minimal unitary principal series of $\operatorname{SL}(\ell)$. It has ℓ distinct irreducible elliptic components and the Galois group $\Gamma(K / F)$ acts simply transitively on the set of irreducible components. The set of irreducible components of $\pi(\tau)$ is an L-packet.

Let

$$
\pi(\tau)=\pi_{1} \oplus \cdots \oplus \pi_{\ell}
$$

be the ℓ components of $\pi(\tau)$. The character Θ of $\pi(\tau)$, as character of a principal series representation, vanishes on the elliptic set. The character Θ_{1} of π_{1} on the elliptic set is therefore cancelled out by the sum $\Theta_{2}+\cdots+\Theta_{\ell}$ of the characters of the relatives $\pi_{2}, \ldots, \pi_{\ell}$ of π_{1}.

Let ω denote an ℓ th root of unity in \mathbb{C}. All the ℓ th roots are allowed, including $\omega=1$. In the definition of τ, we now replace κ by $\kappa \otimes \omega^{\text {val }}$. This will create ℓ characters, which we will denote by $\tau_{1}, \ldots, \tau_{\ell}$, where $\tau_{1}=\tau$. For each of these characters, the R-group is given as follows:

$$
R\left(\tau_{j}\right)=\mathbb{Z} / \ell \mathbb{Z}
$$

for all $1 \leq j \leq \ell$, and the induced representation $\pi\left(\tau_{j}\right)$ admits ℓ elliptic constituents.
If $P=M U$ is a standard parabolic subgroup of G then $i_{G M}(\sigma)$ will denote the induced representation $\operatorname{Ind}_{M U}^{G}(\sigma \otimes 1)$ (normalized induction). The R-group attached to σ will be denoted $R(\sigma)$.

Let $P=M U$ be the standard parabolic subgroup of $G:=\operatorname{SL}(N, F)$ described as follows. Let $N=m n$, let \tilde{M} be the Levi subgroup $\operatorname{GL}(m)^{n} \subset \operatorname{GL}(N, F)$ and let $M=\tilde{M} \cap \operatorname{SL}(N, F)$.

We will use the framework, notation and main result in [6]. Let $\sigma \in \varepsilon_{2}(M)$ and let $\pi_{\sigma} \in \mathcal{E}_{2}(\tilde{M})$ with $\pi_{\sigma} \mid M \supset \sigma$. Let $W(M):=N_{G}(M) / M$ denote the Weyl group of M, so that $W(M)$ is the symmetric group on n letters. Let

$$
\begin{aligned}
& \bar{L}\left(\pi_{\sigma}\right):=\left\{\eta \in \widehat{F^{\times}} \mid \pi_{\sigma} \otimes \eta \simeq w \pi_{\sigma} \text { for some } w \in W\right\}, \\
& X\left(\pi_{\sigma}\right):=\left\{\eta \in \widehat{F}^{\times} \mid \pi_{\sigma} \otimes \eta \simeq \pi_{\sigma}\right\} .
\end{aligned}
$$

By [6], Theorem 2.4, the R-group of σ is given by

$$
R(\sigma) \simeq \bar{L}\left(\pi_{\sigma}\right) / X\left(\pi_{\sigma}\right)
$$

We follow [6], Theorem 3.4. Let η be a smooth character of F^{\times}such that $\eta^{n} \in$ $X\left(\pi_{1}\right)$ and $\eta^{j} \notin X\left(\pi_{1}\right)$ for $1 \leq j \leq n-1$. Set

$$
\begin{equation*}
\pi_{\sigma} \simeq \pi_{1} \otimes \eta \pi_{1} \otimes \eta^{2} \pi_{1} \otimes \cdots \otimes \eta^{n-1} \pi_{1}, \quad \pi_{\sigma} \mid M \supset \sigma \tag{1}
\end{equation*}
$$

with $\pi_{1} \in \mathcal{E}_{2}(\operatorname{GL}(m)), \eta \pi_{1}:=(\eta \circ \operatorname{det}) \otimes \pi_{1}$. Then we have

$$
\bar{L}\left(\pi_{\sigma}\right) / X\left(\pi_{\sigma}\right)=\langle\eta\rangle
$$

and so $R(\sigma) \simeq \mathbb{Z} / n \mathbb{Z}$. The elliptic representations are the constituents of $i_{G M}(\sigma)$ with π_{σ} as in equation (1).

3. Fixed algebras and crossed products

Let M denote the Levi subgroup which occurs in Section 2. Denote by $\Psi^{1}(M)$ the group of unramified unitary characters of M. Now $M \subset \operatorname{SL}(N, F)$ comprises blocks x_{1}, \ldots, x_{n} with $x_{i} \in \operatorname{GL}(m, F)$ and $\prod \operatorname{det}\left(x_{i}\right)=1$. Each unramified unitary character $\psi \in \Psi^{1}(M)$ can be expressed as

$$
\psi: \operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \prod_{j=1}^{n} z_{j}^{\operatorname{val}\left(\operatorname{det} x_{j}\right)}
$$

with $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{T}$, i.e., $\left|z_{i}\right|=1$. Such unramified unitary characters ψ correspond to coordinates $\left(z_{1}: z_{2}: \cdots: z_{n}\right)$ with each $z_{i} \in \mathbb{T}$. Since

$$
\prod_{i=1}^{n}\left(z z_{i}\right)^{\mathrm{val}\left(\operatorname{det} x_{i}\right)}=\prod_{i=1}^{n} z_{i}^{\operatorname{val}\left(\operatorname{det} x_{i}\right)}
$$

we have homogeneous coordinates. We have the isomorphism

$$
\Psi^{1}(M) \cong\left\{\left(z_{1}: z_{2}: \cdots: z_{n}\right)| | z_{i} \mid=1,1 \leq i \leq n\right\}=\mathbb{T}^{n} / \mathbb{\mathbb { T }}
$$

If M is the standard maximal torus T of $\operatorname{SL}(N)$ then $\Psi^{1}(T)$ is the maximal compact torus in the dual torus

$$
T^{\vee} \subset G^{\vee}=\operatorname{PGL}(N, \mathbb{C})
$$

where G^{\vee} is the Langlands dual group.
Let $\sigma, \pi_{\sigma}, \pi_{1}$ be as in equation (1). Let g be the order of the group of unramified characters χ of F^{\times}such that $(\chi \circ \operatorname{det}) \otimes \pi_{1} \simeq \pi_{1}$. Now let

$$
E:=\left\{\psi \otimes \sigma \mid \psi \in \Psi^{1}(M)\right\}
$$

The base point $\sigma \in E$ determines a homeomorpism

$$
E \simeq \mathbb{T}^{n} / \mathbb{T}, \quad\left(z_{1}^{\text {valodet }} \otimes \cdots \otimes z_{n}^{\text {valodet }}\right) \otimes \sigma \mapsto\left(z_{1}^{g}: \cdots: z_{n}^{g}\right)
$$

From this point onwards, we will require that the restriction of η to the group U_{F} of integer units is of order n. Let $W(M)$ denote the Weyl group of M and let $W(M, E)$ be the subgroup of $W(M)$ which leaves E globally invariant. Then we have $W(M, E)=W(\sigma)=R(\sigma)=\mathbb{Z} / n \mathbb{Z}$.

Let $\Omega=\Omega(H)$ denote the C^{*}-algebra of compact operators on the standard Hilbert space H. Let $a(w, \lambda)$ denote normalized intertwining operators. The fixed C^{*}-algebra $C(E, \Omega)^{W(M, E)}$ is given by

$$
\left\{f \in C(E, \Omega) \mid f(w \lambda)=a(w, \lambda \tau) f(\lambda) a(w, \lambda \tau)^{-1}, w \in W(M, E)\right\}
$$

This fixed C^{*}-algebra is a C^{*}-direct summand of the reduced C^{*}-algebra \mathfrak{A}_{N} of $\operatorname{SL}(N)$, see [7].

Theorem 3.1. Let $G=\mathrm{SL}(N, F)$, and M be a Levi subgroup consisting of n blocks of the same size m. Let $\sigma \in \mathcal{E}_{2}(M)$. Assume that the induced representation $i_{G M}(\sigma)$ has elliptic constituents, then the fixed C^{*}-algebra $C(E, \Omega)^{W(M, E)}$ is strongly Morita equivalent to the crossed product C^{*}-algebra $C(E) \rtimes \mathbb{Z} / n \mathbb{Z}$.

Proof. For the commuting algebra of $i_{M G}(\sigma)$, we have [12]

$$
\operatorname{End}_{G}\left(\left(i_{M G}(\sigma)\right)=\mathbb{C}[R(\sigma)]\right.
$$

Let w_{0} be a generator of $R(\sigma)$, then the normalized intertwining operator $a\left(w_{0}, \sigma\right)$ is a unitary operator of order n. By the spectral theorem for unitary operators, we have

$$
\mathfrak{a}\left(w_{0}, \sigma\right)=\sum_{j=0}^{n-1} \omega^{j} E_{j}
$$

where $\omega=\exp (2 \pi i / n)$ and E_{j} are the projections onto the irreducible subspaces of the induced representation $i_{M G}(\sigma)$. The unitary representation

$$
R(\sigma) \rightarrow U(H), \quad w \mapsto a(w, \sigma)
$$

contains each character of $R(\sigma)$ countably many times. Therefore condition $\left({ }^{* * *)}\right.$ in [10], p. 301, is satisfied. The condition (**) in [10], p. 300, is trivially satisfied since $W(\sigma)=R(\sigma)$.

We have $W(\sigma)=\mathbb{Z} / n \mathbb{Z}$. Then a subgroup $W(\rho)$ of order d is given by $W(\rho)=$ $k \mathbb{Z} \bmod n$ with $d k=n$. In that case, we have

$$
\left.\mathfrak{a}\left(w_{0}, \sigma\right)\right|_{W(\rho)}=\sum_{j=0}^{n-1} \omega^{k j} E_{j}
$$

We compare the two unitary representations

$$
\phi_{1}: W(\rho) \rightarrow U(H),\left.\quad w \mapsto a(w, \sigma)\right|_{W(\rho)}
$$

$$
\phi_{2}: W(\rho) \rightarrow U(H), \quad w \mapsto a(w, \rho) .
$$

Each representation contains every character of $W(\rho)$. They are quasi-equivalent as in [10]. Choose an increasing sequence $\left(e_{n}\right)$ of finite-rank projections in $\mathscr{L}(H)$ which converge strongly to I and commute with each projection E_{j}. The compressions of ϕ_{1}, ϕ_{2} to $e_{n} H$ remain quasi-equivalent. Condition $\left({ }^{*}\right)$ in [10], p. 299, is satisfied.

All three conditions of [10], Theorem 2.13, are satisfied. We therefore have a strong Morita equivalence

$$
(C(E) \otimes \mathbb{R})^{W(M, E)} \simeq C(E) \rtimes R(\sigma)=\mathbb{C}(E) \rtimes \mathbb{Z} / n \mathbb{Z} .
$$

We will need a special case of the Chern character for discrete groups [3].
Theorem 3.2. We have an isomorphism

$$
K_{i}(C(E) \rtimes \mathbb{Z} / n \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C} \cong \bigoplus_{j \in \mathbb{N}} H^{2 j+i}(E / /(\mathbb{Z} / n \mathbb{Z}) ; \mathbb{C})
$$

with $i=0,1$, where $E / /(\mathbb{Z} / n \mathbb{Z})$ denotes the extended quotient of E by $\mathbb{Z} / n \mathbb{Z}$.
When N is a prime number ℓ, this result already appeared in [8], [10].

4. The formation of the fixed sets

Extended quotients were introduced by Baum and Connes [3] in the context of the Chern character for discrete groups. Extended quotients were used in [9], [8] in the context of the reduced group C^{*}-algebras of $\mathrm{GL}(N)$ and $\operatorname{SL}(\ell)$ where ℓ is prime. The results in this section extend results in [8], [10].

Definition 4.1. Let X be a compact Hausdorff topological space. Let Γ be a finite abelian group acting on X by a (left) continuous action. Let

$$
\tilde{\mathrm{X}}=\{(x, \gamma) \in \mathrm{X} \times \Gamma \mid \gamma x=x\}
$$

with the group action on $\widetilde{\mathrm{X}}$ given by

$$
g \cdot(x, \gamma)=(g x, \gamma)
$$

for $g \in \Gamma$. Then the extended quotient is given by

$$
\mathrm{X} / / \Gamma:=\tilde{\mathrm{X}} / \Gamma=\bigsqcup_{\gamma \in \Gamma} \mathrm{X}^{\gamma} / \Gamma
$$

where X^{γ} is the γ-fixed set.

The extended quotient will always contain the ordinary quotient. The standard projection $\pi: X / / \Gamma \rightarrow X / \Gamma$ is induced by the map $(x, \gamma) \mapsto x$. We note the following elementary fact, which will be useful later (in Lemma 5.2): let $y=\Gamma x$ be a point in X / Γ. Then the cardinality of the pre-image $\pi^{-1} y$ is equal to the order of the isotropy group Γ_{x} :

$$
\left|\pi^{-1} y\right|=\left|\Gamma_{x}\right| .
$$

We will write $\mathrm{X}=E=\mathbb{T}^{n} / \mathbb{\mathbb { T }}$, where \mathbb{T} acts diagonally on \mathbb{T}^{n}, i.e.,

$$
t\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\left(t t_{1}, t t_{2}, \ldots, t t_{n}\right), \quad t, t_{i} \in \mathbb{T}
$$

We have the action of the finite group $\Gamma=\mathbb{Z} / n \mathbb{Z}$ on $\mathbb{T}^{n} / \mathbb{\mathbb { T }}$ given by cyclic permutation. The two actions of \mathbb{T} and of $\mathbb{Z} / n \mathbb{Z}$ on \mathbb{T}^{n} commute. We will write (k, n) for the highest common factor of k and n.

Theorem 4.2. The extended quotient $\left(\mathbb{T}^{n} / \mathbb{T}\right) / /(\mathbb{Z} / n \mathbb{Z})$ is a disjoint union of compact connected orbifolds:

$$
\left(\mathbb{T}^{n} / \mathbb{T}\right) / /(\mathbb{Z} / n \mathbb{Z}) \simeq \bigsqcup_{\substack{1 \leq k \leq n \\ \omega^{n} /(k, n)} 1} \mid ~ X(n, k, \omega)
$$

Here ω is a $n /(k, n)$ th root of unity in \mathbb{C}.
Proof. Let γ be the standard n-cycle defined by $\gamma(i)=i+1 \bmod n$. Then γ^{k} is the product of n / d cycles of order $d=n /(n, k)$. Let ω be a d th root of unity in \mathbb{C}. All d th roots of unity are allowed, including $\omega=1$. The element $t(\omega)=$ $t\left(\omega ; z_{1}, \ldots, z_{n}\right) \in \mathbb{T}^{n}$ is defined by imposing the relations

$$
z_{i+k}=\omega^{-1} z_{i}
$$

all suffices mod n. This condition allows n / d of the complex numbers z_{1}, \ldots, z_{n} to vary freely, subject only to the condition that each z_{j} has modulus 1 . The crucial point is that

$$
\gamma^{k} \cdot t(\omega)=\omega t(\omega)
$$

Then ω determines a γ^{k}-fixed set in $\mathbb{T}^{n} / \mathbb{\mathbb { T }}$, namely the set $\mathfrak{y}(n, k, \omega)$ of all cosets $t(\omega) \cdot \mathbb{T}$. The set $\mathfrak{Y}(n, k, \omega)$ is an $(n / d-1)$-dimensional subspace of fixed points.

Note that $\mathfrak{Y}(n, k, \omega)$, as a coset of the closed subgroup $\mathfrak{y}(n, k, 1)$ in the compact Lie group E, is homeomorphic (by translation in E) to $\mathfrak{Y}(n, k, 1)$. The translation is by the element $t(\omega: 1, \ldots, 1)$. If ω_{1}, ω_{2} are distinct d th roots of unity, then $\mathfrak{Y}\left(n, k, \omega_{1}\right), \mathfrak{Y}\left(n, k, \omega_{2}\right)$ are disjoint.

We define the quotient space

$$
\mathfrak{X}(n, k, \omega):=\mathfrak{Y}(n, k, \omega) /(\mathbb{Z} / n \mathbb{Z})
$$

and apply Definition 4.1.

When $k=n$, we must have $\omega=1$. In that case, the orbifold is the ordinary quotient: $\mathfrak{X}(n, n, 1)=\mathfrak{X}(n)$.

Let $(n, k)=1$. The number of such k in $1 \leq k \leq n$ is $\phi(n)$. In this case, ω is an nth root of unity and $\mathfrak{X}(n, k, \omega)$ is a point. There are n such roots of unity in \mathbb{C}. Therefore, the extended quotient $\left(\mathbb{T}^{n} / \mathbb{T}\right) / /(\mathbb{Z} / n \mathbb{Z})$ always contains $\phi(n) n$ isolated points.

Theorem 1.1 is a consequence of Theorems 3.1, 3.2 and 4.2. If, in Theorem 1.1, we take n to be a prime number ℓ, then we recover the following result in [8], p. 30: the extended quotient $\left(\mathbb{T}^{\ell} / \mathbb{Z}\right) / /(\mathbb{Z} / \ell \mathbb{Z})$ is the disjoint union of the ordinary quotient $\mathfrak{X}(\ell)$ and $(\ell-1) \ell$ points.

5. The formation of the \boldsymbol{R}-groups

We continue with the notation of Section 3. Let $\sigma, \pi_{\sigma}, \pi_{1}, \eta$ be as in equation (1). The n-tuple $t:=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{T}^{n}$ determines an element $[t] \in E$. We can interpret $[t]$ as the unramified character

$$
\chi_{t}:=\left(z_{1}^{\text {valodet }}, \ldots, z_{n}^{\text {valodet }}\right)
$$

Let $\Gamma=\mathbb{Z} / n \mathbb{Z}$, and let $\Gamma_{[t]}$ denote the isotropy subgroup of Γ.
Lemma 5.1. The isotropy subgroup $\Gamma_{[t]}$ is isomorphic to the R-group of $\chi_{t} \otimes \sigma$:

$$
\Gamma_{[t]} \simeq R\left(\chi_{t} \otimes \sigma\right)
$$

Proof. Let the order of $\Gamma_{[t]}$ be d. Then d is a divisor of n. Let γ be a generator of $\Gamma_{[t]}$. Then γ is a product of n / d disjoint d-cycles, as in Section 4. We must have $t=t(\omega)$ with ω a d th root of unity in \mathbb{C}. Note that $\gamma \cdot t(\omega)=\omega t(\omega)$. Then we have

$$
\begin{aligned}
R\left(\chi_{t} \otimes \sigma\right) & =\bar{L}\left(\chi_{t} \otimes \pi_{\sigma}\right) / X\left(\chi_{t} \otimes \pi_{\sigma}\right) \\
& =\left\{\alpha \in \widehat{F}^{\times} \mid w \pi_{\sigma} \simeq \pi_{\sigma} \otimes \alpha \text { for some } w \text { in } W\right\} / X\left(\chi_{t} \otimes \pi_{\sigma}\right) \\
& =\left\langle\omega^{\text {valodet }} \otimes \eta^{n / d}\right\rangle \\
& =\mathbb{Z} / d \mathbb{Z} \\
& =\Gamma_{[t]}
\end{aligned}
$$

since, modulo $X\left(\chi_{t} \otimes \pi_{\sigma}\right)$, the character $\eta^{n / d}$ has order d.
Lemma 5.2. In the standard projection $p: E / / \Gamma \rightarrow E / \Gamma$, the cardinality of the fibre of $[t]$ is the order of the R-group of $\chi_{t} \otimes \sigma$.

Proof. This follows from Lemma 5.1.

We will assume that σ is a cuspidal representation of M with unitary central character. Let \mathfrak{s} be the point in the Bernstein spectrum of $\operatorname{SL}(N)$ which contains the cuspidal pair (M, σ). To conform to the notation in [2], we will write $E^{\mathfrak{s}}:=$ $\mathbb{T}^{n} / \mathbb{T}, W^{\mathfrak{s}}=\mathbb{Z} / n \mathbb{Z}$. The standard projection will be denoted

$$
\pi^{\mathfrak{s}}: E^{\mathfrak{s}} / / W^{\mathfrak{s}} \rightarrow E^{\mathfrak{s}} / W^{\mathfrak{s}}
$$

The space of tempered representations of G determined by \mathfrak{s} will be denoted by $\operatorname{Irr}^{\text {temp }}(G)^{\mathfrak{s}}$, and the infinitesimal character will be denoted inf.ch.

Theorem 5.3. We have a commutative diagram

in which the map $\mu^{\mathfrak{s}}$ is a continuous bijection. This confirms, in a special case, part (3) of the conjecture in [2].

Proof. We have

$$
\mathbb{C}[R(\sigma)] \simeq \operatorname{End}_{G}\left(i_{G M}(\sigma)\right)
$$

This implies that the characters of the cyclic group $R(\sigma)$ parametrize the irreducible constituents of $i_{G M}(\sigma)$. This leads to a labelling of the irreducible constituents of $i_{G M}(\sigma)$, which we will write as $i_{G M}(\sigma: r)$ with $0 \leq r<n$.

The map $\mu^{\mathfrak{5}}$ is defined as follows:

$$
\mu^{\mathfrak{s}}:\left(t, \gamma^{r d}\right) \mapsto i_{G M}\left(\chi_{t} \otimes \sigma: r\right)
$$

We now apply Lemma 5.2.
Theorem 3.2 in [7] relates the natural topology on the Harish-Chandra parameter space to the Jacobson topology on the tempered dual of a reductive p-adic group. As a consequence, the map $\mu^{\mathfrak{s}}$ is continuous.

6. Cyclic invariants

We will consider the map

$$
\alpha: \mathbb{T}^{n} \rightarrow\left(\mathbb{T}^{n} / \mathbb{T}\right) \times \mathbb{T}, \quad\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(\left(t_{1}: \cdots: t_{n}\right), t_{1} t_{2} \ldots t_{n}\right),
$$

where $\left(t_{1}: \cdots: t_{n}\right)$ is the image of $\left(t_{1}, \ldots, t_{n}\right)$ via the map $\mathbb{T}^{n} \rightarrow \mathbb{T}^{n} / \mathbb{\mathbb { T }}$. The map α is a homomorphism of Lie groups. The kernel of this map is

$$
\mathcal{E}_{n}:=\left\{\omega I_{n} \mid \omega^{n}=1\right\} .
$$

We therefore have the isomorphism of compact connected Lie groups:

$$
\begin{equation*}
\mathbb{T}^{n} / \mathscr{E}_{n} \cong\left(\mathbb{T}^{n} / \mathbb{\mathbb { 1 }}\right) \times \mathbb{\mathbb { }} \tag{2}
\end{equation*}
$$

This isomorphism is equivariant with respect to the $\mathbb{Z} / n \mathbb{Z}$-action, and we infer that

$$
\begin{equation*}
\left(\mathbb{T}^{n} / \mathscr{G}_{n}\right) /(\mathbb{Z} / n \mathbb{Z}) \cong\left(\mathbb{T}^{n} / \mathbb{\mathbb { }}\right) /(\mathbb{Z} / n \mathbb{Z}) \times \mathbb{\mathbb { }} \tag{3}
\end{equation*}
$$

Theorem 6.1. Let $H^{\bullet}(-; \mathbb{C})$ denote the total cohomology group. We have

$$
\operatorname{dim}_{\mathbb{C}} H^{\bullet}(\mathfrak{X}(n) ; \mathbb{C})=\frac{1}{2} \cdot \operatorname{dim}_{\mathbb{C}} H^{\bullet}\left(\mathbb{T}^{n} ; \mathbb{C}\right)^{\mathbb{Z} / n \mathbb{Z}}
$$

Proof. The cohomology of the orbit space is given by the fixed set of the cohomology of the original space [4], Corollary 2.3, p. 38. We have

$$
\begin{equation*}
H^{j}\left(\mathbb{T}^{n} / \mathscr{E}_{n} ; \mathbb{C}\right) \cong H^{j}\left(\mathbb{T}^{n} ; \mathbb{C}\right)^{\mathscr{E}_{n}} \cong H^{j}\left(\mathbb{T}^{n} ; \mathbb{C}\right) \tag{4}
\end{equation*}
$$

since the action of \mathscr{E}_{n} on \mathbb{T}^{n} is homotopic to the identity. We spell this out. Let $z:=$ $\left(z_{1}, \ldots, z_{n}\right)$ and define $H(z, t)=\omega^{t} \cdot z=\left(\omega^{t} z_{1}, \ldots, \omega^{t} z_{n}\right)$. Then $H(z, 0)=z$, $H(z, 1)=\omega \cdot z$. Also, H is equivariant with respect to the permutation action of $\mathbb{Z} / n \mathbb{Z}$. That is to say, if $\epsilon \in \mathbb{Z} / n \mathbb{Z}$ then $H(\epsilon \cdot z, t)=\epsilon \cdot H(z, t)$. This allows us to proceed as follows:

$$
\begin{align*}
H^{j}\left(\mathbb{T}^{n} ; \mathbb{C}\right)^{\mathbb{Z} / n \mathbb{Z}} & \cong H^{j}\left(\mathbb{T}^{n} / \mathscr{E}_{n} ; \mathbb{C}\right)^{\mathbb{Z} / n \mathbb{Z}} \\
& \cong H^{j}\left(\left(\mathbb{T}^{n} / \mathbb{\mathbb { U }}\right) \times \mathbb{T} ; \mathbb{C}\right)^{\mathbb{Z} / n \mathbb{Z}} \tag{5}\\
& \cong H^{j}\left(\left(\mathbb{T}^{n} / \mathbb{\mathbb { U }}\right) /(\mathbb{Z} / n \mathbb{Z}) \times \mathbb{T} ; \mathbb{C}\right)
\end{align*}
$$

We apply the Künneth theorem in cohomology (there is no torsion):

$$
\begin{aligned}
&\left(H^{j}\left(\mathbb{T}^{n} ; \mathbb{C}\right)\right)^{\mathbb{Z} / n \mathbb{Z}} \cong H^{j}(\mathfrak{X}(n) ; \mathbb{C}) \oplus H^{j-1}(\mathfrak{X}(n) ; \mathbb{C}) \quad \text { with } 0<j \leq n, \\
&\left(H^{n}\left(\mathbb{T}^{n} ; \mathbb{C}\right)\right)^{\mathbb{Z} / n \mathbb{Z}} \simeq H^{n-1}(\mathfrak{X}(n) ; \mathbb{C}), \quad H^{0}\left(\mathbb{T}^{n} ; \mathbb{C}\right)^{\mathbb{Z} / n \mathbb{Z}} \cong H^{0}(\mathfrak{X}(n) ; \mathbb{C}) \simeq \mathbb{C}, \\
& H^{\text {ev }}\left(\mathbb{T}^{n} ; \mathbb{C}\right)^{\mathbb{Z} / n \mathbb{Z}}=H^{\bullet}(\mathfrak{X}(n) ; \mathbb{C}), \quad H^{\text {odd }}\left(\mathbb{T}^{n} ; \mathbb{C}\right)^{\mathbb{Z} / n \mathbb{Z}}=H^{\bullet}(\mathfrak{X}(n) ; \mathbb{C}) .
\end{aligned}
$$

We now have to find the cyclic invariants in $H^{\bullet}\left(\mathbb{T}^{n} ; \mathbb{C}\right)$. The cohomology ring $H^{\bullet}\left(\mathbb{T}^{n}, \mathbb{C}\right)$ is the exterior algebra $\bigwedge V$ of a complex n-dimensional vector space V, as can be seen by considering differential forms $d \theta_{1} \wedge \cdots \wedge d \theta_{r}$. The vector space V admits a basis $\alpha_{1}=d \theta_{1}, \ldots, \alpha_{n}=d \theta_{n}$. The action of $\mathbb{Z} / n \mathbb{Z}$ on $\bigwedge V$ is induced by permuting the elements $\alpha_{1}, \ldots, \alpha_{n}$, i.e., by the regular representation ρ of the cyclic group $\mathbb{Z} / n \mathbb{Z}$. This representation of $\mathbb{Z} / n \mathbb{Z}$ on $\bigwedge V$ will be denoted $\bigwedge \rho$. The dimension of the space of cyclic invariants in $H^{\bullet}\left(\mathbb{T}^{n}, \mathbb{C}\right)$ is equal to the multiplicity of the unit representation 1 in $\bigwedge \rho$. To determine this, we use the theory of group characters.

Lemma 6.2. The dimension of the subspace of cyclic invariants is given by

$$
\left(\chi_{\wedge \rho}, 1\right)=\frac{1}{n}\left(\chi_{\wedge \rho}(0)+\chi_{\wedge \rho}(1)+\cdots+\chi_{\wedge \rho}(n-1)\right)
$$

Proof. This is a standard result in the theory of group characters [11].
Theorem 6.3. The dimension of the space of cyclic invariants in $H^{\bullet}\left(\mathbb{T}^{n}, \mathbb{C}\right)$ is given by the formula

$$
g(n):=\frac{1}{n} \sum_{d \mid n, d o d d} \phi(d) 2^{n / d}
$$

Proof. We note first that

$$
\chi_{\wedge \rho}(0)=\text { Trace } 1_{\wedge V}=\operatorname{dim}_{\mathbb{C}} \bigwedge V=2^{n}
$$

To evaluate the remaining terms, we need to recall the definition of the elementary symmetric functions e_{j} :

$$
\prod_{j=1}^{n}\left(\lambda-\alpha_{j}\right)=\lambda^{n}-\lambda^{n-1} e_{1}+\lambda^{n-2} e_{2}-\cdots+(-1)^{n} e_{n}
$$

If we need to mark the dependence on $\alpha_{1}, \ldots, \alpha_{n}$ we will write $e_{j}=e_{j}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Set $\alpha_{j}=\omega^{j-1}, \omega=\exp (2 \pi i / n)$. Then we get

$$
\lambda^{n}-1=\prod_{j=1}^{n}\left(\lambda-\alpha_{j}\right)=\lambda^{n}-\lambda^{n-1} e_{1}+\lambda^{n-2} e_{2}-\cdots+(-1)^{n} e_{n}
$$

Let $d \mid n$, let ζ be a primitive d th root of unity. Let $\alpha_{j}=\zeta^{j-1}$. We have

$$
\begin{equation*}
\left(\lambda^{d}-1\right)^{n / d}=\left(\lambda^{d}-1\right) \ldots\left(\lambda^{d}-1\right)=\prod_{j=1}^{n}\left(\lambda-\alpha_{j}\right) \tag{6}
\end{equation*}
$$

Set $\lambda=-1$. If d is even, we obtain

$$
\begin{equation*}
0=1+e_{1}\left(1, \zeta, \zeta^{2}, \ldots\right)+e_{2}\left(1, \zeta, \zeta^{2}, \ldots\right)+\cdots+e_{n}\left(1, \zeta, \zeta^{2}, \ldots\right) \tag{7}
\end{equation*}
$$

If d is odd, we obtain

$$
\begin{equation*}
2^{n / d}=1+e_{1}\left(1, \zeta, \zeta^{2}, \ldots\right)+e_{2}\left(1, \zeta, \zeta^{2}, \ldots\right)+\cdots+e_{n}\left(1, \zeta, \zeta^{2}, \ldots\right) \tag{8}
\end{equation*}
$$

We observe that the regular representation ρ of the cyclic group $\mathbb{Z} / n \mathbb{Z}$ is a direct sum of the characters $m \mapsto \omega^{r m}$ with $0 \leq r \leq n$. This direct sum decomposition allows us to choose a basis v_{1}, \ldots, v_{n} in V such that the representation $\Lambda \rho$ is diagonalized by the wedge products $v_{j_{1}} \wedge \cdots \wedge v_{j_{l}}$. This in turn allows us to compute the character of $\bigwedge \rho$ in terms of the elementary symmetric functions e_{1}, \ldots, e_{n}.

With $\zeta=\omega^{r}$ as above, we have

$$
\chi \wedge \rho(r)=1+e_{1}\left(1, \zeta, \zeta^{2}, \ldots\right)+e_{2}\left(1, \zeta, \zeta^{2}, \ldots\right)+\cdots+e_{n}\left(1, \zeta, \zeta^{2}, \ldots\right)
$$

We now sum the values of the character $\chi_{\wedge \rho}$. Let $d:=n /(r, n)$. Then ζ is a primitive d th root of unity. If d is even then $\chi_{\wedge \rho}(r)=0$. If d is odd, then $\chi_{\wedge \rho}(r)=2^{n / d}$. There are $\phi(d)$ such terms. So we have

$$
\begin{equation*}
\chi_{\wedge \rho}(0)+\chi \wedge \rho(1)+\cdots+\chi_{\wedge \rho}(n-1)=\sum_{d \mid n, d \text { odd }} \phi(d) 2^{n / d} \tag{9}
\end{equation*}
$$

We now apply Lemma 6.2.
The sequence $n \mapsto g(n) / 2, n=1,2,3,4, \ldots$, is
$1,1,2,2,4,6,10,16,30,52,94,172,316,586,1096,2048,3856,7286, \ldots$
as in http://www.research.att.com/~njas/sequences/A000016. Thanks to Kasper Andersen for alerting us to this web site.

References

[1] M. Assem, The Fourier transform and some character formulae for p-adic SL_{l}, l a prime. Amer. J. Math. 116 (1994), 1433-1467. Zbl 0837.20051 MR 1305872268
[2] A.-M. Aubert, P. Baum, and R. Plymen, Geometric structure in the representation theory of p-adic groups. C. R. Math. Acad. Sci. Paris 345 (2007), 573-578. Zbl 1128.22009 MR 2374467 265, 267, 268, 275
[3] P. Baum and A. Connes, Chern character for discrete groups. In A fête of topology, Academic Press, Boston 1988, 163-232. Zbl 0656.55005 MR 0928402 266, 272
[4] A. Borel, Seminar on transformation groups. Ann. of Math. Stud. 46, Princeton University Press, Princeton, N.J., 1960. Zbl 0091.37202 MR 0116341276
[5] J. Dixmier, C^{*}-algebras. North-Holland Publishing Co., North-Holland Math. Library 15, Amsterdam 1977. Zbl 0372.46058 MR 0458185266
[6] D. Goldberg, R-groups and elliptic representations for SL $_{n}$. Pacific J. Math. 165 (1994), 77-92. Zbl 0855.22016 MR 1285565 269, 270
[7] R. J. Plymen, Reduced C^{*}-algebra for reductive p-adic groups. J. Funct. Anal. 88 (1990), 251-266. Zbl 0718.22003 MR 1038441 265, 271, 275
[8] R. J. Plymen, Elliptic representations and K-theory for SL(l). Houston J. Math. 18 (1992), 25-32. Zbl 0757.46060 MR 1159436 272, 274
[9] R. J. Plymen, Reduced C^{*}-algebra of the p-adic group GL(n) II. J. Funct. Anal. 196 (2002), 119-134. Zbl 1014.22014 MR 1941993272
[10] R. J. Plymen and C. W. Leung, Arithmetic aspect of operator algebras. Compositio Math. 77 (1991), 293-311. Zbl 0843.22011 MR 1092771 271, 272
[11] J.-P. Serre, Linear representations of finite groups. Grad. Texts in Math. 42, SpringerVerlag, New York 1977. Zbl 0355.20006 MR 0450380277
[12] A. J. Silberger, The Knapp-Stein dimension theorem for p-adic groups. Proc. Amer. Math. Soc. 68 (1978), 243-246; Correction ibid. 76 (1979), 169-170. Zbl 0348.22007 MR 0492091 Zbl 0415.22020 MR 0534411271

Received November 14, 2008; revised September 30, 2009
J. Jawdat, Department of Mathematics, Zarqa Private University, Jordan

E-mail: jjawdat@zpu.edu.jo
R. Plymen, School of Mathematics, Manchester University, Oxford Road, Manchester M13 9PL, UK
E-mail: plymen@manchester.ac.uk

