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Spin squeezing in a driven Bose-Einstein condensate

Stewart D. Jenkirflsand T. A. Brian Kennedy
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 1 August 2002; published 30 October 2002

We consider a collection of atoms prepared in a Bose-Einstein condensate which interact via two-body
elastic collisions. A resonant driving field couples two internal states which together constitute an effective spin
1/2 system for each atom, and from which a total spin for the gas can be defined. It is shown that in the limit
of strong driving, the system dynamics reduces to a mechanism for spin squeezing similar to that of a recent
proposal for undriven condensates. However, we find that the conditions for spatial stability in our driven
system are complementary to those of the undriven system. Reasons for this difference, associated with the
physics of dressed atom collisions, are discussed along with conditions for preparing and observing the spin
squeezed state.
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[. INTRODUCTION that entanglement could be enhanced just by increasing the
initial condensate particle number.

A system ofN>1 distinguishable two state quantum sys- The stability of the common spatial mode, the so-called
tems has a Hilbert space of dimensiol. 4s it practically ~ “breathe-together” mode is a nontrivial issue. A detailed sta-
possible to prepare arbitrary quantum states, by accessing théity analysis was reported in Rgfl6], and, in the Thomas-
recesses of this large space? The preparation of such masermi limit, boils down to a condition on the relative
sively entangled states is a major focus of current research istrength of interstate and intrastateave atomic collisions,
quantum information physics. By definition, entangled statese., g, _<g,.,g__. Hereg,,, is proportional to the scat-
cannot be represented as product states, or statistical Miygring length for the collision of atoms in the stationary states
tures of product states. . _ |u) and|v), respectively, and is defined precisely later. In

In recent years, a manifestation of a particular form ofgport, for a pair of overlapping condensates, interacting only
massive entanglement known as spin squeeZiigas been iy glastic collisions, a common spatial mode is stable for

; Stomic states which have relatively weak interstate colli-
could be used to enhance the accuracy of population meas ns

surements in spectroscopy and also have the potentlal_ to be In this paper we present a scenario for squeezing the
used in atomic clockg2—4]. Several methods for producing . : LT T
spin squeezed states have been proposed in the last dec%’?art'de spin wave functlo_n in the oppt_)s_|te v, _
[3,5—-11. Experimental realizations of these states have been’ 9+ +g--)/2, when the Interstate collisions are rela-
made by mapping the quantum state of squeezed light ontoW®!Y strong. The procedure is similar to that of REE5],
gas of cold uncondensed atorfis2], as well as through and again reﬁes on the existence of a common breathe-
quantum nondemolition measuremefts,14. together spatial mode, except that the initial BEC is strongly
In a recent paper, Sorensenal.[15] have suggested that driven by an external field, so that the atomic single-particle
an entangled wave function for the internal state of a systerfitates execute resonant Rabi oscillations at a frequency that
of N atoms can be produced by means of low-energy elastiexceeds other characteristic time scales of the problem. This
collisions within a vapor prepared in a special initial state.type of driving between hyperfine ground states was origi-
The initial state is a zero-temperature Bose-Einstein condemally demonstrated experimentally in a rubidium BEC by
sate(BEC). A short controlled electromagnetic pulse is ap-Matthewset al.[17], and has since been used in the creation
plied and, at the atomic level, coherently mixes two single-of vortices[18,19. Spin squeezing is again caused by elastic
particle atomic states, labeled by ) and|—), which form  atomic collisions between condensate atoms which undergo
an effective spin 1/2 system. The sumNb§uch atomic spins rapid Rabi oscillations, i.e., collisions of dressed atoms. The
defines a resultat-particle spin angular momentum for the reasons for the complementary stability criteria are, as will
gas. The effect of low-energywave atomic collisions is to be discussed, a result of the different collision properties of
squeeze, hence entangle, the associstedrticle spin wave bare atom and dressed atom condeng&@épk
function of the condensate mixtufd]. The special initial The remainder of this paper is organized as follows. In
condition, and the stability of a common spatial mode forSec. Il we present the basic theoretical model. An analysis of
condensates in either of the single-particle atomic stateshe model follows in Sec. Ill, where the limit of large Rabi
leads to a squeezing which scales WithThis very attractive  frequency is used to simplify the equations. This section also
feature, by contrast with some of the earlier proposals, meariacludes a discussion of the breathe-together mode and its
stability, an analytical calculation of the spin squeezing, and
a comparison with the physics of R¢fl5]. Following our
*Electronic address: stewart.jenkins@physics.gatech.edu conclusion in Sec. IV, two appendixes provide further details
TElectronic address: brian.kennedy@physics.gatech.edu on the breathe-together mode stabilippendix A and the
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collisional interaction energy of bare and dressed CO”deﬂNherepr(r) andf/fL(r) are boson field annihilation and cre-

sates(Appendix B. ation operators for the bare atomic stated;) and ¢(r) are
the effective Rabi frequency and phase of the external driv-
Il. THEORETICAL MODEL ing field, respectively, an¥_.(r) are the external trapping

potentials for the atomic stat¢s ). For transitions between
two hyperfine states separated by a microwave frequency, the
velength can be assumed large with respect to the vapor,
ui/ d we can take the Rabi frequency and phase to be constant
roughout the sample, i.ef(r)=0 andk(r) = . The tran-

We consider an ultracold BEC atomic gas with two
single-particle states labeled by ) and|—), which form a
closed two state system. In an alkali atom these states sho
be hyperfine states belonging to the ground electronic terrﬂ1

2 .

Si», although their total angular momenk and hence _... : : )
their energy, may be different. The possibility of collision SmOAn freque.ncy F)etween the statesul(.gsan.d the spm opera
induced couplings to other degenerate hyperfine states mealf¥ > is defined in terms of the Pauli spin mati,,

that the two state system will not, in general, be closed. This
problem may be circumvented if one chooses the two inter- . . .
nal states with differenF values such that both states have S;=5 2 d*r gL () (). ©)
the minimum(or maximum possible values foM¢ in their pr=T
respective manifolds. Doing this will forbid spin-exchange
collisions between the two states, thus forming a closed twowe similarly deﬁne‘sx andey, by replacings, with o and
state system. Alternatively, if this choice cannot be made, th@ry, respectively.
unwanted degenerate states may be coupled via an off reso- The two-body collisional interaction potential may be
nant laser field to higher energy levels, thereby raising thyritten
energy of the unwanted levels through the ac Stark shift, and
making spin-exchange collisions energetically unfavorable 1
[15]. It should be noted that with the former option, it is N f TR VNN Y 5
necessary to use an optical t{#d] to confine the gas; since Ue 2 WE:: Guv | AT (DD (1),
these states generally have opposite magnetic moments, it
Gally. By aseLming that & carefal chotce of the statos. hailere the colision coeflicients, , — 4z, /mvith a,.
X ; X e scattering length between atoms in the internal sfates
been made, we will exclude from our model the influence o . : .
i . . —and v. Note that aside from the atomic energy and Rabi
other hyperfine states. The role of atomic losses in degradlngOu ling terms in the Hamiltonian. this is exactly the same
the squeezing has been discussed in R&i, and we expect ping ) ’ y
S L2 . Hamiltonian discussed by Sorensenal. [15].
similar qualitative features with the current scheme.
BEC atoms in the statgs-) and|—) suffer low-energy
elastic collisions, while a resonant external electromagnetic IIl. ANALYSIS OF THE MODEL
field induces transitions between them. The Hamiltonian for o )
the N-particle system may be written A. Limit of large Rabi frequency
R L o We consider the limit that the Rabi frequeneyis the
H(t) =K+ Vayt 0oS,+ U+ HAR(D), (1) largest frequency in the problem. The analysis then proceeds
by means of two unitary transformatiofi22]. The first is

whereK isAthe kinetic energy,\A/ext is the external trapping generated bja(t):exp(—iwl_éz/ﬁ)' and yields a time depen-
potential, Uc is the collisional interaction energy, and dent Schrodinger equation with a time independent Hamil-

AAF(t) is the interaction between the atomic states and théonian H”. The latter is identical to the Hamiltonia (t)
external electromagnetic field. These operators are definagith the substitutionsHAF(t)—>HAF(O):—Kéx and w,

by —A=wy— w_ . Assuming atomic resonancé=0, we may
4292 write H” as
K=— fdsr”rr—"r, 2 N . .

R V() Yu(r) @ A7 =R+t O k8, ®)

Vext=f d*r gL (VLD P(r) A second unitary transformation is applied with/(t)
=exp(xS/fh), which yields the Schidinger equation

+ f & B OV_(I(n), 3 @A) =R ©p() with A'(©)=R+W (1) (Ve
+Uc)W(t). Here,|#(t)) is the state vector in the rotating

frame, and is related to the Schinger picture state vector
AAF(t) = — ;i(f B P (r)r(r)e 1o in R thia laboratory ~ frame |W(t)), by |¥(t))
=UOW()|¢(1)).

. Transformed to the rotating frame the one-body potential
X (r)+ H.c.) , (4)  becomes
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Wel= 2, [ dnvind =L OB, 14
+coskt J Fr[ I (Va0 (1) and ¥ 2T (1) = TP =)
The notationT® indicates theq component of a rank
S an phercal ensor b respec o the fectvespin s dene
+i sinxtf A3l (NVa(r) g-(r) 18, 79()1=hqTO(r), (15)
— gL (NVa(N g (D], (7 15,15, TPM1=AkF ) (k=q+ HTR (1. (16

where V(r)=i[V.(r)+V_(r)] and Vg(r)=%[V,(r) Rewriting the collision interaction in terms of these spherical
—V_(r)]. This expression is formally in agreement with the tensors is useful for the purpose of calculating the unitary
mean-field theory of Williamet al. [22]. The two-body in- transformation, since it follows from their definition that
teraction potentials transform as

WO T (nW(t)=e 9= T{(r). (17)

WTUCWZQJ d°r Tgo)(r)”Lg'f dr [T{V(r)cosxt The one collision kernel that has not been explicitly defined
in terms of tensors, is a linear combination of tensors of rank
0 and 2, each with componegt=0. As a consequence, it is
unaffected by the second unitary transformation, and thus we
ita(2) leave it in the explicit form given.
+te TT(n)] We are interested in the limit of large Rabi frequency
compared to any other characteristic frequency. In this limit
+9J d3 ()@ (NP (N (r), (8) we make a form of rotating wave approximation and cycle
average the rotating frame Hamiltoni&t (t) over the Rabi
period to get

+'T§1)(r)sinxt]—gf d3r [e?<1T)(r)

where ., (r) [¢]_(r)] are bosonic field creation operators
for a spin one-half oriented in the positiyregativg x di- ) A O
rection, i.e., ¢ (N)=[¢L(r)+ ¢ (r)1/V2 and §_(r)= H£<WA=K+M; d®r (V) P,(r)
—i[gt (r)= T (r)1/V2 [26]. Alternatively, it is useful to re-

gard these as field operators for dressed atomic single- E— 3 At NNt -
particle states, arising as a result of the Rabi coupling of the + ZQ#Zt ar (D P,(N (1) (1)
bare atom to the external electromagnetic fi&d].

The collision coupling coefficients are given by +gf d3r f//T (r)f/xT (r)z,?; (r)fp (1), (18
X+ X— X— X+ !

v; ~ Guws (9 in which all collision tensors witlg# 0 have disappeared. In
e the limit of strong driving the vapor experiences only the
average external potenti®l(r) of the two strongly coupled
g = Z(gH—g,,), (10 single-particle state22]. In a far off-resonance optical trap
[21], unlike a magnetic trap, it is reasonable to assume that

the latter potentials are identical, and thus equaT([o).

I

1
g=Z(g+++g,,—29+,). (12)
B. Single-mode approximation: the breathe-together mode
We have also defined the collision kern&g)(r) as fol- In the rotating frame the HamiltoniaH gy, is indepen-
lows: dent of the driving field. This enables us to make use of the

analysis of Ref[16], and assume the existence of a stable

~0) At A A - single common “breathe-together” modé(r,t). Perhaps
T§ )(f)—ﬂ’;: (DN, (1)), (12) surprisingly, the condition for stability of this mode,, _
>(g.+t0g__)/2, is opposite to that required for its stability
1 in the BEC squeezing scheme of R¢L5]. In the latter
?Qi(r): I—[ljﬁb(f)f//L(r);ﬂx:(f)':bw(f) scheme squeezing results from the collisional interaction of
- V2 - two bare atomic condensates without any Rabi coupling.
~t ~ - N A detailed discussion of the stability condition is given in
F e (1) hya (N = (1) (1) ], (13 Appendix A. A qualitative argument based on a calculation
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of the mean interaction energy of two condensates in which . . . . 10°
the macroscopically occupied single-particle states are, re-
spectively, bare atomic stat&,, and dressed atomic states
Eidm, is revealing(Appendix B. These energies are given by I 1107
Eh=g. | o oo (1), 19
Ql —2
XU 10
where p..(r)=N.|¢.(r)|? are the spatial densities of the
bare states, and
1 {107
E?ntzz(g+++gff)J d3r Px+ (M) px—(r), (20
wherep,. (1) =Ny. | 4 (r)|? are the spatial densities of the . . . . 10~
dressed states. The interaction energy is proportional to the 0 T 0.001
overlap integral of the corresponding condensate spatial den- _ _ _
sity profiles, with the expected prefactgr. _ in the bare FIG. 1. The squeezing parametgt as a function of times

atom case, but with a prefactog (. +g__)/2 for dressed =[Q(t")dt’, for the evolution of the system under the Hamil-

condensates. Indeed the coefficignt_ only contributes to  tonian —Q(t)S2/4. The initial state has all of the particles in the

the self-interaction energy of dressed condensates. These wsingle-particle statg—), andN=10°.

usual features of elastic collisions in dressed condensates are

reflected in the different stability criterion for the breathe- The degree of spin squeezing that results from time evo-

together mode. _ lution under this Hamiltonian can be quantified by the pa-
Assuming the atomic states are chosen such that the St?émeter §2=inf{N(Aél)2/|<§>|2:ASL:§~n, wherenL(é)}.

bility condition for the breathe-together mode is satisfied, we__, . S . :
may define annihilation operators for this mode byel'h|s definition for the degree of entanglement is consistent

[20,23,24 with those discussed by Winelard al. [3,4] and Sorensen
” et al.[15]. It has been shown that i< 1, then the conden-
- B — - sate exhibits massive entanglement and spin squegkfig
A (1) = f d°r ™ (r,0) ¢y (1), (2D |t can also be demonstrated that we attain maximal squeezing
] ] o ] _when our initial state vector is a coherent spin stai® de-
with corresponding Qeﬁnltlgns for cAreaAtlon operators, whilefined by Kitagawa and Uedd]) whose mean spin vector is
the number operatoa). (t)a.(t)=a\.a. is time inde- perpendicular to the axis about which the one axis twisting

pendent. R A occurs, in this case theaxis. A convenient realization of this
Hence, inHgy, we replace the field operatoig, . (r)  initial condition would be a zero-temperature BEC with all
—d(r,t)ay (1), g (r)— o(r,t)a,_(t) to give atoms in the internal staté,—}_. N N .
R o With the coherent state initial condition, the squeezing
H,’?WA—>NE(t)+ﬁQ(t)aLa;i_ax_ax+ parameter as a function of time can be computed analytically
. [1], and is given by
S 1
=NE(t)—2Q(t) —Z—ZNZ , (22 1 1
f 1+Z(N—1)A(t)}—Z(N—1) \/A(t)2+B(t)2]
2 —
where &)= " ,
. — o c0§N‘2(f Q(t’)dt’)
Ezfdr *(r,t)(K+V)é(r,t) 0
&*( é( 23
1 _
+§d f d3r|¢(r,t)|4)(N—1) where  A(t)=1-cos" q2/tQ(t")dt'], and B(t)=
—4 si f5Qt")dt' Jcod A [HQ(t")dt'] (Fig. 1). For largeN,
and it has been shown that the minimum attainable squeezing

parameter scales @é~N~23[1].

For spin squeezing to occur the collision coefficient
must be nonzero. Furthermore, for our approximations to be
valid, the characteristic frequendy must be small com-
Ooared to the Rabi frequenay. To illustrate the time scales,

. ) . : we give some estimates of the characteristic parameters. We
in the context of spin squeezing by Kitagawa and Uda assume, for simplicity, that the vapor is trapped in a spheri-

The nomenclature arises sinSg generates a rotation about cally symmetric potential  V(r)=V_(r)=V.(r)

the x aXi?, andAS§ generates a rotation in which the eigen- :%mwtzraprz_ The initial wave functiorkl)o(r) can be deter-
states ofS, are rotated in opposite directions. mined using the Thomas-Fermi approximation to the time

na=gf [ @l of

Thus in the breathe-together mode approximatitif, 5 re-
duces to the one-axis twist Hamiltonian originally discusse
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independent Gross-Pitaevski equatj@h]. Using this proce-  which for wy,,/27m~1 kHz, is typically a fraction of a sec-
dure we numerically determine the characteristic frequencynd, virtually independent dfl for practical purposes.
Q to be

Qfs 1] =1.4% 10_4m(a++ +a__—2a,.) C. Discussion of BEC spin squeezing scenarios

355 In the scheme of Ref15], spin squeezing is produced by
(24) coherent elastic collisions in a BEC mixture of atoms which
individually constitute effective spin one-half bosons. A fast

/2 pulse is applied to the condensate with all atoms initially

wherg the scat_tering Iengths_ are gi\{en in Bohr_radii, and th‘f)repared in the internal state ) (for ease of comparison we
atqm|c massn is measured in atom|p mass units. The Sc_at'will use as close a notation as is possible to that employed in
tering lengtha;,;; corresponds to the initial condensate, prior

. n o the rest of our paperThe /2 pulse produces a bare atom
to the application of the external electromagnetic field. For pape me P b

e if th d in the sinal o] condensate mixture with all of the “spins” oriented in the
ex?mtaeeﬁ;t € Zystem condenses in the single-particle stalg,qjiex direction. Elastic collisions then act to squeeze the
A init— d—— -

We furth ing th its of R hat the ti initial coherent spin state. By contrast, in our scheme, elastic
e further note, using the results of REf], that the time collisions take place during the resonant Rabi oscillations

taken to attain the minimum squeezing parameter is given b}ﬁduced by a strong applied field, squeezing the dressed atom

_1s e\ —6/5n1—1/15 condensate mixture.
3.7X10° m™ M wiapls D)™ . (25) The Hamiltonian of Ref[15] is given in our notation by

app  (Bseta-_—2a,) Floor=FI(t) = AAF(1) (with we=0),

Qinit
N

X( wtrap[ S 1] ) 655

tminl S|~

0

N ~ 1 - N - - - - N N
Rso=R+ V5 2 g,mf dr ¢L<r>¢L<r)¢M(r>¢ﬂ<r>+g+,f dr JLPLEO) P ()P (r)
~ oo, L 3, ot atoeN .y 1
=K+V+ Z(g+++g”)ﬂ2v & PPN PN P+ 7(9e0—g-2)

- - N N 1 N N N -
xf dr JLIOPLIO) P (NP (r) - Z<g++—g,,>f dr gL Pl P (N d-(r)

—ng dr gL PP (gL (). (26)

For g.,.=g-_, which is satisfied in the case of sodium, —0S/#. The factor two difference arises because we aver-

Hsor reduces to a form very similar 6z, in Eq.(18). The  age over fast Rabi oscillations in the derivationftify. In

last term inH,,,, causes spin squeezing by means pbais  Ref.[15], factors such as multiple modes and atomic losses,
twist. The operatolS, is diagonal for states with a definite which reduce or destroy squeezing are analyzed. We will not
occupancy of the single-particle states). With Hgya, the discuss these further, as we expect their effect to be qualita-
wave function in the rotating frame is squeezed byaxis  tively similar here. _ _ _ _
twist: S, is diagonal for states with definite occupancy of the _ Finally we discuss the spin dynamics from the viewpoint
single-particle dressed statps-). However, in both cases ©Of the laboratory frame. In Ref15], squeezing occurs as a
squeezing relies on an effective single-mode approximatiorf.esun of free evolution of a condensate in which the constitu-

As discussed in the last subsection, and in more detail i§Nt @tomic “spins” are all oriented in the positiwedirection.
Appendix A, the stability criteria for the existence of the As the condensate evolves, the orientation of the mean spin

breathe-together mode on the intraparticle and interparticlgector will not change at all i, . =g__ and the motional
scattering lengths are opposite inequalities in the two scedegrees of freedom are neglected. Squeezing could be de-
narios, i.e.,g._<g.,.,g__ for bare condensates, and tected in a component transverse to the nonzero average spin
9+->(9g+++g-_)/2 for dressed condensates. The two scecomponent{ W (t)|S,|¥(t))+0 . In our approach, the exter-
narios are thus complementary rather than alternatives. In they| field drives rapid Rabi oscillations in the populations of
single-mode approximatiortls,, contains thez-axis twist the|+) and|—) states. If we examine the evolution of the
operator 22S%/#%, while Hiya contains thex-axis twist state vector in the rotating framey(t)), we see that the
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mean spin vector maintains the same orientation, along thshould be computed with the lab frame state ve¢#o(t))
negative z axis, so that (z,/;(t)|§z| P(1))<0 and = U(t)\fv(t)|z,b(t)> and the similarly transformed spin opera-

(w(t)|éxyy|¢//(t))=0, although its magnitude shrinks with tor Sg(t)=U(t)W(t)SW(t)UT(t). The latter can be written
time. In the laboratory frame, relevant spin observableexplicitly as

Sir(t) 1 0 0 cosw t  sinot 0\ [ S
§r(t) | = 0 coskt sinkt || —sinwt cosot 0| §, 27)
S,(1) 0 -—sinkt coskt 0 0 1 5,

In terms of the laboratory frame Schiiager picture state applied. The population of either the ) or | —) state is then

vector |W(t)), we have, for example,(y(t)|S#(t))  measured, thereby also measurg A sub-shot-noise mea-

=<\If(t)|§R(t)|‘P(t)). surement of the projection noise indicates spin squeezing
The system is subject to two rotations: one about zhe [3.4].

axis at a frequencw, , and another rotation about the nega-

tive x axis at frequency. In the lab frame, one would see

the mean spin vector rotating about the negativaxis at IV. CONCLUSION

frequencyk; this behavior is then superimposed on a rota-

tion about thez axis at frequencyw, . The spin squeezing We have considered the possibility of spin squeezing in a

manifests itself as a modulation on the rotational motion ofresonantly driven mixture of Bose-Einstein condensates. In

the mean spin, and occurs along axes that are perpendiculdre limit that the Rabi frequency is the largest frequency

to this vector. scale in the problem, we have shown that elastic collisions
The spin squeezing could, in principle, be observed usingqueeze quantum fluctuations of the spin component trans-

a method similar to that described by Winelaetdal.[4]. For  verse to the average spin vector, according to the single-axis

the purpose of measuring the spin components orthogonal twist mechanism of Ref.1].

the mean spin, it is necessary to have the mean spin oriented We have further shown that the proposed scheme is

in a known direction, say along tteaxis. Since the direction complementary to the proposal of Sorensdral. [15] for

of the mean spin vector oscillates rapidly, making such apin squeezing of a BEC. While both scenarios depend on

measurement may be difficult at an arbitrary time. This ob-+the existence of a mutually stable spatial mode for the inter-

stacle may be overcome in the following way. Near the timeacting condensates, the stability criteria are mutually exclu-

when maximum squeezing is attaineg;,, a timeT is cho-  sive: g,_<g.,,,9__ for Ref. [15], but g,_>(g..

sen such thakT=2n# for some integem. The coupling +g__)/2 here. The new stability criterion was attributed to

field would then be turned off leaving the ScHimger the different collision properties of bare and dressed conden-

picture and rotating frame state vectors relatedsate mixtures, and is discussed in the appendixes. The

by |\If(T))=U(T)\7V(T)|w(T)>=U(T)exp[iéx(an/ﬁ)]w(ﬂ) present proposal is _thus Iir_nited to atoms W?th_ relatively
=U(T)|¢(T)>. Since the mean spin in the rotating frame is Strong interstate collisions, just as R¢L5] is limited to

oriented along the-z axis for all times[1], and U(T) is those with strong intrastate collisions.
nothing more than a rotation ab,T about thez axis, the
mean spin as measured in the laboratory will be oriented
along the—z direction. The same Schilmger state vector
|W(T)) may also be obtained by a variation of Ramsey spec-

troscopy, by employing two resonant pulses, each of time VW& Wwish to thank M. Chapman, C. Raman, and A.
durationT/2, and with Rabi frequencies and — «, respec- Kuzmich for useful discussions, and the NSF, Grant No.

tively. The net effect is that\?V(T)=expGKTS(/2h)exp 9803180, and NSA, under Grant No. ARO DAA55-98-1-

N . 0370, for support. One of udl.A.B.K.) would also like to
(—ikTS/2h)=1. We have already shown that the state vecthank the Aspen Center for its hospitality.

tor in the rotating frame(T)), is squeezed independent of
K, sinceH 4y 4 is independent of.
Once the final state has been produced, the standard de- APPENDIX A: STABILITY OF THE
viation of the spin along an arbitrary axis perpendicular to BREATHE-TOGETHER MODE
the mean spin vector is measurpdl15]. To do this, the
system should be rotated about thexis by an appropriate We begin by rewriting the rotating wave Hamiltonian
amount, and then &/2 rotation about thé/ axis should be Hpgyain the form
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. . ap o — a . 1
HRWA:K+”_Ea’de3r POV (1) A(Na,Nb;t)=—§M:2a’b NigMJ dr|¢,(r,H)]*
1 3, ot ot y iy 2 2
t3 3 0] LOUOROBE NN [ dr (6.0 0
R . A . (AB6)
+gabf GGG AGE (A1)

Using the fact that the variance of occupied states is much

where, for ease of our subsequent comparison, we use tA%ss than- the meam_Na£< Na,b,_one can approximate
notation |x+)=|a) and [x—)=|b) to label the single- Pu(Na:Nb:r,t)—=¢,(Na,Np:ir,t)=¢,(r1). _
particle dressed states. The effective scattering coefficients The conditions for the existence of a common spatial
are given by mode for the two dressed statég(r,t) = ¢y (r,t)=o(r,t),
requires that the total effective potentials are edjlél, i.e.,

1
gaa:gbb:z(g+++g__+29+_)’ NaGaat NpGab=Nppp T+ NaGap=N0ers, (A7)
1 which implies that
Oab=5(0+++9--). (A2) _
% _ Jaa— Yab (A8)
We can now adapt the results of Sinatra and C4ddifj, to Np 9bb~Gap

identify an effective single mode or “breathe-together” so-
lution. These authors considered the collisional interaction ofor this result to have physical solutions, it is necessary that
a pair of condensates with a Hamiltonian identical in form toeither
Eq. (Al), but with a and b corresponding to bare atomic
single-particle states, rather than dressed states. We briefly Jab<Jaa 9bb (A9)
summarize the relevant theory in order to make the argu-
ments clear. or
By preparing an initial condensate in a self-consistent
mode ¢o(r) and in the bare atomic state—)=(|a) 9ab>0922:9bb - (A10)
—i|b))/\2=c,a)+cy|b) [26], we have the corresponding
N particle initial state in the rotating frame The linearized stability analysis of R€f16] indicates that
the former case is stable, whereas the latter is unstable to a

N N! N NAN demixing instability of the condensates. We note that in our
|¢(0)>:N2:O mcaacb “INa:¢0.Np:dbo),  casega,—gy,=g, SO that the average particle number in
: (A3) each dressed state is eqdM|=N,. The condition for sta-

bility of the common mod&,,<0a.a.9pp reduces to
whereN, andN,, are the occupancies of the dressed states

andb. The time evolution of this state accordingH,y  is 1
given by 5(9+r++0-)<g. -, (A11)
N N! N NAN. _ which is opposite to the stability criterion in the entangle-
[y(t))= NZO NT(N—N_)1Ca b ag” ANa Mo ment scheme of Sorense al. [15).
a

Assuming that two bare atomic states which satisfy the
X |Na:ba(Na,Npit),Npy:dp(Na,Npit)), (A4)  stability criterion have been identified, then the breathe-
together solution igh,(r,t) = ¢p(r,t)=é(r,t), whereo sat-
where ¢,(r,0)= ¢, (r,0)= o(r) for all N,. The dressed isfies the equation
state mode functiong, ,(N,,Np ;1 t)= ¢, p(r,t) satisfy the

coupled Gross-Pitaevskii equations, 2

g— 1| K®_ _ S

E¢(f1t)—m —%V +V(r)+Nget d(r, 0[] &(r,1),

dpu(rt) 1 S ) (A12)
G| T amV VD 3 guN 4,

X ¢, (1), (A5)

with g, the effective scattering coefficient, given by

3 1
andA(N,,N,:t) is given by the equation Geri=g(g++ 9 ) 70+ (AL3)
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APPENDIX B: MEAN COLLISION ENERGY IN BARE |NJr ;¢ ;N_:¢_), with definite occupancies of the bare
AND DRESSED CONDENSATES atomic state$+) and|—),

A straightforward calculation shows that the mean colli- 1 N —1
sion energy in a pure Fock state,: ¢, ;Np: ¢p), with defi- E*,f,lpz— 2 Oy £ f d3r pi(r)+g+,
nite occupancies of the dressed std@sand|b), is given 2 =3 - Ny
by

Xf dr p(Np_(r). (B2)
Ehe=50 3 i [ o 20+ 50040 )
MF 2 //.=a,b N’u p’u, 2 ++ - =

Comparison of these results indicates that the interstate scat-
5 tering lengthg, _ plays a completely different role for a
X f d°r pa(r)pp(r), (B1)  mixture of bare condensates and a mixture of dressed con-
densates. In the former it contributes to the interaction en-
Where;JM(r)ENM|<¢>#(r)|2 is the spatial density of dressed ergy in proportion to the overlap of the condensate density
state u=a,b. The last result may be contrasted with the profiles, whereas for the latter it influences only the self-
mean-field energy of two condensates in a Fock stat@nteraction energy of each dressed state component.
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