
PHYSICAL REVIEW A 66, 043621 ~2002!
Spin squeezing in a driven Bose-Einstein condensate

Stewart D. Jenkins* and T. A. Brian Kennedy†

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
~Received 1 August 2002; published 30 October 2002!

We consider a collection of atoms prepared in a Bose-Einstein condensate which interact via two-body
elastic collisions. A resonant driving field couples two internal states which together constitute an effective spin
1/2 system for each atom, and from which a total spin for the gas can be defined. It is shown that in the limit
of strong driving, the system dynamics reduces to a mechanism for spin squeezing similar to that of a recent
proposal for undriven condensates. However, we find that the conditions for spatial stability in our driven
system are complementary to those of the undriven system. Reasons for this difference, associated with the
physics of dressed atom collisions, are discussed along with conditions for preparing and observing the spin
squeezed state.
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I. INTRODUCTION

A system ofN@1 distinguishable two state quantum sy
tems has a Hilbert space of dimension 2N. Is it practically
possible to prepare arbitrary quantum states, by accessin
recesses of this large space? The preparation of such
sively entangled states is a major focus of current researc
quantum information physics. By definition, entangled sta
cannot be represented as product states, or statistical
tures of product states.

In recent years, a manifestation of a particular form
massive entanglement known as spin squeezing@1# has been
of great interest. Such correlated atomic wave functio
could be used to enhance the accuracy of population m
surements in spectroscopy and also have the potential t
used in atomic clocks@2–4#. Several methods for producin
spin squeezed states have been proposed in the last d
@3,5–11#. Experimental realizations of these states have b
made by mapping the quantum state of squeezed light on
gas of cold uncondensed atoms@12#, as well as through
quantum nondemolition measurements@13,14#.

In a recent paper, Sorensenet al. @15# have suggested tha
an entangled wave function for the internal state of a sys
of N atoms can be produced by means of low-energy ela
collisions within a vapor prepared in a special initial sta
The initial state is a zero-temperature Bose-Einstein cond
sate~BEC!. A short controlled electromagnetic pulse is a
plied and, at the atomic level, coherently mixes two sing
particle atomic states, labeled byu1& and u2&, which form
an effective spin 1/2 system. The sum ofN such atomic spins
defines a resultantN-particle spin angular momentum for th
gas. The effect of low-energys-wave atomic collisions is to
squeeze, hence entangle, the associatedN-particle spin wave
function of the condensate mixture@1#. The special initial
condition, and the stability of a common spatial mode
condensates in either of the single-particle atomic sta
leads to a squeezing which scales withN. This very attractive
feature, by contrast with some of the earlier proposals, me
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that entanglement could be enhanced just by increasing
initial condensate particle number.

The stability of the common spatial mode, the so-cal
‘‘breathe-together’’ mode is a nontrivial issue. A detailed s
bility analysis was reported in Ref.@16#, and, in the Thomas-
Fermi limit, boils down to a condition on the relativ
strength of interstate and intrastates-wave atomic collisions,
i.e., g12,g11 ,g22 . Heregmn is proportional to the scat
tering length for the collision of atoms in the stationary sta
um& and un&, respectively, and is defined precisely later.
short, for a pair of overlapping condensates, interacting o
via elastic collisions, a common spatial mode is stable
atomic states which have relatively weak interstate co
sions.

In this paper we present a scenario for squeezing
N-particle spin wave function in the opposite limitg12

.(g111g22)/2, when the interstate collisions are rel
tively strong. The procedure is similar to that of Ref.@15#,
and again relies on the existence of a common brea
together spatial mode, except that the initial BEC is stron
driven by an external field, so that the atomic single-parti
states execute resonant Rabi oscillations at a frequency
exceeds other characteristic time scales of the problem.
type of driving between hyperfine ground states was or
nally demonstrated experimentally in a rubidium BEC
Matthewset al. @17#, and has since been used in the creat
of vortices@18,19#. Spin squeezing is again caused by elas
atomic collisions between condensate atoms which unde
rapid Rabi oscillations, i.e., collisions of dressed atoms. T
reasons for the complementary stability criteria are, as w
be discussed, a result of the different collision properties
bare atom and dressed atom condensates@20#.

The remainder of this paper is organized as follows.
Sec. II we present the basic theoretical model. An analysi
the model follows in Sec. III, where the limit of large Ra
frequency is used to simplify the equations. This section a
includes a discussion of the breathe-together mode and
stability, an analytical calculation of the spin squeezing, a
a comparison with the physics of Ref.@15#. Following our
conclusion in Sec. IV, two appendixes provide further deta
on the breathe-together mode stability~Appendix A! and the
©2002 The American Physical Society21-1
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collisional interaction energy of bare and dressed cond
sates~Appendix B!.

II. THEORETICAL MODEL

We consider an ultracold BEC atomic gas with tw
single-particle states labeled byu1& and u2&, which form a
closed two state system. In an alkali atom these states sh
be hyperfine states belonging to the ground electronic t
2S1/2, although their total angular momentaF, and hence
their energy, may be different. The possibility of collisio
induced couplings to other degenerate hyperfine states m
that the two state system will not, in general, be closed. T
problem may be circumvented if one chooses the two in
nal states with differentF values such that both states ha
the minimum~or maximum! possible values forMF in their
respective manifolds. Doing this will forbid spin-exchan
collisions between the two states, thus forming a closed t
state system. Alternatively, if this choice cannot be made,
unwanted degenerate states may be coupled via an off r
nant laser field to higher energy levels, thereby raising
energy of the unwanted levels through the ac Stark shift,
making spin-exchange collisions energetically unfavora
@15#. It should be noted that with the former option, it
necessary to use an optical trap@21# to confine the gas; sinc
these states generally have opposite magnetic momen
would not be possible to simultaneously trap them magn
cally. By assuming that a careful choice of the states
been made, we will exclude from our model the influence
other hyperfine states. The role of atomic losses in degra
the squeezing has been discussed in Ref.@15#, and we expect
similar qualitative features with the current scheme.

BEC atoms in the statesu1& and u2& suffer low-energy
elastic collisions, while a resonant external electromagn
field induces transitions between them. The Hamiltonian
the N-particle system may be written

Ĥ~ t !5K̂1V̂ext1v0Ŝz1ÛC1ĤAF~ t !, ~1!

whereK̂ is the kinetic energy,V̂ext is the external trapping
potential, ÛC is the collisional interaction energy, an
ĤAF(t) is the interaction between the atomic states and
external electromagnetic field. These operators are defi
by

K̂52 (
m51,2

E d3r ĉm
† ~r !

\2¹2

2m
ĉm~r !, ~2!

V̂ext5E d3r ĉ1
† ~r !V1~r !ĉ1~r !

1E d3r ĉ2
† ~r !V2~r !ĉ2~r !, ~3!

ĤAF~ t !52
\

2 S E d3r ĉ1
† ~r !k~r !e2 if(r )2 ivLt

3ĉ2~r !1H.c.D , ~4!
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whereĉm(r ) andĉm
† (r ) are boson field annihilation and cre

ation operators for the bare atomic states,k(r ) andf(r ) are
the effective Rabi frequency and phase of the external d
ing field, respectively, andV6(r ) are the external trapping
potentials for the atomic statesu6&. For transitions between
two hyperfine states separated by a microwave frequency
wavelength can be assumed large with respect to the va
and we can take the Rabi frequency and phase to be con
throughout the sample, i.e.,f(r )50 andk(r )5k. The tran-
sition frequency between the states isv0 and the spin opera
tor Ŝz is defined in terms of the Pauli spin matrixsz ,

Ŝz5
\

2 (
m,n51,2

E d3r ĉm
† ~r !~sz!mnĉn~r !. ~5!

We similarly defineŜx andŜy , by replacingsz with sx and
sy , respectively.

The two-body collisional interaction potential may b
written

ÛC5
1

2 (
m,n56

gmnE d3r ĉm
† ~r !ĉn

†~r !ĉn~r !ĉm~r !,

where the collision coefficientsgmn54p2\2amn /m with amn

the scattering length between atoms in the internal statem
and n. Note that aside from the atomic energy and Ra
coupling terms in the Hamiltonian, this is exactly the sam
Hamiltonian discussed by Sorensenet al. @15#.

III. ANALYSIS OF THE MODEL

A. Limit of large Rabi frequency

We consider the limit that the Rabi frequencyk is the
largest frequency in the problem. The analysis then proce
by means of two unitary transformations@22#. The first is
generated byÛ(t)5exp(2ivLŜz/\), and yields a time depen
dent Schrodinger equation with a time independent Ham
tonian Ĥ9. The latter is identical to the HamiltonianĤ(t)
with the substitutionsĤAF(t)→ĤAF(0)52kŜx and v0
→D5v02vL . Assuming atomic resonance,D50, we may
write Ĥ9 as

Ĥ95K̂1V̂ext1ÛC2kŜx . ~6!

A second unitary transformation is applied withŴ(t)
5exp(ikŜx /\), which yields the Schro¨dinger equation
i\(]/]t)uc(t)&5Ĥ8(t)uc(t)& with Ĥ8(t)5K̂1Ŵ†(t)(V̂ext

1ÛC)Ŵ(t). Here, uc(t)& is the state vector in the rotatin
frame, and is related to the Schro¨dinger picture state vecto
in the laboratory frame uC(t)&, by uC(t)&
5Û(t)Ŵ(t)uc(t)&.

Transformed to the rotating frame the one-body poten
becomes
1-2
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Ŵ†V̂extŴ5 (
m51,2

E d3r ĉm
† ~r !V̄~r !ĉm~r !

1cosktE d3r @ĉ1
† ~r !Vd~r !ĉ1~r !

2ĉ2
† ~r !Vd~r !ĉ2~r !#

1 i sinktE d3r @ĉ1
† ~r !Vd~r !ĉ2~r !

2ĉ2
† ~r !Vd~r !ĉ1~r !#, ~7!

where V̄(r )5 1
2 @V1(r )1V2(r )# and Vd(r )5 1

2 @V1(r )
2V2(r )#. This expression is formally in agreement with th
mean-field theory of Williamset al. @22#. The two-body in-
teraction potentials transform as

Ŵ†ÛCŴ5ḡE d3r T̂0
(0)~r !1g8E d3r @ T̂z

(1)~r !coskt

1T̂y
(1)~r !sinkt#2gE d3r @e2iktT̂22

(2)~r !

1e22iktT̂2
(2)~r !#

1gE d3r ĉx1
† ~r !ĉx2

† ~r !ĉx2~r !ĉx1~r !, ~8!

whereĉx1
† (r ) @ĉx2

† (r )# are bosonic field creation operato
for a spin one-half oriented in the positive@negative# x di-
rection, i.e., ĉx1

† (r )5@ĉ1
† (r )1ĉ2

† (r )#/A2 and ĉx2
† (r )5

2 i @ĉ1
† (r )2ĉ2

† (r )#/A2 @26#. Alternatively, it is useful to re-
gard these as field operators for dressed atomic sin
particle states, arising as a result of the Rabi coupling of
bare atom to the external electromagnetic field@20#.

The collision coupling coefficients are given by

ḡ5
1

4 (
m,n51,2

gmn , ~9!

g85
1

4
~g112g22!, ~10!

g5
1

4
~g111g2222g12!. ~11!

We have also defined the collision kernelsT̂q
(k)(r ) as fol-

lows:

T̂0
(0)~r !5 (

m,n56
ĉm

† ~r !ĉn
†~r !ĉn~r !ĉm~r !, ~12!

T̂61
(1)~r !57

1

A2
@ĉx1

† ~r !ĉx6
† ~r !ĉx7~r !ĉx1~r !

1ĉx2
† ~r !ĉx6

† ~r !ĉx7~r !ĉx2~r !#, ~13!
04362
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T̂62
(2)5

1

2
ĉx6

† ~r !ĉx6
† ~r !ĉx7~r !ĉx7~r !, ~14!

and7A2T̂61
(1)(r )5T̂y

(1)(r )6 i T̂z
(1)(r ).

The notationT̂q
(k) indicates theq component of a rankk

spherical tensor with respect to the effective spin, as defi
by the commutation relations

@Ŝx ,T̂q
(k)~r !#5\qT̂q

(k)~r !, ~15!

@Ŝy6 iŜz ,T̂q
(k)~r !#5\A~k7q!~k6q11!T̂q61

(k) ~r !. ~16!

Rewriting the collision interaction in terms of these spheri
tensors is useful for the purpose of calculating the unit
transformation, since it follows from their definition that

Ŵ†~ t !T̂q
(k)~r !Ŵ~ t !5e2 iqktT̂q

(k)~r !. ~17!

The one collision kernel that has not been explicitly defin
in terms of tensors, is a linear combination of tensors of ra
0 and 2, each with componentq50. As a consequence, it i
unaffected by the second unitary transformation, and thus
leave it in the explicit form given.

We are interested in the limit of large Rabi frequen
compared to any other characteristic frequency. In this li
we make a form of rotating wave approximation and cy
average the rotating frame HamiltonianĤ8(t) over the Rabi
period to get

ĤRWA8 5K̂1 (
m56

E d3r ĉm
† ~r !V̄~r !ĉm~r !

1
1

2
ḡ (

m,n56
E d3r ĉm

† ~r !ĉn
†~r !ĉn~r !ĉm~r !

1gE d3r ĉx1
† ~r !ĉx2

† ~r !ĉx2~r !ĉx1~r !, ~18!

in which all collision tensors withqÞ0 have disappeared. In
the limit of strong driving the vapor experiences only t
average external potentialV̄(r ) of the two strongly coupled
single-particle states@22#. In a far off-resonance optical tra
@21#, unlike a magnetic trap, it is reasonable to assume
the latter potentials are identical, and thus equal toV̄(r ).

B. Single-mode approximation: the breathe-together mode

In the rotating frame the HamiltonianHRWA8 is indepen-
dent of the driving field. This enables us to make use of
analysis of Ref.@16#, and assume the existence of a sta
single common ‘‘breathe-together’’ modef̄(r ,t). Perhaps
surprisingly, the condition for stability of this mode,g12

.(g111g22)/2, is opposite to that required for its stabilit
in the BEC squeezing scheme of Ref.@15#. In the latter
scheme squeezing results from the collisional interaction
two bare atomic condensates without any Rabi coupling.

A detailed discussion of the stability condition is given
Appendix A. A qualitative argument based on a calculati
1-3
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of the mean interaction energy of two condensates in wh
the macroscopically occupied single-particle states are,
spectively, bare atomic statesEint

b and dressed atomic state
Eint

d , is revealing~Appendix B!. These energies are given b

Eint
b 5g12E d3r r1~r !r2~r !, ~19!

where r6(r )[N6uf6(r )u2 are the spatial densities of th
bare states, and

Eint
d 5

1

2
~g111g22!E d3r rx1~r !rx2~r !, ~20!

whererx6(r )[Nx6ufx6(r )u2 are the spatial densities of th
dressed states. The interaction energy is proportional to
overlap integral of the corresponding condensate spatial
sity profiles, with the expected prefactorg12 in the bare
atom case, but with a prefactor (g111g22)/2 for dressed
condensates. Indeed the coefficientg12 only contributes to
the self-interaction energy of dressed condensates. Thes
usual features of elastic collisions in dressed condensate
reflected in the different stability criterion for the breath
together mode.

Assuming the atomic states are chosen such that the
bility condition for the breathe-together mode is satisfied,
may define annihilation operators for this mode
@20,23,24#

âx6~ t !5E d3r f̄* ~r ,t !ĉx6~r !, ~21!

with corresponding definitions for creation operators, wh
the number operatorâx6

† (t)âx6(t)5âx6
† âx6 is time inde-

pendent.
Hence, inĤRWA8 we replace the field operatorsĉx1(r )

→f̄(r ,t)âx1(t), ĉx2(r )→f̄(r ,t)âx2(t) to give

ĤRWA8 →NE~ t !1\V~ t !âx1
† âx2

† âx2âx1

5NE~ t !2\V~ t !S Ŝx
2

\2
2

1

4
N2D , ~22!

where

E5E d3r f̄* ~r ,t !~K1V̄!f̄~r ,t !

1
1

2
ḡS E d3r uf̄~r ,t !u4D ~N21!

and

\V~ t !5gS E d3r uf̄~r ,t !u4D .

Thus in the breathe-together mode approximationHRWA8 re-
duces to the one-axis twist Hamiltonian originally discuss
in the context of spin squeezing by Kitagawa and Ueda@1#.
The nomenclature arises sinceŜx generates a rotation abou
the x axis, andŜx

2 generates a rotation in which the eige

states ofŜx are rotated in opposite directions.
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The degree of spin squeezing that results from time e
lution under this Hamiltonian can be quantified by the p
rameter j25 inf$N(DŜ')2/u^Ŝ&u2:Ŝ'5Ŝ•n, wheren'^Ŝ&%.
This definition for the degree of entanglement is consist
with those discussed by Winelandet al. @3,4# and Sorensen
et al. @15#. It has been shown that ifj2,1, then the conden-
sate exhibits massive entanglement and spin squeezing@15#.
It can also be demonstrated that we attain maximal squee
when our initial state vector is a coherent spin state~as de-
fined by Kitagawa and Ueda@1#! whose mean spin vector i
perpendicular to the axis about which the one axis twist
occurs, in this case thex axis. A convenient realization of this
initial condition would be a zero-temperature BEC with a
atoms in the internal state,u2&.

With the coherent state initial condition, the squeezi
parameter as a function of time can be computed analytic
@1#, and is given by

j2~ t !5

H F11
1

4
~N21!A~ t !G2

1

4
~N21!AA~ t !21B~ t !2J

cos2N22S E
0

t

V~ t8!dt8D ,

~23!

where A(t)512cosN22@2*0
t V(t8)dt8#, and B(t)5

24 sin@*0
t V(t8)dt8#cosN22@*0

t V(t8)dt8# ~Fig. 1!. For largeN,
it has been shown that the minimum attainable squeez
parameter scales asj2;N22/3 @1#.

For spin squeezing to occur the collision coefficientg
must be nonzero. Furthermore, for our approximations to
valid, the characteristic frequencyV must be small com-
pared to the Rabi frequencyk. To illustrate the time scales
we give some estimates of the characteristic parameters
assume, for simplicity, that the vapor is trapped in a sph
cally symmetric potential V(r )5V2(r )5V1(r )
5 1

2 mv trap
2 r 2. The initial wave functionf0(r ) can be deter-

mined using the Thomas-Fermi approximation to the ti

FIG. 1. The squeezing parameterj2 as a function of time,t
5*0

t V(t8)dt8, for the evolution of the system under the Ham

tonian 2V(t)Ŝx
2/\. The initial state has all of the particles in th

single-particle stateu2&, andN5105.
1-4



nc

th
a
io
o
ta

b

-

y
ch
st
lly

d in
m
e
he
stic
ns
tom

SPIN SQUEEZING IN A DRIVEN BOSE-EINSTEIN . . . PHYSICAL REVIEW A 66, 043621 ~2002!
independent Gross-Pitaevski equation@25#. Using this proce-
dure we numerically determine the characteristic freque
V to be

V@s21#51.431024m~a111a2222a12!

3~v trap@s21# !6/5S ainit

N D 3/5

, ~24!

where the scattering lengths are given in Bohr radii, and
atomic massm is measured in atomic mass units. The sc
tering lengthainit corresponds to the initial condensate, pr
to the application of the external electromagnetic field. F
example, if the system condenses in the single-particle s
u2&, thenainit5a22 .

We further note, using the results of Ref.@1#, that the time
taken to attain the minimum squeezing parameter is given

tmin@s#'
3.73104

ainit
3/5

m21/5~v trap@s21# !26/5N21/15

~a111a2222a12!
, ~25!
,

e
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s
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e
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c
d
ce

t

04362
y

e
t-
r
r
te

y

which for v trap/2p'1 kHz, is typically a fraction of a sec
ond, virtually independent ofN for practical purposes.

C. Discussion of BEC spin squeezing scenarios

In the scheme of Ref.@15#, spin squeezing is produced b
coherent elastic collisions in a BEC mixture of atoms whi
individually constitute effective spin one-half bosons. A fa
p/2 pulse is applied to the condensate with all atoms initia
prepared in the internal stateu2& ~for ease of comparison we
will use as close a notation as is possible to that employe
the rest of our paper!. The p/2 pulse produces a bare ato
condensate mixture with all of the ‘‘spins’’ oriented in th
positivex direction. Elastic collisions then act to squeeze t
initial coherent spin state. By contrast, in our scheme, ela
collisions take place during the resonant Rabi oscillatio
induced by a strong applied field, squeezing the dressed a
condensate mixture.

The Hamiltonian of Ref.@15# is given in our notation by
Ĥsor[Ĥ(t)2ĤAF(t) ~with v0[0),
Ĥsor5K̂1V̂1
1

2 (
m

gmmE d3r ĉm
† ~r !ĉm

† ~r !ĉm~r !ĉm~r !1g12E d3r ĉ1
† ~r !ĉ2

† ~r !ĉ2~r !ĉ1~r !

5K̂1V̂1
1

4
~g111g22!(

m,n
E d3r ĉm

† ~r !ĉn
†~r !ĉn~r !ĉm1

1

4
~g112g22!

3E d3r ĉ1
† ~r !ĉ1

† ~r !ĉ1~r !ĉ1~r !2
1

4
~g112g22!E d3r ĉ2

† ~r !ĉ2
† ~r !ĉ2~r !ĉ2~r !

22gE d3r ĉ1
† ~r !ĉ2

† ~r !ĉ2~r !ĉ1~r !. ~26!
er-
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For g115g22 , which is satisfied in the case of sodium
Ĥsor reduces to a form very similar toĤRWA8 in Eq. ~18!. The

last term inĤsor , causes spin squeezing by means of az axis
twist. The operatorŜz is diagonal for states with a definit
occupancy of the single-particle statesu6&. With ĤRWA8 , the
wave function in the rotating frame is squeezed by anx-axis
twist; Ŝx is diagonal for states with definite occupancy of t
single-particle dressed statesux6&. However, in both case
squeezing relies on an effective single-mode approximat
As discussed in the last subsection, and in more deta
Appendix A, the stability criteria for the existence of th
breathe-together mode on the intraparticle and interpar
scattering lengths are opposite inequalities in the two s
narios, i.e., g12,g11 ,g22 for bare condensates, an
g12.(g111g22)/2 for dressed condensates. The two s
narios are thus complementary rather than alternatives. In
single-mode approximation,Ĥsor contains thez-axis twist
operator 2VŜz

2/\, while ĤRWA8 contains thex-axis twist
n.
in

le
e-

-
he

2VŜx
2/\. The factor two difference arises because we av

age over fast Rabi oscillations in the derivation ofĤRWA8 . In
Ref. @15#, factors such as multiple modes and atomic loss
which reduce or destroy squeezing are analyzed. We will
discuss these further, as we expect their effect to be qua
tively similar here.

Finally we discuss the spin dynamics from the viewpo
of the laboratory frame. In Ref.@15#, squeezing occurs as
result of free evolution of a condensate in which the const
ent atomic ‘‘spins’’ are all oriented in the positivex direction.
As the condensate evolves, the orientation of the mean
vector will not change at all ifg115g22 and the motional
degrees of freedom are neglected. Squeezing could be
tected in a component transverse to the nonzero average

component̂ C(t)uŜxuC(t)&Þ0 . In our approach, the exter
nal field drives rapid Rabi oscillations in the populations
the u1& and u2& states. If we examine the evolution of th
state vector in the rotating frameuc(t)&, we see that the
1-5
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mean spin vector maintains the same orientation, along
negative z axis, so that ^c(t)uŜzuc(t)&,0 and

^c(t)uŜx,yuc(t)&50, although its magnitude shrinks wit
time. In the laboratory frame, relevant spin observab
e
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should be computed with the lab frame state vectoruC(t)&
5Û(t)Ŵ(t)uc(t)& and the similarly transformed spin oper
tor ŜR(t)5U(t)W(t)ŜW†(t)U†(t). The latter can be written
explicitly as
S ŜxR~ t !

ŜyR~ t !

ŜzR~ t !
D 5S 1 0 0

0 coskt sinkt

0 2sinkt coskt
D S cosvLt sinvLt 0

2sinvLt cosvLt 0

0 0 1
D S Ŝx

Ŝy

Ŝz

D . ~27!
-
ing

n a
. In
cy
ns

ans-
axis

is

on
ter-
lu-

to
en-
The
ly

A.
o.

1-

n

In terms of the laboratory frame Schro¨dinger picture state
vector uC(t)&, we have, for example,^c(t)uŜuc(t)&
5^C(t)uŜR(t)uC(t)&.

The system is subject to two rotations: one about thz
axis at a frequencyvL , and another rotation about the neg
tive x axis at frequencyk. In the lab frame, one would se
the mean spin vector rotating about the negativex axis at
frequencyk; this behavior is then superimposed on a ro
tion about thez axis at frequencyvL . The spin squeezing
manifests itself as a modulation on the rotational motion
the mean spin, and occurs along axes that are perpendi
to this vector.

The spin squeezing could, in principle, be observed us
a method similar to that described by Winelandet al. @4#. For
the purpose of measuring the spin components orthogon
the mean spin, it is necessary to have the mean spin orie
in a known direction, say along thez axis. Since the direction
of the mean spin vector oscillates rapidly, making such
measurement may be difficult at an arbitrary time. This o
stacle may be overcome in the following way. Near the ti
when maximum squeezing is attained,tmin , a timeT is cho-
sen such thatkT52np for some integern. The coupling
field would then be turned off leaving the Schro¨dinger
picture and rotating frame state vectors rela
by uC(T)&5Û(T)Ŵ(T)uc(T)&5Û(T)exp@iŜx(2np/\)#uc(T)&
5Û(T)uc(T)&. Since the mean spin in the rotating frame
oriented along the2z axis for all times@1#, and Û(T) is
nothing more than a rotation ofv0T about thez axis, the
mean spin as measured in the laboratory will be orien
along the2z direction. The same Schro¨dinger state vector
uC(T)& may also be obtained by a variation of Ramsey sp
troscopy, by employing two resonant pulses, each of t
durationT/2, and with Rabi frequenciesk and2k, respec-
tively. The net effect is thatŴ(T)5exp(ikTŜx/2\)exp
(2ikTŜx/2\)51̂. We have already shown that the state ve
tor in the rotating frame,uc(T)&, is squeezed independent
k, sinceĤRWA8 is independent ofk.

Once the final state has been produced, the standard
viation of the spin along an arbitrary axis perpendicular
the mean spin vector is measured@4,15#. To do this, the
system should be rotated about theẑ axis by an appropriate
amount, and then ap/2 rotation about theŷ axis should be
-
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to
ted

a
-
e

d

d
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e
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applied. The population of either theu1& or u2& state is then
measured, thereby also measuringŜz . A sub-shot-noise mea
surement of the projection noise indicates spin squeez
@3,4#.

IV. CONCLUSION

We have considered the possibility of spin squeezing i
resonantly driven mixture of Bose-Einstein condensates
the limit that the Rabi frequency is the largest frequen
scale in the problem, we have shown that elastic collisio
squeeze quantum fluctuations of the spin component tr
verse to the average spin vector, according to the single-
twist mechanism of Ref.@1#.

We have further shown that the proposed scheme
complementary to the proposal of Sorensenet al. @15# for
spin squeezing of a BEC. While both scenarios depend
the existence of a mutually stable spatial mode for the in
acting condensates, the stability criteria are mutually exc
sive: g12,g11 ,g22 for Ref. @15#, but g12.(g11

1g22)/2 here. The new stability criterion was attributed
the different collision properties of bare and dressed cond
sate mixtures, and is discussed in the appendixes.
present proposal is thus limited to atoms with relative
strong interstate collisions, just as Ref.@15# is limited to
those with strong intrastate collisions.
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APPENDIX A: STABILITY OF THE
BREATHE-TOGETHER MODE

We begin by rewriting the rotating wave Hamiltonia
HRWA8 in the form
1-6
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ĤRWA8 5K̂1 (
m5a,b

E d3r ĉm
† ~r !V̄~r !ĉm~r !

1
1

2 (
m5a,b

gmmE d3r ĉm
† ~r !ĉm

† ~r !ĉm~r !ĉm~r !

1gabE d3r ĉa
†~r !ĉb

†~r !ĉb~r !ĉa~r !, ~A1!

where, for ease of our subsequent comparison, we use
notation ux1&5ua& and ux2&5ub& to label the single-
particle dressed states. The effective scattering coeffici
are given by

gaa5gbb5
1

4
~g111g2212g12!,

gab5
1

2
~g111g22!. ~A2!

We can now adapt the results of Sinatra and Castin@16#, to
identify an effective single mode or ‘‘breathe-together’’ s
lution. These authors considered the collisional interaction
a pair of condensates with a Hamiltonian identical in form
Eq. ~A1!, but with a and b corresponding to bare atomi
single-particle states, rather than dressed states. We b
summarize the relevant theory in order to make the ar
ments clear.

By preparing an initial condensate in a self-consist
mode f0(r ) and in the bare atomic stateu2&5(ua&
2 i ub&)/A2[caua&1cbub& @26#, we have the correspondin
N particle initial state in the rotating frame

uc~0!&5 (
Na50

N A N!

Na! ~N2Na! !
ca

Nacb
N2NauNa :f0 ,Nb :f0&,

~A3!

whereNa andNb are the occupancies of the dressed statea
andb. The time evolution of this state according toHRWA8 is
given by

uc~ t !&5 (
Na50

N A N!

Na! ~N2Na!!
ca

Nacb
N2Nae2 iA(Na ,Nb ;t)

3uNa :fa~Na ,Nb ;t !,Nb :fb~Na ,Nb ;t !&, ~A4!

where fa(r,0)5fb(r ,0)5f0(r ) for all Na . The dressed
state mode functionsfa,b(Na ,Nb ;r ,t)[fa,b(r ,t) satisfy the
coupled Gross-Pitaevskii equations,

]fm~r,t !

]t
5

1

i\ S 2
\2

2m
¹21V̄~r !1 (

n5a,b
gmnNnufn~r,t !u2D

3fm~r,t !, ~A5!

andA(Na ,Nb ;t) is given by the equation
04362
he

ts

f
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t

Ȧ~Na ,Nb ;t !52
1

2 (
m5a,b

Nm
2 gmmE dr ufm~r ,t !u4

2NaNbE dr ufa~r ,t !u2ufb~r ,t !u2.

~A6!

Using the fact that the variance of occupied states is m
less than the meanDNa,b!N̄a,b , one can approximate
fm(Na ,Nb ;r ,t)→fm(N̄a ,N̄b ;r ,t)[f̄m(r,t).

The conditions for the existence of a common spa
mode for the two dressed statesf̄a(r ,t)5f̄b(r ,t)[f̄(r ,t),
requires that the total effective potentials are equal@16#, i.e.,

N̄agaa1N̄bgab5N̄bgbb1N̄agab[Nge f f , ~A7!

which implies that

N̄a

N̄b

5
gaa2gab

gbb2gab
. ~A8!

For this result to have physical solutions, it is necessary
either

gab,gaa ,gbb ~A9!

or

gab.gaa ,gbb . ~A10!

The linearized stability analysis of Ref.@16# indicates that
the former case is stable, whereas the latter is unstable
demixing instability of the condensates. We note that in o
casegaa5gbb5ḡ, so that the average particle number
each dressed state is equalN̄a5N̄b . The condition for sta-
bility of the common modegab,gaa ,gbb reduces to

1

2
~g111g22!,g12 , ~A11!

which is opposite to the stability criterion in the entang
ment scheme of Sorensonet al. @15#.

Assuming that two bare atomic states which satisfy
stability criterion have been identified, then the breath
together solution isf̄a(r ,t)5f̄b(r ,t)[f̄(r ,t), wheref̄ sat-
isfies the equation

]

]t
f̄~r ,t !5

1

i\ S 2
\2

2m
¹21V̄~r !1Nge f fuf̄~r ,t !u2D f̄~r ,t !,

~A12!

with g, the effective scattering coefficient, given by

ge f f5
3

8
~g111g22!1

1

4
g12 . ~A13!
1-7
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APPENDIX B: MEAN COLLISION ENERGY IN BARE
AND DRESSED CONDENSATES

A straightforward calculation shows that the mean co
sion energy in a pure Fock stateuNa :fa ;Nb :fb&, with defi-
nite occupancies of the dressed statesua& and ub&, is given
by

EMF
d 5

1

2
ḡ (

m5a,b

Nm21

Nm
E d3r rm

2 ~r !1
1

2
~g111g22!

3E d3r ra~r !rb~r !, ~B1!

whererm(r )[Nmufm(r )u2 is the spatial density of dresse
state m5a,b. The last result may be contrasted with t
mean-field energy of two condensates in a Fock s
.J

n

.

p

e

nd

04362
-

te

uN1 :f1 ;N2 :f2&, with definite occupancies of the bar
atomic statesu1& and u2&,

EMF
b 5

1

2 (
m51,2

gmm

Nm21

Nm
E d3r rm

2 ~r !1g12

3E d3r r1~r !r2~r !. ~B2!

Comparison of these results indicates that the interstate s
tering lengthg12 plays a completely different role for a
mixture of bare condensates and a mixture of dressed
densates. In the former it contributes to the interaction
ergy in proportion to the overlap of the condensate den
profiles, whereas for the latter it influences only the se
interaction energy of each dressed state component.
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