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Theory of dark-state polariton collapses and revivals
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We investigate the dynamics of dark-state polaritons in an atomic ensemble with ground-state degeneracy. A
signal light pulse may be stored and retrieved from the atomic sample by adiabatic variation of the amplitude
of a control field. During the storage process, a magnetic field causes rotation of the atomic hyperfine coher-
ences, leading to collapses and revivals of the dark-state polariton number. These collapses and revivals should
be observable in measurements of the retrieved signal field, as a function of storage time and magnetic field

orientation.
DOI: 10.1103/PhysRevA.73.021803

A quantum memory element consisting of an ensemble of
atoms, with efficient coupling to a signal light field, repre-
sents a node in several quantum network architectures [ 1-4].
A dark-state polariton (DSP) is a collective excitation, with
light field and atomic spin wave parts, in which the relative
size of the light and matter contributions can be varied by
changing the amplitude of a control laser field [1]. In con-
nection with atomic memories, DSPs offer the possibility for
efficient transfer of information between a light carrier and
an atomic medium, with programmable storage of the exci-
tation in the atomic spin coherence. The storage and subse-
quent retrieval of the signal field component of the DSP can
be achieved by the extinction and subsequent reactivation of
the control field after a given storage time. Experimental
demonstrations of “stopped light” can be understood in terms
of the concept of DSP in just this way [5-7].

In a recent work the storage and retrieval of single pho-
tons using an atomic ensemble-based quantum memory was
reported, with a storage time conjectured to be limited by
inhomogeneous broadening in the ambient magnetic field
[8]. During the storage, the DSP consists entirely of atomic
spin wave, and in order to understand its dynamics in a mag-
netic field it is necessary to properly account for the atomic
level degeneracy and the signal and control field polariza-
tions. In particular for alkali atoms, which have nonzero
nuclear spin, the electronic levels have hyperfine structure. In
this case we must define a more general form of DSP field
operator than that of a simple lambda configuration, in which
the atomic spin wave part corresponds to a particular super-
position of hyperfine coherences of the ground electronic
level. These coherences are, in turn, intimately related to the
phenomenon of electromagnetically induced transparency
(EIT) [9-12].

We shall see that in a magnetic field the temporal evolu-
tion of the DSP reveals a series of collapses and revivals due
to the evolution of its spin wave component during the stor-
age phase of the process. We predict that the collapses and
revivals should be directly observable in measurements of
the retrieved signal field as a function of storage time.

We develop the theory of EIT in a degenerate atomic me-
dium with ground levels g and g’, and excited level e, which
have energies fiw,=0, fiw,/, and fw,, respectively (Fig. 1).
The Zeeman states of level g are written |g,m>, where
-F,<m=<VF,; similar definitions hold for the other levels.
All N atoms are assumed to be initially prepared in level g
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without polarization, i.e., the density matrix of atom u is
pu=2,p|g.m),(g.m| where we write p=1/(2F,+1). The
density of atoms in the sample is assumed to be constant.
The atoms experience a uniform magnetic field B oriented at
an angle 6 with respect to the light propagation z axis.

The magnetic field-atom interaction \>B= /LBBEnggrqegsl}s,

where f?s is the projection of the atomic angular momentum
operator onto level s and g, is the corresponding Landé g
factor. The magnetic field induces a Larmor spin precession
that is primarily important in the storage phase, when the
signal field amplitude is zero. In a pure three state system, a
magnetic field has been used to manipulate the phase of a
stored light pulse [7]. We note that in prior work collapses
and revivals of single-atom Zeeman coherences have been
observed [13,14].

We proceed by generalizing the perturbative treatment of
Fleischhauer and Lukin [15] to include the degenerate
atomic level scheme and the presence of a magnetic field. We
assume the number of photons contained in the signal pulse
is much less than the number of atoms in the sample, and we
retain only terms up to first order in the signal field ampli-
tude. In this limit, we can neglect the populations of levels e
and g’, as well as the coherences between these levels. Fur-
thermore, for an initially unpolarized sample in level g, the
ground-state populations and Zeeman coherences, as op-
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FIG. 1. (Color online) On the left, a diagram shows an atomic
ensemble interacting with copropagating signal and control fields.
The signal (helicity «), resonant on the g+« e transition, is stored
and subsequently retrieved by variation of a control field (helicity
£), which resonantly couples levels g’ and e. A constant magnetic
field B, oriented at an angle # from the propagation axis, rotates the
atomic coherences during the storage. For each state |g,m) in level
g, there is either an associated A configuration, as shown on the
right, or an unconnected one, as discussed in the text. The signal
connects the states |g,m) and |e,m+a), while the control field
drives transitions between |e,m+a) and |g’,m+a— ().
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posed to hyperfine coherences, are unaffected by the signal,
control, and magnetic fields. Our treatment can be extended
to an initially spin-polarized atomic sample, as we will report
in a separate publication. In this weak signal limit [1,15], the
signal field, which we assume propagates in the positive z
direction, and atomic coherence operators satisfy the quan-
tum Langevin equations

F
a4
(£+C(9_z)q) =iNk m_E—F Cma e m+a > (la)
_Qg’ w = IOC 00 (1b)
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where the slowly
field of helicity

varying dimensionless electric
a==x1 is given by DP,(z,1)
=i3,4; . expli(gz+w,1)], qg=k—(w,/c), and the
collective atomic coherence is defined Qx,m (z,1)
=(1/N, )EN 5+ . expl-i(w,—wy)(t—z/c)] [16], where

rmvm

p=1,....N,, 6"

sy 18 the uth atom hyperfine coherence
operator, and N,=Ndz/L is the number of atoms between z
and z+dz; L is the length of the sample. The control field is
assumed to have the circular polarization S=+1 and real
Rabi frequency €)(z), which is a specified function of time,
and « is the coupling constant for the probe transition. We

adopt the shorthand for the Clebsch-Gordan coefficients

1 F,
Cma—C;g;,,fm and CmB—CmgﬁerB, it is useful to define

Rma(ﬂ) Cma/ Cm+a_ﬁﬁ
The decay rate of level e is denoted by I', and F f

corresponding quantum noise operator. The coupling of the
atoms to the uniform magnetic field can be taken into ac-
count by the addition of appropriate commutators with the

m .
;1S a
m

interaction \73 in the atomic equations.

We first establish some standard features of EIT with our
model. The propagation of a classical (coherent) signal
through the medium is found by dropping the quantum noise
operator, and replacing the field and coherence operators
with their respective expectation values. For a constant am-
plitude control field, the linear susceptibility for the signal
field of angular frequency w is found to be

wd) = cd s L. I, AX (Q2cm+a 55— A2 +iAl,/2)
“ 20L5  (Q°C, 55— AD?+(AT,12)*

e

s

2)

where A= w-w, is the detuning of the signal from atomic
resonance, and X,,,=C,,./\(2F,+1)/3. The dimensionless
quantity d is the optical thickness, which is defined such that
exp(—d) is the on-resonance intensity transmittance in the
absence of a control field, and can be expressed as
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N{ ¢ \>2F,+1
d=2m7w—| — , (3)
A\w,) 2F,+1

where w is the fraction of atoms in excited level e that spon-
taneously decay into ground level g, and A is the cross-
sectional area of the ensemble. When a control field is
present, an EIT window exists provided that the Clebsch-
Gordan coefficients C,,, 55 do not vanish for any

n
—F,<m<F, for which C,,#0. If, however, C,,,, 5 5=0,
and C,,,a#O it means that there is an excited state

ground level g’, i.e., there is an unconnected lambda con-
figuration. The subset of atoms initially in the state |g,m)
would absorb the signal field and spontaneously emit radia-
tion as if there were no control field present. In order for EIT
to exist, one must make a judicious choice of atomic levels
and signal and control field polarizations.

Assuming a choice of polarizations that supports EIT, we
are able to generalize the adiabatic treatment of Ref. [1] to
Eq. (1) to derive the DSP operator for helicity a, with control
field polarization

Q(t)(f)a(z’t) - NK*E Rma(B)Q::’n:pHa—ﬁ (Z,t)

\/W + Np|e”S, Ry B)

A

W, (z.0) =

(4)

As in Ref. [1], this operator obeys the simple propagation

equation (9/dt+v,d/ 9z)W (z,1)=0 with the reduced group
velocity v,=cQ?/ (Q*+Np|[*Z,|R,,.(B)|?) that can be adia-
batically controlled by the time-dependent variation of )(z).

From the definition of \IA’, we see that as () goes to zero, the
wave excitation stops propagating and transforms into a par-
ticular linear combination of hyperfine coherences

~> Rma(ﬂ)Qg miap (z,t). This nontrivial result arises from

the treatment of the full degeneracy of the atomic ensemble;
only this combination of hyperfine coherences is adiabati-
cally transformed into the signal field via the control field
retrieval process. Orthogonal combinations of hyperfine co-
herences couple to optical coherences in the presence of the
control field and result in excited state spontaneous emission;
we will refer to these as the bright-state polariton (BSP)
component [15]. It is also possible that some population of
atoms remains trapped in the ground states, and is unaffected
by the control field.

In order to demonstrate the importance of the dark state
polariton in the signal storage and retrieval process in a mag-
netic field, we numerically solve Egs. (1) for a coherent sig-
nal field. We thus calculate the expectation values of the spin
wave coherences (Q§ It (z,t)) and the signal field, allow-
ing us to determine the DSP and BSP components. This is
accomplished by defining a vector space of 2F,+2
dimensions, with orthonormal basis vectors e,,, each corre-

sponding to a hyperfine coherence Q o e and egq, corre-
sponding to the signal field. We define the coherence vector
v=(d )eq)+2m\N/p(Qg " B(z,t))em. We note that this is

" m+a—
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FIG. 2. (Color online) Numerical results illustrate the storage
and retrieval of a signal pulse from an atomic ensemble as de-
scribed in the text. We show results for two values of the magnetic
field oriented along the z axis. Panels (A) and (B) correspond to a
magnetic field B=0.267 G, so that the signal is stored for 7;/4,
where T;=8 us is the Larmor period. Panels (C) and (D) show
results for B=0.535 G, corresponding to a signal storage time of
T;/2, where T;=4 us. The signal field intensity transmittance
I(1)/1 (solid line) and control field Rabi frequency (dot-dashed
line), displayed in arbitrary units, are shown in panels (B) and (D).
Panels (A) and (C) display scaled dark-state p;, (solid line) and
bright-state pp (dashed line) polariton components, as explained in
the text. In panel (B) the ratio of retrieved to input signal pulse
energy is 4.38% while in (D) the ratio is 25.09%.

not normalized since its magnitude is dependent on both the
time-dependent signal and control fields. Associated with the
DSP we define a vector uy=Qeqy+\NpkZ,R,,(B)e, and
the corresponding unit vector ey =uy/|uy|. We then deter-
mine the DSP component pp=| 2, and BSP component
pe=[v—eyey-v|*.

As an example of signal storage and retrieval we consider
an atomic sample of 85Rb, in which the control field and
signal field polarizations are chosen equal a=8=1, and the
optical thickness d=8, Fig. 2. The atomic levels g, g’, and
e correspond to the 5S5,F=2,3, and S5P;,F=3 levels
of the D, line, respectively. The spontaneous decay rate
I',/(27)=5.98 MHz. The incident signal field has a Gaussian
envelope of full width half maximum 120 ns, and the peak
enters the 3-mm-long sample at 1=—60 ns. The control field
has a constant Rabi frequency =1.5I", until it is smoothly
turned off at =0 over a period of 20 ns, when a fraction of
the signal field is converted into hyperfine coherences
of the atomic spin wave. The excitation is stored from
0=r=2 us in the presence of the magnetic field, before the
control field is reactivated, and the signal field retrieved. In
Fig. 2, panels (A) and (B), the magnetic field is chosen so
that the storage time corresponds to a quarter of a Larmor
period T; =
storage time is 7;/2. In panel (A) p, grows as the signal
pulse arrives at the point of observation, and reaches a peak
when the control field is switched off. It then decays during
the storage phase, due to Larmor precession of the hyperfine
coherences in the applied magnetic field, which causes the
corresponding growth of pp. When the control field is reac-
tivated, pp decays rapidly due to excited level coupling and
subsequent spontaneous emission, though p, remains finite

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 73, 021803(R) (2006)

as the spin wave coherence of the DSP is converted into the
forward propagating signal field; the retrieved signal field
intensity is illustrated in panel (B). In panel (C), where the
storage time is 7;/2, pp undergoes a complete revival. The
energy of the retrieved signal field shown in panel (D) is
therefore much larger, by a factor of 5.73, than that in panel
(B). This is in good agreement with the DSP theory for re-
trieval efficiency discussed later, which predicts that the re-
trieved signal energy of panel (D) should be 5.53 times that
in panel (B). These results demonstrate the importance of the
adiabatic concept of DSP for a realistic experimental sce-
nario. The retrieved signal field directly reflects the DSP dy-
namics in the magnetic field.

We can predict the retrieval efficiency of a stored signal
pulse by tracking the population of the DSP as it evolves
under the influence of the magnetic field. To compute the
polariton population, it is convenient to consider the Fourier
components of the DSP. We express the polariton annihila-
tion operator for the mode of wave number g as

i1y~ \NpK' 2 R B o p(@51)

Vo (q.0) = (5)

Jﬂ2+Np|K|22m Rl B
where

&8 A(w)
Sg 'm" T 1/\Np)2 gmg "m’!

Xexp{- i[qzﬂ +(w,— wy)(t—z,/c) ]}
is a collective spin wave annihilation operator of wave

number g. These operators obey quasibosonic commutation
relations [ng‘ (q), ng2 (q )= 8 my Oty qq/+0(1/N) and

’11

the DSP operators therefore also obey [V, (q), ‘I’ (q")]
=08,y 0, +O(1/N). During the storage, the evolutlon

of the spin wave operators is given by an'ﬁa_ﬁ(q,t)

F, Fgr (&)t (g" 3
=3"s o, ng__F DS m(t)anm_B mz(t)Sgt"niz(q,O), where
Df;’m,(t) = (s,m|exp( ig Qg '} is the matrix element

of the rotation operator for states in hyperfine level s, and
Qp= upB/#. Using the bosonic commutation relations for
the spin wave operators, we can calculate the number of
polaritons (Na(ts))=(2q‘f’2(q,ts)\f'a(q,ts)> as a function of
storage time ¢, for an arbitrary DSP quantum state created in
the storage process. In the limit of infinite control field am-
plitude, this converts into the total number of photons in the
retrieved signal field de};aék’a. We therefore derive an ex-
pression for the signal retrieval efficiency as the fraction

Falt) = (N (1)) /(N (0)),
Rm a(B)Rm oz(B)
fat)=| 2 —————D

D, (1)
mymy 2|Rma(:8)|2 ?

bk
X D;flla—ﬂ,m2+a—ﬁ(ts) . (6)

In Fig. 3, we display the f,(z,) as a function of ¢, for a variety
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FIG. 3. (Color online) The DSP population fraction f,(z,) cal-
culated for orientations of the magnetic field 0= #= m/2 over one
Larmor period. These results illustrate collapses and revivals whose
features are dependent on 6. The atomic configuration and field
polarizations « and S are described in the text.

of magnetic field orientations. We again consider an en-
semble of *Rb atoms with the same choice of atomic con-
figuration and field polarizations discussed earlier. For
t,<T;, we observe a collapse in the polariton population,
yielding an approximate retrieval efficiency of f,(z,)
~ exp[—77%(Q,1,)?/2], where the collapse rate 7, depends on
the angle, 6, between the magnetic field and the propagation
axis. For =0, we find

|Rm1a(/3)Rm2a(ﬂ)|2(
my,ny (E |Rma(B)|2>2 1 ’

!

7(0=0)=4 2. (7)

With the approximation g,=-g,/, valid for ground level al-
kalis, it is clear that the system undergoes a revival to the
initial state after a complete Larmor period, and thus the
signal retrieval efficiency should equal the zero storage time
value. Depending on the orientation of the magnetic field,
we observe also a partial revival at half the Larmor period.
For a magnetic field oriented along the z axis, the system
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dynamics are relatively simple. Each hyperfine coherence
3’5,":” +a-p merely picks up a phase factor that oscillates at
m+ (a—B)/2 times twice the Larmor frequency, thus return-
ing the system to its initial state at half the Larmor period. In
this case, the partial revival is actually a full revival. On
the other hand, for f#=m/2, a rotation through half the

Larmor period causes the coherence transformation
Sj”:n +a-p —>S§,__nzm+a_ﬁ) up to an overall phase factor. As a

result, for the choice of equal field polarizations (a=,), the
retrieval efficiency at half the Larmor period simplifies to
[Z, Ryl @R_, )/ Z,|R,,(a)|*]*, resulting in a partial re-
vival. For other orientations of the magnetic field, particu-
larly for #=m/4, the revival at half the Larmor period is
suppressed. This reflects the more complicated dynamics of

e e . . agm .
the individual spin coherences Sg, ' each of which trans-

forms into a superposition of all ‘(2Fg+ 1)(2F,+1) spin co-
herences, with complex time-dependent coefficients gov-
erned by the rotation matrices. Stated physically, there is a
strong destructive interference between the various spin co-
herences when 6= /4.

We have developed a theory of the DSP as a mechanism
to store and retrieve light pulses in a degenerate unpolarized
atomic medium. The role of the DSP and its connection to
storage retrieval efficiency have been verified by full numeri-
cal solutions of the propagation equations for a classical in-
cident signal field. In the presence of a magnetic field, we
have demonstrated that the DSP population undergoes col-
lapses and revivals during the pulse storage time. We predict
that this polariton dynamics is directly reflected in the signal
pulse retrieval efficiency. Our results may find applications
in quantum communication and computation approaches that
utilize quantum memories [2,17-19].

Note added. Recently, the collapses and revivals were ob-
served [20], in excellent agreement with the predictions of
this paper.
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