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Using operational simulations during the early design phase has been largely neglect-

ed within the aerospace industry. This paper suggests that an operational simulation 

should be used twofold by designers during the design process to improve a product. 

First, it presents how an operational simulation can be used to react to customer specifi-

cations. Second, its active use as a design decision support tool is portrayed. Results are 

found by means of two case studies recreating the operational life of a Search-and-

Rescue Unmanned Air Vehicle developed in parallel at the University of Southampton. 

The simulation's ability to act as a decision support tool is explored by conducting a fuel 

weight optimization. Reactive capabilities are explored by calculating the surplus value 

of using UAVs. This exemplifies the derivation of product specifications as the simula-

tion reveals the value and hence usefulness of supplied customer specifications. It is 

shown that operational simulations benefit designers and overall product value by ana-

lysing product specifications and guiding designers to more informed design decisions. 

Nomenclature 

MCA = Maritime Coastguard Agency 

RNLI = Royal National Lifeboat Institution 

SAR = search-and-rescue 

UAV = unmanned air vehicle 

VDD = value-driven design present 

I. Introduction 

In the past, design processes of aerospace products generally focused on customer specifications in order to 

meet expectations. Life cycle costs, design space exploration and value engineering were neglected, often lead-

ing to substantial cost overruns, delivery delays and inferior quality in the final product. Moreover, customer 

specifications were not scrutinized and design decisions made ignoring potential operational knowledge. Due to 

these shortcomings, new approaches to product design emerged. Manufacturers are now striving to understand 

life-cycle costs, explore the design space and focus on the value that a product will generate for the customer 

and the manufacturer. 

In order to obtain a competitive design, it is desirable to understand the life-cycle cost implications  from the 
early concept stage1. However, obtaining detailed, trustworthy and useful cost information from early concept 

geometry is nearly impossible, potentially compromising the whole project2,3. A useful cost model needs to 

address the complexity of costs, the non-objectivity of cost estimates and the cost drivers outside the design4. An 

operational simulation can inform upon the latter early on, improving the quality of the cost model. 

A. Value-driven design 

Value-driven design is an emerging approach to product design that introduces flexible customer specifica-

tions aiming to output the optimal design based on a value-function5. It allows system-wide design optimization 

during the early design phase as well as component optimization during the detailed design phase. A value-

driven design is chosen by engineers as the best possible design rather than any design meeting the design re-

quirements6. This choice is based on ranking different designs using a value function. Ranking is unambiguous 

because the value function transparently and consistently assigns unique scores to each design7. Value-driven 
design replaces the need for traditional system requirements like maximum weight or cost because designers 
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aim to optimize overall system value8. This increases the chance to find an optimal design by several orders of 

magnitude6. 

Collopy9 states that a useful value function must also incorporate operational metrics of a product. So far, 

this information is usually based on engineering judgement, experience and estimates. A simulation of the antic-

ipated operational life of a product can specify operational metrics and analyse customer specifications. 

B. Research question 
This research investigates the “active” and “reactive” use of an operational simulation in order to improve 

cost information and specify operational metrics. The following questions are addressed: 

 Can operational knowledge be used to optimize a product? Here, a designer actively seeks the op-

timum design beyond customer requirements.  

 Can comprehensible and useful product definitions be derived from operational information? This 

conforms to a designer reacting to given customer specifications. 

 Both problems are examined using case studies of a real-life Search-and-Rescue (SAR) Unmanned Air Ve-

hicle (UAV). Section II details the operational simulation developed for the case studies. The results are pre-

sented in section III followed by a discussion and critical appraisal in section IV. 

II. Methods 

A. Overview 
Aerospace product complexity grows10 and customer specifications include inherently stochastic variables 

such as reliability and process consistency11. Combining probability distributions even for simple systems either 

returns unmanageable equation sets or simplified models with low fidelity. In order to simulate complex sto-

chastic operations, numerical modelling is the only viable tool to date that allows uncertainty and discontinuities 

to be implemented at any stage. The most appropriate simulation technique for the scenario described here is 

agent-based modelling. 

Agent-based models have become widespread during the last decade, supporting research in diverse scien-

tific areas. In engineering, agents have been used to model engine fleets12, airline personnel and airline opera-

tions13. Agents are implemented as active objects that can act autonomously. Each agent is assigned role-specific 

if-then-else algorithms that determine its behaviour in a given environment. Therefore, agent-models can be 
created using a bottom-up approach rather than a top-down approach. This allows creating useful system models 

despite limited system knowledge. The draw-back of agent-based modelling in engineering is its inherent un-

predictability regarding complex agent interactions. However, the limited number of agents used here combined 

with knowledge about the anticipated overall system behaviour avoids these problems. 

The Java-based AnyLogic14 has been chosen due to its integration of agent-based as well as discrete-event 

modelling. AnyLogic is also able to create user-friendly standalone applications that can be used without spe-

cialist knowledge by designers and engineers. 

The model recreates a real UAV developed by the DECODE-project at the University of Southampton (Fig. 

1). DECODE develops decision environments for complex designs and tests them by designing and building 

real UAVs. The UAV used for the simulation is the initial version featuring a maximum take-off weight of 10 

kg and a wing span of about 2 metres. The operational simulation presented here is part of the DECODE soft-
ware stack that is used to iteratively design UAVs. 

 

B. Model structure 

The case studies are conducted using a model of the SAR environment of the Solent, a major shipping and 

leisure area at the south coast of the UK. The Solent has the highest number of SAR incidents in the UK15. It is 

covered by a dense network of seven Royal National Lifeboat Institution (RNLI) lifeboat stations and a Mari-

time & Coastguard Agency (MCA) helicopter base, making it an ideal test bed for investigating the influence of 

  
Figure 1. DECODE UAV, first iteration. 
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SAR UAVs. The UAV can support search activities by circling an area and communicate a casualty position to 

other vessels for a quicker recovery. 

The simulation model is based on a central agent imitating the coastguard responsible for the Solent-area. It 

represents the decision-making authority that coordinates rescue resources and activities. The coastguard has 

authority about the number of vessels to dispatch to a casualty, the type of vessel to dispatch (helicopter, lifeboat 

or UAV) and which specific agent to be deployed. The coastguard dispatches the nearest available and most 
appropriate vessel. Depending on the casualty type and the position knowledge (see Appendix), there are five 

dispatch options available (Table 1). 

 

 
If the casualty position is known, UAVs are not dispatched for search. Only one UAV can be dispatched to 

any one casualty. The effect of UAV swarms is not investigated. Moreover, each casualty is rescued by either 

the helicopter or a lifeboat. In reality, about 20% of all casualties are supported by both types simultaneously but 

this is neglected here. Some lifeboat stations house multiple lifeboats and the coastguard dispatch decision is 

based on lifeboat statistics supplied by the RNLI16. UAVs are deployed by the coastguard depending on the cas-

ualty type and the associated positional knowledge. UAVs are dispatched to about 60 % of lifeboat casualties 

and 30 % of helicopter casualties where a quick recovery is desired. This reflects the fact that UAVs are unlike-

ly to be used on every possible mission and that helicopter crews will be reluctant to use UAVs in parallel with 

their own mission. For the minority of missions where there is no danger to lives (beacon searches, etc.), UAVs 

are dispatched without a helicopter or a lifeboat. 

Casualty agents are created according to RNLI statistics16 and helicopter data supplied by the MCA17. Both 
datasets include a seasonal variation of incidents because summers are generally 3-5 times busier than winters. 

The day-night distribution of incidents is neglected because additional risks of night-time missions are not 

known. The MCA assigns 14 different casualty types that have varying certainties of position (see Appendix). 

Helicopter casualties are distributed across shore, near-shore or sea areas. Lifeboat casualties are distributed 

around lifeboat stations according to distance information supplied. Each casualty emits a help signal to the 

coastguard once it appears. Subsequently, it waits passively until a vessel finds and rescues the casualty upon 

which it is destroyed. 

The helicopter used around the Solent is the Agusta-Westland Aw-139 with a top speed of 145 knots and 2.5 

hours endurance. Its behaviour is modelled using the general vessel operation cycle depicted in Figure 2.  

 
 

Table 1.  Coastguard dispatch options and conditions 

 Dispatch option Casualty position known? UAV in range? 

1. Helicopter only Yes irrelevant 

2. Lifeboat only Yes irrelevant 

3. UAV only No & no lives threatened Yes 

4. Helicopter & UAV No Yes 

5. Lifeboat & UAV No Yes 

 

 
Figure 2. General vessel operations cycle. 
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Unlike lifeboat and UAV data, the helicopter database includes the durations to search for casualties and res-

cue them. Therefore, the duration of the varying mission stages dictates the helicopter behaviour directly.  

There are nine lifeboat agents spread across seven RNLI-stations. Lifeboat agents vary in cruise speed and 

number of crew aboard according to their type. Lifeboat agents follow the operation cycle shown in Fig. 2. Once 

called for dispatch by the coastguard, lifeboats are prepared for launch (time supplied by RNLI-data
16

). Subse-

quently, the lifeboat moves into the vicinity of the casualty in order to start its search. The distance between the 
initial search position and the actual casualty position depends on the coastguard knowledge of the casualty po-

sition. Therefore, searching for casualties with exact knowledge of position takes less time than searching for 

lost casualties. 

      
 

The lifeboat initiates an 'expanding square pattern' search from its initial search datum as in Fig. 3. The path 

width S depends on the number of crew aboard. In this model, lifeboats never miss a casualty: upon passing a 

casualty, they spend between 1 and 30 minutes to rescue it (uniformly drawn). This value is estimated as the 

RNLI does not collect this information. After rescuing, the lifeboat returns to its home base.  

UAV agents also follow the vessel operation behaviour depicted in Fig. 2. Preparation time is uniformly 

drawn between 1 and 15 minutes as is anticipated of future service. Similar to lifeboats, the UAV moves into the 
vicinity of a casualty (distance depends on the casualty position knowledge) and starts the expanding square 

pattern search (Fig. 3). The path width S depends on its height and camera sweep angle. The UAV monitors its 

fuel status and cancels a search if required for a save return journey. Upon crossing a casualty, the UAV discov-

ers the casualty with a probability that depends on its height, camera properties and weather. On average, the 

success rate of spotting a casualty upon crossing is just below 50 % (Fig. 4). UAVs announce casualty discovery 

or failure of discovery to the respective rescue vessel directly and return home. 

 

   

 
Figure 3. Expanding square pattern

18 

 
Figure 4. Probability histogram of UAVs spotting a casualty upon crossing 
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Realistic vessel operations and coastguard-vessel interactions were implemented using a bottom-up ap-

proach. Thereby, helicopter missions, lifeboat dispatch scenarios and coastguard decision algorithms could be 

recreated directly. All agents interact in discrete events in order to keep computation times reasonable.  

Another part of the model is the cost estimation algorithm. In theory, a value model consistently computes 

numerical scores for different designs in order to compare them. They can be used for trade studies, design op-
timization, design space exploration and technology evaluation19. In this report, a simple value model derives 

cost data from the operational simulation and is used for technology evaluation (“reactive” use) and optimiza-

tion (“active” use). The model focuses on the change in cost caused by design changes, rather than absolute cost. 

Predictive accuracy is secondary because value models cannot be calibrated in the traditional sense. It is more 

important if the value model can easily differentiate and rank designs20. The value model presented here omits 

expected utility for simplicity. According to Lave and March21, economic models should be judged according to 

their truth, beauty and justice by which they mean model accurateness, simplicity and usefulness for progress 

respectively. The cost model used here is not accurate but simple and justified. 

The model sums the costs for each vessel type (helicopter, lifeboats and UAVs) after calculating the individ-

ual vessel contributions using a simple divide-and-conquer approach as in Equ. 1. The component costs are es-

timated from RNLI publications17,22, MCA data18 and the engineers that construct the real-life UAV. 

 

 
 

It is difficult to validate this value model against reality because it is almost impossible to compare. System 

costs cannot be calculated because the system boundaries are arbitrary. Component costs are difficult to obtain 

due to company policies. However, the simplicity of the model makes it reasonable to use, transparent and re-

peatable, the properties required for useful value models by Collopy19. 

As for any useful simulation model, validation was the last major step of model creation. The simulation 

model recreates the real operational environment of the Solent Search-and-Rescue environment in order to see 

the effect of introducing UAVs. Therefore, model validation was carried out by comparing the baseline case (no 

UAVs) to real world data. The model reproduced the distribution of casualties over the year, the time to find and 
rescue casualties, the distribution of casualties during varying wind speeds and the number of helicopter to life-

boat missions. Repeated model walk-throughs and a graphical representation (Fig. 5) supported validation 

throughout model construction. 

 
  

 

 
Figure 5. Graphical user interface (part) 

(1) 
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III. Setup and Results 

A. “Reactive” case study setup 

In order to demonstrate product specification derivation using an operational simulation, envisage the fol-

lowing hypothetical situation: A design team is designing a Search-and-Rescue UAV according to the Value-
driven design approach. Therefore, no extensive product attributes (such as maximum allowed cost, maximum 

weight, etc.) are known during the early design phase. The designers need to explore and understand the exten-

sive product specifications in order to evaluate and improve the design. As part of this investigation, the simula-

tion model described above is used to assess the maximum allowed cost of the UAV to be economically feasi-

ble. The simulation is setup as follows: 

A baseline simulation scenario recreates the operational environment of the SAR-area before the UAV ap-

pears on the market. Additional scenarios which include UAVs contrast the baseline scenario. In this case study, 

seven additional scenarios are created each introducing another UAV to observe the effect on the overall system 

cost. The reason to choose seven scenarios is based on the assumption that each of the local six lifeboat stations 

and the helicopter base will house one UAV. It is beyond the scope of this research to observe the effect of mul-

tiple UAVs for any one station. Scenario results are averaged across 50 simulation runs including standard er-
rors to judge uncertainty. Each simulation run covers a simulated period of 10 years. Each scenario is setup such 

that the overall service level remains constant. This ensures comparability of cost between different scenarios.  

The service level metric used is the time a casualty waits for its rescue. Time-to-rescue directly measures the 

success of Search-and-Rescue operations because it relates to casualty survival rates23. The coastguard could 

deploy UAVs such that they improve the overall service level at constant system cost. However, the possibility 

of reducing cost by maintaining satisfactory service levels is more reasonable for government agencies. The 

total system cost changes due to additional UAV costs and savings accrued in helicopter and lifeboat operations. 

Savings can be achieved in two ways: (i) the helicopter or lifeboat waits at its base until a UAV has found a cas-

ualty not in danger of death, thereby reducing vessel operating time. (ii) Helicopter/lifeboat operating time is 

reduced because a UAV supports the vessel and the casualty is spotted quicker. Lifeboat and helicopter operat-

ing costs are about 2 orders of magnitude higher than operating the UAV. Therefore, any reduction is desirable. 

B. “Reactive” case study results 
Figure 6 summarises the cost impact of introducing UAVs. 

 

 
 
The overall system cost reduces if one or more UAVs are introduced. Additional costs for UAVs are signifi-

cantly less than cost savings from reduced helicopter usage. Both cost additions and savings increase linearly 

with the number of UAVs. On average, the UAV saves 2.3 times compared to what it costs (σ = 0.6). Lifeboat 

costs do not change significantly. Lifeboat and helicopter uncertainty is high due to high hourly operational 

costs amplifying stochastic effects. UAV costs are two orders of magnitude lower constraining random variables 

to have negligible effects. 

 
 

Figure 6. Change in system cost due to introducing UAVs 
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C. “Active” case study setup 

This case study demonstrates the active use of an operational simulation for a product designer. Assume the 

designer has an initial UAV design that needs to be optimized for its intended use as a Search-and-Rescue sup-

port UAV. As part of this, the fuel tank size is a critical aircraft parameter because it determines the range of the 

UAV, indicating the proportion of casualties it can support from its home base. If the tank size is too small, the 
UAV cannot reach enough casualties and becomes ineffective. However, if the fuel tank is too large, the air-

craft’s structural weight increases together with operational costs. Therefore, an optimum fuel tank size must be 

found to satisfy these constraints. 

The simulation is set up as before, recording the overall system cost as the output. However, the number of 

UAVs is kept constant at seven in order to observe the maximum impact on system cost. The fuel tank size is 

varied between 0 and 10 kilograms in steps of 0.1 kilograms. Each scenario is averaged across 35 iterations in 

order to achieve statistically relevant 95% confidence intervals. For each fuel tank size, the overall system cost 

is recorded. System cost is normalized with regards to the case of UAVs having zero fuel tank capacity. 

D.  “Active” case study results 

Figure 7 shows the results of optimizing the fuel tank size to minimize overall system cost.  

 

 
 

There appears to be an optimum fuel tank capacity somewhere between one and five kilograms. A third-

order polynomial trend-line with R2 = 0.832 suggests an optimum at 2.6 kilograms. Below one kilogram, the 

system cost rises up to the baseline case with zero fuel capacity. Above five kilograms, the system cost rises 

sharply to about 0.5% above the baseline cost. Between six and ten kilograms, the system cost stays constant. 

IV. Discussion 

A. “Reactive” case study 

The result (Fig. 6) clearly indicates to the designer that the current UAV would create value during its opera-

tional life. This value is predicted based on operational and product performance. The simulation predicts a re-
duction in helicopter flight hours based on the specific UAV performance. This demonstrates the reactive use of 

an operational simulation: the designers can now quantify the maximum feasible cost that the UAV may accrue 

during its life. In this example, the maximum allowable cost to create value would be 2.3 times higher than the 

current cost. Additional costs can comprise UAV acquisition, maintenance or operational costs. Unlike contem-

porary approaches, this cost estimate is more complete as it is founded on operational as well as product perfor-

mance. 

Lifeboat costs do not change significantly because it is anticipated that lifeboat crew will dispatch to most 

casualties even with the support of a UAV. Therefore, lifeboat operation costs will not reduce significantly. The 

 
 

Figure 7. Fuel tank size versus system cost 
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linear increase in value by using more UAVs is finite: at some point, the introduction of additional UAVs will 

cease to reduce the helicopter usage because the helicopter has to fly a minimum amount of time to actually res-

cue casualties. It is beyond the scope of this research to investigate how many UAVs would be required to 

achieve this tipping point. 

This case study neglects the influence of other constraints during product design. In reality, the operational 

simulation would serve as an analysis tool among many to increase the value of a product. Investigating the rela-
tionship between the operational simulation and other design tools such as CAD, CFD or advanced cost models 

is beyond the scope of this research and reserved for future work as part of the DECODE-project. 

B.  “Active” case study 

At the optimum fuel tank size, UAVs can reach enough casualties to reduce lifeboat and helicopter usage as 

much as possible without excess structural weight. Below the optimum, UAVs increasingly fail to support con-

ventional vessels, thus increasing the overall cost of the system. Above the optimum, UAVs do support all mis-

sions but system cost increases due to flight performance penalties such as increased fuel consumption. Note 

that the UAV modelled here has an empty weigh of about 8 kilograms. In reality, a UAV of this size can ac-

commodate a maximum fuel tank capacity of about 3.2 kilograms on average24. Therefore, the upper end scenar-

ios in Fig. 7 are not realistic because fuel tank capacity approaches or equals the empty weight of the aircraft. In 

this case study, the designer could incorporate the optimum operational fuel tank capacity of 2.6 kilograms be-

cause it is within the structural limits of the aircraft. 
The maximum system cost reduction of 1% is significant. Using the simple cost model described above, the 

estimated cost of maintaining the Search-and-Rescue system around the Solent is £ 5.8 million per year. The 

cost savings from an optimal fuel tank capacity could amount to £ 50,000 per year for the Solent alone. Similar-

ly, a non-optimum fuel tank could increase overall system cost by up to £ 25,000 per year. Therefore, using an 

operational simulation to optimize design parameters is important. 

In reality, product designers would optimize many more design parameters for the intended operations, po-

tentially reducing operational costs further. Combining traditional product optimization with operational optimi-

zation could yield further cost reductions and prevent unrealistic cost estimates. 

C. Criticism 

The case studies demonstrate the feasibility of product specification estimation and optimization through op-

erations modelling. It is not an absolute measure of truth. The simulation model is based on real SAR proce-
dures captured through interviews. Several simplifying assumptions were incorporated throughout model devel-

opment to keep results tractable: 

 

 The complex dispatch decision network of lifeboat crews, the MCA and local coastguards was con-

densed into a simple decision tree based on casualty type and UAV-status. 

 Vessel cooperation is limited to UAVs plus one vessel. Helicopter and lifeboat missions are strictly 

separated. 

 UAVs and vessels can only serve one casualty at a time. Search patterns are restricted to the “Ex-

panding Square”-type. 

 Operations are not constrained by visibility, wind or temperature. 

 
The cost model is very simple but relies on engineering rationales. However, its simplicity causes high un-

certainty regarding the quantitative results in this work. 

The quality of data used for this simulation varies. The RNLI provides very detailed statistics on casualties 

and service levels. However, it lacks certain core information (the time to rescue casualties) that were estimated 

using operational simulation. The MCA-data for helicopters offered the rescue times but covered one year only, 

potentially skewing the helicopter performance. UAV-data was provided by the DECODE-team designing the 

real UAV. 

V. Conclusion and future work 

It has been shown that an operational simulation can be beneficial for product designers during the early de-

sign phase. Using the simulation “actively” as an optimization tool reveals designs that are fit for the product 

environment. A “reactive” use is presented that yields information about extensive product attributes such as 

maximum cost. This information is especially useful in systems engineering environments that divert from fixed 

product specifications in order to find optimal designs.  

Future work will focus on developing a more generic operational simulation. It is important to understand 

how a simulation can incorporate a variety of product utilization scenarios so that designers can estimate the 
impact of their product for potential uses early on. The aim is to find a trade-off between sufficient model fideli-
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ty and maximum model generality. Another important aspect of future research is to incorporate the simulation 

into a Value-driven design workflow within the DECODE project. The aim is to utilize the simulation in a real 

test case to see how designers can best profit from such a tool. 

Appendix 

This table lists the helicopter casualty types as used by the MCA and their frequency of occurrence accord-

ing to data gathered during 2009 for Lee-on-Solent. The 'position' column indicates the knowledge about casual-

ty positions assumed in this model. This determines the dispatch of UAVs for these casualty types. 
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