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MATHEMATICAL MODELLING OF TISSUE METABOLISM AND GROWTH

by Christopher Joseph Catt

The work presented in this thesis is concerned with modelling the growth of tissue constructs,
with particular focus on the effects the local micro environment has on the cell cycle and
metabolism. We consider two cases; multicellular tumour spheroids and orthopaedic tissue
constructs. This thesis is divided into two parts. In the first part we will present a multispecies
model of an avascular tumour that studies how a cell’s metabolism affects the cell cycle,
spheroid growth and the mechanical forces that arise during growth. The second part consists
of a study of the growth of an engineered cartilaginous tissue layer. Experimental observations
will be compared to a model of the distribution of cells and extracellular matrix.

The efficiency of cancer treatments such as radiotherapy and chemotherapy are sensitive to the
local environment of a cell. Therefore an essential task in tumour biology is to understand the
microenvironment within a tumour. Many mathematical models study the effects of nutrients
and waste products, usually assuming growth is limited by the diffusion of a single nutrient.
We will look in detail at the metabolic pathways from which cells obtain energy (ATP). A
multispecies model is presented that considers the transition from aerobic to anaerobic respi-
ration and includes relevant chemical and ionic buffering reactions and transport mechanisms.
Results show that potential ATP production affects the cell cycle and consequently the rate
of growth. This model is simplified using mathematical analysis and is integrated with a
morphoelastic model to study the development of mechanical forces. The model shows that
mechanical effects are particularly important during necrosis, where large tensile forces are
shown to develop. A review of the equations governing nutrient conservation is given, by
developing alternative macroscopic equations based on the microscopic features of a tumour
using homogenization techniques.

The second part of this thesis studies the growth of cartilaginous tissue. Bio-materials are
being engineered in an attempt to replace dysfunctional tissue in the human body using cells
extracted from living organisms. We model the growth of a cartilaginous tissue construct that
has been grown from expanded chondrocytes seeded onto collagen coated filters. A model is
developed to explain the distribution of cells and the concentration and distribution of collagen
and GAGs. This is achieved by studying the local environment of the cells. Model predictions
are compared to a range of experimental data and show most of the growth takes place in the
upper region of the construct.
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Chapter 1

Introduction

Mathematical modelling in biology is a rapidly growing area, both in terms of the resources

allocated to research and the range of problems being studied. Compared to other scientific

disciplines, mathematics has played a relatively small role in biology, however the potential

for development is huge and, although still in its infancy, bio-mathematics has already been

applied to a diverse variety of problems, ranging from neuroscience to ecology and ecosystems.

In this thesis we shall study two closely related biological problems that share many proper-

ties but have had differing levels of mathematical attention thus far. These are the growth of

tumours and the growth of engineered tissue. Since early work by Burton [18] and Greenspan

[68] the mathematical modelling of tumour growth has developed such that at present over

90,000 articles can be found by using a simple Google scholar search for ‘mathematical model

tumour OR tumor’. An equivalent search for ‘mathematical model cartilage’ returns a rela-

tively small 16,000 articles. With a much lower library of literature regarding tissue, there are

obviously many more areas to explore, but equally less knowledge to base these models on.

This thesis will principally consist of two parts. The first part, containing Chapters 2, 3 and 4,

will be focused on modelling the growth of multicellular tumour spheroids. Whilst the second

part, Chapter 5, will study the growth of cartilage tissue. Each chapter will begin with a brief

introduction and overview of the background knowledge that forms the basis of the following

work. Similarly each chapter will end with a discussion of the results that have been derived

and the possible consequences to the model and future research.

Multicellular tumour spheroids are often used to model tumour growth due to the simplicity

of their structure and their similarity to tumours found in vivo. In Chapter 2 we shall study

the growth of a tumour spheroid, focusing on how the metabolism of the cell affects its energy

requirements and how the energy is obtained. A review of the cell cycle and literature regarding

cell metabolism is given, followed by a mathematical model that studies the growth of a tumour
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spheroid, that includes all relevant chemical species and transport methods. This model is

then compared to experimental data before being simplified to a reduced model that also

simulates the growth of a tumour spheroid but only includes the components that have the

most effect.

In Chapter 3 the simplified model of tumour growth is used to study the mechanical forces

that develop inside a growing tumour spheroid. The various different approaches to studying

tumour mechanics is discussed, before a detailed explanation of a morphoelastic model that

was proposed by Hall [71]. This morphoelastic model is then implemented and used to derive

the stresses and strains that are generated. A potential application to experimental data will

then be given, showing the deformation of a tumour that has been sliced in half.

The final study of tumour growth will be given in Chapter 4. This will review the governing

equations used to study the nutrient concentration, by developing alternative macroscopic

equations, based on the microscopic features of the tumour using homogenization theory.

Features of these resulting equations will then be shown using example geometries and by

making comparisons to known data.

A study of the in vitro growth of a layer of cartilage tissue will be given in Chapter 5. The ideas

that form the eventual model are based on both the experimental literature and experimental

data. Thus a review of tissue metabolism and structure is given, followed by a review of the

experimental data and a discussion of the possible characteristics that result from the data

analysis. Using these ideas a mathematical model is then derived that simulates the growth of

the tissue layer as well as the cell distribution and make up of the extracellular matrix. The

modelling predictions will then be compared to the experimental data. The notation used in

this chapter will be independent of that that has been previously defined. To this extent all

previously defined variables and parameters can be discounted.

This thesis will end with a brief summary of the results and conclusions of the work developed

in each chapter; this is given in Chapter 6.
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Chapter 2

Modelling the effects of metabolism

on the growth of tumour spheroids

2.1 Introduction

Every year the leading British cancer charity, Cancer Research UK, spend over three hundred

million pounds on cancer research. Yet in 2008 alone there was 156,000 deaths due to cancer

and a positive diagnosis was made every two minutes [179]. On a worldwide scale over twelve

million people were diagnosed with cancer in 2008 of which over seven million died [46]. The

mortality rate for people diagnosed with cancer is falling, but with over two hundred known

types of cancer there is obviously a lot of work still to be done.

Cancer develops due to mutations in the genes that affect cell division. The cell cycle deter-

mines whether a healthy cell is required to divide to aid the body in growth or regeneration.

During this process there are various checkpoints that must be satisfied before the cell eventu-

ally reproduces. The mutation in a cancerous cell causes the cell to ignore the decisions made

in the cell cycle and rapidly divide independent of the body’s needs for more cells. A region

of cells experiencing uncontrolled proliferation is known as a tumour. This produces a region

of densely packed cells that demands a large amount of energy to survive. Thus in this region

a large quantity of nutrients are consumed and a large amount of waste is produced. Whilst

the diameter of the tumour is relatively small, nutrients will be transported to the cells by

diffusion. Once a tumour has reached a certain size the cells in the outer regions will consume

the nutrients before they are able to diffuse through to the inner regions. The cells in the inner

region wills now be unable to obtain the necessary energy supply to continue proliferation.

An in vivo tumour in this situation will become vascularised, forming new blood vessels to

provide an enhanced transport mechanism and supply the tumour with the necessary nutri-
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ents to continue growing. However in an in vitro tumour, the cells with limited nutrients will

proliferate at a slower rate or potentially die.

The success of medical treatments such as radiotherapy and chemotherapy are dependent

on the local micro-environment of cells [177] and yet the distribution of chemotherapeutic

drugs inside a tumour is poorly understood [117, 118]. The tumour’s micro-environment is

determined by nutrient and waste consumption, production and transport. Therefore it is of

interest to study how a group of cells will grow and how the concentrations of the chemical

species residing inside tumours are affected by cellular consumption, production, transport

and interactions between these components.

There is an extensive library of literature on the mathematical modelling of tumour growth.

In main these modelling studies have concentrated on in vitro tumours in which there is a

large amount of experimental data published. Modelling the growth of an in vitro tumour

is simpler than modelling the equivalent growth in vivo. This is due to the controlled envi-

ronment in which an in vitro experiments takes place in and the absence of effects such as

vascularisation. One of the earliest and most influential papers in the area of tumour mod-

elling was by Greenspan [68]. It introduced the concept of regional cell behaviour dependent

on the concentration of a general growth limiting nutrient. Since then many approaches have

been developed to model tumour growth. These have included such effects as the appearance

of necrotic cores [78, 145, 146], the build up of stress [5, 110], cell migration and interaction

within their local environment [6, 14, 143], as well as further investigation into the cell cycle

state at which cells exist in different regions of the tumour [186]. The above discussion only

refers to in vitro tumour growth. There has been some extensions of these models to in vivo

tumours, for example the environmental differences and effects of vascularisation have been

explored [15, 161]. For a more comprehensive review on mathematical modelling of tumour

growth see recent review papers by Araujo and McElwain [8] or Roose et al. [151].

Existing mathematical models most commonly consider the growth of an in vitro tumour being

controlled by the concentration of a single nutrient. The limiting species is generally thought

to be either oxygen or glucose [68]. However in many single species mathematical models

the model is simplified by considering a general species, normally referred to as ‘nutrients’.

Existing single species models are generally used to examine the behaviour and characteristics

of a tumour, such as in [161, 186, 188]. However there have been limited attempts to model the

growth of a tumour using a single species model and relate the results to experimental data,

[122]. Similarly there have been few models presented examining the role of multiple species

in metabolic processes within cells. The most advanced of this type of model is presented by

Casciari et al. [24]. In this chapter we will present a multispecies model of a tumour growing

in vitro that mirrors the concepts presented by Casciari et al. [24]. The model presented will

develop a structure to study the growth behaviour of a multicellular tumour spheroid (MCTS)
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for critically low concentrations of nutrients and at high concentrations of waste products. The

different stages of the cell cycle and effects of mitosis, quiescence and necrosis shall be taken

into account. The distribution of oxygen, glucose, carbon dioxide, lactic acid and pH within

an avascular tumour will be modelled as well as a detailed investigation into the metabolic

pathways from which cells obtain energy. In this model the relevant buffering reactions are

included together with waste production by cells. In addition to the diffusive effects on nutrient

movement, the effects of charge migration of ionic molecules are also incorporated. The results

of the model will give a greater insight into what factors limit growth and what is important

to include in a model of a MCTS. The model is reduces to a two species model in which

oxygen and glucose are retained. A further reduction to a single species model is shown to be

unrealistic.

This chapter will begin with a brief overview of the cell cycle before an in depth discussion

of tumour growth and modelling. In particular we shall focus on how metabolic effects can

alter the internal environment and growth of a tumour. Section 2.3 will then given a brief

review of a multispecies model that has many underlying characteristics that we wish to build

upon. The concepts of the tumour model presented in this thesis and the resulting modelling

equations will be presented in Section 2.4. The model is solved and the results are given in

Section 2.4.9. These results are then analysed in Section 2.5 and used to develop a simplified

model of tumour growth that retains the same characteristics as the original model but in a

reduced framework. The results of this simplified model are presented in Section 2.6. Finally

an overall discussion of the models presented and areas to develop in the future is given in

Section 2.7.

The cell cycle

A single cell will grow and divide into two daughter cells during a process known as the cell

cycle. The cell cycle consists of four consecutive phases that typically take between eighteen

to twenty-four hours to complete1. The first phase is known as the G1 phase (Gap 1 phase).

This phase begins immediately after the parent cell has divided into two daughter cells and is a

period of growth where the cell increases in size. This typically takes approximately ten hours

and is followed by the G1 checkpoint, which confirms the cell is ready for DNA synthesis. Once

the checkpoint is satisfied the cell enters the S (Synthesis) phase. The S phase is where the

cell’s DNA is replicated to form two identical sets, which will separate to form two daughter

cells. This generally takes between five and six hours. The G2 (Gap 2) phase follows the S

phase and like the G1 phase is a period of cell growth (approximately three to four hours).

1Cell cycle times are approximate times for tumour cells. The cell type and local environment of the cell
will cause these times to vary.
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Figure 2.1: A schematic of the cell cycle showing the ordered phases.

By the end of this phase the cell must be large enough to divide into two cells. As in the first

growth phase the G2 phase is completed when the G2 checkpoint is satisfied and the cell is

deemed ready to enter the M (Mitosis) phase. The M phase is where the cell divides into two

daughter cells. Firstly the two sets of chromosomes are separated and form two individual

strands of DNA. This is followed by the splitting of the cell into two daughter cells. This

phase typically takes two hours and completes the cell cycle. Due to cell signalling, a lack of

nutrients or other environmental stimuli a cell may leave the cell cycle, typically at the G1

checkpoint, and enter the G0 phase. Here cells exist in a quiescent or inactive state where they

are alive but not actively proliferating. Cells can exist in this phase until they are required

to make new cells once again or until they are given the signal to die (apoptosis). The five

phases of the cell cycle are graphically shown in Figure 2.1. For a more in depth review of the

cell cycle the author suggests Widnell and Pfenninger [191] or Morgan [121].

All cells are affected by their local micro-environment and the concentration of surrounding

nutrients. However a mutation in the DNA of a cancerous cells results in the cell neglecting any

signals to stop dividing and will continue on the cell cycle until its surrounding environment

prevents it.

The rate at which the cell cycle is completed is dependent on many factors. The most apparent

of these is the concentrations of chemical species in the surrounding environment, as this

determines how much energy the cell can assemble. Cells gain energy from respiration. This

can occur in the presence of oxygen and glucose (aerobic) or purely in the presence of glucose

(anaerobic). Therefore the concentration of oxygen and glucose is crucial in determining how

much energy the cell can produce. As well as providing energy, respiration creates waste,
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Figure 2.2: Sketch of a growing MCTS broken down into regions based on cell activity.

namely carbon dioxide, lactic acid and hydrogen. These can create a hostile local environment

for cells and reduce the rate at which the cell cycle is completed.

2.2 Literature review of cell metabolism

Modelling the growth of a tumour is a highly complicated process. The controlled environment

in which in vitro tumours are grown simplifies the experimental process, but biology is by no

means an exact science and therefore there is still a lack of coherent and systematic data

regarding the growth of tumours and the behaviour of cells in different micro-environments.

Once the governing processes within a tumour have been established there are still a large

number of species that can affect the growth of the tumour and therefore could be modelled.

In this study we shall solely consider multicellular tumour spheroids. A MCTS is a small

cluster of tumour cells, grown in vitro that have been found to create environments for cells

that are very similar to those seen in vivo, and have therefore been exploited in examining

tumour behaviour. As schematically shown in Figure 2.2 a MCTS has a simple structure that

once fully developed can be broken down into three regions. The first is the proliferating region.

The micro-environment here is conducive for proliferation and thus this region contains cells

that are actively undergoing mitosis. Below a certain diameter, the whole tumour is contained

within this region. In larger tumours, the proliferating region is found at the periphery and thus

is also know as the proliferating rim. As the tumour grows the concentration and conditions

within the MCTS change. At a certain size the conditions within the tumour will have changed

such that the centre is ill-suited for cell proliferation. At this point the cells will leave the cell

cycle, entering the G0 phase, becoming inactive. Thus this region is know as the quiescent

region. If the micro-environment within this region were to change, then these cells could

restart the cell cycle and proliferate once more. Thus the quiescent and proliferating region is

often collectively known as the viable rim. Further growth and decline in the environmental
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conditions at the tumour core will cause the quiescent cells to die. Thus cells at the centre

will begin to undergo necrosis, in what is known as the necrotic core. Once a cell is necrotic

it will not be able to return to either a quiescent or proliferative state.

In this thesis MCTS are used as a simple system in which to determine the metabolic mech-

anisms and nutrient distributions within a growing tumour. The growth of a MCTS causes

internal concentration gradients in essential nutrients and waste products. Single species

models determine the rate of growth by the concentration of the single species. Multi species

models show the interaction of multiple species with the tumour, showing how the environ-

ment inside a tumour develops and how the interaction of species limits growth. Casciari

et al. [24] present such a model, focused on effects of metabolic reactions within cells and

buffering reactions in the extra cellular space. Despite setting out to include all chemical and

biological effects, the model Casciari et al. then neglect many chemical reactions and present

a model that is critically dependent on the results of experimental data; taken from work by

Casciari and Freyer [22, 50]. The aim of this work is to explain the experimental observations

of a growing tumour. This will be done by modelling its growth using the chemical energy

demands and characteristics of cells in changing conditions rather than relying on empirical

fits to experimental data as in [24]. To do this an in depth understanding of metabolic activity

for individual and groups of cells is required.

Consumption of nutrients

Cells obtain the energy they require to exist by consuming oxygen, glucose and amino acids

which they acquire from their local extracellular environment. Therefore it is essential that a

detailed understanding of the characteristics of the nutrient consumption by cells is obtained.

There is a large literature available on the cellular consumption of both oxygen and glucose.

There are two particular phenomena that are observed, these are known as the Pasteur and

Crabtree effect. The Pasteur effect is characterised by cells that have a preference for aerobic

respiration and only swith to anaerobic respiration when the local concentration of oxygen

becomes limited. Cells governed by the Crabtree effect will have a preference for anaerobic

respiration and will only switch to aerobic respiration when the local glucose concentration

decreases below a critical level. The Crabtree effect coincides with the large body of work

based on the Warburg hypothesis which stated that cancer cells rely on aerobic glycolysis and

this alone can provide enough energy for cell proliferation. This has been widely discussed in

literature and although it may be the case in some cell lines, it has been proven incorrect in

others. Further information on the Pasteur and Crabtree is given in [35, 36, 193], whilst for

further details on the Warburg effect and energy metabolism in cancer cells is presented in

[66, 181, 185].
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Care must be taken when making comparisons between sets of experimental data. Cell lines,

spheroid structure and the local environment of a cell are just a selection of factors that

can influence nutrient consumption and reaction rates. The cellular consumption of either

oxygen or glucose is often derived by considering the MCTS as a whole. This simplifies the

experimental procedure and subsequent analysis, but is limited in both its description of how

individual cells behave and the behaviour of regions of cells. The reliance on diffusion as the

transport mechanism for species within a MCTS will allow consumption by cells to restrict

oxygen and glucose from reaching the centre of the spheroid. Therefore the the concentration

of nutrients at the centre will be lower than the outer surface. The rate at which oxygen and

glucose are consumed will be dependent on the preference of the cell line studied to undergo the

Crabtree or Pasteur effect. Cells that are governed by the Pasteur effect will prioritise aerobic

respiration and therefore as the size of a MCTS increases it is expected that the average oxygen

consumption will decrease. During the same period it is expected that glucose consumption

will increase, due to the increase in anaerobic respiration at the centre of the tumour. The

onset of quiescent and necrotic regions, will create regions in which the demand for oxygen

and glucose is lower. This makes interpretation of consumption rates based on entire MCTS

volumes more complicated. The existence of quiescent and necrotic regions may explain the

data presented by Freyer and Sutherland, [54], in which they report a linear decrease in both

the rate of oxygen and glucose consumption by EMT6/Ro cells as the size of the MCTS

increases. The decrease in the glucose consumption rate is unexpected but may suggest that

cells belonging to this cell line quickly becoming quiescent in an absence of oxygen. The trend

described by Freyer and Sutherland, [54], is verified over various cell lines for oxygen in [22, 57]

and for glucose in [22, 183].

Experiments exploring consumption as a function of various species concentrations have also

been reported. Freyer and Sutherland, in [54], published data regarding oxygen and glucose

consumption, by exponentially growing EMT6/Ro tumour cells grown in monolayer cultures,

as a function of oxygen and glucose concentrations. Oxygen consumption is shown to be con-

stant over a range of oxygen concentrations. The consumption rate of glucose is reported to

increase when the oxygen concentration decreases. This implies that EMT6/Ro cells are gov-

erned by the Pasteur effect and thus the rate of oxygen consumption would only decrease once

there is insufficient oxygen available to consume. This full correlation cannot be verified how-

ever as data for oxygen consumption at low level concentration is not given. The relationship

between the consumption rates of oxygen and glucose under changing glucose concentration

is not so transparent. Glucose consumption is constant at varying glucose concentrations and

even at low glucose concentrations no significant drop in consumption is seen. The rate of

oxygen consumption is observed to rise at low glucose levels, which suggests aerobic respiration

is being up regulated at low glucose levels, the Crabtree effect. These results are supported

by Casciari [22] and Mueller-Klieser et al. [125] for EMT6/Ro cells.
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Casciari [22] investigates the relationship between oxygen consumption and concentrations of

oxygen, glucose and hydrogen (pH) in EMT6/Ro cells. The rate of oxygen consumption is

shown to increase with oxygen concentration and decrease when the environment becomes

more acidic. An increase in glucose concentration is shown to decrease the rate of oxygen

consumption, and this Crabtree effect is shown to be consistent over a range of oxygen con-

centrations and pH. This contradicts other results for this cell line, which have predominately

shown the characteristics of the Pasteur effect. Looking away from EMT6/Ro cells, to other

cell lines, we see similar results. Bibby et al., [12], study Bovine nucleus pulposus cells, report-

ing that the rate of oxygen consumption decreases as oxygen concentration lowers. Similarly

Bibby et al. show that as the rate of glucose consumption decreases as glucose concentration

drops. In 9L rat tumour cells, [78, 104] and V79 Chinese hamster lung tissue cells, [78], the

rate of glucose consumption was shown to decrease as the glucose concentration lowered.

The behaviour of cells in different regions of EMT6/Ro tumour spheroids is considered in

Freyer [51]. The viable rim of a MCTS is broken down into radial fractions and oxygen

consumption rates for each region are given. This data shows that the cellular consumption

rate decreases through a MCTS, from a maximum at the outer surface, into the necrotic core

where consumption is negligible. Freyer, [52], confirms these findings, showing quiescent cells

consume two to three times less oxygen than cells in the viable rim.

Lactic acid production and pH

Experimental literature tends to focus on the scarcity of nutrients as the reason for restrictive

cell proliferation. Unlike most tissue, tumour cells can survive in highly acidic conditions

[39]. However high concentrations of waste products still affect spheroid growth and the

consumption rates of nutrients. At high oxygen concentration, aerobic respiration produces

carbon dioxide and water. When oxygen levels reduce, anaerobic respiration takes over, and

lactic acid is produced, as shown experimentally in [119, 120]. This will cause the local pH to

decrease. Tannock et al. [172] explain how hydrogen is regulated in tumours and show the need

for buffering reactions. Casciari [22, 24] presents data regarding EMT6/Ro tumour spheroids,

suggesting that when pH drops below pH neutral, oxygen consumption will also drop at low

glucose levels. However lactic acid is only expected to be produced when the concentration of

oxygen is very low, so there is insufficient data to draw any definite conclusions.

Walenta et al. [183] show experimentally that a rise in the rate of glucose consumption in-

creases the production of lactate. Bibby et al. [12], report that glucose and oxygen consumption

decreases as pH drops and Mokhbi Soukane et al., [120], show that at high lactate concentra-

tion, lactate production is low, suggesting the increase in pH is impeding the cells efficiency.

Walenta et al. [184] observed that lactate concentration was high in necrotic zones. In these
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necrotic zones energy production is known to be negligible, [183]. Therefore data suggests that

lactate concentration, or equivalently pH, is a factor in determining when cells will become

necrotic and as well as the rate of mitosis and onset of quiescence.

It should be noted that anaerobic respiration is not the only source of acid in a tumour.

Helmlinger et al., [74], propose bicarbonate as important element to include in determining

the pH, as they observe a strong correlation between carbon dioxide production and the pH

of their system.

Necrosis, proliferation and spheroid size

It has been observed that when a MCTS has grown sufficiently the centre of the spheroid will

become necrotic. This is generally taken to be due to the deprivation of essential nutrients,

[93, 171], and/or the local environment being unsuitable to support life, e.g. highly acidic.

The tumour spheroid can thus be broken down into two distinct regions, the necrotic core and

the viable rim. As shown schematically in Figure 2.2, the viable rim consists of cells which are

actively proliferating as well as those existing in a quiescent state. Therefore the consumption

rates and concentrations of nutrients and waste species, along with cell proliferation rates, will

vary throughout the viable rim. Using experimental data from [51, 54] Jiang et al. [87] have

derived metabolic rates for nutrient consumption and waste production for proliferating, quies-

cent and necrotic cells. Necrotic cells are inactive, but quiescent cells are reported to consume

oxygen and glucose at under half the rate of proliferating cells. Coinciding with this, waste is

produced at half the rate in quiescent cells compared to those that are actively proliferating.

Freyer and Sutherland [56] investigated the relationship between the concentration of oxygen

and glucose with the onset of necrosis in EMT6/Ro MCTS. They show that lowering oxygen

and glucose concentrations decreases the outer diameter of the spheroid at which time necrosis

is initiated. Notably oxygen is not clearly the dominant factor. Over an oxygen concentration

range of 0.28mM to 0.07mM and at a high glucose concentration of 16.5mM, necrosis is first

observed when the spheroid size becomes approximately five hundred microns in diameter.

However a reduction in glucose concentration greatly reduces the critical size for initiation of

a necrotic region, implying anaerobic respiration may be making up the deficit created by a

lack of oxygen in the early cases.

Freyer and Sutherland [56] present data regarding the thickness of the viable rim for varying

conditions and spheroid sizes. Care must be taken on interpretation of Figure 3 in [56] due

to an error in labelling. The results, summarised in Table 2.1, show that for high glucose

concentration the influence of oxygen is negligible. At high glucose concentration the viable

rim size remains of constant thickness, in the order of 250µm. As glucose concentration drops,

the viable rim size decreases. At low concentrations of oxygen and glucose the thickness of
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the viable rim also decreases as the spheroid grows in size.

Mueller-Klieser [124] propose that the viable rim contains three zones. Firstly the outer

peripheral, which will be well oxygenated and contains proliferating cells. Then a intermediate

zone, that is also well oxygenated, but not to the same extent as the outer peripheral and thus

quiescent. Thirdly a inner, hypoxic and therefore quiescent zone which may or may not become

necrotic. This is consistent with data in Freyer [51] which publishes data for fractions radiating

out from the centre. Freyer reports that in EMT6/Ro spheroids, the viable rim will be 223µm

wide and within this region oxygen consumption rates, percentage of cells proliferating and

average cell volume will all decrease as the distance from the spheroid periphery increases.

A similar three zone model pre-dating [51] and [124] is presented by Tannock, [171] in which

growth fractions and data on the position of cells in the cell cycle are given. Kunz et al. [93]

publish data for a range of cell lines (Rat1, M1, Rat1-T1 and MR1) showing the the oxygen

consumption rate through out different sized spheres. Not only does this data show the relative

consumption rates in different zones, but gives the radial thickness of the hypoxic region and

thus a guide to the thickness of the viable rim.

Between different cell lines the thickness of the viable rim and the way cells react to hypoxia

differs. Mueller-Klieser, [124], reports that WiDr and MR1 spheroids can grow to significantly

larger volumes before necrosis is observed. Mueller-Klieser introduces in [123] and expands in

[124] the idea that spheroid cell lines can be distributed into one of three categories. Firstly

spheroids that immediately become necrotic when the surrounding conditions becomes hy-

poxic. Secondly spheroids which can withstand hypoxia for a length of time before becoming

necrotic; due to this resilience the viable rim will be larger in these spheroids. And lastly

spheroids that see necrosis and then hypoxia. EMT6/Ro spheroids are an example of this

latter behaviour. They are vulnerable to low oxygen concentrations and require a minimum

concentration to survive. The viable rim for this case is relatively small.

In [55], Freyer and Sutherland look at the effects oxygen and glucose concentration have on

the state of cells in the cell cycle and relate this to the size of the viable rim. The data

shows that the percentage of cells in the S phase decreases with a decrease in either oxygen

or glucose concentration, or with an increase in spheroid diameter. The latter is verified by

Freyer et al. in [53]. The thickness of the viable rim is also shown to shrink as oxygen and

glucose concentrations decrease, as well as during spheroid growth. Freyer and Sutherland fit

formulas for the thickness of the proliferating layer as well as the growth fraction as functions

of the spheroid diameter and percentage of cells in the S phase. The relationship between

tumour conditions and the position of cells in the cell cycle is explored further in [55]. Data

shows that as either spheroid diameter increases, or the concentration of either oxygen or

glucose is reduced then the percentage of G1 cells will increase. Under the extreme conditions

of low oxygen and glucose concentration and large spheroid diameter the fraction of G1 cells
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Oxygen concentration, mol m−3

0.07 0.28
Glucose Spheroid Viable rim Spheroid Viable rim

concentration diameter thickness diameter thickness
mol m−3 µm µm µm µm

0.8 375 60 344 109
406 66 381 99

541 47 566 99

590 52 609 115

793 117

842 105

1014 58

1.7 357 60 320 101
498 78 369 93

602 70 602 128

652 120

799 124

848 130

1045 85

5.5 363 66 467 202
566 159 609 217

627 144 609 186

750 151 842 206

824 126 1156 202

1340 188

16.5 541 140 529 264
590 264 615 252

590 243 842 243

799 249 891 249

891 260 1094 221

1402 237

Table 2.1: Data from Figure 3 in [56] showing the thickness of the viable rim for EMT6/Ro
tumour spheroid grown in medium with various concentrations of oxygen, glucose. Oxygen
and glucose concentrations specified for the surrounding medium
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approaches one. S phase cells are also shown to decrease towards the centre of a spheroid,

[52, 55]. This implies that for large tumours and at low nutrient concentrations, cells are

mainly quiescent or necrotic with a relatively small number of cells proliferating at the spheroid

periphery.

ATP production

The conditions in which cells become quiescent, undertake apoptosis or are forced to undergo

necrosis vary. Hypoxia is generally taken to be a main factor influencing the state of cells,

[171], but Mueller-Klieser stated explicitly that ‘cell cycle arrest in multicellular spheroids is

not a consequence of hypoxia or nutrient depletion’ in [124] and therefore other factors must

be involved. These may include the pH of the local environment, mechanical stresses applied

to the cells or the loss of suppressor genes [39].

Hlatky et al., [78], modelled necrosis based on the possible amount of energy, adenosine triphos-

phate (ATP), that cells could produce. Therefore in the absence of any extracellular influences,

cells have a desired energy requirement from their surroundings. If this requirement is met

then the cell will complete the cell cycle at a desired rate. If resources are not available to meet

the energy requirement the cells will either stop proliferating, become quiescent or even die.

Hlatky et al. [78] found that V79 cells from Chinese hamster lung tissue will become necrotic if

the amount of ATP produced drops to half the level it was at under optimal conditions. This

seems a logical way to model cell metabolism as it takes into account a variety of different

factors. It still implies that cells will either be mitotic, quiescent or necrotic depending on

the concentration of oxygen in its surrounding environment. However providing there is an

adequate concentration of glucose it will allow anaerobic respiration to meet the rate of ATP

production required for a cell to continue being mitotic or quiescent. Data regarding the con-

centration of glucose at the centre of a spheroid for a range of spheroid diameters is presented

by Walenta et al. [183]. For MR1 and Rat1-T1 cells the glucose concentration at the centre of

the spheroid is shown to decrease as spheroid size increases. However, the concentration never

falls to zero. This implies that for these cell lines the rate of ATP production must be strictly

greater than zero for a cell to survive.

Walenta et al., [183], investigate ATP production and present data on the ATP distribution

throughout a MCTS. A distinct reduction in ATP production was observed between the outer

rim and the spheroid centre, as well as at spheroid centres over a range of increasing sphere

diameters. In regions of proliferating cells ATP distribution was constant. From the work done

in [183] we can conclude there is a direct link between cell death and ATP production as well

as differing cell behaviour at differing ATP concentrations. Walenta et al. [183] and Richter

et al., [147] both state that apoptosis is an energy requiring process. Therefore a cell’s ability
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to produce ATP is an important influence in determining if the cell will die by apoptosis of

necrosis. Richter et al. propose a cell stays alive whilst the ATP level is above an intermediate

point. Whilst below this level, apoptosis occurs providing there remains enough ATP. If the

ATP level drops below a critical level then the cells will die due to necrosis.

From a modelling prospective, including ATP requirement will allow the behaviour of glucose

and oxygen to be strongly interdependent. It will allow the cell state and spheroid growth

to be dependent on the requirements of ATP alone, rather than on individual species. The

concepts and ideas will now be used to construct a multispecies mathematical model of a

growing MCTS.

2.3 Review of Casciari’s multispecies model

Casciari et al. [24] present a multispecies model of avascular tumour growth that accommodates

the chemical species involved in aerobic and anaerobic respiration as well as those needed for

buffering ionic species. These are oxygen (ox), glucose (gl), carbon dioxide (cd), lactate (la),

hydrogen (hy), bicarbonate (bi), chlorine (ch) and sodium (so). As in [20, 21, 37, 65, 68, 87,

161, 186, 188] the concentration of a species is modelled using the diffusion-reaction equation.

Casciari et al. choose to include the effects of charge migration. There are limitations of

the model presented in [24] as well as doubts over the accuracy of the results presented. In

particular these relate to the metabolite production terms and the expression for spheroid

growth.

Using the chemical equations for aerobic respiration, anaerobic respiration and the relevant

buffering reactions Casciari et al. write down a system of production terms. The rates of reac-

tion for respiration are unknown and so Casciari et al. derive expressions for the consumption

of oxygen and glucose by assuming Michaelis Menten kinetics and fitting to data given in

[22]2. These fitted expressions for oxygen and glucose are functions of the local concentration

of oxygen, glucose and hydrogen and are subsequently used in the derivation of the produc-

tion terms for the remaining species. The consumption rates of oxygen and glucose used by

Casciari et al. are,

Pox = − ρc

(
Aa +

Ba

CglC
m
hy

)(
Cox

Cox + kma

)
, (2.1)

Pgl = − ρc

(
Ab +

Bb

Cox

)(
1

Cn
hy

)(
Cgl

Cgl + kmb

)
, (2.2)

2Full details of the fitting process are given in [22], whilst the terms used in [24] are a simplified version of
that shown in [22].
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where Cox, Cgl and Chy are the local concentrations of oxygen, glucose and hydrogen respec-

tively and Aa, Ba, Ab, Bb, m, n, kma and kmb are constants that have been fitted to data

given in [24]. Originally the production of each species is derived in the intracellular and ex-

tracellular space separately. Casciari et al. then simplify these expressions to give productions

terms independent of being inside or outside the cells. In simplifying the original expressions

certain effects of respiration are removed. The production terms used by Casciari et al. for

carbon dioxide, lactic acid and hydrogen ions are,

Pcd = − kfCcd + krCbiChy, (2.3)

Pla = − 2

(
Pgl −

1

6
Pox

)
, (2.4)

Phy = kfCcd − krCbiChy − 2

(
Pgl −

1

6
Pox

)
− Pox, (2.5)

where kf and kr are the forward and reverse reaction rates for the hydrogen buffering reaction

and Cbi is the concentration of bicarbonate. The buffering regulates the acidity/alkaline of

the tumour and is achieved by adding bicarbonate to the system. The production term used

for bicarbonate was,

Pbi = kfCcd − krCbiChy − Pox. (2.6)

Although it is noted that these are simplifications of the original expressions, there are still

several irregularities in these production terms. Carbon dioxide is a product of aerobic respi-

ration, yet there is no dependence on the consumption of oxygen in equation (2.3). Hydrogen

is solely produced during anaerobic respiration yet there is an extra −Pox term included in

equation (2.5). The production of bicarbonate should be determined by a mass balance of the

buffering equation and thus a function of the concentration of hydrogen, carbon dioxide and

bicarbonate. However equation (2.6) states that the production is produced at a rate that is

influenced by the rate of oxygen consumption.

When either the concentration of oxygen or glucose fall below a critical level the expressions

for production of oxygen and glucose were replaced by,

Pox = − ρc
(
φa − βaC

2
gl

) C2
ox

C2
ox + ζa

(
C2
gl

C2
gl + ζb

)
, (2.7)

Pgl = − ρc
(
φb − βbC

2
ox

)
(

C2
gl

C2
gl + ζb

)
. (2.8)

in which φa, φb, βa, βb, ζa and ζb are constants defined in [24]. These new expressions neglect

the effects of pH and assume that all species involved in respiration will behave with glucose

Michaelis Menten kinetics. The reasons behind the production rates of oxygen and glucose
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taking this form were never explained in either [24] or [22]. Thus we can only conclude that

they are empirical.

Casciari et al. model the growth of a spheroid until the onset of necrosis. Experimental data

for the doubling time of cells, found in [22] are used to fit an expression for the growth of the

spheroid in which necrosis is not accounted for and in which cells in the absence of oxygen or

glucose become quiescent. The expression given for growth in [24] assumes Michaelis-Menten

behaviour due to oxygen and glucose and assumes cells are shed at a rate proportional to the

surface area. The effects of pH are included, where the exponent is once again used as a fitting

parameter. The final expression used by Casciari et al. in [24] is,

G (r, t) = KoG1

(
Cox

Cox +G2

)(
Cgl

Cgl +G3

)(
1

Chy

)ng

, (2.9)

where G is the rate of growth of the spheroid, Ko is a growth constant for cells and G1,

G2, G3 and ng are constants that have been fitted to data. Although the expression may

reflect the experimental data whilst oxygen and glucose are high, it gives little insight into

what influences growth and the effects of low oxygen and glucose in different regions of the

spheroid.

An absence of a complete set of parameters and data makes recreating the predictions of the

model presented in [24] impossible. Similarly the model presented has a Neumann boundary

condition to reflect the flux of species across the surface of the tumour. Other than for oxygen

the results presented show no effects from this and imply a Dirichlet boundary condition was

used in the numerical calculations in [24].

The results also highlight inaccuracies in the model, in that oxygen consumption has ceased

at the tumour core, resulting in a central region absent of glucose but not hypoxic. This

contradicts experimental data in [124, 125, 126]. These points must be addressed in any

future multispecies model.

2.4 Tumour modelling: Full model

Using the ideas discussed in sections 2.2 and 2.3 we shall now present an alternative model

of the microenvironment and growth of an in vitro MCTS. This model will consider a MCTS

consisting of cells from the EMT6/Ro cell line and thus it will be assumed that the dominant

metabolic pathway is respiration governed by the Pasteur effect. Therefore the chemical species

considered in this model are oxygen (ox), glucose (gl), carbon dioxide (cd), hydrogen (hy) and

lactate (la). Bicarbonate is added to the in vitro experiments as a buffer to regulate the pH

of the tumour, preventing the tumour from becoming too acidic or alkaline [74, 172]. A high
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concentration of chlorine (ch) and sodium (so) within the extracellular fluid will be assumed.

Chlorine and sodium are spectator ions, that are not involved produced in any reactions, but

are required as electron buffers so that the electrical charge in the tumour remains neutral.

The concentration, Ci, of each chemical species i in the tumour microenvironment is governed

by conservation of mass. It shall be assumed that the tumour grows with spherical symmetry

and therefore letting r represent radial distance from the origin and t time, the concentration

of each species will be governed by,

∂Ci

∂t
+

1

r2
∂

∂r

(
r2Ni

)
= Pi, (2.10)

where Ni is the flux
(
mol m−2s−1

)
of species i in the outward radial direction and Pi is the

production rate per unit volume. The production rates of each species are discussed in Section

2.4.5.

The transport mechanisms that govern the flux of each species will be advection, diffusion and

charge migration. Advective transport will take place in the fluid surrounding the cells and

is due to the spheroid growing. In this model we shall not consider the velocity of cells and

the fluid separately, but instead implement an average velocity of the two, denoted by U and

derived in Section 2.4.3. A detailed discussion of the appropriate expression for diffusion using

homogenization techniques is given in Chapter 4. However in this model diffusion shall be given

by Fick’s law; the diffusion coefficients, Di, for individual species are discussed in Section 2.4.1.

Charge migration is included as a transport mechanism due to the high concentration of ionic

species and thus presence of an electric field. As described by Newman and Thomas-Alyea

[132] the electric field, −∇Φ can be multiplied by the charge per mole on a species to derive

the force per mole. The average velocity of a species in the electrolyte when acted upon by

a force of one Newton per mole is called the mobility. The force per mole multiplied by the

mobility gives the migration velocity and this multiplied by the concentration of the chemical

species gives the net flux due to charge migration. Thus the total flux for each species is given

by,

Ni = Ci U − Di
∂Ci

∂r
− zi µi F Ci

∂Φ

∂r
, (2.11)

in which zi is the charge of species i, F is Faraday’s constant and Φ is the electric potential

respectively. As in [24, 64, 153] the mobility, µi, is taken to be related to diffusivity by the

Nernst-Einstein equation,

µi =
Di

Rg T
, (2.12)

where Rg is the ideal gas constant and T is the temperature in degrees kelvin.
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Species Concentration, C∞i
Ref. Diffusivity, Di Ref. Nsc [24]

mol m−3 m2 s−1

Oxygen 0.21 [24] 1.65·10−9 [87] 3.061

Glucose 5.5 [24] 1.1 ·10−10 [23] 3.455

Carbon dioxide 1.295 [22] 3.108

Lactate 0 3.345

Hydrogen 10−4.25 [24] 2.682

Bicarbonate 26.2 [164] 3.218

Chloride 122.6 [164] 3.124

Sodium 143.4 [164] 3.266

Table 2.2: Initial concentrations, diffusion coefficients and Sherwood coefficients for the chem-
ical species. The Sherwood numbers Nshi

, denote the rate of transfer of a species across the
spheroid surface and are a function of the spheroid radius S such thatNshi

= 1+Nsc·104·S1.099.

2.4.1 Diffusion coefficients

Not all of the diffusion coefficients for chemical species within a cellular region are known. Thus

we must use known data to derived diffusion coefficients for the remaining species. In [170],

Swabb et al. determine an empirical relationship between a species molecular weight and its

diffusion coefficient. This relationship can be used to derive an unknown diffusion coefficient

using the species molecular weight and the molecular weight and diffusion coefficient of a

species with a similar molecular size. This is done by using the empirical equation,

Di = Dj

(
MWj

MWi

) 3

4

, (2.13)

where Dj and MWj are the diffusion coefficient and molecular weight of a known species and

Di and MWi are diffusion coefficient and molecular weight of the unknown species.

Oxygen, carbon dioxide, bicarbonate and hydrogen are of a similar molecular size and are

all capable of diffusing across a cell membrane. Glucose, lactate, chloride and sodium are

also of a similar molecular size to each other and are unable to diffuse across a cell membrane.

Therefore taking diffusion coefficients of oxygen and glucose from the literature, given in Table

2.2, equation (2.13) can be used to calculate the diffusion coefficients for the remaining species.

A schematic of the chemical species diffusing into the MCTS is shown in Figure 2.3.
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Figure 2.3: Schematic of the diffusion of nutrients and waste products. Nutrients diffuse
into the tumour from the surrounding medium and are consumed by the cells, whilst waste
products are synthesized inside the tumour and diffuse out.

2.4.2 Charge migration

Transport due to charge migration is dependent on the gradient of the electric potential. This

can be derived by studying the conditions within the tumour spheroid. In the extracellular

medium the electric field can be modelled using Maxwell’s equations. We assume that the

medium is homogeneous, isotropic and that the time scales in which Maxwell’s equations

occur are significantly smaller than those in which a tumour reacts. By using the dielectric

constant for cells given in [91], we calculate the Debye length to be of order 10−9m, which is

much smaller than the other lengths scales associated with the tumour model. Therefore, as

described by Newman and Thomas-Alyea in [132], a small deviation from electro-neutrality

would require a large electric force, the size of which is unrealistic in a tumour spheroid.

Therefore the tumour can be considered to be charge neutral at any point and we impose,

n∑

i=1

ziCi = 0. (2.14)

Charge can not be created nor destroyed, therefore,

n∑

i=1

zi Pi = 0. (2.15)
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Multiplying equation (2.10) by the corresponding charge of the species, zi, and summing over

all components gives,

∂

∂t

(
n∑

i=1

zi Ci

)
+

1

r2
∂

∂r

(
r2

n∑

i=1

ziNi

)
=

n∑

i=1

zi Pi. (2.16)

Substituting equations (2.14) and (2.15) into equation (2.16) gives,

1

r2
∂

∂r

(
r2

n∑

i=1

ziNi

)
= 0. (2.17)

This must hold throughout the MCTS, therefore to be satisfied at the origin,

n∑

i=1

ziNi = 0, (2.18)

which imposes that there is no net current through the tumour.

Substituting equations (2.11) and (2.12) into equation (2.18) gives,

U

n∑

i=1

zi Ci −
n∑

i=1

ziDi
∂Ci

∂r
− F

RgT

∂Φ

∂r

n∑

i=1

ziDiCi = 0. (2.19)

Rearranging equation (2.19) and imposing equation (2.14) gives an equation for the electrical

potential gradient,

∂Φ

∂r
= − RgT

F

(∑n
k=1 zkDk

∂Ck

∂r∑n
k=1 z

2
kDk Ck

)
. (2.20)

Equation (2.14) is a linear combination of the equations governing conservation of ionic species.

Thus we cal replace the equation for conservation of sodium by equation (2.14).

2.4.3 Conservation of cells

Within the spheroid we require that cells are conserved. Thus if ρ is the density of cells we

impose,
∂ρ

∂t
+

1

r2
∂

∂r

(
r2 ρU

)
= ρ g, (2.21)

where g is the net rate of proliferation. In the absence of any additional forces and neglecting

the change in cell sizes discussed in Section 2.2, it will be assumed that cells will spread out

such that the cell density will remain constant, thus

1

r2
∂

∂r

(
r2 U

)
= g, (2.22)
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∆

S(t)

Figure 2.4: A schematic of the boundary layer that surrounds the tumour spheroid. The size
of the tumour is denoted by S(t), whilst the boundary layer is of size ∆.

The net rate of proliferation will be determined by the local concentration of metabolic species

and will be discussed in Section 2.4.6.

2.4.4 Initial and boundary conditions

To complete the model we require initial and boundary conditions for equation (2.10), gov-

erning the concentration of each species and for equation (2.22), governing the velocity of the

fluid.

Initially the concentration of each species will be set equal to that found in a typical culture

medium used for growing in vitro tumours, denoted by C∞i
. The medium considered will be

Basal Medium Eagle and initial concentrations of each species are given in Table 2.2. The

initial size of the spheroid will be taken to be that of a single cell.

The spherical shape of the tumour implies that the centre is stationary and thus there is zero

cell velocity at the centre. Spherical symmetry also demands that there is no flux of species

at the centre.

MCTS are commonly grown in medium that is replaced at regular intervals; commonly one

to two days. The frequency that the medium is replaced and the degree of mixing that

the culture system experiences will have a large effect on the transfer of nutrients from the

outer medium into the tumour spheroid. We shall therefore consider a region surrounding the
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tumour, through which the nutrients will be able to diffuse. The thickness of this region will

be denoted by ∆ and the concentration at the outer surface will be constant, denoted by C∞i
.

The advantage of this approach is that by changing the size of ∆ we can study the effects of

mixing. Infinite ∆ would suggest that the MCTS is grown in a stationary fluid that is not

replaced during the experiment. Whilst taking the limit as ∆ tends to zero would simulate a

MCTS grown in a well mixed outer medium. A schematic of this setup is given in Figure 2.4.

In the region surrounding the tumour we shall consider nutrient transport to be only the result

of diffusion. The lack of waste production means we shall simplify the transport equation

in the outer region by neglecting the effects of charge migration. The absence of cells in

the boundary layer will have an effect on the diffusion coefficients of the nutrients, thus the

diffusions coefficient in the boundary layer will be denoted by Diout. For species that can

diffuse through a cell membrane, as discussed in Section 2.4.1, Diout will equal Di. For those

that can not Diout will be derived by dividing the diffusion coefficients used inside the tumour

by the volume fraction of cells inside the tumour. To leading order the concentration of each

species inside the boundary layer can be modelled by,

1

r2
∂

∂r

(
r2Diout

∂Ci

∂r

)
= 0 for r ∈ (S , S +∆) . (2.23)

Equation (2.23) can be solved with continuity of species concentration and continuity of flux

at the surface of the tumour and Ci = C∞i
at r = S +∆, where C∞i

is the concentration of

species i in the original culture medium. This results in a flux condition at the tumour surface

such that,

r2Ni = Diout

S (S +∆)

∆
(Ci − C∞i

) at r = S(t), (2.24)

An alternative interpretation to the boundary layer model, as proposed above, is that it

simulates the resistance of nutrients as they cross from the external medium into the tumour

spheroid. Values of these mass transfer coefficients, Sherwood numbers, are derived and given

in [24]. As a first approximation we shall implement these mass transfer coefficients such that,

r2Ni = Diout S Nshi
(Ci − C∞i

) at r = S(t), (2.25)

where Nshi
is the Sherwood number for species i. Later in the chapter we shall review this

approximation and discuss the effects of a well mixed and stationary boundary fluid. The

values for C∞i
and Nshi

for each species are given in Table 2.2.

The effects of cell shedding from the tumour surface will be neglected, as discussed in [96, 187],

thus the outer surface of the tumour will move with the cells on the surface and hence the

kinematic condition is,
dS

dt
= U at r = S(t), (2.26)
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where U is defined by equation (2.22).

2.4.5 Production terms

We shall now derive the production rates for each chemical species using the ideas discussed in

Section 2.2. As stated at the start of Section 2.4, this model shall consider a MCTS in which

respiration governed by the Pasteur effect is taken to be the dominant metabolic pathway.

Therefore the chemical reactions for aerobic and anaerobic respiration must be considered.

Along with respiration the buffering of hydrogen to regulate the pH within the MCTS is

included and thus the relevant chemical reactions for this must also be studied. However we

shall firstly look at how cells utilise their local environment to generate the energy they require

by means of respiration.

Metabolic reactions

Cells that are characterised by the Pasteur effect will aim to meet their energy needs by aerobic

respiration. However if their is an insufficient supply of oxygen in their local environment,

cells will turn to anaerobic respiration. Therefore this model must accommodate aerobic

respiration, anaerobic respiration and a transfer between the two when the concentration of

oxygen within a cells local environment falls below a critical level. The energy created by

respiration is defined in terms of the concentration of ATP. The chemical equations for aerobic

and anaerobic respiration, including ATP production, are,

C6H12O6 + 6O2 + 38ADP
Raero−→ 6H2O + 6CO2 + 38ATP, (2.27)

C6H12O6 + 2ADP
Ran−→ 2C3H5O

−

3 + 2H+ + 2ATP, (2.28)

where Raero and Ran are the maximum rates of reaction for aerobic and anaerobic respiration.

ADP is a nucleotide required for ATP synthesis and is assumed to be in plentiful supply.

Using equations (2.27) and (2.28) we can infer that the maximum rate of production for oxygen

and glucose, denoted by Pmax
ox and Pmax

gl , due to respiration are,

Pmax
ox = −6RaeroCgl C

6
ox, (2.29)

Pmax
gl = −RaeroCgl C

6
ox − Ran Cgl. (2.30)

The maximum rates for oxygen and glucose consumption, Rox and Rgl are given by Freyer

and Sutherland [54]. From these the reaction rates Raero and Ran can be deduced. However

the resulting maximum production rates are highly dependent on the concentration of oxygen

24



due to the large exponent in equation (2.29). This results in oxygen consumption becoming

negligible well before the oxygen concentration becomes as low as is seen experimentally.

Therefore, by assuming Michaelis-Menten kinetics, we shall replace the expressions given in

equations (2.29) and (2.30) by,

Pmax
ox = ρRox

Cox

Cox + kox
and Pmax

gl = ρRgl

Cgl

Cgl + kgl
, (2.31)

where ρ is the density of cells and the Michaelis constant kox is set as the concentration of

oxygen defined as hypoxia. The Michaelis constants kox and kgl are discussed further in Section

2.4.8.

We shall assume a cell will only create the energy that it needs. Thus the effective rates for

respiration will be dependent on whether the cell is either proliferative, quiescent or necrotic.

We shall assume that cells can derive the concentrations of oxygen and glucose in their local

environment and thus determine the maximum amount of ATP that can be produced. The

maximum production rate of ATP, Pmax
atp , is simply a linear combination of the maximum that

can be produced during aerobic and anaerobic respiration and can be represented by,

Pmax
atp = −38

6
Pmax
ox − 2Pmax

gl . (2.32)

In a plentiful supply of oxygen and glucose cells will aim to produce a high level of ATP, thus

enabling the cell to undergo mitosis. As the concentration of oxygen or glucose restricts ATP

production the cell will be forced to down regulate its rate of ATP production and in turn

become quiescent and then necrotic. Therefore the desired production of ATP is dependent

on the cells local environment and the production rates of oxygen and glucose, Pox and Pgl.

We shall denote the rate of ATP production demanded by mitotic cells shall by Qq +Qm, for

quiescent cells by Qq and we shall assume that cells undergoing necrosis demand no ATP.

The potential rate of ATP production thus determines the demanded rate of ATP production

Patp. If the maximum rate of ATP production, Pmax
atp is greater than the required rate for

mitosis, Qq+Qm, then the cells will produce ATP at this rate. If this rate can not be met, but

the maximum ATP production rate is greater than required rate for a cell to stay quiescent,

Qq, then the ATP production rate will equal Qq. Below this the ATP production rate is

inadequate for a cell to stay quiescence and thus cell will become necrotic, demanding no ATP

to be produced. Mathematically this sets Patp such that,

Patp =





Qm + Qq if Qm + Qq < Pmax
atp ,

Qq if Qq < Pmax
atp < Qm + Qq,

0 if Pmax
atp < Qq.

(2.33)
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If aerobic respiration can meet the desired ATP production rate required by cells, oxygen will

be consumed at the appropriate rate. However if the rate of aerobic respiration is insufficient

to meet the ATP demand then anaerobic respiration will meet the surplus and oxygen will be

consumed at the maximum rate that is possible. Thus oxygen production will be given by,

Pox = −min

(
6

38
Patp , P

max
ox

)
. (2.34)

ATP is produced due to the consumption of oxygen and glucose and thus the production rate

must be met such that,

Patp = −38

6
Pox − 2

(
Pgl −

1

6
Pox

)
, (2.35)

where Patp has been determined by a mass balance of equations (2.27) and (2.28). Patp is

already defined by equation (2.33), therefore we rearrange equation (2.35) to determine the

glucose production. This gives,

Pgl =
1

6
Pox − 1

2

(
Patp +

38

6
Pox

)
. (2.36)

There is no need to set glucose production as the minimum of the demanded rate and possible

rate as this is accommodated for in equation (2.33). Using equations (2.27) and (2.28) the

contribution of respiration to the production of carbon dioxide, lactate and hydrogen can be

derived in terms of oxygen and glucose production such that,

Pcd = −Pox, (2.37)

Pla = −2

(
Pgl −

1

6
Pox

)
, (2.38)

Phy = −2

(
Pgl −

1

6
Pox

)
. (2.39)

Buffering reactions

We shall now consider the buffering reactions. Although there are many different chemicals

that buffer the pH in MCTSs, carbon dioxide and bicarbonate are taken to be the most

effective. For a buffer to have maximal capacity, i.e. be most effective, the acidity dissociation

constant should be as close as possible to the pH of the system. To verify that these species

3The consumption rates of oxygen and glucose given by Freyer and Sutherland [54] are 8.3 · 10−17 and
5.2 · 10−16 respectively. The values Rox and Rgl, given in Table 2.3, have been multiplied by (1 + kox/C∞ox)
and

(

1 + kgl/C∞gl

)

so that the initial oxygen and glucose production rates agree with [54].
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Parameter Value Units Ref.

ATP production mitosis Qq +Qm 8.58 ·10−16 mol cell−1 s−1 [54]

Cell density ρ 2.01 ·1014 cell m−3 [24]

Buffering reaction rate kf 0.145 s−1 [63]

Buffering reaction rate kr 1.73 ·102 mol−1 m3 s−1 [63]

Glucose consumption rate Rgl
3 7.69 ·10−16 mol cell−1 s−1 [54]

Michaelis constant oxygen kox 1.32 ·10−2 mol m−3 [79]

Oxygen consumption rate Rox 8.82 ·10−17 mol cell−1 s−1 [54]

Rate of mitosis KM 1.48 ·10−5 s−1 [97]

Temperature T 310 kelvin

Table 2.3: Table of parameters given in the literature for the full model.

are the appropriate buffers for this system, the interaction of carbon dioxide, hydrogen and

bicarbonate will be explained in more depth.

The pH of an aqueous solution is strictly the concentration of hydronium, H3O
+, rather than

hydrogen ions, H+. Therefore the full chemical buffering equation of hydrogen by carbon

dioxide and bicarbonate, HCO−

3 , including the intermediate steps involving carbonic acid,

H2CO3, is,

CO2 + 2H2O
k1−−⇀↽−−
k−1

H2CO3 +H2O
k2−−⇀↽−−
k−2

H3O
+ +HCO−

3 , (2.40)

where k1 and k−1 are the hydration and dehydration rates and k2 and k−2 are the forward and

reverse ionization rates. To simplify the analysis the solution shall be taken to be well mixed

and thus spatial variations can be neglected. Using square brackets to represent the overall

concentration of a species, the dimensional mass balance equations for this reaction are,

d [CO2]

dt
= k−1 [H2CO3] [H2O] − k1 [H2O]2 [CO2] , (2.41)

d
[
H3O

+
]

dt
= k2 [H2CO3] [H2O] − k−2

[
H3O

+
] [

HCO−

3

]
. (2.42)

To highlight the rates at which each reaction takes place equations (2.41) and (2.42) are

nondimensionalised. The concentration of water is significantly larger than that of the other

reactants. It is therefore convention to take the concentration of water to be constant and

include it in the hydration rate, such that,

[H2O] = H2O and k1 = k1
(
H2O

)2
. (2.43)

where an over bar represents a constants a constant concentration and a hat will represent a

nondimensional variable. Time is scaled using the dehydration rate k−1, as this is believed to
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be the slower reaction. Thus,

t =
(
k1
)
−1

t̂. (2.44)

The remaining species are scaled using typical concentrations found in medium surrounding

cells;

[CO2] = CO2

[
ĈO2

]
, [H2CO3] = H2CO3

[
Ĥ2CO3

]
, (2.45)

[
H3O

+
]
= H3O

[
Ĥ3O

+
]
,
[
HCO3

−
]
= HCO3

[
ĤCO3

−

]
. (2.46)

Thus the non dimensional equations, without the hats, are,

k1 CO2
∂ [CO2]

∂t
= k−1H2OH2CO3 [H2CO3]− k1CO2 [CO2] , (2.47)

k1 H3O
∂
[
H3O

+
]

∂t
= k2H2CO3H2O [H2CO3]− k−2H3OHCO3

[
H3O

+
] [

HCO−

3

]
. (2.48)

The hydration and dehydration rates, k1 and k−1, along with the ratio of the forward and

reverse ionisation rates, k2:k−2, are given by Garg and Maren [63]. Garg and Maren, [63], also

state that the dissociation of carbonic acid to hydrogen and bicarbonate is much faster than

the hydration of carbon dioxide, thus ,

k−2 >> k2 >> k1. (2.49)

The time derivative in equation (2.48) is therefore taken to be negligible. The resulting equa-

tion,

H2CO3 [H2CO3] =
k−2

k2
H3OHCO3

[
H3O

+
] [

HCO−

3

]
, (2.50)

can then be substituted into equation (2.47) to give,

k1 CO2
∂ [CO2]

∂t
=

k−1k−2

k2
H3OHCO3

[
H3O

+
] [

HCO−

3

]
− k1CO2 [CO2] . (2.51)

This implies that the effective reaction can be written as

CO2 + 2H2O
kf−−⇀↽−−
kr

H3O
+ +HCO−

3 , (2.52)

where by the forward and reverse reaction rates are defined by,

kf = k1 and kr =
k−1k−2

k2
. (2.53)

Numerical values for these expressions can be found using data in [63] and are given in Table

2.3.
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The acid dissociation constant, Ka, is a measure of the relative strength of an acid and is

calculated as the ratio of concentration of the products to the concentration of the original

acid. Therefore the dissociation constant of carbonic acid is,

Ka =

[
HCO−

3

] [
H3O

+
]

[H2CO3]
. (2.54)

A buffer is most effective when its pKa is equal to the pH of the system, where

pKa = −log10 (Ka) . (2.55)

The pKa of carbonic acid is given by David [40] to be 6.35. The pH of a tumour is know to be

in the range 6.9 - 7, [131, 172], therefore carbon dioxide and bicarbonate will act as efficient

buffers in this system.

Expressions for the production of carbon dioxide, bicarbonate and hydrogen4 as a consequence

of the buffering reaction in equation (2.52) can now be derived. These are,

Pcd = − kfCcd + krCbiChy, (2.56)

Phy = kfCcd − krCbiChy, (2.57)

Pbi = kfCcd − krCbiChy. (2.58)

Chlorine and sodium are both spectator ions and so are not involved in any reactions.

The full system of production terms are given by,

Pox = −min

(
6

38
Patp , P

max
ox

)
, (2.59)

Pgl =
1

6
Pox − 1

2

(
Patp +

6

38
Pox

)
, (2.60)

Pcd = −Pox + krCbiChy − kfCcd, (2.61)

Pla = −2

(
Pgl −

1

6
Pox

)
, (2.62)

Phy = −2

(
Pgl −

1

6
Pox

)
− krCbiChy + kfCcd, (2.63)

Pbi = kfCcd − krCbiChy, (2.64)

Pch = 0. (2.65)

4For simplicity, in the remainder of this chapter the local pH of the tumour will be referred to as log
10

of
the concentration of hydrogen rather than hydronium.
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The production terms stated above have been derived from the chemical reactions for aerobic

respiration, anaerobic respiration and the buffering of hydrogen. Unlike those presented by

Casciari in [24] and summarised in equations (2.1) to (2.6) of Section 2.3, no reactions have

been neglected, nor have the production terms been simply fitted to data. It is hoped that

the more transparent nature of these terms will provide a better understanding of how the

conditions within a MCTS develop whilst modelling the data as well as those given in [24].

2.4.6 Growth

We shall now consider how the net rate of proliferation affects the growth of the tumour

spheroid. Mechanical forces will be neglected in this model for growth as will the effects of

cell shedding. Thus we shall only consider growth to be a function of the concentration of the

chemical species within the tumour spheroid.

As described in Section 2.4.5 when a cell’s local environment does not restrict its production of

ATP, the cell will consume oxygen and glucose at a given rate and use the energy produced to

undergo mitosis. Once the local oxygen and glucose concentrations fall below a critical level,

cells will reduce their requirement for ATP and become quiescent. As oxygen and glucose

concentrations reduce further cells will become necrotic. Therefore the net rate of proliferation

must reflect the production of ATP within these regions. In the mitotic region, the maximum

rate of mitosis will be denoted by KM . Although in this region the concentration of oxygen

and glucose will be high there will be gradients in both concentrations and this is likely to

affect the rate of mitosis. This will be reflected in the proliferation rate by multiplying the

maximum rate of mitosis by Michaelis Menten expressions for both oxygen and glucose. In the

quiescent region cells are inactive. Therefore there is no proliferation nor necrosis and there

will be no growth within this region. In the necrotic region we shall assume that the death

rate of cells can be taken to be constant, KNe. These conditions impose that,

g =





KM
Cox

Cox+kox

Cgl

Cgl+kgl
if Qm + Qq < Pmax

atp ,

0 if Qq < Pmax
atp < Qm + Qq,

−KNe if Pmax
atp < Qq,

(2.66)

where the Michaelis constant kox is as introduced in Section 2.4.5 and kgl is fitted to data, as

discussed in Section 2.4.8. We assumed in Section 2.4.3 that the cell density, ρ, in the tumour

will be constant. Therefore in the necrotic region, where growth is negative, dying cells will

be replaced by cells, pushed in from the outer regions. The transport of the debris left by

necrotic cells out of the tumour will not be considered in this model.

Casciari et al. in [24] include the adverse effect of waste production on proliferation. However
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the manner in which they do so is complicated and thus the relationship between proliferation

and the concentration of hydrogen is hard to establish from their model. At this stage it is

not clear how large the relative effects of waste production are on the net rate of proliferation

and the rate of necrosis. Thus for simplicity they have been neglected in this model and this

decision will be reviewed in Section 2.5.

2.4.7 Summary of modelling equations

The full system of modelling are,

∂Ci

∂t
+

1

r2
∂

∂r

(
r2
(
CiU −Di

(
∂Ci

∂r
+
zi F Ci

Rg T

∂Φ

∂r

)))
= Pi, (2.67)

∂Φ

∂r
= − Rg T

F

(∑n
k=1 zkDk

∂Ck

∂r∑n
k=1 z

2
kDk Ck

)
, (2.68)

n∑

i=1

zi Ci = 0, (2.69)

1

r2
∂

∂r

(
r2 U

)
= g. (2.70)

where the production terms are given by,

Pox = −min

(
6

38
Patp , P

max
ox

)
, (2.71)

Pgl =
1

6
Pox − 1

2

(
Patp +

6

38
Pox

)
, (2.72)

Pcd = −Pox + krCbiChy − kfCcd, (2.73)

Pla = −2

(
Pgl −

1

6
Pox

)
, (2.74)

Phy = −2

(
Pgl −

1

6
Pox

)
− krCbiChy + kfCcd, (2.75)

Pbi = kfCcd − krCbiChy, (2.76)

Pch = 0, (2.77)
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with,

Patp =





Qm + Qq if Qm + Qq < Pmax
atp ,

Qq if Qq < Pmax
atp < Qm + Qq,

0 if Pmax
atp < Qq,

(2.78)

Pmax
atp = −38

6
Pmax
ox − 2Pmax

gl , (2.79)

Pmax
ox = ρRox

Cox

Cox + kox
, (2.80)

Pmax
gl = ρRgl

Cgl

Cgl + kgl
. (2.81)

and,

g =





KM
Cox

Cox+kox

Cgl

Cgl+kgl
if Qm + Qq < Pmax

atp ,

0 if Qq < Pmax
atp < Qm + Qq,

−KNe if Pmax
atp < Qq.

(2.82)

At the centre of the sphere, r = 0,

r2Ci U − Di
∂Ci

∂r
− zi µi F Ci = 0, (2.83)

U = 0. (2.84)

On the outer boundary, at r = S(t),

r2Ci U − Di
∂Ci

∂r
− zi µi F Ci = Nshi

Diout (Ci − C∞i
) S, (2.85)

U =
dS

dt
. (2.86)

The initial concentrations of each species is C∞i
and the initial size is 15µm. Values for C∞i

,

Di and Nshi
are given in Table 2.2. Whilst the remaining known parameters are given in

Table 2.3. The derivation of the unknown parameters is given in Section 2.4.8 and the values

of these parameters are stated in Table 2.4.

2.4.8 Parameters and data fitting

The model summarised in Section 2.4.7 has so far been constructed without fitting any expres-

sions to experimental data. This is an important aspect of the model and a key difference to

that presented by Casciari et al. [24]. Casciari et al. [24] relied heavily on experimental data
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Figure 2.5: Comparison of possible expressions to represent the consumption rate of oxygen.
Pmax
ox (- - -) is shown alongside the expression used by Casciari et al. [24] (—), a Michaelis

Menten expression specifically fitted to the data (+) and experimental data (o) [22].

and in doing so make it challenging to interpret which processes cause which aspects of the

results. However there are three parameters in this model that can not be derived from the lit-

erature alone. These are the ATP production rate for quiescent cells, Qq, the glucose Michaelis

Menten constant, kgl and the rate of necrosis KNe. All other parameters have been taken from

the literature and are given in Table 2.2 and Table 2.3. The total energy requirement for cells

undergo mitosis, Qq + Qm, was set using data from Table 5 of Freyer and Sutherland [54]

regarding the consumption rates of oxygen and glucose of single EMT6/Ro exponential cells5.

The Michaelis constant kox, used in describing the consumption of oxygen, has been defined

to be the concentration of oxygen at which an environment is defined hypoxic. This choice

can be justified by comparing the results using the expression for Pmax
ox determined in this

work, equation (2.31), with experimental data for the consumption of oxygen and alternative

expressions that could be used. Casciari [22] presents experimental data for the consumption

rates of oxygen by EMT6/Ro tumour cells at a a range of oxygen, glucose and hydrogen

concentrations. The data presented in [22] alongside the expression, Pox, used in this work are

5Consumption rates of unfed plateau cells are also given in [54]. This could be used to fix the energy level of
quiescence. However the results of doing so show a central region that is not hypoxic and thus disagrees with
experimental data given in [50, 126].
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Parameter Value Units

ATP production quiescence Qq 2.81 ·10−16 mol cell−1 s−1

Michaelis constant glucose kgl 2.63 mol m−3

Necrosis rate KNe 1.72 ·10−6 s−1

Table 2.4: Fitted parameters for the full model.

shown in Figure 2.5. The expression used by Casciari et al. in [24] is also included along with a

Michaelis Menten expression in which both the consumption rate and Michaelis constant were

fitted to the experimental data. Casciari et al. include the oxygen concentration as well as

the glucose concentration and pH in their description of oxygen consumption, equation (2.1).

However neither this nor the fitted Michaelis Menten expression show any better agreement

to the experimental data over the range of concentrations given than that used in this model.

Therefore it would not aid clarity nor understanding to use a more complicated expression

than is necessary and thus equation (2.31) is used to model oxygen consumption.

The three parameters that were not defined by the literature were found by solving the model

and comparing the diameter of the spheroid to data regarding the size of EMT6/Ro spheroids

during early stages of growth; taken from Landry et al. [97]. The model was solved and

the data was fitted using MATLAB [174], further details of the numeric code used to solve

the model are given in Section 2.4.9. MATLAB’s inbuilt function, ‘fminsearchbnd’ [94],was

implemented to fit Qq, kgl and KNe to the data in [97]. This function uses the Nelder Mead

algorithm to minimise a function in a multidimensional space. For further reading on the

Nelder Mead algorithm see [130] or [194]. The values of the fitted parameters are given in

Table 2.4 and the resulting fit is shown in Figure 2.6 along with the experimental data. All

fixed parameter values are given in Table 2.3.

2.4.9 Results and discussion of full model

The full system of modelling equations given in Section 2.4.7 was solved numerically in MAT-

LAB. The moving boundary was accommodated by transforming the expanding domain,

r ∈ [0, S(t)] to a stationary domain, η ∈ [0, 1] by the transformation r = ηS(t). The resul-

tant equations, rearranged into conservation form, were spatially discretised using a centrally

spaced finite difference method before being discretised in time using the backward Euler

method. This system of equations was then solved at each time step by Newtons method

using Broyden’s method to update the Jacobian. For further reading on Broyden’s method

see [17] or [1]. Analysis of the error of the numerical scheme implemented is given in Appendix

B.
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Figure 2.6: Growth derived by solving the full tumour model (—) and fitting to experimental
data (o, +) [97].

When solving the model care needs to be taken in two particular areas. These are the sin-

gularity at the origin in equation (2.10) and the piecewise nature of the expressions for the

ATP demand and growth; equations (2.33) and (2.66). The singularity in equation (2.10) at

the centre was dealt with in the following way. Equation (2.10) was first transformed to the

stationary domain and rearranged into conservation form, such that,

∂SCi

∂τ
+

∂

∂η

(
−ṠηCi

)
+

1

η2
∂

∂η

(
η2Ni

)
= S Pi. (2.87)

L’Hopitals rule was then imposed at η = 0. The governing equation for the conservation of a

chemical species i at the centre, can then be given by,

∂SCi

∂τ
+

∂

∂η

(
−ṠηCi

)
+ 3

∂Ni

∂η
= S Pi at η = 0. (2.88)

The finite difference discretization described above was then implemented.

The piecewise nature of equations (2.33) and (2.66) causes convergence problems when solving

the model numerically. Thus a continuous approximations of these functions were imple-

mented. These were such that,

Patp = Sw1Qm + Sw2Qq (2.89)

and

g = Sw1KM
Cox

Cox + kox

Cgl

Cgl + kgl
− Sw2KNE , (2.90)
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Figure 2.7: The concentration of oxygen (A) and glucose (B) through tumour spheroids of
radii 200µm (+), 500µm (- - -) and at the final size of 1435µm (—).

where,

Sw1 =
1

2

(
1 + tanh

(
λ
(
Pmax
atp −Qm −Qq

)))
(2.91)

and

Sw2 =
1

2

(
1 + tanh

(
λ
(
Pmax
atp −Qq

)))
. (2.92)

Increasing the coefficient λ gives a better representation to the discrete case but increases the

likelihood of numerical difficulties. A value of λ = 500 was used in this work.

Results of the model presented are shown in figures 2.7 through to 2.11, in which concentration

profiles are shown at radii of 200µm, 500µm and the final radius of approximately 1400µm.

In figures 2.7 to 2.11 the radial distance has been nondimensionalised using the radius of the

tumour spheroid, S. Figure 2.7 shows the concentration profiles of oxygen and glucose. At a

radius of 200µm the MCTS is small enough for both oxygen and glucose to diffuse throughout

the entire tumour. The surface concentration of both species are lower than in the medium

surrounding the tumour due to the flux condition imposed on the outer boundary. The demand

for ATP is sufficiently high that it can not be met by aerobic respiration alone, thus anaerobic

respiration makes up the deficit. As the concentration of oxygen reduces the demand for

anaerobic respiration increases and thus the rate of glucose consumption increases, shown in

Figure 2.8. Thus during the initial growth phase the concentration of glucose is reduced further

than that of oxygen.

It can be seen in Figure 2.9 that shortly after the tumour has grown beyond a radius of 200µm

the centre of the MCTS runs out of sufficient resources to continue undergoing mitosis. This

is due to diffusion providing an inadequate transport mechanism for oxygen and glucose over

this distance. The centre becomes quiescent and demands less ATP to be produced. At this

stage, shown in Figure 2.8, the centre is yet to become hypoxic. Thus aerobic respiration
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Figure 2.8: A: The average consumption rates of the spheroid for oxygen (—) and glucose
(—) compared against experimental data (+, o) [54]. B: The concentration of oxygen at the
centre (—) and surface (—) of a tumour compared against experimental data (+, o) [122].

Figure 2.9: A: The size of the proliferating (—×—) and viable (—), rims. B: The concentration
of ATP through tumour spheroids of radii 200µm (+), 500µm (- - -) and at the final size of
1435µm (—).

continues to contribute to the reduced ATP demand and is once again used in preference to

anaerobic respiration. This causes a heavily reduced demand for glucose at the tumour centre,

such that the centre becomes hypoxic before the concentration of glucose becomes critical. As

the spheroid continues to grow and the oxygen concentration lowers anaerobic respiration once

again tries to meet the deficit, however the low concentration of glucose results in this becoming

insufficient too and thus the centre becomes necrotic shortly after it became hypoxic6. The

MCTS continues to grow until the negative growth effects from necrotic core balance that of

the proliferating rim.

6Figures 2.8 and 2.9 show the radius of the tumour at the onset of quiescence, hypoxia and necrosis to be
approximately 240µm, 350µm and 375µm respectively.
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To verify this model the results have been compared to a range of experimental data. Figure

2.8A shows the average oxygen and glucose for cells in a MCTS. Both the oxygen and glucose

curves are in a good comparison to the experimental data. In the model the demand for

glucose is determined by the requirement of ATP by cells and in particular the demand for

ATP using anaerobic respiration. This is reflected in the consumption of glucose by the two

peaks which correspond with the onset of quiescence and necrosis. Initially the concentration

of oxygen and glucose is high throughout the tumour. As the tumour grows there comes a

size whereby the diffusion rate of oxygen is not high enough to meet consumption and so the

concentration of oxygen in the centre drops. In this region the production of ATP by aerobic

respiration will be reduced. The rate of anaerobic respiration with increase to meet the ATP

demand and consequently the consumption rate of glucose will increase. This explains the

initial increase in the glucose consumption rate in Figure 2.8A. As the tumour grows further

it will eventually reach a size whereby the glucose supply is restricted in the centre such that

the cells can not produce enough ATP to undergo mitosis and will become quiescent. At

this point the demand for both oxygen and glucose at the centre will drop significant. This

is shown in Figure 2.8A by the first peak in the glucose curve. The newly formed quiescent

region can initially meet a proportion of its ATP demand by aerobic respiration. Consumption

and growth of the tumour will once again reduce the concentration of oxygen in the centre and

cause an increase in the rate of anaerobic respiration until the glucose concentration becomes

sufficiently low that necrosis is initiated. This is shown in Figure 2.8A by the second peak in

the glucose curve. After the onset of necrosis the tumour will continue to grow until it reaches

it equilibrium size. During this time the proportion of the tumour that is necrotic will increase

and thus the average consumption rates of oxygen and glucose will decrease.

The concentration of oxygen at both the tumour centre and surface is shown in Figure 2.8B.

The data is distributed over a wide range of values, however the results of the model show a

good fit. The concentration of oxygen at the surface is in part affected by the Sherwood number

used in the flux boundary condition. The experimental data indicates that a lower Sherwood

number could be used to more accurately model the surface conditions. The predicted oxygen

concentration at the centre is lower than that seen experimentally for spheroids of radius

greater than 350µm. This suggests that preference for aerobic respiration may not be as

strong in quiescent cells. Although there is obvious room for improvement the model performs

well in comparison to the results presented by Casciari et al. in [24].

The model presented in the section was designed to show the effects of metabolism on the

growth of a MCTS and also show the effects of quiescence and necrosis. This has been

successfully done and is highlighted in Figures 2.7 and 2.9. Figure 2.9B shows the size of the

proliferating and viable rim as the tumour spheroid grows. The viable rim is of a EMT6/Ro

MCTS is given by Freyer and Sutherland [54, 56] to be in the region of 200µm for large

spheroids. This is slightly lower than that seen in the results presented however indicates that
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Figure 2.10: The concentration of carbon dioxide (A) and lactate (B) through tumour
spheroids of radii 200µm (+), 500µm (- - -) and at the final size of 1435µm (—).

the region of growth and transport mechanisms show good correlation with what is taking

place experimentally. Although the concentrations of waste products were derived the model

did not allow them to affect growth or ATP demand. The concentration profiles of carbon

dioxide and lactate are shown in Figure 2.10, whilst pH and the gradient in electric potential

are shown in Figure 2.11. The small range in values of the concentration profiles for carbon

dioxide, lactate and pH suggests that the effects of waste would be small. The increase in

carbon dioxide is negligible and although the increase in lactate is more substantial the effects

of the buffering reaction result in only a small variation in pH. The spikes in the results for

pH given in Figure 2.11 coincide with outer edges of the necrotic and quiescent regions and

are caused by an increase in anaerobic respiration prior to a cell change from being mitotic

to quiescent to necrotic. The largest values of the electric potential gradient are found at

the surface relative which coincides with where the largest gradients in species concentration

are. These gradients in concentration are due to the waste materials that are being produced

inside the tumour diffusing out into the surrounding medium. However even at the surface

the gradients in electric potential are still small.

The model predicts that the tumour would grow to a diameter of 2870µm. This can be

compared to data in Freyer [50] which suggests the size of a tumour grown under the conditions

set out in this model should be 2759µm. Although the model shows good comparison to this

data it does suggest that the growth term may need reviewing. Compared to experimental

literature [50, 124] the radius at which necrosis is seen is also high. This highlights the need

for a deeper understanding of the causes of necrosis which in turn will be implemented in the

expression for growth. It maybe that the mechanical forces that build up during the growth of

the spheroid affect the onset of necrosis. Alternatively a review of the different environments

that cause apoptosis rather than necrosis may be required.
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Figure 2.11: The pH (A) and electric potential gradient (B) through tumour spheroids of radii
200µm (+), 500µm (- - -) and at the final size of 1435µm (—).

Figure 2.12: The diameter of spheroid (A) and concentration of oxygen at the spheroid surface
(B), predicted for Sherwood numbers of Nshi

· 10−2 (+), Nshi
(- - -) and Nshi

· 102 (—).

2.5 Tumour modelling: Simple model

The aim of this work was to construct a mathematical model that accurately replicates the

growth of an in vitro MCTS. The model aims to show how the chemical species within the

tumour affect the spheroid growth and highlight which individual species or collection of species

have the largest influence. This would enable a simplified model to be created that can be used

in further modelling and investigations into tumour growth. The model presented in Section

2.4 accommodates a wide range of aspects regarding metabolism and cell states and agrees well

with experimental data for EMT6/Ro cells. By changing parameter values the model could be

easily adjusted to model the growth of other cell lines. Equally if an alternative cell line was

governed by different metabolic processes, such as the Crabtree effect rather than the Pasteur

effect, then the production rates could be easily changed to accommodate this. However in this
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study, whilst continuing to study the EMT6/Ro cell line, we shall now construct a simplified

model of that given in Section 2.4 which will continue to accurately model the growth but

focus solely on the dominating factors.

2.5.1 Analysis of full model and derivation of simplified model

We will establish which mechanisms have the largest effect within the MCTS by nondimen-

sional analysis of the model presented in Section 2.4.7. The details of this are given in Appendix

A. The nondimensional form of equation (2.67) is,

αi
∂Ĉi

∂t
+

1

r̂2
∂

∂r̂

(
r̂2

(
αiĈiÛ −

(
∂Ĉi

∂r̂
+ zi βi Ci

∂Φ̂

∂r̂

)))
= γ P̂i, (2.93)

where αi, βi and γi are nondimensional constants given in Table A.1. For a chemical species

Ci, αi is of the order 10
−3 or lower. Therefore, along with the time derivative, transport due to

advection can be neglected. The effects of charge migration are shown to be small as βi is of the

order 10−3. Thus charge migration can be neglected and species transport can be considered

in terms of diffusion alone. With the exception of hydrogen and chlorine the leading expression

in each production term is of the same order as diffusion. Chlorine is not produced in this

model and thus there is no production. Even though the diffusion coefficient for hydrogen is

relatively large, the production of hydrogen is shown to be three orders of magnitude greater

than the effects of diffusion. This helps to explain the distribution of hydrogen presented in

Figure 2.11 and suggests that transport can be neglected when considering the distribution of

hydrogen. Therefore a suitable model for each chemical species would be,

− 1

r2
∂

∂r

(
r2Di

∂Ci

∂r

)
= Pi, (2.94)

and hydrogen can be further simplified to,

Phy = 0. (2.95)

We shall now consider which species are required to model the growth of MCTS. Figure

2.11A shows the pH for various sizes of tumour spheroid. Initially the pH of the tumour was

7.25. Due to the cell line preference for aerobic respiration and the efficiency of the buffering

reaction there was little variation in pH during subsequent growth. Throughout the course

of the simulation the pH resided between 7 and 7.25. The concentrations of carbon dioxide

and lactate also show relatively small variations during the experiment. Thus the decision to

neglect the adverse effects of waste production on growth is shown to be valid. Therefore a

simplified model can neglect carbon dioxide, lactate and pH as well as the chemical and ionic
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buffers. Thus the reduced model is,

− 1

r2
∂

∂r

(
r2Dox

∂Cox

∂r

)
= Pox, (2.96)

− 1

r2
∂

∂r

(
r2Dgl

∂Cgl

∂r

)
= Pgl, (2.97)

1

r2
∂

∂r

(
r2 U

)
= g. (2.98)

where Pox, Pgl and g are defined below. The initial concentrations of oxygen and glucose are

equal to that found in the medium. At the spheroid centre we impose no flux and the averaged

velocity is zero. At the outer surface the flux condition as described in Section 2.4.4 will be

implemented such that,

r2
(
−Di

∂Ci

∂r

)
= Diout (Ci − C∞i

)S at r = S(t). (2.99)

2.5.2 Metabolic reactions

We shall now consider the consumption of oxygen and glucose and review the previous ex-

pressions implemented for Pox and Pgl. The expressions laid out in Section 2.4 for Pox, Pgl

and g are independent of waste products and buffering and thus can be imposed in the model

directly above. By the nondimensional analysis of the full model, these production terms

will yield similar results to that given in Section 2.4.9. However the discrete nature of those

terms make solving the resulting equations complicated. Simpler expressions can be derived

by once again assuming Michaelis Menten kinetics. The results shown in Figure 2.7 show that

oxygen is consumed until the concentration is zero. Glucose consumption stops whilst there is

still glucose present within the cell’s local microenvironment. We shall therefore assume that

oxygen and glucose are both required for mitosis and that a low concentration of glucose will

trigger necrosis. The demanded rate of ATP production will therefore be given by,

Patp = Qq
Cgl

Cgl + kne
+ Qm

Cox

Cox + kox

Cgl

Cgl + kgl
, (2.100)

where kne is a newly introduced Michaelis constant that describes when cells change from

being quiescent to necrotic due to the local glucose concentration. Equivalently kox and kgl

determine when cells will change from being mitotic to quiescent due to the local oxygen

and glucose concentrations. Equation (2.100) can be directly implemented into the previous

equation for oxygen production,

Pox = −min

(
6

38
Patp , P

max
ox

)
. (2.101)
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Substituting this new expression for ATP production, equation (2.100), into the previous

expression for glucose production, equation (2.60), implies that in the absence of oxygen the

consumption rate of glucose is unbounded. This is a physically inaccurate anomaly that must

be dealt with. In Section 2.4.5, the maximum possible glucose consumption was represented

by,

Pmax
gl = ρRgl

Cgl

Cgl + kgl
. (2.102)

This will be replaced by,

Pmax
gl = ρRgl

Cgl

Cgl + kne
, (2.103)

to include glucose consumption at very low concentrations. Therefore to prevent unbounded

glucose consumption the previous expression for glucose production will be replaced with,

Pgl =
1

6
Pox − min

(
1

2

(
Patp +

6

38
Pox

)
, Pmax

gl

)
. (2.104)

2.5.3 Growth

In light of the updated expressions for the ATP and glucose production rates, we shall review

the expression given in Section 2.4.6 for the growth rate g. Mechanical forces and cell shedding

will once again be neglected, whilst the rate of ATP produced due to mitosis is now a function of

Michaelis Menten for oxygen and glucose. ATP production is dependent on the concentrations

of oxygen and glucose and the values of kox and kgl. The glucose concentration and value of

kne will then define whether a cell is quiescent or necrotic. Therefore the ATP production will

be proportional to the rate of mitosis and similarly the proportion of cells consuming ATP

solely for quiescence will imply the rate of necrosis. This can be reflected in an expression for

growth by,

g = KM
Cox

Cox + kox

Cgl

Cgl + kgl
− KNe

(
1− Cgl

Cgl + kne

)
. (2.105)

7The consumption rates of oxygen and glucose given by Freyer and Sutherland [54] have been multiplied
by (1 + kox/C∞ox) and

(

1 + kgl/C∞gl

)

so that the production rates are not affected by the Michaelis Menten
expressions. The rates of ATP production for mitotic and quiescent cells have been adjusted similarly.
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Parameter Value Units Ref.

ATP production mitosis Qq +Qm 1.08 ·10−15 mol cell−1 s−1 [54]

ATP production quiescence Qq 5.92 ·10−16 mol cell−1 s−1 [54]

Cell density ρ 2.01 ·1014 cell m−3 [24]

Glucose consumption rate Rgl
7 7.94 ·10−16 mol cell−1 s−1 [54]

Michaelis constant oxygen kox 1.32 ·10−2 mol m−3 [79]

Oxygen consumption rate Rox 8.82 ·10−17 mol cell−1 s−1 [54]

Rate of mitosis KM 1.48 ·10−5 s−1 [97]

Table 2.5: Table of parameters given by the literature for the simple model.

2.5.4 Summary equations for the simplified model

The modelling equations are,

− 1

r2
∂

∂r

(
r2Dox

∂Cox

∂r

)
= Pox, (2.106)

− 1

r2
∂

∂r

(
r2Dgl

∂Cgl

∂r

)
= Pgl, (2.107)

1

r2
∂

∂r

(
r2 U

)
= KM

Cox

Cox + kox

Cgl

Cgl + kgl
− KNe

(
1− Cgl

Cgl + kne

)
. (2.108)

where the production terms are given by,

Pox = −min

(
6

38
Patp , P

max
ox

)
, (2.109)

Pgl =
1

6
Pox − min

(
1

2

(
Patp +

6

38
Pox

)
, Pmax

gl

)
, (2.110)

Patp = Qq
Cgl

Cgl + kne
+ Qm

Cox

Cox + kox

Cgl

Cgl + kgl
. (2.111)

The system of equations are completed by boundary conditions; at the centre of the sphere,

r = 0,

r2Dox
∂Cox

∂r
= 0, (2.112)

r2Dgl

∂Cgl

∂r
= 0, (2.113)

U = 0. (2.114)
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Parameter Value Units

Michaelis constant glucose kgl 2.90 mol m−3

Michaelis constant necrosis kne 0.34 mol m−3

Necrosis rate KNe 1.92 ·10−6 s−1

Table 2.6: Fitted parameters for the simple model.

On the outer boundary, at r = S(t),

r2Dox
∂Cox

∂r
= Nshox

Doxout (Cox − C∞ox) S, (2.115)

r2Dgl

∂Cgl

∂r
= Nshgl

Dglout

(
Cgl − C∞gl

)
S, (2.116)

U =
dS

dt
. (2.117)

Initially at t = 0, the tumour has the radius of a cell, 15µm. The values of Nshi
and C∞i

are

given in Table 2.2.

2.5.5 Parameters and fitting

We aim to compare the simplified model laid out in Section 2.5.4 to the experimental data and

modelling predictions described in Section 2.4. To enable as accurate comparison as possible

the same parameters that were taken from the literature and used in Section 2.4 will once again

be used in this alternative model. The values derived by fitting will be re-derived using the

same process as laid out in Section 2.4.8. Once again the unknown parameters were derived

by comparing the modelling predictions for the diameter of the spheroid to data regarding

the size of EMT6/Ro spheroids during early stages of growth [97]. The initial fit to this data

resulted in a tumour with an unrealistically small maximum size. Hence a maximum size

of a tumour, taken from Freyer [50], was also used. The parameters that were fitted to the

data were, the rate of necrosis, KNe and glucose Michaelis constants kgl and kne. The rate

of ATP production for quiescence was not included in the fitting process for this model, but

was derived from oxygen and glucose consumption rates for exponential and unfed EMT6/Ro

cells given in Freyer and Sutherland [54]. The values of the parameters taken from literature

are given in Table 2.5. The values of the fitted parameters are given in Table 2.6, and the

modelling predictions for spheroid growth compared to the experimental data is shown in

Figure 2.13. The fitted final diameter was 2783µm compared to 2759µm given in [50].
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Figure 2.13: Growth derived by solving the simplified model (—) and fitting to experimental
data (o, +) [97].

2.6 Results and discussion of simple model

This simplified model was solved numerically using the method described in Section 2.4.9.

The moving boundary was once again dealt with by transforming the expanding domain,

r ∈ [0, S(t)] to a stationary domain, η ∈ [0, 1] by the transformation r = ηS(t) and t = τ . The

transformed model that governs the concentration of oxygen and glucose is,

− 1

S2η2
∂

∂η

(
η2Di

∂Ci

∂η

)
= Pi. (2.118)

The model was then solved as a system of boundary value problems.

The oxygen and glucose profiles are shown in Figure 2.14. The oxygen profile is similar to that

derived by the full model, however the new expression for Patp does not cease ATP production

until the resources are unavailable for ATP production to be possible. Therefore the centre of

the tumour has become absent of both oxygen and glucose.

The production of ATP, shown in Figure 2.15, shows the mitotic, quiescent and necrotic rims

less clearly than in the full model. This is due to the continuous definition of ATP production

used in this model. However, the region in Figure 2.15A in which ATP production is greater

than zero indicates the viable rim and the region in Figure 2.15B where the gradient of the

velocity is positive gives the proliferating rim. Thus for a fully grown tumour the viable rim is

approximately 280µm and the proliferating rim is approximately 180µm wide. These widths

are lower but comparable with the full model.
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Figure 2.14: The concentration of oxygen (A) and glucose (B) through tumour spheroids of
radii 200µm (+), 500µm (- - -) and at the final size of 1392µm (—).

Figure 2.15: The concentration of ATP (A) and averaged velocity (B) through the tumour
spheroid, at radii of 200µm (+), 500µm (- - -) and at the final size of 1392µm (—).

The simplified model presented in this section again shows good comparison to experimental

data as shown in Figure 2.16. Glucose consumption is lower than the data suggests at all

sizes. For small spheroid sizes this could be helped by using a smaller Michaelis constant, kgl.

However this would have a knock on effect for the rate of growth and eventually maximum

size. Oxygen consumption at the tumour centre and surface are similar to that presented by

the full model and thus compare well with the experimental data. This was expected as the

expression for oxygen production is the same in both the full and simplified models. Only

effects from the growth rate could have affected the concentrations.
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Figure 2.16: A: The average consumption rates of the spheroid for oxygen (—) and glucose
(—) compared against experimental data (+ , o) [54]. B: The concentration of oxygen at the
centre (—) and surface (—) of a tumour compared against experimental data (+, o) [122].

2.7 Discussion

In this chapter we have studied the growth of a MCTS, with particular focus on the energy

requirements of cells in different phases of the cell cycle. The growth of tumour spheroids

have been modelled by incorporating a range of chemical species. Alongside modelling the

distribution of nutrients, waste materials and buffering chemicals, a structure has also been

laid down to study the effects of regions of cell proliferation, quiescence and necrosis. These

cell states were determined by the available chemical energy that could be obtained from the

cells surrounding environment. This work has shown it is possible to construct a model of the

effects of aerobic respiration, anaerobic respiration and ATP demand, whilst not relying on the

fitting of experimental data to accomplish this. Together with oxygen and glucose, the initial

‘full’ model included the waste products that are a consequence of respiration; carbon dioxide,

lactic acid and hydrogen. The concentrations of these waste products were shown to have little

to no effect on the size of the growth of the tumour spheroid. Similarly the effects of charge

migration on the transport of ions were shown to be negligible in comparison to diffusion. The

most influential factors on the growth of tumours was shown to be the concentration of oxygen

and glucose. In particular in relation to the switch over from aerobic to anaerobic respiration,

as this determined the onset of quiescence and eventually necrosis.

It was shown that the full model could be simplified to a model of tumour growth that only

required the concentrations of oxygen and glucose. The model could not be simplified further

to a single species model as this failed to fit the experimental data. The simplified model

showed equally good comparison to the experimental data and continued to explain the effects

of cell mitosis, quiescence, necrosis and respiration. The limitations of the simple model were

that it failed to distinctly highlight the different regions of mitosis, quiescence and necrosis
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as well as the full model. Both models ignored the potential mechanical effects of stress and

strain on growth. These effects could greatly alter the state of a cell and advance the onset of

quiescence and necrosis and will be considered further in Chapter 3.

Both the models presented in this chapter have shown it is insufficient to model the growth of a

MCTS by solely modelling the distribution of oxygen or a single nutrient. The chemical factor

that limits the growth of a tumour spheroid has been shown to be glucose. However oxygen

must also be included to restrict mitosis and thus define the onset of quiescence. Deriving the

concentration of oxygen is also necessary to determine the rate of glucose consumption and

the onset of necrosis. The models presented have been shown to be good representations of

a growing EMT6/Ro MCTS when compared to experimental data and other mathematical

models such as [24]. Unlike other models we have been able to represent aerobic respiration

and anaerobic representation alongside mitotic, quiescent and necrotic regions, whilst giving

a framework that could be adapted to model the growth of other cell lines and include other

effects such as mechanical forces.
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Chapter 3

Mechanical forces within a growing

MCTS

3.1 Introduction

In Chapter 2 the effects of the cell cycle and cell metabolism on the the growth of a MCTS

were explored. The model presented neglected the mechanical forces that are developed during

growth and the effects they may have on the tumour spheroid. In this chapter we shall review

that decision by studying the development of stresses and strains that are generated within a

growing tumour.

A morphoelastic model based on that presented by Hall [71], will be applied to the tumour

model presented in Section 2.5, to study the radial and circumferential forces that develop

during the growth of a tumour spheroid. This growth model neglects changes in the cell

cycle and changes in metabolism that may occur due to cell stresses. However the effects

of proliferation, quiescence and necrosis on the development of forces can be seen and will

be discussed alongside an explanation of how the tumour grows in relation to these forces.

The results of this morphoelastic model will be compared to experimental data regarding the

magnitude of stresses calculated from spheroid cultures. The predicted stress field will then

be used to determine the shape that arises from a tumour spheroid when it is sliced in half.

This chapter will begin by reviewing previous techniques and work presented on modelling

the mechanical forces within a growing tissue construct. This will be achieved by viewing the

problem from both a mathematical modelling and experimental view point. The morphoelastic

model will then be presented in Section 3.3, including a discussion of the modelling equations

and assumptions they are based upon. The model will then be simplified in Section 3.4

by studying the equations in the incompressible limit. The direction of growth of a cell is
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dependent on how sensitive the cell is to its local stress field. The effects of this will be

examined in Section 3.5. The development of stresses and strains within a growing MCTS

will then be studied. This will be achieved by looking at three limits; when the direction of

growth has no dependence on the local stress field, when the direction of growth is moderately

sensitive to the local stress field and when the direction of growth in highly sensitive to the

local stress field. The results of this sensitivity analysis will then be presented and discussed

in Section 3.6. These results will be compared against experimental data and the growth

model presented in Chapter 2, in which mechanical effects on growth were neglected, will be

reviewed. The results of the morphoelastic model will then be used to study the deformation

of a tumour spheroid that is sliced in half. The model governing this deformation will be given

in Section 3.7 and the results will be presented in Section 3.8.

3.2 Literature review

We shall now give a brief outline of the literature regarding studies into the mechanical forces

that build up inside tissue structures. In particular the evolution of stresses and strains within

growing tumour spheroids will be considered, as well as their role in defining the overall volume

of a tumour and the size of any necrotic regions. Both mathematical models and experimental

findings will be discussed.

Many of the recent studies of tumour mechanics have been influenced by the experiment work

of Helmilinger et al., [73]. These in vitro experiments have studied the effects of mechanical

stresses on the growth of a tumour spheroid. Helmlinger et al. [73] and Koike et al. [92]

have both shown the equilibrium spheroid size and the rate of growth were inhibited by

increased stiffness of the surrounding medium. Helmlinger et al. showed that this stiffness

also affected the tumour on a cellular level. Higher levels of stress decreased the percentage

of cells undergoing both proliferation and apoptosis, although this effect was also shown to be

dependent on the size of the spheroid. More recent work by Cheng et al. [28] has shown that

a cell’s position within the cell cycle is not exclusively determined by the local concentration

of nutrients. High levels of stress were shown to reduce the rate of proliferation and promote

necrosis.

Various approaches have been taken to model the evolution of forces within growing tissue.

Jones et al. [88] study the effect of non-uniform growth on mechanical stresses within avas-

cular tumours grown under various conditions. The model presented studies the tumour as a

continuous material, such that the properties of local volumes of the tumour are considered

rather than individual cells. The effects of stress are not included in the equation for growth,

thus there is no preferential direction of growth of the tumour in response to the stress field.

The results of this model show that near the surface of the tumour, where the concentration
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of nutrients is high and the rate of proliferation is unimpeded, the cells will be under compres-

sion. Equivalently, far away from the periphery, in regions of low nutrient concentration and

a high net cell death rate, the cells will be under tension. The model presented by Jones et al.

is developed by Araujo and McElwain [9] who implement anisotropic growth into their model,

in which proliferation occurs in the direction of least stress. Similarly the directional prefer-

ence of necrosis is such that the necrotic cells are replaced by cells moving in the direction of

greatest stress.

The properties of necrotic cores in avascular tumours was the particular focus of a series of pa-

pers by Please and co-workers. In these papers tumours were modelled as a two phase inviscid

fluid, consisting of cells and an extracellular fluid, water. The model presented by Please et al.

[145], modelled the internal environment of a tumour by modelling cell proliferation as the con-

version of water into cells. Equivalently the death of a cell resulted in the cell being converted

back into water. The pressure in the extracellular fluid compacts the cells. The results of this

work saw necrosis occurring when the pressure in the fluid surrounding the cells was greater

than the pressure acting between the cells, causing the cells to be ripped apart. This work was

then extended in [146] for tumour spheroids, in which surface tension was included such that a

steady state solution was determined. Landman and Please, [95] revise the model presented in

[145] and [146], with the aim of gaining a better understanding of the effects of tensile forces.

The resultant model assumes the tumour consists of a region of densely packed viable cells

under compression and a region of predominantly dead cells at a lower density, in which the

remaining living cells are isolated. Results are shown for a range of surface tensions and the

effects regarding the eventual size of the tumour spheroid are presented. Under zero surface

tension it is shown that the growth of the tumour will be unbounded. Following Landman

and Please, [95], Chen et al. [27] extended the model by incorporating the mechanical effects

from the surrounding environment. Chen et al. show that the onset of necrosis, along with the

equilibrium size of the tumour, is determined by the stiffness of the external environment.

MacArthur and Please, [110], present a model building on the ideas present by Jones et al.

[88] and Please and co-workers [95, 145, 146]. This model studies the development of stress

within a Maxwell type visco-elastic MCTS. The results of the model show that differing rates

of proliferation within the tumour, driven by gradients in nutrients, lead to a non-uniform

stress distribution, in particular large hoop stresses. The model also shows the importance of

including viscosity into the system, without which a steady state stress profile is not reached.

Many recent studies into the mechanical forces evolving within soft tissue growth base their

work on that presented by Rodriguez et al. [149]. Rodriguez et al. present a generalised

continuum model of finite volumetric growth of an elastic tissue. The growth of the soft tissue

is decomposed into the evolution of the material under zero stress and the relating elastic

deformation. These ideas were then developed into a study of the stability of growing elastic
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materials by Ben Amar and Goriely in [10]. The work done in [10] was further developed into

a general theory of morphoelasticity by Goriely and Ben Amar, [67], which models the net

effect of small incremental growth steps. Ambrosi and Mollica, [4] apply the ideas presented

in [149] to model the growth of a tumour inside a a rigid cylinder and to a MCTS. The results

for the MCTS show the spheroid to be in hoop compression near the surface whilst the centre

is in tension. This is due to the non uniform distribution of nutrients and consequently non

uniform growth. Similar to the work by Chen et al. [27], Ambrosi and Mollica, [5] then develop

the model presented in [4] to model the growth of a tumour spheroid as a solid, considering

the growth to be in both free suspension and surrounded by a poroelastic medium. Further

models of tissue growth incorporating the ideas of Rodriguez et al., [149], are presented in

[2, 3, 71, 107].

Further information and reviews of the mechanical forces and modelling of soft biological tissue

are given in [34] and [82].

3.3 Morophoelasticity model

We wish to study the mechanical forces that develop in a growing tumour spheroid. The time

scale in which the extracellular fluid flows is much smaller than the time scale for growth of

the tumour. Pressure gradients in the interstitial fluid will thus be small, such that the fluid

pressure is assumed constant. Therefore we shall neglect the effects of the fluid surrounding the

cells and consider a tumour as a continuous elastic solid. The stresses and strains that develop

during growth will be modelled using the continuum morphoelastic model developed by Hall,

[71]. This approach is based on that presented by Rodriguez et al., [149] and developed by

Goriely and Ben Amar, [67]. The model presented by Hall develops the work of Goriely and

Ben Amar, [67] further by including a more generalised expression for growth, with time given

as a continuous variable. A summary of the modelling equations is given below. For a full

derivation of the model, and comparison to previous work see Hall [71].

The model presented by Hall [71] is valid for small strains, where strain is defined by relating

the current distance, to the desired distance between two points, i.e. under no stress; this

imposes that zero strain will imply zero stress. Assuming that the strains were small, the full

infinitesimal Eulerian strain tensor, e, was derived in [71]. In this study we are considering

the forces that arise during the growth of a tumour spheroid. Thus we shall assume spherical

symmetry and neglect the effects of shear. Therefore the strain tensor derived by Hall in [71]

can be simplified to,

Deij
Dt

+
1

2
ekk (Lij + Lji) =

1

2
(Lij + Lji) − Gij , (3.1)
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where e is the strain tensor, G is the growth tensor and L the velocity gradient tensor defined

as,

Lij =
∂Ui

∂xj
, (3.2)

such that U is the velocity of the tissue. Although complex, equation (3.1) can be derived from

linear elasticity and simply states the rate of change of strain, following a particle, accounting

for changes in orientation, is equal to the difference between how the particle does grow and

how the particle would like to go.

We shall assume that the tumour is made up of a linearly elastic material, therefore the stress,

σ, strain relationship is defined by,

σij = λ δij ekk + 2µ eij , (3.3)

where λ is Lamé’s first coefficient and µ is the shear modulus. Body and inertial forces shall

be neglected such that,
∂σij
∂xj

= 0. (3.4)

The growth tensor is defined by Hall [71] to be,

Gij =
g

3
δij + κ

(
σij − 1

3
δij σkk

)
, (3.5)

where g is the net rate of growth and κ describes the sensitivity of direction of growth in

response to stress. The size of κ does not influence the total growth of the tumour as the

sum over all components of the growth tensor equals net growth g. This equation allows the

growth of the material to be anisotropic, such that by increasing κ the direction of growth of

the tumour is made more sensitive to the local stress field and will grow to minimise the stress

field. However this growth tensor allows for rearrangement of the tissue when the net rate

of growth is zero, i.e. when the tissue is effectively quiescent. In this work we shall modify

the equation for growth presented by Hall [71], maintaining the previous directional growth

preferences, but also imposing that once growth has ceased the tissue will remain in a constant

state. This will be achieved by implementing,

Gij = g

(
1

3
δij + κ

(
σij − 1

3
δij σkk

))
. (3.6)

The net rate of growth, g, is given by the properties of the growing material and is defined

by a separate equation. The net rate of growth determines the rate of proliferation, necrosis

and the transition between mitosis, quiescence and necrosis. Thus our choice of g is crucial

in deriving the mechanical forces that develop during growth. In this study we shall use the

net growth rate that was derived in the tumour model presented in Section 2.5. This will be
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explained further in Section 3.6.

As in the models presented in Chapter 2 we shall consider a tumour that is spherically sym-

metric. Thus converting to spherical coordinates we have that the physical components are,

err = er, eθθ = eθ, eφφ = eθ, (3.7)

σrr = σr, σθθ = σθ, σφφ = σθ, (3.8)

Grr = Gr, Gθθ = Gθ, Gφφ = Gθ, (3.9)

with the remaining off-diagonal elements being zero and where subscript r and θ represent

the radial and circumferential components. Using [166] we can derive the velocity gradient in

terms of the radial velocity U such that,

L = diag

(
∂U

∂r
,
U

r
,
U

r

)
, (3.10)

The morphoelastic model is now given by,

Der
Dt

+ (er + 2 eθ)
∂U

∂r
=

∂U

∂r
−Gr, (3.11)

Deθ
Dt

+ (er + 2 eθ)
U

r
=

U

r
−Gθ, (3.12)

σr = λ (er + 2 eθ) + 2µ er, (3.13)

σθ = λ (er + 2 eθ) + 2µ eθ, (3.14)

∂σr
∂r

+
2

r
(σr − σθ) = 0, (3.15)

and growth is such that,

Gr =
g

3
(1 + 2κ (σr − σθ)) , (3.16)

Gθ =
g

3
(1 + κ (σθ − σr)) . (3.17)

The divergence of a rank 2 tensor in spherical coordinates was taken from [166]. Net growth

is derived by summing the growth in all three directions, i.e. the sum of the radial growth and

twice the circumferential growth therefore,

g = Gr + 2Gθ. (3.18)

Following the method set out by Hall in [71], the radial strain and circumferential stress can
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be replaced such that,

er = eT − 2 eθ and σθ = σr − β, (3.19)

where eT is the total strain and β is the difference between radial and circumferential stress.

Equations (3.11) to (3.17) can now be simplified such that,

DeT
Dt

+ eT

(
∂U

∂r
+ 2

U

r

)
=

∂U

∂r
+ 2

U

r
− g, (3.20)

Deθ
Dt

+ eT
U

r
=

U

r
− g

3
(1− κβ) , (3.21)

σr = (λ+ 2µ) eT − 4µ eθ, (3.22)

β = 2µ (eT − 3 eθ) , (3.23)

∂σr
∂r

+
2

r
β = 0. (3.24)

Initial and boundary conditions

The model is completed by specifying appropriate initial and boundary condition. We assume

that the tumour will initially have no internal stresses and will be in equilibrium with its

surrounding environment, such that,

er = 0 and eθ = 0, at t = 0. (3.25)

Spherical symmetry imposes that the centre is a stationary point under zero strain such that,

U = 0, er = 0 and eθ = 0, at r = 0. (3.26)

At the outer boundary, S(t), it will be assumed there is a constant normal stress being applied

by the surrounding environment. This stress will be denoted by p0 and therefore,

σr = −p0, at r = S(t). (3.27)

3.4 Incompressible limit

Both cells and the extracellular matrix inside a tumour are comprised mainly of water. Water

is incompressible with a Poisson’s ratio of approximately one half, therefore we can assume

the cells, the surrounding matrix and the extracellular water are all incompressible. However

the extracellular water is free to move and thus the tumour is in fact a compressible material.
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This is verified in literature in which Poisson’s ratio’s as low as 0.35, [89], have been given

for soft tissue. However, to aid understanding of the individual components we wish to keep

the growth model and mechanics model separate. Therefore we will consider a tumour which

is incompressible and for which Poisson’s ratio is one half. In making this approximation we

hope to simplify the model and identify the dominant relationships within the system.

To aid analysis of the morphoelasticity model presented in equations (3.20) to (3.24), we shall

nondimensionalise the system by defining the replacement variables,

r = r0 r̂, t = t0 t̂, g = t−1
0 ĝ, U =

r0
t0
Û , (3.28)

σr = µ σ̂r, β = µ β̂, (3.29)

where r0 and t0 are typical length and time scales of our system. Lamé’s first coefficient, λ

and the shear modulus, µ, are related to the Young’s Modulus, E, and Poisson’s ratio, ν, by,

λ =
E ν

(1 + ν) (1 − 2 ν)
and µ =

E

2 (1 + ν)
. (3.30)

The forces that build up during growth will cause strains in the radial and circumferential di-

rections. However the magnitude of the total strain will be dependent on the incompressibility

of the material and consequently Poissons ratio. Therefore we shall scale the total strain such

that,

eT =
µ

λ
êT (3.31)

where,
µ

λ
=

1 − 2 ν

2ν
. (3.32)

The resulting rescaled system of equations is,

µ

λ

(
DêT

Dt̂
+ êT

(
∂Û

∂r̂
+ 2

Û

r̂

))
=

∂Û

∂r̂
+ 2

Û

r̂
− ĝ, (3.33)

Deθ

Dt̂
+
µ

λ
êT

Û

r̂
=

Û

r̂
− ĝ

3

(
1− κµ β̂

)
, (3.34)

σ̂r =
(
1 + 2

µ

λ

)
êT − 4 eθ, (3.35)

β̂ = 2
(µ
λ
êT − 3 eθ

)
, (3.36)

∂σ̂r
∂r̂

+
2

r̂
β̂ = 0. (3.37)

The above system of equations are now in terms of two numbers, κµ and µ
λ
. The sensitivity
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of growth to the local stress field will determine κµ and this is discussed further in Section

3.5. considering Poisson’s ratio is close to a half we find that µ
λ
is small. We therefore take

a regular expansion of the above system of equations and deduce that to leading order the

system can be approximate by1,

∂Û

∂r̂
+ 2

Û

r̂
= ĝ, (3.38)

Deθ

Dt̂
=

Û

r̂
− ĝ

3

(
1− κµ β̂

)
, (3.39)

σ̂r = êT − 4 eθ, (3.40)

β̂ = −6 eθ, (3.41)

∂σ̂r
∂r̂

+
2

r̂
β̂ = 0. (3.42)

There is now only one unknown constant in this problem, κ. This governs the sensitivity of

growth in response to stress. The effects of different sizes of κ can take shall now be discussed.

3.5 Sensitivity analysis

Under the assumptions of small strain and an incompressible tumour, the model of morphoe-

lasticity proposed by Hall, [71], has been simplified to a system of equations in which the

direction of growth in relation to sensitivity to stress is the only undefined parameter. There-

fore, before solving the system, we shall study the different cases in which κµ is small, order one

and large; these relate to insensitive growth, moderately sensitive growth and highly sensitive

growth in response to differences between radial and circumferential stress. Firstly it is useful

to note that equation (3.41) implies that the circumferential strains and the nondimensional

parameter β̂ are of the same order. In this model strains are assumed to be small, therefore

neither eθ and β̂ can be large.

Insensitive growth, κµ << 1

For a tumour in which cells do no change their preferred direction of growth due to differences

in the size of the radial and circumferential stress, κµ will be small. Therefore the leading

1Note that an equivalent interpretation of equation (3.38) is that the divergence of the velocity equals growth
to leading order. In Chapter 2 this was derived by considering the conservation of cells within the tumour in
which the density remained constant, incompressible.
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order balance of equation (3.39), for κµ << 1, will be,

Deθ

Dt̂
=

Û

r̂
− ĝ

3
. (3.43)

The growth of the tumour will not depend on the build up of internal stress; daughter cells

will align at random, independent of the local stress field and thus will grow isotropically and

hence significant stresses will be created. This is similar to the limit considered by Jones et

al. [88].

Moderately sensitive growth, κµ = O (1)

A tumour in which κµ is order one will be said to be experiencing moderately sensitive growth.

In this case, when a cell undergoes mitosis, the resulting daughter cells will be added so that

they partially align with the direction of minimum compression or maximum tension, thus

moderating the stress within the tumour. The sensitivity in this regime is not small enough

to be neglected, nor large enough to dominate over the material derivative of circumferential

strain. Thus there is a balance between all terms in equation (3.39).

Highly sensitive growth, κµ >> 1

The final case is when growth is highly sensitive to stress, such that κµ is large. For an appro-

priately large value of κµ, the growth due to directional preferences is much greater than the

contribution from the material derivative of circumferential strain. Thus the circumferential

strain term can be neglected and equation (3.39) can be replaced by,

− ĝ

3
κµ β̂ =

Û

r̂
− ĝ

3
. (3.44)

In this regime growth will reduce the stress, by adding each newly formed daughter cell in the

direction of maximum tension or minimum stress.

Further analysis of this equation shows that this this will only hold whilst the entire tumour

is growing. This can be seen by rearranging equation (3.44) for β̂,

β̂ =
1

κµ

(
1− 3Û

r̂ĝ

)
. (3.45)

Before necrosis, zero net growth will occur simultaneously with zero velocity and a zero gradient

in the velocity at the centre of the spheroid. At the onset of necrosis, the points at which

the tumour has zero velocity will no longer coincide with zero growth. Thus there will be a
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Figure 3.1: The rate of growth (A), and velocity (B) through a tumour spheroid of radii
250µm (+), 339µm (- - -) and 500µm (—).

singularity in equation (3.45) and β̂ will become infinitely large. We have previously neglected

the contribution from the material derivative of circumferential strain. However necrosis will

produce large gradients in strain on a very short time scale and thus result in a change to the

leading order balance of equation (3.39). Therefore up until the point in time when necrosis

first occurs equation (3.44) is valid. But thereafter we must implement equation (3.39). There

is clearly a singular perturbation problem that arises in this limit, however this is beyond the

scope of this thesis.

3.6 Results

We shall now implement the morphoelasticity model as laid out in Section 3.3 to the model

of a growing MCTS as presented in Section 2.5. The model presented in Section 2.5 is a

spherically symmetric model of an avascular tumour grown in free suspension such that,

p0 = 0. (3.46)

The net growth rate was said to be dependent on both oxygen and glucose and defined by,

g = KM
Cox

Cox + kox

Cgl

Cgl + kgl
−KNe

(
1− Cgl

Cgl + kne

)
. (3.47)

In the incompressible limit that we are considering, equations (2.98) and (3.38) are equivalent.

Therefore, because net growth and the concentration profiles of oxygen and glucose do not

depend on the stresses or strains of the tumour, the growth model and the morphoelasticity

problem decouple the model for tumour growth can be solved using the method as described
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Sensitivity κ

Insensitive growth µ−1 · 10−3

Moderately sensitive growth µ−1

Highly sensitive growth µ−1 · 103

Table 3.1: Values of sensitivity to growth parameter κ.

in Section 2.6. The results of the tumour model give both g and U , thus the morphoelastic

model can be solved in isolation. Although not visible in the graphical results of the tumour

model shown in Figure 2.15, there are minor oscillations in the results for the growth velocity,

especially close to the centre. These inaccuracies caused numerical problems when trying to

use this data as input into the morphoelastic model. Various possible methods were explored

to gain the greater accuracy required to ensure a stable numerical solution. Eventually the

previous implementation of the trapezium rule to integrate the growth term in equation (2.108)

was replaced by a four point Gauss quadrature method. The resulting solutions of net growth

and the velocity are given in Figure 3.1.

The resulting equations of the morphoelastic model were solved numerically in MATLAB [174].

Thus far the model has assumed incompressibility and in doing so that Poisson’s ratio is a

half. However this is impractical when trying to solve numerically, as, for example, this would

lead to an infinite value of λ. Therefore the implemented values of Poisson’s ratio and Young’s

modulus were 0.499999 and 1.23 ·104 [109] respectively. Equation (3.39) was rewritten in terms

of eθ by imposing equation (3.41). The resulting first order hyperbolic equation was then solved

using the method of characteristics. The characteristic equations and the corresponding family

of ODEs were then integrated using the trapezium rule. The resulting solution for eθ then

enables β̂ to be determined algebraically. The trapezium rule can then be implemented to

integrate equation (3.42) and calculate the radial stress, σ̂r. The solution for radial stress was

then used to derive the final unknown variable, êT , by algebraically solving equation (3.40).

The values of κ used in each case are given in Table 3.1.

The results of the model in the three limits of sensitivity studied are shown in figures 3.2 to

3.4. The distribution of radial and circumferential stress and strain have been shown at three

different sizes of spheroid. These have been chosen to represent a tumour of 250µm, in which

all cells are either proliferating or quiescent, i.e. growth is positive, a tumour of 339µm, at

the onset of necrosis, i.e. growth at the centre is less than zero, and a tumour of 500µm, for

which there is an established necrotic core. Due to the size of the stresses and strains that

develop in a tumour that is highly sensitive to stress, the final results in Figure 3.4 are given

for a smaller spheroid, of radius 342µm, than those in figures 3.2 and 3.3. Before we discuss

the results of the individual cases with respect to sensitivity of growth, we shall first give a
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Figure 3.2: The radial stress (A), circumferential stress (B), radial stain (C) and circumferen-
tial strain (D) through a tumour of radii 250µm (+), 339µm (- - -) and 500µm (—) in which
growth is insensitive to stress.

general overview of some of the growth characteristics.

The model presented assumes the growth of the sphere is radially symmetric. The growth rate

in the sphere is non-uniform and decreases as the radial distance from the surface increases.

Growth is therefore at its maximum on the tumour surface. As the spheroid grows the outer

cells ‘drag’ the cells in the centre of the sphere out. This results in the sphere being under

radial tension. This can be represented in two dimensions by imagining two adjacent circular

rings of cells. If the two circles are unconstrained, the growth will cause both rings to increase

in size, however the ring on the outside will be growing faster and thus the diameter of this

ring will be growing at a faster rate than the ring inside it. The two rings must remain

adjacent and not separate. Therefore there is a force between them keeping them together

and this is why the spheroid is under radial tension. For a spherical tumour this analogy

is simply extended to consider adjacent shells in three dimensions. The cells experiencing

the maximum tension are those with the most cells trying to pull them outwards, i.e. in the

centre. The large radial forces pulling the central cells outwards, results in the cells being in
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Figure 3.3: The radial stress (A), circumferential stress (B), radial stain (C) and circumfer-
ential strain (D) through a tumour spheroids of radii 250µm (+), 339µm (- - -) and 500µm
(—) in which κµ = O (1).

circumferential tension as they attempt to remain attached to their neighbouring cells. In the

outer regions of the sphere the difference in growth rate between the cells is small and is close

to the maximum growth rate. Therefore the drag effect is less. Close to the surface the cells

are growing at a rate equivalent to that of those on the surface. Radial stresses are negligible

as these are relieved by the expansion of the outer boundary. Circumferential stresses build

up due to growth and thus there is a region close to the tumour surface experiencing large

circumferential compressive forces, which, due to radial symmetry can not be relieved.

In many elastic models stress and strain are proportional. However by subtracting equation

(3.13) from equation (3.14) we can show that in this growing medium we have that net stress

is proportional to net strain, where strain is taken to be the difference between the current

distance between two points and the distance between the same two points under zero stress;

the desired distance. Cells throughout the tumour are under radial tension due to the ‘drag’

effect of growth. For cells in the centre this effect is dominant over growth and thus these

central cells are also under circumferential tension. Close to the edge the growth rate is almost

constant. Therefore the drag effect is small compared to the effects of growth and thus the
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Figure 3.4: The radial stress (A), circumferential stress (B), radial stain (C) and circumfer-
ential strain (D) through a tumour spheroids of radii 250µm (+), 339µm (- - -) and 342µm
(—) in which growth is highly sensitive to stress.

cells are under circumferential compression. Therefore regardless of location the cells are

radially longer and circumferentially slimmer than their desired length. Thus the radial strain

is positive and circumferential strain is negative, except at the centre, where the spherical

properties of the tumour impose that the centre must always have zero circumferential strain.

The effects of necrosis are highly dependent on the sensitivity of growth to stresses. Necrosis

can be thought of as acting as negative growth. Although the tumour spheroid is dominated

by tension, by proliferating in the direction of maximum tension the cells are regulating this

force. Necrosis causes an empty space to develop where the cell is dying. This space can not

be left empty and thus cells are pulled in from the surrounding regions to fill it. Therefore

necrosis will add to the tension forces within the spheroid, whilst growth will reduce them.

The rate at which these forces build up will be dependent on how sensitive the direction of

growth is to its surrounding stress field. A tumour whose growth is insensitive to stress will

grow isotropically, pushing cells at random in towards the centre to replace the necrotic cells.

A tumour whose growth is highly sensitive to stresses will grow anisotropically, preferring to
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add daughter cells in the radial direction to relieve the radial tension caused by necrosis. This

will have the effect of accelerating the increase in forces in the necrotic region. This can be

best seen by studying the distribution of stress in Figure 3.2 for growth insensitive to stress

against those in Figure 3.4 where the growth is highly sensitive to stress. The magnitude of

the strains in the model where growth is highly sensitive to stress, Figure 3.4, are small but

rapidly increasing. In the time take for the diameter of the spheroid to increase by just 3µm,

a significant increase in stress can be seen.

This study has considered cells to be incompressible, therefore the size of the mechanical forces

that develop during growth are dependent on the size of the sensitivity of growth parameter

κ. As the value of κ increases the magnitude of the internal forces and strain decreases.

Coinciding with this, the time scale on which these stresses and strains develop also decreases.

Experimental work by Helmlinger et al. [73] compute the size of the stress induced by the

tumour on its surrounding medium. Although no direct comparisons can be made, we can

confirm that the magnitude of the stresses seen experimentally for a tumour of radius 200µm

are similar to those modelled for moderately sensitive growth.

The aim of this model was to establish whether it was necessary to include effects of mechanical

forces when modelling the growth of a MCTS. The conclusions from this work are dependent

on how sensitive growth is to differences in circumferential and radial stress. Even in small

tumours, insensitive growth produces large forces in both the circumferential and radial direc-

tions. These produce large strains and would therefore have a large, damaging affect on the

tumour’s growth and the cells within the spheroid. However, tumours are unlikely to grow

isotropically to stress and thus this regime is unrealistic of what would be seen in vitro. The

results of moderately sensitive growth before necrosis showed stresses with magnitude compa-

rable to that found calculated from experimental work by Helmlinger et al. [73]. However the

increase in stress due to the onset of necrosis produced forces higher than that seen in vivo.

This would have damaging effects of the individual cells and cause the collapse of any potential

vascular system. The closest representation of in vivo studies is modelled using highly sensitive

growth. The results of highly sensitive growth show that for early growth, when there is no

necrotic region, the stresses and strains are very small and thus can be neglected in a growth

model. However the onset of necrosis causes the stress and strain to dramatically increase

and thus can no longer be ignored. In this model the cell density must remain constant and

thus the stresses rapidly increased. In in vitro growth the cells would detach themselves from

their neighbours and thus the cell density would drop and become a region largely containing

water and cell debris [163]. It can therefore be concluded that for moderate to highly sensitive

growth, the growth of a spheroid can be modelled without the need for necessarily considering

mechanical forces. However once necrosis has been initiated, they must be included and will

potentially be a dominant mechanism.
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3.7 Application to a sliced tumour

As with all modelling it is necessary to compare the theoretical results to those found exper-

imentally. For the morphoelastic model of a tumour presented in this thesis, this shall be

achieved by studying the deformation of a tumour spheroid that has been sliced in half, in

view of comparing the theoretical results to those seen during in vitro experiments [150]. By

slicing the tumour in half we break the internal forces that were previously in equilibrium.

The tumour will therefore deform to relieve the internal stresses and regain an equilibrium

state. In this work we only consider this as a theoretical study, the comparison to experimental

results is beyond the scope of this thesis.

The growth of the tumour spheroid shall be modelled using the growth model presented in

Section 2.5 and the mechanical forces will be derived using the model presented in Section

3.3. Once again we shall assume that the tumour is incompressible so that the growth and

mechanical models can be solved separately. Both moderately and highly sensitive growth

could be used as models for the tumours directional preference of growth. In this example we

shall arbitrarily chose the tumour’s growth to be moderately sensitive to stress and thus we

consider κµ to be order 1. The stress profile will be derived for a tumour with radius 500µm.

The tumour shall be sliced through the centre into a perfect hemisphere. The parameters

values required for this model will be the same as used in the morphoelastic model presented

in Section 3.6.

We shall assume the tumour spheroid consists of a linearly elastic material, thus,

σij = λ δij ekk + 2µ eij , (3.48)

and once again body forces will be neglected such that,

∂σij
∂xj

= 0. (3.49)

Lastly we shall approximate strain using Cauchy’s infinitesimal strain tensor,

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.50)

where u is the displacement. By solving these three equations the deformation of the tumour

given a known stress field can be derived.

We wish to study the deformation of a tumour spheroid with a known stress field, in which

the stress along a given surface has been relieved. This will be done by considering the force

that would be necessary to keep the sliced tumour in its pre-deformed hemispherical shape.

The force required for this is equal and opposite to the forces on the sliced surface. Therefore
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Figure 3.5: Geometry used for COMSOL simulation of sliced MCTS.

by applying this force to the flat surface of an unstressed hemisphere, of equal radius as the

original tumour, we can derive the deformation that would take place by cutting a tumour in

half.

3.8 Results

The results from the morphoelastic model, computed using MATLAB [174] and presented in

Figure 3.6, for highly sensitive growth were first converted into a Cartesian coordinate system.

The stress normal to the sliced surface was then imported into COMSOL Multiphysics [32],

where it was applied to the boundary of the flat surface of a stress free hemisphere. Although

the forces applied to the flat surface are radially symmetric, numerical differences resulted

in solutions in which the hemisphere would spin or move laterally in space. Therefore an

additional condition to hold the sphere stationary in space whilst allowing the surface to

deform was added. This was achieved by constructing the hemisphere in two parts; the main

volume and a circular region on the surface of the sphere, directly opposite the sliced surface.

This small circular shell was pinned such that it could not move in any of the coordinate axes.

The circular shell is small and relatively far away from the sliced surface and therefore this

additional condition will have little effect on the results of the deformation of the tumour. The

hemisphere and pinned circular shell are shown in Figure 3.5.

The results of the simulation derived in COMSOL [32] are shown in Figure 3.6. By slicing the

tumour spheroid in two the forces that had previously kept the tumour in spherical symmetry
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Figure 3.6: Nondimensional deformation of a sliced tumour spheroid with radius 500µm. The
darkest regions indicate areas of greatest expansion, whilst the lightest region indicates greatest
contraction.

were broken. Thus the hemispherical tumour deformed to its new equilibrium state. The

tumour had been in radial tension due to growth. Upon relieving the forces, the tumour

contracted, shown by a smaller distance between the centre of the flat surface and the outer

curved surface. Prior to slicing the tumour was in circumferential tension in the centre and

in compression close to the surface, where the rate of proliferation rate high. Thus, when

sliced, the tension forces were relieved by the centre of the tumour contracting inwards and

the compression forces relieved by expanding outwards near the surface. These deformations

were calculated using the results of the morphoelastic model in the moderately sensitive limit

at a tumour radius of 500µm. The forces at this time produced significant deformations, as

graphically shown in the results given in Figure 3.6. As the necrotic core becomes larger

the forces inside the tumour pulling it inward increase. This would have resulted in large

deformations if the tumour were to be sliced in half.

This model highlights the importance of mechanical forces when modelling the growth of the

a tumour spheroid and in particular the need to include the effects of stress once the tumour

has become necrotic.

3.9 Discussion

A morphoelastic model of stress and strain was implemented and added to an existing growth

model, showing that large internal forces may develop. In particular the onset of necrosis

creates large tensile forces within the necrotic regions. The effects of how sensitive the growth

of the tumour is to differences in the stress were studied and were shown to affect the magnitude

of the forces and time scale on which they develop. This model of stresses and strains was
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then used to determine the deformations in a sliced tumour, as an alternative way of showing

the effects of mechanical forces. Both highlighted the need to include mechanical forces into

a model of tumour spheroid growth, in particular when describing necrosis. Further work

is required to identify how the stress field will affect growth. This model also considered

tumours to be incompressible. Although this maybe a good initial approximation the effects

of considering the tissue as a compressible material should be explored in the future to give a

more accurate representation of a MCTS.
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Chapter 4

Diffusion through a cellular region

4.1 Introduction

In this chapter we will derive continuum macroscopic equations for nutrient transport and

consumption within a cellular region, by firstly considering individual cell characteristics on

a microscopic scale. The effects of nutrient diffusion and consumption around a single cell

will be studied before homogenization techniques are implemented to derive a model for the

concentration of nutrients within a large population of cells. The aim of this chapter is to

them determine whether the macroscopic equations used in Chapter 2 appropriately modelled

diffusion and consumption through a cellular region.

A brief overview of homogenization theory will be given in Section 4.2 before a derivation

of the equations for nutrient transport and consumption in a cellular region in Section 4.3.

The resulting equations will then be applied to two example geometries in Section 4.4: Firstly

an ellipsoid cell, showing how the shape of a cell can affect the transport of nutrients and

secondly to a spherical cell, for which the resulting diffusion coefficient will be compared

against that derived from in vitro experiments. This chapter will end with a brief discussion

of the ideas that have been studied and a comparison to the equation for nutrient conservation

used in Chapter 2. The methods used in this chapter are similar to the work presented in

[29, 142, 152, 162].

4.2 Homogenization theory

Homogenization is a technique which uses the known properties of a regular microscopic setup

to derive averaged equations on a macro-scale, by implementing the method of multiple scales.
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Figure 4.1: Schematic of the periodic array of cells.

The theory assumes that the local structure is periodic in all directions and that there are

two distinct length scales in the problem. Tumour biology is a good application for this, as

we have assumed the cell density to be constant throughout the spheroid and for the cells to

be of constant size. Therefore the tumour spheroid has a uniform structure. There are two

obvious length scales; the size of a cell, and the radius of the tumour.

By appropriate rescaling of the variables the global length scale can be scaled to be O (1),

whilst the local length scale can be scaled to be of length ǫ, such that ǫ << 1. By studying the

limit as ǫ→ 0 the original local equations can be used to derive global expressions. A multiple

scales expansion is then used to equate powers of ǫ and derive a solution. In a well posed

problem the local scale ‘cell problem’ will be derived at O (ǫ) and the solvability equation will

be derived at O
(
ǫ2
)
.

4.3 Diffusion model

We will now use multiple scale homogenization theory to study the transport and consumption

of nutrients in a cellular region. We will consider a periodic array of cells contained in bounded

regions for which the total volume of the extracellular regions will be donated by V and the

volume of each individual extracellular region will be denoted by Vε. Cells will consume

a general chemical species which will have concentration C̄. This chemical species will be

assumed to diffuse in the extracellular space around the cells and cell consumption will be

accounted for by a flux condition on the boundary of each cell, Sε. The region inside each

cell will not be considered. The combination of all cell boundaries will be denoted by S. This

setup is schematically shown in Figure 4.1. The governing equations in the extracellular region
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Figure 4.2: Schematic of the microscopic (A) and macroscopic (B) setup considered.

are,

∂C̄

∂t̄
− D∇2C̄ = 0 in V, (4.1)

D∇̄C̄ · n = −k C̄ on S, (4.2)

where D is the diffusion coefficient of the chemical species considered, k is the rate of flux

due to consumption and n is the outward normal. To aid analysis the model will be nondi-

mensionalised. Length will be scaled on the macroscopic scale, L, shown in Figure 4.2. The

concentration scaling of our generic species will be scaled with that in the initial surrounding

medium, C0. Time will be scaled to balance diffusion in equation (4.1). The nondimensional

scalings are,

x̄ = Lx, C̄ = C0C and t̄ =
L2

D
t. (4.3)

The nondimensional system of equations gives,

∂C

∂t
− ∇2C = 0 in V, (4.4)

∇C · n = −
(
kL

D

)
C on S. (4.5)

The effective consumption will be replaced such that,

εγα =
kL

D
, (4.6)

where α = O (1) and,

ε =
d

L
, (4.7)
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in which d is the length of a cell as shown in Figure 4.2. The modelling equations are,

∂C

∂t
− ∇2C = 0 in V, (4.8)

∇C · n = −εγ αC on S. (4.9)

We shall use the method of multiple scales, where the independent global and local length

scales x and y are related to each other by,

x = εy. (4.10)

The expanded equations are,

ε2
∂C

∂t
−
(
∇2

yC + ε∇y ·∇xC + ε∇x ·∇yC + ε2∇2
xC
)
= 0 in Vε, (4.11)

(∇yC + ε∇xC) · n = −εβαC on Sε, (4.12)

where,

β = γ + 1. (4.13)

The variable C can then be expanded in powers of ε, such that,

C = C(0) (x,y, t) + εC(1) (x,y, t) + . . . (4.14)

and taken to be periodic in y.

The value of β will specify the order at which the consumption term in equation (4.12) appears.

Physically, altering β changes the relative effects of cell consumption and diffusion on the

concentration of the chemical species considered. We shall now consider the relevant limiting

cases for β.

4.3.1 Case 1: β < 2

Firstly we shall consider the case where β = 0, to leading order, O
(
ε0
)
, equation (4.11) and

(4.12) give,

−∇2
yC

(0) = 0 in Vε, (4.15)

∇yC
(0) · n = −αC(0) on Sε. (4.16)
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Integrating equation (4.15) and imposing the corresponding boundary condition given in equa-

tion (4.16), gives, ∫∫

Sε

C(0) dSε = 0. (4.17)

The first order, O (ε), system is given by,

−
(
∇2

yC
(1) + ∇y ·∇xC

(0) + ∇x ·∇yC
(0)
)

= 0 in Vε, (4.18)
(
∇yC

(1) +∇xC
(0)
)
· n = 0 on Sε. (4.19)

This can be reduced to, ∫∫

Sε

∇xC
(0) · n dSε = 0. (4.20)

This implies that ∇xC
(0) is constant on the local scale and therefore to satisfy periodicity C(0)

is also constant on the local scale. Thus equation (4.17) implies,

C(0)

∫∫

Sε

dSε = 0, (4.21)

which results in,

C(0) = 0. (4.22)

When β = 1, the model to leading order is given by,

−∇2
yC

(0) = 0 in Vε, (4.23)

∇yC
(0) · n = 0 on Sε. (4.24)

The solution to this leading order problem is that C(0) is constant on the local scale, i.e.

C(0) = C(0) (x, t) . (4.25)

The first order system is,

−
(
∇2

yC
(1) + ∇y ·∇xC

(0) + ∇x ·∇yC
(0)
)

= 0 in Vε, (4.26)
(
∇yC

(1) +∇xC
(0)
)
· n = −αC(0) on Sε. (4.27)

Equation (4.26) can be integrated and then expanded to give,

−
∫∫∫

Vε

(
∇2

yC
(1) + ∇y ·∇xC

(0)
)
dVε −

∫∫∫

Vε

∇x ·∇yC
(0) dVε = 0 in Vε. (4.28)

Applying the divergence theorem to equation (4.28) and imposing that C(0) is constant on the
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local scale, equation (4.25), gives,

−
∫∫

Sε

(
∇yC

(1) + ∇xC
(0)
)
· n dSε = 0 in Vε. (4.29)

The boundary condition, given in equation (4.27), simplifies equation (4.29), to give,

αC(0)

∫∫

Sε

dSε = 0 in Vε. (4.30)

Thus the solution for C(0) is,

C(0) = 0, (4.31)

which is the same result as derived for when β = 0.

Physically C(0) = 0 describes the situation where by cell consumption is occurring at a rate

much greater than that of diffusion, such that diffusion can not meet the consumption needs

of the cells. Therefore the cells are rapidly consuming the chemical species around them and

thus the concentration of the chemical specials is zero over all space and for all time. In

dimensional units β < 2 describes the situation where by

kL

D
= εβ−1 >

d

L
α, (4.32)

which implies,

k >
Ddα

L2
. (4.33)

Thus consumption will dominate nutrient transport and the species concentration will be zero

to leading order.

4.3.2 Case 2: β = 2

We shall now consider the case where β = 2. To leading order the model is given by,

−∇2
yC

(0) = 0 in Vε, (4.34)

∇yC
(0) · n = 0 on Sε. (4.35)

The only solution to this problem is when C is constant on the local scale, i.e.

C(0) = C(0) (x, t) . (4.36)
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To first order,

−
(
∇2

yC
(1) + ∇y ·∇xC

(0) + ∇x ·∇yC
(0)
)

= 0 in Vε, (4.37)
(
∇yC

(1) +∇xC
(0)
)
· n = 0 on Sε. (4.38)

By noting that C(0) is only a function of the global scale, this first order system can be

simplified to,

∇2
yC

(1) = 0 in Vε, (4.39)
(
∇yC

(1) +∇xC
(0)
)
· n = 0 on Sε. (4.40)

To solve the first order problem for C(1), equations (4.39) and (4.40), we exploit the linearity

and use separation of variables to assume a solution of the form,

C(1) = −∇xC
(0) (x, t) · χ (y) , (4.41)

where χ is an unknown vector function, periodic in y, and only a function of the local cell

problem. The first order problem can then be written as,

∇2
y

(
∇xC

(0) · χ
)

= 0 in Vε, (4.42)

∇y

(
∇xC

(0) · χ
)
· n = ∇xC

(0) · n on Sε, (4.43)

which, using the Einstein summation convention, can be simplified to,

∇2
yχi = 0 in Vε, (4.44)

∂χi

∂yj
nj = ni on Sε. (4.45)

This system of equations can then be solved numerically.

The resulting expression for C(1) in terms of C(0) can then be substituted into the second

order problem

∂C(0)

∂t
−
(
∇2

yC
(2) + ∇y ·∇xC

(1) + ∇x ·∇yC
(1) + ∇2

xC
(0)
)

= 0 in Vε, (4.46)
(
∇yC

(2) + ∇xC
(1)
)
· n = −αC(0) on Sε. (4.47)

Integrating equation (4.46) gives,

∂C(0)

∂t
|Vε| −

∫∫∫

Vε

∇2
yC

(2) + ∇y ·∇xC
(1) + ∇x ·∇yC

(1) dVε − ∇2
xC

(0) |Vε| = 0, (4.48)
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where |Vε| is the volume of the region surrounding the cell. Rewriting in terms of the expression

for C(1), defined in equation (4.41), equation (4.48) gives,

∂C(0)

∂t
|Vε| −

∫∫∫

Vε

∇2
yC

(2) −∇y ·∇x

(
∇xC

(0) · χ
)
−∇x ·∇y

(
∇xC

(0) · χ
)
dVε

−∇2
xC

(0) |Vε| = 0, (4.49)

with a boundary condition given such that,

(
∇yC

(2) − ∇x

(
∇xC

(0) · χ
))

· n = −αC(0). (4.50)

Rearranging equation (4.49) and applying the divergence theorem gives,

∂C(0)

∂t
|Vε| −

∫∫

Sε

(
∇yC

(2) − ∇x

(
∇xC

(0) · χ
))

· n dSε

+

∫∫∫

Vε

∇x ·∇y

(
∇xC

(0) · χ
)
dVε − ∇2

xC
(0) |Vε| = 0. (4.51)

Implementing the boundary condition, given in equation (4.50), into equation (4.51) results

in,

∂C(0)

∂t
|Vε| + αC(0) |Sε| +

∫∫∫

Vε

∇x ·∇y

(
∇xC

(0) · χ
)
dVε − ∇2

xC
(0) |Vε| = 0. (4.52)

where |Sε| is the magnitude of surface area of a cell. Rewriting in component form this gives,

∂C(0)

∂t
|Vε| +

∂2C(0)

∂xi∂xj

∫∫∫

Vε

∂χi

∂yj
dVε − ∂2C(0)

∂x2i
|Vε| = −αC(0) |Sε| , (4.53)

We introduce the tensor K by defining,

∫∫∫

Vε

∂χi

∂yj
dVε = Kij (4.54)

which allows equation (4.53) to be written as,

∂C(0)

∂t
|Vε| +

(
∂2C(0)

∂xi∂xj
Kij − ∂2C(0)

∂x2i
|Vε|
)

= −αC(0) |Sε| . (4.55)

This is the solvability equation for C(0) and can be used to model cell consumption on a

macroscopic scale for a given geometric set-up. Therefore, dimensionally, this will occur when

the rate of species flux into the cells is the same order as Ddα
L2 .
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4.3.3 Case 3: β ≥ 3

The solution to the problem for β ≥ 3 is equivalent to the case where β = 2 up to and including

first order terms. At second order the boundary condition changes to be,

(
∇yC

(2) + ∇xC
(1)
)
· n = 0 on Sε, (4.56)

which imposes no flux through the boundary. Therefore the solution to the second order

problem is equivalent to setting α to zero in the casee for β = 2. Thus following the workings

in Section 4.3.2 the solvability equation for C(0) is,

∂C(0)

∂t
|Vε| +

(
∂2C(0)

∂xi∂xj
Kij − ∂2C(0)

∂x2i
|Vε|
)

= 0, (4.57)

where K is the permeability tensor as defined in equation (4.54). For β ≥ 3 the sink term

in the boundary condition does not come in until the ‘β’ order problem. By which point

the solvability equation for C(0) has been derived. Thus for β ≥ 3 the chemical species in

question will be diffusing through the structure at such a rate that the consumption by cells

is negligible.

4.4 Application to tumours

We shall now consider the physical implications of our alternative conservation equation for the

case when consumption balances diffusion. Firstly we shall consider the geometric effects by

considering a region of ellipsoid cells and show how the shape of a cell can affect the transport

of a chemical species. Secondly we will derive the effective diffusion coefficient for a region of

spherical cells packed into a region with density equivalent to that of a tumour. The resulting

effective diffusion coefficient will then be compared to experimental work.

4.4.1 Example 1: Ellipsoid cells

To show the effects of the geometry of a cellular region on the transport of nutrients, we

consider a region of ellipsoid cells. Each cell will have dimensionless radii 2 along the y1

axis and radius 1 along the y2 and y3 axes and shall be contained in a rectangular box with

dimensions 6, 4, 4 in the direction y1, y2 and y3 respectively. The consumption rate of the

nutrient considered will be said to balance diffusion such that β = 2. The consumption of

the nutrient will be modelled by the flux of nutrients through the surface of each cell and the

concentration of the nutrient will be governed by conservation of mass in the surrounding fluid.
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Figure 4.3: Ellipsoid cell contained inside periodic region implemented in COMSOL simulation.

Transport through the cells will not be considered and in the outer region we shall assume the

transport to be diffusion dominated. Therefore the system can be modelled by equation (4.1)

with the boundary condition as given by equation (4.2). Periodic boundary conditions will be

applied to the box such that the flux of the nutrient is continuous across the boundaries of the

box. The solvability equation for the leading order problem is therefore as derived in Section

4.3.2,
∂C

∂t
|Vε| +

(
∂2C

∂xi∂xj
Kij − ∂2C

∂x2i
|Vε|
)

= −αC |Sε| , (4.58)

given that ∫∫∫

Vε

∂χi

∂yj
dVε = Kij , (4.59)

and

∇2
yχi = 0 in Vε, (4.60)

∂χi

∂yj
nj = ni on Sε. (4.61)

Equations (4.60) and (4.61) were solved numerically using COMSOL Multiphysics [32] for the

physical setup as described above and shown in Figure 4.3. The solutions for χ1, χ2 and χ3

are shown in Figure 4.4. Due to the Neumann boundary condtion imposed on this system

there will be no unique solution. Therefore to obtain a single solution an extra condition was

imposed which stated that χ on the surfaces normal to the component considered would be

equal to zero, e.g.

χ1 = 0 on y1 = −3 and y1 = 3. (4.62)

The results for χi were then used to derived the permeability tensor, Kij. The results of which
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Figure 4.4: Graphical solutions to the first order problem for χi. Plot A shows the solution
to χ1, B to χ2 and C to χ3.

are such that,

Kij =

∫∫∫

Vε

∂χi

∂yj
dVε =




1.667 3.311 · 10−5 −1.478 · 10−4

−6.213 · 10−5 4.991 7.665 · 10−5

1.315 · 10−4 −1.878 · 10−6 4.991


 . (4.63)

Due to the symmetry of the system the off diagonal values should be zero. In the above solution

the values are small, but non zero, due to numerical errors. Therefore these entries in the

permeability tensor will be neglected. The resulting tensor can be substituted into equation

(4.58) to give a final leading order equation for the effective diffusion and consumption of

nutrients through a periodic region of ellipsoid cells.

∂C

∂t
− ∂

∂xi

(
∂C

∂xi
− K̃ij

∂C

∂xj

)
= −α

|Sε|
|Vε|

C, (4.64)

where,

K̃ij =




1.90 0 0

0 5.70 0

0 0 5.70


 · 10−2. (4.65)
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Figure 4.5: Schematic of a spheroid cell contained inside its periodic region.

This differs from a conventional macroscopic approach in that diffusion now has a directional

preference. The permeability tensor gives the resistance to the movement in the direction of

interest. Thus a zero in a diagonal entry of K̃ would describe unimpeded diffusion at a rate

equal to that in a fluid with no cells. Whilst a value of one would impose that there was

no diffusion in that direction. Thus in our example the diffusion will be fastest along the

length of the cells, in the direction y1, whilst being a factor of three slower in either the y2

or y3 directions. However the magnitude of the values in this permeability tensor are small.

This is due to the relatively small size of the cells compared to the surrounding region. This

imposes that the effects on the rate of diffusion are small. The surface area to volume ratio

is approximately 0.25. This results in a relatively high level of consumption of nutrients.

Cells packed at a higher density or with a larger surface area would cause the nutrients to be

consumed at a faster rate.

4.4.2 Example 2: Spherical cells

We shall now derive the effective diffusion coefficient of a chemical species diffusing through

a MCTS. The tumour cells shall be assumed spherical, with radius r and packed at constant

density ρ. The numerical value of ρ is given in Table 2.3 and we shall assume the radius of

a cell to be 7.5µm. A schematic of the setup used is given in Figure 4.5. In this example

we only wish to study the effects of transport, therefore consumption shall be neglected and

effectively we consider the case where β ≥ 3. We will consider glucose as our example nutrient

and thus transport will only take place in the extracellular regions. Therefore the leading
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Figure 4.6: Graphical solutions to the first order problem for χi. Plots A, B and C show the
solutions to χ1, χ2 and χ3 respectively.

order solvability equation for the concentration of glucose is given by,

∂C̄

∂t̄
− D

∂

∂x̄i

(
∂C̄

∂x̄i
− Kij∣∣V̄ε

∣∣
∂C̄

∂x̄j

)
= 0. (4.66)

The permeability tensor K is again defined such that

Kij =

∫∫∫

Vε

∂χi

∂yj
dVε (4.67)

and

∇2
yχi = 0 in Vε, (4.68)

∂χi

∂yj
nj = ni on Sε. (4.69)

The solution for χ and the resulting permeability tensor K were solved using COMSOL Mul-

tiphysics [32]. The geometric setup is shown in Figure 4.5 and the resulting solutions for χi

are shown in Figure 4.6. Similar to the case of the ellipsoid cell, an extra boundary condition

was imposed on the surfaces normal to the component considered, that stated that χ equals

zero. The resulting permeability tensor was then derived such that,

Kij =




5.14 0 0

0 5.14 0

0 0 5.14


 · 10−16. (4.70)

Due to the symmetry of the problem the diagonal terms are identical whilst the off diagonal
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terms are zero. Thus the solvability equation can be re-written as,

∂C̄

∂t̄
− Dnew

∂2C̄

∂x̄2i
= 0, (4.71)

where,

Dnew = D

(
1− 5.14 · 10−16

1
ρ
− 4

3πr
3

)
. (4.72)

By substituting in the diffusion coefficient of glucose in a fluid, given in [104] to be 9.25 ·
10−10m2s−1 , and the known values for r and ρ, we derive a new effective diffusion coefficient

for glucose inside a tumour spheroid, such that,

Dnew = 7.77 · 10−10m2s−1. (4.73)

The diffusion coefficient of glucose in a tumour was also derived experimentally by Casciari et

al. [23] and given to be 1.1 · 10−10m2s−1. The difference in the theoretical and experimental

diffusion coefficients could be due to a number of reasons.

In this study we have studied the transport around a spherical cell, distributed periodically in

space in which the periodic region is a cube encapsulating a single cell. This structure was used

as a simple representation of a tumour, which could be easily solved using numerical methods.

In practice each cells will not be centred in a cube, but will be enclosed in a face centred

cubic lattice [33]. A two dimensional representation of the system used in this study is shown

alongside the more efficient face centred cubic lattice arrangement in Figure 4.7. The problem

of efficiently packing cells has been widely studied in literature [33, 81]. By optimally arranging

the cells it can be shown that the packing density of cells can reach π/
√
18 ≈ 0.7405 [33]; this

is compared to the cubed arrangement which has a packing density of π/6 ≈ 0.524. This

increase in cell density would reduce the space available for diffusion. However in our example

of tumour spheroids the packing density of cells is known to be approximately 0.355. Therefore

of greater relevance to this study is the tortuosity of the geometry. As shown in Figure 4.7, the

cubic arrangement provides large cylindrical ‘pipes’ that provide efficient and fast transport

of nutrients in all dimensions. The alternative arrangement; illustrated by hexagons in two

dimensions, provides a tortuous path for nutrient transport. The glucose would have to diffuse

around the cells, travelling a greater distance than in the cubed arrangement. This would

reduce the effective diffusion coefficient. However the geometry makes this problem harder to

solve numerically and is thus not included in this thesis. Along with the structural layout of

cells we have also assumed the cells to be of equal size and uniformly distributed. Larger cells,

or a higher packing density, would reduce the extracellular volume available for the glucose to

diffuse through and thus decrease the rate of diffusion. Similarly a non-uniform distribution

of cells would provide greater resistance to glucose transport.
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Figure 4.7: Two dimensional schematic of the cubic (A) and face centred cubic lattice (B)
packing arrangements. Arrowed lines and hashed circles indicate the flow of nutrients.

4.5 Discussion

In this chapter we have studied the effects of species transport and consumption on the con-

centration of a nutrient surrounding a cell. Using homogenization theory we have then shown

how these microscopic effects can be used to derive continuum equations on a macroscopic

scale. The resulting macroscopic equations are shown to give directional preference for the

diffusion of nutrients due to the geometry and arrangement of the cells. The consumption of

nutrients was modelled by imposing a flux of nutrients across the cell boundary. The overall

consumption rate was thus shown to be relative to the extracellular volume and the surface

area of the cells. When compared to experimental data this approach was shown to lower the

effective diffusion rate by an insufficient amount. Therefore at present it is more accurate to

model the transport of nutrients using the experimental data and equations implemented in

Chapter 2. In the future, further investigation is required into cell characteristics, cell geome-

try and the make up of the extracellular matrix to generate a theoretical model that simulates

what is seen in experiments with a greater degree of accuracy.
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Chapter 5

Modelling of engineered orthopaedic

tissue

5.1 Introduction

The process of biologically engineering tissue to replace degraded or injured tissue in the body

is a rapidly expanding area. In the developed world, it is likely that one in every five people

over the age of sixty-five will benefit from organ replacement technology, creating a demand

for engineered products that was a billion dollar industry in 2008 alone [90].

Tissue engineering uses cells extracted from living organisms to grow biological material in

vitro with the aim of replacing damaged or degenerate in vivo tissue. Unlike organ transplants,

engineered tissues can be designed and made compatible for individual patients, reducing the

risk of rejection or infections. Engineered tissues also provide a more ethical basis for testing

drugs and medical treatments.

Tissues have been engineered for many different uses. Example areas include bone, blood

vessels, heart valves, and skin [144, 175]. This study will look at the growth of cartilage.

Articular cartilage provides a soft, shock absorptive layer between joints that is low in friction

and reduces the stress and wear on bones [106, 195]. It is estimated that ten thousand people

a year in the UK alone experience cartilage damage that is severe enough to require treatment

[133]. Cartilage is often damaged as the result of gradual degradation over time or as the

result of a sudden and direct impact. The simplicity of the cartilage structure makes it an

ideal tissue to model mathematically. Many engineered tissues suffer from the inability to

recreate vascular networks, thus limiting the blood supply and growth [90]. Cartilage is non

vascularised and so is not potentially limited in this way. This enables in vitro growth to

accurately replicate what is seen in vivo.
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The aim of this chapter is to explain the growth characteristics of a layer of chondrocytes.

To begin a brief outline of the structural and functional properties of tissue and cartilage will

be given in Section 5.1.1. This will be followed by a literature review of the experimental

progress made in the field of tissue engineering as well as in the mathematical modelling of

tissue engineered constructs. This review, given in Section 5.2, will also explore the metabolic

pathways that govern tissue cells. The model presented in this chapter has been constructed

with particular focus on monolayer cultures of cartilage. A comparison of the mathematical

predictions is made to experimental data provided by Jos Malda and Wouter Schuurman

working at Utrecht University and University Medical Center Utrecht, The Netherlands [114].

The experimental procedures used are described in Section 5.3 and analysis of the resulting

data is given in Section 5.4. This analysis then forms the basis for the mathematical model

laid out in Section 5.5. The results of this model are then presented and comparisons are made

to experimental data in Section 5.7. These results and the potential for developing the model

in the future is discussed in Section 5.8.

5.1.1 Tissue and cartilage

We shall now give a brief overview of the properties of tissue, with particular focus on cartilage.

The summary has been based on work presented in [169, 175], but further information on

cartilage and chondrocytes can be found in [13, 168], collagen and proteoglycans in [44, 154]

and reviews from a clinical viewpoint in [16, 83, 105, 112].

There are four types of tissue; epithelial tissue, connective tissue, muscular tissue and nervous

tissue. Each tissue type is used for differing purposes and thus has its own characteristics.

Epithelial tissue is used to cover surfaces throughout the body and forms many of the glands

found within the body. Connective tissue protects and supports the body and the organs

within. This tissue type also binds organs together and in certain cases stores energy as fat.

Muscular tissue provides the forces required for the body to move. This can be on a large scale

such as the physical movement of the human body, or on a smaller scale such as in the beating

of a heart. Finally nervous tissue detects changes to the body both internally and externally

and thus regulates the body’s conditions. Cartilage is classified as a connective tissue and thus

we shall focus our discussion on this tissue type.

Connective tissue consists of three elements, cells, extracellular matrix (ECM) and interstitial

fluid. The cells within connective tissue can be divided into two groups; immature cells and

mature cells. Immature cells have the capacity to undergo mitosis as well as produce ECM.

In cartilage these immature cells are called chondroblasts and once they have produced the

necessary amount of ECM required of them, they differentiate into mature cells. In cartilage

the mature cells are known as chondrocytes. Mature cells have a lower capacity to proliferate
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and create ECM than immature cells. Instead their main role is in maintaining the matrix

surrounding them [175].

The ECM can be broken up into two parts; these are ground substance and fibres. The ground

substance is the material that fills the spaces between the cells and the fibres. In doing so

it holds the cells in place, stores water and provides the medium by which the nutrients and

other substances can diffuse through. The ground substance also consists of a large variety of

large organic molecules that are a combination of proteins and polysaccharides. The collectives

name given to the polysaccharides is glycosaminoglycans, more commonly known as GAGs.

With the exception of hyaluronic acid the GAGs then combine with the proteins to form large

molecules known as proteoglycans, where the GAGs ‘project from the proteins like the bristles

on a bottle brush’ [175]. The hyaluronic acid then binds the proteoglycans and surrounding

fluid together to form larger structures. The fibres, ground substance and cells are then bound

together by the protein fibronectin.

Embedded in the ground substance are the fibres. The role of the fibres is to provide strength

and support and they can be thought of as providing the scaffold to the connective tissue. The

fibres come as one of three types; collagen fibres, elastic fibres and reticular fibres. Collagen

fibres are very strong, inextensible and can withstand large tensile forces. However the fibres

are not stiff, which allows the tissue to be flexible. Collagen fibres can form ropes as found

in ligaments and tendons or flat sheets as in cartilage. Collagen fibres in cartilage have a

large capacity to retain water, thus making cartilage resistant to impact, where as collagen

in bone has a much smaller water content and thus allows bone to be more rigid. Although

the collagen fibres vary in size they often group together to form bundles between five and

two hundred nanometres in diameter [169]. It is these bundles that provide the tissue with

its strength. Elastic fibres have a much smaller diameter than collagen fibres and form large

networks within the tissue. These networks add strength and stability. Like their name

suggests, these fibres are highly elastic and thus help the tissue to retain its shape. Reticular

fibres are constructed from the protein collagen and are much thinner than collagen fibres.

Like elastic fibres, reticular fibres form highly ordered networks throughout the tissue giving

the tissue strength and support. Cartilage consists of a dense arrangement of collagen fibres

and elastic fibres within the ground substance. The collagen fibres make the cartilage very

strong and resilient to loading and external forces.

The surface of cartilage is often covered by a dense irregular connective tissue, this is known as

the perichondrium. The perichondrium contains two layers; an outer layer of collagen fibres,

blood vessels and fibroblasts and an inner cellular layer of chondroblasts and chondrocytes,

that contribute to the ECM production of the cartilage.

Cartilage can be classified into one of three groups; Hyaline cartilage, fibro cartilage and

elastic cartilage. Hyaline cartilage has a white glassy appearance. Most hyaline cartilage is
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coupled with a perichondrium layer, with the exceptions of articular cartilage in joints. Hyaline

cartilage is the most commonly found cartilage in the body, providing support and flexibility.

Hyaline cartilage also reduces friction and acts as a shock absorber. Of the three types of

cartilage hyaline cartilage is the weakest. Fibro cartilage contains large bundles of collagen

fibrils and is not surrounded by a perichondrium. The ground substance is minimal and thus

this is the strongest of the three types. Fibro cartilage is commonly found in intervertebral

discs. Elastic cartilage provides strength and is highly elastic. Elastic cartilage contains a high

density of chondrocytes and thus a lower proportion of ground substance. A perichondrium

surrounds elastic cartilage. An example of where elastic cartilage can be found is in the

external ear.

Most connective tissues are highly vascularised and thus have an efficient supply of nutrients.

Cartilage however emits antiangiogenic factor that prevents the growth of blood vessels [175].

Thus cartilage is avascular. The lack of a vascular network means cartilage is reliant on diffu-

sion, and to a lesser extent convection, for its nutrient supply. Diffusion is a much less efficient

transport mechanism than blood flow and thus cartilage can struggle to obtain the necessary

nutrients it requires. This results in cartilage being slow to grow and slow to repair itself if

damaged. The growth of a cartilage layer is the product of interstitial growth and appositional

growth. Interstitial growth is where the chondrocytes within the tissue produce ECM and push

each other away from one another. This causes the tissue to expand from within. This form

of growth occurs when the cartilage is young, during childhood and adolescence. Appositional

growth is where the tissue is added to at the surfaces. Cells in the perichondrium differentiate

into chondroblasts which in turn produce large quantities of ECM. The ECM is then pushed

underneath the perichondrium and the outer surface of the cartilage expands. Appositional

growth occurs during adolescence.

Along with the slow nutrient transport mechanisms available to cartilage the other main factor

that can affect the rate of tissue repair is age. As the body and cartilage ages the metabolic

rate of the cells will become lower, leading to a slower rate of ECM production and thus the

cells will be less efficient at repairing the tissue when required.

5.2 Literature review

We shall now discuss the literature available regarding cartilage tissue engineering. This review

shall be broken down into three parts. Firstly we shall discuss the metabolic pathways that

chondrocytes take to produce the energy they require. In particular this will be discussed in

terms of the Crabtree and Pasteur effects and we shall also focus our discussion on the role of

oxygen in producing energy. Secondly, we shall look at the experimental work that has been

done in this area. The various methods of culturing the tissue shall be presented and discussed.
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Finally, the various attempts at modelling tissue growth using mathematical models shall be

reviewed.

5.2.1 Metabolism and the role of oxygen

It is commonly reported that chondrocytes synthesize the energy they require through gly-

colysis, [12, 77, 80, 86, 138, 169]. However the governing processes that determine how a cell

creates ATP under different environments, e.g. Pasteur or Crabtree effect1, differs between

studies. Lee and Urban [99] studied cells taken from articular cartilage across a range of

animals. The results show that in an environment in which the oxygen concentration was

less than one percent2, both the glucose consumption and lactate production were strongly

inhibited and thus the cells were governed by a negative Pasteur effect3. These measurements

were taken on a short time scale of hours and the effects over a longer time scale were not

shown. Lee and Urban also considered the age of the animal from which the cells were taken.

The results of this showed that the older the host donor the lower the cellular glucose uptake

under both anaerobic and aerobic conditions. The negative Pasteur effect is confirmed by

Bibby et al. [12] for isolated bovine nucleus pulposus cells, in which the lactic acid production

by the cells decreased as the oxygen concentration also decreased. However Bibby et al. go on

to point out that the metabolic effects can be dependent on the culture systems and that in

explants a positive Pasteur effect was seen. This is the case presented in [86] in which Ishihara

and Urban study dissected bovine coccygeal intervertebral discs. The results of a decrease in

oxygen consumption on lactate production were described as showing a ‘positive progressive

Pasteur effect’. However this study implies that the difference is due to the origins of the

cell rather than the culture process and that although intervertebral disc tissue and articular

cartilage are similar, they are ultimately governed by different processes.

The driving force behind what determines the metabolic pathway cells take is studied further

in [76, 77]. In [77], Heywood and Lee hypothesise that articular chondrocytes will switch

from a glycolytic to an oxidative metabolism when they are introduced to a monolayer culture

environment. This study looked at bovine articular chondrocytes and showed that there was a

significant increase in oxygen consumption when the cells were cultured. However it was also

shown that lactate production also increased and thus there was assumed an overall increase

in the production of ATP. The oxygen consumption and thus ATP production due to aerobic

respiration was shown to be very small during the first two days in which the cells were placed

in the monolayer culture. However, in the subsequent twelve days the oxygen consumption was

shown to consistently increase, with a reported thirty fold increase after fourteen days. The

1For more details on the Pasteur and Crabtree effects see Section 2.2 or [35, 36, 193].
21 % oxygen = 0.01 mole per m3 = 7.6 mmHg
3Negative Pasteur effect implies that as the oxygen concentration decreases and aerobic respiration becomes

inhibited, the rate of anaerobic respiration and glucose consumption does not increase
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corresponding increase in lactate production was only two fold. It was thus concluded that the

cells act differently initially after being seeded than in the subsequent period of time. More

recently Heywood et al., [76], studied whether sub populations of cells within cartilage layers

consume oxygen at different rates. The sub populations were determined by the depth from

which the cells were extracted from the cartilage layer. Both deep and superficial cells were

observed to be governed by the Crabtree effect, with the deep cells demonstrating a greater

capacity for oxygen consumption than the superficial cells.

Zhou et al. study chondrocytes from bovine cartilage in [197]. The rate of consumption

was shown to be constant until the glucose concentration fell below one milli-molar. The

metabolism of the chondrocytes was also shown to be affected by the pH, where a linear de-

crease in lactate production as pH fell from 7.4 to 6.4. In the same range a smaller percentage

reduction in oxygen consumption was seen.

Murphy and Sambanis, [128], report that in bovine articular chondrocytes the concentration

of oxygen has a significant effect on the rate of proliferation of a cell and the quantity of ECM

it produces. In a high concentration of oxygen cells were observed to constantly proliferate

throughout the twenty day culture period. At five percent oxygen, cells stopped proliferating

after twenty days and in one percent oxygen there was no proliferation seen after six days.

The author of this thesis suggests this may imply that the energy demand for proliferation

is very large and thus a cell requires aerobic respiration, due to its higher efficiency rate, to

create enough ATP to undergo mitosis. However further investigation would be required to

confirm this. Clark et al., [30] report that the maximum rate of GAG synthesis for bovine

chondrocytes is at an oxygen tension of twenty-one percent. Whilst the maximum rate of

proteoglycan aggregation was found at an oxygen tension of three percent. Bovine articular

chondrocytes were once again used in the study presented by Domm et al. in [43] in which

the effects of oxygen concentration on cell differentiation were studied. Monolayers cultures

of initially proliferating cells were shown to continue proliferating for all concentrations of

oxygen. No collagen was produced in these cultures during the three week experiments. At

high oxygen concentrations the same results were seen in alginate bead cultures. Only when the

oxygen concentration was reduced to five percent did these cells re-differentiate and synthesize

collagen.

The contribution of aerobic respiration for ATP production in bovine articular chondrocytes

is shown to be small in [77, 99]. Therefore the role of oxygen in determining ATP production

when modelling tissue growth would also be small. However it has already been shown that the

contribution from oxygen differs across different regions of tissue and also plays a role in the

differentiation of cells as well as the production of ECM. Therefore the distribution of oxygen

may still be important when modelling the growth of tissue. Malda et al. [113] measure the

oxygen gradients within tissue engineered constructs grown from the femoral condyle of bovine
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calves. The low consumption rate of the cells resulted in the oxygen concentration remaining

high for large tissue constructs. Only when the depth of tissue was greater than a millimetre

was the oxygen concentration reported to drop significantly, in this case to below a fifth of

its original value. This gradient was also considered to be more pronounced than in cartilage

explants due to the higher density of cells and lower diffusion coefficient in the engineered

tissue. The oxygen consumption was also thought to be affected by the cells differentiating.

From the study presented by Malda et al. we can conclude that for tissue engineered constructs

under a millimetre in depth the oxygen gradient will be small and thus the distribution of

oxygen will have little effect on the growth of the tissue layer. More recently Zhou et al.,

[196] investigated the oxygen concentration across cartilage samples taken from a range of

animals. They concluded that both the delivery and consumption of oxygen was determined

by a combination of cell density, cell distribution, cartilage thickness, oxygen supply and the

oxygen consumption rate of the individual cell type.

Further reviews of the effects of metabolism and oxygen are given by Grunhagen et al. [70]

and Henrotin et al. [75].

5.2.2 Experimental

The growth of tissue in vitro has been shown to be possible using various methods, each with

their individual characteristics and merits. The most common methods are pellet cultures,

monolayer cultures and seeded scaffolds. Pellet cultures are simply balls of cells packed at

high densities which are placed in culture medium and left to evolve; as used in [108, 173] to

grow cartilage constructs. Pellets share many of the same properties of multicellular tumour

spheroids, and therefore nutrient transport and consequently growth will be dependent of the

transport of nutrients and dominated by diffusion. Monolayer cultures have been successfully

used to grow tissue structures [7, 58, 72, 127, 141]. Like pellets, monolayer cultures have no

framework to give the cells a physical structure to bind to. A monolayer culture will begin

as a densely packed layer of cells and expand due to proliferation and ECM production. As

in pellet cultures it is likely that insufficient nutrient transport, due to inadequate diffusion,

will limit the rate of growth. The limitations of diffusive transport can be reduced by the use

of polymer scaffolds, as used in [49, 115]. These provide a highly porous framework for the

cells to be seeded onto, allowing more efficient diffusion and the opportunity to have a driven

flow of fluid through the cellular region, thus enhancing nutrient transport. These scaffolds are

often degradable, thus the final tissue structure will only consist of cells and the ECM that has

been produced. Bioreactors are often used to further enhance the growth of a tissue construct

[47, 48, 148, 182]. The bioreactor provides a controlled environment for the tissue growth,

in which the pH, temperature, media flow rate and hydrodynamical and mechanicals forces

can all be maintained [26]. For reviews and further information on the design and methods of
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tissue growth, involving scaffolds and bioreactors we refer to [38, 84, 98]

Studies into the in vitro growth of tissue engineered construct have yielded results comparable

to tissue grown in vivo, [148]. It has been shown that mechanical loading affects the production

and structure of the ECM both in vitro [182] and in vivo [85, 189], as well as the cells metabolic

activity [180]. Although the ECM provides a tortuous path for nutrient transport [101], Torzilli

et al. [176] showed that as the tissue developed from immature to mature cartilage there was

no statistical difference in the diffusion properties.

Hayes et al. [72] present results of experimental work on the expansion of bovine cartilage cells

from a monolayer culture. Photographic results of tissue growth, distribution and movement of

cells, alongside a discussion of the structural components that make up the extracellular matrix

is given. The thickness of the tissue is shown to increase at a constant rate over time, whilst the

cells are shown to spread out at different rates dependent on their location within the tissue.

The highest density of cells is found in the lower part of the tissue. A similar setup was used

by Furukawa et al. [58], however this study found that a rotational culture was required for

the tissue construct to maintain its shape. Chondrocytes isolated from articular cartilage were

cultured in a scaffold free environment both in vitro and in vivo by Park et al., [141]. The total

mass of GAGs was shown to rise throughout the culture period as did the total cell number. It

was observed that in the early phases both cell proliferation and differentiation were occurring

simultaneously. At later stages the majority of cells were solely producing GAGs. Riesle et al.

[148] show that in bovine cartilage cell seeded scaffold the percentage weight of cells dropped

over time, whilst the percentage weight of GAGs and collagen increased at constant rates.

Ofek et al., [137] provide a similar analysis for chondrocytes seeded in aragose coated wells.

The results of this experiment show the percentage wet weight and mass of GAGs within the

construct to rise. The mass of collagen within the construct was shown to rise at a steady rate,

however the percentage wet weight of collagen within the construct decreased over the fifty-six

day culture period. The production of GAG was shown to increase over time, suggesting the

cells focused on collagen production in the initial stages before differentiating and producing

GAGs. Further investigation would be required to determine the reason behind this difference,

but the author of this thesis believes possible factors that caused this are transport of nutrients

and the density of cells.

For further reviews of the mechanical properties of tissue and the field of tissue engineering

refer to [19, 69, 167].

5.2.3 Mathematical modelling

The growth of in vitro tissue can take many forms, depending on the culture system and cell

line studied. These differences mean there is a wide variety of mathematical models that study
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the individual cases.

The gradients in concentration of oxygen, glucose and lactate have been individually or col-

lectively modelled across a wide range of systems including within chondrocyte pellets, [129],

cartilage explants [113], intervertebral discs [119, 120] and other tissue engineered constructs

[60, 61, 113, 159, 197]. The distribution of nutrients and the effects these have on cell growth

and density have been studied in [59, 102]. These models look at transport in terms of diffusion

and provide good explanations for the distribution of nutrients. However with the exception of

[59], these models do not show how nutrient transport affects the growth of the tissue. Galban

and Locke, [59] incorporate a moving boundary into their model of nutrient consumption and

tissue growth in a polymer scaffold. This model imposes that the tissue expansion is dependent

on the growth of cells at a rate proportional to the concentration of nutrients on the moving

boundary.

So far, the models listed have looked at the transport of nutrients but have not considered

the production of ECM or the growth of a tissue construct. DiMicco and Sah [42] investigate

the composition of cartilage in terms of the transport of nutrients and the evolution of matrix

within cartilage tissue. The distribution of synthesized matrix was further studied by Sengers

et al., [158], to determine the mechanical properties of tissue engineered cartilage.

The transport of nutrients through in vivo tissue is dominated by diffusion. However an

advantage of in vitro engineered tissue is that alternative transport mechanisms can be utilised

to help promote growth. Zhou et al., [197] study the nutrient transport in a perfusion culture

system, whilst Whitaker et al., [190], show the effects of inducing a flow of culture medium

through a scaffold and the effects this has on nutrient and waste transport, as well as shear

stress. Similarly O’Dea et al. [136], study how an imposed flow can affect the growth of a

tissue construct. The work presented by O’Dea et al. [136], builds on work in [100] by using

a continuum two phase fluid model of tissue growth. The first phase consisting of cells and

ECM and the second culture medium. Ferguson et al., [45] and Gardiner et al., [62] both

consider how the mechanical forces can affect fluid flow. Ferguson et al. studied the flow in an

intervertebral disc, showing that mechanical loading can aid the transport of large molecules.

Whilst Gardiner et al. [62] considered a cylindrical plug of cartilage and showed that altering

the frequency of loading can increase of decrease the transport or insulin-like growth factor-I.

Mathematical modelling of the growth of engineered tissues is still in its infancy. Obradovic

et al. [135] model the distribution of GAGs within a seeded scaffold cultivated in a bioreactor.

The model imposed a maximum concentration of GAGs. This was defined as being the time

at which the production of GAGs balanced degradation and incorporation into the ECM. The

rate of GAG synthesis was then a function of the local concentration of oxygen and GAGs.

The model showed good comparison to experimental data regarding the concentrations of

GAGs. The model presented by Obradovic et al. was expanded by Catt et al. [25] to include
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Figure 5.1: Schematic of the Millipore filter and layer of cartilage.

cell proliferation and cell differentiation as well as the effects of scaffold degradation and

water transport. A similar model was developed by Lewis et al. [103] which considers the

consumption of nutrients and production of proteoglycans in cartilage pellet cultures.

There have been various other studies relating to tissue engineered constructs. These include

studies into the movement of individual and groups of cells, [140, 139], transport of insulin-

like growth factors and the effects on production of GAGs, [195] and investigations into the

properties of single chondrocytes, [178]. For a review of some of the current mathematical

models of tissue constructs see [34, 111, 157].

5.3 Experimental setup

We shall now incorporate the ideas and concepts reviewed in Section 5.2 to construct a con-

tinuum model for the growth of a tissue engineered construct. The model will look specifically

at a monolayer culture of equine cartilage. The model will then be compared to experimental

data at various stages of the tissues development.

It has already been shown that the properties of tissue engineered constructs are individual to

their culture systems, therefore a review of the culture process and resulting constructs will be

given. These observations will be used alongside the known characteristics of chondroblasts,

chondrocytes and cartilage to create a mathematical model for the growth of the construct,

as well as the evolution of the chemical species that determine the growth. We shall begin by

explaining the experimental setup we used to culture the cartilage layers.
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Figure 5.2: Tissue samples at 14 (A) and 49 days (B). The staining indicates the presence of
collagen (blue) and GAGs (red). The cells can be seen as darker dots, distributed throughout
the tissue but at highest density at the surface of the membrane and at the surface of the
tissue.

Equine chondrocytes were isolated and seeded in t-flasks at a density of 5000cells/cm2 . The

chondrocytes were left for approximately ten days to proliferate before being harvested and

seeded onto collagen coated Millipore filters. The filters were then immersed in Dulbecco’s

modified Eagles medium (high glucose) (DME). DME provides the nutrients required by the

chondrocytes to satisfy their energy requirements as well as providing the necessary building

blocks required for extracellular matrix production. Millipore filters consist of a permeable

Transwell membrane that allows DME transport from beneath the tissue layer as well as from

the surrounding fluid above the tissue. This experimental setup is schematically shown in

Figure 5.1. Three samples of the tissue were then taken at seven time points over the forty-

nine day period. Individual samples were then halved; one half was processed for histology

whilst the other half for quantitative assays. The DME was replaced at regular intervals,

between three and four days and the extracted fluid was stored for further analysis.

5.3.1 Tissue processing; histology and quantitative assays

The tissue samples were sliced into ten micron deep slices and analysed to determine the

thickness of the layer, the distribution of cells within the layer, the presence of collagen, the

distribution of GAGs and the quantity of GAG being excreted into the surrounding medium.

This analysis was achieved by staining the tissue slices with Safranin-O. This staining indicates

the presence of collagen and distribution of GAGs. Photographs of all samples were then taken

to quantitatively assess the distribution of ECM. Example images of the stained tissue slices

at fourteen and forty-nine days are given in Figure 5.2. The complete set of images is given

in Appendix C.
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Figure 5.3: A sample of an analysed slice of tissue. The original sample (A), the adjusted
image (B), and the one dimensional image (C), are given.

5.3.2 Data analysis

During processing samples were occasionally damaged or experienced rips or folding. The

photographs of these samples were cropped to discount misleading sections of tissue. The

distribution of cells was then derived using image analysis software4 written in MATLAB

[174]. As can be seen in Figure 5.3A the tissue samples did not grow as perfectly uniform

layers. Nor did the shape of the membrane remain flat during processing. Thus the images

were adjusted so that the lower edge of tissue remained horizontal, as shown in Figure 5.3B.

The position of each cell was then derived in relation to the adjusted image.

Throughout the duration of the experiment the width of the cell layer is always at least two

orders of magnitude greater than the height. Therefore an appropriate approximation is to

model the growth as a one dimensional layer, expanding in the vertical direction.

The samples taken on any single day were analysed to give a single representation of the tissue

at each point. Early methods of analysing the samples consisted of dividing the slices into

bands of constant heights in which the lowest band was adjacent to the Transwell membrane.

The number of cells in each band was then calculated and the cell density derived. This method

accurately accounted for distribution of cells in the lower regions. However the vertical growth

of the tissue is not at a constant rate across the layer. Thus the upper surface of the tissue is

not flat and does not necessarily reside in one band. These factors meant the density of cells

was shown in the data to be at its lowest at the surface of the tissue, which does not describe

4The original code was written by Bram Sengers, [156] and was developed further for this study.
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Figure 5.4: Histograms showing the averaged distribution of cells through the tissue samples.
The first bar of each histogram represents the cell density next to the Transwell membrane in
the lower band. The right hand bar in each histogram is the cell density in the upper band at
the tumour surface. The bars in between represent the cell density in the central region. The
height of each band is approximately 15µm.

the characteristics of the tissue samples. Thus the images and derivation of band positioning

was adjusted. The process for which was the same at each time point and consisted of the

following steps. Firstly an average height of the tissue was derived by using the images which

had been adjusted so that the lower edge was straight, as in Figure 5.3B. The vertical height

of the surface over the slice was then derived and an average was then taken for each individual

sample. The averaged heights were again averaged to give an average height of the tissue slice

at that time point. A representative height of tissue has now been derived at each time point.

Using this height, each image was vertically scaled so that the height of the slice at every point

was equal. An example of a resulting image is shown in Figure 5.3C. These uniform images

were then divided up into bands and the cell density derived. The height of each band was

chosen to be approximately fifteen microns; the diameter of a cell. However the exact height

was determined by the height of the tissue, such that,

number of bands =

[
tissue height (microns)

15

]
, (5.1)

where the square brackets indicate that the surrounded number should be rounded to the

nearest integer. Thus as the tissue height increases it can be shown that the height of each
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Parameter Value Units

Cell density in lower band Nlo 2.36 ·1014 cell m−3

Cell density in upper band Nup 1.87 ·1014 cell m−3

Cell in-flux FNpro 1.66·103 cell m−2 s−1

Cell over-count fraction ζ 0.410

Height of lower and upper bands ∆pro 1.5 ·10−5 m

Height of Transwell membrane ∆t 3 ·10−5 m

Initial cell density N0 1.72·1014 cell m−3

Initial height of tissue S0 3.6 ·10−5 m

Radius of a cell r 7.5 ·10−6 m

Table 5.1: Parameters resulting from the experimental setup and data.

band will tend to fifteen microns. Histograms of each sample were then calculated and an

averaged sample for each time point derived. An analysed sample of tissue that has been

scaled is shown in Figure 5.3C and the averaged histograms are given in Figure 5.4.

When slicing the tissue samples cells are cut into multiple pieces. These cells will be included

in at least two samples when the cell densities are calculated. This results in an over counting

of cells. Therefore the fraction of cells that belong to each slice must be derived so that the

cell density of each sample can be adjusted. This was achieved by taking random sections

of photographed samples, where the width of the selection was the same as the depth of the

sliced tissue, ten microns and the height was that of the sample slice. The number of cells in

this selection was then derived and the density of cells in these sections were then compared

to the density in the corresponding tissue slice. The ratio of these densities gave a scaling

factor that determines the number of cells that belong to each slice. The individual scaling

factors were averaged to give a scale which was used to adjust the cell densities of each slice.

The value of which, denoted by ζ, is given in Table 5.1.

At any time step a wide range of tissue heights were observed. However, using the method

described above, the averaged data shows a linear increase in the height of the tissue layers.

Similarly the number of cells per slice are scattered over a large range, but again the averaged

data shows a linear increase in the population of cells over time. These results are presented

graphically in Figure 5.6.

The stained tissue slices appear blue before approximately five weeks. This implies a dominant

presence of collagen in the early growth stages. Thereafter the tissue slices are red, implying

the production of GAGs has increased. However, subsequent analysis of the data reveals that

this is misleading. All samples were analysed after the completion of the experiment. This
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Figure 5.5: Data showing the distribution of GAG within the structure at 49 days (A) and
the accumulated quantity of GAG released (B).

Figure 5.6: Data showing the average height of the tissue over time (A), and the number of
cells per tissue slice (B). The experimental data (+), averaged data (—) and a linear fit to
the averaged data (- - -) are given.
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Figure 5.7: Experimental data showing the number of cells in the lower band (—), upper band
(-o-) and in the central region (- - -). Both the lower and upper bands are 15µm high.

delay allowed the GAGs to diffuse out of the samples taken at the early time points. Thus

the early samples appear to be absent of GAGs. Therefore it was decided that the data

regarding the distribution of GAGs taken from early time samples should be neglected. The

time between sampling and analysis for the samples taken at forty-nine days was small and

thus it was decided that the distribution of GAGs within these samples could be studied. The

GAG distribution was derived by analysing the photographs. Safranin-O dyes tissue red in

the presence of GAGs. Therefore the colour distribution of the photographs was taken and

the red light that had been filtered out was derived. The resulting distribution of GAGs for a

sample taken at forty-nine days is shown in Figure 5.5A.

The extracted fluid that surrounded the tissue was analysed for GAG content. This gave an

indication of GAG loss from the tissue structure over time. The structure of the Millipore

filters allows the medium above and below the layer to mix. Therefore quantity of GAG

released is the combination of that excreted from the top surface of the tissue layer and that

which has diffused through the membrane. The results are presented in Figure 5.5B and after

an initial period show a linear increase in the accumulated mass of GAGs released form the

tissue construct over time. In the early stages of the experiments the rate of GAG release is

less than derived at later time points.
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5.4 Review of the experimental data

We shall now review the experimental data that has been extracted from the tissue samples.

Figure 5.4 shows the density of cells in an averaged tissue slice over time. The experimental

data suggests that the movements of cells is a consequence of ECM production. Therefore

a cell which has a plentiful supply of nutrients will synthesize ECM and spread away from

its neighbours. However the data detailing the distribution of cells shows this to be a more

complicated process. At all time points the highest cell density is found at the lower and

upper boundaries. This coincides with the position of the maximum nutrient concentration.

Thus although these cells exist in the optimal environment for ECM production they do not

separate. Therefore more complicated mechanisms, such as cell signalling or contact guidance,

must be at work. The cells at the boundaries are obviously trying to stay attached to the edges

and are not producing ECM to promote separation. This is shown more clearly in Figure 5.7,

where the number of cells in the lower band, upper band and the central region are plotted

over time. The number of cells in the lower and upper bands are almost equal and remain

relatively constant over time. The population in the central region increases, however the

histograms in Figure 5.4 show that the density of cells to decrease with time in this region.

Therefore ECM production is separating the cells at a rate faster than cell proliferation within

the central region. The cell density plots in Figure 5.4 also show that after fourteen days the

cell density in the lowest six bands does not continue to change. This may be due to inefficient

nutrient transport and the resistance due to the Transwell membrane, restricting the supply of

nutrients to the lower cells; but the distances are small relative to the rate of diffusion. A more

likely explanation is that the cells on the lower membrane recognize their location and excrete

inhibitors that signal to the surrounding cells to stop proliferation and ECM production.

5.5 Cartilage layer model

We shall now use the experimental findings and literature review given in sections 5.2 to 5.4

to construct a model that describes the physical and chemical processes that occur within a

growing layer of cartilage tissue. In particular the model will focus on the density of cells, and

concentration of ECM through the construct. However, firstly, the role of DME and glucose

shall be discussed.

DME medium primarily consists of glucose, which is the main ingredient used by cells to

synthesise ECM, as well being an essential ingredient to create energy through respiration.

Therefore it maybe necessary to include the concentration of glucose in this model of tissue

growth. However the concentration of glucose within the DME medium is very high, 4.5g/L

[165]. The medium is also replaced at regular intervals throughout the experiment and thus
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Figure 5.8: Schematic of the idealised model and modelling notation. The upper and lower
bands are 15µm in height. The cells in the upper band are proliferating whilst the cells in the
lower band are quiescent. The central region contains cells producing collagen and GAGs and
increases in depth over time.

the glucose is replenished. We can therefore assume that the medium surrounding the tissue

is well mixed. By using a typical cell density from the experiment results, N0, a typical

diffusion coefficient, Dgl and consumption rate of glucose, Rgl from the literature, [155] and

the concentration of glucose in the DME medium, Gl0, we can approximate the distance away

from the surface in which diffusion will be an insufficient transport mechanism to provide

glucose to the cells. This is calculated to be,

√
Gl0Dgl

N0Rgl

= O
(
10−3

)
m. (5.2)

The height of the tissue during the experiment never exceeds 300µm and thus the distance a

cell is from the well mixed medium is much smaller than the distance required for consumption

to dominate over diffusion. Therefore the gradients in glucose concentration within the tissue

structure will be negligible throughout the experiment and the cells will constantly have a

plentiful supply of glucose to synthesize ECM and convert to ATP by respiration. Thus the

consumption and transport of DME and glucose can be neglected in this model.

The ECM found in cartilage tissue is a complex structure consisting of many different compo-

nents. In this model we will only consider collagen and GAG. Collagen is the most common

fibrous protein found in the ECM of tissue. In particular type II collagen is the most abundant

protein found in cartilage [11]. Made of thin fibrils, type II collagen makes the cartilage struc-

ture very strong [41]. Consequently, as described in Section 5.1.1, collagen will be thought of

as forming a scaffold in which the cells and GAGs will exist.

As shown in Figure 5.8 the tissue shall be broken down into three regions. Firstly a thin,

fifteen micron, layer of densely packed cells that are situated directly on top of the Transwell

membrane. Due to inhibitory factors these cells will not proliferate nor create ECM and thus

will not spread out. The density of cells will remain constant over time in this region and the
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cells will be assumed quiescent.

In the central region there will be no proliferation. Cells in this region will create collagen

and/or GAG and to simplify the model a cell will only undertake one type of reaction act a

time. Cells are therefore not allowed to simultaneously produce collagen and GAGs. Thus

the cell population can be broken down into the density of collagen producing cells and the

density of GAG producing cells. The fibrous framework for the tissue structure is required

before the ground substance can be added. Thus any new cells will be defined as collagen

producing cells before differentiating to GAG producing cells. Once a cell is defined as a GAG

producing cell we shall assume that it can not return to collagen production. This coincides

with the experimental findings of Ofek et al. [137].

Finally there is an upper region. Lying on top of the central region the upper region is a

thin, fifteen micron, layer of proliferating cells, that remains at constant density by emitting

the newly synthesised cells into the central region. These new cells will be collagen producing

cells. The cells within this region do not create collagen nor GAG and so this region will not

expand in size. The density of cells in this region is different to that in the lower region. It

will be assumed that the cells within this upper region are proliferating at a constant rate and

the newly formed cells will be pushed into the central region.

Throughout the whole structure the effects of cell death will be neglected as these are believed

to be negligible in tissue of this size. It has been shown than the gradients in glucose concen-

tration that arise within the tissue are negligible. Similarly the gradients in oxygen will be

small as oxygen will diffuse faster than glucose and the consumption of oxygen will be low due

to the Crabtree effect governing cell metabolism. Therefore the cells will always be able to

obtain the energy they require for respiration. Thus ATP production and cell metabolism will

also be neglected at this stage. The ideas presented above are schematically shown in Figure

5.8.

5.6 Modelling equations

We shall now consider the equations that govern the structural growth of the tissue and the

distribution of cells and ECM within the layer. We shall consider ECM to only consist of

collagen and GAG.

The density of cells and concentration of ECM in the lower and upper bands are constant for

all time. Therefore we shall focus the model on the central region and only study the lower

and upper bands when considering boundary conditions. In the central region the density of

collagen producing cells, Ncol and GAG producing cells, Ngag, is governed by conservation of
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mass, such that,
∂Ni

∂t
+ ∇ · FNi

= PNi
, (5.3)

where FNi
and PNi

are the flux and production rates of cell type Ni. As discussed in Section

5.3 this model shall consider the growth only to be in one dimension, in the vertical direction,

defined by x ∈ [0, S(t)], where S(t) is the upper surface of the tissue as shown in Figure 5.8.

Cells will only move due to the production of ECM causing the structure to expand. Therefore

cell flux will be due to the effects of advective transport. There are various different velocities

associated with the growth of the tissue layer. These include the velocity of cells, the velocity

of the ECM and the velocity of the extracellular water. This model will not consider these

independently and will instead consider an averaged velocity, U(x, t). Hence the flux of cells

can be expressed as,

FNi
= Ni U. (5.4)

Both collagen and GAG only exists in the space between cells, thus we shall only consider

their concentrations in the space available to them. The volume fraction of extracellular space

is denoted by Φ and is is derived by multiplying the volume of a cell by the numbers of cells

contained in a given space. If we assume that the space we are considering has a volume of

1m3 and that the cells are spherical with constant radius r, then the volume of cells in this

region equals
4

3
π r3 (Ncol +Ngag) . (5.5)

The extracellular volume in this region is thus,

1− 4

3
π r3 (Ncol +Ngag) . (5.6)

Therefore to obtain the extracellular volume faction we simply divide by the volume of the

space we are considering. Thus,

Φ = 1 − 4

3
π r3 (Ncol +Ngag) . (5.7)

The concentrations of GAG and collagen, Cgag and Ccol respectively, are governed by conser-

vation of mass, such that through the tissue layer,

∂

∂t
(ΦCi) +

∂Fi

∂x
= Pi, (5.8)

where Fi and Pi are the flux and production rates of component i.

The transport mechanisms that determine the distribution of GAGs are advection and diffu-

sion. Due to the structural nature of collagen we shall assume that the transport collagen will

104



solely be a function of advection. Advection will be a consequence of the structure growing,

whilst diffusion shall be given by Fick’s law, where Di will denote the diffusion coefficient of

species i. The flux of collagen and GAGs are thus given by,

Fcol = ΦCcol U, (5.9)

Fgag = Φ

(
Cgag U − Dgag

∂Cgag

∂x

)
. (5.10)

5.6.1 Source terms

We shall now consider the production of cells, collagen and GAG within the central region.

Collagen has previously been described as a fibrous protein that provides the scaffold that

supports the tissue. Thus it shall be assumed that cells will initially produce collagen. GAG

is more gel-like in structure and provides the bulk around the collagen framework. Thus GAG

will be synthesised only once the collagen scaffold has been produced. Therefore it shall be

assumed that cells initially produce collagen and then switch over to GAG production. This

switch could be determined by cell density, collagen density or by nutrient concentration.

However due to the uniform concentration of glucose within the tissue this switch over will be

a function of time only. This rate of conversion of cells producing collagen to GAG producing

cells will be denoted by Rcg. Thus the rate of change in density of collagen and GAG producing

cells due to cell differentiation is described by,

PNcol
= −NcolRcg, (5.11)

PNgag = NcolRcg. (5.12)

Rates of proliferation and necrosis are assumed negligible in the central region and thus are

not included in the above expressions for the production of cells.

The rates at which collagen and GAG are synthesized are denoted by Rcol and Rgag. We shall

assume that the components required for collagen and GAG synthesis are at high concentra-

tions and do not restrict ECM production. Therefore the rate of collagen and GAG production

is described by,

Pcol = NcolRcol, (5.13)

Pgag = Ngag Rgag. (5.14)
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Parameter Value Units Ref.

Concentration of collagen Col0 1.23·105 g m−3 [47]

Diffusion coefficient GAG Dgag 7.42·10−11 m2 s−1 [135]

ECM production rate Recm 1.55·10−14 g cell−1 s−1 [155]

Transwell filtration fraction Φt 0.5305 [116]

Table 5.2: Parameter values taken from the literature.

5.6.2 Collagen and growth

The model as presented so far is under-defined. Thus along with initial and boundary con-

ditions an extra condition must be imposed to close the problem. This maybe achieved by

balancing forces in the tissue or by momentum conservation. However we wish the structure

of this model to remain as simple as possible. Thus we shall instead focus on the properties

of collagen.

We have previously discussed that collagen forms the frame work or scaffold for the tissue and

that the cells and GAGs exist within this. The structural nature of collagen results in the

diffusion of collagen being very slow, O
(
10−12

)
m2s−1 [160]. Therefore the relative distribution

of the synthesised collagen would change very slowly if collagen production spontaneously

ceased. The tissue is also growing under no compressive loads, therefore the mechanical forces

on the structure will be small. Thus it is reasonable to assume that the density of the collagen

scaffold will be spatially uniform through the structure and over time. Collagen is made up

of fibrils that allow it to remain bounded to together in long strands. Therefore we can also

assume the mixing of the fluid above the top surface does not tear any of the collagen fibrils

away from the structure. Therefore to close the model we shall impose that the density of

collagen remains evenly distributed throughout the tissue structure and that this density will

remain constant over time, such that,

Ccol (x, t) = Col0, (5.15)

where the value of Col0 is given in Table 5.2. This will also impose that the cells move with

the collagen as it is synthesized.

The main consequence of this assumption is that we can now develop an equation explicitly

for the velocity of the tissue. This can be shown by rewriting equation (5.8), which imposes

conservation of collagen, with the new condition given by equation (5.15), such that,

∂Φ

∂t
+

∂

∂x
(ΦU) =

Pcol

Col0
. (5.16)
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Using equation (5.7), we expand equation (5.16), to give,

−4

3
π r3

(
∂

∂t
(Ncol +Ngag) +

∂

∂x
((Ncol +Ngag)U)

)
+
∂U

∂x
=

Pcol

Col0
. (5.17)

In the central region there is no proliferation nor cell death. Thus away from the upper edge

the aggregate cell density is conserved. Alternatively this can be derived by summing equation

(5.3) over all cell types to give,

∂

∂t
(Ncol +Ngag) +

∂

∂x
((Ncol +Ngag)U) = 0. (5.18)

Therefore equation (5.17) can be simplifed to give,

∂U

∂x
=

Pcol

Col0
for x ∈ [0, S(t)) . (5.19)

5.6.3 Initial conditions

The cells go through a settling period immediately after being seeded in which their character-

istics greatly differ from that seen during the later stages of the growth period. The settling

period will not be modelled and the modelling simulations will begin at day seven, such that

t represents the time after day seven. The initial conditions will therefore be taken from the

analysed data rather than the experimental set up. Therefore the initial height will be such

that,

S = S0 (5.20)

and the cell density governed by,

Ncol + Ngag = N0 at t = 0, (5.21)

where the initial density of cells is assumed to be uniform through out the tissue and S0 and N0

are given in Table 5.1. We shall assume that by the end of the settling period there has already

been cell differentiation. The initial ratio of collagen producing cells to GAG producing cells

will be given by αcg, such that,

Ncol = αcgN0 and Ngag = (1− αcg)N0 at t = 0. (5.22)

Although the cells will have been in culture for seven days by the time our simulation begins

the height of the tissue is still small. Therefore it will be assumed that the cells have not yet

produced any GAGs and thus we impose,

Cgag = 0 at t = 0. (5.23)
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5.6.4 Boundary conditions

The lower surface of the tissue is attached to the membrane, thus there is zero velocity in the

lower band. Similarly the lower edge of the central region must remain attached to the lower

band and thus,

U = 0 at x = 0. (5.24)

The cells in the lower region are assumed quiescent and are packed at a high density. Therefore

there will be no flux of cells into or out of the lower band into the central region. This imposes

that,

Ncol U = 0 and Ngag U = 0 at x = 0. (5.25)

Cells in the upper region are assumed to be proliferating and the newly formed daughter cells

will be emitted into the central region. From the analysis of the experimental data we know

this rate to be constant and thus the flux of cells across the upper boundary will be given by

FNpro . The newly formed cells will be assumed to be solely of the collagen producing cell type.

Therefore there will be no flux of GAG producing cells into or out of the central region. The

flux of cells across the upper boundary is thus given by,

Ncol U = Ncol Ṡ − FNpro and Ngag U = Ngag Ṡ at x = S(t). (5.26)

The flux of cells into the top layer, FNpro is a positive constant. Therefore when studying the

characteristics of the equation (5.3) we observe there is an ingoing characteristic at the outer

boundary. Thus we must specify a vale of the cell density at the boundary S(t). To do this we

shall assume the cells are emitted from the upper region surrounded by collagen at a density

equal to that of the upper region. Therefore on the boundary between the central and upper

region the extracellular volume fraction will be constant such that,

Ncol + Ngag = Nup at x = S(t), (5.27)

where Nup is the density of the upper region.

The boundary condition for GAG producing cells, given in equation (5.26) can rewritten as,

Ngag

(
U − Ṡ

)
= 0. (5.28)

The flux of collagen cells into the central region is greater than zero. Therefore in the context

of this model the only valid solution to equation (5.28) is that the density of GAG producing

cells at the upper boundary is zero. This then imposes that the cells on the surface are

collagen producing cells and by the boundary condition given in equation (5.27), the cells will

be at constant density Nup. We can therefore rearrange the Neumann boundary for collagen
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producing cells, given in equation (5.26), to give an equation for the height of the tissue, such

that,

Ṡ = U +
FNpro

Nup
at x = S(t). (5.29)

The pores in the Transwell are small relative to the diameter of a cell, thus there is no flux

of cells across the boundary between the lower region and the Transwell. The boundary

conditions along with the modelling equations for both cell types are shown in Figure 5.9, in

which ∆pro represents the height of the both the lower and upper bands and ∆t represents the

heights of the Transwell membrane.

The size of GAG molecules compared to the pores in the Transwell membrane is small. Thus

GAG will be able to diffuse through the Transwell. The area available for the molecules

to filter through in the Transwell membrane is less than the total area of membrane. Thus

the membrane will provide a resistance to the flow of GAGs. Due to the short distances

diffusion will take place on a shorter time scale than ECM production within the central

region. Therefore the steady state diffusion equation can be imposed in the Transwell region,

such that,

Φt
∂2Cgag

∂x2
= 0, (5.30)

where Φt is the fraction of the membrane that is available for filtration.

In between the Transwell and the central region is the lower band. This region consists of a

densely packed band of cells. The cells in this region are assumed quiescent and thus no GAG

is produced in the lower band. Once again the time scale on which diffusion and consumption

in this region take place will be small compared to ECM production within the central region,

therefore the concentration of GAGs will be modelled using the steady state diffusion equation,

Φlo
∂2Cgag

∂x2
= 0, (5.31)

where Φlo is the volume of extracellular space. The derivation of Φlo is the same as that given

earlier for Φ. Thus in the lower region the extracellular volume fraction is defined by,

Φlo = 1 − 4

3
π r3Nlo, (5.32)

where Nlo denotes the density of cells in the lower band.

Above the central region is the upper band. This region is a highly dense band of proliferating

cells. There will be no GAG production but GAG will be able to diffuse through this region.
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Thus in the upper band the concentration of GAGs will be modelled by,

∂

∂x

(
Φup

(
Cgag Ṡ − Dgag

∂Cgag

∂x

))
= 0, (5.33)

where Φup is the volume of extracellular space in the upper region. The density of cell within

this region is denoted by Nup and therefore the extracellular volume fraction in the upper

band is defined as,

Φup = 1 − 4

3
π r3Nup. (5.34)

The fluid surrounding the upper layer tissue and beneath the Transwell membrane is assumed

to be well mixed, containing no cells, collagen, or GAG. GAG is not bound to the structure

as strongly as collagen and thus will be washed away from the surface due to the mixing of

the fluid above the top surface. Therefore the concentration of GAG on the top surface will

equal zero. Therefore,

Cgag = 0 at x = − (∆t +∆pro) and at x = S(t). (5.35)

The modelling equations and boundary conditions for cells, collagen and GAG are schemati-

cally shown in Figure 5.9.

The system of equations described in Figure 5.9 can be solved in the Transwell and the lower

band with continuity of flux imposed at the interface. Solving equations (5.30) to (5.35) gives

a flux condition at the lower boundary of the central region for GAG, such that,

Φ

(
Cgag U − Dgag

∂Cgag

∂x

)
= −Dgag Φlo

Φt Cgag

Φlo∆t +Φt∆pro
at x = 0. (5.36)

The equivalent system of equations in the upper band provides a flux condition at the surface

of the central region such that,

Φ

(
Cgag U − Dgag

∂Cgag

∂x

)
= Φup


Cgag Ṡ +

ṠCgag

exp
(
Ṡ∆pro

Dgag

)
− 1


 at x = S(t). (5.37)
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F−

gag = F+
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−∆pro
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∂x2
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3
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∂
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∂
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∂

∂t
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∂

∂x
(NgagU) = NcolRcg

∂

∂t
(ΦCgag) +

∂

∂x

(
Φ

(
CgagU −Dgag

∂Cgag

∂x

))
= NgagRgag

∂U

∂x
=
NcolRcol
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3
πr3 (Ncol +Ngag)
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∂

∂x

(
Φup

(
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∂Cgag

∂x

))
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3
πr3Nup
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S (t) + ∆pro

x

Figure 5.9: Schematic of the modelling equations.
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5.6.5 Model simplifications

The model thus far contains very few unknown parameters. However the literature provides

no information regarding how the rates of collagen and GAG production differ. Therefore for

simplicity, and to avoid adding to the number of fitting parameters, we shall assume that a

cell can synthesize one gram of glucose into one gram of ECM independent of the type of ECM

being produced. Therefore the rates of collagen and GAG production are equal such that,

Rcol = Rgag = Recm. (5.38)

5.6.6 Full system of equations

Inside the central region, 0 < x < S(t), the model is given by,

∂Ncol

∂t
+

∂

∂x
(Ncol U) = −NcolRcg, (5.39)

∂Ngag

∂t
+

∂

∂x
(Ngag U) = NcolRcg. (5.40)

∂U

∂x
=

NcolRecm

Col0
, (5.41)

∂

∂t
(ΦCgag) +

∂

∂x

(
Φ

(
Cgag U − Dgag

∂Cgag

∂x

))
= Ngag Recm, (5.42)

Φ = 1 − 4

3
π r3 (Ncol +Ngag) . (5.43)

The corresponding boundary conditions are such that at x = 0,

U = 0, (5.44)

Φ

(
Cgag U − Dgag

∂Cgag

∂x

)
= −Dgag Φlo

ΦtCgag

Φlo∆t +Φt∆pro
(5.45)

and at x = S(t),

Ncol U = Ncol Ṡ − FNpro , (5.46)

Ngag U = Ngag Ṡ, (5.47)

Φ

(
Cgag U − Dgag

∂Cgag

∂x

)
= Φup

(
Cgag Ṡ − Dgag

(−Cgag

∆pro

))
, (5.48)

Ncol +Ngag = Nup. (5.49)
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Figure 5.10: Height of the central region. Experimental data (o) and linear fit (+) are given
alongside the modelling result (—).

The corresponding initial conditions are such that at t = 0,

Ncol = αcgN0, Ngag = (1− αcg)N0, Cgag = 0 and S = S0. (5.50)

5.6.7 Parameters and fitting

We shall now discuss the parameters used in the model and the derivation of those not available

in the literature.

The wide variety of experimental and culture techniques means there is a large range of values

for many of the parameters published in the literature. Where possible results for bovine

articular cartilage have been used. The diffusion coefficient for GAGs given by Obradovic et

al. [135] was implemented. However it should be noted that there is an error in the units

published for the diffusion coefficient of GAGs in [135] and the corrected value, as given in

Table 5.2, is then in agreement with Comper and Williams [31].

Glucose is a major ingredient for both ATP and ECM production. The proportion of glucose

consumed to produce ATP compared to ECM is unknown in the literature. Due to the cells

preference for anaerobic respiration the consumption of glucose for ATP will not be negligible.

Therefore we shall define the proportion of glucose that is converted into ECM to be αecm and

use this as a fitting parameter. There are a wide range of glucose consumption rates given in
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Parameter Value Units

Cell differentiation rate Rcg 3.04·10−6 s−1

Initial ratio of cells αcg 0.101

Proportion of glucose converted to ECM αecm 0.610

Table 5.3: Fitted parameters values.

the literature [134, 155, 192]. In this model we shall use the maximum rate given by Sengers

[155].

The density of collagen was determined using the density of cartilage and percentage wet

weight of collagen given by Freed et al. [47].

The dimensions of the Transwell membrane were taken from [116] and the dimensions and

properties of the upper and lower bands were taken from the experimental data, as given in

Section 5.3 and 5.4.

The remaining three parameters that could not be derived from the literature are; the cell

differentiation rate, Rcg, the initial ratio collagen producing cells to GAG producing cells,

αcg and the proportion of glucose converted to ECM, αecm. These parameters were found by

solving the model and comparing the results regarding the height of the tissue to that found

experimentally. For this comparison the linear fit, as shown in Figure 5.6A, was used to rep-

resent the experimental data. The model was solved and the fitting achieved using MATLAB.

The fitting used MATLAB’s inbuilt function ‘fminsearchbnd’ as described in Section 2.4.8.

The height of the central region and experimental data used in the fitting process are shown

in Figure 5.10.

The numerical values for all known parameters are given in Table 5.1 and 5.2, whilst the fitted

parameters are given in Table 5.3.

The model presented derives the concentration of GAG in g m−3. However the experimental

data is derived by staining tissue slices and detecting the intensity of light shone through the

tissue. Finding the relationship between the relative distribution shown by the staining and

the absolute density of GAG within the tissue is a common problem in biological analysis. We

shall assume that the concentration of GAG and intensity of staining are linearly related. The

scaling for this relation is unknown and may vary between experiments. Thus the distribution

of GAG through the tissue will be compared to the data and the mass of GAG shall not be

considered.
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Figure 5.11: Density of cells within the central region at 14, 21 and 31 days. The histograms
show the averaged experimental data, whilst the continuous line represents the results of the
model.

5.7 Method and results

The system of modelling equations given in Section 5.6.6 were solved numerically in MATLAB,

[174]. To incorporate the moving boundary the equations were transformed from the original

expanding domain x ∈ [0, S(t)] to a stationary coordinate frame, η ∈ [0, 1], using the transfor-

mation x = ηS(t) and t = τ . The transformed system of equations were then rearranged into

conservation form. Using a finite difference method the system of partial differential equations

were discretised centrally in space. The backward Euler method was then used to discretise in

time before solving at each time step using Newton’s method. At each iteration the Jacobian

was updates using Broyden’s method. The model was solved using two different methods.

The first implemented the Neumann boundary conditions at x = S(t), given in Section 5.6.6,

whilst the second used the derived Dirichlet conditions discussed in Section 5.6.4 such that,

Ncol = Nup and Ngag = 0 at x = S(t). (5.51)

Numerical errors prevented the two codes being identical. The Neumann boundary condition

conserved mass accurately, but the density of collagen and GAG producing cells at the surface

was not constant as derived in Section 5.6.4. Solving with Dirichlet boundary conditions

imposed the density of the cells at the boundary. However this regime does not state the in

flux of cells. This is only inferred by the Dirichlet boundary condition for collagen producing

cells. This created errors in the conservation of cells, however by using small spacial steps

this inaccuracy was reduced such that the relative increase in cells after forty-nine days was
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Figure 5.12: Density of cells within the central region at 35, 42 and 49 days. The histograms
show the averaged experimental data, whilst the continuous line represents the results of the
model.

less than 0.25%. The results from the code implementing Dirichlet conditions at the outer

boundary are shown in this section.

The model presented determines the distribution of cells and GAGs, as well as the growth

of the tissue structure. The tissue initially constitutes a highly dense region of cells that are

producing collagen and GAG, causing the tissue to expand rapidly and the cell density to

drop within the central region. Cell differentiation creates a region of predominantly GAG

producing cells in the lower regions of the tissue, see Figure 5.14. Within this region collagen

production is low and therefore the growth of the tissue is negligible, Figure 5.13. Above this

region the flux of cells into the central region from the upper layer results in a population

of cells that are predominantly producing collagen. Thus close to the upper layer the tissue

continues to expand and the cell density continues to drop.

The influx of collagen producing cells beneath the upper band results in a population of cells

close to the surface of the tissue predominantly consisting of collagen producing cells, Figure

5.13. The consequence of this is a region of growth, immediately beneath the upper band

which is the sole contributor to the growth of the layer. Growth is now a function of the influx

of cells and the rate of differentiation of cells from producing collagen to producing GAGs.

Figures 5.13 and 5.14 show that the cells in the lower and middle regions of the tissue have

fully differentiated to cells that produce GAGs. This results in a high concentration of GAGs

accumulating in the lower half of the tissue. GAGs are excreted from the tissue structure

through both the upper and lower boundaries. However this is heavily restricted by the
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Figure 5.13: The density of cells producing collagen (A), and the velocity of growth (B)
through the central region at 14 (—), 31 (- - -) and 49 days (+).

Figure 5.14: The density of cells producing GAGs (A) and the density of GAG (B) through
the central region at 14 (—), 31 (- - -) and 49 days (+).

resistance due to the Transwell, the physical barrier created by the high cell density at the

edges and the slow diffusional properties of GAG. The distribution of GAGs is shown to agree

well with the experimental data at forty-nine days, Figure 5.15A. The maximum concentration

of GAGs is shown to be closer to the Transwell membrane in the experimental data than given

in the modelling predictions. This may indicate that the membrane is putting up a greater

resistance than calculated, potentially being clogged by collagen and GAGs. Alternatively

the cells in the lower half of the tissue and the lower band may be producing more GAGs

than accommodated for by the model. Further investigation of cell behaviour in different

environments would be required to draw more positive conclusions.

The mass of GAGs released by the tissue is shown to be higher than given by the experimen-

tal data, Figure 5.15B. Therefore the modelled production of GAGs by the tissue structure
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Figure 5.15: A: Distribution of GAG through the central region at 49 days (—) compared
to experimental data (- - -). B: Total mass of GAG released from the tissue layer (—)
alongside GAG released through the Transwell membrane (- - -), the upper surface (++) and
experimental data (o).

should be lower. This may suggest the need to include quiescence in the model, which could

be initiated by a number of factors including the density of GAG or the local cell density. Al-

ternatively a further review of collagen production and the role of a cell in creating the tissue

may suggest that the resources and number of cells dedicated to the production of GAGs is

lower than previously accommodated.

Under this model the growth of the tissue layer is confined to a small region close to the upper

surface. The size of this layer is defined by the differentiation rate of cells and is currently

far less than the diffusion length of glucose. Therefore under the governing equations of the

model presented, the growth would continue indefinitely. The central regions would never

cease to produce GAGs and the tissue would be unaffected mechanisms such as cell death and

ECM degradation. However for tissue structures of the size shown in this study, the structural

integrity of the tissue should not be affected in this way and thus neglecting these factors does

not affect the accuracy of the results of the model.

5.8 Discussion

Equine chondrocytes were cultured in monolayer structures to form cartilage layers. Samples

of these constructs were then taken at regular intervals over a forty-nine day period. The

samples were analysed to determine the distribution and density of cells, heights of the tissue

layer, distribution of GAGs and the mass of GAG released from the structure. From these

results a number of characteristics were observed. These included,
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• A constant density of cells at both the lower and upper surfaces of the tissue.

• The lower region was inactive after fourteen days.

• Linear growth of the tissue layer.

• Linear increase in the number of cells.

• Linear increase in the accumulated mass of GAGs released from the tissue.

• The height of the tissue is insufficient to cause significant gradients in nutrients.

Based on these characteristics and the existing literature regarding tissue formation, a math-

ematical model was formulated that derived the density of cells, production of collagen, pro-

duction of GAGs and the growth of the tissue layer. The effects of cell metabolism, cell

differentiation, ECM production, nutrient transport and structural growth have all been con-

sidered.

The results of the model have shown that large regions of the tissue are inactive when it comes

to proliferation and growth of the tissue layer. Cells in the lower half of the layer were shown

to not proliferate and cease collagen production even at high concentrations of glucose. Only

a relatively small region close to the upper surface contribute to the expansion of the tissue

layer and the population of cells. The model predicted a quantity of GAG released from the

tissue layer in excess of that seen experimentally. Thus the properties of GAG production must

be reviewed for future work. Cells were said to differentiate from collagen producing cells to

GAG producing cells. To improve the modelling of GAG production, a quiescent state of cells

may need to be introduced and the relevant triggering mechanism determined. The release

of GAGs from the structure could also be reviewed, with particular focus on the adhesion

properties of GAG and the resistance of the lower membrane. In the current model the mixing

of the outer medium is said to wash away all GAGs from the upper surface. GAGs may in

fact adhere to each other, the surrounding cells and collagen fibers in a way that makes this

boundary condition inaccurate. Similar effects may occur at the interface with the Transwell

membrane and also cause the membrane to become clogged and thus further resist flow.

In this model we also assumed that cells either produce collagen or GAGs and never both

simultaneously. This may be an inaccurate interpretation of the experiments. However if we

consider a population of cells that is again divided up into collagen producing cells and GAG

producing cells but in which cell differentiation is a forward and backward reaction at non
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constant rates fcg and fgc, then conservation of mass imposes that,

∂Ncol

∂t
+

∂

∂x
(Ncol U) = −fcgNcol + fgcNgag, (5.52)

∂Ngag

∂t
+

∂

∂x
(Ngag U) = fcgNcol − fgcNgag. (5.53)

By adding these equations, this system can be rewritten as gives,

∂Ncol

∂t
+

∂

∂x
(Ncol U) = −fcgNcol + fgcNgag, (5.54)

∂N

∂t
+

∂

∂x
(N U) = 0, (5.55)

where,

N = Ncol + Ngag. (5.56)

However consider the general case where cell differentiation happens on a time scale ǫτ ,such

that the non dimensional equation give,

ǫ

(
∂N̂col

∂t̂
+

∂

∂x̂

(
N̂col Û

))
= −f̂cg N̂col + f̂gc N̂gag, (5.57)

∂N̂

∂t̂
+

∂

∂x̂

(
N̂ Û

)
= 0. (5.58)

In the present model the time scale on which cell differentiation takes place is comparable to

that of the growth of the tissue layer, where ǫ is order one. This suggests the cells remember

whether they have previously been making collagen or GAGs and will have to convert to the

other form when required. However by taking ǫ to be small implies that equation (5.57) can

be reduced to,

N̂col = f N̂gag, (5.59)

where f is an unknown function that determines the relative amount of collagen and GAG

made. This simplified equation now states that the cells do not remember what they have

been producing but simply react to the current situation. The cell density is now modelled as

just a single population of cells, with density N and the Ncol and Ngag give the proportion of

collagen and GAGs that are made. This simplified model may give a better representation of

the experimental observations.

In this chapter we have presented a model that simulates the growth of a layer of cartilage

tissue. The model deduced that cell activity was not defined by nutrient concentration gra-

dients, as these were absent throughout the tissue structure. Instead it was shown that the

position of the cell within the tissue layer determined the role of the cell and thus the rate

of growth and distribution of ECM. The ultimate aim of such a model would be to optimize
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the in vitro growth procedure. At present it is not obvious which parameters are dominant

and thus would require adjusting. To derive this we require a better understanding of cell

activity, particularly at differing cell densities, nutrient concentrations and positions within

the structure; both in terms of distance from a boundary and with respect to the contents of

the surrounding ECM. From this we should gain a better understanding of the mechanisms

at work, such as cell metabolism, quiescence, necrosis and mechanical forces. This will then

allow us to revise our model and either modify or give further justification to the assumptions

we have made, such as the density of collagen being constant.
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Chapter 6

Conclusions

The first part of this thesis focused on the modelling and characteristics of a multicellular

tumour spheroid. We were particularly interested in how the energy demands of a cell are

affected by its local environment and how this in turn affects the cell cycle and subsequent

growth of the tumour. We constructed a multispecies model that accounted for metabolic

reactions alongside chemical and ionic buffering reactions. In addition to diffusion, this model

also included the effects of charge migration on ionic species. The model showed that the ATP

demand of a cell are dependent on the concentration of oxygen and glucose within its local

environment. One of the notable findings was that the concentration of waste products has a

negligible effect on the cell cycle. In particular we showed that the concentration of glucose

restricted the growth of the tumour, whilst the level of oxygen determined the contributions

of aerobic and anaerobic respiration in producing ATP. The switch over from aerobic respi-

ration to anaerobic respiration was also shown to determine when a cell changes from being

proliferative to quiescent. Low concentrations of glucose reduced the cells capability for ATP

production and thus promoted necrosis.

The results of the modelling showed that diffusion was the dominant transport mechanism

within the tumour. The gradients in electric potential were small throughout and waste

materials diffused out of the tumour spheroid before significant quantities could accumulate.

It was thus shown that the any model of tumour growth must include both oxygen and glucose

and only diffusion need be considered as a transport mechanism. These conclusions were then

used to develop a simplified model of tumour growth, which only contained these essential

elements. This simplified model gave results comparable with that of the full model, but is

more accessible and appropriate for further applications; for example studying drug delivery.

In Chapter 3 we chose to use the simplified model of tumour growth to study the mechanical

forces that develop within growing tissue. In both the full and simplified models of tumour

growth, presented in Chapter 2, the effects of residual stresses had been neglected. The aim
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of Chapter 3 was to see if this simplification was appropriate or whether the forces that build

up during growth could potentially affect whether a cell is proliferative, quiescent or necrotic.

A full investigation into the effects of mechanical forces on cells was beyond the scope of this

thesis. However we have explored how the sensitivity of the direction of growth of a cell is

dependent on the local stress field.

A morphoelastic model was implemented that assumed the tumour was made up of an incom-

pressible elastic material. Varying degrees of sensitivity of growth to the local stress field were

considered. In all cases necrosis was shown to be the largest factor in creating residual stress.

The onset of necrosis caused the centre of the spheroid to collapse, pulling in surrounding cells

and creating large tensile forces. This was particular apparent where the direction of growth

was highly sensitive to stress. The creation of a necrotic core caused the cells to divide along

the radial axis. Thus large radial forces were generated pulling the cells in towards the centre,

whilst large circumferential stresses were generated as the cells tried to stay attached to their

neighbours. It was thus shown that the role of mechanical forces in the growth of a tumour

spheroid are important and should not be neglected.

To aid the analysis of the tumour mechanics model we only considered the case of an incom-

pressible material. In this limit the growth model and mechanics model can be decoupled

and therefore solved separately. An interesting extension to this work would be to consider a

tumour with a lower Poisson’s ratio and include the effects of mechanics in the growth of a

compressible tumour spheroid. This coupled problem would not just show how stresses build

up during growth but also the effects they have on growth, in both a physical sense and in

determining a cells position within the cell cycle.

An application of the mechanics model was used to derive the deformation of a tumour that

has been sliced in half, at the radius at which the centre became necrotic. At present this is

only a theoretical application. However in future this can easily be compared to experimental

results. It was shown that necrosis was causing the centre of the spheroid to collapse in on

itself, dragging in the cells from the surrounding regions. The region close to the surface were

shown to expand, releasing the circumferential compressive forces they were previously under.

Predominantly, mathematical models of tumour growth have been based on conservation of

mass, formulated by viewing a tumour from a macroscopic view point. The validity of these

equations, governing the nutrient transport and consumption was reviewed by deriving alter-

native equations in Chapter 4. The microscopic behaviour was studied and used to derive

governing equations on a macroscopic level, using homogenization theory. The derived equa-

tions included directional preference for nutrient transport, that showed the effective diffusion

rate to be dependent on the the volume and shape of the extracellular space available. However,

the newly derived diffusion coefficient was shown to be larger than that found experimentally.

The cells and extracellular matrix are thus impeding the flow more than that theoretically
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calculated. Further investigation into the matrix and cell structure is required to refine the

problem and develop a more accurate model.

The second part of this thesis, Chapter 5, developed a model for the growth of a layer of car-

tilage tissue. This was motivated by experimental results provided by Jos Malda and Wouter

Schuurman. The aim of this study was to explain the distribution of cells and extracellular

matrix throughout the tissue construct over time. In future this could then be used to optimise

the experimental methods and grow cartilage structures similar to those found in vivo. The

model was based on experimental data grown from equine chondrocytes which showed the be-

haviour of the cells to be dependent on their location within the tissue structure. Cells on the

upper and lower boundaries were shown to stay attached to the boundary and not separate

away from each other. It was thus assumed these cells do not synthesize extracellular ma-

trix. Cells in the central region were also shown to be mostly quiescent with only a relatively

small region of cells below the top surface contributing to the growth of the tissue layer. An

important, and maybe surprising aspect of this model, was that the concentration of neither

oxygen nor glucose was required in determining the cell cycle state. The experiments had

taken place in glucose rich environments and on length scales in which diffusion was not lim-

iting. Thus the cells were exposed to glucose and oxygen such that their energy requirements

could be consistently met. Therefore the growth must be impeded by other mechanisms. In

this work we imposed that growth was determined by the position of a cell within the tissue

layer. Establishing which mechanisms are responsible for cell state and growth rates would be

an interesting extension to this work. In particular conducting a similar experiment with a

lower concentration of glucose in the surrounding medium could shed light on what determines

whether a cell synthesizes extracellular matrix, proliferates or is quiescent. Similarly studying

the behaviour of cells at various cell densities and at varying distances from surfaces would be

useful in determining how cells construct cartilage.

In conclusion we have shown that by stripping biological processes back to their simplest forms

we can derive mathematical models that accurately replicate what has been seen during in

vitro experiments. Whilst doing this, new scientific knowledge is synthesized and has shown

that both metabolism and mechanical forces play an important part in tumour growth, whilst

cell signalling and the surrounding structural environment determines the growth of a tissue

layer. There are a wide variety of applications for both the tumour and tissue models. However

the importance of well defined and understood experimental data should not be overlooked.

It is essentially impossible to produce a model for all cell types, but with knowledge of the

metabolic pathways and cell characteristics the modelling framework suggested in this thesis

can be adapted to a large range of experiments.
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Appendix A

Nondimensional analysis of full

tumour model

The concentrations of oxygen, glucose, carbon dioxide, hydrogen, chlorine and sodium were

scaled with respect to that found in the surrounding medium, such that,

Ci = C∞i
C̄i, (A.1)

where the values of C∞i
are given in Table 2.2. The length scale was chosen such that the

effect of the transport of oxygen due to diffusion balanced the production of oxygen. This

gives,

r = r∞ r̄ where r∞ =

√
C∞ox Dox

ρRox
. (A.2)

The concentration of lactate and bicarbonate were then scaled by balancing the diffusion terms

with the dominant production terms in their respective governing equations. The resulting

scalings give,

C∞la
=

ρRox r
2
∞

Dla
and C∞bi

=
C∞cd

kf r
2
∞

Dbi
. (A.3)

Time was scaled by the growth rate given in equation (2.66), such that,

t =
1

KM
t̄. (A.4)

The electric potential was scaled using the maximum value for the electric potential gradient

seen in the results for the full model, shown in Figure 2.11. Thus,

Φ = Φ∞ r∞ Φ̄ where Φ∞ r−1
∞

= 10−3. (A.5)
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Lastly the desired energy production rate will be scaled by the rate of maximum oxygen

consumption, such that,

Patp = Rox ρ P̄atp. (A.6)

The production terms can now be nondimensionalised such that the production of oxygen is,

Pox = P∞oxP̄ox (A.7)

where,

P∞ox = Rox ρ and P̄ox = −min

(
6

38
P̄atp , P̄

max
ox

)
. (A.8)

The remaining production terms are,

Pgl = P∞ox

(
1

6
P̄ox − 1

2

(
P̄atp +

6

38
P̄ox

))
, (A.9)

Pcd = −P∞oxP̄ox + krC∞bi
C∞hy

C̄biC̄hy − kfC∞cd
C̄cd, (A.10)

Pla = −2P∞ox

(
P̄gl −

1

6
P̄ox

)
, (A.11)

Phy = −2P∞ox

(
P̄gl −

1

6
P̄ox

)
− krC∞bi

C∞hy
C̄biC̄hy + kfC∞cd

C̄cd, (A.12)

Pbi = kfC∞cd
C̄cd − krC∞bi

C∞hy
C̄biC̄hy, (A.13)

Pch = 0. (A.14)

We now factor out the largest expression in each of these production terms and relabel each

constant by P∞i
. We thus can rewrite the production terms as,

Pox = P∞oxP̄ox, (A.15)

Pgl = P∞gl

(
1

6
P̄ox − 1

2

(
P̄atp +

6

38
P̄ox

))
, (A.16)

Pcd = P∞cd

(
−σP̄ox + ψC̄biC̄hy − C̄cd

)
, (A.17)

Pla = P∞la

(
−2

(
P̄gl −

1

6
P̄ox

))
, (A.18)

Phy = P∞hy

(
−2σ

(
P̄gl −

1

6
P̄ox

)
− ψC̄biC̄hy + C̄cd

)
, (A.19)

Pbi = P∞bi

(
C̄cd − σC̄biC̄hy

)
, (A.20)

Pch = P∞ch
, (A.21)
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Species αi βi γi

Oxygen 1.75 · 10−4 0 1

Glucose 2.63 · 10−3 0 0.57

Carbon dioxide 2.22 · 10−4 0 2.18

Lactate 1.55 · 10−3 −10−3 1

Hydrogen 1.30 · 10−5 10−3 2.94 ·103
Bicarbonate 2.85 · 10−4 −10−3 1

Chloride 1.31 · 10−3 −10−3 0

Table A.1: Nondimensional constants.

where,

σ =
Rox ρ

kf C∞cd

and ψ =
kr C∞bi

C∞hy

kf C∞cd

. (A.22)

Individual terms in the expressions for production rates will not be considered. Only the

largest terms will be used for each species. Therefore the non dimensional production rates

will be given by,

Pi = P∞i
P̄i. (A.23)

The nondimensional form of equation (2.67) can now be written as,

KMC∞i

∂C̄i

∂t
+
C∞i

r̄2
∂

∂r̄

(
r̄2
(
KM C̄iŪ − Di

r2
∞

(
∂C̄i

∂r̄
+ ziΦ∞Ci

∂Φ̄

∂r̄

)))
= P∞i

P̄i. (A.24)

This can be rearranged to give,

αi
∂C̄i

∂t
+

1

r̄2
∂

∂r̄

(
r̄2
(
αiC̄iŪ −

(
∂C̄i

∂r̄
+ βi Ci

∂Φ̄

∂r̄

)))
= γi P̄i, (A.25)

where

αi =
KM r2

∞

Di
, βi = zi Φ∞ and γi =

P∞i
r2
∞

C∞i
Di
. (A.26)

The numerical values of αi, βi, and γi are given in Table A.1.
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Appendix B

Nondimensional analysis of full

tumour model

To analyse the error in the numerical codes used in solving the tumour models in Chapter 2

and tissue model in Chapter 5 the convergence of each code was derived. As a representation

of this analysis the error in the simplified tumour model given in Section 2.5 is given. The

model was solved using 5, 10, 20 and 40 grid points and the separate results were compared to

the results of the model solved using 80 grid points. The error was then derived by calculating

the relative error using 2-norm. These error values have been plotted against the number

of spacial grid points on a log-log scale. A linear fit was then made of all the error values

and of just the last three. These fitted lines are show to agree well with the data and have

a gradient with magnitude of approximately 2. This coincides with the error of the finite

difference method used where the error is proportional to the spatial step squared. The time

stepping was achieved using an adaptive scheme such that the relative change in the solution

stayed constant. An analysis of the error of the time stepping has thus not been given.
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Figure B.1: Convergence plot of the finite difference code used to solve the simplified tumour
model in Chapter 2. The log of the error when solving the model using 5, 10, 20 and 40 grid
points compared to the result using 80 grid points is shown (+) against a fit of all four error
points (—) and a fit of the final three error points (- - -). The corresponding gradients of the
fitted curves are -2.441 and -2.003.
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Appendix C

Tissue images

Photographic images of the stained tissue slices used for analysis in Chapter 5 are given on

the CD-ROM attached to the back cover of this thesis. The original images and the cropped

images, as described in Section 5.3.2, are both given. Slices of the tissue are given at 3, 7,

14, 21, 31, 35, 42 and 49 days and the images are labelled accordingly. Multiple slices were

taken at each time point and this in indicated in the file name. Some slices were cropped

into multiple samples, these are indicated by the letter ‘B’ being added to the end of their file

name.

A copy of this thesis is also given on the CD-ROM as a .pdf file.
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