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ABSTRACT
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SCHOOL OF MATHEMATICS

Doctor of Philosophy

by Keith Richard Daly

In this thesis we study the interactions between light and matter in photorefractive liquid crystal
cells. To model the liquid crystal alignment we develop a fast and accurate approximation of
the normally stiff equations which minimise the Landau-deGennes free energy of a nematic
liquid crystal. The resulting equations are suitable for all configurations in which defects are
not present, making them ideal for device simulation. Specifically, they offer an increase in
computational efficiency by a factor of 100 while maintaining an error of oftier*) when
compared to the full stiff equations. As this approximation is based@stansor formalism, the

sign reversal symmetry of the liquid crystal is respected. We consider both the simplified case,
where the director is restricted to a plane, and the full three-dimensional case. An approximation
of the error is also given. We use the liquid crystal model to understand two different optical
effects. The first of these is optical coupling. This effect is observed in liquid crystals in both the
Bragg and Raman—Nath regimes. To account for this behaviour we develop an extension to the
coupled wave theory which is suitable for all regimes of coupling. The model assumes that the
refractive index grating, generated by the liquid crystal, has an arbitrary profile in one direction
and is periodic (but not necessarily sinusoidal) in the other. Higher order diffracted terms are
considered and appropriate mismatch terms dealt with. It is shown that this model is analytically
equivalent to both the Bragg and Raman—Nath regime coupling models under an appropriate set
of assumptions. This model is also verified through comparison to finite element simulations of
Maxwell’s equations. The second effect we model is the coupling of surface plasmon polaritons
at the interface between a metal layer and a photorefractive liquid crystal cell. We implement
existing numerical models to gain a thorough understanding of the system. These models are
qualitatively compared with experimental observations. Analytic approximations to describe
the coupling of surface plasmon polaritons at the surface of the liquid crystal cell are developed.
These expressions provide a great deal of insight into the coupling mechanisms and will be of
fundamental importance in optimising these systems.
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Chapter 1

Introduction

This thesis is concerned with the interaction of electromagnetic fields with liquid crystals in
photorefractive cells. These cells consist of a sample of liquid crystals sandwiched between two
alignment layers, at least one of which is photoconductive, see Figure 1.1. The combination
of light incident on the photoconductor and an applied DC electric field causes a change in
the voltage applied to the liquid crystal layer. This realigns the liquid crystal causing apparent
non-linear interactions between the liquid crystals and the incident optical field.

We have studied two different but related optical interactions, the second of which builds on
the effects modelled in the first situation. The first is the coupling of energy between optical
plane waves in a bulk liquid crystal cell. This effect is similar to photorefraction. The second
effect is the propagation of optical surface waves, known as surface plasmon polaritons, at an
interface between a liquid crystal cell and a metal. There are three main problems of interest in
modelling these systems, each of which forms a chapter of this thesis. A formal introduction
to the problems including a review of the relevant literature is given in the introduction of each
chapter and a brief summary of each of the problems is given below.

1.1 Layout of Thesis

This thesis is arranged as follows: The remainder of this chapter provides a brief introduction
to Maxwell’s equations which are used to determine the electric field distribution in the liquid
crystal cell and relevant for the optical modelling in the later chapters.

In Chapter 2 we consider the modelling of the alignment of liquid crystals under the influence

of an applied electric field. Whilst powerful numerical tools exist [1], these involve finding the
solution to a set of stiff non-linear coupled partial differential equations. The numerical stiffness

is due to the separation in time scales between the elastic and temperature dependent properties
of the liquid crystal. Under appropriate assumptions, relevant for a photorefractive liquid crystal
cell, an approximate set of equations are developed. This method, based on a perturbation

1
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FIGURE 1.1: Schematic of a photorefractive liquid crystal cell: A layer of liquid crystals is
sandwiched between two alignment layers, one of which is a photoconductor. A DC electric
potential is applied to the cell creating an electric field which aligns the liquid crystal. This
alignment can be altered by application of a spatially varying optical field. This changes the
conductivity of the alignment layer and, hence, the electric field in the cell and the liquid crystal
alignment.

expansion technique, offers an increase in computational efficiency by a factor of 100 whilst
maintaining an error of orden0~*) when compared to the full stiff equations. Derivations and
numerical verification is given for both the simplified case where the liquid crystal is restricted
to a plane and the more general case where the liquid crystal alignment is unrestricted.

Chapters 3 and 4 describe two different, but related, optical effects observed in liquid crystal
cells. Chapter 3 considers the modelling of the photorefractive—like coupling observed in the
bulk liquid crystal cell. The interference of two beams in the photoconducting layer of the cell
produces a conductivity modulation. Combined with an applied DC field the electric field in the
cell becomes spatially modulated with fundamental period equal to the pitch of the interference
pattern of the two beams. The effect of this is to align the liquid crystal periodically and create
a refractive index grating which scatters each of the two beams into a discrete set of directions.
This is modelled using a multiple scales expansion technique. The resulting equations prove
to be fast and accurate when compared to existing models and to finite element simulations of
Maxwell's equations. Some predictions of the model are analysed in detail and suggestions for
improving the performance of the system are considered.

The final problem, considered in Chapter 4, is the plasmonic diffraction at the surface of the
photorefractive cell. Adding a thin gold layer adjacent to the photoconductor allows the pho-
torefractive liquid crystal cell to support surface plasmon polaritons. These surface waves are
of fundamental importance in many optical applications and are limited by their short propaga-
tion length. To overcome this energy can be pumped into the plasmons using a refractive index
grating. To gain an understanding of the system a numerical model is developed based on ex-
isting techniques [2]. The resulting code allows us to probe the effects of different parameters
on the system. Analytic tools, based on the equations from Chapter 3, are developed and com-
pared to the numerical model. The resulting models will be of fundamental importance in the
optimisation of these systems.
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Finally, in Chapter 5, we provide a summary of the work done in this thesis and conclude
by considering possible future work and addressing open questions raised by the preceding
chapters.

A copy of each of the publications which have come from this work are included at the end of
this thesis.

1.2 Maxwell's equations

The majority of Chapters 3 and 4, and small sections of Chapter 2, make frequent use of
Maxwell's equations. Here we provide the briefest of introductions to these equations. Fur-
ther information, including a historical introduction can be found in the opening chapters of

Born and Wolf [3]. Maxwell's equations are the fundamental laws of electromagnetism and are
comprised of four linear partial differential equations. These may be summarised as follows:
Faraday’s law of induction, first published in 1831,

V x E(x.t) = —2B@:1 (1.1a)
ot
Ampere’s circuital law, published in 1826 and extended by Maxwell in 1861,
V x H(z,t) = 81)(5923”5) + J(z,1), (1.1b)

Gauss’ law applied to electrostatics, derived in 1835 but not published until 1867,
V-D=p (1.1c)
and the corresponding law for magnetism
V-B=0. (1.1d)

Here E is the electric field,D is the electric displacemenH is the magnetic fieldB is the
magnetic induction)J is the free current density andis the free charge density. These funda-
mental quantities are related by the materials equatldns eE, B = uH andJ = oE. The
guantitiese, 1 ando are the dielectric constant (or permittivity), permeability and conductiv-

ity respectively. These equations are exact under the assumption that the photon mass is zero.
The error induced by a non-zero rest mass is observed in deviations franrthpredicted by
Gauss’ law for the dependence of electric field at a distaricem a point charge. To first order,

this error is approximated with &/r?t9 dependence. The exact valueqfs undetermined
however bounds have been established by means of null experiments, for a review see [4]. The
current upper bound; = (2.7 4 3.1) x 10716, was established in 1971 by Williams et al [5].

This degree of accuracy means, for the systems studied in this thesis, that Maxwell's equations
may be considered exact.
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In the majority of cases considered here we are interested in travelling wave solutions in the
absence of free charges and free currents. Therefore, an explicit time depeadehds as-
sumed, where is the optical angular frequency. On substitution into Maxwell's equations we
obtain the simplified relations for the electric and magnetic fields,

V x H = iweFE, V X E = —iwuH,
(1.2)
V -eE =0, V. uH =0.

From these equations it is clear that only the first two equations need to be solved. In Chapter 4
we will see that, under certain assumptions, this statement also holds for conductive materials.
Therefore, throughout this thesis we generally need only consider Maxwell’'s curl equations.

For travelling wave solutions it is often easier to deal with the wave equation. This is derived
from Maxwell's equations by taking the curl of either Faraday’s law or Anafs law,

V x V x E = w?ueE (1.3)

and will be used to model wave propagation throughout this thesis. In general the materials
constants can be written as= epe, andp = pop, Whereey and g are the permittivity and
permeability of free space which define the speed of light 1/,/eono. As the materials
considered here are non-magnetijc= 1. For anisotropic materials, such as the liquid crystal,

€, is a tensor function of frequency, space and time. Here the spatial and temporal dependences
are determined by the alignment properties of the liquid crystal. From equations (1.3) it can be
seen that there is a coupling between a materials dielectric properties and the electromagnetic
field. This coupling enables the control of optical fields using a liquid crystal cell and is the
basis for all liquid crystal optics.



Chapter 2

An efficient algorithm for liquid crystal
alignment away from defects

In this chapter we use perturbation technigues to develop a new approximate method which can
be used to calculate the alignment of liquid crystals. The resulting equations are suitable for
all configurations in which defects are not present, making them ideal for device simulation.
This method, which is based around the widely used Landau—deGennes (LdG) phenomenolog-
ical description of liquid crystals, is shown to be both accurate and computationally efficient.
Specifically the approximation offers an increase in computational efficiency by a factor of 100
whilst maintaining an error of ordgi0~*) when compared to the full LdG model.

This chapter is arranged as follows: In Section 2.1 we provide an introduction to liquid crystals
and existing modelling methods. In Section 2.2 we derive the Frank Oseen (FO) model for liquid
crystal alignment restricted to a plane. This will be used in comparison to the approximation
derived here. In Section 2.3 we introduce the equations governing the LdG free energy of the
liquid crystal and make an analogy between our approximation method and the Signorini method
originally developed in elasticity [6, 7, 8]. In Section 2.4, to illustrate the method, we derive

a simplified two dimensional model for the case where liquid crystal alignment is restricted
to a plane. Equations for alignment are given and an estimate of the accuracy of the method
is derived. In Section 2.5 we apply the ideas and methods used in the two dimensional case
to derive equations for the three dimensional case. A method to approximate the error is also
given. Finally, Section 2.6 details comparisons with the FO and LdG models that show that the
approximation we derive is both computationally fast and accurate.

2.1 Introduction

The liquid crystalline phase is a state of matter which exists between the isotropic liquid phase
and the crystalline solid phase. As such the liquid crystal phase has properties of both solids and

5
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FIGURE 2.1: Phases of matter. The left hand image shows the isotropic liquid phase, the
molecules are randomly positioned with random alignment. The right hand image shows the
nematic liquid crystal phase. As in the isotropic phase the molecules are randomly positioned,
however, they have a degree of orientational order.

liquids. Specifically, liquid crystals can flow like a liquid, however, they have a degree of orien-
tational ordering to their molecular structure similar to a solid, see Figure 2.1. Materials which
exhibit a liquid crystalline phase have effectively two melting points, the point at which they
transform from solid to liquid crystal and the point at which they transform from liquid crystal
to liquid. The high molecular ordering of the liquid crystal phase gives them a large optical and
dielectric anisotropy. Coupled with their strong electro—optic response this has lead to the suc-
cessful application of liquid crystals in display technology, for a review see [9]. These properties
can also be used in a wide variety of linear and non-linear optical devices. The modelling and
simulation of liquid crystal alignment for device purposes is an active area of research with a
wide variety of applications [10, 11]. In this chapter we use perturbation technigues to develop
a new approximate method which can be used to calculate the alignment of liquid crystals.

A comprehensive history of liquid crystals is beyond the scope of this thesis. A detailed his-
torical review can be found in [12]. Here we wish to simply highlight important milestones

in the development of liquid crystal modelling. Liquid crystals were originally discovered by
Friedrich Reinitzer in 1888 [13, 14]. Reinitzer observed that certain cholesterol exhibit two melt-
ing points. The liquid crystalline nature of these materials was confirmed through microscopy
measurements by Lehmann [15, 16] who also observed materials with two or three melting
points. Whilst Lehmann observed the multiple melting points he did not realise that this consti-
tuted a new phase of matter. It was not until 1922 that liquid crystals were recognised as a fourth
phase of matter [17, 18]. It is this paper by Friedel in which much of the present terminology is
introduced. Friedel introduced the term mesophases to describe liquid crystalline materials and
observed that these can be further categorised into Nematic, Cholesteric and Smectic phases.
He also recognised that cholesteric phases are chiral Nematic phases and predicted that Smectic
phases form layers, this was later verified by x—ray diffraction [19, 20]. The main phases of in-
terest for device application are the Nematic and Smectic phases, of which the most commonly
used are the nematic phases. Therefore we will concentrate on these for the remainder of this
chapter.
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Liquid crystals can be further classified into two different groups, thermotropic and lyotropic.
The liquid crystals discovered by Reinitzer are thermotropic liquid crystals, these are materials
which form liquid crystal phases due to temperature. Lyotropic liquid crystals are materials
which form liquid crystal phases due to changes in concentration, see [12], and are of interest
in biophysics and biochemistry. Throughout this thesis we will only be concerned with ther-
motropic liquid crystals and will not discuss lyotropic liquid crystals further.

The alignment of liquid crystals by electromagnetic fields is one of their key properties which
makes them useful in device applications. The orientation of liquid crystals by a magnetic
field was first observed by Mauguin in 1911 [21]. He observed that samples of liquid crystals
sandwiched between two glass layers could be made to align such that they were optically
homogeneous by application of a magnetic field in the direction normal to the glass layers. The
alignment of liquid crystal reorientation driven by an electric field was first reported in 1904, for
details see [12]. One of the most important discoveries relating to the electromagnetic response
of liquid crystals was the threshold behaviour displayed by liquid crystals. That is, for a sample
of liquid crystals between two glass plates with defined alignment at the boundaries there is a
threshold field above which the elastic alignment energy of the liquid crystal is overcome and
the liquid crystal will align to the applied field. This effect is known as the Frederiks transition
and was first quantified in 1929 [22].

The most successful and well known application of this alignment effect is the twisted nematic
cell used in liquid crystal displays. The invention of this devices, which builds on a great deal
of previous theoretical and experimental work, is usually attributed to Schadt and Helfrich [23].
The cells consist of liquid crystals sandwiched between two glass plates. Alignment treatments
are applied to the glass plates such that the liquid crystal is aligned in the plane of the glass plates
at each interface, however, there is a 90 degree twist in alignment between the two. Between
crossed polarisers this device will appear transparent. When a voltage is applied the liquid
crystals will realign. For a sufficiently large voltage [24] the twisted structure within the cell is
broken and the cell becomes opaque

The mathematical modelling of liquid crystals falls into two main categories, the molecular
field theories and the continuum theories. Molecular field theories, such as the theory developed
by Maier and Saupe in 1958 [25, 26], concentrate on the intermolecular forces and degree of
order for a sample of liquid crystals. Such theories involve writing down the intermolecular
interactions between a pair of molecules before averaging over a large sample. Continuum
theories make use of phenomenological expressions to describe the free energy of a liquid crystal
sample, these theories began with the work of Oseen in 1933 [27] and Frank in 1958 [28].
Both continuum and molecular field theories provide different insights into the behaviour of
liquid crystals and attempts have been made to align the two [29, 30]. In this thesis we are
concerned with the alignment of liquid crystals to electric fields rather than detailed studies on
the molecular level. Therefore we make use of the continuum theories and will not consider the
molecular field theories further.
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FIGURE 2.2: The three common liquid crystal disclinations, all of which have a different
elastic constant. The left hand image shows the splay disclination, this has elastic constant
K. The middle image shows the twist disclination, this has the elastic corstarithe right

hand image shows the bend disclination, this has elastic con&iant

The original theories put forward by Frank and Oseen are static theories, these describes the
liquid crystal in terms of a unit vectof, also referred to as the director. The equilibrium
alignment of the liquid crystal is found by associating a free energy to the liquid crystal in terms
of the various possible disclinations, see Figure 2.2, The resulting free energy is minimised in
terms of the director orientation angles. These theories were developed and reformulated by
Ericksen [31] in 1962. The dynamic theories of liquid crystals began in the early 60s with a
theory developed by Ericksen [32]. However, this theory proved too simplistic to describe the
dynamics of a liquid crystal cell. In 1966 Leslie published his first paper on the dynamical theory
of liquid crystals [33]. However, this theory failed to reduce to the Ericksen reformulation of
the FO model in the static limit. In 1968 Leslie published a second paper, in which he added
contributions from the elastic interactions between liquid crystals [34]. This time the theory
did reduce to the static model in the appropriate limit. This model is computationally very
efficient. However, although the vector representation of the liquid crystal may be considered
quite intuitive, itis physically incorrect as it does not respect the inversion symmetry of the liquid
crystal, i.e.n and—n represent the same state of the liquid crystal. This limits the application

of the FO model to geometries in which the liquid crystal orientation angle is bounded between
0 and /2. Further, the microscopic order of the nematic phase, which depends on temperature,
is not considered. This makes the model unsuitable for geometries in which defects, non smooth
variations inn, can occur.

To overcome these problems an approach was developed by deGennes in which the liquid crys-
tal alignment is represented by a teng@ryvhich is proportional tey ® . [26, 35]. This tensor is
invariant with respect to the transformation— —n. Further, this theory takes into account the
orientational order of the liquid crystal through the temperature dependent bulk energy, some-
times referred to as the thermotropic energy, and can therefore be used to describe situations
in which defects, occur. The direct solution of the Euler-Lagrange equations which minimises
this free energy requires the integration of 9 coupled non-linear PDE’s. This can be simplified
through the method of Schopohl and Sluckin [36] who used Lagrange multipliers to impose the
traceless symmetric properties of the system. Direct elimination of the Lagrange multipliers
reduces the dimension of the problem to 5. Alternatively the method of Sonnet can be used [37].
This method involves writing the free energy on the orthonormal basis of traceless symmetric
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tensors and again reduces the dimension of the problem to 5. These methods are commonly
used in the numerical simulation of liquid crystal alignment to date. The main disadvantage of
the LAG method is that, due to the difference in time scales between the thermotropic and elastic
properties of the liquid crystals, the final equations are numerically stiff, making computation
expensive.

Typically continuum theories involve writing down free energy expressions for the elastic, elec-
trostatic, thermotropic and surface interactions in the liquid crystal cell. In the tensor based mod-
els these usually take the form of Landau power series expansions. Typically only the lowest
order terms are retained. A great deal of work has been done to obtain the most general possible
expressions for these energies. Expressions for the elastic and bulk free energies are invariant
with respect to rotation of the sample and have been obtained@p|[@8, 39]. The surface free
energy for a liquid crystal sample is present due to the non-infinite anchoring strength between
the liquid crystal and the boundaries. The strength of this alignment is dependent on the method
used to align the liquid crystals, for a review see [40]. Finite anchoring strength in director based
models is usually based on the formalism of Rapini and Papoular [41] which was also described
by Berreman [42, 43] and has been shown to give good agreement with experimental measures
[44]. Anchoring strength in tensor based models has been described in the simplest possible
case by Nobili [45]. Here the anchoring strength is assumed to be isotropic, i.e. the liquid crys-
tal can move out of the plane of the boundary as easily as it can rotate in the plane. This theory
provides a method of modelling finite anchoring strength. However, in general the anchoring
strength will be anisotropic, i.e. the liquid crystal may move away from the interface plane more
easily than it can twist in the plane. To overcome this anisotropic anchoring strengths have been
considered [46]. These are based on a power series expansion where different penalty energies
are associated with movement in and out of plane.

A great deal of work has gone into the study of continuum models. Some groups have produced
detailed simulations regarding the structure of point defects, [47, 48], hedgehog configurations
[49, 50, 51, 52] for a review see [53], disclination lines [54, 55, 56] and order reconstruction
[48, 57]. Whilst other groups have worked on large scale numerical simulations, often based
around finite element [1, 58, 59] or finite difference [60, 61] discretisation methods, of the
continuum equations. The finite element models have proved highly successful and are used in
a variety of optical applications [62, 63].

Often the advantages of usinga-tensor model outweigh the disadvantage of increased com-
putation time. However, there are devices, such as photorefractive cells [64] or spatial light
modulators [65], in which the FO model is inappropriate as the liquid crystals may rotate in an
unbounded way. However, as there are no defects in these cells, th@ttd@sor model is
unnecessarily expensive to compute.

Numerical methods to overcome the stiffness of the@utensor equations include: The scaling
of the elastic and electrostatic coefficients [66] and the renormalisation of the liquid crystal
director after each time step [67]. Codes also exist which solve the full stiff equations. These are
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usually based around finite element simulations with adaptive meshing techniques to eliminate
the need for dense grids away from defects [1, 46].

Although the separation in scales makes¢htensor equations computationally expensive, the
small parameters involved can be used to our advantage. In this chapter we develop a new
approximation which uses a multiple scales expansion technique to separate the two time scales
and overcome the numerical stiffness. On the timescale of interest, i.e. the slow reorientation
time of the liquid crystal, the fast timescale equations, which determine the order parameter, can
be considered as having reached equilibrium. The resulting equations for the slow timescale are
non-stiff and can be solved in a fraction of the time of the full equations. This approximation
reduces the computation time by a factor of approximatelyand is suitable for any geometry

in which the variation in the scalar order parameter may be assumed to be small.

2.2 Frank—Oseen director model

2.2.1 Free energy

The FO free energy of a liquid crystal sample is givenbi) = Fy(n) + F.(i), whereF,
is the elastic free energy arfgl is the electrostatic free energy. We model the orientation of the
liquid crystal on a macroscopic level in terms of a unit diregigwhich tells us the average
alignment of liquid crystal molecules over a small sample. Typically this is written in terms of
polar coordinates
sinfgo cos ¢ro
sin 9FO sin ¢FO s (21)

cos 0o

S
Il

wherefro and¢ro are the standard spherical coordinate angles.

The elastic free energy is modelled in terms of the FO free energy expression [27, 28],

1 1 1
Fa= K1 [V f)? + SHa i (V x 7)) + 5Kl x (V x 72) 2, (2.2)

where K1, K-, K3 are the splay, twist and bend elastic constants respectively, see Figure 2.2.
To model alignment in the most general case all three of these elastic constants are needed.
However, our purpous is to give the simplest possible derivation of the FO model such that it is
suitable for comparison with th@ tensor approach. Therefore, to simplify the derivation we

use the one elastic constant approximatii), = K, wherej = 1,2,3. For an appropriate
geometry the liquid crystal orientation is restricted to ihe plane (see Figure 3.1). As such

we may assume our system to be twist fiégp = 0. Substituting the director expression (2.1)

into the Oseen Frank free energy expression (2.2) yields:

K

Fo= > (VOro)®. (2.3)
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The second part of the free energy is the electrostatic free energy which is derived by substituting
the expression for the dielectric tensor

0ij
€;j = €u0i; + Ae <ﬁmj - 3j> (2.4)
into the expression for electrostatic energy
. 1 I
Fe = —€0€i0;%0;1, (2.5)

2
wherey is the electric potential throughout the cell and

_at2e

; (2.6)

Ae=¢ —€1, €

Retaining only terms which depend on the alignment gives the electrostatic energy for the liquid
crystal cell

F. = —%GoAG (VI/NJ : ﬁ)2 . (2.7)

The total free energy is the sum of the expressions for elastic energy (2.3) and electrostatic
energy (2.7). We non-dimensionalise it to obtain

F= % (VOrpo)* — %xm (Vo -7)?, (2.8)

egAe

- K
1 = 1 /1. The liquid crystal alignment can now be determined by minimising equation (2.8)

in terms of6ro. To minimise the free energy over the whole domain we substitute equation
(2.8) into the Euler—Lagrange equation

wherexpo = Y2 andy)y is a constant potential which non-dimensionalises the system,

oF OF
— — 9= =0, 2.9
wherei = x,y,z. Equation 2.9 is derived in Appendix A and minimises a functionvith

respect to a set of variablgs. After some manipulation we obtain the Euler Lagrange equation
for 0ro

9ro
OTFO

1
= V*0ro + 5Xro [sin20r0 (E2 — E2) + 2c0s20p0 E, E.] (2.10)

whererpo = t [K/(L2v1)], L, is the characteristic length of the systefm, z) = (z, 2)/L,
and~; is Leslie’s rotational viscosity. The equation fgris derived by substituting equation
(2.4) into Maxwell's equatiorV - D = 0. After some manipulation this yields

o7 1-— ozFO‘ cos 20 o aro sin 20 o Vi =0, (2.11)
apo sin20po 1+ app cos20ro

wherearo = Ae/ (¢ + €1 ) is the electrostatic coupling strength.



Chapter 2 An efficient algorithm for liquid crystal alignment away from defects 12

# 10
1.2# g
b -
N [ P
] - .-
o [N =~ . ~ e
%08:"‘\\\\\ N N ~ N~
E MmN NS NN N Y NN N NN
c R T T T T T S U N N N N
e N R LU WML ~
TN Y N VN NN VNN ~ %N NN
© R O T T e O O T T S
..204\\\\\\\\\\\\\\\\\\\
SR N N N N N NS v 2 —
NN ™ % % % % N %N N N N N N N N N N N N
e T T T N T T
0.2& L e -
e T T T T U
P s e e e Tt tm e e e e tm e e e
0 4+ - _ . ‘
4] 0.2 04 0.6 0.8 1 1.2
X (along cell) in meters «10°

FIGURE 2.3: Typical plot for director field under the application of a sinusoidal electric field
with planar boundary conditions. The contour lines show the equipotentials in the cell.

The coupled differential equations (2.10) and (2.11) can, assuming small director reorientation
and neglecting the electrostatic coupling, be solved analytically [68, 69]. However, here we
solve them as a numerical boundary value problem, the details of which can be found in Ap-
pendix B. A typical plot for the director angles under the application of a sinusoidal electric
field is given in Figure 2.3. Here the interaction between the electric field and the director align-
ment can be clearly seen, in the absence of this coupling the potential would be symmetric. The

asymmetric alignment of the liquid crystal is caused by the molecular pretilt at one of the cell
boundaries.

2.3 O-tensor model

2.3.1 Free energy

In the Q—tensor model we consider a dimensional liquid crystal free energy of the form
Fo(Q) 4+ Fa(Q) + F+(Q), whereF,, F, and F; are respectively the electrostatic, elastic and
bulk free energies. The general form of the biaxial liquid crystal alignment tehseritten in
terms of the orthogonal unit directofsandm, which define the major and minor crystal axis

respectively, is
@:ﬁg(m)+\/§5(m®m) (2.12)

whereS is the scalar order parametetthe biaxiality parametet is the identity matrix and

W = (n®mn — 1/31) denotes a traceless symmetric tensor. The total free energy may
be obtained by integrating over the cell volume. In the absence of external forces, such as
electromagnetic fields or boundaries, this free energy reduces to just the elastic and thermotropic
free energies which ar60(3) invariant. Much work has been done to obtain comprehensive
expressions for the thermotropic and elastic free energies [38, 39].
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Throughout the remainder of this chapter we shall assume the simplest possible expressions for
these free energies. It should be noted however that this restriction is not a necessary condition
for this method to work, rather it is a simplification used to clarify the derivation.

The elastic free energy in its simplest form is derived using the one elastic constant approxima-
tion. This can be written as I )
F-Llval, 219

whereL is defined ad = K/(352) andK is the liquid crystal elastic constant. The electrostatic
free energy of the liquid crystal takes the form

- 1 -~
Fo = —3eoAdTr <Q8> : (2.14)
where
- 3
&= \EE@JE, (2.15)

€o is the permittivity of free space\e the anisotropic relative permittivity and the electric field

E = —V4, wherey is the electric potential. The effect of temperature on the liquid crys-
tal alignment is described by the bulk free energy, written in terms of a Landau power series
expansion ofQ [26]

F = %A(T —T)Tr (Qz) —V6BTr (Q3) + %CTr2 (Q2> : (2.16)

whereA, B andC are the bulk thermotropic coefficients which are assumed to be independent
of temperature. The temperature dependence of this energy is described entifely By,
whereT™ is the pseudocritical temperature at which the isotropic phase becomes unstable.

To ensure the traceless symmetric properties of@and& are respected we express the free
energy on the basis of traceless symmetric tensors [37],

5 5
Q=> aI% and £=> &1,
p=1 p=1

where
T = \}6 (—ex®e, —e, ey, +2e,®e;)
72) — \}5 (e @ e, —e,Qe,), T73) — \}5 (exz®ey+e,Qe;), (2.17)
TW = \}5(%®8z+ez®em)a T = \}i(ey®ez+ez®ey)-

We rescale the order paramefér— 3¢S, the biaxiality parametes = 3¢ 3, the tensor field
Q = 3¢9 and the component fields, = 3¢a, ande, = ¢,/v2, wherey is a typical potential,
Y = 1[;/1/;0. For compactness of notation, from now on we adopt the convention of summing
over repeated indices, unless stated otherwise. We also indicate &itle the vectors with
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components,, ande,. Finally we non-dimensionalise to obtain the scaled free energy,

_ & igar Do o2y Lign @ @)
F= 2|Va] — Xa@ * €+ 2|a| +2|a| —VéZTr(T T )apaan. (2.18)

p,q,r

The non-dimensional elastic constgft the electrostatic coefficient, and the scaled temper-

atureT are
9 9C L _ 9egAeC? =T

2
= — = — Toh =
gO 232 L%7 Xa QL%B 11[}07 0 TC_T*a

whereT, is the clearing point temperature afid is the characteristic length of the geometry
studied. We have rescaled space so that) = (z,2)/L,. Typically 7, ~ O(1) whilst
€2 ~ 0(1077) andy, ~ O(1075).

The separation in scales between the various terms in the free energy cause the Euler-Lagrange
eqguations, which minimise equation (2.18), to be stiff. As a result the computing times required
for even relatively simple geometries become very large. In situations where the elastic and elec-
trostatic free energies remain small we can initially consider only the critical points of the bulk
free energy. The elastic and electrostatic free energies can then be considered as a perturbation.
It is this assumption that makes this method inappropriate for defect modelling.

2.3.2 Critical points under slightly broken symmetry

Before we consider the case of the liquid crystal it is useful to consider a general free energy
of the type given in equation (2.18). The free enefgin) consists of a symmetric bulk free
energy perturbed by a small symmetry breaking contribution from the elastic and electrostatic
energies. We denote these terfiga) and £(a) respectively, wher&€(a) F;(a) € R® in the

three dimensional case adda) F;(a) € R? in the two dimensional case. For simplicity we
consider here the case thata) has only the electrostatic energy component, so that the liquid
crystal state is described by a single five dimensional vagiaather than a five-component
vector fielda(x). This allows us to describe the perturbation scheme in very general terms as
the effect of a symmetry breaking perturbation on an invariant manifold of solutions of a set
of ordinary differential equations. In the more general case where the elastic energy is also
considered we would have to deal with partial differential equations for vector fields: however,
we expect that the main ideas outlined here would remain valid.

As the bulk energy i$O(3) invariant the critical points af;(a) will form an orbit of solutions

in the five dimensional component space. Specifically, for the general case corresponding to a
biaxial minimiser, the group orbit will be a 3-manifold, whilst in the special case corresponding
to uniaxial minimisers the orbit reduces to a 2-manifold.

The effect of the first order perturbatidiia) is to break the symmetry and to collapse the invari-
ant manifold of critical points to a smaller set near the manifold. This setting is very similar to
the Signorini perturbation scheme, originally derived in the context of elastostatics [6, 7, 8, 70],
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FIGURE 2.4: Graphical representation of the Signorini perturbation scheme. For some initial
pointin the phase spade;, a>) there is rapid convergence at a ratgto the solution manifold.
Motion along the manifold, driven by the flaly occurs much more slowly at a rate. The
critical point on M is found wherL is orthogonal tdl, M,. As M, is close to the perturbed
manifold M, the solution can be approximated by the point &fy whose surface normal
intersectsi/; close to the perturbed solution.

but of wider potential application [71]. This scheme determines the equilibrium configuration
of an elastic body under the effect of applied stresses using a perturbation expansion in powers
of the applied stress. In the context of liquid crystals, the role of the “applied stresses” is played
by the (small) elastic and electrostatic forces and our approximation is the first step of a standard
Signorini expansion.

We consider an orbid/, consisting of the critical points of the bulk energy(a) with tangent
spacel, My ata € My. As M, consists entirely of critical points thef, My C ker(H),
whereH is the Hessian of the bulk free energy. If the critical points of the bulk free energy are
non-degenerate in the direction normal to the manifold then the tangent space coincides with
the kernel,7,M, = ker(H). Therefore,M, is a normally hyperbolic invariant manifold for

the flow, —V ,F:(a), whereV , denotes differentiation with respect to the components of the
vectora.

The effects of the perturbative terms can be understood by invariant manifold theory. If the
perturbed flow,-V o (F;+ L) and its first derivative are sufficiently close to the unperturbed flow
then there exists a smooth invariant maniféld close toMy. The behaviour of the perturbed
flow along M7 will be comparable to the flow restricted id, [70]. Specifically, a poinpy on

My will correspond to a poing; on M7, wherep, is the intersection of the normal id atpg
andM;. If all non-zero eigenvalues 6f are positive then the dynamical behaviour of the flow
close to the manifold will consist of exponential attraction towards the manifold followed by a
slow drift along it [72].

As the perturbation-V, (F: + £) is also a gradient vector field then the local minima on
M, will be attracting stationary points. For non-degenerate critical points these are in
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correspondence with the local minima of the perturbed function restricted to the unperturbed
manifold My. The critical points restricted td/, are found when the floll. = —V,L is
orthogonal toT,. This is represented graphically for the simplified two dimensional case in
Figure 2.4.

In the simple two dimensional case considered in Section 2.4 the symmetry groiap(23
under the action of rotation dR?. In this case there will be two critical points on the perturbed
manifold. These correspond to an unstable maximum and a stable minimum.

In the three dimensional case, Section 2.5, the situation is more complicated. The bulk energy
minimisers form an orbit of the conjugacy action $0(3) on the five dimensional space of
traceless symmetric matrices (see Section 2.5.2). This orbit is parametrised locally by the di-
rection of the major axis of the liquid crystal molecule (two dimensions) together with a circle
corresponding to the orientation of the minor axis. For uniaxial minimisers of the bulk free en-
ergy these circles of critical points shrink to radiusThe result is that liquid crystal orientation

can only be determined in terms of the major axis. To determine the orientation of the minor axis
in cases where the perturbation induces biaxiality, a further step in the expansion is required.

2.4 2D case

As an example to illustrate the approximation method it is helpful to look at a simplified two
dimensional case where the liquid crystal director is restricted ta thelane. The alignment
tensor is & x 2 uniaxial tensor,

Q;j = V28 <nn] - ;51-]-) : (2.19)

We can proceed exactly as in Section 2.3.1 with the simplified basis setxo? traceless

1 {-10 1 (01
Tl_ﬂ<0 1), Tg_ﬂ<10>. (2.20)

2

Q= Z apT(p).

p=1

symmetric tensors:

Hence

In this notation the scalar order parameteSts= Tr(Q?) = a? + a%. The Euler-Lagrange
equations of motion, derived using the simplest form of the free energy, are

Orap = ngQQn — Toan — 2ay, (a% + a%) + Xaén, (221)

wheren = 1,2, 7 = t/74, 74 = [9C/(2B?)] ¢ and the viscosity(, is related to Leslie’s
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rotational viscosityy; by ¢ = ~1/(352).

2.4.1 Invariant manifold

Due to the smallness @f and,, equation (2.21) can be seen to have two different time scales.
Takingn = ¢2 as the small parameter we can write the time derivatives in equation (2.21) as
0. = 0, + 105, . Substituting into equation (2.21) gives

a7'oan + 7’6‘1‘1 ap = UVQCLH — Toan — 2a, (a% + CL%) + NXo0€n,; (2.22)

wherexo = xa./&% is O(1). Observing that only the bulk free energy changes on the fast
timescale we assume that this scale determines only the scalar order parameter. As we are only
interested in the slow timescale, i.e. the timescale over which the liquid crystal aligns, we can
make the assumption that the fast timescale behaviour has reached equilibriudh, i.0.

The slow scale behaviour, which is present due to the small elastic and electrostatic terms, will
be obtained from the first order correction.

To proceed the component representation of the liquid crystal is rewritten as a power series
expansion iny:
an = ano+ nan1 + O(n?), (2.23)

wherea,, ; is then—th component oj—th order. Substituting into equation (2.22) and retaining
terms only toO(n°) allows us to write

[Th +2 (a3 + a3 )] an =0, (2.24)

which is satisfied if(af( +a3,) = —To/2. AsS* = ai + a3, equation (2.24) defines the
leading order approximation to the scalar order parameter,

S2 = —Tp/2. (2.25)

This equation can also be derived by minimising the corresponding Landau deGennes free en-
ergy in terms of the scalar order parameter. As described in Section 2.3.2 equation (2.25) defines
a manifold of critical points in the component spdaeg, a2 o). For uniaxial liquid crystals the
critical points of the free energy are non-degenerat&as 0. We consider the effects of the
elastic and electrostatic free energies as a symmetry breaking perturbation. In the context of the
Signorini expansion this defines the flow along the manifold with, in this case, a unique stable
minimum, found using the first step of the Signorini expansion.
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2.4.2 Kernel of adjoint (tangent space)

This minimum, and hence the liquid crystal alignment, can be found from the first order expan-
sion of equation (2.21). Retaining termsgn) and using equation (2.24) we obtain:

2 2
aip 41,0020 a1 VZa1,0 + xoe1 — Or a1
4 - . (2.26)

2 2
ai0a2,0 Ay as,1 V<az0 + xoe2 — Or a2

This is a system of linear equations fayf ; that can be written a&la; = L. Recall thatH is

the Hessian of the bulk free energy. However, in this case this equation has no unique solution
as detH) = 0. The Hessian is a symmetric real valued function, therefafe= H, where

H' denotes the adjoint df. Therefore, as stated in Section 2.3.2, for a non-trivial solution to
exist L must be orthogonal to kek). As this is a two dimensional system, the kernetois a

single vectoV. This gives us the solvability conditioh - V' = 0, whereV = (—ax,a10)"

is the eigenvector of zero eigenvalueléf

Using the solvability conditionL - V' = 0, we obtain the following equation fer; o andas g,

2 9
a1,007,a2,0 — a2,00-,a1,0 = a1,0V-azp — azoV-ai o+ aioxoe2 — a2,0xo€1- (2.27)

Equation (2.27) can be solved simultaneously with equation (2.24) to determine the liquid crystal
dynamics on the solution manifold.

2.4.3 Parameterisation of the solution

By correctly parameterising the components andas, we can force the director onto the
solution manifold removing the need to solve the leading order equation. As the leading order
solution manifold isSO(2) invariant we parameterise the solutions in terms of the polar angles
9 € [0, 2rx]. If we write

aio = So sin 99, and ag0 = So cos Y

then equation (2.25) is automatically satisfied. This representation can be used in equation (2.27)
to determine the time evolution af, o:

2 8an’0

0o Vi (a1,0V2a2,0 — a2,0V2a1,0 + a1,0x0€2 — azoXoe1) , (2.28)

whereV/, is thenth component ofV/. This equation confirms that the motion of the director
field is in the direction tangent to the manifold.

Equation (2.28) is an initial value problem f@y o which can be solved using standard numerical
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techniques for an initial set af,, o on the manifold. It is important to note that we need never
calculated, as equation (2.28) is solved purely in terms of the component representatipn,
This ensures that the singularities expected in a director model are overcome.

2.4.4 Order one accuracy check

To determine the accuracy of the expansion we consider the perturbed madifolthe equa-
tions derived above are suitable only in the case wihéyes sufficiently close tal/y.

Physically the minimum distance between the leading order solutionVdndepresents the
correctionS; to the scalar order parametét, = Sy + 751 + O(n?). In general this can be
calculated from the singular value decomposition of@H@) equation (2.26). However, in 2D
the correction can be calculated analytically. After a little algebra we obtain

1
vy

The magnitude ob; can be used to determine the validity of the perturbation expansigi; If
becomes comparable withyy then the expansion breaks down and the liquid crystal has large
variation in order parameter. If this happens then the full stiff equations (2.21) must be solved.

S = ag - VQ(IO + Xoao'e} . (2.29)

2.5 3D case

The three dimensional Euler-Lagrange equations are computed in a similar way to the two
dimensional case,

5

Oa 3
Nt =1 (Va1 + xo0e1) — Toar + 3 (af — a3 — a3) + = (af + a2) — 2a1 Zai, (2.30a)
87’1 2 —
da 33 5
77672 =7 (V2a2 + X0€2) — Thas — 6ajas + — (ai — ag) — 2a9 Z ai, (2.30b)
T1 2
k=1
8(13 2 5 9
M= (V ag + Xoes) —Toaz — 3 <2a1a3 - \/§a4a5) — 2a3 Z ay, (2.30c)
& k=1
8a4 ) 0 2
Ny =1 (V a4 + X064) — Toay + 3aras + 3V3 (agaq + azas) — 2a4 Z ag, (2.30d)
E k=1
aa5 2 0 2
77877'1 =n (V as + X0€5) — Toas + 3aras + 33 (agaq — asas) — 2as Z a, (2.30e)

k=1

where, as in the two dimensional cager £2 andxo = x./£3. The fast time derivatives have
been neglected as, on the timescale of interest, these variations will have reached equilibrium.
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At this point, for compactness of notation, it is useful to define the first order perturbiation
in terms of the elastic and electrostatic contributions,

Oam. o
87‘1 ’

Ly = V2amo + xem — (2.31)

wherem =1,...,5.

2.5.1 Invariant manifold

In the two dimensional case the leading order equations are those which minimise the free energy
in terms of the scalar order parameter. This minimisation fixes the liquid crystal director onto
the solution manifold in the two dimensional spdeg, a2). A similar method can be used in
the three dimensional case using the biagldensor representation (2.12). It can be shown that
the stationary points of the leading order free energy function, of the form given in equation
(2.16), are either uniaxial or isotropic [30]. As such the biaxiality paramet@ust vanish at
leading order. Minimising the free energy in terms of the scalar order paraiets in the
two dimensional case, allows us to obtain the fast timescale equations. The Euler-Lagrange
equation of motion that minimises the leading order scalar order pararfigtés,

050

—— = —253 + 35,2 — TpSo, (2.32)
079

which can be solved for steady uniaxial state to obtain

3++9 - 8T

So = 1

(2.33)

Equation (2.33) defines the solution manifold in the five dimensional component space. The
critical points on this manifold are non-degenerate providing below the super heating limit,
To = 9/8 [51]. In terms of the component representation the scalar order parameter is given by

Sg = ar. (2.34)

To fix the biaxiality to zero we require th&@ has two only two unique eigenvalues, hence,

3v3
ail)”o + 3(1%70 (S() — al,o) + T [CL270 (aio — aéo) -+ 2a370a470a570] = Sg (2.35)

These two equations define a 3—manifold in the five dimensional component space. However,
as the leading order minimisers are uniaxial there are only two undefined parameters which
relate to the angles the liquid crystal makes with the coordinate axis. Therefore, as described
in Section 2.3.2, the 3—manifold corresponding to the biaxial stationary points must reduce to a
2—manifold leading to a degeneracy in the first order correction. Specifically this allows us to
determine only the direction of the major crystal axis uniquely.
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2.5.2 Kernel of adjoint (tangent space)

As in the two dimensional case we now need to find the first order correction to the leading
order components which will determine the unique solution on the manifold. Motion across the
manifold is determined by the first order perturbation. The first order contribution from the
bulk energy is invariant with respect to motion on the leading order manifold. Therefore, for the
equation to have a non-trivial solution we require that the perturbdtjpiis orthogonal to the
kernel of H. As Ker(H) = T, M, the solvability condition is

aam70

Os

L =0, (2.36)

wheres parameterises motion along the tangent space to the manifold. The derivaiiyg of

is found by considering the tens@;;(0) which satisfies the perturbed Euler—Lagrange equa-
tions. The motion 0©;;(0) along the manifold by rotation in a spherical coordinate system is
defined by the rotation matrik;;(s) which acts on®;;(0) by the conjugacy actio®;;(s) =
Rip(5)Rjq(5)Qpq(0). The rotation matrixi;;(s) is orthogonal, i.e.R;;(s)R;k(s) = d;; and
R;;(0) = 0;;. Motion along the manifold written in terms of the component representation is

amo(s) = | T Rip(s) Ryg ()13 | a10(0). (2.37)

The derivative of,, ¢ is found by differentiating equation (2.37) &= 0:

aam,O
s

=T | Rip(0)05T88) + iR}y ()T | a10(0). (2.38)

To proceed we need to determif; (0), this can be obtained by differentiating the identity
Rip(S)Rj (S) = 52‘]‘ ats =0,

Rgp(o)‘sjp + 5ipR;‘p(O) =0. (2.39)

For this equation to be satisfiggf;(0) must be a skew symmetric tensor. therefore, it can be
expressed on the bagig(™, defined as

1
w® :ﬁ(eyégem—em@ey),
@ _ 1
W) = 7 (e, ®e,—e,Re,;), (2.40)
(3 _ 1
W :ﬁ(ez®ey—ey®ez).

For eachV (™) we obtain a differenda,, o/0s and thus three vector¥, (™, that span the kernel.
The solvability conditions can be written as

L,V =0, (2.41)
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where the spanning vectors can be explicitly written as

Vi =T (TPW — wiTE ) ap, (2.42)

m ij LY

In terms of theD (") components the spanning vectovs™ formed by eachiv ("™ are:

0 —V/3a4 V3as
—2a3,0 4,0 as,o
V(l) = 20,270 5 V(2) = as.o 5 V(3) = —a4,0
—as,0 V3ai,0 — as as.o
Q4,0 —as,o —\/gal,o — a0

(2.43)
The first order equations require equation (2.41) to be satisfied in the direction of each span-
ning vector. This gives us three equations, one for each of the skew symmetric tBA%0rs
Substituting equation (2.31) into the equation (2.41) the time dependent equations are obtained

0
Vrgn)a—ﬁam,o = V,,(L”) (VQamo + X€m>, (2.44)

wherem = 1..5.

2.5.3 How to solve equations/parameterisation of equations

Equations (2.44) describe the dynamics of the critical point structure on the generic 3—manifold.
However, as the bulk minimisers are uniaxial these 3 equations must reduce to 2 corresponding
to the reduction in the dimension of the manifold. Using guidance from the two dimensional
case we exploit th&O(3) invariance of the bulk energy and parameterise the component rep-
resentationng in terms of the uniaxia@—tensor with principal axis defined by the spherical
coordinate angle®, ¢|:

1-— §sin2 0
\gg sin? 6 (2 cos? ¢ — 1)
V/3sin? 0 cos ¢ sin ¢

/3 cos 0'sin 0 sin ¢
V3 cos 0sin b cos ¢

apg = S() (245)

For a free energy which supports biaxial phases the appropriate representation for the component
field would be a biaxial tensor expressed in terms of all three Euler angles. Substituting into
equation (2.44) we can simplify the time derivatives to obtain equations for the time derivatives
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of 6 and¢:
00
277 (2) _ g (3) 2
350 o <cos oV sin ¢V,; ) (V Am,0 + Xem),
(2.46)
foler 1
2V — (1) 2
3505 = gV (v im0 + Xem).

These can be used to describe the time dependent liquid crystal alignment in all cases except
where the liquid crystal is aligned close to the coordinate singul@rity0, 7. If this is the case

then we need to use a multigrid method [73]. We choose a different set of coorcﬁéaﬁ&s

formed by rotating the existing coordinates about ghaxis. This second coordinate system
produces a set of components which give time dependent equations

00 . -
277 _ (2) _ g (1) 2
350 o <COS PV, —sin gV, ) (V Am,0 + Xem),
(2.47)
¢ 1
2090 3) (w2
350 0T sin? évm (V Gm,0 + Xem)'

The second coordinate system is singulat at 0, 7, equivalent tod = m/2and¢p = 0, 7. As

such the two coordinate systems cannot be simultaneously singular for a given director. Using
the different coordinate systems the time derivatives,gf can be found from the least singular
coordinate system as either

Oapy )0 (@) @) 99

(977‘1 = V;D 8771 — (sm qpr — cos qbV;? ) 877'1’ (2.48a)
or 5 3

dap _ _1,(3 09 1@ o) 99 2.48b

o -V, o + (cos PV, —sin gV ) o (2.48Db)

The strength of the singularity in each coordinate system is determined by the gizandf

6. This can be directly measured from the size of thend = components of the director. An
appropriate choice of representation, chosen arbitrarily to allow for some overlap between the
two, is to useld, ¢] if |n.| < 4/(3v/2) and [0, ¢| if |n.| < 4/(3v/2). If both these conditions

are satisfied an average valuedaf, /0, obtained from each of the two representations is used.

2.5.4 Order one accuracy check

As in the two dimensional case we wish to determine the correction to the scalar order param-
eter as an approximation of the accuracy of our method. Unlike the two dimensional case an
analytic expression cannot be obtained. Instead we use the method of singular value decompo-
sition. Given the degeneraf®(n) equationHa,; = L we calculate the perturbed manifald;
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corresponding to thé(n) correction to the components, where

Hu = (daro—6)aro+To+2>,_, a2y,
H22 = 4&%’0 + 6(1170 + TO + 2 Zi:l a?L,O’
H33 = 4@%70 + 601170 + TO + 2 Zi:l a721,0’

. 2 4 2
H44 = 4@4,0 - 30/170 - 3\/§a2,0 + TO + 2 Zn:l an,O?
Hss = 4ag’0 —3a10 + 3\/§a2,0 +To+2 Zi:l %21,07

Hiz = (6 +4ajp)azp, Hos = (4dazo — 3v/3)asp,
Hiz = (6 +4aip)asp, Hos = (4azo + 3v/3)asp,
His = (4a10 — 3)asp, Hsy = 4dagzpaso — 3v/3as,
His = (4aio — 3)as,, Has = 4dasoasp — 3v/3a4p,
Haz = 4azpasp, Hys = 4dagpasp — 3v/3as,

andH;; = H;;. The order parameter correctioh is then determined from the components of
a, orthogonal to the manifolds; = ag - a1/Sp.

2.6 Examples

To demonstrate the use of the non stiff approximate liquid crystal equations we consider a planar
cell filled with liquid crystals. A spatially periodic voltage is applied to one boundary whilst
the other is set to a uniform zero Volts. This is a realistic model for a photorefractive liquid
crystal cell [64, 74], a device used for optical coupling and as an optically addressable spatial
light modulator. This is an interesting device for testing this algorithm as it allows for three
dimensional orientation of the liquid crystal directors whilst having a simple geometry.

Under appropriate conditions the test geometry is a square i thelane. Periodic conditions
are imposed in the direction such tha&(x + L, z) = a(z, z) and Dirichlet boundary condi-
tions, corresponding to infinite anchoring strength, are imposed-ah andz = L.. The liquid
crystal is aligned by application of a spatially modulated voltage, L.) = v, sin?(rz/L,) at
one boundary, wherg, is the applied voltage amplitude, whilst the other is eartki¢d, 0) = 0.

First we verify the two dimensional liquid crystal model derived in Section 2.4. This is done
through comparison to the full stiff time depend&ntensor equations and through comparison

to a time dependent FO model. In this case the director orientation is restrictediio:thiane

by the planar, in plane boundary conditions. As is typical, due to the alignment layers used in
these cells, a small pretilt is appliedzat L.. The parameters used in our simulation are given

in Table 2.1. The spatial derivatives are calculated using a pseudo-spectral method [75] and, for
ease of implementation, the time derivative is calculated using the MATLAB multistep solver
ODE113. A public domain version of the MATLAB code is available at [76] and further details



Chapter 2 An efficient algorithm for liquid crystal alignment away from defects 25

K =20 x107'2N €L =4.1 ¢ =0.037Pas
A=013x 10K Im3 §=3659 T4 =2.56x10""s
B=1.6x10%°Jm3 L =6.05 x 107 2N & =439%x10""

C =3.9x10°Jm™3 L,=12x10"%m Xa = 5.13 x 107 %3
To = —10 L.=12x10"%m X1 = 3.25 x 10722
e =91 11 = 0.081Pas o =1V

TABLE 2.1: Numerical values of non-dimensional constants for a typical photorefractive LC
cell filled with the liquid crystal compound TL205
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FIGURE 2.5: Comparison of liquid crystal alignment. The left and right images show the
director alignment for the FO model and the approxim@densor model respectively. Di-
rector fields for both models are plotted, contour lines show areas of equal elastic energy,
|VOro|? = C inthe FO model andVa|? = C in the LdG model. The inaccuracy of the FO
model can be seen in the asymmetryNaf o |2 near the boundary.

of the code can be found in Appendix B.

Starting from the same initial conditions the FO aBeensor models are integrated till steady
state is reached. The resulting configurations are compared and the differences are computed.

First we compare the FO model, derived in Section 2.2, with the approxi@d¢smsor model.

We observe that there is an area of the FO model which does not show good agreement with the
Q-tensor model. By plotting the resulting director field as vectors and comparing the numerical
gradient it can be seen that these errors correspond to the points where the FO model predicts
unphysical gradients, Figure 2.5.

Similarly we can compare the full stifp-tensor equations with the non-stiff approximate equa-
tions derived in Section 2.4. Figure 2.6 shows a plot of the error in the approximate equation
calculated using both the first order correction to the order parameter, equation (2.29), and the
difference in the two simulations divided by the leading order scalar order parameter, equation
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FIGURE 2.6: 2D director field error calculation for a 10 Volt spatially modulated electric field
as described in text. The liquid crystal has strong planar anchoring boundary conditiens at
0 andz = L, and periodic boundary conditions in thedirection. The error is calculated both
through calculation of the correction to the scalar order parametero(S1/50) (left) and
through comparison to the full stiff equatiohsy(da)(right) whereda is given in equation
(2.49).

(2.33),
da = Si ||aappro:v - a’stiffH . (249)
0
Not only is the error very low but when the two error plots are compared it can be seen that the
approximate error is qualitatively comparable with the difference between the full stiff equations
and the approximations derived here. In both plots the error peaks around the points of highest
liquid crystal variation. This is expected as these points correspond to those with highest elastic

energy.

Secondly we compare the 3D model, derived in Section 2.5, with the full@tténsor model.
In this case the boundary conditions fix the director out of plane iny tthieection to allow for
full 3D reorientation.

The steady state alignment results are shown in Figure 2.7. The comparison to the full stiff
equations is shown in Figure 2.8 with error calculated using both the correction to the scalar
order parameter and the percentage error given in equation (2.49). Again it can be seen that
the difference between the two methods is very low and that the error approximation using the
singular value decomposition method is comparable with the true error. We find for the same
number of grid points]2 in each spatial dimension, that the stiff code takes over an hour to
converge whilst the approximate code converges to a solutiondwith O(10~%) in a time of

~ 45 seconds.
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FIGURE 2.7: Typical director field plot calculated using approximate equations for a 5 Volt
spatially modulated electric field as described in text. The colour corresponds to the voltage
throughout the cell. The liquid crystal alignment is parallel to the surface but twisted out
of plane, this forces full three dimensional orientation of the liquid crystal when subject to a
spatially modulated electric field.
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FIGURE 2.8: 3D director field error calculation for a 5 Volt spatially modulated electric field.
The liquid crystal has strong out of plane anchoring boundary conditions-a) andz = L.
and periodic boundary conditions in the direction. The error is calculated both through
calculation of the correction to the scalar order parametey;((S1/50) (left) and through
comparison to the full stiff equatiorisg,(da) (right) whereda is given in equation (2.49).
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2.7 Conclusion

The approximate equations derived in this chapter determine the liquid crystal alignment which
minimises the Landau-deGennes free energy in the absence of defects. They can be solved in a
fraction of the time required to solve the full stiff equations.

We have derived equations for both a two and three dimensional case and have implemented both
as non-stiff initial value problems in MATLAB. Estimates of the accuracy of these equations
have been derived in terms of the first order correction to the component values and have been
shown to give strong qualitative agreement with the deviation of the approximation from the full
stiff equations.

It should be noted that the free energy functions used in this paper are the simplest possible forms
of the free energy. However, generalisation to other free energy functions, whose bulk energy
minimisers are uniaxial, is relatively straightforward. Generalising this method to situations
where the free energy supports biaxial states is also possible. In thidfasea 3—manifold

and expressions must be found for the equations of motion using a biaxial tensor representation
with major and minor axis determined using all three Euler angles.

The major advantage of these equations with respect to the full stiff minimisers is that they can
be computed in% of the time whilst producing results with errer O(10~*). This will be of

great importance in medium to large scale models where computational efficiency becomes an
issue. The assumption that the elastic and electrostatic free energies remain small makes these
equations suitable for geometries in which defects do not occur. As such these approximate
equations will be of most use in applications where defects are undesirable. This is the case
in many optical devices where smooth alignment of the liquid crystal is important, but, the FO
model predicts unphysical configurations.



Chapter 3

Regime-independent coupled wave
equations

In this chapter we derive a semi-analytic model to describe the coupling of optical beams as they
propagate through a periodically modulated liquid crystal cell. This model is particularly useful
as it can be used independently of the liquid crystal geometry. The model is combined with the
liquid crystal model, derived in the previous chapter, to provide a thorough description of the
system. A detailed analysis of the features of the photorefractive liquid crystal cell is provided
and a simplified model for the electrical properties of the cell is developed.

This chapter is arranged as follows: In Section 3.1 we introduce optical coupling including a
brief description of the different coupling regimes. In Section 3.2 we provide an introduction to
existing methods to model beam coupling, including their derivations and limitations. In Section
3.3 we consider some of the problems involved in modelling beam coupling in a photorefractive
liquid crystal cell. In Section 3.4 we derive a new model suitable for modelling beam coupling in
all geometries. This model is verified in Section 3.5 through comparison to existing models and
numerical simulations of Maxwell’s equations we also consider in detail some of the features
predicted by this model with reference to recent experiments. Finally, in Section 3.6, we use a
simplified electrical circuit to model the electrical properties of the cell and comment on work
which could be done to optimise these systems.

3.1 Introduction

The optical transfer of energy from one beam to another via diffraction from a refractive index
grating has been observed in a variety of non-linear materials. This effect, known as beam
coupling, or optical coupling, has a number of possible applications. These include: optical
beam deflection, pattern recognition and image amplification [77]. Beam coupling is observed
due to the non-linear way in which light and matter interact. Generally a non-linear material is

29
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one whose refractive index is dependent on the electric field at any given point. Beam coupling
is observed in materials whose refractive index is related to the modulus square of the electric
field. This effect is observed in, but not limited to, photorefractive crystals. These are non-linear
optical materials which, when illuminated with an optical interference pattern, form a refractive
index grating which isr/2 out of phase with the incident optical field.

Photorefractive crystals have been extensively used to observe beam coupling; for example large
coupling coefficients have been observe®uiliO3; andRh : BaTiOg3 crystals [78]. More re-

cently efficient beam coupling was shown in a wide range of organic materials, such as fullerene
[79] and CdSe doped [80] liquid crystals, polymer-dispersed [81] and ferroelectric liquid crys-
tals [82], polymeric composites [83], hybrids with liquid crystals [84, 85, 86], light valves
[86], photoconductive polymer-liquid crystal structures [87, 88] and photorefractive polymers
[89, 90].

Physically beam coupling occurs due to the interference of two beams in a bulk photorefractive
crystal. This sinusoidal interference pattern will create a sinusoidal modulation of the refractive
index, which will scatter the beams. As the wave vector of the refractive index grating is equal
to the difference between the wave vectors of the two beams, the diffraction of one beam into
the direction of the other will be in phase, and will interfere constructively. Photorefractive like
effects have also been observed at low power in liquid crystal cells using either a photoconduct-
ing [91] or photorefractive [92] alignment layer. Liquid crystals are an attractive choice for such
applications due to their high birefringence and strong electro—optic response.

In this chapter we study the coupling effects of two beams incident on a planar cell containing
liquid crystals sandwiched between a polyimide (PI) and a photoconducting polyvinyl-carbazole
doped withCgg (PVK:Cgp) layer as shown in Figure 3.1. The superposition of the two coherent
incident beams on the photoconductor creates a modulation in the conductivity which, when
combined with the applied DC voltage, produces the modulated electric field across the cell.
This aligns the liquid crystals and modulates the refractive index. Such systems have been
realised experimentally [84, 93], including the setup available in our group [91].

Theoretically there is no complete model of this system and those that exist simplify the system
to one which can be described analytically. Here we look briefly at how the existing models
have been developed and how their approaches differ from ours.

The coupling of light due to diffraction from inhomogeneous, anisotropic materials has been
studied for many years [94, 95, 96, 97, 98, 99] and is often referred to as occurring in one of two
distinct regimes, Bragg and Raman-Nath, see Figure 3.2.

Bragg regime coupling is characterised by the presence of only two beams and was initially
described in 1969 by the coupled wave theory of Kogelnik [94] for an isotropic medium. This
work was extended in 1997 by Montemezzani and Zgonik [95] to include optically anisotropic
materials.

Raman-Nath diffraction is characterised by multiple diffracted output beams and was initially
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FIGURE 3.1: Schematic of the system modelled: a nematic liquid crystal layer is sandwiched
between two alignment layers, a photoconductor (PVK) and an insulator (PI). An electric po-
tential is applied by means of transparent electrodes at either side of the cell. The system is
assumed to be infinitely extended in the y direction and as such reduces to a two dimensional

problem.
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FIGURE 3.2: Beam coupling effects in A) the Bragg regime and B) the Raman-Nath regime.

modelled using the assumption that the grating is thin. Diffraction in this regime was first studied
in 1936 [96]. This system is modelled by considering the modulated refractive index as a phase
grating and neglecting any anisotropy in the materials. In the past couple of years modelling in
the Raman-Nath regime has been extended using an approach similar to that of Kogelnik and
Montemezzani to describe Raman-Nath diffraction in anisotropic media [97, 98].

Although the models just described offer ease of implementation and high computational effi-

ciency they are restricted to specific regimes. Differentiation between the Bragg and Raman-
Nath regimes is not always straightforward as both the thickness of the medium and the refrac-
tive index profile affect the nature of the diffracted beams. The first criteria used to distinguish

the two regimes were suggested by Kogelnik [94], based on the dimensionless parameter

_ 2mwAL

= nAT -1
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whereA is the grating period) the free space wavelength of the light, the homogeneous part

of the refractive index and the thickness of the medium. The Bragg regime is then defined as

g > 1 and the Raman-Nath regime @s« 1. However, since then a variety of criteria have
been suggested, as reviewed in [100], and more appropriate criteria for both Bragg and Raman-
Nath [101] coupling regimes have been established based not onlguralso the Raman-Nath
grating strength.

From the analysis of these criteria, it is clear that there is no distinct cut off point between Bragg
and Raman-Nath regimes. Indeed, there is an intermediate regime in which neither theory is
appropriate. It is this intermediate regime, in which little work has been done, which is of
importance here. A more rigorous method, suitable for this regime, has been developed. This
is based on direct substitution of the refractive index profile into Maxwell’'s equations and is
suitable for both isotropic [2] and anisotropic [102] materials. This method has also been used
for cascaded gratings with the constraint that the dielectric profile has the same period at the
boundary between two gratings [103]. It has been shown to agree numerically with both the
coupled wave approach and the Raman-Nath phase grating approach. Although it is in good
agreement with the simpler theories this approach is less computationally efficient as it involves
solving 4n coupled ODEs fom discrete wave vectors. Further, although highly flexible, the
resulting system of equations must be solved independently for each geometry. This makes the
model computationally inefficient for optimisation.

Although the early theories provide a good deal of insight into the coupling mechanisms, experi-
mental geometries such as photorefractive liquid crystal cells are not as straightforward to model
for a number of reasons. Firstly, due to the non-linear alignment of the liquid crystals with the
applied electric field, liquid crystal refractive index profiles are non-uniform inztdeection

and contain many harmonics of the fundamental grating vector im thigection. Secondly, as
nematic liquid crystal molecules are symmetric with respect to inversion, it is necessary to have
a non-normal incidence angle for the bisector of the two incident beams in order to obtain the
correct grating vector [92]. This means that as the grating is created by the superposition of the
beams at the cell surface, there are no waves which can be perfectly matched by the fundamental
grating vector. Finally, diffraction in these cells has been observed in both the Bragg [104] and
the Raman-Nath [105] regimes. Simple changes in the geometry of the incident beams will move
the system continuously from the Bragg to the Raman-Nath regime, through the intermediate
regime. As such, a model has to be capable of describing both of these behaviours.

There are two main theoretical models for the diffraction of light by liquid crystal cells. Both

of these models consider a linearisation of the equations governing the liquid crystal alignment.
This is equivalent to considering small variation in the director angle and that the electric field

is decoupled from the liquid crystal alignment. Jones and Cook [68] considered photorefractive
liquid crystal cells in the Bragg regime. Their optical analysis is based in the Bragg coupling
regime making their model inappropriate for the Raman-Nath regime. Further, they only con-
sider the effects of the anisotropy on the refractive index seen by the beams as they propagate.
This neglects fundamental polarisation effects observed in anisotropic crystals. Kubytskyi et
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al [99] consider photorefractive liquid crystal cells in the Raman-Nath regime. Their analysis
is based on a geometrical optics approach suitable for thin gratings and has been verified by
numerical simulation [106]. Whilst both of these approaches are appropriate only for specific
coupling regimes, they each provide a great deal of insight into the coupling mechanisms in-
volved. This allows clear identification of the key parameters involved in obtaining a strong
optical coupling effect.

Here we model the liquid crystal alignment using the approxindateensor model developed

in Chapter 2. We also propose a new model for beam coupling in the liquid crystal cell. This
model does not make any assumptions which could restrict the models use to the Bragg or
Raman-Nath regime. We take into account all possible scattered optical waves in the cell and
their superposition. The model is developed for a cell with refractive index which is periodic
(but not necessarily sinusoidal) in one direction and has arbitrary profile in the other. This profile
has been chosen as it accurately reflects the profile of the liquid crystal cell. We have verified
this model by comparison with finite element simulations and proved it to be accurate. We have
also shown that the model is, under appropriate assumptions, analytically equivalent to existing
models for beam coupling in specific regimes.

3.2 Modelling beam coupling

In order to understand how beam coupling works in liquid crystal cells we first consider some
existing models. Suppose we have two coherent plane waves incident on a medium whose
conductivity at any point is proportional to the intensity of the light at that location. If the waves
are in the(z, z) plane and have wave vectdes andks we write the scaled intensity pattern at

the surface of the mediuiiz = 0) as

[ = | A ei(ERia—wt) | g ci(3kea—wt) ‘2 (3.2)
where) is the free space wavelength. After some manipulation equation (3.2) gives
o0 /2
I =A%+ A2+ 24, A5 cos [; (k:l — k;g) w} . (3.3)

This gives us a modulated intensity and hence a modulated conductivity with wave vector
K = k; — ky = 27/ Lambda andA is the grating period. If this material is used as a boundary
for a liquid crystal cell then, combined with an applied DC electric field, we obtain a modulated
potential at the liquid crystal boundary and hence, a modulated electric field across the liquid
crystal layer with a phase shift ¢f from the incident intensity. The modulated electric field
causes the liquid crystal to realign and produces a modulated refractive index in the cell. Beam
coupling is caused by the superposition of the diffracted waves produced by this refractive index
modulation.
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3.2.1 Raman-Nath regime

In the case of Raman-Nath diffraction we consider a single plane wave incident atbamgle
a medium with periodically modulated refractive index where the interaction lehgrsmall
enough that the medium acts as a phase grating [96]. This approach is valid in the limit of thin
gratings, this limit can be quantified by the dimensionless paramelefined in equation (3.1).
The Raman—Nath analysis is valid whers 1. We write the modulation of the refractive index
as

Ny = no + Ansin (K - @), (3.4)

and the incident plane wave as
E = Aetlkem—wt), (3.5)

wherek is the wave vector of the incident beam andhe optical angular frequency, the wave
at the far side of the medium can then be expressed as

2w AnL
Acosf

E:Aexp{i [nokz-:c+ sin(K-w)—wt}}. (3.6)

We use the Jacobi-Anger identity for Bessel functions,

626 sinz _ Z Jm((s)ezmx’ (37)

m=—0oQ

to repackage the expression for electric field as a series of plane waves,

By=Ey Y Jp(6)emoktmE memiot (3.8)
where o AL
TAN

~ Acos(6) (3:9)

The m—th order wave propagates with wave vedkgy = k + mK which propagates at an-
glesinf,,, = mA/(npA). Using equations (3.9) and (3.8) we can obtain the intensity for the
diffraction beams at different order,

I, = E3J2 (6). (3.10)

A typical plot for the Raman-Nath intensity distribution as a function of distance through the
cell is shown in Figure 3.3. It can be seen that over a short distance the energy from the incident
wave is transferred first into thel diffracted order, then from there into the next order and so

on. As the distance into the cell increases the energy is spread between more waves, with no
single large amplitude diffracted order occurring. For the case of two input beams the coupling
can be described as the superposition of equation (3.10) for two different inputs.
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FIGURE 3.3: Typical plot for Raman-Nath intensity distribution as a function of distance
through cell.

3.2.2 Bragg regime

Beam coupling in the Bragg regime is modelled by neglecting all diffracted orders except the
two incident beams. This analysis holds whenever the regime parameterl, whereq is
defined in equation 3.1. We substitute the non-homogeneous dielectric constant

€ =¢, +nAecos (K - x+ @) (3.11)

into the wave equation (1.3) [94]. Heteis the phase shift between the optical interference
pattern and the refractive index grating, is the homogeneous part of the dielectric constant,
Ac is the non-homogeneous part anek 1 is a scaling parameter. It is important to note that
the role of thep in these systems is slightly different to the role of phase shift in a conventional
photorefractive system (this will be discussed in Section 3.3.3). The method of multiple scales,
which will be described in detail in Section 3.4, is used to obtain an expression for the slowly
varying wave amplitudes

R kol A .
kl . VAl = Z’ZLE (él . éz) A2€—zso, (3.12&)
A kol A .
Ky YAy —i. Z' € (s 1) Are®. (3.12b)
n

Heren = /¢, is the uniform part of the refractive index. These equations assume that the
medium is thick and any higher order diffracted waves will be evanescent. As such they will
be attenuated as they propagate. Beam coupling equations for the Bragg regime have also been
derived in the case of an anisotropic medium [95] in which edse tensor.

Equations (3.12) are usually solved as an eigenvalue problem. The simplest case is obtained by
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FIGURE 3.4: Typical plot for Bragg intensity distribution as a function of distance through
cell.

choosing the coordinates such that the waves propagate in th@ane with polarisation in the
y direction. The bisector of the two beams is also assumed to be normalitoitipdane. This
allows us to write equation (3.12) as

dA;

=3A

az e
(3.13)

dAy <

=1A

az o

where we have introduced the new variablgs= A;e=%/? and Ay = A,¢?/2, and the scaled

spatial variable
|ko|Ae
D E——A

. 14
4n cos 6 (314)

z =

Hered is the angle at which the waves propagate with respect te #xés. Equation (3.13) has
solution

(3.15)

2 2
where the constantd; (0) and A5 (0) are the initial amplitudes of the two beams. The coupling
strength depends not only on the input optical intensities but also on the relative phase of the
beams with the grating. A typical plot for the Bragg regime intensities is shown in Figure 3.4.

In this case it can be seen that the energy transfers entirely from the incidentfeaito A-
before beginning to transfer back. All the energy is confined to one of two different directions,
this is in contrast to the Raman-Nath case where the energy progressively spreads throughout
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the diffracted orders.

These two models are well established and have been used to describe coupling in the different
regimes successfully. We wish to extend these models such that they can be used to model
Bragg, Raman-Nath and the intermediate regimes.

3.3 Beam coupling in a liquid crystal cell

In this section we consider some of the properties of the photorefractive liquid crystal cells
which make them different from standard photorefractive crystals. These properties require
careful consideration during the derivation of the regime independent model.

3.3.1 Anisotropy

To understand how light behaves in such a medium we consider the wave equation (derived in
Section 1.2)
V x V x E = w?ueE. (3.16)

wherep = uou,- is the permeability of the medium,= ¢qe, is the dielectric permittivity and
dy is the derivative with respect to time ai#lis the electric field. For an anisotropic matekal
is a tensor. We assume equation (1.3) has a solution in the form of a plane wave

E = A¢ilke—wt) (3.17)

wherek = %nl% andn the refractive index in that direction. Substituting into equation (1.3), we
obtain

n?A—-n’k(k-A) = e, A (3.18)
Equation (3.18) is simplified by choosing the coordinate axes so that they coincide with the
principal optical axes of the medium. Hence, the dielectric tensor is diagonal:

: (3.19)

wheren,, n,, n. are the refractive indices in the y andz directions respectively. Substituting
(3.19) into (3.18) allows us to write an expression for the electric field components

4= n2ki(k - A)

(3.20)

n? — Hr€;
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We multiply both sides by; and sum ovef to obtain

k2 k2 k2 1
n2 —:;L € +n2 _y + 2_2 =2 (3.21)
r€x Hr€y n Mr€z n

This is Fresnel's equation of wave normals [3], which we wish to solve to find the eigenve-
locities at which light travels through the birefringent medium. This allows us to define the
refractive indices, the direction in which the waves propagate and hence, using equation (3.20),
the polarisation. We follow the method of Born and Wolf [3] and multiply equation (3.21) by
n* and use the fact thaf + k2 + k2 = 1. We obtain the following quadratic equation for the
phase velocity? = ¢/n?

I%g(vg — ’UZ)(’UIZ) —vh) + /%Z(vf) — vg)(vz —v}) + l%z(vg — vz)(vg — vz) =0, (3.22)
where the component velocities arg= c/,/ii-€;. At present the only assumption we have
made is that the coordinate axes coincide with the principal optical axes of the crystal. No
assumptions have been made about the nature of the crystal. Nematic liquid crystals are known
as uniaxial crystals, meaning that they have one axis of complete rotational symmetry. Hence
they have only two refractive indices, = n, = n, andn, = n. where the subscriptsande
refer to the ordinary and extraordinary refractive indices respectively. This means we can write
the component form of the velocities as = v, = v, andv. = v. wherev, andv,. are the
ordinary and extraordinary velocities respectively. We wkite spherical coordinates in order
to simplify equation (3.22)

sin 6; cos ¢;
k= sin 0;sing; |, (3.23)

cos 0;

wheref; and¢; are the standard spherical coordinate angles. We use this and equation (3.22) to
obtain a simpler expression for phase velocity

(vg — v?%)[sin? Hi(vg — v2) + cos? 91'(1)]2) —vH]=0. (3.24)

This equation has two roots which tell us the velocities at which the wave propagates in any
given direction. It is worth noting that as we are solving t(ﬁrthere will be four solutions

for v,. These will form equal and opposite pairs which correspond to propagation in opposite
directions. By inspection the two roots are

2 _ .2
Upl_vov
(3.25)
2 22 2 nog 2
Vo = U, Sin “0; + v cos ;.

The phase velocities of the light rays propagating through the medium are independent of the
angle the ray makes with the ordinary axis. It is only the angle which the ray makes with the
extraordinary axis which is important in determining these velocities as shown in Figure 3.5.
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FIGURE 3.5: Phase velocity for ordinary and extraordinary waves.

Using the eigenvelocities we can calculate the eigen—indices of refraction for the system:

np = Ny,

(3.26)

NeNo

/12 cos? 0; + n2sin? §;

n2

It is usual to name these refractive indices as the ordinary refractive img&hich has no
direction dependence and the effective refractive ingdgx which depends on the direction of
propagation.

As an aside, these expressions can be used to experimentally verify the liquid crystal model
through cross polarised intensity experiments. Cross polarised intensity is the light intensity
observed for a beam transmitted through two polarisers at an an§léocfach other, as shown

in Figure 3.6. If the first polariser is placed such that it makes an andlé@thez, » plane then

we can write light transmitted through the polariser in thdirection in terms of its polarisation
components

E = Eye'lka=t) [cos (%) T + sin (%) Q} = igei(kz_m) [&+9]. (3.27)

A birefringent material is placed between the polarisers with its optical axis is in, thplane.
At its exit facet one the component of light polarised in plane will be phase shifted by an amount
Ay with respect to the other. Hence, the electric field can be written as

E . .
E— 7%€z(kz—wt) (GZAWQ’\} + ,g) . (328)

This light is then transmitted through the analyser (a second polariser making an aggie of
the first polariser). The electric field of the beam transmitted through the analyser is

E, . .
E, = 7Oez(szwt) (1 _ ezAgo) (_éx + éy) . (3.29)

From here the cross polarised intensity can be calculated by multiplying the electric field by its
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FIGURE 3.6: Experimental setup for cross polarised intensity experiment. Polarised light
is transmitted through the photorefractive liquid crystal cell before being measured using an
analyser (a second polariser at/2 to the first) and a photodiode. As voltage is applied to the
liquid crystal cell the molecules realign creating an additional phase shift in one polarisation
component. The result is a variation in light intensity measured at the photo diode.

complex conjugate to obtain

A
I, = sin? 790. (3.30)

Equation (3.30) can be used to verify that the liquid crystal models can accurately predict the
director orientation under different applied voltage forms. In order to do this we need to deter-
mine the phase shifhy as a function of propagation through the liquid crystal. In calculating
the cross polarised intensity we assume that only the phase of the light is affected by the liquid
crystals medium and that the optical axis is restricted tactheplane.

We now consider the original problem of a nhormal incidence plane wave passing through two
polarisers. After the first polariser the light will be polarised &t to thex, z plane. The out-of-
plane component will see the ordinary refractive index whilst the in-plane component will see
the effective refractive index. Over a small distadeghe in plane and out of plane waves will
develop a phase shift,

dAy = 2; (no — neyfy) dz, (3.31)
over the length of the cell this gives a total phase shift

_27‘(‘ L

Ap = (no — Neys) dz. (3.32)
A 0

Substituting equation (3.32) into equation (3.30), gives a cross polarised intensity,
T 1
I, = sin? [A/ (Mo — 1) dz} . (3.33)
0
Equation (3.33) is solved using a numerical Clenshaw-Curtis quadrature scheme (see Appendix

B.5) and is coupled to the liquid crystal model to allow us to plot the cross polarised intensity
of light transmitted through the cell, at the boundary: L, as a function of cell thickness and
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voltage. This numerical model can then be directly compared with experimental observations.
We compare the predictions of the numerical models with experimental results for two different
liquid crystal cells, one containing the liquid crystal compound E7 and the other TL205. The
cross polarised intensity is obtained from both the director and tensor liquid crystal models in
the case of TL205 and only from the director model in the case of E7. This is because the splay
and bend elastic constants in TL205 are very similar and, as such, the single elastic constant
approximation used in the tensor model is valid. However, in the case of E7 the difference
in elastic constants is not small and, as such, experimental comparison using the single elastic
constant is not possible.

Experimentally the system is set up as described above: the input laser beam is split into two
beams, the intensity of one beam is measured directly, the other is measured after it has passed
through the crossed polarisers and the liquid crystal cell, allowing us to compensate for any
modulation in the laser intensity. The cross-polarised intensity is measured for a variety of
different AC voltages, and the experiments are run first increasing the voltage frovi,, ...

then decreasing back tb Comparison of the two curves allows us to ensure the liquid crystal

has reached steady state alignment.

The fitting algorithm uses a non-linear least squares method to determine the elastic constants
which best fit the experimental behaviour. First however, the cell length is determined from the
total phase shift observed in the experiment. At high voltage all the liquid crystal will be aligned

in the z—direction. Therefore, the in plane and out of plane components of the field will see the
same refractive index. This means the the cross polarised intensity will asymptote to zero. Using
this knowledge, the initial value of, and the number of times, oscillates with voltage we

can determine the total phase shift of the beam. Combining this with the optical wavelength we
can obtain the cell thickness.

The E7 cell is compared first, this cell is calculated &g «m thick with liquid crystal refractive
indices,n., = 1.764, n, = 1.522, and DC dielectric constants;, = 5.17, € = 19.54, the

optical wavelength of light used )= 543.5nm and the molecular pretilt & on the PVK side

and2° on the PI side. Figure 3.7 shows the comparison of theoretical and experimental cross
polarised intensities. The fitting parameters used are the elastic constants for bend and splay,
the best fit is obtained fromA’; = 11.08pN andK3 = 22.67pN, these values are comparable to
those found in the literatur&; = 11.7pN andK3 = 19.5pN [107].

Figures 3.8 gives the experimental comparison for the TL205 cell, using the director model.
This cell is approximatelyl 1.8um thick with liquid crystal refractive indices;. = 1.745,

n, = 1.527, and dielectric constants; = 4.9, e = 9.1, the optical wavelength, pretilt angles

and anchoring strengths used are the same as in the E7 case. The best fit values for the splay and
bend elastic constants af§ = 16.11pN and K3 = 15.83pN, these are slightly smaller than

the known valuesk’; = 17.3pN andK35 = 20.4pN.

The experimental comparison for the TL205 cell with Bdensor model is shown in Figure
3.9. Here the cell parameters used are the same as for the director model of the TL205 cell. In
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FIGURE 3.7: Experimental comparison for E7 liquid crystal using director model. The cell
length is calculated from the total observed phase shift and the fit is obtained using the elas-
tic constantsK; and K3 as fitting parameters. Experimental data by Mark Herrington and
Malgosia Kaczmarek

—— Experiment
—s— Theory

=
=)

=
m

=
I
T

=
o

Cross polarised intensity (arb units)

o 08 18 27 36 45 54 B3 Y2 81 8

Volts

FIGURE 3.8: Experimental comparison for TL205 liquid crystal using director model. The
cell length is calculated from the total observed phase shift and the fit is obtained using the
elastic constant#; and K5 as fitting parameters. Experimental data by Mark Herrington and
Malgosia Kaczmarek



Chapter 3 Regime-independent coupled wave equations 43

=
oo

=
™

=
g
T

=
(IS

Cross polarised intensity (arb units)

0 1 1 E "t 1
o 098 18 27 36 445 54 B3 72 8.1 g
Volts

FIGURE 3.9: Experimental comparison for TL205 liquid crystal usi@gtensor model. The

cell length is calculated from the total observed phase shift and the fit is obtained using the
single elastic constank™ as fitting parameter. Experimental data by Mark Herrington and
Malgosia Kaczmarek
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FIGURE 3.10: Symmetry breaking in liquid crystal cell, reproduced from [74]. (A) Refractive
index profile seen by normal incidence light for zero pretilt. (B) Refractive index profile seen
by normal incidence light with pretilt.

this case we have only one elastic constant to used as a fitting parameter. However, it can be
seen from Figure 3.9 that this is enough. The fitted value for the elastic conskanrt i$5.9pN,
this was calculated using a scalar order paramgter1.

It is clear from these results that, for a uniform AC applied voltage, the director model for the
liquid crystal cell is sufficiently accurate. Also for the case of the TL205 cell a single elastic
constant approach as used in @etensor model is an accurate assumption as the splay and
bend constants are similar. Whilst tBe-tensor model developed here is not appropriate for the
E7 cell it is worth noting that this can be overcome by using a more general form of the elastic
free energy and is not a limitation of tlig-tensor approach in general.
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FIGURE 3.11: Grating vectors seen in typical beam coupling experiments. (A) Photorefractive
material, refractive index grating vector is the one required to match the two waves regardless
of cell tilt. (B) Liquid crystal cell with mismatch between refractive index grating and optical
grating.

3.3.2 Geometry and symmetry considerations

Beam coupling in a liquid crystal cell differs from beam coupling in a photorefractive material

in two ways, both of which are due to the way in which the grating is formed. Firstly, due to the
symmetries of a liquid crystal cell, i.e. the fact that a liquid crystal aligneghihas the same
refractive index to one aligned at¢ the fundamental refractive index grating vector will be of
twice the length of that required to couple the two incident beams. At first glance this would
suggest that the normal incidence gain is zero in a Bragg regime setup. However, as we will
see when we analyse the regime independent model in Section 3.5.4, a small amount of gain
can still be observed in this situation. Typically the problem of small gain is overcome by either
tilting the liquid crystal cells or by using liquid crystal cells with a large molecular pre-tilt on
the photoconducting side, see Figure 3.10. Secondly, in a photorefractive crystal the materials
non-linearity causes the refractive index grating vector to be exactly the difference between the
two incident optical wave vectors. As such energy is transferred between two adjacent beams
with no phase mismatch, see Figure 3.11(A). However, in a liquid crystal cell the grating is
produced due to the interaction of the incident optical field with the very thin photoconducting
layer. The modulation in conductivity in this layer then causes the refractive index grating vector
to be tangential to the photoconducting layer regardless of the cell orientation. This means that
the fundamental grating vector is different to the one required to match the two incident beams
as shown in Figure 3.11(B).

Before we develop the regime independent beam coupling model, it is important to understand
the role of these two effects in detail. The first of these requires that the liquid crystal cell has
some asymmetry in order to produce the correct grating vector to match the incident beams
whilst the second requires low cell tilt in order to minimise the mismatch induced by this effect.

The refractive index profile of a liquid crystal beam coupling cell seen by a single incidence
beam is determined by equation (3.26). The alignment of the liquid crystal is determined by
the intensity interference pattern. Therefore, a good approximatio, fitie angle the optical
axis makes with the—axis, is¥ = 9y sin(K 4-&), whereK , is the grating vector required to



Chapter 3 Regime-independent coupled wave equations 45

produce photorefractive gain, then the refractive index seen by a beam incident at'atwle
the surface normal is given by

Ne

Neff = — .
\/1 + (nen_2"0> cos? (Vo sin(K 4-&) + v;)

o

(3.34)

Linearising equation (3.34) by assumifig< 1, 99 < 1 andn? —n2 < n? allows us to obtain
an approximation for the refractive index seen by a beam incident on the cell:

1 (n2—n2 . . 2 . 3
Neff = Ne {1 1 <n§) (2 — 49,90 sin(K g-&) — 95(1 — cos(2K g-&)) + O (93)] ¢ -

(3.35)

For anyf; # 0 we can see that the input beam will see the fundamental component of the grating
vector and be diffracted. However, for normal incidence #.g= 0 there will be no coupling
through the fundamental grating vector. At first glance this suggests that any angle of incidence
can be chosen with the exception of normal incidence. However, if we have two beams incident
on the photoconducting layer separated by aRglewith bisector normal to the cell surface
then the two input beams will each see the fundamental grating vector. However, the grating
seen by beam 1 will be shifted by with respect to the grating seen by beam 2. As the two
beams do not see the same grating the result will be no energy transfer. Whilst this analysis
seems somewhat incomplete we will see in Section 3.5.4 that it provides a good approximation
to the full analysis of normal incidence beam coupling.

Therefore in order to obtain photorefractive gain it is necessary to have either a large pre-tilt
on the molecular surface alignment or to tilt the cell. The most common of these two methods
is to tilt the cell as large pre-tilt angles are hard to obtain using conventional alignment layers.
Unfortunately there is a price to be paid in doing this: the mismatch between the two beams,
which is larger the greater the cell tilt. The two incident beams defined above have wave vectors
defined as

0; = kon; [cos (B; — ai)é, + sin (8; — ;) é,) (3.36a)

and
o; = kon; [cos (B; + oi)é, + sin (B + a;)é,] (3.36b)

where,ky = 27/, Ao is the free space wavelength andis the refractive index outside the
liquid crystal cell. On entering the cell these beams will refract and as such can be written as

o, = kony [COS (ﬂt — Oét)éz + sin (ﬂt — Oét)éx] (337a)

and
oy = kong [cos (B + ap)é. +sin (B + o) é,), (3.37b)

where the subscrigtrefers to the transmitted wave angles. Snell’s law in this case states that

n; sin (51 + Oél') = Ny¢ sin (ﬂt + Odt). (338)
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As such, the tangential part of the electric field is conserved across the boundary as expected
due to Maxwell’'s boundary condition. The grating vector within the liquid crystal is based only
on the tangential component within the photoconducting layer, and can be written as

K, = kong [sin (8 — o) — sin (B¢ + )] €. (3.39)
However, the grating vectofS, = g, — o, required to match the two waves in the medium is
K, = kon [(sin (B; — o) — sin (B + au)) ég + (cos (By — o) — cos (B + an)) €] . (3.40)
Therefore, there is a grating vector mismatch equal to the difference befdgend K.,
AK = kony (cos (Bt — o) — cos (B + i) €. (3.41)

From this analysis we can see that fiar= 0 the mismatch vanishes. This is also the condition

for the fundamental refractive index component to be zero. As such there must be some optimum
angle at which the mismatch is small, yet the fundamental refractive index grating component
is non-zero.

3.3.3 Phase shift

In typical photorefractive crystals the phase shift between the grating and the beams is of fun-
damental importance for coupling to take place [108]. In liquid crystal cells this is not the case
as the following analysis demonstrates. This has already been observed in [99] but the authors
did not pursue this point in any detail.

To understand the role of the phase shift in these systems it is important to first understand the
role of phase shift in a conventional photorefractive system. In these systems the refractive index
grating at any point in the cell is defined by the electric field at that point in space. Therefore
two waves of the fornE, (x) = R(x)e! (k= tk=2—wl) and By (x) = S(x)el(—herthzz—wt) il
interfere to form a grating which can be written as,

I = R(z)S(x) [ei(%wz) + e*i@’w)} . (3.42)

As there is an implicit phase shift, between the intensity interference pattern and the dielectric
profile, the dielectric profile will take the form,

€ = ey + AcR(x)S(x) [ei@kwws’) + e—“%w“%)} : (3.43)
After substitution into the wave equation we can derive the scaled coupled wave equations for a
photorefractive material [109],

dR(x)

o = iR@)|S(x)*e (3.44a)
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dS(x)
dz
As R(x) and S(x) are complex quantities they can be written in modulus argument form
R(x) = /T,(x)e ™ ® andS(x) = \/I;(x)e~+(®), Substituting into equation (3.44) gives
us the following equations for the intensities and phases

= iS(x)|R(x)|?e . (3.44b)

dl dl
1 " — —92I.I,sin g, d—s = 2I,Isingpg,
z z
(3.45)
Aoy = I cos % = I, cos
dZ s Soga dZ T 909'

It can be seen that fgs, = 0 these equations decouple and there is no energy transfer between
the two beams. Physically this can be thought of as the grating shifting in space with the inter-
ference pattern: although the phase of the two beams changes in space there is no overall phase
shift in the system. In photorefractive systems the phase shiff is 7/2 throughout the crys-

tal. In our cells this is not the case as the grating is fixed by the boundary of the cell. Therefore,
regardless of the phase shift between the grating and the intensity interference pattern we will
see energy exchange induced by the phase shift which develops between the two beams during
propagation. Starting from the linear beam coupling equations in the Bragg regime,

AR®) _; oz)eivo (3.46a)
dz
dig) — iR(x)e s, (3.46b)
we can make the same substitutidt(x) = /I.(z)e @) andS(z) = /I,(x)e "#s(*)
and obtain:
dI, . dl .
dz = =2/ I Issin (g — or(x) + ps(T)), dz =2V I Issin (pg — or(x) + ps(T)) 5
dgr dgs

= I cos (g — ¢r(x) + @s(x)) .
(3.47)

In this case we can see that these equations decouplegyhenp, (x) + ¢(x) = 0. In this
case the solution to equations (3.47)is= Co, I, = C1, o, = I,z + Cy andys = I,z + (s,
whereC} are arbitrary constants. These equations are consistent if

—— = I cos (pg — or(x) + @s(x)) ,

dz dz

pg —Isz+Co+ I,z + C3 = 0. (3.48)

Equation 3.48 must be satisfied for allthis is only the case if, = I;. From this analysis

we can conclude that we will always see energy transfer between the two beams, gvgr-for

0, except in the case whele = I,. In this case the two beams will propagate through the
grating with no change in intensity and will develop a phase shift proportional to the distance
travelled. In other words, for the special case of equal input intensities the two beams will
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propagate through the material unaltered by the grating. Physically this can be thought of as the
two beams each coupling energy into the other at the same rate, this results in zero net energy
transfer. In general at the cell boundaries the photorefractive liquid crystal cells, like general
photorefractive crystals, have a phase shift= 7/2. However, the overall phase shift between

the interference pattern and the grating ism@2 throughout the cell. Hence, the cells are only

truly photorefractive at the PVK:§g boundary.

3.4 Derivation of regime independent coupling model

To derive the regime independent coupling model, we start from the wave equation (1.3), derived
in Section 1.2. We consider a medium which contains a periodic refractive index grating in the
(z, z) plane with a fundamental grating with wavenumbér= 2{ in the x direction and any
number of higher grating harmonigd< wherep = 2,3, ... and A is the grating period. We
further assume that the medium is birefringent and that each Fourier component of the dielectric
tensor,Ac(?), may vary slowly in the: direction so that the dielectric tensor may be expressed
as:

o0

GT(-’E, Z) =€+ 77% Z Ae(p) (nz)ei(me—HD(p))? (349)

p=—00

where,y < 1is a smallness parametey, is the uniform part of the dielectric tensor apt? is

the phase shift of the-th grating Fourier component. We assume that the optical axig isf

in the plane formed by the complete set of optical wave vectors as this is typically the case for
a liquid crystal photorefractive cell. For compactness of notation we assumediependence

to be implicit in Ac(®) and absorb the phase into the complex tensor Fourier coefficients. These
will eventually be obtained from a complex Fourier transform of the liquid crystal alignment
profile.

The non-homogeneous part @f is small. Therefore, to leading order we can neglect it. As
such we obtain a set of ordinary and extraordinary eigenmodes with wave végfgrand

I%Em) respectively. These have out of plane polarisaﬁgff? for the ordinary mode and in plane
polarisationégm) for the extraordinary mode. The derivation of these polarisations and wave
vectors is described in Section 3.3.1. The coupling between modes is described(®y,ihe
correction to the amplitudes and is found using the method of multiple scales. This coupling
takes two forms, coupling between the different Fourier components of the field and coupling
between the ordinary and extraordinary components. The coupling between the Fourier compo-
nents can be achieved by diffraction from the fundamental grating vector and any of its higher
harmonics, as illustrated in Figure 3.12 A and B. It should be noted that if the bisector of the
two incident waves is not normal, none of the wave vectors will be perfectly matched by the
fundamental grating vector, see Section 3.3.2. Therefore, the coupling strength will depend not
only on the amplitude of the appropriate coupling harmonic, but also on the size of the mismatch
term A K (mn) — (m) _ (7).
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B)

AK®D

FIGURE 3.12: Possible couplings and associated mismatch terms for ordinary and extraordi-
nary waves A) Coupling of Fourier components by the fundamental grating period. B) Coupling
of Fourier components by the second harmonic. C) Coupling of ordinary and extraordinary
waves by the fundamental Fourier component. This is the minimum number of components it is
possible to consider if we want to obtain consistent equations.

Coupling between the ordinary and extraordinary modes is illustrated in Figure 3.12 C. For the
most general case of arbitrary input polarisation there are two sets of ordinary and extraordinary
waves required to match the boundary conditions. Coupling occurs between the waves generated
at the boundar)f;:g?) andl%g:), and their corresponding ordinary and extraordinary parts. The
processes of coupling between different Fourier components and different polarisations occur
simultaneously in any general photorefractive system. However, as these two processes make
the derivation rather complex we consider a simplified system. For a first order dielectric tensor
restricted to the plane formed by the incoming grating vectors then we need only consider the
coupling between the Fourier components. This significantly simplifies the algebra and the
resulting equations. Whilst this assumption may seem restrictive it is generally true for the case
of a photorefractive cell. However, for completeness we consider the more general case where
the optical axis ofA¢() points in an arbitrary direction in Appendix C.

As the non-homogeneous part of the dielectric constant is small we observe a separation of
scales in this system. We use this to set up a multiple scale expansion in terms of the scaled
spatial variablesxy = = andx; = nx and the scaled derivatives

2 _ Oxzy 0O +8:c1 0
ox  Ox Oxg Ox Ox;

(3.50)
9 9

+ )
81’0 n@wl

which, for compactness of notation can be writ®en= Vy + nV,. The electric field in the
material is written as a power series expansiom,irwhere we need only retain the lowest
order terms E(™) = Egm) +nE™ + O(n?) and the fields at each order are assumed to be a
superposition of the ordinary and extraordinary plane waves which may be perfectly matched
by the grating vectors in the direction. Hence the field is periodic inwith fundamental wave
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numberk. We expand it in a Fourier seriesnto obtain

N

Bj= 3 AU () R (3.51)
m=—N

where the subscript refers to the term of orderin the expansion and the subscripte refer

to the ordinary and extraordinary waves respectively. Assuming the optical axis®f is

in plane then we need only consider the ﬁemﬁ,gj;. As these are the only fields we drop the

subscriptle. The amplitude is assumed to vary spatially with the inhomogeneity in the dielectric

constant and(™ = mKe, + k™ é., with the constraint thake(™ | = kon(™). Hereky is

the free space wavenumbef!™ is the refractive index seen by the-th wave and we assume

that the evanescent waves may be neglected. Therefore, the total number of optical components

is2N + 1 whereN = "% Substituting equations (3.51) and (3.49) into (1.3) we expand to first

order to obtain a set of coupled wave equations in terms of the scaled spatial varidbiehe

amplitudesA (™

2
w
Vo X Vo X E1 —CjeuEl =

(3.52)

2 > '
—Vox Vi xEg—V; xVoxE+ ]%0 Z AelP)PKT By

p=—00

This is a non-homogeneous equation for of the formLyE = £, Eq, whereL; refers to the
orderj linear operator. Solving the homogeneous part of this equation we find&thathe ho-
mogeneous part a1, has the same spatial dependenc&asSolving the non-homogeneous
part of equation (3.52) would therefore require a trial solution which grows linearly ire-
sulting in unbounded growth. As the energy of the system is finite we must requir®{hat
bounded. Therefore, the solvability condition is that the coefficients of the terms resonant with
E4;, in the non-homogeneous part of (3.52) must be zero,
k2 :
VoxVixEy+VxVyxEy= 50 > AR R, (3.53)

p=—00
Substituting equation (3.51) into equation (3.53), using the identity (which can be derived graph-
ically from Figure 3.12)

K =K+ (- ) Key + (K7 - 1 e, (3.54)

and collecting terms with the samg dependence allows us to obtain

k™ [@W emyw, 4 B e . wy) - 280 (R vi)] Al =

N (3.55)
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The phase detuning term on the right hand side of (3.55) comes from equation (3.54) and is
considered to be a function of the slow spatial variahleThis assumption requires tH@ﬁf”) <

k(™). Itis clear than although this is not always the case, in general it holds{fat k(™).
However, as:{™ becomes comparable witk™| it can be seen that very little coupling will

take place and the variation in the amplitude becogeg. Therefore, we would expect that the
error induced by this assumption is not of significant effect on the results obtained. We see later,
through comparison to finite element simulations of Maxwell’s equations, that this is the case.
Equation (3.55) is a vector equation and it must be satisfied in all of its components. To ensure

this is the case we project it onto the directigh®), fc(m) and the magnetic field polarisation

directioni™. Projecting ontd:™, equation (3.55) becomes
(m) (m) KB o= z0m) () _ )
s.(m) (Y A(m)\ T m) _ 0 z m n—m) 2 (n) g(n) i(ks" —ky™ )z
ik emMYR™ o A = ; _EN: " Aermm e 4 il )21,

(3.56)
At this point we notice that the first order dielectric tensor is in plane wihitgt is out of
plane. Therefore the right hand side of equation (3.56) is zero. This means that the amplitude is
constant in the direction orthogonal to the plane of propagation. This agrees with the symmetry
argument that the system is invariant in the direction orthogonal to the plane of propagation.
However, had the first order dielectric tensor been out of plane, then equation (3.56) would be
in violation of the systems symmetries. To overcome this we would require the inclusion of the
full set of possible wave vectors, see Appendix C. Projecting onto the wave \l?fa(gi)ogives
the equation

2 N
ik gm) g7, A — % $ B A (=) g (n) A(0) ik =k (3.57)
n=—N

(m)

7. (m)

whered™ = (™ _ ("™ . é(m)> k™. Thisis simply a statement of the divergence equation
V¢, E = 0toO(n) and describes the variation of the amplitudes in the direction of the electric
displacement vector. The coupled wave equations are found by projecting onto the electric field
polarisation, the resulting equations are

7.(m)

2ik) [(B . A™)A™ 5] g At =

(3.58)
BB [ A0 A )y A7) g(n) T i(h k)
o Alm n—m AU 4(n)  —iDpn=m) (k™ —k"™ )21
5 n:ZN [A Ae (z)A" " Ae e }
The bracketed term on the left hand side of equation (3.58) can be writtet @@ ¢(™). Here

Ax H

—_— 3.59
|A x H| (3-59)

=

is the unit Poynting vectoly (™) = (A(m) . f)(m)> and D is the electric displacement unit
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vector. By writingk(™ = n(™ k. introducing the new variable
Alm) = J(m) =ik 21 (3.60)

and, based on the translational symmetry of the system, requiring that the amplitudes are invari-
ant in thex direction we obtain the first order correction to the field amplitudes,

im) ) N o) pgln—m) g(n)
AT ) A 4 i Yy © ActTeET ). (3.61)

dzy L An(m)g(m) g™

Equation (3.61) can, for the simple casef("~™) being constant i, be solved as an eigen-

value problem. For all other cases the equations are solved using a Runge Kutta method in
MATLAB. A typical plot for the intensities produced by this model is shown in Figure 3.13:

plots are shown for Bragg, Raman-Nath and the intermediate regime of coupling. The param-
eters used to generate these plots are the same as those used to generate the typical Bragg and
Raman-Nath plots (Figures 3.4 and 3.3) to aid comparison.
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FIGURE 3.13: Typical plot for intensities produced by the regime independent model: A)
Raman-Nath regime = 0.03. B) Intermediate regime, = 3.02. C) Bragg regimeg = 46.50.

It can be seen that Figure 3.13 A and C are identical to the plots for Bragg and Raman-Nath
regime coupling given earlier. The intermediate diffraction regime (Figure 3.13) shows be-
haviour which is similar to both Bragg and Raman-Nath regimes. Energy is transfered to higher
diffracted orders, however, the majority of the energy still stays in the incidence beam and the
+1 diffracted order.

Equation (3.61) is the fundamental result of this chapter, it describes the coupling of an arbitrary
number of beams in a system whose dielectric profile is slowly varying in tieection and
modulated with fundamental periall in the x direction. This extension to the anisotropic
coupled wave theory has been derived to allow us to model systems in the Bragg, Raman-Nath
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and intermediate regimes. The model developed here takes into account all possible coupling
combinations between the various optical waves propagating though the medium and all possible
mismatch terms for an in plane dielectric tensor. The general equations for an arbitrary tensor
are dealt with in Appendix C. The use of a general grating profile inzttigection makes the

model useful for more complex systems such as the liquid crystal cell.

3.5 Model verification

In this section we show that the model derived to describe optical coupling in a liquid crystal
cell is accurate. This analysis is split into two parts. First the model is compared to the standard
models for the different regimes. Secondly, finite element simulations are used to verify the
model independently of the coupling regime.

3.5.1 Comparison to existing models

The existing Bragg and Raman-Nath diffraction models have been successfully used previously
for simple geometries to model optical coupling. Here we show that as well as being numeri-
cally equivalent for these geometries and optical incidence angles, the equations are analytically
identical for an appropriate set of assumptions.

The Bragg case is straightforward. Under the assumption of a single grating Fourier component,
a constant dielectric profile in thedirection and the presence of only two waves, equation (3.61)
becomes

D :
ﬁ(l)% _ iko AMAAR) g2) jiAK-
z dz 4n(1)g(1) ’
@ _ o ; AR AAM A1) —iAK -z

These expressions become equal to those derived by Montemezzani [95], once the assumption
of zero absorption has been made.

The comparison to Raman-Nath phase grating theory is less obvious. Again, we begin by mak-
ing the assumptions of a single grating Fourier component of large wavelength, and a constant
dielectric profile in the: direction. As the grating wavelength is large the deviation in propaga-
tion angles of the beams is small. Hence the mismatch ké?ﬁ'l— k:;gm) is small and may be
neglected for thin materials. For comparison, the system is simplified for an isotropic material
with all waves polarised out of the plane. If we then make the standard Raman-Nath assumption
of a7 /2 phase shift and a single normal incidence input beam with amplitydere may write
equation (3.61) as

o2n dA™

2 cos (™) o
OB o Ae dz

= [am-D _ A<m+1>] , (3.63)
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whered(™ s the angle with respect to the surface normal at whichthila wave propagates.
Using the assumption that the wave propagation directions differ by a small amount we may
approximated(™ by the propagation angle of the incident beé®. To proceed we make the
following change of variable

koAe
= 64
¢ 2ncos€iz (3.64)
Making use of the Bessel recurrence relation,
dJm,
27 = [Jm—l - Jm+1] ) (3-65)
z

it can be seen that equation (3.63) is satisfied byrthth order Bessel functiom.J,,(¢).
This gives the optical envelop&™ = A4,.J,,(¢). By writing the non-homogeneous dielectric
constant in terms of the refractive indices we can write the intensity ofrtlik order wave,
with free space wavelengtt after propagation through a material of thicknésas

(3.66)

m

A cos b;

which is identical to the optical envelope predicted by the Raman-Nath phase grating theory, see
equation (3.10).

This analysis demonstrated how equation (3.61) is, under realistic assumptions, equivalent to
either Bragg or Raman-Nath theory.

3.5.2 Comparison to Maxwell’'s equations

The regime independent model has been compared against the standard models for Bragg and
Raman-Nath diffraction. We now use Comsol Multiphysics, a finite element modelling package,

to solve Maxwell's equations directly and hence verify its accuracy for the intermediate regime,
0.1 > g > 10, see equation (3.1).

We define a rectangular geometry with sides parallel torthed z axis. The boundary condi-
tions are periodic in the-direction with periodicity of the refractive index. The finite element
simulations are carried out with an optical wavelength @i, as shorter wavelengths would
require an extremely fine finite element mesh and, hence, considerable computation time.

We first verify that the model behaves correctly for a single grating compaiiewhich is
constant for alk. To ensure thag lies in the intermediate regime the following parameters are
used: L = 12um, A = 11.5um, which give the regime parametgr= 1.4210. The incident
electric field is normal to the cell boundaty= 0. The refractive indices chosen in this system
correspond to those of a typical liquid crystal, = 1.5 andn. = 1.7 giving the dielectric

profile as
20 —-0.1 0.05
=" + cos (Kz). (3.67)
0 n? 0.05 0.1
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power (arb units)

FIGURE 3.14: Finite element comparison for the case of a single grating Fourier component:
A) z-component of electric field in cell for coupled wave model, the coloured fringes correspond
to the optical amplitude as shown in the adjacent colourbarz&pmponent of electric field

in cell for finite element simulation. C) Optical power spectrum at output of cell wheéis ’

the coupled wave approximation and”is the finite element simulation.

Figure 3.14 A and B compares the field calculated within the cell by the coupled wave model
and the finite element method. Part C compares the power spectra calculated by each method.
From the power spectrum it can be seen that the optical energy has coupled almost completely
from the incident beam into its two closest neighbours. The slight asymmetry in the coupling
is due to the presence of the off diagonal components in the dielectric tensor (this is considered
in more detail in Section 3.5.3). The optical power spectrum and field inside the cell show
good agreement with the finite element simulation. The differences in the power spectra are less
than10%. This verifies the model’s ability to predict the component amplitudes of each wave
and hence the electric field within the medium. We now wish to make full use of the model’s
features by considering a system with the same fundamental period but also with second and
third harmonics present. Furthermore, to make the system even more realistic with respect to the
experimental system we choose some arbritary profiles for these higher harmonics. Therefore
we choose as dielectric tensor
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FIGURE 3.15: Finite element comparison for the case of multiple grating wave vectors with
varying profile in thez direction: A)z-component of electric field in cell for coupled wave
model, the coloured fringes correspond to the optical amplitude as shown in the adjacent
colourbar. B)z-component of electric field in cell for finite element simulation. C) Optical
power spectrum at output of cell wherg Is the coupled wave approximation and”is the

finite element simulation.

Ae = ( —0-050.03 > cos (K - o)+

0.03 0.05
—0.1 0.05 | —G=Lg2?
( 005 01 ) e 2 cos(2K -x)+ (3.68)

—0.05 0.1 :
elz cos (3K - x).
0.1 0.05

The field throughout the cell and the comparison with the finite element modelling in this case
is shown in Figure 3.15. Unlike the previous test case the majority of the energy remains in
the incident beank,, = 0 with energy transferring past the nearest neighbours into the second
diffracted order beams. Again we see good agreement between the electric fields and the optical
power spectrum with error less than one part in ten. This comparison verifies the ability of the
model to handle the higher harmonics and arbitrary spatial profiles of the grating. The only
difference between this and the liquid crystal profile is the addition of higher harmonics and the
possibility of less smooth spatial profiles. For the liquid crystal test case, we solgetdresor

model with an applied voltage of the form

Vapp = Vo cos? (%x) . (3.69)
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FIGURE 3.16: In-plane components of the dielectric tensor for the anisotropic liquid crystal.
The four images show the different components of the dielectric tensor.
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FIGURE 3.17: A) z-component of electric field in cell for: A) Coupled wave model, the
coloured fringes correspond to the optical amplitude as shown in the adjacent colourbar. B)
Finite element simulation. C) Liquid crystal director profile showing molecular orientation and
contour lines showing equipotentials. D) Optical power spectrum at output of cell whigse ’

the coupled wave approximation and”is the finite element simulation.
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The voltage amplitud®, = 5 has been chosen to give an interesting dielectric profile contain-

ing harmonics of the grating vector and a non-uniform profile in4lrection. Figure 3.16

shows the in plane components of the dielectric tensor throughout the cell. The second coupling
harmonic is confined close to the cell boundary whilst the fundamental grating vector penetrates
further into the cell. The component valuasanda; are substituted into equation (3.61), this

is then solved to give the amplitude of the different optical wave vectors. Figure 3.17 shows the
comparison of the electric field in the liquid crystal with the finite element modelling. In this
case the energy can be seen to transfer with a large asymmetry. In this case the asymmetry is
larger than in Figure 3.14 due to the size of the off diagonal elements of the dielectric tensor, see
Section 3.5.3.

Comparison to existing theories has been shown analytically in both Bragg and Raman-Nath
regimes. In terms of computation speed the finite element simulation typically takes approxi-
mately one minute to run with a wavelengthl@fm whilst the coupled wave approach takes less
than one second for a non-trivial refractive index profile. For shorter wavelengths the coupled
wave approach will be significantly quicker as its computation time does not scale with wave-
length whilst the finite element simulation time does. The model shows good agreement with
the finite element simulations in all cases tested and will be a useful tool for modelling optical
coupling in more complex systems where computational speed and efficiency are required. We
now want to consider some of the predictions of this model in detail.

3.5.3 Asymmetric coupling

The comparison between the coupled wave approach and the finite element simulations detailed
in Section 3.5.2 showed an asymmetry developing between the positive and negative diffracted
orders. This can be explained by considering the off—diagonal elements in the dielectric tensor.
For a system whose coordinate axis have been chosen such that they coincide with the principal
axis of the dielectric tensor the refractive index is given by equation (3.26). In this case the
refractive index seen by a wave propagating at an afigeethe optical axis will see the same
refractive index as one propagating at an angle &f In other words, the ellipsoid of refraction

for this system will be aligned such that its major axis coincide with the coordinate axis and the
whole system is symmetric.

However, in the case of the beam coupling model the dielectric tensor is not completely diagonal.
The non-homogeneous part of the dielectric tensor has off diagonal components, and as such we
need a different method to define the refractive index. The simplest way is to consider the wave
equation in terms of the magnetic fiek,

2
Vxe'V x H="2_H. (3.70)
C

Rearranging the left hand side of this equation and using Maxwell's equstiod = 0 we
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obtain,
2

_ w
Hklk:E? (3.71)
wherek = nkq (sin 6, cos 6) is the optical wave vector. We assume a dielectric tensor which

has a small traceless symmetric part containing off diagonal elements,

e— | T , (3.72)
n €22 + Neq

wheren < 1. Substituting into equation (3.71), we can obtain a more general expression for
the refractive index,

% = €998 0 + €11 cos® 0 + n [ed (C082 0 — sin® 9) — 2cosfsin 9] . (3.73)
This expression is no longer invariant with respectrie-x reflections due to the final term
on the right hand side. An anisotropic medium not described by a diagonal tensor will not be
symmetric. This is true for the case of the beam coupling theory; the off diagonal elements
of the dielectric tensor mean that the true symmetry for the systemis:;, n, —n andey =
—e4. Physically the effect of the off diagonal components of the tensor is to rotate the ellipsoid
of refraction from the coordinate axis of the system making the interaction of the anisotropic
medium with the optical field asymmetric.

3.5.4 Beam coupling at normal incidence

In Section 3.3.2 we mentioned that, without some form of symmetry breaking, for two beams
incident on a liquid crystal cell whose bisector is normal to the cell surface we will see no gain.
We supported this statement with some simplified analysis based on the Fourier components
present in the refractive index grating seen by each beam. After recent experimental observation
of normal incidence gain from Dr O. Buchnev and Professor M. Kaczmarek we want to see if a
more in depth analysis based on our model allows us to observe and quantify this gain.

We start from equation (3.61) and consider the simplest possible normal incidence case, Bragg
regime coupling where only two beams are present. As such, equation (3.61) can be rewritten
as:

) k(l) n iko (&) Ae(®e()) iko (&) Ae) &™) )
p A z (gD PIEEE) A
@ —i (3.74)
=\ i o (EOADAD) o) iko(eDAdD) i®

z

4n ¢4 an@ @)

where we have absorbed the phases into the dielectric tensor and a superdenptes the
complex conjugate. It can be seen that beam coupling will only take place if the off diagonal
elements in the matrix are non-zero. As the dielectric tensor and, hence, the coupling matrix is
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symmetric then the condition which must be satisfied for coupling to take place is
e . AeWe® . (3.75)

To keep the calculations simple we neglect the anisotropy of the liquid crystal in the derivation
of the polarisations. This is equivalentdp = ¢, I, wherel is the identity matrix. Therefore,
the polarisations of the two fields are given by

sin(f + «) sin(f — «)
) = 0 and é® = 0 , (3.76)
cos(f + ) cos(f — )

whereg is the angle the bisector of the two input beams makes with the cell normal &nd
the angle each beam makes with the bisector. Substituting this form of the polarisations into
equation (3.75) and using the knowledge that the dielectric tensor is traceless and symmetric we

obtain
e . AeWe? = Ae(l) (sin2 Bcos? a — cos? Bsin? a) +
AelY (2 cos Bsin 5) (3.77)

Aeg ) (cos acos? 3 — sin® asin B)

For normal incidence, i.63 = 0 this becomes
e . AWe) = —Aegll) sin® o + Aeé? cos? a. (3.78)

Note that if the liquid crystal is aligned in plane thét;; = —Aes; andé) - AeMe®) =
—Ae11. We now consider the case of a liquid crystal cell with a modulated applied electric field.
We assume that the modulation of the liquid crystal due to the electric field is small with respect
to the bulk alignment to the unmodulated part of the field. As the applied field is modulated,
the spherical angles which express the liquid crystals alignnieanid¢) can be expressed as a
Fourier series which we write in the form

0=0)+n Z Qn(nz)ei”Kf’Z + HZ(nz)e_i"ng, (3.79a)
n=1

¢ = do + nz bn(2)e™9% 4 ¢ (nz)e o7, (3.79b)
n=1

wheren < 1. To determine the coupling strength we need an expression for the Fourier tensor
coefficient of the first order Fourier component. This is obtained by first writing the director as
a Fourier series and neglecting termg;?)

0o 00
A =ny+n | § : (eneianz + e;c;efianz) + sin Oriy Z ((z)neianz + ¢:<Lefianz) 7
n=1 n=1

(3.80)
whereng = (sin g cos ¢, sin 0 sin ¢g, cos g) T, 7a1 = (cos by cos ¢, cos fg sin ¢g, — sin )~
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andrin; = (— sin ¢, cos ¢g, 0)T. Interestingly, ifdy = 0 (as is the case for strongly aligned lig-

uid crystal cells) then the modulation out of plane makes no difference to the coupling, at least
to first order in the modulation amplitude. This is exactly the case derived in Section 3.4, which
suggests that the extended analysis in Appendix C is only required for weakly aligned liquid
crystals. The tensor coefficients are then proportional to the prm, excluding terms
O(n?) we obtain

NRN= TNy ny— gId +n {[m ® Ny + Mg ® Ny Z (™97 + gre” %) 4

n=1

oo
sin g [’flo @My +mM 'flo} Z (QﬁneianZ + d);;e—ianz)} + 0(772)
n=1

(3.81)
It is interesting to look at the different order terms separately as these provide a great deal of
insight into the coupling mechanisms. As the modulation of the liquid crystal occar&atit
can be seen that there is no coupling induced byxp¢') terms. The tensor Fourier coefficients
atOo(n') are
A€y = 20170, M1 + 2¢1 sin OpNoz 1., (3.82a)

A€33 = 291ﬁ0zﬁ1z + 2qf)1 sin eoﬁ()zmlz. (382b)

Substituting the expressions for the vectags .y andm, we obtain

eWAMDe? = 2¢1 sin? 6 sin g COs Pg cos® o — 260 sin 6 cos 6, ((3052 a + sin? o cos? gi)o) .
(3.83)
At this point we can make the following observations: Firstly, if the liquid crystal is aligned
symmetrically about the axis, as would be expected for reasonably large applied fieldthen
0andée . AeMe® = o resulting in no beam coupling. Secondly out of plane modulation of
the director will induce no coupling if it is symmetric, i.6g = 0. Therefore to obtain normal
incidence coupling a®(n) we require some physical symmetry breaking in the liquid crystal
alignment such thaty # 0. This can be achieved quite simply by inducing an asymmetry in the
anchoring conditions with respect to inversion about the surface normal.

Further insight can be obtained by looking at the te€ig?) in the modulation strength. Whilst
the derivation of these coefficients is quite simple, the equations involved become quite long and
cumbersome. As such, only the resulting Fourier coefficients are quoted for th& case

o0

e - Aee® = —sin® acos® go B (Bnb-ni1+ 0507, 1 + 0051 + 0500 41), (3.84)

n=2
where it is important to remember thgf = 6_,,. In this case equation 3.84 is non-zero and
there is some coupling fafy # 7/2. As such, coupling can be observed for normal incidence.
The coupling is given by diffraction along th&<, Fourier component, then back along the
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FIGURE 3.18: Beam coupling at normal incidence can be seen to occur if there are higher
Fourier components present in the diffraction medium. Energy is first diffracted y/he
Fourier component and then back by thg Fourier component. This process can also occur
with higher order Fourier components.

K, component. This can also occur for higher order Fourier components providing the resulting
grating vector ist K, see Figure 3.18. However, this coupling is second order in the modulation
amplitude.

At this point it is sensible to ask whether or not the inclusion of tefig?) in equation (3.80)
would affect this result. By continuing the Taylor expansion it can be seen that the lowest
Fourier component in th®(n?) expansion will beK,. In order to provide a grating vector

K, we require an additional term. The appropriate Fourier component in this case can only
be provided by the)(n) terms. Therefore, the resulting coupling would be third order in the
modulation strength and it's effects will be negligible compared taifw?) terms.

In summary we observe that for two beams of equal intensities incident on a photorefractive
liquid crystal cell with symmetric director alignment, regardless of the amplitude of the tensor
Fourier coefficients we must still see no gain as the system is perfectly symmetric. To observe
gain at normal incidence then there must also be an asymmetry in the intensity of the two input
beams. The experimentally observed gain is measured for an input beam 1t dherefore

any small coupling effects will be strongly amplified resulting in measurable second order gain.

3.6 Modelling photorefractive liquid crystal cells

The beam coupling model derived in this chapter and the liquid crystal model derived in Chapter
2 have been shown to be accurate. However, they do not completely describe the photorefractive
liquid crystal cell. One of the major issues is whether or not we can determine the voltage across
the liquid crystal layer. Factors affecting this voltage drop include: the presence of ions in the
liquid crystal layer, the relative impedance of each layer and the frequency of the applied field.
For AC fields, even of low frequency, the motion of ions is greatly reduced [110]. The effect of
increased frequency on the voltage distribution within the layers can be observed by fitting an
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FIGURE 3.19: Equivalent circuit for RC cell.

impedance ladder model to the liquid crystal cell [111]. In this section we model each layer of
the cell, recall Figure 3.1, as a simple RC circuit as shown in Figure 3.19. This circuit captures
the majority of the cells behaviour under the assumption that the slow AC field eliminates the
ion motion. The impedance of the each layer is given by
RA

Zj = W, (3.85)
whereR; = L;/(0;A) andC; = ege; A/ L;. HereA is the cell areag is the permittivity of free
spaceg;, €; and L; are the conductance, relative permittivity and thickness of layahere
j ={LC, PVK, PI} denotes the liquid crystal, PVK and PI layers respectively. The values of
cj ande; and the resulting values fe¥; andR; for A = 4 - 10~4m? are summarised in Table
3.1[112, 113]. Note, the measured range pf is quite large. Therefore, we consider a sample
of values in this range. The dielectric constant of the liquid crystal corresponds to planar aligned
E7.

Layer L; oj €; R; C;

J
LC 12um  107°-107'°S/m 520 3-10°-3-10%Q 5.9-107°F
PI 20nm  107'S/m 34  5-10%Q 6.0-107"F
PVK  200nm 107'3S/m 5 5-10%Q 8.8-107%F

TABLE 3.1: Numerical values of cell parameters for typical photorefractive liquid crystal cell.

The steady state voltage across the liquid crystal I&yeras a function of the applied voltage
VisgivenbyVie =V Zico/(Zre + Zpr + Zpy k). We want to calculate the effect of a small,
intensity dependent, modulation in the resistance of the PVK on the voltage dropped across the
liquid crystal layer. We assume that the resistance of the PMRAsx = Rpyv i (1 + B(1)),
where <« 1 is the modulated part of the PVK resistance drid the intensity of light on the

PVK layer. In the limitw = 0 the voltage drop is determined entirely resistively,

Rrc [1 _ Rpvk

50| + 0P (3.86)
TOT

whereRror = Rrc + Rpr + Rpyi. Typically asRrc < Rpr andRpc < Rpyk the
voltage drop across the liquid crystal in the DC regime is very small. Similarly if the frequency
of the applied voltage is high enough, typically> 1/(C;R;) for all j, then the voltage is
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Modulation coefficient

FIGURE 3.20: Voltage drop across liquid crystal cell. The plot shows the coefficiefi{ bf
againstw. It can be seen that for low, but non-zero, frequency that the modulated part of the
voltage dropped across the liquid crystal layer increases. As the frequency increases further
the cell behaviour becomes dominated by the capacitance of the layers and the conductivity
modulation becomes smaller.

determined entirely capacitively,

CpvikCpr (3.87)

Vie=V .
Le CpvkCpr+ CpvkCrc + CrcCpr

In this case, a€';,c < Cpyx andCre < Cpy, the voltage drop across the liquid crystal is
large. However, a¥; ¢ is independent of the resistance of the photoconductor no diffraction
will take place. In the general case, relevant for the slow AC field,

Vic = VZZLC 1- ?DVK (1—iZpyrCpviw) B(I)| + O(B*(I)), (3.88)
TOT TOT

whereZror = Zic + Zp; + Zpyk. The effects of equation (3.88) can be understood by
plotting the coefficient of3(I) againstw for a range of liquid crystal conductances, see Figure
3.20. It can be seen that, although small, there is a broad peak in the amplitude of the modula-
tion coefficient which narrows and increases in amplitude with the liquid crystal conductance.
This suggests that there is a range of frequencies close to zero Hertz for which the diffraction
efficiency of the liquid crystal cell is largest. We note that for decreasing the conductance of the
liquid crystal increases the range of frequencies over which AC beam coupling can be observed
whilst reducing the overall effect of the modulation in the PVK resistance.

Using equation (3.88) we can see that, at zero Hz, a greater voltage modulation across the liquid
crystal can be obtained by increasing either the PVK resistance or the liquid crystal resistance
with respect to the PI. At low frequencies the increase in voltage across the liquid crystal layer
can be attributed to the capacitance of the PVK. Increasing this could provide a method of
obtaining a larger voltage drop across the liquid crystal at low frequency.
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Whilst this analysis explains some of the features of the cells, there is clearly work to be done in
optimising this system. Detailed charge modelling combined with a more thorough analysis of
the electric properties of the system will be required to determine the ideal conditions for beam
coupling in an AC field.

3.7 Conclusion

In this chapter we have derived an extension to the existing anisotropic coupled wave equations
which allow us to model systems in the Bragg, Raman-Nath and intermediate regimes. Compar-
ison to existing theories has been shown analytically in both Bragg and Raman-Nath regimes.
Finite element simulations have also been used to confirm the model’s validity for all regimes.

The regime independent model developed here is a useful tool for studying the effects of beam
coupling in any geometry. The derivation, based on the assumption that the modulation is small,
does not make any assumptions regarding the size of the anisotropy. Further, as the liquid crystal
model is solved numerically it does not require that the electric field distribution is decoupled
from the liquid crystal alignment or that the optical axis of the liquid crystal is restricted to the
plane. The assumption that the first order component of the dielectric tensor is restricted to a
plane is an assumption included to simplify the number of waves considered for the case of a
liquid crystal. However, this is not a requirement of the method and the full equations, where
this is not the case, are included in Appendix C. The model takes into account all possible
coupling combinations between the various optical waves propagating though the medium. This
is achieved by considering higher order grating harmonics as well as all possible mismatch
terms. The use of a slowly varying grating profile in thdirection makes the model useful for
more complex systems such as the liquid crystal cell. In terms of computation speed the finite
element simulation typically takes minute to run whilst the coupled wave approach takes less
thanl second for a non-trivial refractive index profile.

The model shows good agreement with the finite element simulations in all cases tested and will
be a useful tool for modelling optical coupling in more complex systems where computational
speed and efficiency are required.

In comparison to the existing models of Jones and Cook [68] and Kubystksi [99] this

model has the advantage that it is more versatile and relies on fewer assumptions. On the other
hand, unlike the existing models, the final equation must be solved numerically. Whilst it is
clear that under certain assumptions, e.g. small phase detuning, equation (3.61) can be solved
analytically this work is beyond the scope of this thesis. Researchers who wish to obtain a good
understanding of the dependence of gain on different system parameters should read the paper
by Jones and Cook if working in the Bragg regime [68] and the paper by Kubytskyi et al for the
Raman-Nath regime [99].



Chapter 4

Surface plasmon polaritons at a
metal-liquid crystal interface

A Surface Plasmon Polariton (SPP) is an electromagnetic excitation restricted to the boundary
between a metal and a dielectric. By adding a thin gold layer to the boundary of a photorefractive
liquid crystal cell a SPP can be excited that sees a refractive index which is dependent on the
alignment of the liquid crystal layer. Manipulating the liquid crystal alignment using external
beams whose energies are close to the excitation energy of the PVK allows control of the SPP.
Current application of SPPs are limited because they have very short propagation lengths due
to the optical absorption in the metal. In this chapter we consider how photorefractive liquid
crystal cells can be used to overcome these losses. This is a joint work split between theory and
experiment. The experimental results are provided by Dr David Smith and Stephen Abbot from
the school of Physics and Astronomy.

This chapter is arranged as follows: In Section 4.1 we provide an introduction to the existing
literature and a more formal introduction to the system we are studying. Section 4.2 provides
an introduction to the methods used to model SPP propagation. In Section 4.3 we describe a
numerical code based on the work of Moharam and Glytsis [2, 102] capable of modelling the
propagation of SPP at the interface between a photorefractive liquid crystal cell and a metal. In
Section 4.4 the SPP propagation model is combined with the liquid crystal model developed in
Chapter 2 to allow for experimental comparison. The final part of this chapter, Section 4.5, is
devoted to considering analytic and semi—analytic models to describe the propagation of SPP
in geometries which provide a good approximation to that of the photorefractive liquid crystal
cells, these models are compared to the numerical codes developed in Section 4.3 and show
good agreement.

66
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4.1 Introduction

The term Surface Plasmon Polariton (SPP) refers to the coupled oscillation of an electromagnetic
field with the electron cloud at the surface of a metal [114]. These excitations propagate along
a metal—dielectric interface and have amplitude which decays exponentially in both materials.
The discovery of SPPs is directly linked to the prediction of Surface Plasmons (SPs) by Ritchie
in 1957 [115]. Whilst studying the loss mechanisms of electromagnetic radiation in thin metal
films Ritchie predicted the existence of localised, non-propagating, plasma oscillations. This
prediction was experimentally verified in 1959 in two experimental papers, concerned with the
loss spectra of Aluminium and Magnesium, by Powell and Swan [116, 117].

The prediction and description of SPPs did not occur until 1960. In a paper based on the earlier
work of Ritchie, Stern and Farrell describe the energy loss of non—normal incidence electromag-
netic radiation [118]. Here the loss mechanism is the same with the exception that the optical
energy is transfered to a propagating SPP rather than a stationary SP. SPPs may be thought of as
propagating SPs. Alternatively SPs may be considered as the limiting case of SPPs as the group
velocity becomes infinitely large.

Since their discovery a huge number of papers on the properties and applications of SPPs have
emerged. Whilst the relevant concepts and properties of SPPs will be reviewed and discussed
here, the reader is directed towards two review articles [114, 119]. The first, published by
Zayats et al in 2004, describes the optics of SPPs including details about the excitation and
optical characterisation techniques. The second, published by Pitarke et al in 2006, describes
the physical properties of the solids which allow the excitation of these modes.

Due to their unique properties, such as their sensitivity to small changes in dielectric constants,

~ O(107'%) [120, 121], SPPs have a wide variety of applications in both industry and academia.
These include resonance sensors [122], enhanced spectroscopy techniques capable of detecting
single molecules [123], waveguides [124], biosensors [125] and sub-wavelength optical appli-
cations such as nanoscale lithograthy [126].

The major limitation to the use of SPPs is their short propagation length which is typically of

the order of microns [126, 127]. Long range SPP modes can be found to exist in thin metallic
films [128]. These modes have propagation length of the order of millimetres [129, 130]. How-
ever, this is still too short. For the majority of potential SPP applications to become reality the
propagation lengths need to be increased.

One way to increase the propagation length of a SPP is by constantly coupling energy into it.
In general this is a hon—trivial problem as the SPP wavenumber at a metal dielectric interface is
larger than the wavenumber of a propagating wave in the dielectric medium. As such the only
way SPP can be excited is via an evanescent wave in either the dielectric or the metal [126].

There are several ways to do this. The first of these, the Kretchmann configuration, Figure
4.1A, makes use of a dielectric prism adjacent to a metallic film and an incidence angle greater
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FIGURE 4.1: Plasmon excitation methods (taken from [114]) A) Kretchmann configuration.
B) Otto configuration. C) Grating coupler

than that for total internal reflection in the prism. At the angle of incidence for which the in
plane component of the optical wave vector is equal to the SPP wave vector, optical tunnelling
through the metal film will occur and the energy will couple into an SPP at the opposite side of
the film. The original paper by Kretchmann is only available in German [131]. However, a good
description of the method can be found in [114].

The Otto configuration [132] works in a similar way to the Kretchmann geometry, Figure 4.1B.
A SPP is excited in a thick metallic layer using a prism, a thin air gap and a thick metal layer.
Here total internal reflection occurs in the prism and the evanescent field in the air gap is coupled
to the SPP via optical tunnelling.

The method of SPP generation which is of interest in the context of this work is SPP excitation
using a diffraction grating [133] as shown in Figure 4.1C. Here we can illuminate the diffraction
grating with light from a much wider range of angles and couple energy from one of the various
diffracted orders into the SPP.

Grating couplers take two forms. Metallic grating couplers, where the grating is formed by a
corrugation at the metal surface, were first discovered in the context of “Wood'’s anomalies” in
1902 [134, 135]. These anomalies refer to the large discrepancies between the total amount of
light incident on a metallic grating compared to the total amount reflected, a discrepancy now
known to be due to SPP generation. Such gratings have been widely studied in the literature
[136, 137, 138, 139]. The majority of these studies consider only shallow gratings where the
Rayleigh hypothesis holds. According to this hypothesis the electromagnetic field can be written
as the sum of the incoming wave and a series of reflected or transmitted outgoing waves [140]. If
this holds then the corrugation can be “flattened” by means of a coordinate transform. In general
this is not the case and in deep gratings the fields within the grooves of the grating must also
be considered. Studies concerned with deep gratings have been carried out [141]. These studies
discovered that SPPs can be generated not only along the surface but also within the grooves of
the grating.

The other form of grating couplers, which are relevant in this work, are dielectric gratings
[142, 143, 144, 145]. These have been widely studied as a means to pump energy into plas-
mons. However, typically these gratings are non—configurable and as such have limited applica-
tion. The use of diffraction gratings with SPPs leads to the possibility of SPP-SPP or SPP-light
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scattering. For configurable gratings, such as the photorefractive liquid crystal grating coupler,
energy can be coupled into signal carrying SPPs increasing their propagation length.

Here we are interested in the coupling of energy into an SPP using a photorefractive liquid
crystal cell. The use of SPPs applicable to liquid crystals have been widely studied by the group
of Barnes and Sambles. These studies include: SPP propagation in anisotropic materials [146],
the use of SPPs to probe the surface alignment [147], SPP induced non-linearity [148] and
bistability [149] and theoretical and experimental observation of guided mode resonances and
plasmonic resonance shift [150]. These studies clearly show the use of liquid crystal cells as a
versatile tool for manipulating plasmonic and optical guided modes.

From an optical point of view the liquid crystal cell can be considered simply as a series of differ-
ent layered media. Extensive numerical studies have been carried out regarding SPP interactions
in layered media. These Transmission matrix (or T-matrix) approaches involve writing the so-
lutions to Maxwell’'s equations in each homogeneous layer as a Fourier series and matching the
tangential components of the fields at the boundaries. The resulting linear system of equations
can be solved to obtain the reflection and transmission of these structures. This method can be
extended to non-homogeneous materials, using the method of Berreman, by slicing them into a
large number of thin layers, each of which may be considered homogeneous [151].

T—matrix methods have been widely used in isotropic materials [3], anisotropic materials [152,
153] and chiral materials [154]. However, these methods become numerically unstable for a
large number of layers once the fields become evanescent. This is because both the exponentially
decaying and exponentially growing solutions to Maxwell’'s equations must be considered in
each material. Although these exponentially unbounded terms must have zero amplitude, their
presence in the equations becomes a problem due to the finite numerical precision of a computer.

To overcome this the Scattering matrix (or S—matrix) approach was developed [155, 156, 157].
This method considers the field in terms of only decaying solutions, creating a stable numerical
code. These codes have been implemented by a number of different groups to study different
plasmonic systems [158, 159] and have been extended to include surface corrugations [160,
161]. A generalisation of these techniques, which is also easy to implement, is the rigorous
diffraction theory developed by Moharam et al [2, 102]. This method is particularly well suited

to grating structures and has been used to study single and cascaded anisotropic diffraction
gratings [103, 162, 163].

Whilst numerical methods provide a good model for the system as a whole it is important to
gain an understanding of the physical processes which affect the SPP propagation. Analytic
treatment of plasmons at the interface between a metal and an anisotropic dielectric have also
been considered. In general SPPs at such an interface can be described exactly [164]. However,
the equations involved in such a theory often become cumbersome and hard to deal with. To
overcome this, typical studies of such materials require that the optical axis of the anisotropic
medium is restricted to a plane [165, 166]. Using these simplifications dispersion relations for
SPP in anisotropic dielectric—metal—dielectric and metal-dielectric-metal structures have also
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FIGURE 4.2: Geometry of photorefractive liquid crystal cell used for SPP diffraction. A
diffraction grating is created within the liquid crystal layer using two external beams. The
effects of SPP diffraction can be studied by considering the reflected and diffracted intensity
from the cell.

been considered [167].

Perturbation techniques have been used extensively to help understand the reflection spectrum
of different SPP. These include studies of SPP resonance width [168, 169] and the change in SPP
propagation vector [170, 171] due to various perturbations. These papers consider the standard
analytic SPP resonance conditions derived for a single isotropic dielectric—metal interface as the
leading order solution. This result is then perturbed due to absorption in the metal and finite
width, non—ideal, metal films. However, in many cases, due to the powerful numerical tools
now available, these methods and results are often overlooked.

In this chapter we study the coupling properties of photorefractive—plasmonic liquid crystal cells
formed by adding a thin gold layer to the photoconducting surface of the photorefractive liquid
crystal cell. These devices, shown in Figure 4.2, provide an extremely versatile method for
manipulating SPP propagation. SPPs are excited by the input beam and propagate along the
interface between the gold and the photoconducting layer. For a thin enough photoconduct-
ing layer, approximatelyOnm in our cells, the SPP will extend into the liquid crystal region
allowing it to be manipulated through the liquid crystal alignment.

By applying a strong external field across the liquid crystal layer the refractive index near the
cell surface can be altered. Spatial modulation of this applied voltage, and therefore the liquid
crystal alignment, is achieved by varying the optical intensity on the photoconducting layer,
as in the beam coupling problem discussed in Chapter 3. This allows a number of optically
reconfigurable devices to be created, e.g. grating couplers, lenses and waveguides. Further, for
sufficiently large optical fields, non-linear interactions through the photoconducting layer will
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allow photorefractive SPP interactions to be observed.

To understand the behaviour of these devices we consider a simplified system both theoretically
and experimentally. A refractive index grating is created by two external grating beams, shown
in Figure 4.2. The SPP is excited using a, relatively weak, probe beam. The experimentally
measured intensity of the reflected and diffracted beams can then be used, in combination with
various modelling techniques, to understand the diffractive properties of the cell.

We model these devices in three stages. First the voltage drop across the liquid crystal is cal-
culated using a simple impedance ladder model, as described in Section 4.4. The liquid crystal
alignment is then calculated using the code described in Chapter 2. Finally the diffraction is
modelled using both the rigorous coupled wave theory of Moharam and Glytsis [2, 102] and
analytic techniques that provide a greater insight into the underlying physics.

4.2 Modeling surface plasmon polaritons

4.2.1 Optics of metals

To understand how SPP propagate at an interface it is important to first understand how electro-
magnetic radiation propagates in a metal, this can be modelled in the same way as in a dielectric.
The main difference is that the dielectric constant becomes complex and typically has a negative
real part. There is also a much stronger frequency dependence than is usually found in dielectric
materials [3]. These differences are due to the non-zero conductivity of the metal and can be
understood by considering Maxwell’s curl equations in a conducting medium:

Y X B(wt) = —pop, 20
ot
(4.1)
V x H(z,t) = eoerali(?f’t) + J(z,1)

where J(x,t) is the current density and is approximateljw)E(x,t). Combining the two
equations to eliminatél (x, t) yields:

1 0’E(x,t) OE(z,t)
VXV X B®,1) = — e —— 5 — 0 (w) — (4.2)
which, using the substitutioR (x,t) = E(x)e~“!, gives the Helmholtz equation
w? io(w)
V XV X E(x)=—p |&+ E(x). (4.3)
c wWeQ

Under these conditions the permittivity and conductivity may be combined as a single, frequency
dependent, dielectric constant,

(4.4)
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This will, in general, be a complex quantity with strong frequency dependence due to the non-
zero conductivity. Throughout the remainder of this chapter we will assume that the permittivity
of the metal can be treated as a single dielectric constant. Where numerical values are required
we use experimentally measured values for the real and imaginary parts of the refractive index
as a function ofv [172].

4.2.2 Surface plasmon polaritons

We now wish to determine the conditions required for a SPP to propagate along an interface.
We choose the coordinate system so that the boundary between the two materigls=9at

We also assume that the magnetic field is transverse, i.e. it is polarised irdhection. It

will be shown later that this is the only type of SPP wave which can propagate. The electric and
magnetic fields at the boundary may be written as:

—AM)

iwege(™)

T
H (z,t) = (0,0,A(")) ¢SOk

E (x,t) =

T n .
(~sary)ky?) ik, 0) " e SIWE veilber=et) - (459)
(n)
Y

ygilhksr—ut) (4.5b)

where the superscript refers to the material of interest anty$ga 1 andn = 1 fory > 0,

sgny) = —1 andn = 2 for y < 0. Substituting equations (4.5) into the wave equation allows
us to obtain the dispersion relationship for propagation in each material,
1
n n w2 2
%>:<%—é>§> , (4.6)

which relates the decay of the electric and magnetic fields away from the boundary to the op-
tical wave numbetk,. For exponential decay away from the boundary we requirehas

both positive and real. To proceed we make use of Maxwell’s boundary conditions, i.e. the
tangential components & and H at the boundaries are continuous. These allow us to obtain
the following matrix relationship,

1 -1 A
@ k(2 e = 0. 4.7)
() e(2)

For SPP to propagate with non-zero amplitude we require that equation (4.7) has a non-trivial

solution, i.e.
50 (1)
=@ (4.8)
ky €
This equation tells us that!) must have a different sign ©?). Therefore, one of the materials
must be a metal and the other a dielectric. This is the general requirement for SPP propagation.
It can be seen that if eithef”) has a non-zero imaginary component then at least one of the

y components of the wave numbers will be imaginary and as such the SPP will no longer be
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localised at the boundary. Using equations (4.6) and (4.8) we can obtain an expresgign for
the SPP wave number,
w | eMe®

ke =2\ a0 @)

(4.9)

where, for a propagating mode, we require that the term inside the square root is negative. As
mentioned in Section 4.2.1 the metal layer will have a complex dielectric corstanith neg-

ative real part. Therefore, assumied) is positive and real, we requit®(e)| > (V). Metals

used for SPP excitation are typically those with small imaginary terms at optical frequencies.
This reduces the absorption losses allowing the SPP to propagate a useful distance. Typical met-
als used for such experiments are gold or silver. To understand the effects of the small imaginary
term on the SPP we consider the effect of a small perturbatieﬁ)irmn the SPP wave number,
equation (4.9). This approximation neglects the variation in the decay lengths of the plasmon
induced by the absorption and any propagation away from the boundary which may also result.
We substitute® = ¢{*(1 + nie.”)) into equation (4.9) where typically < 1. After some

manipulation, this yields

6(1)6(2) 2
1 ——t . 4.1
+7726(1)+€$2)z+0(77) (4.10)

From here we can obtain an approximation for the propagation length of the SPP.cTdecay
lengthLgpp is given by [114]

(4.11)

1 w (6(1))3652)’61@) 2
e

Lspp

Typically, the propagation length of a SPP is small, of the ordédpfm for A = 632.8n m and
200p m for A = 1.55u m for a gold metal layer [127].

We have shown that a SPP can exist at the interface between two different materials, one of
which has dielectric constant with negative real part, with decay lehgth» given by equation
(4.11), if the electromagnetic excitation is transverse magnetic. We now show that such an
excitation does not exist for a transverse electric field. We start from a transverse electric solution
to Maxwell’s equations,

T n .
E (x,t) = (0, 0, A(”)) e~ SINVK, )ye’(’%w*“’t), (4.12a)
Aln)

T n .
H (x,1) = =— (—sgry)k{", ik, 0) ¢ SO weilbea—en), (4.12b)

where the symbols have the same meaning as used above. Again using the boundary conditions
on the transverse components of the two fields we obtain a matrix equation

1 1 AW
(i) (30 )= 9
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This time however, the solvability condition leads to the equation
KD k@ = (4.14)

As such there is no solution for transverse electric fields in which the decay conisiaars

both positive, and therefore, no SPP relating to this type of wave. This section describes the
properties of an ideal SPP at the interface between two semi—infinite materials. In this case the
polarisation and propagation vectors can be determined analytically. We can also approximate
the propagation length of the SPP in terms of the absorption in the metal. This illustrates the
properties of the SPP which we build on throughout this chapter.

4.3 Numerical methods for surface plasmon propagation

The problem of modelling the interaction of SPP at the surface of a photorefractive liquid crystal
cell is not a trivial one. Before we develop approximate solutions to describe the physics of
these systems it is useful to formulate a numerical model of them. The method we use to model
the optical response of a plasmon LC cell is the rigorous diffraction theory [2, 102]. Before
we consider the implementation of this method we first look at general T-matrix methods for
layered materials.

4.3.1 T-matrix model for surface plasmon interaction

The T-matrix method is based on matching the wave—like solutions to Maxwell's equations
in stratified homogeneous or harmonic media. The geometry is broken down into a series of
different layers which are homogeneous in the direction normal to the layer surface. For the
photorefractive liquid crystal cell the alignment layers and the gold may each be considered as
a single layer. However, the liquid crystal must be sliced into a large number of very thin layers.
These layers are small enough such that the variation of the liquid crystal alignment in each
layer is negligible, see Figure 4.3. The requirement that the fields are matched at the boundary
allows the field to be written as a linear combination of forward and reverse propagating waves
in the homogeneous case and a sum of linearly independent Fourier components in harmonic
materials.

To ensure that Maxwell's equations are satisfied at the boundaries we require that the tangential
components of thé& and H fields are continuous. Before we consider the more complex case of
an harmonic anisotropic material we consider the simplest possible case, homogeneous isotropic
dielectrics.

The starting point for such an expansion is the field representation in the layers. Here we are
interested in isotropic homogeneous materials. Therefore, the fields break down to TE and TM
modes. As we are interested in systems which can support SPP it is appropriate to consider only
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FIGURE 4.3: The photorefractive liquid crystal cell is broken down into layers. These are
homogeneous in thg-direction but may be periodically modulated in the z) plane. The

liquid crystal must be sliced into a large number of thin layers, each of which may be considered
homogeneous in the-direction.

the TM modes. Their fields can be expressed entirely in terms of the magnetic field. In the more
general case, which we will consider in Section 4.3.2, both the electric and the magnetic field
must be taken into account to allow for the coupling between TE and TM modes. We consider
a field which propagates in thedirection with wavenumbet, and has transverse wave vector
5 in materialn. The magnetic fields in each material can be written in the form

H® = g, pmilaoatBMy—ut) | o pn)gi(aoa—8My—wt) (4.15)
whereF (™ andR(™ are the amplitudes of the forward or backward propagating waves@hd
is found from the dispersion relation

n w2
B = gan) —al. (4.16)

In the case of propagating waves it makes sense to talk about forward and backwards waves.
When these fields become evanescent this distinction is less clear. From here on we define
the forward wave to be the wave which decays exponentially with increasihthe field is
evanescent and the field that propagates inyttieection for purely real modes. This distinction
becomes important in the more general case considered in Section 4.3.2. The problem now
reduces to finding"™ and R(™ by solving Maxwell’s boundary conditions at each interface.

In the case of the TM modes we have to require that the tangential components of the magnetic
field and the corresponding electric field are continuous. In terms of the magnetic field these
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FIGURE 4.4: Typical reflection spectrum from a three layer Kretschmann geometry. The solid
line shows the theoretical results. The dotted line shows the experimental results (courtesy of
Dr David Smith and Stephen Abbot).

eguations can be written as

H™ = g (4.17)

and 1 d 1 d
——H® =—— _— H©D . 4.18
e(n) dy Y=L e(n+1) dy Y=L ( )

These continuity conditions at each boundary can be expressed as a linear system,

AW iAW) Fn) 1 1 F(n+1)

B iam)y(n) 8™ _igmpy(n) n gnt1) gint1) n+1

oy € p — € p R(™ ) T (nFD) R
(4.19)

wherew (™ = L _ 11 js the thickness of the layer. Note, from here we could re-
derive the plasmon conditions by settifif*t!) and R to zero, using equation (4.16) and
solving the resulting system of equations &qy. However, as we are interested in the methods
to generate plasmons we want to study the response of this system to a variety of different
Equation (4.19) is the standard T-matrix method. This can be writtdrid& (™ = p(*+1),
whereh™ = (F(") R(™)T This equation describes the propagating electromagnetic fields on
one side of a layer in terms of the fields on the other side.

The simple isotropic homogeneous T-matrix equations have been derived for an arbitrary num-
ber of layers. Although this result is not of direct relevance in studying the photorefractive liquid
crystal cell problem it can be used to accurately predict the excitation of surface plasmons.

We consider a three layer structure consisting of a glass prism of refractive irijex metal
layer of thicknes$0nm adjacent to aire(= 1). The reflection spectrum for light of wavelength
832nm we obtain the theoretical and experimental reflection spectra shown in Figure 4.4. The
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sharp dip observed is at the SPP resonance angle defined by equation (4.9). These reflection
curves are typical of surface plasmons. The peak reflection seen is the onset of total internal
reflection at the metal air interface. Increasing the angle slightly takes us closer to the SPP
resonance and we see a dip in reflectivity as energy is coupled to the surface mode. The quality
of the fit should not be surprising since for this simple structure the matrix theory is identical to
the Fresnel reflection coefficients which are used to experimentally obtain the thickness of the
various layers.

4.3.2 Rigorous diffraction theory

Using the ideas of the last section we now want to derive and implement the rigorous diffraction
theory of Moharam et al [2, 102]. The liquid crystal cell is divided into homogeneous layers
and we look for the general solution to Maxwell’s equations in each layer. Assuming harmonic
propagation it is enough to consider only the curl equations,

V x E = —iwugH and V x H =iwepe, E (4.20)

The dielectric tensor in each layer is written as a Fourier series with fundamental Fourier com-
ponentk ;. Adopting the notation used in [162] the dielectric tensor in regidakes the form

eg:) = Z ESSZ?l exp (ilK4 - x), (4.21)
l=—o0

whereef{;?l are thel-th Fourier coefficients in medium of the dielectric tensor andl v =
x,y, z. Scaling spac& = kox, wherek, = 27/ is the wavenumber in free space axnt the
wavelengthf{g = \/A, whereA is the fundamental grating pitch, and the electric and magnetic
fieldsE = \/eoE andH = ,/e;H allows us to obtain the scaled derivatives= k(V and the
scaled equations

VxE=—iH and V x H =icE. (4.22)

For compactness of notation we shall omit the tilde and deal only with the scaled fields for the
remainder of this chapter. The fields in each layer are written as a Fourier series and broken
down into the components along the coordinate axes. It is assumed that the propagation vector
in the plane of the interface is known. It is only the field dependence in the direction normal to
the interface which is unknown. For an interface in thez) plane the electric and magnetic
fields can be written as
oo
EMW() = Y [Enwe. + B (v)e, + EG)y)e.
p=o0 (4.23a)

exp {i (kg +ngr) T+ pKgyy + (k. + ngz) |}
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and

HO@) = > [HSwe, + H) e, + HE) m)e.
p==00 (4.23D)

exp {i [(kx + pKgz) x + pKgyy + (k2 + pKy2) 2]},

wherek is the propagation vector in the, z) plane andi . refers to thec component of,.
To proceed we decompose Maxwell’s equations (4.22) into thejirz components:

Ay () ()
dy7 = —ipKgH.") +i (k. +pKy,) H)')+
(4.24a)
i Z €ar,pa BNy + €oypaEyy + €ospa By
q=—00
i (kz + ngz) Ha(:tlp)_ i (kx + ngx) H,gzo) -
o (4.24b)
i Z eyr,pang:?c} + 6yy,pqu(;;;) + fyz,pqulq)>
q=—00
A (n) (n)
dy = —ipKgyHyy + i (ks + pKgo) Hy—
(4.24c¢)
i Z sz,pqE:g,Lq) + 6zy,pqE( )+ €2z pqE§nq)7
q=—00
dE")
Tyﬁp = —ipKgy E™) + i (k. + pKy.) B\ —iH), (4.24d)
i (ke +pKys) ESY) — i (kg + pKgo) B = —iH{"), (4.24¢)
and
dEY)
dyp —ipKgy B + i (ky + pKge) ESY) + i H™. (4.24f)

Here the tensor Fourier coefficients aye ,, = €5,,,—4. FOr these equations to be considered
exact under the assumptions we have already made the summations on the right hand side of
equations (4.24a), (4.24b) and (4.24c) must be betwern However, these equations will be
accurate for a non-infinite summation providing that a sufficiently large number of terms is con-
sidered. Here we sum betwegiiV and therefore considerV + 1 different Fourier components.
Typically, in simulations this value is increased until convergence is reached. Equations (4.24b)
and (4.24e) are two algebraic equations for the polarisation compoEé?;}(sy) andHé’}) (y)
respectively. The remaining equations (4.24a), (4.24c), (4.24d) and (4.24e) form a system of
differential equations for the remaining polarisation components. After some manipulation this
system can be expressed as a differential eigenvalue problem for the tangential components of
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the fields and a linear algebraic system for the normal components,

il B iC(")Aﬁ”), (4.25a)
dy
ARE D<”>A|(|”), (4.25b)

whereA‘(‘”), AV, ¢ and D™ in each layer are of the form given in [162], reproduced here

for convenience. We omit the superscrip) in the submatrices for compactness,

€x (g)
iy () | e=(7)
ha(9)
-1 _1 1 1
kayy €yx + ky kiteyy ky —1 kxeyy €y> —kxeyy k.
Exyﬁgjylﬁyz — €pp + K2 GazyEzjyl ke + ky exyey—yleyz — €pr — kokg —€ay 6;?} k.
o —
k€, €ya ko€ ke koey ey + ky —kaey ks +
€xp — ezye;yleyx + ki k. —ezye;ylkx €rp — ezyeyjyleyz — k:% 6zy6;y1kz + ky
(4.27)
and
—e;yleyz —6;; kg —e;;eyz e;; k.
D™ = (4.28)

—k, 0 ky 0

The sub-matriceg;s, are M x M diagonal matrices, whe®l = 2N + 1, whose elements are
given byk; of the pth wave,! is the M x M identity matrix, the components of the x M
matrix es, arees, pq, the tensor Fourier coefficients that match plane wavéo plane wave
n andes(y) and hs(y) are vectors of dimension/ with elements given by the polarisation
components of thgth wave.

Equation (4.25a) can be solved as an eigenvalue problem using the substitution

N
n n) (n) g™
A|(| )(y) = Z u§ )a§ ey, (4.29)
J=N

where the eigenvectot§”) is the mode polarisation amplitude in the interface plane@éﬁbis
the wavenumber of modgin the y—direction. The undetermined coefficienég) are found by
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matching the tangential components of the field at the boundaries. This leads to the condition

A|(|n) (y) = A|(|n+1) (y) ) (4.30)
y:L(") y:L(")

where theL(™ is they—coordinate of the boundary, see Figure 4.3. The equations are now in
the form of a standard T-matrix approach,

e gn) — 0(n+1),~1(n+1), (4.31)
whereU,g?) is the kth element of thejth eigenvectomE”), C‘,E?) is a diagonal matrix with el-
ementsexp (z’ﬁ](.”)W(")) for k = j and0 otherwise andz" is a vector whose elements are
the undetermined coefficienbé”). This method works well assuming the geometry does not
become large. If it does then, for evanescent waves, the ni@tfixbecomes ill conditioned.

To overcome this we use an S—matrix approach [155]. Firstly, we split the fields into forward

and backward waves. We also separate the electric and magnetic field components using row
and column operations such that

- Ut U
g = "n o) 4.32
<Vn+ V—> (432)

n

where the block matricds,” andU,; are the forward and backward parts of the electric field and
V.t andV,~ are the forward and backward parts of the magnetic field respectively. These have
undetermined coefficients;”. The complex eigenvalues of equation (4.25a) can be written as
ﬂ](.")i = ﬂj@ + B](.Z), whereﬁji are the forward and backwards eigenvalues and have a common
part3; . and a differences; ;. The matrix of complex phases can therefore be written as

g [ ol 0 ) (4.33)
0 (Pncgl

wherey,, is a diagonal matrix with elemenésp (iﬁ](.z)W(”)) andC, is a diagonal matrix with
elementsexp (iﬁ](.Z)W(”)). In general we want to avoid exponentially growing or decaying
phase terms. These occur when the fields become evanesc@ﬁfzﬁ'hdbecome complex con-
jugate pairs. Therefore, the common terms will be real and mafyiwill be well conditioned.

The differences will be complex causing the mattix to be ill conditioned. therefore we must
write the boundary conditions such that we can calculate the reflection spectrum without having
to calculateC,; L. Using this notation the boundary conditions can be written as

Ut onCral + U, 0,Crlla, = Hal o+ U qan (4.34a)

and
ViionCralt + Vi onCrllay, =V jat, + V.o a . (4.34b)

The need to calculat€;,; ! can be overcome by defining the S—matrix [155, 156, 157] which
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relates the reflected field, to the input fields

a; = Spat. (4.35)

n

Physically this is equivalent to considering the exponentially growing fields as a linear combi-
nation of the exponentially decaying fields. Therefore, the ill conditioned part of the system, as-
sociated with the exponentially growing waves, is eliminated. Substituting into equation (4.34)
allows us to eliminaté”, ! and obtain a well conditioned system to solve:

(U 0nCr + Uy 02CtSn] a)f = [US, + Uiy Sna] a4 (4.363)

(ViFonCn + Vi nCrtSh] a)f = [Vify + Vi1 Susa] @ty (4.36b)

By eliminatinga,’, ; we obtain

[UF 1 + Uy 1 Sni) - [UFonCr + Uy nCrtS,] —

(4.37)
Vo 4 Vi Snit] Vi onCn + Vim9nCi1S,] = 0
which, after some algebra, can be written as
Sp = CpM(Spi1) "N (Spi1)Ch, (4.38)

where

_ —1 _ —1
M(Sn+1) = [U:LFJA + Un+1Sn+1] Uvj_@n - [Vn++1 + Vn+1sn+1] Vn+<Pn (4.39a)

_ -1 ,— _ -1 ,,—
N(Sn+1) = [Vn_:-l + Vn+15n+1] Vn Pn — [Uy—l:_l + Un+1Sn+1] Un Pn (4-39b)

Using the fact that the backward propagating field in the final layer must be zero we can compute
the S—matrices in an iterative manner. Note we do not need to corjutat any point. Using
a similar method the transmitted field can be calculated iteratively from the input field,

at = U + U1 Sut]  [Ud 0aCo + Uy M(Sni1) "N (Sni1)Co] @) (4.40)

These equations are well conditioned and can be used for general anisotropic harmonic media.
We implement the equations in MATLAB using standard build in functions to calculate the
eigenvalues and, hence, the field in each layer.
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4.4 Experimental comparison

Using the numerical model described in the previous section as well as experimental data, ob-
tained by Dr David Smith and Stephen Abbot, we can study the reflection spectrum of a pho-
torefractive liquid crystal cell. Whilst an exact quantitative comparison between theory and
experiment is not possible, as discussed in Section 3.6, we can obtain qualitative agreement.

The numerical code we have implemented is suitable for any configuration of grating and any
liquid crystal alignment. However, here we only study the system where the grating vector is
in the z direction, see Figure 4.2. The liquid crystal is modelled using the code developed in
Chapter 2. Once the liquid crystal alignment is found, its Fourier transform is used to describe
the dielectric profile of the liquid crystal layer. In this geometry the grating is created by the

interaction of two coherent beams in thg z) plane. The reflective and diffractive properties

of the grating are then probed using a separate input beam.

Before we consider the case of the grating it is interesting to see the response of the SPP to a
uniform applied voltage. This allows us to confirm that the theoretical predictions agree with the
experimental measurements. Experimentally we measure the reflection of a white light source
from the surface of a photorefractive plasmonic liquid crystal cell. This allows us to obtain
the reflected intensity as a function of the optical wavelength. This is measured for a variety
of different incidence angles and applied voltages. It is expected that, as observed in previous
work by Welford et al [150], at low voltages we will see a series of sharp reflectivity resonances
in the reflection spectrum. These correspond to the coupling to a series of different guided
modes. These modes are only expected at low voltages where the variation in the liquid crystal
alignment occurs away from the cell boundaries. Once the voltage is increased above a certain
threshold the liquid crystal alignment varies sharply close to the boundary and a shift in the SPP
resonance is expected.

The results obtained for this experiment are shown in Figure 4.5. Here reflection spectra are

shown for three different applied voltages; 0 Volts, 10 Volts and 20 Volts. Unfortunately, due

to the presence of interference fringes, generated from a misalignment of the experimental ap-
paratus, it is not possible to say for certain that the guided mode resonances are visible. It may
also be possible that, at these voltages, too much voltage is dropped across the liquid crystal
layer and the guided modes have already been cut off. The shift in the SPP resonance is much
more obvious. It can be seen that at 20 \Volts the resonance angle has shifted significantly. This
is important as it shows that the SPP can be manipulated by the presence of the liquid crystal

layer.

Similar experimental results can be obtained for the SPP resonance shift due to an applied optical
field. For a fixed voltage the reflection spectrum is measured both with and without an external
20mW beam. The effect of the external beam is to change the resistance of the photoconductor.
This changes the voltage dropped across the liquid crystal causing a change in alignment. For a
high enough applied voltage, such that the liquid crystal is realigning close to the cell surface,
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FIGURE 4.5: Experimental observation of the shift in SPP resonance with applied voltage.
For sufficiently large applied voltage the alignment of the liquid crystal near the cell surface is
altered. This changes the refractive index seen by the SPP and, hence, changes the resonance
conditions. Experimental data by Dr David Smith and Stephen Abbot.
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FIGURE 4.6: Experimental observation of the shift in SPP resonance 26ith11 illumination

at a fixed applied voltage. The effect of the external illumination is to change the resistance of
the photoconductive layer. This changes the voltage seen across the liquid crystal layer. Physi-
cally this effect is seen to be similar to the effect of changing the applied voltage. Experimental
data by Dr David Smith and Stephen Abbot.

the refractive index seen by the plasmon is changed and the resonance position shifts. This is
clearly observed in the experimental results shown in Figure 4.6 and confirms that it is possible
to manipulate the SPP using an external optical field.

Theoretically the SPP resonance can be modelled for a variety of different applied voltages. Fig-
ure 4.7 shows the effects of the applied voltage on the reflected intensity for a single wavelength
(800nm). The applied voltage causes the liquid crystal to realign slightly. At low voltages this
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FIGURE 4.7: Theoretical shift of SPP due to applied voltage at fixed frequency. At low voltage

it can be seen that sharp resonances appear in the reflection spectrum before the onset of total
internal reflection. These are the result of small realignments in the centre of the liquid crystal
cell, too far away from the surface to directly affect the SPP resonance conditions.

effect causes a strong coupling to the guided modes which can be seen as a series of resonances
before the onset of total internal reflection. As the voltage increases the plasmon resonance
shifts in agreement with the experimental observations.

For a large enough voltage drop across the liquid crystal is is possible to obtain qualitative fits
for the SPP resonance shifts observed both theoretically and experimentally. Figure 4.8 shows
the comparison of a reflection spectrum for 0 and 30 Volts. Based on the assumption that this
voltage is large enough to ensure complete realignment of the liquid crystal a qualitative fit can
be obtained.

The purpose of this work is to understand the effects of diffraction from a liquid crystal cell. Ex-
perimentally diffraction has been observed, Figure 4.9, fbbam grating with~ 3% diffrac-

tion efficiency for power transfer into the first diffracted order. This diffraction, however low,

is important as it provides a way of pumping energy into the SPP. Increased diffraction effi-
ciency, coupled with non—linear feedback between the SPP and the photoconductive layer are
the necessary conditions for photorefractive plasmonic gain.

Interestingly theoretical predictions of plasmonic gain show a similar percentage of diffracted
output power for a fully aligned liquid crystal. Whilst this is at a lower voltage than used in the
experiment it is expected that both these situations correspond to a fully aligned liquid crystal
layer. Figure 4.10 shows these results for a single optical wavelegg@@hrf). Again guided

modes can be seen to form at low voltages, an effect not yet observed in our experiments. At
high voltages there are two effects: The first is a shift of the SPP resonance due to the change in
the non modulated part of the liquid crystal alignment. The second is the diffraction of energy
into the higher diffracted orders.

Qualitatively the effects predicted theoretically agree with the experimental observations. How-
ever, at this stage it is not possible to obtain a quantitative theoretical experimental verification.
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FIGURE 4.8: Comparison between theoretical shift and experimental shift. For a sufficiently
large voltage drop across the liquid crystal layer the SPP resonance asymptotes to the reso-
nance associated with a cell with homeotropic alignment. In this situation the SPP reflection
spectra can be matched between theory and experiment. Experimental data by Dr David Smith
and Stephen Abbot.

As with the beam coupling experiments, see Section 3.6, one method to overcome some of these
difficulties is to use a slow AC field rather than a DC field to align the liquid crystals. This has
two effects: The first is to fix the time frame over which the ions can move reducing the com-
plexity of the system. The second effect, as shown in Section 3.6, is to provide a small increase
in the voltage dropped across the liquid crystal layer. These effects will increase the stability
and predictability of the experiments whilst decreasing the complexity of the cell modelling
allowing a quantitative comparison in the future.

4.5 Asymptotic methods for surface plasmon propagation

Exact theories for SPP propagation in anisotropic media do exist [164]. However, they are overly
complicated and highly cumbersome to work with. Here we develop approximation techniques
which can be used for SPP propagation in anisotropic media with either homogeneous or pe-
riodically modulated permittivity. In Section 4.5.1 we consider the propagation of a SPP at
the interface between a semi—infinite metal and a semi—infinite anisotropic dielectric. In Sec-
tion 4.5.2 we extend this work to consider the case where the permittivity of the dielectric is
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FIGURE 4.9: Diffraction of a SPP by liquid crystal dielectric grating. Diffraction peaks are
observed at with the correct angular separation for the beams diffracted by 4.5;m grat-
ing. The(° plot shows the absorption of the plasmon, ile- I where! is the normalised
intensity. Thet1 diffracted images show the intensity of thé and —1 diffracted orders.

These intensities have been scaled for visualisation purpose. The measured diffraction effi-
ciency is~ 3%. Experimental data by Dr David Smith and Stephen Abbot.
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FIGURE 4.10: Theoretical prediction of diffracted energy by liquid crystal grating at a variety
of voltages. Main figure shows the reflection spectrum. The inset shows the intensity of the first
diffracted order.

periodically modulated.

4.5.1 Plasmon propagation in anisotropic media

Using the birefringence as a small parameter we can use perturbation technigues to approximate
the effect of anisotropy on the SPP. This is a valid approximation as the birefringence is typically
small, even in the case of high anisotropy liquid crystals. We consider a single interface between
two semi—infinite materials, a metal and a dielectric. The permittivity in the dielectric medium
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2
o o252
o (4.41)

= €ao |l +neq1é®é+ 0(772)]

can be written as

Mo

whereeg o = n?, neg1 = 2 (u) n < 1is a smallness parametey,; ~ O(1) and
€m = €m,0 (4.42)

in the metal. Herd is the identity matrix and is the optical axis with components, ¢, and

c.. All dielectric constants are assumed real and positive with the exceptign ofvhich is
complex and has negative real part. We look for solutions which propagate along the boundary
between the two materials and decay exponentially away from the boundary. The interface is in
the (z, z) plane with the metal in the regian> 0 and the dielectric in the region < 0. The

only solution at leading order is the standard isotropic transverse magnetic SPP.

We consider the effects of the perturbation to the oper@tét, equation (4.27), developed in

the Section 4.3 where we wrot@™ such that, for a known propagation vector in the plane

of the interface, the field dependence orthogonal to the interface is found via an eigenvalue
problem. Here we want to rewrité(™ such that it is a self adjoint operafbdf)") which acts on

the electric and magnetic fields to determine the modes at the interface. Wééﬁ)ndsing the
transformatior{"” = LC(™ R where

1 0 00 0 -1 0 0
0 -1 00 1 0 00
L= , R= (4.43)
0 0 10 0 01
0 0 1 0 10

Note here we use the same scalings as in Section 4.3. The resulting opeé’ﬁtalcts on the

fields parallel to the interface pland,™ = RTA|(|"), WhereA‘(‘") is defined in Section 4.3. The
properties of the parallel fields are enough to describe the propagation of the surface plasmons.
The perpendicular components of the fields can be described using a method similar to the one

used in Section 4.34Y = D™ RA™), whereD™ is defined in equation (4.28).

We consider a SPP propagating along the plane and decaying with distance from it. Under an
appropriate rotation of coordinate system we may consider only SPP propagating iditee-

tion. We want to study the effects of the anisotropy as a correction on the slow spatiatscale
Therefore, as in the beam coupling problem, Section 3.4, we set up a multiple scales expansion
scheme in the scaled spatial variables:= « andx; = nx and the scaled derivatives

0 _om 0 omo _ 0 0
ox  Ox dxy Ox dx1 Oz n@:cl'

(4.44)

The operatof") can be written ag(|") = H™ + 1 (H™ + D™), whereH ™) andH(™ are
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self adjoint algebraic operators,

n,0—k2
oS 5 ky, 0 0
nw | P o 00 (4.45a)
0 0 1 k,
0 0 ky €no—Kk2
and
2.2
% caCyky 0 kzc.cy
Ho = | Covhe enoct O enocres | (4.45b)
0 0 0 0
kyc.cy e€npcze. 0 emocz

where for compactness of notation we have omitted the supersgriptsithin the operators.
The linear differential operatd®™ can be written a®™ = D Op, + @L") dy,, Where

2iks

ke 0 0 0 —i 0

) ] i 0 0 0

per=| 0 VY0 pm | , (4.46)
0 00 0 0 0 0 —i
0 0 0 2ik, 0 0 —i 0

again for compactness of notation we have omitted the supersaejiptithin the operators. We
now expand—(é")Aé") = 0 in powers ofy to obtain

HOWAM 4 [ A 4 Do) A0 4 H<”>A<”)] +O(P?) = 0. (4.47)

The isotropic plasmonic modes are found from the requirement that the leading order equation
H™ A™ = (0 has non-trivial solutions in each material, [J¢t”)) = 0. From which we
obtain the dispersion relatiot{)2 + (k{”)? = €. Finally we obtain the polarisations of

the fields from the requirement™ € ker (H(™)) and the boundary conditioA™ = A@,

From here we notice that there are two polarisation vectors which sati$tye ker(H(™).
These correspond to the Transverse Electric (TE) and Transverse Magnetic (TM) modes which
have tangential polarisations

_fno
kY 8
2o (n) kY 1 2o (n) 1
o4 QI N 7/ S R (4.48)
T aee | 2 e | R
1
0

We will need to consider both of these polarisations when it comes to the first order equations.

However, at leading order, we find that only the transverse magnetic field satisfies the boundary

conditions. ThereforelJ 5‘1) - l?'gm) = U, and we writeA™ = [U; A with the constraint
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A = Alm) — A(S) gty = 0. At this point, after some manipulation, we can obtain the
standard SPP magnetic fields

H®™ (z,1) = A (1)hM ik™ -@o—wt) (4.49a)
and electric fields
S
B0 (1) = A2 o0 it e0-at) (4.50a)
€n,0

whereA(®) is the amplitude at the surface and the polarisation and wave vectors are defined as

25m (674} 0
e(m — —ay ’k(m) — i0m ’h(m) — 0 (4.51)
0 0 1
in the metal and
—iéd (&7)) 0
eD =1 —ap | ED=| —is; | . RD=] 0 (4.52)
0 0 1

in the dielectric. Here

€4,06m,0 €m,0€m,0 €d,0€d,0
ap = 7’”7 S = _M7 8y = ) ——2202 (4.53)
€4,0 T €m0 €4,0 T €m0 €4,0 T €m0

From equation (4.53) we obtain the constrdiat o| > |eq 0| for propagating solutions. We
now consider the effect of the first order perturbation in both the metal and the dielectric. From
equation (4.47) the first order equations are

(RO + D) A0 + 340 4™ o, (4.54)

Equation (4.54) is a vector equation which must be satisfied in all directions. We choose two of
these directions to be the leading order polarisation vector{ Asis self adjoint the projection

of the final term in equation (4.54) onto the polarisations is zero. Therefore we would expect
these two projections to relate the andy; derivatives inD(™). The remaining two projections
define the calculable part of the polarisation corrections. We require that these are equal in both
materials, this gives thé(n) conditionA™ = A4

At this point we could project directly onto the TE and TM polarisations and solve the result-
ing equations for the correction to the wave vector and the decay constants. However, in the
dielectric medium it is clear that for an optical axis which has a component orthogonal to the
plane formed by the leading order polarisation and wave propagation vectors then there will be
some TE-TM mixing. If this is the case then the equaidh’ - (K@) + DT, A@ = 0

has no solution. This is because, as the TE amplitude is zero, there is nothing to balance the
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perturbatiore; ; projected in this direction.

To overcome this we define the basis polarisation vedt’cﬁ?l% = (Ul + ﬁéd)) /2 andvgd) =

<U§d) — Ul> /2 such thathd) + Véd) = U;. In general we can assume that the component

of the field associated with each polarisation component may have a different decay constant
U149 (@1, 1) = VIO A (@1, 51) + VDAL (21, ), (4.55)

with the constraint thaﬂgd) (x1,0) = Aéd) (x1,0). The choice oV'; andV ; is arbitrary and has

the drawback that the expressions for the corrections to the decay constants become somewhat
complicated. This is not a problem as in general it is only the correction to the surface plasmon
wavenumber that we require.

Projecting onto the polarisatioﬁé§d) gives us the equations for the first order dispersion relation

vio. (g(@ + 13(60) U, A@D =0, (4.56)
wherej = 1, 2 in the dielectric and

U, - DU, AM™ =0 (4.57)

in the metal. Only a single field needs to be considered in the metal as it is optically isotropic.
These two equations define the relationship between the variation of the two differently decaying
plasmonic components and the component of the wave vector in the plane. The expressions for
ax1A§.”> in terms ofd,, A™), 8, A\ anda,, A" are

9y, A = i?iammm) (4.58a)
i . - _ /1 _ 52 T
aylAgd) _ i@axl B (S + mocy)Q B €qcz (iczbq — apcy) /1 — 83 €1 Agd)
L % % dd 63,0 — 07 2 ]
(4.58b)
i . - _ 52 T
8ylAgd) _ iﬁ@ﬁ B ((5de + zaocy)2 n €dCz (Zcx(gd aoCy) m €d.1 Agd)
K o dinfeho = 0% ’
(4.58c)

The boundary condition here is non-obvious as we can only determine the componﬁfﬁ% of
which are orthogonal to kék (™),

A™ _ _pw <7:[(n) n @(n)) A (4.59)

where A" is the calculable part of the polarisation correction &t = Pinv(H™) is the
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Moore—Penrose pseudo inverse. We write the vedirs, U)" and A" as

)

o) =

al"
0 n
0 sy

0
~(n ~(n S(”)
Lo = o ,A”—< ! ) (4.60)
)

~(n
Ugy

whereS!™ . a{" = 0 andSy"” - 4" = 0, recall equation (4.48). The TM vectors in the metal
and the dielectric are equal. Therefof” = §\” = §,. The TE vectors in general are not

equaI,ng) #* Sgd). This leads to the boundary conditions
S1+ Cipty = 81+ Crgtn (4.61)

and
S 4 Comad™ = S + Chpal?, (4.62)

whereCy,,, C14, Com and Cyy are arbitrary constants. Equation (4.61) must be satisfied in
all directions, therefore it makes sense to project ditanda,. This leads to the boundary
condition

|7 = 181" (4.63)

and the relatiort’;,,, = C14. Similarly equation (4.62) must be satisfied in all directions. How-
ever, in this caséagm) #+ aé‘”. Therefore, we can always find’,,, andCs4 such that equation
(4.62) is satisfied and the only requirementd#) is equation (4.63). Using (4.58), (4.63) and
the requirement thad,, A™ = 9, A'Y = 5, A/ = 9,, A(9), we obtain the resulting equa-
tion for the variation inz1;

611 A(S) = ’L'Oéof

5 a1 AP, (4.64)

2 2
€4,0 ~ €m,0

From which we obtain the first order correction to the surface plasmon wave viegigr, =
ao(1 + nk, 1), where

2 2
1emo (Gd,oCm - Em,ocy)
km 1=3

) 2 2 —62

€d,1- (4.65)
€40 ~ €m0

The perturbation due to the presence of can be verified by comparison to numerical simula-
tions, see Section 4.3. Figures 4.11, 4.12 and 4.13 show the comparison for different values of
eq,1- In the first two cases the numerics agree well with the analytic approximation. In the third
case however, it can be seen that there is a qualitative difference in the results. This is because,
for large enough anisotropy, the input beam used to numerically excite the plasmon can couple
to a propagating mode rather than directly to the plasmon. This causes the perturbation expan-
sion to fail as the qualitative behaviour of the solution has changed. Therefore, the expansion
is only valid if the SPP wavenumber is larger than the corresponding wavenumber for a prop-
agating field. In general terms this can be expressed as the the following inequality constraint;
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Numerical result Analytic approximation

Error

FIGURE 4.11: Comparison of analytic perturbation expansion and numerical T-matrix calcu-
lation of SPP wave vectors. Here we have uged 0.013 to test our perturbation expansion
with a real small number, in this case the maximum errdr.@$11%,.

Numerical result Analytic approximation

FIGURE 4.12: Comparison of analytic perturbation expansion and numerical T-matrix cal-
culation of SPP wave vectors. In this case we have used a much larged.130 to test the
perturbation expansion for a more interesting case, here we see a maximum eroo@fk;.
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Numerical result Analytic approximation

FIGURE 4.13: Comparison of analytic perturbation expansion and numerical T-matrix calcu-
lation of SPP wave vectors. In this cagés no longer smally = 0.267, withn? = 0.07. Our
maximum calculated error i8.0446k,, however, by looking at the numerical valuesgfpp

we can see that there are features of the graph we have not yet captured in the perturbation ex-
pansion, it could be that although there is an SPP here we are unable to excite it as the energy
couples to a propagating mode in the anisotropic crystal.

€ €
)t s feao (1 + neaa), (4.66)
€m,0 T €40

i.e. the minimum possible SPP wavenumber must be greater than the largest possible optical
wavenumber for any orientation of the crystal axis. If this constraint is not satisfied then equation
(4.65) will become invalid for certain orientations of the optical axis. Equation (4.65) describes
the perturbation of the surface plasmon mode due to the presence of a homogeneous anisotropic
layer with arbitrary optical axis. This is shown to be quantitatively accurate when compared to
the numerical simulation as long as the condition (4.66) is satisfied. That is, the presence of the
anisotropy does not qualitatively change the behaviour of the system.

4.5.2 Coupled plasmonic equations

The coupled plasmonic equations are derived using the same procedure as in the anisotropic
case. The equations are solved at each order in each material and the boundary conditions
are matched. Conceptually the only difference is that instead of a single SPP propagating in
the z—direction there is a discrete set of SPPs propagating ifathe) plane. The interaction
between these SPP is included as a coupling term in the first order perturbatidfe consider

a discrete number of SPPs propagating along the metal—dielectric interface(in theplane.



Chapter 4 Surface plasmon polaritons at a metal-liquid crystal interface 94

The dielectric is assumed to have a small modulated component and can be written in a similar
way to equation (4.21),

€q=¢€do |1 +n Z e((;le exp (ilK42)| . (4.67)
l=—o0
The first stage in the derivation of the coupled plasmon equations is to understand how the
leading order equations change for a SPP propagating ifuthg plane at an anglé, to the
r—axis,

ag cos 0, ag cos 0,
D= sy |, K= iGm (4.68)
o sin 6, apsin b,

The polarisation and linear operators which describe the SPP propagation are rotated by the
rotation matrix

cost, 0 —sind, 0
R, - ‘0 cos 0, 0 —sin6, 7 (4.69)
sin 0, 0 cos 0, 0
0 sin 0, 0 cos 0,

such thatd[” = R, U, AJ" andHy” = R,H(MRY. Therefore, the leading order equation
for the propagation of a SPP in anisotropic homogeneous media at@ring,()")Aé") =0or

RyHWRIR, U Al — 0. (4.70)
The rotation matrixR,, is orthogonal, therefore, equation (4.70) simplifie@gﬂ{(”)f]ﬂﬁ,") =
0. This is identical to the leading order equation for a SPP propagating along-#xés which
has already been solved in Section 4.5.1. The propagation and decay constants are unchanged
by this rotation and are defined in equation (4.53). Therefore the leading order solution is a

series of SPP with amplitudeﬁg(,s)(ml) propagating in different directions along the interface.

The perturbation to the leading order operator which couples matte modep is written as

a2 cos? 9pe(n)

. En’o”y’(”’” eg;) (p_qg agcost, 0 agcos HpEiZ?(p_q)
7_—11()2) _ €y, (p—q) X0 COS 0, €n,0€0z. (p—q) 0 €n,0€02 (p—q) -0 Kgz
0 0 0 0
@ €O8 917632@—@ Enyoei?@—q) 0 6”’062(%«1)

(4.71)

We proceed as in Chapter 3. The SPP are diffracted in the bulk of the dielectric as in the case
of the beam coupling equations. We consider only the case where the grating vector is in the
z—direction. The effect of this grating is to couple energy fromtieSPP into thesth SPP.

As in the case of the coupled wave equations we may not obtain perfect phase matching and
we need to consider the phase detuning inathelirection. This is shown in Figure 4.14. The
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A) AK_o B)

2K,

2K
Ay,

X AKX, AKy,

FIGURE 4.14: Coupling of SPP due to a periodically perturbed dielectric. Figure (A) shows
the coupling due to the fundamental Fourier component. Figure (B) shows the coupling due the
second harmonic.

coupling identity in this case is

kD = kD + (¢ - p)Kge. +nAkyé,, (4.72)
where
Akpg = ap(cos by — cos b)) (4.73)

is the phase detuning term and is assumed to be first order. As discussed in Chapter 3 this may
not be the case. However, as the phase detuning becomes large the coupling becomes small.
Therefore, we would expect the error induced by this assumption to be negligible. Summing the
fields with equal spatial dependence and writing the first order polarisation corré!:ﬁf%n:
R,U™ A allows us to obtain the first order equation;

HIIR O AP At L DR T AW + RHMT ™M AW =0, (4.74)

The leading order equation is satisfied for two vectors in the kern@l(®f, the TE and TM
modes, which have vecto@g") and ffi”) respectively. As described in the previous section
the projection along the TE wave is singular and we obtain an equation which does not balance
at first order. Therefore, we need to consider two waves whose polarisation is formed from a
linear combination of the TE and TM waves,; andV 5. Projecting equation (4.74) onto these

vectors we obtain

VIO RIHDR, U, AD Ay v (D RIDAR, T, AD = 0 (4.75a)
and
Vi) RIHDR, U, ADShenm v RTDDR, T, AD = 0. (4.75b)

The differential operator is written &8™ = D9, + D{"d,, + D4.,. As we have ex-
pressed the field as a Fourier series inthdirection the geometry is translationally symmetric
and, hence, the only variation in thedirection will be a phase shift. Therefore, there is no
amplitude variation in the direction of the grating vector dnd= 0. We can simplify equa-
tion (4.75) by observing that thy derivative corresponds to variation orthogonal to the plane
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of rotation. As suchD, must be invariant with respect to the conjugacy action of the rotation
matricestﬁé”)Rp = D" The only effect of the rotation on the first order derivatives is the
effect onD,.. Using this simplification equations (4.75) become

VIO RIHDR U, AD Ay (@) [Rgﬁ;dmp + @§d>] UAD =0  (4.76a)

and

Vi) RIHER,U A S . viD - IRTDIOR, + D | U1 A 0. (4.76b)

Similarly, the equation in the metal is
U, - [RIDIR, + DY | T1Af™ =0 4.77)

We require the continuity of the polarisation amplitudes, using the same argument as presented
in Section 4.5.1 we only require this to be the case in the direction orthogonal to the TM mode.
This gives us the equation
V PORIHOR,U AW B bramr 4 v | PORIDDR, T A =
(4.78)

V- PMRIDMR, T AM,

whereP™ = Pinv(H(™) is the Moore-Penrose pseudo inverse ahd = (S’lT,O,0>T.
Equations (4.76), (4.77) and (4.78) form a coupled system of partial differential equations for
the variation of the SPP amplitude in theand y directions. We are only interested in the
variation of the amplitudes in the plane of propagation. As the SPP decay exponentiallyin the
direction on the fast scale then any coupling will quickly become negligible with distance away
from the boundary.

As in the homogeneous anisotropic case we must consider two different SPP components in
the dielectric which decay with different decay constants. Therefore, we ertel(,d) =
VIA(C? (x1,9y1) + VQA(d) (z1,y1). We require that these amplitudes are equal at the boundary

P P2
to ensure the leading order equations are satisﬂé@(ml, 0) = Ag) (z1,0) = A](gm) (r1,0) =
Aés) andamlAI(ﬁ) = azlA%) = BwlA,()m) = 8$1A§,S) . The system we must now solve id & 4

system for the derivatives,, A\, 9, ALY, 9, AV, anda,, A

Before we proceed we need to make a few simplifying observation,Ais block diagonal
and the first two entries of th&; andV 5, are identical we obtain

V1DV, =V;y DV, (4.79a)

V- DV, =V, DV, (4.79b)
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and
Vi -RIDWR, U, =V, RIDWR,U,. (4.79c)

Adding and subtracting equations (4.76a) and (4.76b) and using equations (4.79) we obtain

O, - RIHOR,U, AG) s | T, RIDDR, T, AS) 4
(4.80a)

Uy DU (9, A + 0, A5 ) = 0
and

Uy REHOR UL AP et 1T, - DU, (9, AL — 0,4 ) =0 (4.80D)
respectively. Equations (4.80a) defines the common part of-thariation of the amplitudes

in the dielectric. Equation (4.80b) defines the difference between theg tfesivatives. Using
equation (4.79) we notice that only the common part ofythéerivative appears in the bound-

ary conditions. As the field decays exponentially away from the boundary we do not need to
consider variation in this direction. Therefore, we only consider equation (4.80a). This leads
to an interesting observation. Although considering the fields in terms of TE and TM modes in
the dielectric turns out to be a singular choice of basis vectors the error induced by this does not
affect the final equation for the derivative of the field amplitudes.

Equations (4.77), (4.78) and (4.80b) forn3 & 3 linear system of equationglx = b, for the
spatial derivatives. After some simplification to the left hand side we can write

Ed,O(Sd 0 —2i€d700¢0
03— €30 03 — €30
0 7 B €m,00m —2i6m707050
A= O — 6%1,0 O — 6%1,0 )
ied’o (63 + 6?l,O) Z.Em,O (57271 + 6727170) 2€d,06da0 25m,05m040

2(53-a,)  2(m-y) (B-) (B-a)

(4.81)
and
O A"
z=| 9,(A7+4%) |. (4.82)
cos 0,0z, A;S,S)

The right hand side contains the coupling terms which, on the boundary, can be written as

U, - RIHG RO A kv
b= 0 : (4.83)
vV, .P(d)Rg’]—zZ(g)RqﬁlAgS)eiAkpqxl
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Using a Gaussian elimination procedure we can obtain a simple equation fod#érevative
Qg (6m’052 — 677%06(21 05d + Gd’o(sgl — 6d,0672n705m>

b (5~ ) ()

€2+ 02 . 52 +e2, . . ,
d,0 d U, — d,0 Vip( )| RTR )RquA((IS)ezAkpqxl'
2 (53 - E?z,o) 0d <6d - 6d,o)

P TpPq
The bracketed terms on the right hand side describe the coupling of the of the plasmons due to
the presence of the grating and the boundary perturbation respectively. The term on the left hand
side provides the correction due to the fields in the metal. Using the change of variable

cos 0, 8961/1](05) =
(4.84)

—1

A;E)S) _ AI()S)e—iao cos(fp)x1 (485)

and equation (4.73) we can simplify equation (4.84) to obtain

[ €d,0€m,0 2 (S €m,0 T
cos 0 8351Ap ) 2 m {QCOS (QP)AZ(J ) + FUCP Rp HZ(JQ)R UlA( )} s
(4.86)
where the coupling directiol/ ., = (0 + €40) V. + Vg and

Vo= (2€e40/\/Emo T €d0) pr(d) + U1, Va=(210/\/Emo T €ap) Vip(d) ~-U,
(4.87)

Equation (4.86) describes the coupling of SPPs at the interface between a semi infinite metal
and a semi infinite dielectric with periodically modulated permittivity. There are two different
sources of coupling, the permittivity grating in the bulk of the dielectric material and the modu-
lated permittivity at the interface. Had we considered only the bulk dielectric grating we would
have obtained coupled wave equations as described in Chapter 3. The effect of the boundary
condition is to induce a perturbation into the coupling directidg,. Understanding the ef-

fect of this term should enable us to tailor the properties of the grating to maximise the energy
transfer.

This method provides a quantitative understanding of the coupling process. The resulting equa-
tion can be solved as a single eigenvalue problem for the variation in SPP amplitude with propa-

gation. This is a much simpler expression than the one used in the rigorous coupled wave theory
and will allow us to obtain a better understanding of the coupling mechanisms.

4.6 Conclusion

In this chapter we have implemented existing models to study the propagation of SPP at the
interface between a photorefractive liquid crystal cell and a thin gold layer. The resulting nu-
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merical code has been shown to agree qualitatively with experimental observations and provides
a great deal of information about the system. The S—matrix method used, in combination with
Berreman’s method, allows us to model complicated dielectric profiles such as the ones observed
in photorefractive liquid crystal cells.

To complement the existing numerical models we have also developed new analytic approxi-
mations to describe the propagation of SPP at an interface between a semi-infinite metal and
a semi—infinite dielectric. The resulting equations, derived assuming the birefringence of the
dielectric is small, are suitable for periodically modulated anisotropic materials. For the homo-
geneous anisotropic case these equations have been compared to the numerical code showing
good agreement with the calculated variation in the SPP wavenumber.

Approximation techniques provide a great deal of insight into the behaviour and coupling mech-
anisms between the SPP as they propagate along the surface. Therefore, these equations will be
of fundamental importance in understanding the conditions required to maximise the coupling
of energy into a SPP.

The approximation techniques developed here make the assumption that the dielectric is homo-
geneous in the direction normal to the interface. This assumption, whilst qualitatively correct,
does not model the liquid crystal variation in the liquid crystal profile in the direction normal to

the boundary. Understanding the effect of this non-homogeneity will involve a detailed study

of the SPP response to different liquid crystal alignments on both the short and long spatial
scales. Once an understanding of the SPP response has been developed suitable approximation
techniques may be found to model this effect.

The work carried out in this chapter, and the ongoing experimental work of Dr David Smith and
Stephen Abbot, suggests that the use of photorefractive liquid crystal cells will be an important
technique for the manipulation and amplification of SPPs. Further theoretical and experimen-
tal work is required to optimise these systems and obtain true photorefractive gain where the
diffraction grating is generated directly by the SPP.
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Conclusion and future work

In this thesis we have considered the interaction of electromagnetic fields with liquid crystals in
photorefractive cells. Two different optical geometries were studied and semi analytic models
were developed to describe these systems. Each of the three technical chapters of this thesis was
concerned with the modelling of one of the different aspects of these problems. In this chapter
we summarise the results and consider ways in which this work can be extended in the future.

In Chapter 2 we derived an approximation to t@etensor equations which describe liquid
crystal alignment. The resulting equations, published in SIAM Journal on Applied Mathemat-
ics, reduce the computation time by a factor of 100 whilst maintaining an error of @retet).

These equations were derived based on the assumption that the elastic and electrostatic energies
remain small, recall equation (2.18). This observation is true in defect-free geometries. If how-
ever, due to geometrical constraints or external fields, the liquid crystal alignment varies sharply
this assumption no longer holds and the equations we have derived break down. From a matched
asymptotic point of view this is equivalent to having only considered the outer expansion. The
corresponding inner expansion, valid only close to the defect core, could be used as a starting
point to extend this model so that it can be applied to structures in which defects form.

The liquid crystal model derived in Chapter 2 was used to predict the liquid crystal alignment in
a photorefractive liquid crystal cell. In Chapter 3 we combined this with a semi-analytic model,
published in Applied Physics B, which describes beam coupling. This approximate model was
shown to be accurate when compared to existing models and a finite element simulation of
Maxwell’s equations. The optical model is accurate and can be solved quickly using a numerical
code. However, it does not have an exact analytic solution which would provide a more complete
description of the physics. Although an exact analytic solution cannot be found, approximate
solutions may exist. Using appropriate perturbation techniques [173] it may be possible to derive
solutions which are valid in the regions of interest in photorefractive liquid crystal cells.

The comparison of the optical coupling model with experimental data is important if this theory
is to be used to predict the response of photorefractive liquid crystal cells. However, the models

100
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we are using do not fully describe the charge migration processes and electrochemestry at the
boundaries in the photorefractive cell. There is also a noticeable variation in the measured
values of the liquid crystal conductivity making it difficult to obtain reproducible experimental
results. The final part of Chapter 3 describes the possibility of using a slow AC field rather
than a DC field to reduce the effects if charge migration, simplifying the modelling required
and stabilising the experimental setup. The observation of higher photorefractive gain can be
explained qualitatively using the simplest of theoretical models. However, a much more in depth
analysis of the electrochemical properties is required in order to obtain a working electrical
model of the cell.

The final technical section to this thesis, Chapter 4, is concerned with the modelling of surface
plasmon polaritons at the interface between a photorefractive liquid crystal cell and a thin gold
layer. Powerful numerical techniques have been implemented to allow us to understand the
optical properties of these systems. The propagation of the surface plasmons at the interface be-
tween a semi—infinite metal and a semi—infinite anisotropic dielectric with periodic modulation
has been studied analytically. The coupled plasmonic equations derived predict the ability to
produce gain using the liquid crystal as a photorefractive medium. These equations have been
derived assuming that the dielectric is homogeneous in the direction normal to the interface.
Therefore whilst these equations provide an approximation to the coupling mechanisms they
cannot predict the coupling strength quantitatively. To understand these effects the first step
would be to perform a detailed analysis of the mode structure and SPP response to variations in
the dielectric permittivity on both the long and short scales would need to be obtained. Once the
response is fully characterised and understood the appropriate approximations to describe such
a system may be found.

Finally we observe that there is great scope for future work if we wish to model the non-linear
interactions between the surface plasmon polariton and the photoconducting layer. This opens
up the possibility of creating true photorefractive gain which could be used to overcome the
short propagation length of the plasmon.



Appendix A

Minimising the free energy

To find the critical points of the liquid crystal free energy we consider the minimisation of a
general system of equations

F(z) = /V f [yn(@)) V., (A1)

wheren = 1,2,3,..., N andy,(x) are theN scalar functions of space. The critical points of
the system of equations are found by considering the points where the variation of the functions
due to a small perturbation is zero. We write this perturbation in the form

Yn(@) = yn(0) + na(x), (A.2)

wheren < 1 anda(x) is any smooth, differentiable function which vanishes at the boundaries
of our domain. By differentiating”(x) with respect to;, we obtain:

OF _ [ 0f 0ya | Of 0(0wy)

- _ | 2L dv =0, A.3
on  JvOyn On  9(0iyn) On (A3)
Substituting equation (A.2) into (A.3) allows us to write:
of of
— =0 a(x)dV = 0. A4
/V [8yn a(aiyn) ( ) (A4)

This can only be true for atk(x) if the term inside the square bracket is zero. This gi¥es
equations which must be simultaneously satisfied for equation (A.1) to be satisfied.
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Numerical Algorithm

B.1 Introduction

The numerical models used throughout this thesis rely on the ability to differentiate and integrate
smooth continuous functions quickly and accurately. As the domains of interest in this thesis
are relatively simple we use spectral collocation methods. We choose a Fourier discretisation
in the z—direction and a Gauss—Lobatto grid in thalirection. The Gauss—Lobatto grid-points

are defined as the roots of the first derivative of the Chebyshev polynéinia) and the end
points—1 and1 [174]. The high accuracy of these methods ensures that fewer spatial points
are required than would be the case for a finite difference method allowing us to obtain high
accuracy without incurring large computation times.

In this appendix we describe the methods used for the numerical algorithms. First, section
B.2 provides a brief description of the general collocation algorithm used to approximate the
derivatives. These approximations are looked at in more detail in sections B.3 and B.4. To
calculate the cross polarised intensity we need a way to approximate the integral in equation
(3.33). The method used for this is a Clenshaw-Curtis quadrature, which is described in section
B.5.

B.2 Differentiation

In solving the equations which determine the liquid crystal alignment we need to approximate
the derivatives using a numerical method. We have chosen to use spectral collocation methods
as they offer high accuracy and efficiency. The methods are straightforward: given a function
f(x), defined in an intervdk, b], we approximate its derivatives with

of

—~D B.1
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where,v is a vector whose components are the valueg efaluated at discrete points in

vj = f(z;). Here we use two different spectral methods, one on a periodic grid, and one with
fixed boundary conditions on a Gauss-Lobatto grid. For convenience, the derivation of these
two differentiation matrices is summarised below. Full details can be found in [75].

The implementation of the derivatives on a two dimensional grid requires us to define the one
dimensional derivatives in both theandz direction acting on a functioif(z, z) defined on a

grid (z;, z;). The derivatives over the entire grid are then found by taking the Kronecker product
of each derivative with the identity matrix. If the derivatives over the whole grid are denoted by
DX andDZ, we can relate them to the one dimensional derivatives using

DX = Id(N.) ® Dz,

(B.2)
DZ = Dz @ Id(N,),

where IdV,;) and Id V., ) are identity matrices with the same dimension®asandD~ respec-
tively.

B.3 Periodic differentiation

The differentiation matrixDz, for a periodic grid |0, 27| is determined using a trigonometric
interpolant. The interval is discritised inf§ = 27 /h points whereh is the grid spacing, and
for simplicity we assume thaV is always even. We can interpolate any functjtfa:;) on our
grid using a linear combination of the periodic delta function which we define as:

1 if j =0(modN)
d; = (B.3)
0 if j # 0 (modN).

We wish to find a continuous periodic function which will interpolate the delta, from this we
may then write any function as a linear combination of these interpolants. The discrete Fourier

transform of the delta function is a constaint We take the inverse Fourier transform to find its
continuous interpolant:

N/2—1 N/2

Z 6ikm +% Z eikx 7

k=—N/2 k=—(N/2—1)

p(x) = vj

N

_h
o

N/2—1/2

h ikx
=5 cos(z/2) Z e

k=—(N/2—1/2)
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o—i(N/241/2) _ ,i(N/2+1/2)

h
=50 cos(z/2) o ,

o—iN/2)z _ Li(N/2)z

e—iz/2 _ giz/2 ’

= % cos(z/2)

sin(Nx/2)

h
= COS(:C/2)W7

_ hsin(Nz/2)
= o tan(zy2) oM

This is the periodic sinc function, any smooth periodic function can be represented as a linear
combination of these:

N
p(z) = Z VinSnz — zp,), (B.4)
m=1

wherew,, is the amplitude of the function at the point,. We now differentiate and write in
matrix form to obtain our matriDz:

N
pl(z) = Z VS (z — ),

m=1

(B.5)

N
=YVt [JQV cos(ni; /200N 2) — o sin(Na;/2)cosed(z;/2)]

m=1

wherez; = jh. Using N = 27 /h allows us to write the sinc function’s derivative as

o

() if z; =0 (modN) (B.6)
n(xr;) = ’
’ (1) cot(zj/2) if z; # 0 (modN).

Sl

Using equations (B.5) and (B.6) we can wrida: in terms of the toeplitz matrix

0 %cot(%)
L cot (2L :
Dz =1 —lcot(Z) —Scot(Z) |- (B.7)
: %cot(%)
L cot(4h) 0

This method of differentiation is exact for periodic functions which can be interpolated by a
trigonometric function with maximum wavenumbat. For a smooth function with infinitely
many continuous derivatives, the Fourier differentiation matrix has éfarv — 0, f(z)|| <
O(h™) ash — 0 for anym. For further details on the accuracy of spectral methods see [75]
page 34.
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B.4 Chebyshev differentiation

Differentiation on the Gauss-Lobatto grid is performed by finding an unique polynomial which
interpolates the function we wish to differentiate. The derivative of the function is then approx-
imately the derivative of the interpolated polynomial. Theomponent of the Gauss-Lobatto
grid is defined as

zj = cos(jm/N), (B.8)

wherej = 0,1,2,..., N. Here we write the interpolating polynomial in terms of the Lagrange
polynomials

N
ny
pi(z) =~ 11— 20, (B.9)
J k=0
k#j
where N
aj = H(Zj - Zk). (BlO)
k=0
k#j

We wish to write the derivative in terms of a matrix equation. Taking logs of equation (B.9) and
differentiating yields:

N

Infp;(z)] =ln |v; H(z —z) | —In[a;],
k=0
k#j
o N N
Pie) = L[ - =) ) (s = =) " (B.11)
7 k=0 k=0
k#j k#j

By discretising in space we can write this as a differentiation matrix which takes the form

N
Dzjj= Y (z— )"
k=0
[y
(B.12)
1 N a;
Dzij = — (2’7; — Zk)il = S — .
aj i aj(zi — zj)
hi

This method of differentiation is exact for functions which can be interpolated by polynomials
of maximum degreeV. The accuracy of this method is comparable with the Fourier method,
this is based on the equivalence of Fourier points with Chebyshev points, for details see [75]
page 48.
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B.5 Clenshaw-Curtis quadrature

The numerical quadrature used to calculate the cross polarised intensity in equation (3.33) is a
Clenshaw-Curtis quadrature. The Clenshaw-Curtis quadrature formula is the formula of optimal
order, based on the fixed set of Chebyshev nodes. As opposed to the Gaussian quadrature which
is the formulae of optimal order based on an optimally chosen set of nodes. As the grid used in
this quadrature is the Gauss-Lobatto grid, we do not need to interpolate the solution to the liquid
crystal equations onto a different grid. We wish to calculate the integral

I= /_11 f(z)dz (B.13)

using the coordinate transform= cosf, 0 < 6 < 27. As such we can represent equation
(B.13) in terms of the Fourier transform @fcos 0):

I:/ Zakcos(2k9)sin(0)d9, (B.14)
0 k=0
where o 7
ap = / f(cos ) cos(2k6)d6. (B.15)
T Jo

We can evaluate equation (B.14) by using standard integration techniques:

e cos[(2k — 1)0]  cos[(2k + 1)0]]"
1—2;0%[ 2%k—1  2%k+1 |, (B.16)

Discretising in spacé; = jm/N wherej = 0, 1,2, ..., N and substituting into equation (B.16)
gives

1 — a

k
I == — . B.17
2/162(]1—1Jtl<:2 ( )

As we have discretised on a finite grid we can truncate this series to the Nyquist frequency,
which isN/2 for N even and N +1)/2 for N odd. All that remains is to calculate the values of
the Fourier coefficients,. Based on the symmetry of the cosine terms, without loss of accuracy,
we can write equation (B.15) as

N
ap = 2 Z f(cos ;) cos(2k9j)%. (B.18)

T £
Jj=0



Appendix B Numerical Algorithm 108

This allows us to write the final integral as

N N
2 cos(2k0;)
I = —
chos@ Nkz_o 1 4k2

(B.19)

wherev; are the values of the function at the poinjs N = N/2 for evenN, N = (N +1)/2
for odd NV and

N
cos(2kb;)
Z TR (B.20)



Appendix C

Coupled wave equations for general
dielectric perturbation

The model derived in Section 3.4 assumes that the perturbation to the dielectric tensor is in the
plane of wave propagation. Here we consider the situation where this is not the case and that
the first order tensor given in equation (3.49) is as general as possible. However, we retain the
assumption that the optical axis of the leading order tensor is in the plane formed by the optical
wave vectors. This means that not only do we have coupling between different modes but also
between ordinary and extraordinary components of the field. We note that formally to match
the boundary conditions for an incident field with general polarisation we need to consider both
the fieldsl and2, see Figure 3.12C. In general however, the effect of these two fields will be a
broadening of the output spectrum and as such only fied2 needs to be considered. Again

we work in the framework of the multiple scales expansion which is described in Section 3.4.
The electric field in the general case is written as a more general Fourier expansgion in

N
. (6™ K™ Y om ™
= Y {[A) e DT 4l | ki

(C.1)
m m il _ M PCON »
+ |:Aéo} (772) + Aéej, (nz) e (kge,g kQO,J) :| e k20,_7 :B} e Zwt’

where the subscript refers to the order of the expansion and the subsceiptand1, 2 reffer
to the ordinary and extraordinary components of the first and second set of waves respectively.
We substitute equations (C.1) and (3.49) into (1.3) and using the more general identities (which
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again can be derived graphically from Figure 3.12)

KU = k) + (=) ie, + (K2 - 1)) e,

B = ki) o+ (m = n)Ke, + (kG — k5L ) e, (C2)

kU = k) + (m—n)Ke, + (K52 — k() ) &,

wherea, 5 = 1,2. We expand to first order and, using the solvability condition from Section
3.4, we obtain a set of coupled wave equations for fields oscilating in the dirégtion

. (m ~(m) . (m ~(m) . (m ~(m) ,7.(m)
ikl (k" &)V R @ ) - 28 (R v )| AR+

(M) (m ) e (m o i (™ Y.
ik [k () 90) — 22l (B 9] g (k)

N (C.3)

2
% Z Aen—m) [égz)Ag?ei(’fi?i—ki?ﬁ)z + é;Z)A;Z)ei(kgi—kﬁ?)z +
n=—N

o) 4(m) 3 (k)R ) i) k)2

() () () (m
o AT, () 7)1 (K kzo>mel<k;o;kge;>2},

2e “12e

A similar equation can be obtained in the directiorkef.

7 (m m > (m m ~(m) 7.(M m) 1 (m) _g{m))).
ik [ - )0y + RS (@5 w) — 28 () - )] el (k)

)

iy (g™ @y 1) — 280 (k™ - w0)] ALY =

k2 N n—m) | ~(n) y(m) (™ _plmy, )  (n) (k™ )y,
) _Z_:NAe( ){ege)Age)e(klez Koz 4 el A k)=

AT W

(1) g (n) o (n m
lez 20z )Z + é(n)A(n) el <k2€ 7k20 )‘mel(kgo,)z_k;oz))z ,

égz)Agz)el< 2e ‘2
(C.49)
Between them these two equations describe the field variation completely. We can simplify
equation (3.55) by introducing the new variables
m T(m) —j ET)Z
A(le) _ A( )6 k

- ‘e ’

m ~ _ipm
Aéo) — Ag:)e ikoy z’
(C.5)
- ™ k™Y m) - il g™y (m)
AY:) = Ag;n)e Z(klf’ ke ) Temikes 2 Ag{?) = Ag:)e Z(k% k2o ) Temikoz 'z
and projecting onto the appropriate basis set for each wave. Equation (C.3) is a vector equation,

to ensure this is satisfied in all directions we project dh%), ég’:) andég’j). We also have the
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symmetry requirement that the field is invariant in the direction orthogonal to the plane formed
by the set of wave vectors i.ég’;‘) -V1A1; = 0. Similarly equation C.4 is projecting oniém),

‘(m) andégm) with the requirement that the field is invariant in @%7) direction. In both cases

the projection ontdc( ™ , Wherej = 1, 2, gives the divergence equation and hence the variation

of the fields in the direction of the electric displacement vectors

ik} [éY:) - <égren) 1235 )> kg )} [ieki + Vi AT =

(C.6)
B o (m)
ST A D) el Al ¢ e A+ el
n=—N
and
D [elr) — (& RSV) B - [iahaes — (7 — k) + 91 A =
(C.7)

N
k n n ~n n
S R [ 4 ) 4 ) e

The remaining equations describe the variation of the ordinary and extraordinary components of
the two fields in their respective directions of energy flow. For the set of fields projections

ontoe!™ ande!™ are

ik [k — (k) — k) + v | AT =

(C.8)
k N
3 el [ e A+ ) )
and
QZk‘g?) [( (1?)’%§m)) A(m) gm)i| [ ’Lezklez+V1] A(m) _
(C.9)

N
5 A [s A A 4 Al +
n=—N

e
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respectively. For the second set of fields we obtain a similar set of equations the projections onto

e{™ ande!™ are

_2Zk§:)n)’%§m) : [_iézk2oz + VI] Agon) =
N (C.10)
2
BN elactm [eD Al el al) + e Al + o ALY
2 n=—N
and
2k [(e5) - BS™) el — B - [ieckacs — (57— KED) 4+ | AGY =
(C.11)
R« (m) (n) 4(n) (n) 4(n) (n) 4(n) (n) 4(n)
?0 _Z:N €oe Ae(nim) |:ele Ale + €2 AQO + €10 Alo + €2¢ A26 }

respectively. These equations describe the coupling of energy in all directions and show clearly
that for Ae out of the plane the ordinary and extraordinary fields become coupled. Itis also clear
that for Ae in the plane of propagation that these equations simplify to the equations described
in Section 3.4. The analysis of these equations is beyond the scope of this thesis, as for the
situations of interest they reduce to the simplified equations presented in Section 3.4. However,
it is clear that for the most general case these equations describe the coupling phenomena to first
order completely. We also note that whilst we have considered the fieddd2 neccasary to

match the boundary conditions here, in reality it is sufficient to consider only one set] field

or field 2, see Figure 3.12C. The result of not considering both fields will be a general spectral
broadening of the output.
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Abstract An extension to coupled wave theory suitable for
all regimes of diffraction is presented. The model assumes
that the refractive index grating has an arbitrary profile in
one direction and is periodic (but not necessarily sinusoidal)
in the other. Higher order diffracted terms are considered
and appropriate mismatch terms dealt with. It is shown that
this model is analytically equivalent to both the Bragg and
Raman—Nath regime coupling models under an appropriate
set of assumptions. This model is applied to cases such as
optical coupling in liquid crystal cells with photoconductive
layers. Its predictions are successfully compared to finite el-
ement simulations of the full Maxwell’s equations.

PACS 42.25.-p - 42.25.Fx - 42.25.Lc - 42.65.Hw - 42.70.Df

1 Introduction

The coupling of light due to diffraction from inhomoge-
neous, anisotropic materials has been studied for many years
[1-4] and is often referred to as occurring in one of two dis-
tinct regimes, Bragg and Raman-Nath.

Bragg regime coupling is characterised by the presence
of only two beams and was initially described in 1969 by
the coupled-wave theory of Kogelnik [1] for an isotropic
medium. This work was extended in 1997 by Montemezzani
and Zgonik [2] to include optically anisotropic materials.
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Raman-Nath diffraction occurs in cases of thin grat-
ings with multiple diffracted output beams for a single in-
put beam. Diffraction in this regime was first studied in
1936 [3]. This system is modelled by considering the mod-
ulated refractive index as a phase grating and neglecting
any anisotropy in the materials. In the past couple of years
modelling in the Raman—Nath regime has been extended us-
ing an approach similar to that of Kogelnik and Montemez-
zani to describe Raman—Nath diffraction in anisotropic me-
dia [4].

Although the models just described offer ease of im-
plementation and high computational efficiency they are
restricted to specific regimes. Differentiation between the
Bragg and Raman—Nath regimes is not always straight for-
ward as both the thickness of the medium and the refrac-
tive index profile affect the nature of the diffracted beams.
The first criteria used to distinguish the two regimes were
suggested by Kogelnik [1]. However, since then a variety of
ways have been suggested, as reviewed in [5], and more ap-
propriate criteria for both Bragg and Raman—Nath [6] cou-
pling regimes have been established.

From the analysis of these criteria, it is clear that there
is no distinct cut off point between Bragg and Raman—Nath
regimes. Indeed, there is an intermediate regime in which
neither theory is appropriate. A more rigorous method has
been developed, based on direct substitution of the refractive
index profile into Maxwell’s equations, for both isotropic
[7] and anisotropic [8] materials. It has been shown to
agree numerically with both the coupled-wave approach and
the Raman—Nath phase grating approach. Although offering
good agreement with the simpler theories this approach is
less computationally efficient as it involves solving 4n cou-
pled ODE:s for n discrete wave vectors.

Bragg geometries were extensively used to observe two-
beam coupling gain in photorefractive crystals. For exam-

@ Springer
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ple in BaTiO3 and Rh : BaTiOs3 crystals very high coupling
coefficients and diffraction efficiencies were observed [9].
More recently efficient beam coupling was shown in a wide
range of organic materials, such as fullerene [10] and CdSe
doped [11] liquid crystals, polymer-dispersed [12] and fer-
roelectric liquid crystals [13], polymeric composites [14],
hybrids with liquid crystals [15-17], light valves [17], pho-
toconductive polymer-liquid crystal structures [18, 19] and
photorefractive polymers [20, 21]. In most of these materials
either Bragg or Raman—Nath gratings could be created.

However, not all experimental geometries used in beam
coupling are simple. Recently, photorefractive effects have
been demonstrated using low power lasers in nematic lig-
uid crystal cells in both the Bragg [22] and the Raman—Nath
[23] regimes. Optical coupling is achieved by sandwiching
the liquid crystals between photoconductive or photorefrac-
tive layers. In the case of the photoconductive layer, such as
PVK : Cg, which also serves as an alignment layer for the
liquid crystal, the interference of two incident beams will
create a region of modulated conductivity. A voltage applied
across the cell provides a modulated electric field across the
bulk liquid crystal sample which aligns the molecules and,
as such, affects the refractive index in the cell. As shown in
Fig. 1, such interaction leads to several diffracted orders be-
ing present: simple changes in the geometry of the incident
beams will move the system continuously from the Bragg to
the Raman—Nath regime, through the intermediate regime.
Application of a simple Bragg diffraction theory to a system
in the intermediate regime could lead to incorrect values of
coupling coefficients to be deduced.

This system has a number of features which complicate
the modelling. Firstly, due to the non-linear alignment of the
liquid crystals with the applied electric field, liquid crystal

DC supply

XL ‘I

|
=

Output beams

I

|

==

Incident beams

PVK NLC PI
Fig. 1 Schematic of liquid crystal beam coupling cell. The nematic

liquid crystal (NLC) is aligned by the Polyimide (PI) layer and the
photoconducting Polyvinyl Carbazole (PVK) layers
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refractive index profiles are non-uniform in the z-direction
and contain many harmonics of the fundamental grating vec-
tor in the x-direction. Secondly, as nematic liquid crystal
molecules are symmetric with respect to inversion, it is nec-
essary to have a non-normal incidence angle for the bisector
of the two incident beams in order to obtain the correct grat-
ing vector [24]. This means that as the grating is created by
the superposition of the beams at the cell surface, there are
no waves which can be perfectly matched by the fundamen-
tal grating vector. Finally, as has already been mentioned, in
structures with liquid crystals beam coupling behaviour has
been observed in both the Bragg and Raman-Nath regimes,
so a model has to be capable of describing both of these be-
haviours.

In this paper, we present an extension to the coupled-
wave theory of Kogelnik and Montemezzani, which can be
used in the cases of Bragg, Raman—Nath and intermediate
regime coupling. This method is capable of handling refrac-
tive index profiles containing a fundamental sinusoidal mod-
ulation and any higher harmonics that may be present. As an
example we use the structure and geometry of a liquid crys-
tal cell with a photoconductive alignment layer. A finite el-
ement simulation which solves Maxwell’s equations is then
used to verify the models predictions.

In Sect. 2 we develop the beam coupling model from
Maxwell’s equations and show comparison to the existing
coupled-wave models of Montemezzani, and Kogelnik, and
the Raman—Nath phase grating approach. In Sect. 3 a model
for the liquid crystal cell is developed. Finally Sect. 4 pro-
vides details of the comparison between the method pre-
sented here and the finite element approach.

2 Beam coupling model
2.1 Derivation

We consider a medium which contains a periodic refractive
index grating in the x-, z-plane with a fundamental grating
wave number K = 27” and any number of higher grating har-
monics pK where p=2,3,... and A is the grating period.
The method we have developed is valid for gratings aligned
in any direction. However, to simplify the algebra, we as-
sume that the grating is aligned in the x-direction. This is,
for example, the case in photorefractive liquid crystal cells.
We further assume that the medium is birefringent and that
each Fourier component of the dielectric tensor, AeP)(2),
may have a different profile in the z-direction so that the
dielectric tensor may be expressed as

i »
e=ets Y, AP (el PRI, M

p=—00
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Fig. 2 Possible couplings and
associated mismatch terms for
(a) the fundamental grating
period. (b) The second
harmonic. (¢) The third
harmonic

AK(0,*])

where ¢, is the uniform part of the dielectric tensor and
¢ is the phase shift of the p-th grating Fourier compo-
nent. We choose our coordinate axes such that they coincide
with the principal axes of €,. Coupling can be achieved by
diffraction from the fundamental grating vector and any of
its higher harmonics, as illustrated in Fig. 2. It should be
noted that as the bisector of the two incident waves is not
normal, none of these terms are perfectly matched by the
fundamental grating vector. Therefore the coupling strength
will depend on not only the amplitude of the appropriate
coupling harmonic, but also on the size of the mismatch term
AK 0 = g

The electric field in the material is assumed to be a super-
position of the plane waves which may be perfectly matched
by the grating vectors in the x-direction. Hence the field is
periodic in x with fundamental wave number K. We expand
it in a Fourier series in x as

N
E = Z A(’”)(z)ei("(M)""_“”), ©)
m=—N

where w is the optical angular frequency and k™ = mK £ +
k™%, with the constraint that [k™| = kon™. Here ko is
the free space wave number and 1 is the refractive index
seen by the m-th wave. The total number of optical compo-
nents is 2N + 1 where N = \/(TO\ Substituting (2) and (1) into
Maxwell’s equations and using

K™ = k™ 4 (m —n)KE + (K™ — M)z, €))

we obtain a set of coupled-wave equations for the ampli-
tudes A™:
[iE™ x ik™ x A™] 4 [ik™ x V x A™]

+ [V xik™ x A™] 4+ [V x V x A™]

2

w
= _zéuA(M)
C

2 N
1503 pelnm g e gk g
2
n=—N
where I = sgn(m — n) and I"(0) = 0. We may neglect the
final bracketed term on the left hand side of this equation

AK®D

2K
2K 3K

2.0 _
AK AKE D

k@ k@

as its terms consist of second derivatives, which, using the
slowly varying amplitude approximation, will be small. The
first term on each side of the equation describes the propa-
gation of light in an anisotropic medium [25],

2
w
k™ x k™ x A = c—ze,,A("’). 5)

This relates the optical wave vector to the wave polarisation
and dielectric tensor. As such the eigenvalues of this equa-
tion will determine the refractive indices and hence, the ve-
locities at which the light may propagate through the mater-
ial. The remaining terms in (4) describe the optical coupling
between the various plane wave amplitudes:

iK™ x V x A™ £V x iK™ x A

N
— i (n=m) ;M) _ g (m)y
n=—N

2
_5
2

We perform some vector algebra on the left hand side of (6)
and use k™ = kM) and AM — A('”)A("’), where k0™
is the unit wave vector, A the unit polarisation vector,
k™ the optical wave number and A the optical amplitude
of the m-th wave. Taking the dot product of A with both
sides of (6) gives

2ik('")[(12('") i A('"))A("’) _ 12(’")] LVAM
k2 ad PP ) () g (m)
— -0 Z g(tz.m)A(n)ezF(i) t=m et(k; —k; )z’ (7)

n=—0o0

where, to simplify notation, we have written gnm) —
Am Ag(n=m) () The bracketed term on the left hand side
of (7) can be written as & g where # is the unit Poynt-
ing vector, g™ = A™ P and D is the electric dis-
placement unit vector. By writing k" = n™kq we can
simplify (7) further to give

ydA™
dz

n(m)g(m)ﬁgm

. N

lk() ] (n—m) ;. (n) _; (m) .

= Z Glm) A piT¢ o K=Kz @)
n=—N
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where, as A" is a function of only z, we have simplified
the derivative. We can simplify this system by introducing
the new variable

(m)

A(m) — A"(m)e—[k: . (9)

Substituting (9) into (8) gives the simplified equations

~ (m)

o AA
Mgm)_
- dz
iko N (n—m)
_ e (m) F(m) (n,m) x(n) irp"=—"m
=ik™A + Znm g ZNQ AWe ,
n=—

(10)

which for the simple case of Ae”~" being constant can be
solved as an eigenvalue eigenvector problem. For all other
cases the equations are solved using a Runge—Kutta method
in MATLAB.

Equation (10) describes the coupling of an arbitrary num-
ber of beams in a system whose dielectric profile is arbitrary
in the z-direction and modulated with fundamental period A
in the x-direction.

2.2 Comparison to existing models

Before we consider the application of this model we first
aim to show that under suitable approximations it may be re-
duced to the commonly used Bragg and Raman—Nath mod-
els. Here we show that as well as being numerically equiv-
alent for these geometries and optical incidence angles, the
equations are analytically identical for an appropriate set of
assumptions.

The Bragg case is straightforward. Under the assumption
of a single grating Fourier component, a constant dielectric
profile in the z-direction and the presence of only two waves,
(8) becomes

M ,
amdA iKo__201.2) 4 )it idK:

4z angM

o 8 (11)
ﬁgz)d_A _ iko G2 AW =it ,~iAKz,
‘dz 4n g2

These expressions become equal to those derived by Mon-
temezzani [2], once the assumption of zero absorption has
been made.

The comparison to Raman—Nath phase grating theory is
less obvious. Again, we begin by making the assumptions of
a single grating Fourier component of large wavelength, and
a constant dielectric profile in the z-direction. As the grating
wavelength is large the deviation in propagation angles of
the beams is small. Hence the mismatch term & — k™ is
small and may be neglected for thin materials. For compar-
ison, the system is simplified for an isotropic material with

@ Springer

all waves polarised in the same direction. If we then make
the normal Raman—Nath assumptions, i.e. we assume nor-
mal incidence and a 7 /2 phase shift, we may write (8) as

zcosg(m)z_n d_A(’”)

— [Am=D _ gm+D], 12
koAe dz [ ] 12

where 6" is the angle with respect to the surface normal at
which the m-th wave propagates. Using the assumption that
the wave propagation directions differ by a small amount
we may approximate 6™ by the propagation angle of the
incident beam 0¥ = 0. To proceed we make the following
change of variable:

_ koAe
)

z. (13)

Making use of the Bessel recurrence relations it can be
seen that (12) is satisfied by the m-th order Bessel function
Jm(¢). This gives the optical envelope

A<m)=1m(¢>=1m<k°A€z) (14)
2n

which is identical to the optical envelope predicted by the
Raman—Nath phase grating theory [3].

This analysis demonstrated how (8) is, under realistic as-
sumptions, equivalent to either Bragg or Raman—Nath the-
ory. The next step is to compare the model to finite element
simulations for the example system of a photorefractive lig-
uid crystal cell.

3 Liquid crystal model

To demonstrate the applications of this model we wish to
model a non-trivial beam coupling system. A typical liquid
crystal cell provides the perfect example of this due to its
highly non-linear alignment and high optical anisotropy.

We use a Landau—DeGennes Q tensor model [26] for
which the liquid crystal director field 72 is modelled by a
traceless symmetric tensor

Q=«/§S(ﬁ®ﬁ—%8), (15)

where § is Kronecker’s § function and S is the scalar order
parameter. Here we have used a 2 x 2 tensor which restricts
the liquid crystals reorientation to within a plane. The liquid
crystal alignment is then found through a minimisation of
the free energy in the system. The total free energy in the
cell may be expressed as [26]

F:/[Fe+Fd+F,]dV, (16)
\%4
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where F, is the electrostatic free energy, Fy is the elastic
free energy and F; is the thermotropic free energy. These
may be expressed in non-dimensional form as

|
Fq= 553|VQ|2v an
1
Fe=—2%i(V9)" = xaTr(QE), 18
and
1 1
Fi = 3 TTr(Q?) - VBTH(Q) + 5 [1r(Q*) " (19)

where é;‘g is the non-dimensional elastic constant, x; and y,
are the non-dimensional isotropic and anisotropic electrosta-
tic constants respectively, Ty the non-dimensional tempera-
ture, and £ is the electrostatic tensor

€=ﬁ|E|2<I§"®I§—%8). (20)

We represent the alignment tensor Q on the basis of 2 x 2
traceless symmetric tensors [27],

1
Q=Y a,T", @1
p=0

where

oL (00 L0 e

Note that in this notation the scalar order parameter is
S= a(2) + alz. We then express the Euler-Lagrange equations
which minimise the free energy as

S(%Vzan — Toan — 2ay (a(% + a12) + Xaen =0. (23)

One of the major problems with solving these equations
is that the non-dimensional elastic and electrostatic con-
stants are several orders of magnitude smaller than the ther-
motropic coefficients. Various methods exist to overcome
this obstacle including; the use of adaptive finite element
meshing techniques [28], the scaling of the thermotropic co-
efficients [29] and the renormalisation of variables at each
step [30].

Here we use this difference in magnitudes to setup a mul-
tiple scales perturbation expansion in terms of the small pa-
rameter 55. This has the advantage of simplifying the equa-
tions and the method of solution. However, a consequence of
the approximation is that we must assume that the scalar or-
der parameter has only small variations across the cell. This
prevents us from modelling any defects in the liquid crys-
tal alignment. At leading order this defines the scalar order
parameter as

To+ a% + a% =0. (24)

The first order correction determines the molecular align-
ment,

agV2a; — a1 Vag + agxoar — ai xoao =0, (25)

where xo = xq /§5~ The electric field within the cell can be
found by direct substitution of the dielectric tensor

1
€ =e€perd + —€pen Q, (26)
V2
where €4 and €; are the anisotropic and isotropic dielectric
coefficients respectively, into Maxwell’s equation V - D =0
to give

V3¢ +aVQ Vo =0, 7

where « is the non-dimensional, non-homogeneous dielec-
tric coefficient and ¢ is the electric potential in the cell.
Equations (24), (25) and (27) are solved numerically by first
discretising in space and then solving for steady state using
Broyden’s root finding method. The numerical differentia-
tion is carried out using a spectral collocation method [31]
for improved computational efficiency and accuracy.

4 Finite element comparison

The regime independent model has been compared against
the existing models for Bragg and Raman-Nath diffraction.
We now use comsol multiphysics, a finite element modelling
package to solve Maxwell’s equations directly and hence
verify its accuracy for the intermediate regime.

We define a rectangular geometry with sides parallel to
the x- and z-axis. The boundary conditions are periodic in
the x-direction with periodicity of the refractive index. The
finite element simulations are carried out with an optical
wavelength of 1 um, as shorter wavelengths would require
an extremely fine finite element mesh and, hence, consider-
able computation time.

In order to verify the intermediate regime, we must first
define it using the dimensionless parameter ¢, as suggested
by Kogelnik [1], where

_ 27 AL

== 28
A2 (28)

and n, is the average refractive index. Typically the Bragg
regime is defined for ¢ > 10 and the Raman—Nath regime
for g <0.1. The intermediate regime lies between these two
values.

We first verify that the model behaves correctly for a sin-
gle grating component K which is constant for all z. To en-
sure that ¢ lies in the intermediate regime the following pa-
rameters are used: L = 12 um, A = 11.5 wm, which give
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Fig. 3 x-Component of electric
field in cell for:

(a) coupled-wave model.

(b) Finite element simulation.
(¢) Optical power spectrum at
output of cell where ‘o’ is the
coupled-wave approximation
and ‘X’ is the finite element
simulation

Fig. 4 x-Component of electric
field in cell for:

(a) coupled-wave model.

(b) Finite element simulation.
(¢) Optical power spectrum at
output of cell where ‘o’ is the
coupled-wave approximation
and ‘X’ is the finite element
simulation

the regime parameter ¢ = 1.4210. The incident electric field
is normal to the cell boundary z = 0. The refractive indices
chosen in this system correspond to those of a typical liquid
crystal, n, = 1.5 and n, = 1.7 giving the dielectric profile
as

2
_(n5; O —0.1 0.05
€ = ( 0 ”3) + (0.05 0.1 cos(Kx). (29)

Figure 3 compares the field calculated within the cell by the
coupled-wave model and the finite element method. From
the power spectrum it can be seen that the optical energy
has coupled almost completely from the incident beam into
its two closest neighbours, with asymmetry observed be-
tween the 41 and —1 diffracted orders due to the small off-
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diagonal component of the dielectric tensor interacting with
the polarisation asymmetry. The optical power spectrum and
field inside the cell show good agreement with the finite el-
ement simulation. The difference in the power spectra are
less than 10%. This verifies the model’s ability to predict
the component amplitudes of each wave and hence the elec-
tric field within the medium. We now wish to make full use
of the model’s features, by considering a system with the
same fundamental period, but also with second and third
harmonics present. Furthermore, to make the system even
more realistic with respect to the experimental system we
choose some arbitrary profiles for these higher harmonics.
Therefore we choose as the non-homogeneous part of the
dielectric tensor
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Fig. 5 In plane dielectric

%10 Exx

profile for the anisotropic liquid
crystal. The four images show
the different profiles seen by the
light depended on its direction
of motion

Fig. 6 (a) x-Component of
electric field in cell for:

(a) coupled-wave model.

(b) Finite element simulation.
(¢) Liquid crystal director
profile showing molecular
orientation and contour lines
showing equipotentials.

(d) Optical power spectrum at
output of cell where ‘o’ is the
coupled-wave approximation
and ‘X is the finite element

simulation 1
1 208 -
£ 06 ~
0 & /
sl 4
-1 & 02
1 2 3 4 5 e 0 s
b X [m] x10° d kx[ml] x10 ¢
Ac = <—0.05 0.03) cos (K - x) uid crystal profile is the addition of higher harmonics and
0.03  0.05 the possibility of less smooth spatial profiles. For the liquid
—0.1 005\ - (c—Lz/2)? crystal test case, we solve (24), (25) and (27) with an applied
—+ ' . e “  cos2K -x) 1 f the f
0.05 0.1 voltage of the form
—-0.05 0.1\ =
z . b/
+< 0.1 0.05)“ cos 3K - x). GOy = Vocosz<zx>. 31)

The field throughout the cell and the comparison with
the finite element modelling in this case is shown in Fig. 4.
Unlike the previous test case the majority of the energy re-
mains in the incident beam k, = 0 with energy transferring
past the nearest neighbours into the second diffracted order
beams. Again we see good agreement between the electric
fields and the optical power spectrum with error less than
one part in ten. This comparison verifies the models ability
to handle the higher harmonics and arbitrary spatial profiles
of the grating. The only difference between this and the lig-

The voltage amplitude Vp = 5 has been chosen to give an in-
teresting dielectric profile containing harmonics of the grat-
ing vector and a non-uniform profile in the z-direction (see
Fig. 5). The component values ap and a; are substituted
into (10), this is then solved to give the amplitude of the
different optical wave vectors. Figure 6 shows the compar-
ison of the electric field in the liquid crystal with the finite
element modelling. In this case the energy can be seen to
transfer asymmetrically. This is because of the size of the
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off-diagonal terms in the dielectric tensor in comparison to
the diagonal elements.

5 Conclusion

An extension to the anisotropic coupled-wave theory has
been derived allowing us to model systems in the Bragg,
Raman—Nath and intermediate regimes. Comparison to ex-
isting theories has been shown analytically in both Bragg
and Raman—Nath regimes. Finite element simulations have
confirmed the model validity for all regimes.

The model developed here takes into account all possible
coupling combinations between the various optical waves
propagating though the medium. This is achieved by consid-
ering higher order grating harmonics as well as all possible
mismatch terms. The use of an arbitrary grating profile in the
z-direction makes the model useful for more complex sys-
tems such as the liquid crystal cell. In terms of computation
speed the finite element simulation typically takes 1 minute
to run, whilst the coupled-wave approach takes <1 second
for a non-trivial refractive index profile.

The model shows good agreement with the finite element
simulations in all cases tested and will be a useful tool for
modelling optical coupling in more complex systems where
computational speed and efficiency are required.
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Abstract. We develop a fast and accurate approximation of the normally stiff equations which
minimize the Landau—de Gennes free energy of a nematic liquid crystal. The resulting equations
are suitable for all configurations in which defects are not present, making them ideal for device
simulation. Specifically they offer an increase in computational efficiency by a factor of 100 while
maintaining an error of order (10_4) when compared to the full stiff equations. As this approximation
is based on a O-tensor formalism, the sign reversal symmetry of the liquid crystal is respected. In this
paper we derive these equations for a simple two-dimensional case, where the director is restricted to a
plane, and also for the full three-dimensional case. An approximation of the error in the perturbation
scheme is derived in terms of the first order correction, and a comparison to the full stiff equations
is given.
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1. Introduction. The modeling and simulation of liquid crystals for device pur-
poses is an active area of research with a wide variety of applications [1, 14]. In most
applications macroscopic continuum models are used to determine liquid crystal align-
ment under the influence of an applied electric or magnetic field. There are two main
approaches to continuum modeling. The Frank-Oseen (FO) model [8, 20] describes
the liquid crystal in terms of a unit vector n, also referred to as the director. This
model is computationally very efficient. However, although the vector representation
of the liquid crystal may be considered quite intuitive, it is physically incorrect as it
does not respect the inversion symmetry of the liquid crystal; i.e., n and —n represent
the same state of the liquid crystal. This limits the application of the FO model to
geometries in which the liquid crystal orientation angle is bounded between 0 and 7 /2.
Further, the microscopic order of the nematic phase, which depends on temperature,
is not considered. This makes the model unsuitable for geometries in which defects,
nonsmooth variations in 7, can occur.

To overcome these problems an approach was developed by de Gennes in which
the liquid crystal alignment is represented by a tensor, Q, which is proportional to
n®n [7]. This tensor is invariant with respect to the transformation n — —n. Further,
this theory takes into account the orientational order of the liquid crystal through the
temperature-dependent bulk energy, sometimes referred to as the thermotropic energy,
and can therefore be used to describe situations in which sharp variations in the
liquid crystal alignment—otherwise known as defects—occur. The main disadvantage
of this method is that, due to the difference in time scales between the thermotropic
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and elastic properties of the liquid crystals, the final equations are numerically stiff,
making computation expensive.

Often the advantages of using a Q-tensor model outweigh the disadvantage of in-
creased computation time. However, there are devices, such as photorefractive cells [6]
or spatial light modulators [19], in which the FO model is inappropriate as the liquid
crystals may rotate in an unbounded way. However, as there are no defects in these
cells, the Landau—-de Gennes Q-tensor model is unnecessarily expensive to compute.

Numerical methods to overcome the stiffness of the full Q-tensor equations include
the scaling of the elastic and electrostatic coefficients [25] and the renormalization of
the liquid crystal director after each time step [11]. Codes also exist which solve the
full stiff equations. These are usually based around finite element simulations with
adaptive meshing techniques to eliminate the need for dense grids away from defects
[12, 27].

Although the separation in scales makes the Q-tensor equations computationally
expensive, the small parameters involved can be used to our advantage. Here we use a
multiple scales expansion technique to separate the two timescales. On the timescale
of interest, i.e., the slow reorientation time of the liquid crystal, the fast timescale
equations, which determine the order parameter, can be considered as having reached
equilibrium. The resulting equations for the slow timescale are nonstiff and can be
solved in a fraction of the time of the full equations. This approximation reduces the
computation time by a factor of approximately one hundred and is suitable for any
geometry in which the variation in the scalar order parameter may be assumed to be
small.

The paper is arranged as follows: In section 2 we introduce the equations govern-
ing the free energy of the liquid crystal and make an analogy between our approxima-
tion method and the Signorini method originally developed in elasticity [2, 10, 21]. In
section 3, to illustrate the method, we derive a simplified two-dimensional model for
the case where liquid crystal alignment is restricted to a plane. Equations for align-
ment are given and an estimate of the accuracy of the method is derived. In section 4
we apply the ideas and methods used in the two-dimensional case to derive equations
for the three-dimensional case. A method to approximate the error is also given. Fi-
nally section 5 details comparison with the FO and O-tensor models that show that
the approximation we derive is both fast and accurate.

2. Free energy. We consider the dimensional liquid crystal free energy of the
form F = Fo(Q) + Fa(Q) + Fi(Q), where F,, F,;, and F; are, respectively, the
electrostatic, elastic, and bulk free energies. The general form of the biaxial liquid
crystal alignment tensor, Q, written in terms of the orthogonal unit directors n and
m, which define the major and minor crystal axes, respectively, is

(2.1) Q:@S(m)+\/§f}(m®m),

where S is the scalar order parameter, B is the biaxiality parameter, I is the identity

matrix, and n ® n = (n ® n — 1/3I) denotes a traceless symmetric tensor. The total
free energy may be obtained by integrating over the cell volume. In the absence of
external forces, such as electromagnetic fields or boundaries, this free energy reduces to
just the elastic and thermotropic free energies which are SO(3) invariant. Much work
has been done to obtain comprehensive expressions for the thermotropic and elastic
free energies. Details, including a full derivation of all possible SO(3) invariants up to
powers of Q%) can be found in [13, 15, 16].
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Throughout the remainder of this paper we shall assume the simplest possible
expressions for these free energies. It should be noted, however, that this restriction
is not a necessary condition for this method to work; rather it is a simplification used
to clarify the derivation.

The elastic free energy in its simplest form is derived using the one elastic constant
approximation. This can be written as

(2.2) Fa= g ‘VQ’Q,

where L is defined as L = K/(35?) and K is the liquid crystal elastic constant. The
electrostatic free energy of the liquid crystal takes the form

(2.3) F.= —%eerTr (Qé) :

where
s 3
(2.4) &= \/;E R E,

€o is the permittivity of free space, Ae is the anisotropic relative permittivity, and
the electric field is denoted E = —V’(/NJ, where ’(/NJ is the electric potential. The effect
of temperature on the liquid crystal alignment is described by the bulk free energy,
written in terms of a Landau power series expansion of Q [7] with SO(3) invariance,

(2.5) Fi= %A(T —T*)Tr (QQ) — V6BTr (Q3) + %CTrZ (QQ) :

where A, B, and C are the bulk thermotropic coefficients which are assumed to be
independent of temperature. The temperature dependence of this energy is described
entirely by T'—T*, where T™ is the pseudocritical temperature at which the isotropic
phase becomes unstable.

To ensure the traceless symmetric properties of our O and & are respected, we
express the free energy on the basis of traceless symmetric tensors [22],

5 5
Q=>aT"» and &£=) T,
p=1 p=1

where
T — %(_e$®ew—ey®ey+2ez®€z%

(2.6) 7@ _ % (e ®es—e,@e,), TO = % (s ®ey+e,®es),
TW = L(egc@)ez—kez®€ac)» TG = L(ey@’ez"“22@‘211)'

>

V2

We rescale the order parameter S = %5’, the biaxiality parameter 3 = 3¢ 3, the

~ 2BM>
tensor field @ = 220, and the component fields a, = 25a, and e, = €,/¢3, where
1o is a typical potential, ¥ = 1)/1g. For compactness of notation, from now on

we adopt the convention of summing over repeated indices, unless stated otherwise.
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We also indicate with a and e the vectors with components a, and e,. Finally we
nondimensionalize to obtain the scaled free energy,

_ 8 g To oz Ligi (n) (@) ()
(2.7) }'—7|Va\ —Xaa-e—|—7|a\ +§|a| —\/EZTr(TquT )apaqar.

p,q,r

The nondimensional elastic constant &3, the electrostatic coefficient y,, and the scaled
temperature Ty are

9C L 9ep AeC?
2 _ 70 2 _
0= oz XeT s Yo To=

¢ R
c

where T, is the clearing point temperature and L, is the characteristic length of

the geometry studied. We have rescaled space so that (&, %) = (z,z)/L,. Typically

To ~ O(1), while £ ~ O(10~7) and x, ~ O(107°).

The separation in scales between the various terms in the free energy cause the
Euler-Lagrange equations, which minimize (2.7), to be stiff. As a result the computing
times required for even relatively simple geometries become very large. In situations
where the elastic and electrostatic free energies remain small we can initially consider
only the critical points of the bulk free energy. The elastic and electrostatic free
energies can then be considered as a perturbation. It is this assumption that makes
this method inappropriate for defect modeling.

2.1. Critical points under slightly broken symmetry. Before we consider
the case of the liquid crystal it is useful to consider a general free energy of the type
given in (2.7). The free energy F(a) consists of a symmetric bulk free energy perturbed
by a small symmetry breaking contribution from the elastic and electrostatic energies.
We denote these terms F;(a) and L(a), respectively, where £(a) F;(a) € R® in the
three-dimensional case and £(a) F;(a) € R? in the two-dimensional case. For simplic-
ity we consider here the case that £(a) has only the electrostatic energy component, so
that the liquid crystal state is described by a single five-dimensional vector a, rather
than a five-component vector field a(x). This allows us to describe the perturbation
scheme in very general terms as the effect of a symmetry-breaking perturbation on an
invariant manifold of solutions of a set of ordinary differential equations. In the more
general case where the elastic energy is also considered we would have to deal with
partial differential equations for vector fields; however, we expect that the main ideas
outlined here would remain valid.

As the bulk energy is SO(3) invariant the critical points of F;(a) will form an orbit
of solutions in the five-dimensional component space. Specifically, for the general case
corresponding to a biaxial minimizer, the group orbit will be a 3-manifold, while in the
special case corresponding to uniaxial minimizers the orbit reduces to a 2-manifold.

The effect of the first order perturbation £(a) is to break the symmetry and to
collapse the invariant manifold of critical points to a smaller set near the manifold.
This setting is very similar to the Signorini perturbation scheme, originally derived in
the context of elastostatics [2, 10, 21, 26], but of wider potential application [3]. This
scheme determines the equilibrium configuration of an elastic body under the effect of
applied stresses using a perturbation expansion in powers of the applied stress. In the
context of liquid crystals, the role of the “applied stresses” is played by the (small)
elastic and electrostatic forces, and our approximation is the first step of a standard
Signorini expansion.
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Initia) guess &1

Solution

’ Perturbed
solution

Approximate
solution

AN

Solution manifold M

F1G. 1. Graphical representation of the Signorini perturbation scheme. For some initial point
in the phase space (a1,a2) there is rapid convergence at a rate 1o to the solution manifold. Motion
along the manifold, driven by the flow L, occurs much more slowly at a rate 1. The critical point
on My is found when L is orthogonal to Tg. As My is close to M1 the solution can be approrimated
by the point on Moy whose surface normal intersects My close to the perturbed solution.

We consider an orbit M consisting of the critical points of the bulk energy F;(a)
with tangent space Ty My at a € My. As My consists entirely of critical points, then
TaMy C ker(H), where H is the Hessian of the bulk free energy. If the critical points
of the bulk free energy are nondegenerate in the direction normal to the manifold,
then the tangent space coincides with the kernel, To My = ker(H). Therefore, My is
a normally hyperbolic invariant manifold for the flow, —V ,F;(a), where V, denotes
differentiation with respect to the components of the vector a.

The effects of the perturbative terms can be understood by the invariant manifold
theory. If the perturbed flow, —V,(F; + £), and its first derivative are sufficiently
close to the unperturbed flow, then there exists a smooth invariant manifold M; close
to My. The behavior of the perturbed flow along M; will be comparable to the flow
restricted to My [26]. Specifically, a point py on My will correspond to a point p; on
My, where p; is the intersection of the normal to My at pg and M;. If all nonzero
eigenvalues of H are positive, then the dynamical behavior of the flow close to the
manifold will consist of exponential attraction towards the manifold followed by a
slow drift along it [9].

As the perturbation —V, (F; + £) is also a gradient vector field, then the local
minima on M; will be attracting stationary points. For nondegenerate critical points
these are in 1 : 1 correspondence with the local minima of the perturbed function
restricted to the unperturbed manifold M. The critical points restricted to My are
found when the flow L = —V L is orthogonal to T,. This is represented graphically
for the simplified two-dimensional case in Figure 1.

In the simple two-dimensional case considered in section 3 the symmetry group
is SO(2) under the action of rotation on R2. In this case there will be two critical
points on the perturbed manifold. These correspond to an unstable maximum and a
stable minimum.

In the three-dimensional case (see section 4), the situation is more complicated.
The bulk energy minimizers form an orbit of the conjugacy action of SO(3) on the
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five-dimensional space of traceless symmetric matrices (see section 4.2). This orbit is
parametrized locally by the direction of the major axis of the liquid crystal molecule
(two dimensions) together with a circle corresponding to the orientation of the minor
axis. For uniaxial minimizers of the bulk free energy, these circles of critical points
shrink to radius 0. The result is that liquid crystal orientation can be determined only
in terms of the major axis. To determine the orientation of the minor axis in cases
where the perturbation induces biaxiality, a further step in the expansion is required.

3. Two-dimensional case. As an example to illustrate the approximation
method it is helpful to look at a simplified two-dimensional case where the liquid
crystal director is restricted to the x, z plane. The alignment tensor is a 2 x 2 uniaxial
tensor,

(3.1) Qﬁzwﬁ(mm—%%).

We can proceed exactly as in section 2 with the simplified basis set of 2 x 2 traceless
symmetric tensors:

L (-1 0 L (01
(3.2) Tl_%(o ), om0,

Hence

2
Q= Z apT(p).
p=1

In this notation the scalar order parameter is S? = Tr(9Q?) = a? + a3. The Euler—
Lagrange equations of motion, derived using the simplest form of the free energy,
are

(3.3) Oran = EV?an — Toan — 2an (af + a3) + Xaen,

wheren =1,2, 7 =t/74, 74 = [90/(2B2)] ¢, and the viscosity, ¢, is related to Leslie’s
rotational viscosity 71 by ¢ = 71/(352).

3.1. Invariant manifold. Due to the smallness of £ and y,, equation (3.3)
can be seen to have two different timescales. Taking n = &2 as the small parameter,
we can write the time derivatives in (3.3) as 0, = 0-,0 +n0-,1. Substituting into (3.3)
gives

(3.4) Oron + N0z ap = nVZia, — Toan — 2an, (a% + a%) + X0€n,

where xo = Xa/&5 is O(1). Observing that only the bulk free energy changes on the
fast timescale, we assume that this scale determines only the scalar order parameter.
As we are interested only in the slow timescale, i.e., the timescale over which the
liquid crystal aligns, we can make the assumption that the fast timescale behavior
has reached equilibrium, i.e., d;, = 0. The slow scale behavior, which is present due
to the small elastic and electrostatic terms, will be obtained from the first order
correction.

To proceed the component representation of the liquid crystal is rewritten as a
power series expansion in 7:

(35) Gp = Gp,0 + NGn1 + 0(772),
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where a, ; is the nth component of jth order. Substituting into (3.4) and retaining
terms only to O(n?) allows us to write

(3.6) [To +2 (af o +a3,)] an =0,

which is satisfied if (a? 4+ a2 ) = —Tp/2. As S? = a? + a2, equation (3.6) defines the
1,0 2,0 1 2
leading order approximation to the scalar order parameter,

(3.7) S2 = —Ty/2.

This equation can also be derived by minimizing the corresponding Landau—de Gennes
free energy in terms of the scalar order parameter. As described in section 2.1, (3.7)
defines a manifold of critical points in the component space (a; 0, a2,0). For uniaxial
liquid crystals the critical points of the free energy are nondegenerate as Ty < 0.
We consider the effects of the elastic and electrostatic free energies as a symmetry-
breaking perturbation. In the context of the Signorini expansion this defines the flow
along the manifold with, in this case, a single unique minimum, found using the first
step of the Signorini expansion.

3.2. Kernel of adjoint (tangent space). This minimum, and hence the liquid
crystal alignment, can be found from the first order expansion of (3.3). Retaining terms
to O(n) and using (3.6) we obtain

aly  a10a20 ai,1 VZ2a1,0 + xoe1 — Or, a1,0
oo ) ) (e )
a1,0a2,0 asg az,1 VZ2a2,0 + Xxoe2 — O-,a2,0
This is a system of linear equations for a, ; that can be written as Ha; = L. Recall
that H is the Hessian of the bulk free energy. However, in this case this equation has no
unique solution as det(H) = 0. The Hessian is a symmetric real valued function, and
therefore HT = H, where H' denotes the adjoint of H. Therefore, as stated in section
2.1, for a nontrivial solution to exist, L - ker(H) = 0. As this is a two-dimensional
system, the kernel of H is a single vector V. This gives us the solvability condition
L-V =0, where V = (—az, al,o)T is the eigenvector of zero eigenvalue of H.

Using the solvability condition, L - V = 0, we obtain the following equation for
a1,0 and as o:

2 2
(39) al,oaﬁ az.o0 — ag,oa-,—lal’o = al,OV a2,0 — ag,ov a1.,0 + @1,0X0€2 — A2,0X0€1-

Equation (3.9) can be solved simultaneously with (3.6) to determine the liquid crystal
dynamics on the solution manifold.

3.3. Parameterization of the solution. By correctly parameterizing the com-
ponents a9 and az we can force the director onto the solution manifold, removing
the need to solve the leading order equation. As the leading order solution manifold is
SO(2) invariant, we parameterize the solutions in terms of the polar angle ¥ € [0, 27].
If we write

a1,0 = SosinY and ag = Sycos,

then (3.7) is automatically satisfied. This representation can be used in (3.9) to de-
termine the time evolution of a, o:

(3.10) gz dano

2 2
5 =V, (@1,0V7a2,0 — a2,0VZai,0 + a1,0x0e2 — a2,0Xxo0€1) ,
or
1
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where V,, is the nth component of V. This equation confirms that the motion of the
director field is in the direction tangent to the manifold.

Equation (3.10) is an initial value problem for a, ¢ which can be solved using
standard numerical techniques for an initial set of a,, o on the manifold. It is important
to note that we need never calculate ¥, as (3.10) is solved purely in terms of the
component representation, a,o. This ensures that the singularities expected in a
director model are overcome. It is possible to solve (3.10) for either n = 1 or n =
2 and calculate ag o or aj, respectively, from (3.7). However, this method is not
recommended, as computing the square root in (3.7) will introduce a sign ambiguity.
The extra computation required to correct this is inefficient and could potentially
make the code unstable.

3.4. Order one accuracy check. To determine the accuracy of the expansion,
we consider the perturbed manifold M;. The equations derived above are suitable
only in the case where M is sufficiently close to Mj.

Physically the minimum distance between the leading order solution and M; rep-
resents the correction S; to the scalar order parameter, S = Sy + nS; + O(n?). In
general this can be calculated from the singular value decomposition of the O(n) equa-
tion (3.8). However, in two dimensions the correction can be calculated analytically.
After a little algebra we obtain

1
(3.11) S = ——— [ao . V2a0 + ano-e] .

J21¢

The magnitude of S7 can be used to determine the validity of the perturbation ex-
pansion. If 57 becomes comparable with Sy, then the expansion breaks down and
the liquid crystal has large variation in order parameter. If this happens, then the full
stiff equations (3.3) must be solved.

4. Three-dimensional case. The three-dimensional Euler-Lagrange equations
are computed in a similar way to the two-dimensional case:
(4.1a)
Oay
K 87’1
(4.1b)
8a2
K 87'1
(4.1c)
Oag
" 87’1
(4.1d)
da >
773—7'4 =7 (V2a4 + xoe4) — Toas + 3aras + 3V/3 (agaq + aszas) — 2a4 Z ai,
! k=1
(4.1e)
Oas
n 87’1

5

(ai + a%) —2aq Za%,
k=1

N W

=1 (V2a1 + Xoel) —Tpar + 3 (a% — a3 — ag) +

5
=7 (V2a2 + xgeg) —Toas — 6aias + # (ai - ag) — 2as Zai,
k=1

5
=7 (V2a3 + Xoeg) —Toasz — 3 <2a1a3 - \/§a4a5> — 2as Z aﬁ,

k=1

5
=7 (V2a5 + X065) — Toas + 3aras + 3\/§ (a3a4 — a2a5) — 2as Z ai,
k=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



2852 K. R. DALY, G. D’ALESSANDRO, AND M. KACZMAREK

where, as in the two-dimensional case, = &2 and xo = X /&3. The fast time deriva-
tives have been neglected as, on the timescale of interest, these variations will have
reached equilibrium. At this point, for compactness of notation, it is useful to define
the first order perturbation L,, in terms of the elastic and electrostatic contributions,

8am,0

87'1

(4.2) L, = V2am70 + xem —

where m =1,...,5.

4.1. Invariant manifold. In the two-dimensional case the leading order equa-
tions are those which minimize the free energy in terms of the scalar order parameter.
This minimization fixes the liquid crystal director onto the solution manifold in the
two-dimensional space (a1, a2). A similar method can be used in the three-dimensional
case using the biaxial Q-tensor representation (2.1). It can be shown that the station-
ary points of the leading order free energy function, of the form given in (2.5), are
either uniaxial or isotropic [17]. As such the biaxiality parameter 3 must vanish at
leading order. Minimizing the free energy in terms of the scalar order parameter S,
as in the two-dimensional case, allows us to obtain the fast timescale equations. The
Euler-Lagrange equation of motion that minimizes the leading order scalar order
parameter, Sy, is

S,
(4.3) B—Ts = —25,° 4 350% — TS0,

which can be solved for a steady uniaxial state to obtain

3+ /0 — 8T,

(4.4) So = .

Equation (4.4) defines the solution manifold in the five-dimensional component space.
The critical points on this manifold are nondegenerate, providing T is below the
superheating limit, Tp = 9/8 [18]. In terms of the component representation, the
scalar order parameter is given by

(4.5) Sg =Y a.

To fix the biaxiality order parameter to zero, we require

3V3
(4.6) al o+ 3ai o (So — aio) + 5 [az,0 (a5 — a2 o) + 2as0a4,0a5,0] = S

These two equations define a 3-manifold in the five-dimensional component space.
However, as the leading order minimizers are uniaxial, there are only two undefined
parameters which relate to the angles the liquid crystal makes with the coordinate
axes. Therefore, as described in section 2.1, the 3-manifold corresponding to the biaxial
stationary points must reduce to a 2-manifold, leading to a degeneracy in the first
order correction. Specifically this allows us to determine only the direction of the
major crystal axis uniquely.
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4.2. Kernel of adjoint (tangent space). As in the two-dimensional case we
now need to find the first order correction to the leading order terms which will deter-
mine the unique solution on the manifold. Motion across the manifold is determined
by the first order perturbation L.,. The first order contribution from the bulk en-
ergy is invariant with respect to motion on the leading order manifold. Therefore, for
the equation to have a nontrivial solution, we require that the perturbation L,, be
orthogonal to the kernel of H. As Ker(H) = T, My the solvability condition is

8am70

0s

(4.7) Ly, =0,

where s parameterizes motion along the tangent space to the manifold. The derivative
of an, o is found by considering the tensor Q;;(0), which satisfies the perturbed Euler—
Lagrange equations. The motion of Q;;(0) along the manifold by rotation in a spherical
coordinate system is defined by the rotation matrix R;;(s), which acts on Q;;(0) by
the conjugacy action Q;;(s) = Rip(s)Rjq(5)Qpq(0). The rotation matrix R;;(s) is
orthogonal, i.e., Ri(s)R;i(s) = d;; and R;;(0) = 0;;. Motion along the manifold
written in terms of the component representation is

(4.8) amos) = [T Rip () Riq (5)TS0)| a10(0).

The derivative of an, ¢ is found by differentiating (4.8) at s = 0:

8am,0

(4.9) 7

= T [ R}, (0830 TSY) + 84 R ()T | a10(0).

To proceed we need to determine 12;(0); this can be obtained by differentiating the
identity Rip(s)Rjp(s) = di; at s =0:

(4.10) R}, (0)8;, + 0ip R}, (0) = 0.

For this equation to be satisfied R;;(0) must be a skewsymmetric tensor expressed on
the basis W™, defined as

1
w® — ﬁ(ey®ew—e$®ey),
1
(411) W(z) = (ez Re, —e,® em) 5

S

1
W(g)zﬁ(ez@)ey—ey@ez).

For each W (") we obtain a different Oam,0/0s and thus three vectors, V™ that span
the kernel. The solvability conditions can be written as

(4.12) L,V =0,
where the spanning vectors can be explicitly written as

(4.13) Vi =1 (1OW —wiITE) ay,

) )
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In terms of the O(n°) components the spanning vectors V™ formed by each W™
are

(4.14)
0 —V3ay V3as o
—2@3,0 a4.0 as,0
V(l) = 204270 s V(z) = as.o y V(S) = —a4,0
—as,0 \/§a1,0 —a2.0 as,o
Q4,0 —as,o —\/§a1,0 —a2,0

The first order equations require (4.12) to be satisfied in the direction of each spanning
vector. This gives us three equations, one for each of the skewsymmetric tensors W (™),
Substituting (4.2) into (4.12), the time-dependent equations are obtained:

m

P
(4.15) V(”)a—ﬁamp =y (anm,O 4 xem),

where m=1,...,5.

4.3. How to solve equations/parameterization of equations. Equations
(4.15) describe the dynamics of the critical point structure on the generic 3-manifold.
However, as the bulk minimizers are uniaxial, these 3 equations must reduce to 2
corresponding to the reduction in the dimension of the manifold. Using guidance
from the two-dimensional case we exploit the SO(3) invariance of the bulk energy
and parameterize the component representation ag in terms of the uniaxial Q-tensor
with principal axis defined by the spherical coordinate angles [, ¢]:

1—§sin29

? sin? 0 (2 cos® ¢ — 1)
V/3sin? 0 cos ¢ sin ¢
V/3 cos 0sin 0 sin ¢
V/3 cos 0 sin 0 cos ¢

(4.16) ag = So

For a free energy which supports biaxial phases the appropriate representation for the
component field would be a biaxial tensor expressed in terms of all three Euler angles.
Substituting into (4.15), we can simplify the time derivatives to obtain equations for
the time derivatives of 6 and ¢:

353ﬁ = (cos ngVTS?) — sin qSV,S’)) (Vzam,o + X6m>7
(4.17) om
' O 1
2 00 _ 1) (o2

These can be used to describe the time-dependent liquid crystal alignment in all
cases except where the liquid crystal is aligned close to the coordinate singularity
6 = 0, 7. If this is the case, then we need to use a multigrid method [23]. We choose a

different set of coordinates (6, ¢), formed by rotating the existing coordinates about
the y axis. This second coordinate system produces a set of components which give

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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time-dependent equations:

3538870 = (cos PV, P — sin q?)Véﬁ) (VQamp + xem),
(4.18) !
0¢ 1
209 _ 3) (2
35 on sin? évm (V @m,0 + X6m> '

The second coordinate system is singular at § = 0,7, equivalent to 6 = w/2 and
¢ = 0,7. As such the two coordinate systems cannot be simultaneously singular for
a given director. Using the different coordinate systems, the time derivatives of ap o
can be found from the least singular coordinate system as either

Oa 9 _ (. 09
4.1 9ap _ym 99 _ 3 _ )
(4.192) G =V (sin oV, — cos o )an
or

da o - . o0
4.19b 9ap _ _y@ 99 @ _ gin v D
(4.19D) = + (cos gV — sin oV, V) et

The strength of the singularity in each coordinate system is determined by the size of
6 and 6. This can be directly measured from the size of the z and z components of the
director. An appropriate choice of representation, chosen arbitrarily to allow for some
overlap between the two, is to use [0, @] if |n.| < 4/(3v/2) and [0, @] if |n.| < 4/(3v/2).
If both of these conditions are satisfied, an average value of da,/0m obtained from
each of the two representations is used.

4.4. Order one accuracy check. As in the two-dimensional case, we wish
to determine the correction to the scalar order parameter as an approximation of
the accuracy of our method. Unlike the two-dimensional case an analytic expression
cannot be obtained. Instead we use the method of singular value decomposition. Given
the degenerate O(n) equation Ha; = L, we calculate the perturbed manifold M;
corresponding to the O(n) correction to the components a1, where

Hir = (da1 — 6)aro + To + 230 _ a2,

Hao = 4a3 + 6a10+To + 230 _ a2,

Hzs = 4a3 + 6a10+To + 230, a2,

Has = 4a3 o — 3a1,0 — 3VBazo + T+ 23 n_, a2,
Hss = 4a2 o — 3a1,0 + 3VBaz0 + T + 230, a2,

Hiz = (6 4+ 4a1,0)a2,0, Hay = (4a2,0 — 3V3)as0,
His = (6 4+ 4a1,0)as,0, Has = (4az,0 + 3V3)as.o,
Hia = (4a1,0 — 3)aa,0, Hay = 4daszpas0 — 3V/3as.0,
His = (4a1,0 — 3)as,0, Hss = 4dasoas,0 — 3vV3a4.0,
Has = 4as 0as,0, Has = 4agoas0 — 3V3a3.0,
and H;; = Hj;. The order parameter correction S; is then determined from the

components of a; orthogonal to the manifold, S; = ag - a1/Sy.
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TABLE 1
Numerical values of nondimensional constants for a typical photorefractive liquid crystal cell.

K =20 x 10~12N € =4.1 ¢ = 0.037Pa s
A=013x108J K 'm=3 g =3659 Tq =256 x 10~ 7s
B =1.6x10%Jm=3 L=6.05x10"12N £ =4.39x1077

C =3.9x10Jm—3 Ly =12 x 10~%m Xa = 5.13 x 107992
To = —10 L.=12x10"%m X1 = 3.25 x 10753
€ =91 ~v1 = 0.081Pa s Yo =1V

5. Examples. To demonstrate the use of the nonstiff approximate liquid crystal
equations, we consider a planar cell filled with liquid crystals. A spatially periodic
voltage is applied to one boundary, while the other is set to a uniform zero volts.
This is a realistic model for a photorefractive liquid crystal cell [6, 4], a device used
for optical coupling and as an optically addressable spatial light modulator. This
is an interesting device for testing this algorithm as it allows for three-dimensional
orientation of the liquid crystal directors and has a simple geometry.

Under appropriate conditions the test geometry is a square in the x,z plane.
Periodic conditions are imposed in the = direction such that a(x + L., z) = a(z, 2),
and Dirichlet boundary conditions, corresponding to infinite anchoring strength, are
imposed at z = 0 and z = L,. The liquid crystal is aligned by application of a
spatially modulated voltage 9 (x, L,) = 1, sin®(7x/L,) at one boundary, where v, is
the applied voltage amplitude, while the other is earthed, ¥ (z,0) = 0.

First we verify the two-dimensional liquid crystal model derived in section 3. This
is done through comparison to the full stiff time-dependent Q-tensor equations and
through comparison to a time-dependent FO model. In this case the director orien-
tation is restricted to the x, z plane by the planar, in plane boundary conditions. As
is typical, due to the alignment layers used in these cells, a small pretilt is applied
at z = L,. The parameters used in our simulation are given in Table 1. The spatial
derivatives are calculated using a pseudospectral method [24] and, for ease of im-
plementation, the time derivative is calculated using the MATLAB multistep solver
ODE113. A public domain version of the MATLAB code is available at [5].

The FO model is derived by minimizing the FO free energy [8, 20],

- K , 1 _ 1 L=)\2
(5.1) Fro = 5(Vbro)* = Seoeu(E)? — SeoAe (nE) :

in terms of the director angle 60,

09ro

G

= V2%0po + %51 [Sin 20r0 (Eg — Ef) + 2 cos 20F0EIE2] ,

where §; = (egAe/K)Y3 and 7po = ¢ [K/(L2y1)]. Starting from the same initial
conditions, the FO and Q-tensor models are integrated till steady state is reached.
The resulting configurations are compared and the differences are computed.

First we compare the FO model with the approximate Q-tensor model. We observe
that there is an area of the FO model which does not show good agreement with the
O-tensor model. By plotting the resulting director field as vectors and comparing the
numerical gradient, it can be seen that these errors correspond to the points where
the FO model predicts unphysical gradients; see Figure 2.

Similarly we can compare the full stiff Q-tensor equations with the nonstiff ap-
proximate equations derived in section 3. Figure 3 shows a plot of the error in the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



LIQUID CRYSTAL ALIGNMENT AWAY FROM DEFECTS 2857

—_
N

‘\;E\EIZ;;;H;\%H ATTRIIN
x> 2 A7 P RRRS ety a (N
frsr 7P ARNRNRES} sl A
E'g!ﬁﬂ//ﬂﬂ/‘fTT\\‘“\\“\kf E‘S_//////l!\\\\\\f
s MHAAAPAEERRRRRRR s [/
Septrrp AR, Sef b Y
g PAAEAAAEERRRRARAL s
= WhtE AP0 40 Y vt
e ik O o o R e [ T T T O T O B OO O
CEEL AR R i ER AR N
A
ABEEARREEARRLARY  LLiiiliiitiiiill
00 2 4 6 8 10 12 o0 2 4 6 8 10 12
Distance along cell um Distance along cell pm

Fic. 2. Comparison of liquid crystal alignment. The left and right images show the director
alignment for the FO model and the approrimate Q-tensor model, respectively. Director fields for
both models are plotted, contour lines show areas of equal elastic energy, |V6'Fo|2 = C in the FO
model, and |Val|?> = C in the Landau—de Gennes model. The inaccuracy of the FO model can be
seen in the asymmetry of |VOpo|? near the boundary.
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Fic. 3. Two-dimensional director field error calculation for a 10 volt spatially modulated elec-
tric field plotted on a logarithmic scale. The liquid crystal has strong planar anchoring boundary
conditions at z = 0 and z = L, and periodic boundary conditions in the x direction. The error is
calculated both through calculation of the correction to the scalar order parameter S1/So (left) and
through comparison to the full stiff equations da (right).
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Fic. 4. Typical director field plot calculated using approximate equations for a 5 volt spatially
modulated electric field. The shading corresponds to the voltage throughout the cell. The liquid crys-
tal alignment is parallel to the surface but twisted out of plane. This forces full three-dimensional
orientation of the liquid crystal when subject to a spatially modulated electric field.

approximate equation calculated using both the first order correction to the order
parameter, (3.11), and the difference in the two simulations divided by the leading
order scalar order parameter, (3.7),

1
(53) da = — Haapproz - astiﬁ” .

So
Not only is the error very low, but when the two error plots are compared it can
be seen that the approximate error is qualitatively comparable with the difference
between the full stiff equations and the approximations derived here. In both plots
the error peaks around the points of highest liquid crystal variation. This is expected,
as these points correspond to those with highest elastic energy.

Second we compare the three-dimensional model, derived in section 4, with the
full stiff Q-tensor model. In this case the boundary conditions fix the director out of
plane in the y direction to allow for full three-dimensional reorientation.

The steady state alignment results are shown in Figure 4. The comparison to the
full stiff equations is shown in Figure 5 with error calculated using both the correction
to the scalar order parameter, calculated using singular value decomposition, and the
percentage error given in (5.3), where Sy for the three-dimensional case is given in
(4.4). Again it can be seen that the difference between the two methods is very low
and that the error approximation using the singular value decomposition method is
comparable to the true error. We find for the same number of grid points, 12 in
each spatial dimension, that the stiff code takes over an hour to converge, while the
approximate code converges to a solution with a ~ O(107%) in a time of ~45 seconds.

6. Conclusion. The approximate equations derived in this paper determine the
liquid crystal alignment, which minimizes the Landau—de Gennes free energy in the
absence of defects. They can be solved in a fraction of the time required to solve the
full stiff equations.

We have derived equations for both a two- and three-dimensional case and have
implemented both as nonstiff initial value problems in MATLAB. Estimates of the
accuracy of these equations have been derived in terms of the first order correction
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Fi1G. 5. Three-dimensional director field error calculation for a 5 volt spatially modulated electric
field plotted on a logarithmic scale. The liquid crystal has strong out-of-plane anchoring boundary
conditions at z = 0 and z = L, and periodic boundary conditions in the x direction. The error is
calculated both through calculation of the correction to the scalar order parameter S1/So (left) and
through comparison to the full stiff equations da (right).

to the component values and have been shown to give strong qualitative agreement
with the deviation of the approximation from the full stiff equations.

It should be noted that the free energy functions used in this paper are the
simplest possible forms of the free energy. However, generalization to other free energy
functions, whose bulk energy minimizers are uniaxial, is relatively straightforward.
Generalizing this method to situations where the free energy supports biaxial states
is also possible. In this case Mj is a 3-manifold and expressions must be found for the
equations of motion using a biaxial tensor representation with major and minor axes
determined using all three Euler angles.

The major advantage of these equations with respect to the full stiff minimizers
is that they can be computed in a fraction of the time while producing results with
error ~O(10~%). This will be of great importance in medium- to large-scale models
where computational efficiency becomes an issue. The assumption that the elastic and
electrostatic free energies remain small makes these equations suitable for geometries
in which defects do not occur. As such these approximate equations will be of most
use in applications where defects are undesirable. This is the case in many optical
devices where smooth alignment of the liquid crystal is important, but the FO model
predicts nonphysical configurations.
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‘We report the first measurement of two beam coupling in a photorefractive liquid crystal cell with low frequency
(1-10 Hz) applied AC field. The gain measured is larger than that observed at equivalent DC fields. A simple
impedance ladder model is used to interpret the observed effect of the incident light and AC field. © 2010

Optical Society of America
OCIS codes: 000.0000, 999.9999.

Two beam coupling is a widely studied effect and has ap-
plications in holographic data storage and spatial light mod-
ulators [1]. It was originally investigated in photorefractive
crystals [2], where an interference pattern can create a space
charge field in the crystal bulk and via the electro-optic ef-
fect modulate the refractive index. This refractive index grat-
ing is responsible for two beam coupling. The natural bire-
fringence of liquid crystals makes them highly desirable for
two beam coupling: reorienting the liquid crystal molecules
with an electric field can lead to a strong refractive index
grating and, hence, to large beam coupling gain. This has
been achieved by applying a DC field either to liquid crystal
systems with photoconductive layers [3,4] or to liquid crys-
tal doped in the bulk with photosensitive molecules such as
fullerenes or dyes [5]. These systems are: cheaper to manu-
facture than a photorefractive crystal; have comparable gain,
which, furthermore, can be enhanced with the addition of
ferroelectric nanoparticles [6]; and can operate at low beam
intensities. Unfortunately, a long exposure to a DC field can
degrade the liquid crystals or the alignment layers, limiting
the lifetime of the cells. Therefore, there is a clear need to
couple beams without an applied DC field. This has been
achieved, for example, by replacing the photoconductive layer
with a thin photorefractive window [7]. In this case, the space
charge field in the photorefractive crystal applies a modulated
electric field to the liquid crystal. However, while the photore-
fractive windows used in such systems lead to high gain, they
are also expensive. In this letter we investigate using a pho-
toconductive alignment layer and an applied sinusoidal AC
field to remove the need for expensive photorefractive win-
dows or for an applied DC field. We have measured efficient
coupling resulting in significant gain coefficients. Unlike other
liquid crystal devices such as SLMs or displays, where a high
frequency AC field is applied (tens to hundreds of Hz), we fo-
cus here on very low frequencies, between 1 and 10 Hz. The
gain measured in the Raman-Nath regime is larger than that
generated with an applied DC field.

The cell investigated was made from two ITO covered glass
substrates. One was coated with a polyimide (PI) layer and
the second with photoconductive polyvinyl carbazole doped
with fullerenes (PVK:C60). The substrates were rubbed, sep-
arated by 12 pum spacers and filled with nematic liquid crystal

E7 by capillary forces. The cell was placed in a standard two
beam coupling experimental setup, shown schematically in
Figure 1. The beam from the laser diode was split into two

Diode laser
53Znm

0-10v

Fig. 1. Experimental set-up. M- Mirror G- Glass block
VF- Variable P- Polariser ND filter SH- Shutters C- Cell
PD- Photodiodes

equal intensity beams (1mW) using a glass block and mirror
(Labelled G and M in Figure 1). The beams were made to
intersect in the centre of the cell tilted at 30 ° to the bisector
of the incident beams. The angle between the beams was such
that an interference pattern with a period of A=24pm formed
on the cell surface. This long period grating ensures that the
electric field penetrates through the whole cell [7]. The gain
ratio is defined as G' = Ip1+p2/IB1—-B2, where Ipi14p2 is the
intensity of beam 1 in the presence of beam 2 and Ipi-p2
is the intensity of beam 1 in the absence of beam 2. The
exponential gain coefficients is calculated using

1 Gm
Fifln(mfGJrl)’ ()

where L is the cell thickness and m is the ratio of intensities
of the incident beams [8]. As we are interested in the mag-
nitude of energy transfer it is important to ensure that m is
close to 1.

With a sinusoidal AC field applied to the cell, whilst illu-
minated by the two beams, several diffracted orders were
observed. This indicates that a diffraction grating in the
Raman-Nath regime had formed within the cell. Measuring
the gain coefficients shows that energy was transferred from
one beam to the other, demonstrating that beam coupling
was present. Measurements of the gain coefficients as a func-



tion of amplitude shows that below 3V there is no beam cou-
pling with an AC or DC field (see Figure 2). By 4V there is
measurable two beam coupling with both AC and DC applied
fields. These results indicate the threshold for reorientation is
between 3 V and 4 V and that it is not sensitive to frequency.
At all applied frequencies of the AC field, the gain coefficients
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Fig. 2. Gain coefficient vs Amplitude for different applied
frequencies.

increase with increasing amplitude and appear to be reach-
ing a peak at 10V. For every voltage above the threshold,
gain coefficients were larger than those measured in DC. The
peak DC gain coefficient, 44 cm ™", was observed at 16V (see
Table 1). The same gain coefficient could be achieved with
AC field but at much lower amplitudes. For example, at 10Hz
it is observed at only 6V and at 2Hz only 4V are required.
The maximum gain coefficient observed is 134 cm ™' at 2Hz,

Table 1. Amplitude necessary to observe the largest DC
gain of 44 cm™!

Frequency (Hz) Voltage(V) Shift
0 16 N/A
1 3.8 12.2
2 4 12
3 4.3 11.7
8 5.5 10.5
10 6.5 9.5

approximately three times greater than the peak value meas-

ured in DC and approximately four and a half times greater
than the DC gain coefficient at the same voltage. Once the
amplitude of the applied AC exceeds the threshold, there is a
very sharp transition to large gain coefficients (see Figure 3).
The peak gain coefficient appears to shift slightly to higher
frequencies with larger voltage values. While the gain coeffi-
cient decreases monotonically for frequencies higher than the
peak gain frequency, it is still significantly higher than the
DC gain even at 10Hz. For example, the data for 10V shows
a peak at 134 cm™' at 2Hz but then decays to 70 cm™! by
10Hz. The data for 4V show the same trend with a peak of
50 cm~' at 1Hz. By 5Hz the rate of decay has decreased,
but, there is measurable gain up to 10Hz. The same trend
has been observed in a second, validation, cell.
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Fig. 3. Gain coeflicient vs Amplitude for different applied
frequencies.

The reorientation of the liquid crystal and, hence, the

| |Crve [ [Ce

| |CPI

Fig. 4. Equivalent circuit for liquid crystal cell.

strength of the observed diffraction is strongly related to the
voltage drop across the liquid crystal layer. Factors affecting
this voltage drop include: the presence of ions in the liquid
crystal layer, the relative impedance of each layer and the
frequency of the applied field. For an AC field, even of low
frequency, the motion of ions is greatly reduced [9]. We can
provide a semi-quantitative explaination of the gain vs fre-
quency behaviour using a simple toy model of the electrical
coupling between the layers [10]. Here we model each layer
in the cell as a simple RC circuit as shown in Figure 4. This
circuit captures the majority of the cells electrical behaviour
under the assumption that the slow AC field eliminates the
ion motion. The impedance of each layer is given by
_ R;

Zi = iwR;Cj + 1’ @)
where Rj = L;/(0;A) and Cj = eoe; A/L;. Here A is the cell
area, ¢o is the permittivity of free space, o;, ¢; and L; are
the conductance, relative permittivity and thickness of layer
j, with j = {LC, PI, PVK}. The values of 0; and ¢; and the
resulting values for C; and R; for A = 4-107*m? are sum-
marised in Table 2. Note, the exact value of or¢ is not accu-
rately known and varies with different liquid crystal samples.
Therefore, we consider a range of liquid crystal conductances.
The dielectric constant of the liquid crystal corresponds to
planar aligned E7.

The steady state voltage across the liquid crystal layer
Vic as a function of the applied voltage V is given by
Vie =VZrc/(Zrc + Zpr + Zpvi). We calculate the effect



Table 2. Parameter values for a typical photorefractive
liquid crystal cell.

Layer  Lj(nm)  o0;(S/m) €j
LC 12-10% 1075-10"1° 520
PI [11] 20 10~ 3.4

PVK [12] 200 10713 5

of a small, intensity dependent, modulation in the resis-
tance of the PVK on the voltage dropped across the liquid
crystal layer. We assume that the resistance of the PVK is
Rpvik = Rpvi [1 +nB(I)], where 3(I) is the intensity de-
pendent part of the PVK resistance, n < 1 and I is the optical
intensity at the PVK layer. In the limit w = 0 the voltage
drop is determined entirely resistively

Rrc
Rtot

Rpvi
Rtot

Vie =V 1- B +0(",  (3)
where Riot = Rrc+Rpr+Rpvi. Typically, as Rj. < Rpy =~
Rpvi, the voltage drop across the liquid crystal in the DC
regime is very small. Similarly, if the frequency of the applied
voltage is high enough, typically w > 1/(C;R;) for all layers,
then the voltage is determined entirely capacitively

v CpvikCpr
CpvikCpr + CpvkCrc + CLeCpr’

Vie (4)
In this case, as Ci. < Cpyvi < Cpr, the voltage drop across
the liquid crystal is large. However, as V¢ is independent of
the resistance of the photoconductor, no diffraction will take
place. In the general case, relevant for the slow AC field
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Fig. 5. Modulation coefficient at fix voltage for a pla-
nar aligned cell at different frequencies and for different
liquid crystal conductances

A%}
Ztot

_ Zpvk
Ztot

Vie=V (1 —iZpvxCpvrw)nB(I)|+0(n°),

(5)
where Ziot = Zrc + Zpr + Zpv k. The significance of equa-
tion (5) can be understood by plotting the coefficient of n3(I)
against w for a range of liquid crystal conductances, see Fig-
ure 5. It can be seen that, although small, there is a broad
peak in the amplitude of the modulation coefficient which
narrows and increases in amplitude with the liquid crystal

conductance. This suggests that there is a range of frequen-
cies close to zero Hertz for which the diffraction efficiency
of the liquid crystal cell is largest. We note that decreasing
the conductance of the liquid crystal increases the range of
frequencies over which 8(I) affects V¢, whilst reducing the
overall effect of the PVK. This analysis explains some of the
features of the cells, clearly more work has to be done in op-
timising this system. Detailed modelling of charge motion,
combined with a more thorough analysis of the electrical
properties of the system, will be required to determine the
ideal conditions for beam coupling assisted by an AC field.
In summary, efficient two beam coupling has been observed
in the Raman-Nath regime in liquid crystal cells with PVK
layer and with an applied sinusoidal AC field. A strong depen-
dence of the gain coefficient on frequency was observed with
a very sharp transition from the DC to the low frequency AC
regime. The largest gain coefficient observed was 134cm ™!
at 2Hz and 10V. There is a clear shift to lower amplitudes
in case of an AC field, as compared with the DC regime, to
achieve the same value of gain. Furthermore, higher coupling
coefficients, up to a factor of three larger, have been observed
with AC field than with DC field.A semi—quantitative expla-
nation has been given, assuming the AC field reduces the
effect of charge migration, in terms of an impedance ladder
model.
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