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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

SCHOOL OF MATHEMATICS

Doctor of Philosophy

by Keith Richard Daly

In this thesis we study the interactions between light and matter in photorefractive liquid crystal

cells. To model the liquid crystal alignment we develop a fast and accurate approximation of

the normally stiff equations which minimise the Landau-deGennes free energy of a nematic

liquid crystal. The resulting equations are suitable for all configurations in which defects are

not present, making them ideal for device simulation. Specifically, they offer an increase in

computational efficiency by a factor of 100 while maintaining an error of order(10−4) when

compared to the full stiff equations. As this approximation is based on aQ–tensor formalism, the

sign reversal symmetry of the liquid crystal is respected. We consider both the simplified case,

where the director is restricted to a plane, and the full three-dimensional case. An approximation

of the error is also given. We use the liquid crystal model to understand two different optical

effects. The first of these is optical coupling. This effect is observed in liquid crystals in both the

Bragg and Raman–Nath regimes. To account for this behaviour we develop an extension to the

coupled wave theory which is suitable for all regimes of coupling. The model assumes that the

refractive index grating, generated by the liquid crystal, has an arbitrary profile in one direction

and is periodic (but not necessarily sinusoidal) in the other. Higher order diffracted terms are

considered and appropriate mismatch terms dealt with. It is shown that this model is analytically

equivalent to both the Bragg and Raman–Nath regime coupling models under an appropriate set

of assumptions. This model is also verified through comparison to finite element simulations of

Maxwell’s equations. The second effect we model is the coupling of surface plasmon polaritons

at the interface between a metal layer and a photorefractive liquid crystal cell. We implement

existing numerical models to gain a thorough understanding of the system. These models are

qualitatively compared with experimental observations. Analytic approximations to describe

the coupling of surface plasmon polaritons at the surface of the liquid crystal cell are developed.

These expressions provide a great deal of insight into the coupling mechanisms and will be of

fundamental importance in optimising these systems.
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Chapter 1

Introduction

This thesis is concerned with the interaction of electromagnetic fields with liquid crystals in

photorefractive cells. These cells consist of a sample of liquid crystals sandwiched between two

alignment layers, at least one of which is photoconductive, see Figure 1.1. The combination

of light incident on the photoconductor and an applied DC electric field causes a change in

the voltage applied to the liquid crystal layer. This realigns the liquid crystal causing apparent

non-linear interactions between the liquid crystals and the incident optical field.

We have studied two different but related optical interactions, the second of which builds on

the effects modelled in the first situation. The first is the coupling of energy between optical

plane waves in a bulk liquid crystal cell. This effect is similar to photorefraction. The second

effect is the propagation of optical surface waves, known as surface plasmon polaritons, at an

interface between a liquid crystal cell and a metal. There are three main problems of interest in

modelling these systems, each of which forms a chapter of this thesis. A formal introduction

to the problems including a review of the relevant literature is given in the introduction of each

chapter and a brief summary of each of the problems is given below.

1.1 Layout of Thesis

This thesis is arranged as follows: The remainder of this chapter provides a brief introduction

to Maxwell’s equations which are used to determine the electric field distribution in the liquid

crystal cell and relevant for the optical modelling in the later chapters.

In Chapter 2 we consider the modelling of the alignment of liquid crystals under the influence

of an applied electric field. Whilst powerful numerical tools exist [1], these involve finding the

solution to a set of stiff non-linear coupled partial differential equations. The numerical stiffness

is due to the separation in time scales between the elastic and temperature dependent properties

of the liquid crystal. Under appropriate assumptions, relevant for a photorefractive liquid crystal

cell, an approximate set of equations are developed. This method, based on a perturbation

1



Chapter 1 Introduction 2

FIGURE 1.1: Schematic of a photorefractive liquid crystal cell: A layer of liquid crystals is
sandwiched between two alignment layers, one of which is a photoconductor. A DC electric
potential is applied to the cell creating an electric field which aligns the liquid crystal. This
alignment can be altered by application of a spatially varying optical field. This changes the
conductivity of the alignment layer and, hence, the electric field in the cell and the liquid crystal
alignment.

expansion technique, offers an increase in computational efficiency by a factor of 100 whilst

maintaining an error of order(10−4) when compared to the full stiff equations. Derivations and

numerical verification is given for both the simplified case where the liquid crystal is restricted

to a plane and the more general case where the liquid crystal alignment is unrestricted.

Chapters 3 and 4 describe two different, but related, optical effects observed in liquid crystal

cells. Chapter 3 considers the modelling of the photorefractive–like coupling observed in the

bulk liquid crystal cell. The interference of two beams in the photoconducting layer of the cell

produces a conductivity modulation. Combined with an applied DC field the electric field in the

cell becomes spatially modulated with fundamental period equal to the pitch of the interference

pattern of the two beams. The effect of this is to align the liquid crystal periodically and create

a refractive index grating which scatters each of the two beams into a discrete set of directions.

This is modelled using a multiple scales expansion technique. The resulting equations prove

to be fast and accurate when compared to existing models and to finite element simulations of

Maxwell’s equations. Some predictions of the model are analysed in detail and suggestions for

improving the performance of the system are considered.

The final problem, considered in Chapter 4, is the plasmonic diffraction at the surface of the

photorefractive cell. Adding a thin gold layer adjacent to the photoconductor allows the pho-

torefractive liquid crystal cell to support surface plasmon polaritons. These surface waves are

of fundamental importance in many optical applications and are limited by their short propaga-

tion length. To overcome this energy can be pumped into the plasmons using a refractive index

grating. To gain an understanding of the system a numerical model is developed based on ex-

isting techniques [2]. The resulting code allows us to probe the effects of different parameters

on the system. Analytic tools, based on the equations from Chapter 3, are developed and com-

pared to the numerical model. The resulting models will be of fundamental importance in the

optimisation of these systems.



Chapter 1 Introduction 3

Finally, in Chapter 5, we provide a summary of the work done in this thesis and conclude

by considering possible future work and addressing open questions raised by the preceding

chapters.

A copy of each of the publications which have come from this work are included at the end of

this thesis.

1.2 Maxwell’s equations

The majority of Chapters 3 and 4, and small sections of Chapter 2, make frequent use of

Maxwell’s equations. Here we provide the briefest of introductions to these equations. Fur-

ther information, including a historical introduction can be found in the opening chapters of

Born and Wolf [3]. Maxwell’s equations are the fundamental laws of electromagnetism and are

comprised of four linear partial differential equations. These may be summarised as follows:

Faraday’s law of induction, first published in 1831 ,

∇ × E(x, t) = −∂B(x, t)
∂t

, (1.1a)

Ampère’s circuital law, published in 1826 and extended by Maxwell in 1861,

∇ × H(x, t) =
∂D(x, t)

∂t
+ J(x, t), (1.1b)

Gauss’ law applied to electrostatics, derived in 1835 but not published until 1867,

∇ ·D = ρ (1.1c)

and the corresponding law for magnetism

∇ ·B = 0. (1.1d)

HereE is the electric field,D is the electric displacement,H is the magnetic field,B is the

magnetic induction,J is the free current density andρ is the free charge density. These funda-

mental quantities are related by the materials equationsD = εE, B = µH andJ = σE. The

quantitiesε, µ andσ are the dielectric constant (or permittivity), permeability and conductiv-

ity respectively. These equations are exact under the assumption that the photon mass is zero.

The error induced by a non-zero rest mass is observed in deviations from the1/r2 predicted by

Gauss’ law for the dependence of electric field at a distancer from a point charge. To first order,

this error is approximated with a1/r2+q dependence. The exact value ofq is undetermined

however bounds have been established by means of null experiments, for a review see [4]. The

current upper bound,q = (2.7± 3.1)× 10−16, was established in 1971 by Williams et al [5].

This degree of accuracy means, for the systems studied in this thesis, that Maxwell’s equations

may be considered exact.
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In the majority of cases considered here we are interested in travelling wave solutions in the

absence of free charges and free currents. Therefore, an explicit time dependencee−iωt is as-

sumed, whereω is the optical angular frequency. On substitution into Maxwell’s equations we

obtain the simplified relations for the electric and magnetic fields,

∇×H = iωεE, ∇×E = −iωµH,

∇ · εE = 0, ∇ · µH = 0.

(1.2)

From these equations it is clear that only the first two equations need to be solved. In Chapter 4

we will see that, under certain assumptions, this statement also holds for conductive materials.

Therefore, throughout this thesis we generally need only consider Maxwell’s curl equations.

For travelling wave solutions it is often easier to deal with the wave equation. This is derived

from Maxwell’s equations by taking the curl of either Faraday’s law or Ampère’s law,

∇×∇×E = ω2µεE (1.3)

and will be used to model wave propagation throughout this thesis. In general the materials

constants can be written asε = ε0εr andµ = µ0µr whereε0 andµ0 are the permittivity and

permeability of free space which define the speed of lightc = 1/
√
ε0µ0. As the materials

considered here are non-magneticµr = 1. For anisotropic materials, such as the liquid crystal,

εr is a tensor function of frequency, space and time. Here the spatial and temporal dependences

are determined by the alignment properties of the liquid crystal. From equations (1.3) it can be

seen that there is a coupling between a materials dielectric properties and the electromagnetic

field. This coupling enables the control of optical fields using a liquid crystal cell and is the

basis for all liquid crystal optics.



Chapter 2

An efficient algorithm for liquid crystal

alignment away from defects

In this chapter we use perturbation techniques to develop a new approximate method which can

be used to calculate the alignment of liquid crystals. The resulting equations are suitable for

all configurations in which defects are not present, making them ideal for device simulation.

This method, which is based around the widely used Landau–deGennes (LdG) phenomenolog-

ical description of liquid crystals, is shown to be both accurate and computationally efficient.

Specifically the approximation offers an increase in computational efficiency by a factor of 100

whilst maintaining an error of order(10−4) when compared to the full LdG model.

This chapter is arranged as follows: In Section 2.1 we provide an introduction to liquid crystals

and existing modelling methods. In Section 2.2 we derive the Frank Oseen (FO) model for liquid

crystal alignment restricted to a plane. This will be used in comparison to the approximation

derived here. In Section 2.3 we introduce the equations governing the LdG free energy of the

liquid crystal and make an analogy between our approximation method and the Signorini method

originally developed in elasticity [6, 7, 8]. In Section 2.4, to illustrate the method, we derive

a simplified two dimensional model for the case where liquid crystal alignment is restricted

to a plane. Equations for alignment are given and an estimate of the accuracy of the method

is derived. In Section 2.5 we apply the ideas and methods used in the two dimensional case

to derive equations for the three dimensional case. A method to approximate the error is also

given. Finally, Section 2.6 details comparisons with the FO and LdG models that show that the

approximation we derive is both computationally fast and accurate.

2.1 Introduction

The liquid crystalline phase is a state of matter which exists between the isotropic liquid phase

and the crystalline solid phase. As such the liquid crystal phase has properties of both solids and

5
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FIGURE 2.1: Phases of matter. The left hand image shows the isotropic liquid phase, the
molecules are randomly positioned with random alignment. The right hand image shows the
nematic liquid crystal phase. As in the isotropic phase the molecules are randomly positioned,
however, they have a degree of orientational order.

liquids. Specifically, liquid crystals can flow like a liquid, however, they have a degree of orien-

tational ordering to their molecular structure similar to a solid, see Figure 2.1. Materials which

exhibit a liquid crystalline phase have effectively two melting points, the point at which they

transform from solid to liquid crystal and the point at which they transform from liquid crystal

to liquid. The high molecular ordering of the liquid crystal phase gives them a large optical and

dielectric anisotropy. Coupled with their strong electro–optic response this has lead to the suc-

cessful application of liquid crystals in display technology, for a review see [9]. These properties

can also be used in a wide variety of linear and non-linear optical devices. The modelling and

simulation of liquid crystal alignment for device purposes is an active area of research with a

wide variety of applications [10, 11]. In this chapter we use perturbation techniques to develop

a new approximate method which can be used to calculate the alignment of liquid crystals.

A comprehensive history of liquid crystals is beyond the scope of this thesis. A detailed his-

torical review can be found in [12]. Here we wish to simply highlight important milestones

in the development of liquid crystal modelling. Liquid crystals were originally discovered by

Friedrich Reinitzer in 1888 [13, 14]. Reinitzer observed that certain cholesterol exhibit two melt-

ing points. The liquid crystalline nature of these materials was confirmed through microscopy

measurements by Lehmann [15, 16] who also observed materials with two or three melting

points. Whilst Lehmann observed the multiple melting points he did not realise that this consti-

tuted a new phase of matter. It was not until 1922 that liquid crystals were recognised as a fourth

phase of matter [17, 18]. It is this paper by Friedel in which much of the present terminology is

introduced. Friedel introduced the term mesophases to describe liquid crystalline materials and

observed that these can be further categorised into Nematic, Cholesteric and Smectic phases.

He also recognised that cholesteric phases are chiral Nematic phases and predicted that Smectic

phases form layers, this was later verified by x–ray diffraction [19, 20]. The main phases of in-

terest for device application are the Nematic and Smectic phases, of which the most commonly

used are the nematic phases. Therefore we will concentrate on these for the remainder of this

chapter.
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Liquid crystals can be further classified into two different groups, thermotropic and lyotropic.

The liquid crystals discovered by Reinitzer are thermotropic liquid crystals, these are materials

which form liquid crystal phases due to temperature. Lyotropic liquid crystals are materials

which form liquid crystal phases due to changes in concentration, see [12], and are of interest

in biophysics and biochemistry. Throughout this thesis we will only be concerned with ther-

motropic liquid crystals and will not discuss lyotropic liquid crystals further.

The alignment of liquid crystals by electromagnetic fields is one of their key properties which

makes them useful in device applications. The orientation of liquid crystals by a magnetic

field was first observed by Mauguin in 1911 [21]. He observed that samples of liquid crystals

sandwiched between two glass layers could be made to align such that they were optically

homogeneous by application of a magnetic field in the direction normal to the glass layers. The

alignment of liquid crystal reorientation driven by an electric field was first reported in 1904, for

details see [12]. One of the most important discoveries relating to the electromagnetic response

of liquid crystals was the threshold behaviour displayed by liquid crystals. That is, for a sample

of liquid crystals between two glass plates with defined alignment at the boundaries there is a

threshold field above which the elastic alignment energy of the liquid crystal is overcome and

the liquid crystal will align to the applied field. This effect is known as the Frederiks transition

and was first quantified in 1929 [22].

The most successful and well known application of this alignment effect is the twisted nematic

cell used in liquid crystal displays. The invention of this devices, which builds on a great deal

of previous theoretical and experimental work, is usually attributed to Schadt and Helfrich [23].

The cells consist of liquid crystals sandwiched between two glass plates. Alignment treatments

are applied to the glass plates such that the liquid crystal is aligned in the plane of the glass plates

at each interface, however, there is a 90 degree twist in alignment between the two. Between

crossed polarisers this device will appear transparent. When a voltage is applied the liquid

crystals will realign. For a sufficiently large voltage [24] the twisted structure within the cell is

broken and the cell becomes opaque

The mathematical modelling of liquid crystals falls into two main categories, the molecular

field theories and the continuum theories. Molecular field theories, such as the theory developed

by Maier and Saupe in 1958 [25, 26], concentrate on the intermolecular forces and degree of

order for a sample of liquid crystals. Such theories involve writing down the intermolecular

interactions between a pair of molecules before averaging over a large sample. Continuum

theories make use of phenomenological expressions to describe the free energy of a liquid crystal

sample, these theories began with the work of Oseen in 1933 [27] and Frank in 1958 [28].

Both continuum and molecular field theories provide different insights into the behaviour of

liquid crystals and attempts have been made to align the two [29, 30]. In this thesis we are

concerned with the alignment of liquid crystals to electric fields rather than detailed studies on

the molecular level. Therefore we make use of the continuum theories and will not consider the

molecular field theories further.
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FIGURE 2.2: The three common liquid crystal disclinations, all of which have a different
elastic constant. The left hand image shows the splay disclination, this has elastic constant
K1. The middle image shows the twist disclination, this has the elastic constantK2. The right
hand image shows the bend disclination, this has elastic constantK3.

The original theories put forward by Frank and Oseen are static theories, these describes the

liquid crystal in terms of a unit vector̂n, also referred to as the director. The equilibrium

alignment of the liquid crystal is found by associating a free energy to the liquid crystal in terms

of the various possible disclinations, see Figure 2.2, The resulting free energy is minimised in

terms of the director orientation angles. These theories were developed and reformulated by

Ericksen [31] in 1962. The dynamic theories of liquid crystals began in the early 60s with a

theory developed by Ericksen [32]. However, this theory proved too simplistic to describe the

dynamics of a liquid crystal cell. In 1966 Leslie published his first paper on the dynamical theory

of liquid crystals [33]. However, this theory failed to reduce to the Ericksen reformulation of

the FO model in the static limit. In 1968 Leslie published a second paper, in which he added

contributions from the elastic interactions between liquid crystals [34]. This time the theory

did reduce to the static model in the appropriate limit. This model is computationally very

efficient. However, although the vector representation of the liquid crystal may be considered

quite intuitive, it is physically incorrect as it does not respect the inversion symmetry of the liquid

crystal, i.e.n̂ and−n̂ represent the same state of the liquid crystal. This limits the application

of the FO model to geometries in which the liquid crystal orientation angle is bounded between

0 andπ/2. Further, the microscopic order of the nematic phase, which depends on temperature,

is not considered. This makes the model unsuitable for geometries in which defects, non smooth

variations inn̂, can occur.

To overcome these problems an approach was developed by deGennes in which the liquid crys-

tal alignment is represented by a tensor,Qwhich is proportional tôn⊗n̂ [26, 35]. This tensor is

invariant with respect to the transformationn̂ → −n̂. Further, this theory takes into account the

orientational order of the liquid crystal through the temperature dependent bulk energy, some-

times referred to as the thermotropic energy, and can therefore be used to describe situations

in which defects, occur. The direct solution of the Euler-Lagrange equations which minimises

this free energy requires the integration of 9 coupled non–linear PDE’s. This can be simplified

through the method of Schopohl and Sluckin [36] who used Lagrange multipliers to impose the

traceless symmetric properties of the system. Direct elimination of the Lagrange multipliers

reduces the dimension of the problem to 5. Alternatively the method of Sonnet can be used [37].

This method involves writing the free energy on the orthonormal basis of traceless symmetric
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tensors and again reduces the dimension of the problem to 5. These methods are commonly

used in the numerical simulation of liquid crystal alignment to date. The main disadvantage of

the LdG method is that, due to the difference in time scales between the thermotropic and elastic

properties of the liquid crystals, the final equations are numerically stiff, making computation

expensive.

Typically continuum theories involve writing down free energy expressions for the elastic, elec-

trostatic, thermotropic and surface interactions in the liquid crystal cell. In the tensor based mod-

els these usually take the form of Landau power series expansions. Typically only the lowest

order terms are retained. A great deal of work has been done to obtain the most general possible

expressions for these energies. Expressions for the elastic and bulk free energies are invariant

with respect to rotation of the sample and have been obtained up toQ4 [38, 39]. The surface free

energy for a liquid crystal sample is present due to the non-infinite anchoring strength between

the liquid crystal and the boundaries. The strength of this alignment is dependent on the method

used to align the liquid crystals, for a review see [40]. Finite anchoring strength in director based

models is usually based on the formalism of Rapini and Papoular [41] which was also described

by Berreman [42, 43] and has been shown to give good agreement with experimental measures

[44]. Anchoring strength in tensor based models has been described in the simplest possible

case by Nobili [45]. Here the anchoring strength is assumed to be isotropic, i.e. the liquid crys-

tal can move out of the plane of the boundary as easily as it can rotate in the plane. This theory

provides a method of modelling finite anchoring strength. However, in general the anchoring

strength will be anisotropic, i.e. the liquid crystal may move away from the interface plane more

easily than it can twist in the plane. To overcome this anisotropic anchoring strengths have been

considered [46]. These are based on a power series expansion where different penalty energies

are associated with movement in and out of plane.

A great deal of work has gone into the study of continuum models. Some groups have produced

detailed simulations regarding the structure of point defects, [47, 48], hedgehog configurations

[49, 50, 51, 52] for a review see [53], disclination lines [54, 55, 56] and order reconstruction

[48, 57]. Whilst other groups have worked on large scale numerical simulations, often based

around finite element [1, 58, 59] or finite difference [60, 61] discretisation methods, of the

continuum equations. The finite element models have proved highly successful and are used in

a variety of optical applications [62, 63].

Often the advantages of using aQ–tensor model outweigh the disadvantage of increased com-

putation time. However, there are devices, such as photorefractive cells [64] or spatial light

modulators [65], in which the FO model is inappropriate as the liquid crystals may rotate in an

unbounded way. However, as there are no defects in these cells, the LdGQ-tensor model is

unnecessarily expensive to compute.

Numerical methods to overcome the stiffness of the fullQ tensor equations include: The scaling

of the elastic and electrostatic coefficients [66] and the renormalisation of the liquid crystal

director after each time step [67]. Codes also exist which solve the full stiff equations. These are
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usually based around finite element simulations with adaptive meshing techniques to eliminate

the need for dense grids away from defects [1, 46].

Although the separation in scales makes theQ-tensor equations computationally expensive, the

small parameters involved can be used to our advantage. In this chapter we develop a new

approximation which uses a multiple scales expansion technique to separate the two time scales

and overcome the numerical stiffness. On the timescale of interest, i.e. the slow reorientation

time of the liquid crystal, the fast timescale equations, which determine the order parameter, can

be considered as having reached equilibrium. The resulting equations for the slow timescale are

non-stiff and can be solved in a fraction of the time of the full equations. This approximation

reduces the computation time by a factor of approximately100 and is suitable for any geometry

in which the variation in the scalar order parameter may be assumed to be small.

2.2 Frank–Oseen director model

2.2.1 Free energy

The FO free energy of a liquid crystal sample is given byF̃(n̂) = F̃d(n̂) + F̃e(n̂), whereF̃d
is the elastic free energy and̃Fe is the electrostatic free energy. We model the orientation of the

liquid crystal on a macroscopic level in terms of a unit directorn̂, which tells us the average

alignment of liquid crystal molecules over a small sample. Typically this is written in terms of

polar coordinates

n̂ =

 sin θFO cosφFO
sin θFO sinφFO

cos θFO

 , (2.1)

whereθFO andφFO are the standard spherical coordinate angles.

The elastic free energy is modelled in terms of the FO free energy expression [27, 28],

F̃d =
1
2
K1 [∇ · n̂]2 +

1
2
K2 [n̂ · (∇× n̂)]2 +

1
2
K3|n̂× (∇× n̂) |2, (2.2)

whereK1,K2,K3 are the splay, twist and bend elastic constants respectively, see Figure 2.2.

To model alignment in the most general case all three of these elastic constants are needed.

However, our purpous is to give the simplest possible derivation of the FO model such that it is

suitable for comparison with theQ tensor approach. Therefore, to simplify the derivation we

use the one elastic constant approximation,Kj = K, wherej = 1, 2, 3. For an appropriate

geometry the liquid crystal orientation is restricted to thex, z plane (see Figure 3.1). As such

we may assume our system to be twist free,φFO = 0. Substituting the director expression (2.1)

into the Oseen Frank free energy expression (2.2) yields:

F̃d =
K

2
(∇θFO)2 . (2.3)
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The second part of the free energy is the electrostatic free energy which is derived by substituting

the expression for the dielectric tensor

εij = εuδij + ∆ε
(
n̂in̂j −

δij
3

)
(2.4)

into the expression for electrostatic energy

F̃e = −1
2
ε0εij∂iψ̃∂jψ̃, (2.5)

whereψ̃ is the electric potential throughout the cell and

∆ε = ε‖ − ε⊥, εu =
ε‖ + 2ε⊥

3
. (2.6)

Retaining only terms which depend on the alignment gives the electrostatic energy for the liquid

crystal cell

F̃e = −1
2
ε0∆ε

(
∇ψ̃ · n̂

)2
. (2.7)

The total free energy is the sum of the expressions for elastic energy (2.3) and electrostatic

energy (2.7). We non-dimensionalise it to obtain

F =
1
2

(∇θFO)2 − 1
2
χFO (∇ψ · n̂)2 , (2.8)

whereχFO =
ε0∆ε
K

ψ2
0 andψ0 is a constant potential which non-dimensionalises the system,

ψ = ψ̃/ψ0. The liquid crystal alignment can now be determined by minimising equation (2.8)

in terms ofθFO. To minimise the free energy over the whole domain we substitute equation

(2.8) into the Euler–Lagrange equation

∂F

∂yn
− ∂i

∂F

∂(∂iyn)
= 0, (2.9)

wherei = x, y, z. Equation 2.9 is derived in Appendix A and minimises a functionF with

respect to a set of variablesyn. After some manipulation we obtain the Euler Lagrange equation

for θFO

∂θFO
∂τFO

= ∇2θFO +
1
2
χFO

[
sin 2θFO

(
E2
x − E2

z

)
+ 2 cos 2θFOExEz

]
, (2.10)

whereτFO = t
[
K/(L2

xγ1)
]
, Lx is the characteristic length of the system,(x, z) = (x̃, z̃)/Lx

andγ1 is Leslie’s rotational viscosity. The equation forψ is derived by substituting equation

(2.4) into Maxwell’s equation∇ · D = 0. After some manipulation this yields

∇T

(
1− αFO cos 2θFO αFO sin 2θFO
αFO sin 2θFO 1 + αFO cos 2θFO

)
∇ψ = 0, (2.11)

whereαFO = ∆ε/(ε‖ + ε⊥) is the electrostatic coupling strength.
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FIGURE 2.3: Typical plot for director field under the application of a sinusoidal electric field
with planar boundary conditions. The contour lines show the equipotentials in the cell.

The coupled differential equations (2.10) and (2.11) can, assuming small director reorientation

and neglecting the electrostatic coupling, be solved analytically [68, 69]. However, here we

solve them as a numerical boundary value problem, the details of which can be found in Ap-

pendix B. A typical plot for the director angles under the application of a sinusoidal electric

field is given in Figure 2.3. Here the interaction between the electric field and the director align-

ment can be clearly seen, in the absence of this coupling the potential would be symmetric. The

asymmetric alignment of the liquid crystal is caused by the molecular pretilt at one of the cell

boundaries.

2.3 Q–tensor model

2.3.1 Free energy

In theQ–tensor model we consider a dimensional liquid crystal free energy of the formF̃ =
F̃e(Q̃) + F̃d(Q̃) + F̃t(Q̃), whereF̃e, F̃d andF̃t are respectively the electrostatic, elastic and

bulk free energies. The general form of the biaxial liquid crystal alignment tensor,Q̃, written in

terms of the orthogonal unit directorŝn andm̂, which define the major and minor crystal axis

respectively, is

Q̃ =

√
3
2
S̃
(

n̂⊗ n̂
)

+

√
3
2
β̃
(

m̂⊗ m̂
)

(2.12)

whereS̃ is the scalar order parameter,β̃ the biaxiality parameter,I is the identity matrix and

n̂⊗ n̂ = (n̂⊗ n̂− 1/3I) denotes a traceless symmetric tensor. The total free energy may

be obtained by integrating over the cell volume. In the absence of external forces, such as

electromagnetic fields or boundaries, this free energy reduces to just the elastic and thermotropic

free energies which areSO(3) invariant. Much work has been done to obtain comprehensive

expressions for the thermotropic and elastic free energies [38, 39].
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Throughout the remainder of this chapter we shall assume the simplest possible expressions for

these free energies. It should be noted however that this restriction is not a necessary condition

for this method to work, rather it is a simplification used to clarify the derivation.

The elastic free energy in its simplest form is derived using the one elastic constant approxima-

tion. This can be written as

F̃d =
L

2

∣∣∣∇Q̃∣∣∣2 , (2.13)

whereL is defined asL = K/(3S̃2) andK is the liquid crystal elastic constant. The electrostatic

free energy of the liquid crystal takes the form

F̃e = −1
3
ε0∆εTr

(
Q̃Ẽ
)
, (2.14)

where

Ẽ =

√
3
2

Ẽ ⊗ Ẽ, (2.15)

ε0 is the permittivity of free space,∆ε the anisotropic relative permittivity and the electric field

Ẽ = −∇ψ̃, whereψ̃ is the electric potential. The effect of temperature on the liquid crys-

tal alignment is described by the bulk free energy, written in terms of a Landau power series

expansion ofQ̃ [26]

F̃t =
1
2
A(T − T ∗)Tr

(
Q̃2
)
−
√

6BTr
(
Q̃3
)

+
1
2
CTr2

(
Q̃2
)
, (2.16)

whereA, B andC are the bulk thermotropic coefficients which are assumed to be independent

of temperature. The temperature dependence of this energy is described entirely byT − T ∗,

whereT ∗ is the pseudocritical temperature at which the isotropic phase becomes unstable.

To ensure the traceless symmetric properties of ourQ̃ andẼ are respected we express the free

energy on the basis of traceless symmetric tensors [37],

Q̃ =
5∑
p=1

ãpT
(p) and Ẽ =

5∑
p=1

ẽpT
(p),

where

T (1) =
1√
6

(−ex ⊗ ex − ey ⊗ ey + 2ez ⊗ ez)

T (2) =
1√
2

(ex ⊗ ex − ey ⊗ ey) , T (3) =
1√
2

(ex ⊗ ey + ey ⊗ ex) ,

T (4) =
1√
2

(ex ⊗ ez + ez ⊗ ex) , T (5) =
1√
2

(ey ⊗ ez + ez ⊗ ey) .

(2.17)

We rescale the order parameterS = 3C
2B S̃, the biaxiality parameterβ = 3C

2B β̃, the tensor field

Q = 3C
2B Q̃ and the component fieldsap = 3C

2B ãp andep = ẽp/ψ
2
0, whereψ0 is a typical potential,

ψ = ψ̃/ψ0. For compactness of notation, from now on we adopt the convention of summing

over repeated indices, unless stated otherwise. We also indicate witha ande the vectors with
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componentsap andep. Finally we non-dimensionalise to obtain the scaled free energy,

F =
ξ20
2
|∇a|2 − χaa · e +

T0

2
|a|2 +

1
2
|a|4 −

√
6
∑
p,q,r

Tr
(
T (p)T (q)T (r)

)
apaqar. (2.18)

The non-dimensional elastic constantξ20 , the electrostatic coefficientχa and the scaled temper-

atureT0 are

ξ20 =
9C
2B2

L

L2
x

, χa =
9ε0∆εC2

2L2
xB

3
ψ2

0, T0 =
T − T ∗

Tc − T ∗ ,

whereTc is the clearing point temperature andLx is the characteristic length of the geometry

studied. We have rescaled space so that(x, z) = (x̃, z̃)/Lx. Typically T0 ∼ O(1) whilst

ξ20 ∼ O(10−7) andχa ∼ O(10−6).

The separation in scales between the various terms in the free energy cause the Euler-Lagrange

equations, which minimise equation (2.18), to be stiff. As a result the computing times required

for even relatively simple geometries become very large. In situations where the elastic and elec-

trostatic free energies remain small we can initially consider only the critical points of the bulk

free energy. The elastic and electrostatic free energies can then be considered as a perturbation.

It is this assumption that makes this method inappropriate for defect modelling.

2.3.2 Critical points under slightly broken symmetry

Before we consider the case of the liquid crystal it is useful to consider a general free energy

of the type given in equation (2.18). The free energyF(a) consists of a symmetric bulk free

energy perturbed by a small symmetry breaking contribution from the elastic and electrostatic

energies. We denote these termsFt(a) andL(a) respectively, whereL(a) Ft(a) ∈ R5 in the

three dimensional case andL(a) Ft(a) ∈ R2 in the two dimensional case. For simplicity we

consider here the case thatL(a) has only the electrostatic energy component, so that the liquid

crystal state is described by a single five dimensional vectora, rather than a five-component

vector fielda(x). This allows us to describe the perturbation scheme in very general terms as

the effect of a symmetry breaking perturbation on an invariant manifold of solutions of a set

of ordinary differential equations. In the more general case where the elastic energy is also

considered we would have to deal with partial differential equations for vector fields: however,

we expect that the main ideas outlined here would remain valid.

As the bulk energy isSO(3) invariant the critical points ofFt(a) will form an orbit of solutions

in the five dimensional component space. Specifically, for the general case corresponding to a

biaxial minimiser, the group orbit will be a 3-manifold, whilst in the special case corresponding

to uniaxial minimisers the orbit reduces to a 2-manifold.

The effect of the first order perturbationL(a) is to break the symmetry and to collapse the invari-

ant manifold of critical points to a smaller set near the manifold. This setting is very similar to

the Signorini perturbation scheme, originally derived in the context of elastostatics [6, 7, 8, 70],
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FIGURE 2.4: Graphical representation of the Signorini perturbation scheme. For some initial
point in the phase space(a1, a2) there is rapid convergence at a rateτ0 to the solution manifold.
Motion along the manifold, driven by the flowL, occurs much more slowly at a rateτ1. The
critical point onM0 is found whenL is orthogonal toTaM0. AsM0 is close to the perturbed
manifoldM1 the solution can be approximated by the point onM0 whose surface normal
intersectsM1 close to the perturbed solution.

but of wider potential application [71]. This scheme determines the equilibrium configuration

of an elastic body under the effect of applied stresses using a perturbation expansion in powers

of the applied stress. In the context of liquid crystals, the role of the “applied stresses” is played

by the (small) elastic and electrostatic forces and our approximation is the first step of a standard

Signorini expansion.

We consider an orbitM0 consisting of the critical points of the bulk energyFt(a) with tangent

spaceTaM0 at a ∈ M0. As M0 consists entirely of critical points thenTaM0 ⊂ ker(H),
whereH is the Hessian of the bulk free energy. If the critical points of the bulk free energy are

non-degenerate in the direction normal to the manifold then the tangent space coincides with

the kernel,TaM0 = ker(H). Therefore,M0 is a normally hyperbolic invariant manifold for

the flow,−∇aFt(a), where∇a denotes differentiation with respect to the components of the

vectora.

The effects of the perturbative terms can be understood by invariant manifold theory. If the

perturbed flow,−∇a(Ft+L) and its first derivative are sufficiently close to the unperturbed flow

then there exists a smooth invariant manifoldM1 close toM0. The behaviour of the perturbed

flow alongM1 will be comparable to the flow restricted toM0 [70]. Specifically, a pointp0 on

M0 will correspond to a pointp1 onM1, wherep1 is the intersection of the normal toM0 atp0

andM1. If all non-zero eigenvalues ofH are positive then the dynamical behaviour of the flow

close to the manifold will consist of exponential attraction towards the manifold followed by a

slow drift along it [72].

As the perturbation−∇a (Ft + L) is also a gradient vector field then the local minima on

M1 will be attracting stationary points. For non-degenerate critical points these are in1 : 1
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correspondence with the local minima of the perturbed function restricted to the unperturbed

manifoldM0. The critical points restricted toM0 are found when the flowL = −∇aL is

orthogonal toTa. This is represented graphically for the simplified two dimensional case in

Figure 2.4.

In the simple two dimensional case considered in Section 2.4 the symmetry group isSO(2)
under the action of rotation onR2. In this case there will be two critical points on the perturbed

manifold. These correspond to an unstable maximum and a stable minimum.

In the three dimensional case, Section 2.5, the situation is more complicated. The bulk energy

minimisers form an orbit of the conjugacy action ofSO(3) on the five dimensional space of

traceless symmetric matrices (see Section 2.5.2). This orbit is parametrised locally by the di-

rection of the major axis of the liquid crystal molecule (two dimensions) together with a circle

corresponding to the orientation of the minor axis. For uniaxial minimisers of the bulk free en-

ergy these circles of critical points shrink to radius0. The result is that liquid crystal orientation

can only be determined in terms of the major axis. To determine the orientation of the minor axis

in cases where the perturbation induces biaxiality, a further step in the expansion is required.

2.4 2D case

As an example to illustrate the approximation method it is helpful to look at a simplified two

dimensional case where the liquid crystal director is restricted to thex, z plane. The alignment

tensor is a2× 2 uniaxial tensor,

Qij =
√

2S
(
n̂in̂j −

1
2
δij

)
. (2.19)

We can proceed exactly as in Section 2.3.1 with the simplified basis set of2 × 2 traceless

symmetric tensors:

T1 =
1√
2

(
−1 0
0 1

)
, T2 =

1√
2

(
0 1
1 0

)
. (2.20)

Hence

Q =
2∑
p=1

apT
(p).

In this notation the scalar order parameter isS2 = Tr(Q2) = a2
1 + a2

2. The Euler–Lagrange

equations of motion, derived using the simplest form of the free energy, are

∂τan = ξ20∇2an − T0an − 2an
(
a2

1 + a2
2

)
+ χaen, (2.21)

wheren = 1, 2, τ = t/τd, τd =
[
9C/(2B2)

]
ζ and the viscosity,ζ, is related to Leslie’s
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rotational viscosityγ1 by ζ = γ1/(3S̃2).

2.4.1 Invariant manifold

Due to the smallness ofξ20 andχa equation (2.21) can be seen to have two different time scales.

Takingη = ξ20 as the small parameter we can write the time derivatives in equation (2.21) as

∂τ = ∂τ0 + η∂τ1 . Substituting into equation (2.21) gives

∂τ0an + η∂τ1an = η∇2an − T0an − 2an
(
a2

1 + a2
2

)
+ ηχ0en, (2.22)

whereχ0 = χa/ξ
2
0 is O(1). Observing that only the bulk free energy changes on the fast

timescale we assume that this scale determines only the scalar order parameter. As we are only

interested in the slow timescale, i.e. the timescale over which the liquid crystal aligns, we can

make the assumption that the fast timescale behaviour has reached equilibrium, i.e.∂τ0 = 0.

The slow scale behaviour, which is present due to the small elastic and electrostatic terms, will

be obtained from the first order correction.

To proceed the component representation of the liquid crystal is rewritten as a power series

expansion inη:

an = an,0 + ηan,1 +O(η2), (2.23)

wherean,j is then–th component ofj–th order. Substituting into equation (2.22) and retaining

terms only toO(η0) allows us to write

[
T0 + 2

(
a2

1,0 + a2
2,0

)]
an = 0, (2.24)

which is satisfied if
(
a2

1,0 + a2
2,0

)
= −T0/2. As S2 = a2

1 + a2
2, equation (2.24) defines the

leading order approximation to the scalar order parameter,

S2
0 = −T0/2. (2.25)

This equation can also be derived by minimising the corresponding Landau deGennes free en-

ergy in terms of the scalar order parameter. As described in Section 2.3.2 equation (2.25) defines

a manifold of critical points in the component space(a1,0, a2,0). For uniaxial liquid crystals the

critical points of the free energy are non-degenerate asT0 < 0. We consider the effects of the

elastic and electrostatic free energies as a symmetry breaking perturbation. In the context of the

Signorini expansion this defines the flow along the manifold with, in this case, a unique stable

minimum, found using the first step of the Signorini expansion.
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2.4.2 Kernel of adjoint (tangent space)

This minimum, and hence the liquid crystal alignment, can be found from the first order expan-

sion of equation (2.21). Retaining terms toO(η) and using equation (2.24) we obtain:

4

 a2
1,0 a1,0a2,0

a1,0a2,0 a2
2,0


 a1,1

a2,1

 =

 ∇2a1,0 + χ0e1 − ∂τ1a1,0

∇2a2,0 + χ0e2 − ∂τ1a2,0

 . (2.26)

This is a system of linear equations foran,1 that can be written asHa1 = L. Recall thatH is

the Hessian of the bulk free energy. However, in this case this equation has no unique solution

as det(H) = 0. The Hessian is a symmetric real valued function, therefore,H† = H, where

H† denotes the adjoint ofH. Therefore, as stated in Section 2.3.2, for a non-trivial solution to

existL must be orthogonal to ker(H). As this is a two dimensional system, the kernel ofH is a

single vectorV . This gives us the solvability conditionL · V = 0, whereV = (−a2,0, a1,0)
T

is the eigenvector of zero eigenvalue ofH.

Using the solvability condition,L · V = 0, we obtain the following equation fora1,0 anda2,0,

a1,0∂τ1a2,0 − a2,0∂τ1a1,0 = a1,0∇2a2,0 − a2,0∇2a1,0 + a1,0χ0e2 − a2,0χ0e1. (2.27)

Equation (2.27) can be solved simultaneously with equation (2.24) to determine the liquid crystal

dynamics on the solution manifold.

2.4.3 Parameterisation of the solution

By correctly parameterising the componentsa1,0 anda2,0 we can force the director onto the

solution manifold removing the need to solve the leading order equation. As the leading order

solution manifold isSO(2) invariant we parameterise the solutions in terms of the polar angles

ϑ ∈ [0, 2π]. If we write

a1,0 = S0 sinϑ, and a2,0 = S0 cosϑ

then equation (2.25) is automatically satisfied. This representation can be used in equation (2.27)

to determine the time evolution ofan,0:

S2
0

∂an,0
∂τ1

= Vn
(
a1,0∇2a2,0 − a2,0∇2a1,0 + a1,0χ0e2 − a2,0χ0e1

)
, (2.28)

whereVn is thenth component ofV . This equation confirms that the motion of the director

field is in the direction tangent to the manifold.

Equation (2.28) is an initial value problem foran,0 which can be solved using standard numerical
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techniques for an initial set ofan,0 on the manifold. It is important to note that we need never

calculateϑ, as equation (2.28) is solved purely in terms of the component representation,an,0.

This ensures that the singularities expected in a director model are overcome.

2.4.4 Order one accuracy check

To determine the accuracy of the expansion we consider the perturbed manifoldM1. The equa-

tions derived above are suitable only in the case whereM1 is sufficiently close toM0.

Physically the minimum distance between the leading order solution andM1 represents the

correctionS1 to the scalar order parameter,S = S0 + ηS1 + O(η2). In general this can be

calculated from the singular value decomposition of theO(η) equation (2.26). However, in 2D

the correction can be calculated analytically. After a little algebra we obtain

S1 =
1√
−2T 3

0

[
a0 · ∇2a0 + χ0a0·e

]
. (2.29)

The magnitude ofS1 can be used to determine the validity of the perturbation expansion. IfηS1

becomes comparable withS0 then the expansion breaks down and the liquid crystal has large

variation in order parameter. If this happens then the full stiff equations (2.21) must be solved.

2.5 3D case

The three dimensional Euler–Lagrange equations are computed in a similar way to the two

dimensional case,

η
∂a1

∂τ1
= η

(
∇2a1 + χ0e1

)
− T0a1 + 3

(
a2

1 − a2
2 − a2

3

)
+

3
2
(
a2

4 + a2
5

)
− 2a1

5∑
k=1

a2
k, (2.30a)

η
∂a2

∂τ1
= η

(
∇2a2 + χ0e2

)
− T0a2 − 6a1a2 +

3
√

3
2
(
a2

4 − a2
5

)
− 2a2

5∑
k=1

a2
k, (2.30b)

η
∂a3

∂τ1
= η

(
∇2a3 + χ0e3

)
− T0a3 − 3

(
2a1a3 −

√
3a4a5

)
− 2a3

5∑
k=1

a2
k, (2.30c)

η
∂a4

∂τ1
= η

(
∇2a4 + χ0e4

)
− T0a4 + 3a1a4 + 3

√
3 (a2a4 + a3a5)− 2a4

5∑
k=1

a2
k, (2.30d)

η
∂a5

∂τ1
= η

(
∇2a5 + χ0e5

)
− T0a5 + 3a1a5 + 3

√
3 (a3a4 − a2a5)− 2a5

5∑
k=1

a2
k, (2.30e)

where, as in the two dimensional case,η = ξ20 andχ0 = χa/ξ
2
0 . The fast time derivatives have

been neglected as, on the timescale of interest, these variations will have reached equilibrium.
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At this point, for compactness of notation, it is useful to define the first order perturbationLm

in terms of the elastic and electrostatic contributions,

Lm = ∇2am,0 + χem −
∂am,0
∂τ1

, (2.31)

wherem = 1, . . . , 5.

2.5.1 Invariant manifold

In the two dimensional case the leading order equations are those which minimise the free energy

in terms of the scalar order parameter. This minimisation fixes the liquid crystal director onto

the solution manifold in the two dimensional space(a1, a2). A similar method can be used in

the three dimensional case using the biaxialQ tensor representation (2.12). It can be shown that

the stationary points of the leading order free energy function, of the form given in equation

(2.16), are either uniaxial or isotropic [30]. As such the biaxiality parameterβ must vanish at

leading order. Minimising the free energy in terms of the scalar order parameterS, as in the

two dimensional case, allows us to obtain the fast timescale equations. The Euler–Lagrange

equation of motion that minimises the leading order scalar order parameter,S0, is

∂S0

∂τ0
= −2S0

3 + 3S0
2 − T0S0, (2.32)

which can be solved for steady uniaxial state to obtain

S0 =
3 +

√
9− 8T0

4
. (2.33)

Equation (2.33) defines the solution manifold in the five dimensional component space. The

critical points on this manifold are non-degenerate providingT0 is below the super heating limit,

T0 = 9/8 [51]. In terms of the component representation the scalar order parameter is given by

S2
0 =

5∑
n=1

a2
n. (2.34)

To fix the biaxiality to zero we require thatQ has two only two unique eigenvalues, hence,

a3
1,0 + 3a2

1,0 (S0 − a1,0) +
3
√

3
2
[
a2,0

(
a2

4,0 − a2
5,0

)
+ 2a3,0a4,0a5,0

]
= S3

0 . (2.35)

These two equations define a 3–manifold in the five dimensional component space. However,

as the leading order minimisers are uniaxial there are only two undefined parameters which

relate to the angles the liquid crystal makes with the coordinate axis. Therefore, as described

in Section 2.3.2, the 3–manifold corresponding to the biaxial stationary points must reduce to a

2–manifold leading to a degeneracy in the first order correction. Specifically this allows us to

determine only the direction of the major crystal axis uniquely.
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2.5.2 Kernel of adjoint (tangent space)

As in the two dimensional case we now need to find the first order correction to the leading

order components which will determine the unique solution on the manifold. Motion across the

manifold is determined by the first order perturbationLm. The first order contribution from the

bulk energy is invariant with respect to motion on the leading order manifold. Therefore, for the

equation to have a non-trivial solution we require that the perturbationLm is orthogonal to the

kernel ofH. As Ker(H) = TaM0 the solvability condition is

Lm
∂am,0
∂s

= 0, (2.36)

wheres parameterises motion along the tangent space to the manifold. The derivative ofam,0

is found by considering the tensorQij(0) which satisfies the perturbed Euler–Lagrange equa-

tions. The motion ofQij(0) along the manifold by rotation in a spherical coordinate system is

defined by the rotation matrixRij(s) which acts onQij(0) by the conjugacy actionQij(s) =
Rip(s)Rjq(s)Qpq(0). The rotation matrixRij(s) is orthogonal, i.e.Rik(s)Rjk(s) = δij and

Rij(0) = δij . Motion along the manifold written in terms of the component representation is

am,0(s) =
[
T

(m)
ji Rip(s)Rjq(s)T (l)

pq

]
al,0(0). (2.37)

The derivative ofam,0 is found by differentiating equation (2.37) ats = 0:

∂am,0
∂s

= T
(m)
ji

[
R′
ip(0)δjqT (l)

pq + δipR
′
jq(0)T (l)

pq

]
al,0(0). (2.38)

To proceed we need to determineR′
ij(0), this can be obtained by differentiating the identity

Rip(s)Rjp(s) = δij ats = 0,

R′
ip(0)δjp + δipR

′
jp(0) = 0. (2.39)

For this equation to be satisfiedR′
ij(0) must be a skew symmetric tensor. therefore, it can be

expressed on the basisW (n), defined as

W (1) =
1√
2

(ey ⊗ ex − ex ⊗ ey) ,

W (2) =
1√
2

(ex ⊗ ez − ez ⊗ ex) ,

W (3) =
1√
2

(ez ⊗ ey − ey ⊗ ez) .

(2.40)

For eachW (n) we obtain a different∂am,0/∂s and thus three vectors,V (n), that span the kernel.

The solvability conditions can be written as

LmV
(n)
m = 0, (2.41)
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where the spanning vectors can be explicitly written as

V (n)
m = T

(m)
ki

(
T

(p)
ij W

(n)
jk −W

(n)
ij T

(p)
jk

)
ap,0, (2.42)

In terms of theO(η0) components the spanning vectors,V (n) formed by eachW (n) are:

V (1) =


0

−2a3,0

2a2,0

−a5,0

a4,0

 , V (2) =


−
√

3a4,0

a4,0

a5,0√
3a1,0 − a2,0

−a3,0

 , V (3) =



√
3a5,0

a5,0

−a4,0

a3,0

−
√

3a1,0 − a2,0

 .

(2.43)

The first order equations require equation (2.41) to be satisfied in the direction of each span-

ning vector. This gives us three equations, one for each of the skew symmetric tensorsW (n).

Substituting equation (2.31) into the equation (2.41) the time dependent equations are obtained

V (n)
m

∂

∂τ1
am,0 = V (n)

m

(
∇2am,0 + χem

)
, (2.44)

wherem = 1..5.

2.5.3 How to solve equations/parameterisation of equations

Equations (2.44) describe the dynamics of the critical point structure on the generic 3–manifold.

However, as the bulk minimisers are uniaxial these 3 equations must reduce to 2 corresponding

to the reduction in the dimension of the manifold. Using guidance from the two dimensional

case we exploit theSO(3) invariance of the bulk energy and parameterise the component rep-

resentationa0 in terms of the uniaxialQ–tensor with principal axis defined by the spherical

coordinate angles[θ, φ]:

a0 = S0



1− 3
2

sin2 θ
√

3
2

sin2 θ
(
2 cos2 φ− 1

)
√

3 sin2 θ cosφ sinφ√
3 cos θ sin θ sinφ√
3 cos θ sin θ cosφ


. (2.45)

For a free energy which supports biaxial phases the appropriate representation for the component

field would be a biaxial tensor expressed in terms of all three Euler angles. Substituting into

equation (2.44) we can simplify the time derivatives to obtain equations for the time derivatives
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of θ andφ:

3S0
2 ∂θ

∂τ1
=

(
cosφV (2)

m − sinφV (3)
m

)(
∇2am,0 + χem

)
,

3S0
2 ∂φ

∂τ1
=

1
sin2 θ

V (1)
m

(
∇2am,0 + χem

)
.

(2.46)

These can be used to describe the time dependent liquid crystal alignment in all cases except

where the liquid crystal is aligned close to the coordinate singularityθ = 0, π. If this is the case

then we need to use a multigrid method [73]. We choose a different set of coordinates(θ̃, φ̃),
formed by rotating the existing coordinates about they axis. This second coordinate system

produces a set of components which give time dependent equations

3S0
2 ∂θ̃

∂τ1
=

(
cos φ̃V (2)

m − sin φ̃V (1)
m

)(
∇2am,0 + χem

)
,

3S0
2 ∂φ̃

∂τ1
= − 1

sin2 θ̃
V (3)
m

(
∇2am,0 + χem

)
.

(2.47)

The second coordinate system is singular atθ̃ = 0, π, equivalent toθ = π/2 andφ = 0, π. As

such the two coordinate systems cannot be simultaneously singular for a given director. Using

the different coordinate systems the time derivatives ofap,0 can be found from the least singular

coordinate system as either

∂ap
∂τ1

= V (1)
p

∂φ

∂τ1
−
(
sinφV (3)

p − cosφV (2)
p

) ∂θ

∂τ1
, (2.48a)

or
∂ap
∂τ1

= −V (3)
p

∂φ̃

∂τ1
+
(
cos φ̃V (2)

p − sin φ̃V (1)
p

) ∂θ̃

∂τ1
. (2.48b)

The strength of the singularity in each coordinate system is determined by the size ofθ and

θ̃. This can be directly measured from the size of thex andz components of the director. An

appropriate choice of representation, chosen arbitrarily to allow for some overlap between the

two, is to use[θ, φ] if |nz| ≤ 4/(3
√

2) and[θ̃, φ̃] if |nx| ≤ 4/(3
√

2). If both these conditions

are satisfied an average value of∂ap/∂τ1 obtained from each of the two representations is used.

2.5.4 Order one accuracy check

As in the two dimensional case we wish to determine the correction to the scalar order param-

eter as an approximation of the accuracy of our method. Unlike the two dimensional case an

analytic expression cannot be obtained. Instead we use the method of singular value decompo-

sition. Given the degenerateO(η) equationHa1 = L we calculate the perturbed manifoldM1
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corresponding to theO(η) correction to the componentsa1, where

H11 = (4a1,0 − 6)a1,0 + T0 + 2
∑4

n=1 a
2
n,0,

H22 = 4a2
2,0 + 6a1,0 + T0 + 2

∑4
n=1 a

2
n,0,

H33 = 4a2
3,0 + 6a1,0 + T0 + 2

∑4
n=1 a

2
n,0,

H44 = 4a2
4,0 − 3a1,0 − 3

√
3a2,0 + T0 + 2

∑4
n=1 a

2
n,0,

H55 = 4a2
5,0 − 3a1,0 + 3

√
3a2,0 + T0 + 2

∑4
n=1 a

2
n,0,

H12 = (6 + 4a1,0)a2,0, H24 = (4a2,0 − 3
√

3)a4,0,

H13 = (6 + 4a1,0)a3,0, H25 = (4a2,0 + 3
√

3)a5,0,

H14 = (4a1,0 − 3)a4,0, H34 = 4a3,0a4,0 − 3
√

3a5,0,

H15 = (4a1,0 − 3)a5,0, H35 = 4a3,0a5,0 − 3
√

3a4,0,

H23 = 4a2,0a3,0, H45 = 4a4,0a5,0 − 3
√

3a3,0,

andHij = Hji. The order parameter correctionS1 is then determined from the components of

a1 orthogonal to the manifold,S1 = a0 · a1/S0.

2.6 Examples

To demonstrate the use of the non stiff approximate liquid crystal equations we consider a planar

cell filled with liquid crystals. A spatially periodic voltage is applied to one boundary whilst

the other is set to a uniform zero Volts. This is a realistic model for a photorefractive liquid

crystal cell [64, 74], a device used for optical coupling and as an optically addressable spatial

light modulator. This is an interesting device for testing this algorithm as it allows for three

dimensional orientation of the liquid crystal directors whilst having a simple geometry.

Under appropriate conditions the test geometry is a square in thex, z plane. Periodic conditions

are imposed in thex direction such thata(x+ Lx, z) = a(x, z) and Dirichlet boundary condi-

tions, corresponding to infinite anchoring strength, are imposed atz = 0 andz = Lz. The liquid

crystal is aligned by application of a spatially modulated voltageψ(x, Lz) = ψa sin2(πx/Lx) at

one boundary, whereψa is the applied voltage amplitude, whilst the other is earthed,ψ(x, 0) = 0.

First we verify the two dimensional liquid crystal model derived in Section 2.4. This is done

through comparison to the full stiff time dependentQ-tensor equations and through comparison

to a time dependent FO model. In this case the director orientation is restricted to thex, z plane

by the planar, in plane boundary conditions. As is typical, due to the alignment layers used in

these cells, a small pretilt is applied atz = Lz. The parameters used in our simulation are given

in Table 2.1. The spatial derivatives are calculated using a pseudo-spectral method [75] and, for

ease of implementation, the time derivative is calculated using the MATLAB multistep solver

ODE113. A public domain version of the MATLAB code is available at [76] and further details
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K = 20× 10−12N
A = 0.13× 106J K−1m−3

B = 1.6× 106Jm−3

C = 3.9× 106Jm−3

T0 = −10
ε‖ = 9.1

ε⊥ = 4.1

S = 3.65Ŝ
L = 6.05× 10−12N
Lx = 12× 10−6m
Lz = 12× 10−6m
γ1 = 0.081Pa s

ζ = 0.037Pa s
τd = 2.56× 10−7s
ξ20 = 4.39× 10−7

χa = 5.13× 10−6ψ2
0

χI = 3.25× 10−5ψ2
0

ψ0 = 1V

TABLE 2.1: Numerical values of non-dimensional constants for a typical photorefractive LC
cell filled with the liquid crystal compound TL205

FIGURE 2.5: Comparison of liquid crystal alignment. The left and right images show the
director alignment for the FO model and the approximateQ-tensor model respectively. Di-
rector fields for both models are plotted, contour lines show areas of equal elastic energy,
|∇θFO|2 = C in the FO model and|∇a|2 = C in the LdG model. The inaccuracy of the FO
model can be seen in the asymmetry of|∇θFO|2 near the boundary.

of the code can be found in Appendix B.

Starting from the same initial conditions the FO andQ-tensor models are integrated till steady

state is reached. The resulting configurations are compared and the differences are computed.

First we compare the FO model, derived in Section 2.2, with the approximateQ-tensor model.

We observe that there is an area of the FO model which does not show good agreement with the

Q-tensor model. By plotting the resulting director field as vectors and comparing the numerical

gradient it can be seen that these errors correspond to the points where the FO model predicts

unphysical gradients, Figure 2.5.

Similarly we can compare the full stiffQ-tensor equations with the non-stiff approximate equa-

tions derived in Section 2.4. Figure 2.6 shows a plot of the error in the approximate equation

calculated using both the first order correction to the order parameter, equation (2.29), and the

difference in the two simulations divided by the leading order scalar order parameter, equation
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FIGURE 2.6: 2D director field error calculation for a 10 Volt spatially modulated electric field
as described in text. The liquid crystal has strong planar anchoring boundary conditions atz =
0 andz = Lz and periodic boundary conditions in thex direction. The error is calculated both
through calculation of the correction to the scalar order parameterlog10(S1/S0) (left) and
through comparison to the full stiff equationslog10(δa)(right) whereδa is given in equation
(2.49).

(2.33),

δa =
1
S0
||aapprox − astiff || . (2.49)

Not only is the error very low but when the two error plots are compared it can be seen that the

approximate error is qualitatively comparable with the difference between the full stiff equations

and the approximations derived here. In both plots the error peaks around the points of highest

liquid crystal variation. This is expected as these points correspond to those with highest elastic

energy.

Secondly we compare the 3D model, derived in Section 2.5, with the full stiffQ-tensor model.

In this case the boundary conditions fix the director out of plane in they direction to allow for

full 3D reorientation.

The steady state alignment results are shown in Figure 2.7. The comparison to the full stiff

equations is shown in Figure 2.8 with error calculated using both the correction to the scalar

order parameter and the percentage error given in equation (2.49). Again it can be seen that

the difference between the two methods is very low and that the error approximation using the

singular value decomposition method is comparable with the true error. We find for the same

number of grid points,12 in each spatial dimension, that the stiff code takes over an hour to

converge whilst the approximate code converges to a solution withδa ∼ O(10−4) in a time of

≈ 45 seconds.
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FIGURE 2.7: Typical director field plot calculated using approximate equations for a 5 Volt
spatially modulated electric field as described in text. The colour corresponds to the voltage
throughout the cell. The liquid crystal alignment is parallel to the surface but twisted out
of plane, this forces full three dimensional orientation of the liquid crystal when subject to a
spatially modulated electric field.

FIGURE 2.8: 3D director field error calculation for a 5 Volt spatially modulated electric field.
The liquid crystal has strong out of plane anchoring boundary conditions atz = 0 andz = Lz

and periodic boundary conditions in thex direction. The error is calculated both through
calculation of the correction to the scalar order parameterlog10(S1/S0) (left) and through
comparison to the full stiff equationslog10(δa) (right) whereδa is given in equation (2.49).
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2.7 Conclusion

The approximate equations derived in this chapter determine the liquid crystal alignment which

minimises the Landau-deGennes free energy in the absence of defects. They can be solved in a

fraction of the time required to solve the full stiff equations.

We have derived equations for both a two and three dimensional case and have implemented both

as non-stiff initial value problems in MATLAB. Estimates of the accuracy of these equations

have been derived in terms of the first order correction to the component values and have been

shown to give strong qualitative agreement with the deviation of the approximation from the full

stiff equations.

It should be noted that the free energy functions used in this paper are the simplest possible forms

of the free energy. However, generalisation to other free energy functions, whose bulk energy

minimisers are uniaxial, is relatively straightforward. Generalising this method to situations

where the free energy supports biaxial states is also possible. In this caseM0 is a 3–manifold

and expressions must be found for the equations of motion using a biaxial tensor representation

with major and minor axis determined using all three Euler angles.

The major advantage of these equations with respect to the full stiff minimisers is that they can

be computed in1% of the time whilst producing results with error∼ O(10−4). This will be of

great importance in medium to large scale models where computational efficiency becomes an

issue. The assumption that the elastic and electrostatic free energies remain small makes these

equations suitable for geometries in which defects do not occur. As such these approximate

equations will be of most use in applications where defects are undesirable. This is the case

in many optical devices where smooth alignment of the liquid crystal is important, but, the FO

model predicts unphysical configurations.



Chapter 3

Regime-independent coupled wave

equations

In this chapter we derive a semi-analytic model to describe the coupling of optical beams as they

propagate through a periodically modulated liquid crystal cell. This model is particularly useful

as it can be used independently of the liquid crystal geometry. The model is combined with the

liquid crystal model, derived in the previous chapter, to provide a thorough description of the

system. A detailed analysis of the features of the photorefractive liquid crystal cell is provided

and a simplified model for the electrical properties of the cell is developed.

This chapter is arranged as follows: In Section 3.1 we introduce optical coupling including a

brief description of the different coupling regimes. In Section 3.2 we provide an introduction to

existing methods to model beam coupling, including their derivations and limitations. In Section

3.3 we consider some of the problems involved in modelling beam coupling in a photorefractive

liquid crystal cell. In Section 3.4 we derive a new model suitable for modelling beam coupling in

all geometries. This model is verified in Section 3.5 through comparison to existing models and

numerical simulations of Maxwell’s equations we also consider in detail some of the features

predicted by this model with reference to recent experiments. Finally, in Section 3.6, we use a

simplified electrical circuit to model the electrical properties of the cell and comment on work

which could be done to optimise these systems.

3.1 Introduction

The optical transfer of energy from one beam to another via diffraction from a refractive index

grating has been observed in a variety of non-linear materials. This effect, known as beam

coupling, or optical coupling, has a number of possible applications. These include: optical

beam deflection, pattern recognition and image amplification [77]. Beam coupling is observed

due to the non-linear way in which light and matter interact. Generally a non-linear material is

29
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one whose refractive index is dependent on the electric field at any given point. Beam coupling

is observed in materials whose refractive index is related to the modulus square of the electric

field. This effect is observed in, but not limited to, photorefractive crystals. These are non-linear

optical materials which, when illuminated with an optical interference pattern, form a refractive

index grating which isπ/2 out of phase with the incident optical field.

Photorefractive crystals have been extensively used to observe beam coupling; for example large

coupling coefficients have been observed inBaTiO3 andRh : BaTiO3 crystals [78]. More re-

cently efficient beam coupling was shown in a wide range of organic materials, such as fullerene

[79] and CdSe doped [80] liquid crystals, polymer-dispersed [81] and ferroelectric liquid crys-

tals [82], polymeric composites [83], hybrids with liquid crystals [84, 85, 86], light valves

[86], photoconductive polymer-liquid crystal structures [87, 88] and photorefractive polymers

[89, 90].

Physically beam coupling occurs due to the interference of two beams in a bulk photorefractive

crystal. This sinusoidal interference pattern will create a sinusoidal modulation of the refractive

index, which will scatter the beams. As the wave vector of the refractive index grating is equal

to the difference between the wave vectors of the two beams, the diffraction of one beam into

the direction of the other will be in phase, and will interfere constructively. Photorefractive like

effects have also been observed at low power in liquid crystal cells using either a photoconduct-

ing [91] or photorefractive [92] alignment layer. Liquid crystals are an attractive choice for such

applications due to their high birefringence and strong electro–optic response.

In this chapter we study the coupling effects of two beams incident on a planar cell containing

liquid crystals sandwiched between a polyimide (PI) and a photoconducting polyvinyl-carbazole

doped withC60 (PVK:C60) layer as shown in Figure 3.1. The superposition of the two coherent

incident beams on the photoconductor creates a modulation in the conductivity which, when

combined with the applied DC voltage, produces the modulated electric field across the cell.

This aligns the liquid crystals and modulates the refractive index. Such systems have been

realised experimentally [84, 93], including the setup available in our group [91].

Theoretically there is no complete model of this system and those that exist simplify the system

to one which can be described analytically. Here we look briefly at how the existing models

have been developed and how their approaches differ from ours.

The coupling of light due to diffraction from inhomogeneous, anisotropic materials has been

studied for many years [94, 95, 96, 97, 98, 99] and is often referred to as occurring in one of two

distinct regimes, Bragg and Raman-Nath, see Figure 3.2.

Bragg regime coupling is characterised by the presence of only two beams and was initially

described in 1969 by the coupled wave theory of Kogelnik [94] for an isotropic medium. This

work was extended in 1997 by Montemezzani and Zgonik [95] to include optically anisotropic

materials.

Raman-Nath diffraction is characterised by multiple diffracted output beams and was initially
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FIGURE 3.1: Schematic of the system modelled: a nematic liquid crystal layer is sandwiched
between two alignment layers, a photoconductor (PVK) and an insulator (PI). An electric po-
tential is applied by means of transparent electrodes at either side of the cell. The system is
assumed to be infinitely extended in the y direction and as such reduces to a two dimensional
problem.

FIGURE 3.2: Beam coupling effects in A) the Bragg regime and B) the Raman-Nath regime.

modelled using the assumption that the grating is thin. Diffraction in this regime was first studied

in 1936 [96]. This system is modelled by considering the modulated refractive index as a phase

grating and neglecting any anisotropy in the materials. In the past couple of years modelling in

the Raman-Nath regime has been extended using an approach similar to that of Kogelnik and

Montemezzani to describe Raman-Nath diffraction in anisotropic media [97, 98].

Although the models just described offer ease of implementation and high computational effi-

ciency they are restricted to specific regimes. Differentiation between the Bragg and Raman-

Nath regimes is not always straightforward as both the thickness of the medium and the refrac-

tive index profile affect the nature of the diffracted beams. The first criteria used to distinguish

the two regimes were suggested by Kogelnik [94], based on the dimensionless parameter

q =
2πλL
nuΛ2

, (3.1)
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whereΛ is the grating period,λ the free space wavelength of the light,nu the homogeneous part

of the refractive index andL the thickness of the medium. The Bragg regime is then defined as

q � 1 and the Raman-Nath regime asq � 1. However, since then a variety of criteria have

been suggested, as reviewed in [100], and more appropriate criteria for both Bragg and Raman-

Nath [101] coupling regimes have been established based not only onq but also the Raman-Nath

grating strength.

From the analysis of these criteria, it is clear that there is no distinct cut off point between Bragg

and Raman-Nath regimes. Indeed, there is an intermediate regime in which neither theory is

appropriate. It is this intermediate regime, in which little work has been done, which is of

importance here. A more rigorous method, suitable for this regime, has been developed. This

is based on direct substitution of the refractive index profile into Maxwell’s equations and is

suitable for both isotropic [2] and anisotropic [102] materials. This method has also been used

for cascaded gratings with the constraint that the dielectric profile has the same period at the

boundary between two gratings [103]. It has been shown to agree numerically with both the

coupled wave approach and the Raman-Nath phase grating approach. Although it is in good

agreement with the simpler theories this approach is less computationally efficient as it involves

solving 4n coupled ODEs forn discrete wave vectors. Further, although highly flexible, the

resulting system of equations must be solved independently for each geometry. This makes the

model computationally inefficient for optimisation.

Although the early theories provide a good deal of insight into the coupling mechanisms, experi-

mental geometries such as photorefractive liquid crystal cells are not as straightforward to model

for a number of reasons. Firstly, due to the non-linear alignment of the liquid crystals with the

applied electric field, liquid crystal refractive index profiles are non-uniform in thez direction

and contain many harmonics of the fundamental grating vector in thex direction. Secondly, as

nematic liquid crystal molecules are symmetric with respect to inversion, it is necessary to have

a non-normal incidence angle for the bisector of the two incident beams in order to obtain the

correct grating vector [92]. This means that as the grating is created by the superposition of the

beams at the cell surface, there are no waves which can be perfectly matched by the fundamental

grating vector. Finally, diffraction in these cells has been observed in both the Bragg [104] and

the Raman-Nath [105] regimes. Simple changes in the geometry of the incident beams will move

the system continuously from the Bragg to the Raman-Nath regime, through the intermediate

regime. As such, a model has to be capable of describing both of these behaviours.

There are two main theoretical models for the diffraction of light by liquid crystal cells. Both

of these models consider a linearisation of the equations governing the liquid crystal alignment.

This is equivalent to considering small variation in the director angle and that the electric field

is decoupled from the liquid crystal alignment. Jones and Cook [68] considered photorefractive

liquid crystal cells in the Bragg regime. Their optical analysis is based in the Bragg coupling

regime making their model inappropriate for the Raman-Nath regime. Further, they only con-

sider the effects of the anisotropy on the refractive index seen by the beams as they propagate.

This neglects fundamental polarisation effects observed in anisotropic crystals. Kubytskyi et
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al [99] consider photorefractive liquid crystal cells in the Raman-Nath regime. Their analysis

is based on a geometrical optics approach suitable for thin gratings and has been verified by

numerical simulation [106]. Whilst both of these approaches are appropriate only for specific

coupling regimes, they each provide a great deal of insight into the coupling mechanisms in-

volved. This allows clear identification of the key parameters involved in obtaining a strong

optical coupling effect.

Here we model the liquid crystal alignment using the approximateQ–tensor model developed

in Chapter 2. We also propose a new model for beam coupling in the liquid crystal cell. This

model does not make any assumptions which could restrict the models use to the Bragg or

Raman-Nath regime. We take into account all possible scattered optical waves in the cell and

their superposition. The model is developed for a cell with refractive index which is periodic

(but not necessarily sinusoidal) in one direction and has arbitrary profile in the other. This profile

has been chosen as it accurately reflects the profile of the liquid crystal cell. We have verified

this model by comparison with finite element simulations and proved it to be accurate. We have

also shown that the model is, under appropriate assumptions, analytically equivalent to existing

models for beam coupling in specific regimes.

3.2 Modelling beam coupling

In order to understand how beam coupling works in liquid crystal cells we first consider some

existing models. Suppose we have two coherent plane waves incident on a medium whose

conductivity at any point is proportional to the intensity of the light at that location. If the waves

are in the(x, z) plane and have wave vectorsk1 andk2 we write the scaled intensity pattern at

the surface of the medium(z = 0) as

I =
∣∣∣A1e

i( 2π
λ

k̂1·x−ωt) +A2e
i( 2π

λ
k̂2·x−ωt)

∣∣∣2 (3.2)

whereλ is the free space wavelength. After some manipulation equation (3.2) gives

I = A2
1 +A2

2 + 2A1A2 cos
[
2π
λ

(
k̂1 − k̂2

)
·x
]
. (3.3)

This gives us a modulated intensity and hence a modulated conductivity with wave vector

K = k1 − k2 = 2π/Lambda andΛ is the grating period. If this material is used as a boundary

for a liquid crystal cell then, combined with an applied DC electric field, we obtain a modulated

potential at the liquid crystal boundary and hence, a modulated electric field across the liquid

crystal layer with a phase shift ofπ2 from the incident intensity. The modulated electric field

causes the liquid crystal to realign and produces a modulated refractive index in the cell. Beam

coupling is caused by the superposition of the diffracted waves produced by this refractive index

modulation.
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3.2.1 Raman-Nath regime

In the case of Raman-Nath diffraction we consider a single plane wave incident at angleθ on

a medium with periodically modulated refractive index where the interaction lengthL is small

enough that the medium acts as a phase grating [96]. This approach is valid in the limit of thin

gratings, this limit can be quantified by the dimensionless parameterq defined in equation (3.1).

The Raman–Nath analysis is valid whenq � 1. We write the modulation of the refractive index

as

nm = n0 + ∆n sin (K · x), (3.4)

and the incident plane wave as

E = Aei(k·x−ωt), (3.5)

wherek is the wave vector of the incident beam andω the optical angular frequency, the wave

at the far side of the medium can then be expressed as

E = A exp
{
i

[
n0k · x +

2π∆nL
λ cos θ

sin (K · x)− ωt

]}
. (3.6)

We use the Jacobi-Anger identity for Bessel functions,

eiδ sinx =
∞∑

m=−∞
Jm(δ)eimx, (3.7)

to repackage the expression for electric field as a series of plane waves,

Et = E0

∞∑
m=−∞

Jm(δ)ein0(k+mK)·xe−iωt, (3.8)

where

δ =
2π∆nL
λ cos (θ)

. (3.9)

Them–th order wave propagates with wave vectorkm = k + mK which propagates at an-

gle sin θm = mλ/(n0Λ). Using equations (3.9) and (3.8) we can obtain the intensity for the

diffraction beams at different order,

Im = E2
0J

2
m (δ) . (3.10)

A typical plot for the Raman-Nath intensity distribution as a function of distance through the

cell is shown in Figure 3.3. It can be seen that over a short distance the energy from the incident

wave is transferred first into the±1 diffracted order, then from there into the next order and so

on. As the distance into the cell increases the energy is spread between more waves, with no

single large amplitude diffracted order occurring. For the case of two input beams the coupling

can be described as the superposition of equation (3.10) for two different inputs.
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FIGURE 3.3: Typical plot for Raman-Nath intensity distribution as a function of distance
through cell.

3.2.2 Bragg regime

Beam coupling in the Bragg regime is modelled by neglecting all diffracted orders except the

two incident beams. This analysis holds whenever the regime parameterq � 1, whereq is

defined in equation 3.1. We substitute the non-homogeneous dielectric constant

ε = εu + η∆ε cos (K · x + ϕ) (3.11)

into the wave equation (1.3) [94]. Hereϕ is the phase shift between the optical interference

pattern and the refractive index grating,εu is the homogeneous part of the dielectric constant,

∆ε is the non-homogeneous part andη � 1 is a scaling parameter. It is important to note that

the role of theϕ in these systems is slightly different to the role of phase shift in a conventional

photorefractive system (this will be discussed in Section 3.3.3). The method of multiple scales,

which will be described in detail in Section 3.4, is used to obtain an expression for the slowly

varying wave amplitudes

k̂1 ·∇A1 = i
|k0|∆ε

4n
(ê1 · ê2)A2e

−iϕ, (3.12a)

k̂2 ·∇A2 = i
|k0|∆ε

4n
(ê2 · ê1)A1e

iϕ. (3.12b)

Heren =
√
εu is the uniform part of the refractive index. These equations assume that the

medium is thick and any higher order diffracted waves will be evanescent. As such they will

be attenuated as they propagate. Beam coupling equations for the Bragg regime have also been

derived in the case of an anisotropic medium [95] in which caseε is a tensor.

Equations (3.12) are usually solved as an eigenvalue problem. The simplest case is obtained by
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FIGURE 3.4: Typical plot for Bragg intensity distribution as a function of distance through
cell.

choosing the coordinates such that the waves propagate in thex, z plane with polarisation in the

y direction. The bisector of the two beams is also assumed to be normal to thex, y plane. This

allows us to write equation (3.12) as

dÃ1

dz̃
= iÃ2

dÃ2

dz̃
= iÃ1,

(3.13)

where we have introduced the new variablesÃ1 = A1e
−iϕ/2 andÃ2 = A2e

iϕ/2, and the scaled

spatial variable

z̃ =
|k0|∆ε
4n cos θ

z. (3.14)

Hereθ is the angle at which the waves propagate with respect to thez axis. Equation (3.13) has

solution

Ã1 =
Ã1(0)− Ã2(0)

2
eiz̃ +

Ã1(0) + Ã2(0)
2

e−iz̃,

Ã2 = −Ã1(0)− Ã2(0)
2

eiz̃ +
Ã1(0) + Ã2(0)

2
e−iz̃,

(3.15)

where the constants̃A1(0) andÃ2(0) are the initial amplitudes of the two beams. The coupling

strength depends not only on the input optical intensities but also on the relative phase of the

beams with the grating. A typical plot for the Bragg regime intensities is shown in Figure 3.4.

In this case it can be seen that the energy transfers entirely from the incident beamA1 intoA2

before beginning to transfer back. All the energy is confined to one of two different directions,

this is in contrast to the Raman-Nath case where the energy progressively spreads throughout
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the diffracted orders.

These two models are well established and have been used to describe coupling in the different

regimes successfully. We wish to extend these models such that they can be used to model

Bragg, Raman-Nath and the intermediate regimes.

3.3 Beam coupling in a liquid crystal cell

In this section we consider some of the properties of the photorefractive liquid crystal cells

which make them different from standard photorefractive crystals. These properties require

careful consideration during the derivation of the regime independent model.

3.3.1 Anisotropy

To understand how light behaves in such a medium we consider the wave equation (derived in

Section 1.2)

∇×∇×E = ω2µεE. (3.16)

whereµ = µ0µr is the permeability of the medium,ε = ε0εr is the dielectric permittivity and

∂t is the derivative with respect to time andE is the electric field. For an anisotropic materialεr

is a tensor. We assume equation (1.3) has a solution in the form of a plane wave

E = Aei(k·x−ωt), (3.17)

wherek = ω
c nk̂ andn the refractive index in that direction. Substituting into equation (1.3), we

obtain

n2A− n2k̂(k̂ · A) = εuµrA (3.18)

Equation (3.18) is simplified by choosing the coordinate axes so that they coincide with the

principal optical axes of the medium. Hence, the dielectric tensor is diagonal:

εr =

 n2
x 0 0
0 n2

y 0
0 0 n2

z

 , (3.19)

wherenx, ny, nz are the refractive indices in thex, y andz directions respectively. Substituting

(3.19) into (3.18) allows us to write an expression for the electric field components

Ai =
n2k̂i(k̂ · A)
n2 − µrεi

. (3.20)
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We multiply both sides bŷki and sum overi to obtain

k̂2
x

n2 − µrεx
+

k̂2
y

n2 − µrεy
+

k̂2
z

n2 − µrεz
=

1
n2
. (3.21)

This is Fresnel’s equation of wave normals [3], which we wish to solve to find the eigenve-

locities at which light travels through the birefringent medium. This allows us to define the

refractive indices, the direction in which the waves propagate and hence, using equation (3.20),

the polarisation. We follow the method of Born and Wolf [3] and multiply equation (3.21) by

n4 and use the fact that̂k2
x + k̂2

y + k̂2
z = 1. We obtain the following quadratic equation for the

phase velocityv2
p = c/n2

k̂2
x(v

2
p − v2

y)(v
2
p − v2

z) + k̂2
y(v

2
p − v2

z)(v
2
p − v2

x) + k̂2
z(v

2
p − v2

x)(v
2
p − v2

y) = 0, (3.22)

where the component velocities arevi = c/
√
µrεi. At present the only assumption we have

made is that the coordinate axes coincide with the principal optical axes of the crystal. No

assumptions have been made about the nature of the crystal. Nematic liquid crystals are known

as uniaxial crystals, meaning that they have one axis of complete rotational symmetry. Hence

they have only two refractive indices,nx = ny = no andnz = ne where the subscriptso ande

refer to the ordinary and extraordinary refractive indices respectively. This means we can write

the component form of the velocities asvx = vy = vo andvz = ve wherevo andve are the

ordinary and extraordinary velocities respectively. We writek̂ in spherical coordinates in order

to simplify equation (3.22)

k̂ =

 sin θi cosφi
sin θi sinφi

cos θi

 , (3.23)

whereθi andφi are the standard spherical coordinate angles. We use this and equation (3.22) to

obtain a simpler expression for phase velocity

(v2
p − v2

o)[sin
2 θi(v2

p − v2
e) + cos2 θi(v2

p − v2
o)] = 0. (3.24)

This equation has two roots which tell us the velocities at which the wave propagates in any

given direction. It is worth noting that as we are solving forv2
p there will be four solutions

for vp. These will form equal and opposite pairs which correspond to propagation in opposite

directions. By inspection the two roots are

v2
p1 = v2

o ,

v2
p2 = v2

o sin 2θi + v2
e cos 2θi.

(3.25)

The phase velocities of the light rays propagating through the medium are independent of the

angle the ray makes with the ordinary axis. It is only the angle which the ray makes with the

extraordinary axis which is important in determining these velocities as shown in Figure 3.5.
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FIGURE 3.5: Phase velocity for ordinary and extraordinary waves.

Using the eigenvelocities we can calculate the eigen–indices of refraction for the system:

n1 = no,

n2 =
neno√

n2
e cos2 θi + n2

o sin2 θi
.

(3.26)

It is usual to name these refractive indices as the ordinary refractive indexno which has no

direction dependence and the effective refractive indexneff which depends on the direction of

propagation.

As an aside, these expressions can be used to experimentally verify the liquid crystal model

through cross polarised intensity experiments. Cross polarised intensity is the light intensity

observed for a beam transmitted through two polarisers at an angle ofπ
2 to each other, as shown

in Figure 3.6. If the first polariser is placed such that it makes an angle ofπ
4 to thex, z plane then

we can write light transmitted through the polariser in thez direction in terms of its polarisation

components

E = E0e
i(kz−ωt)

[
cos
(π

4

)
x̂ + sin

(π
4

)
ŷ
]

=
E0√

2
ei(kz−ωt) [x̂ + ŷ] . (3.27)

A birefringent material is placed between the polarisers with its optical axis is in thex, z plane.

At its exit facet one the component of light polarised in plane will be phase shifted by an amount

∆ϕ with respect to the other. Hence, the electric field can be written as

E =
E0√

2
ei(kz−ωt)

(
ei∆ϕx̂ + ŷ

)
. (3.28)

This light is then transmitted through the analyser (a second polariser making an angle ofπ
2 to

the first polariser). The electric field of the beam transmitted through the analyser is

E⊥ =
E0

2
ei(kz−ωt)

(
1− ei∆ϕ

)
(−êx + êy) . (3.29)

From here the cross polarised intensity can be calculated by multiplying the electric field by its
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FIGURE 3.6: Experimental setup for cross polarised intensity experiment. Polarised light
is transmitted through the photorefractive liquid crystal cell before being measured using an
analyser (a second polariser atπ/2 to the first) and a photodiode. As voltage is applied to the
liquid crystal cell the molecules realign creating an additional phase shift in one polarisation
component. The result is a variation in light intensity measured at the photo diode.

complex conjugate to obtain

I⊥ = sin2 ∆ϕ
2
. (3.30)

Equation (3.30) can be used to verify that the liquid crystal models can accurately predict the

director orientation under different applied voltage forms. In order to do this we need to deter-

mine the phase shift∆ϕ as a function of propagation through the liquid crystal. In calculating

the cross polarised intensity we assume that only the phase of the light is affected by the liquid

crystals medium and that the optical axis is restricted to thex, z plane.

We now consider the original problem of a normal incidence plane wave passing through two

polarisers. After the first polariser the light will be polarised at45◦ to thex, z plane. The out-of-

plane component will see the ordinary refractive index whilst the in-plane component will see

the effective refractive index. Over a small distancedz the in plane and out of plane waves will

develop a phase shift,

d∆ϕ =
2π
λ

(no − neff ) dz, (3.31)

over the length of the cell this gives a total phase shift

∆ϕ =
2π
λ

∫ L

0
(no − neff ) dz. (3.32)

Substituting equation (3.32) into equation (3.30), gives a cross polarised intensity,

I⊥ = sin 2

[
π

λ

∫ 1

0
(no − neff ) dz

]
. (3.33)

Equation (3.33) is solved using a numerical Clenshaw-Curtis quadrature scheme (see Appendix

B.5) and is coupled to the liquid crystal model to allow us to plot the cross polarised intensity

of light transmitted through the cell, at the boundaryz = L, as a function of cell thickness and



Chapter 3 Regime-independent coupled wave equations 41

voltage. This numerical model can then be directly compared with experimental observations.

We compare the predictions of the numerical models with experimental results for two different

liquid crystal cells, one containing the liquid crystal compound E7 and the other TL205. The

cross polarised intensity is obtained from both the director and tensor liquid crystal models in

the case of TL205 and only from the director model in the case of E7. This is because the splay

and bend elastic constants in TL205 are very similar and, as such, the single elastic constant

approximation used in the tensor model is valid. However, in the case of E7 the difference

in elastic constants is not small and, as such, experimental comparison using the single elastic

constant is not possible.

Experimentally the system is set up as described above: the input laser beam is split into two

beams, the intensity of one beam is measured directly, the other is measured after it has passed

through the crossed polarisers and the liquid crystal cell, allowing us to compensate for any

modulation in the laser intensity. The cross-polarised intensity is measured for a variety of

different AC voltages, and the experiments are run first increasing the voltage from0 to Vmax
then decreasing back to0. Comparison of the two curves allows us to ensure the liquid crystal

has reached steady state alignment.

The fitting algorithm uses a non-linear least squares method to determine the elastic constants

which best fit the experimental behaviour. First however, the cell length is determined from the

total phase shift observed in the experiment. At high voltage all the liquid crystal will be aligned

in thez–direction. Therefore, the in plane and out of plane components of the field will see the

same refractive index. This means the the cross polarised intensity will asymptote to zero. Using

this knowledge, the initial value ofI⊥ and the number of timesI⊥ oscillates with voltage we

can determine the total phase shift of the beam. Combining this with the optical wavelength we

can obtain the cell thickness.

The E7 cell is compared first, this cell is calculated as11.1µm thick with liquid crystal refractive

indices,ne = 1.764, no = 1.522, and DC dielectric constants,ε⊥ = 5.17, ε‖ = 19.54, the

optical wavelength of light used isλ = 543.5nm and the molecular pretilt is0◦ on the PVK side

and2◦ on the PI side. Figure 3.7 shows the comparison of theoretical and experimental cross

polarised intensities. The fitting parameters used are the elastic constants for bend and splay,

the best fit is obtained fromK1 = 11.08pN andK3 = 22.67pN, these values are comparable to

those found in the literatureK1 = 11.7pN andK3 = 19.5pN [107].

Figures 3.8 gives the experimental comparison for the TL205 cell, using the director model.

This cell is approximately11.8µm thick with liquid crystal refractive indices,ne = 1.745,

no = 1.527, and dielectric constants,ε⊥ = 4.9, ε‖ = 9.1, the optical wavelength, pretilt angles

and anchoring strengths used are the same as in the E7 case. The best fit values for the splay and

bend elastic constants areK1 = 16.11pN andK3 = 15.83pN, these are slightly smaller than

the known values,K1 = 17.3pN andK3 = 20.4pN.

The experimental comparison for the TL205 cell with theQ tensor model is shown in Figure

3.9. Here the cell parameters used are the same as for the director model of the TL205 cell. In
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FIGURE 3.7: Experimental comparison for E7 liquid crystal using director model. The cell
length is calculated from the total observed phase shift and the fit is obtained using the elas-
tic constantsK1 andK3 as fitting parameters. Experimental data by Mark Herrington and
Malgosia Kaczmarek

FIGURE 3.8: Experimental comparison for TL205 liquid crystal using director model. The
cell length is calculated from the total observed phase shift and the fit is obtained using the
elastic constantsK1 andK3 as fitting parameters. Experimental data by Mark Herrington and
Malgosia Kaczmarek
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FIGURE 3.9: Experimental comparison for TL205 liquid crystal usingQ tensor model. The
cell length is calculated from the total observed phase shift and the fit is obtained using the
single elastic constantK as fitting parameter. Experimental data by Mark Herrington and
Malgosia Kaczmarek

FIGURE 3.10: Symmetry breaking in liquid crystal cell, reproduced from [74]. (A) Refractive
index profile seen by normal incidence light for zero pretilt. (B) Refractive index profile seen
by normal incidence light with pretilt.

this case we have only one elastic constant to used as a fitting parameter. However, it can be

seen from Figure 3.9 that this is enough. The fitted value for the elastic constant isK = 15.9pN,

this was calculated using a scalar order parameterS = 1.

It is clear from these results that, for a uniform AC applied voltage, the director model for the

liquid crystal cell is sufficiently accurate. Also for the case of the TL205 cell a single elastic

constant approach as used in theQ–tensor model is an accurate assumption as the splay and

bend constants are similar. Whilst theQ–tensor model developed here is not appropriate for the

E7 cell it is worth noting that this can be overcome by using a more general form of the elastic

free energy and is not a limitation of theQ–tensor approach in general.



Chapter 3 Regime-independent coupled wave equations 44

FIGURE 3.11: Grating vectors seen in typical beam coupling experiments. (A) Photorefractive
material, refractive index grating vector is the one required to match the two waves regardless
of cell tilt. (B) Liquid crystal cell with mismatch between refractive index grating and optical
grating.

3.3.2 Geometry and symmetry considerations

Beam coupling in a liquid crystal cell differs from beam coupling in a photorefractive material

in two ways, both of which are due to the way in which the grating is formed. Firstly, due to the

symmetries of a liquid crystal cell, i.e. the fact that a liquid crystal aligned at+ϑ has the same

refractive index to one aligned at−ϑ the fundamental refractive index grating vector will be of

twice the length of that required to couple the two incident beams. At first glance this would

suggest that the normal incidence gain is zero in a Bragg regime setup. However, as we will

see when we analyse the regime independent model in Section 3.5.4, a small amount of gain

can still be observed in this situation. Typically the problem of small gain is overcome by either

tilting the liquid crystal cells or by using liquid crystal cells with a large molecular pre-tilt on

the photoconducting side, see Figure 3.10. Secondly, in a photorefractive crystal the materials

non-linearity causes the refractive index grating vector to be exactly the difference between the

two incident optical wave vectors. As such energy is transferred between two adjacent beams

with no phase mismatch, see Figure 3.11(A). However, in a liquid crystal cell the grating is

produced due to the interaction of the incident optical field with the very thin photoconducting

layer. The modulation in conductivity in this layer then causes the refractive index grating vector

to be tangential to the photoconducting layer regardless of the cell orientation. This means that

the fundamental grating vector is different to the one required to match the two incident beams

as shown in Figure 3.11(B).

Before we develop the regime independent beam coupling model, it is important to understand

the role of these two effects in detail. The first of these requires that the liquid crystal cell has

some asymmetry in order to produce the correct grating vector to match the incident beams

whilst the second requires low cell tilt in order to minimise the mismatch induced by this effect.

The refractive index profile of a liquid crystal beam coupling cell seen by a single incidence

beam is determined by equation (3.26). The alignment of the liquid crystal is determined by

the intensity interference pattern. Therefore, a good approximation forϑ, the angle the optical

axis makes with thez–axis, isϑ = ϑ0 sin(Kg·x̂), whereKg is the grating vector required to
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produce photorefractive gain, then the refractive index seen by a beam incident at angleϑi to

the surface normal is given by

neff =
ne√

1 +
(
n2

e−n2
o

n2
o

)
cos2 (ϑ0 sin(Kg·x̂) + ϑi)

. (3.34)

Linearising equation (3.34) by assumingϑi � 1, ϑ0 � 1 andn2
e−n2

o � n2
o allows us to obtain

an approximation for the refractive index seen by a beam incident on the cell:

neff ≈ ne

{
1− 1

4

(
n2
e − n2

o

n2
o

)[
2− 4ϑiϑ0 sin(Kg·x̂)− ϑ2

0(1− cos(2Kg·x̂)) +O
(
ϑ3

0

)]}
.

(3.35)

For anyθi 6= 0 we can see that the input beam will see the fundamental component of the grating

vector and be diffracted. However, for normal incidence i.e.θi = 0 there will be no coupling

through the fundamental grating vector. At first glance this suggests that any angle of incidence

can be chosen with the exception of normal incidence. However, if we have two beams incident

on the photoconducting layer separated by angle2α, with bisector normal to the cell surface

then the two input beams will each see the fundamental grating vector. However, the grating

seen by beam 1 will be shifted byπ with respect to the grating seen by beam 2. As the two

beams do not see the same grating the result will be no energy transfer. Whilst this analysis

seems somewhat incomplete we will see in Section 3.5.4 that it provides a good approximation

to the full analysis of normal incidence beam coupling.

Therefore in order to obtain photorefractive gain it is necessary to have either a large pre-tilt

on the molecular surface alignment or to tilt the cell. The most common of these two methods

is to tilt the cell as large pre-tilt angles are hard to obtain using conventional alignment layers.

Unfortunately there is a price to be paid in doing this: the mismatch between the two beams,

which is larger the greater the cell tilt. The two incident beams defined above have wave vectors

defined as

%i = k0ni [cos (βi − αi)êz + sin (βi − αi)êx] (3.36a)

and

σi = k0ni [cos (βi + αi)êz + sin (βi + αi)êx] , (3.36b)

where,k0 = 2π/λ0, λ0 is the free space wavelength andni is the refractive index outside the

liquid crystal cell. On entering the cell these beams will refract and as such can be written as

%t = k0nt [cos (βt − αt)êz + sin (βt − αt)êx] (3.37a)

and

σt = k0nt [cos (βt + αt)êz + sin (βt + αt)êx] , (3.37b)

where the subscriptt refers to the transmitted wave angles. Snell’s law in this case states that

ni sin (βi ± αi) = nt sin (βt ± αt). (3.38)
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As such, the tangential part of the electric field is conserved across the boundary as expected

due to Maxwell’s boundary condition. The grating vector within the liquid crystal is based only

on the tangential component within the photoconducting layer, and can be written as

Kg = k0nt [sin (βt − αt)− sin (βt + αt)] êx. (3.39)

However, the grating vector,Kr = %t −σt, required to match the two waves in the medium is

Kr = k0nt [(sin (βt − αt)− sin (βt + αt)) êx + (cos (βt − αt)− cos (βt + αt)) êz] . (3.40)

Therefore, there is a grating vector mismatch equal to the difference betweenKg andKr,

∆K = k0nt (cos (βt − αt)− cos (βt + αt)) êz. (3.41)

From this analysis we can see that forβt = 0 the mismatch vanishes. This is also the condition

for the fundamental refractive index component to be zero. As such there must be some optimum

angle at which the mismatch is small, yet the fundamental refractive index grating component

is non-zero.

3.3.3 Phase shift

In typical photorefractive crystals the phase shift between the grating and the beams is of fun-

damental importance for coupling to take place [108]. In liquid crystal cells this is not the case

as the following analysis demonstrates. This has already been observed in [99] but the authors

did not pursue this point in any detail.

To understand the role of the phase shift in these systems it is important to first understand the

role of phase shift in a conventional photorefractive system. In these systems the refractive index

grating at any point in the cell is defined by the electric field at that point in space. Therefore

two waves of the formE1(x) = R(x)ei(kxx+kzz−ωt) andE2(x) = S(x)ei(−kxx+kzz−ωt) will

interfere to form a grating which can be written as,

I = R(x)S(x)
[
ei(2kxx) + e−i(2kxx)

]
. (3.42)

As there is an implicit phase shiftϕg between the intensity interference pattern and the dielectric

profile, the dielectric profile will take the form,

ε = εu + ∆εR(x)S(x)
[
ei(2kxx+ϕg) + e−i(2kxx+ϕg)

]
. (3.43)

After substitution into the wave equation we can derive the scaled coupled wave equations for a

photorefractive material [109],

dR(x)
dẑ

= iR(x)|S(x)|2eiϕg (3.44a)
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dS(x)
dẑ

= iS(x)|R(x)|2e−iϕg . (3.44b)

As R(x) andS(x) are complex quantities they can be written in modulus argument form

R(x) =
√
Ir(x)e−iϕr(x) andS(x) =

√
Is(x)e−iϕs(x). Substituting into equation (3.44) gives

us the following equations for the intensities and phases

dIr
dz

= −2IrIs sinϕg,
dIs
dz

= 2IrIs sinϕg,

dφr
dz

= Is cosϕg,
dφs
dz

= Ir cosϕg.

(3.45)

It can be seen that forϕg = 0 these equations decouple and there is no energy transfer between

the two beams. Physically this can be thought of as the grating shifting in space with the inter-

ference pattern: although the phase of the two beams changes in space there is no overall phase

shift in the system. In photorefractive systems the phase shift isϕg = π/2 throughout the crys-

tal. In our cells this is not the case as the grating is fixed by the boundary of the cell. Therefore,

regardless of the phase shift between the grating and the intensity interference pattern we will

see energy exchange induced by the phase shift which develops between the two beams during

propagation. Starting from the linear beam coupling equations in the Bragg regime,

dR(x)
dẑ

= iS(x)eiϕg (3.46a)

dS(x)
dẑ

= iR(x)e−iϕg , (3.46b)

we can make the same substitution,R(x) =
√
Ir(x)e−iϕr(x) andS(x) =

√
Is(x)e−iϕs(x)

and obtain:

dIr
dz

= −2
√
IrIs sin (ϕg − ϕr(x) + ϕs(x)) ,

dIs
dz

= 2
√
IrIs sin (ϕg − ϕr(x) + ϕs(x)) ,

dφr
dz

= Is cos (ϕg − ϕr(x) + ϕs(x)) ,
dφs
dz

= Ir cos (ϕg − ϕr(x) + ϕs(x)) .
(3.47)

In this case we can see that these equations decouple whenϕg − ϕr(x) + ϕs(x) = 0. In this

case the solution to equations (3.47) isIr = C0, Is = C1, ϕr = Isz + C2 andϕs = Irz + C3,

whereCj are arbitrary constants. These equations are consistent if

ϕg − Isz + C2 + Irz + C3 = 0. (3.48)

Equation 3.48 must be satisfied for allz, this is only the case ifIr = Is. From this analysis

we can conclude that we will always see energy transfer between the two beams, even forϕg =
0, except in the case whereIr = Is. In this case the two beams will propagate through the

grating with no change in intensity and will develop a phase shift proportional to the distance

travelled. In other words, for the special case of equal input intensities the two beams will
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propagate through the material unaltered by the grating. Physically this can be thought of as the

two beams each coupling energy into the other at the same rate, this results in zero net energy

transfer. In general at the cell boundaries the photorefractive liquid crystal cells, like general

photorefractive crystals, have a phase shiftϕg = π/2. However, the overall phase shift between

the interference pattern and the grating is notπ/2 throughout the cell. Hence, the cells are only

truly photorefractive at the PVK:C60 boundary.

3.4 Derivation of regime independent coupling model

To derive the regime independent coupling model, we start from the wave equation (1.3), derived

in Section 1.2. We consider a medium which contains a periodic refractive index grating in the

(x, z) plane with a fundamental grating with wavenumberK = 2π
Λ in thex direction and any

number of higher grating harmonicspK wherep = 2, 3, ... andΛ is the grating period. We

further assume that the medium is birefringent and that each Fourier component of the dielectric

tensor,∆ε(p), may vary slowly in thez direction so that the dielectric tensor may be expressed

as:

εr(x, z) = εu + η
1
2

∞∑
p=−∞

∆ε(p)(ηz)ei(pKx+ϕ
(p)), (3.49)

where,η � 1 is a smallness parameter,εu is the uniform part of the dielectric tensor andϕ(p) is

the phase shift of thep-th grating Fourier component. We assume that the optical axis ofεu is

in the plane formed by the complete set of optical wave vectors as this is typically the case for

a liquid crystal photorefractive cell. For compactness of notation we assume thez–dependence

to be implicit in∆ε(p) and absorb the phase into the complex tensor Fourier coefficients. These

will eventually be obtained from a complex Fourier transform of the liquid crystal alignment

profile.

The non-homogeneous part ofεr is small. Therefore, to leading order we can neglect it. As

such we obtain a set of ordinary and extraordinary eigenmodes with wave vectorsk̂
(m)

o and

k̂
(m)

e respectively. These have out of plane polarisationê(m)
o for the ordinary mode and in plane

polarisationê(m)
e for the extraordinary mode. The derivation of these polarisations and wave

vectors is described in Section 3.3.1. The coupling between modes is described by theO(η)
correction to the amplitudes and is found using the method of multiple scales. This coupling

takes two forms, coupling between the different Fourier components of the field and coupling

between the ordinary and extraordinary components. The coupling between the Fourier compo-

nents can be achieved by diffraction from the fundamental grating vector and any of its higher

harmonics, as illustrated in Figure 3.12 A and B. It should be noted that if the bisector of the

two incident waves is not normal, none of the wave vectors will be perfectly matched by the

fundamental grating vector, see Section 3.3.2. Therefore, the coupling strength will depend not

only on the amplitude of the appropriate coupling harmonic, but also on the size of the mismatch

term∆K(m,n) = k
(m)
z − k

(n)
z .



Chapter 3 Regime-independent coupled wave equations 49

FIGURE 3.12: Possible couplings and associated mismatch terms for ordinary and extraordi-
nary waves A) Coupling of Fourier components by the fundamental grating period. B) Coupling
of Fourier components by the second harmonic. C) Coupling of ordinary and extraordinary
waves by the fundamental Fourier component. This is the minimum number of components it is
possible to consider if we want to obtain consistent equations.

Coupling between the ordinary and extraordinary modes is illustrated in Figure 3.12 C. For the

most general case of arbitrary input polarisation there are two sets of ordinary and extraordinary

waves required to match the boundary conditions. Coupling occurs between the waves generated

at the boundary,̂k
(m)

1e andk̂
(m)

2o , and their corresponding ordinary and extraordinary parts. The

processes of coupling between different Fourier components and different polarisations occur

simultaneously in any general photorefractive system. However, as these two processes make

the derivation rather complex we consider a simplified system. For a first order dielectric tensor

restricted to the plane formed by the incoming grating vectors then we need only consider the

coupling between the Fourier components. This significantly simplifies the algebra and the

resulting equations. Whilst this assumption may seem restrictive it is generally true for the case

of a photorefractive cell. However, for completeness we consider the more general case where

the optical axis of∆ε(p) points in an arbitrary direction in Appendix C.

As the non-homogeneous part of the dielectric constant is small we observe a separation of

scales in this system. We use this to set up a multiple scale expansion in terms of the scaled

spatial variables:x0 = x andx1 = ηx and the scaled derivatives

∂

∂x
=
∂x0

∂x

∂

∂x0
+
∂x1

∂x

∂

∂x1

=
∂

∂x0
+ η

∂

∂x1
,

(3.50)

which, for compactness of notation can be written∇ = ∇0 + η∇1. The electric field in the

material is written as a power series expansion inη, where we need only retain the lowest

order terms,E(m) = E
(m)
0 + ηE

(m)
1 +O(η2) and the fields at each order are assumed to be a

superposition of the ordinary and extraordinary plane waves which may be perfectly matched

by the grating vectors in thex direction. Hence the field is periodic inx with fundamental wave
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numberK. We expand it in a Fourier series inx to obtain

Ej =
N∑

m=−N
A

(m)
1e,j (x1) eik

(m)
e,j ·x−iωt, (3.51)

where the subscriptj refers to the term of orderj in the expansion and the subscriptso, e refer

to the ordinary and extraordinary waves respectively. Assuming the optical axis of∆ε(p) is

in plane then we need only consider the fieldsA
(m)
1e,j . As these are the only fields we drop the

subscript1e. The amplitude is assumed to vary spatially with the inhomogeneity in the dielectric

constant andk(m) = mKêx + k
(m)
z êz, with the constraint that|k(m)| = k0n

(m). Herek0 is

the free space wavenumber,n(m) is the refractive index seen by them-th wave and we assume

that the evanescent waves may be neglected. Therefore, the total number of optical components

is 2N +1 whereN = k0
|K| . Substituting equations (3.51) and (3.49) into (1.3) we expand to first

order to obtain a set of coupled wave equations in terms of the scaled spatial variablex1 for the

amplitudesA(m)
0

∇0 ×∇0 ×E1 −
ω2

c2
εuE1 =

−∇0 ×∇1 ×E0 −∇1 ×∇0 ×E0 +
k2

0

2

∞∑
p=−∞

∆ε(p)eipKxE0.

(3.52)

This is a non-homogeneous equation forE1 of the formL0E1 = L1E0, whereLj refers to the

orderj linear operator. Solving the homogeneous part of this equation we find thatE1h, the ho-

mogeneous part ofE1, has the same spatial dependence asE0. Solving the non-homogeneous

part of equation (3.52) would therefore require a trial solution which grows linearly inx0 re-

sulting in unbounded growth. As the energy of the system is finite we must require thatE1 is

bounded. Therefore, the solvability condition is that the coefficients of the terms resonant with

E1h in the non-homogeneous part of (3.52) must be zero,

∇0 ×∇1 ×E0 + ∇1 ×∇0 ×E0 =
k2

0

2

∞∑
p=−∞

∆ε(p)eipKxE0. (3.53)

Substituting equation (3.51) into equation (3.53), using the identity (which can be derived graph-

ically from Figure 3.12)

k
(m)
e = k

(n)
e + (m− n)Kêx +

(
k

(m)
z − k

(n)
z

)
êz, (3.54)

and collecting terms with the samex0 dependence allows us to obtain

ik(m)
[
(k̂

(m) · ê(m))∇1 + k̂
(m)

(ê(m) ·∇1)− 2ê(m)(k̂
(m) ·∇1)

]
A(m) =

k2
0

2

N∑
n=−N

∆ε(n−m)ê(n)A(n)ei(k
(n)
z −k(m)

z )z1

(3.55)
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The phase detuning term on the right hand side of (3.55) comes from equation (3.54) and is

considered to be a function of the slow spatial variablez1. This assumption requires thatk(m)
z �

|k(m)|. It is clear than although this is not always the case, in general it holds thatk
(m)
z < |k(m)|.

However, ask(m)
z becomes comparable with|k(m)| it can be seen that very little coupling will

take place and the variation in the amplitude becomesO(η). Therefore, we would expect that the

error induced by this assumption is not of significant effect on the results obtained. We see later,

through comparison to finite element simulations of Maxwell’s equations, that this is the case.

Equation (3.55) is a vector equation and it must be satisfied in all of its components. To ensure

this is the case we project it onto the directionsê(m), k̂
(m)

and the magnetic field polarisation

directionĥ
(m)

. Projecting ontôh
(m)

, equation (3.55) becomes

ik(m)(k̂
(m) · ê(m))ĥ

(m) ·∇1A
(m) =

k2
0

2

N∑
n=−N

ĥ
(m)

∆ε(n−m)ê(n)A(n)ei(k
(n)
z −k(m)

z )z1 .

(3.56)

At this point we notice that the first order dielectric tensor is in plane whilstĥ
(m)

is out of

plane. Therefore the right hand side of equation (3.56) is zero. This means that the amplitude is

constant in the direction orthogonal to the plane of propagation. This agrees with the symmetry

argument that the system is invariant in the direction orthogonal to the plane of propagation.

However, had the first order dielectric tensor been out of plane, then equation (3.56) would be

in violation of the systems symmetries. To overcome this we would require the inclusion of the

full set of possible wave vectors, see Appendix C. Projecting onto the wave vectork̂
(m)

gives

the equation

ik(m)d(m) ·∇1A
(m) =

k2
0

2

N∑
n=−N

k̂
(m)

∆ε(n−m)ê(n)A(n)ei(k
(n)
z −k(m)

z )z1 (3.57)

whered(m) = ê(m)−
(
k̂

(m) · ê(m)
)

k̂
(m)

. This is simply a statement of the divergence equation

∇ ·εrE = 0 toO(η) and describes the variation of the amplitudes in the direction of the electric

displacement vector. The coupled wave equations are found by projecting onto the electric field

polarisation, the resulting equations are

2ik(m)
[
(k̂

(m) · Â(m)
)Â

(m) − k̂
(m)
]
·∇A(m) =

k2
0

2

N∑
n=−N

[
Â

(m)
∆ε(n−m)(z)Â

(n)
A(n)e−iΓϕ

(n−m)
ei(k

(n)
z −k(m)

z )z1
] (3.58)

The bracketed term on the left hand side of equation (3.58) can be written as−û(m)g(m). Here

û =
A×H

|A×H|
(3.59)

is the unit Poynting vector,g(m) =
(
Â(m) · D̂(m)

)
andD̂ is the electric displacement unit
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vector. By writingk(m) = n(m)k0, introducing the new variable

A(m) = Ã(m)e−ik
(m)
z z1 (3.60)

and, based on the translational symmetry of the system, requiring that the amplitudes are invari-

ant in thex direction we obtain the first order correction to the field amplitudes,

dÃ(m)

dz1
= ik(m)

z Ã(m) + ik0

N∑
n=−N

ê(m)∆ε(n−m)ê(n)

4n(m)g(m)û
(m)
z

Ã(n). (3.61)

Equation (3.61) can, for the simple case of∆ε(n−m) being constant inz, be solved as an eigen-

value problem. For all other cases the equations are solved using a Runge Kutta method in

MATLAB. A typical plot for the intensities produced by this model is shown in Figure 3.13:

plots are shown for Bragg, Raman-Nath and the intermediate regime of coupling. The param-

eters used to generate these plots are the same as those used to generate the typical Bragg and

Raman-Nath plots (Figures 3.4 and 3.3) to aid comparison.

FIGURE 3.13: Typical plot for intensities produced by the regime independent model: A)
Raman-Nath regimeq = 0.03. B) Intermediate regime,q = 3.02. C) Bragg regime,q = 46.50.

It can be seen that Figure 3.13 A and C are identical to the plots for Bragg and Raman-Nath

regime coupling given earlier. The intermediate diffraction regime (Figure 3.13) shows be-

haviour which is similar to both Bragg and Raman-Nath regimes. Energy is transfered to higher

diffracted orders, however, the majority of the energy still stays in the incidence beam and the

+1 diffracted order.

Equation (3.61) is the fundamental result of this chapter, it describes the coupling of an arbitrary

number of beams in a system whose dielectric profile is slowly varying in thez direction and

modulated with fundamental periodΛ in the x direction. This extension to the anisotropic

coupled wave theory has been derived to allow us to model systems in the Bragg, Raman-Nath
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and intermediate regimes. The model developed here takes into account all possible coupling

combinations between the various optical waves propagating though the medium and all possible

mismatch terms for an in plane dielectric tensor. The general equations for an arbitrary tensor

are dealt with in Appendix C. The use of a general grating profile in thez direction makes the

model useful for more complex systems such as the liquid crystal cell.

3.5 Model verification

In this section we show that the model derived to describe optical coupling in a liquid crystal

cell is accurate. This analysis is split into two parts. First the model is compared to the standard

models for the different regimes. Secondly, finite element simulations are used to verify the

model independently of the coupling regime.

3.5.1 Comparison to existing models

The existing Bragg and Raman-Nath diffraction models have been successfully used previously

for simple geometries to model optical coupling. Here we show that as well as being numeri-

cally equivalent for these geometries and optical incidence angles, the equations are analytically

identical for an appropriate set of assumptions.

The Bragg case is straightforward. Under the assumption of a single grating Fourier component,

a constant dielectric profile in thez direction and the presence of only two waves, equation (3.61)

becomes

û(1)
z

dA

dz

(1)

=
ik0

4n(1)g(1)
Â(1)∆εÂ(2)A(2)ei∆K·x,

û(2)
z

dA

dz

(2)

=
ik0

4n(2)g(2)
Â(2)∆εÂ(1)A(1)e−i∆K·x.

(3.62)

These expressions become equal to those derived by Montemezzani [95], once the assumption

of zero absorption has been made.

The comparison to Raman-Nath phase grating theory is less obvious. Again, we begin by mak-

ing the assumptions of a single grating Fourier component of large wavelength, and a constant

dielectric profile in thez direction. As the grating wavelength is large the deviation in propaga-

tion angles of the beams is small. Hence the mismatch termk
(n)
z − k

(m)
z is small and may be

neglected for thin materials. For comparison, the system is simplified for an isotropic material

with all waves polarised out of the plane. If we then make the standard Raman-Nath assumption

of aπ/2 phase shift and a single normal incidence input beam with amplitudeA0, we may write

equation (3.61) as

2 cos θ(m) 2n
k0∆ε

dA

dz

(m)

=
[
A(m−1) −A(m+1)

]
, (3.63)
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whereθ(m) is the angle with respect to the surface normal at which them-th wave propagates.

Using the assumption that the wave propagation directions differ by a small amount we may

approximateθ(m) by the propagation angle of the incident beamθ(i). To proceed we make the

following change of variable

ζ =
k0∆ε

2n cos θi
z. (3.64)

Making use of the Bessel recurrence relation,

2
dJm
dz

= [Jm−1 − Jm+1] , (3.65)

it can be seen that equation (3.63) is satisfied by them-th order Bessel functionA0Jm(ζ).
This gives the optical envelopeA(m) = A0Jm(ζ). By writing the non-homogeneous dielectric

constant in terms of the refractive indices we can write the intensity of them-th order wave,

with free space wavelengthλ, after propagation through a material of thicknessL as

I(m) = A2
0J

2
m

(
2π∆nL
λ cos θi

)
(3.66)

which is identical to the optical envelope predicted by the Raman-Nath phase grating theory, see

equation (3.10).

This analysis demonstrated how equation (3.61) is, under realistic assumptions, equivalent to

either Bragg or Raman-Nath theory.

3.5.2 Comparison to Maxwell’s equations

The regime independent model has been compared against the standard models for Bragg and

Raman-Nath diffraction. We now use Comsol Multiphysics, a finite element modelling package,

to solve Maxwell’s equations directly and hence verify its accuracy for the intermediate regime,

0.1 ≥ q ≥ 10, see equation (3.1).

We define a rectangular geometry with sides parallel to thex andz axis. The boundary condi-

tions are periodic in thex-direction with periodicity of the refractive index. The finite element

simulations are carried out with an optical wavelength of1µm, as shorter wavelengths would

require an extremely fine finite element mesh and, hence, considerable computation time.

We first verify that the model behaves correctly for a single grating componentK which is

constant for allz. To ensure thatq lies in the intermediate regime the following parameters are

used:L = 12µm, Λ = 11.5µm, which give the regime parameterq = 1.4210. The incident

electric field is normal to the cell boundaryz = 0. The refractive indices chosen in this system

correspond to those of a typical liquid crystal,no = 1.5 andne = 1.7 giving the dielectric

profile as

εr =

(
n2
o 0

0 n2
e

)
+

(
−0.1 0.05
0.05 0.1

)
cos (Kx) . (3.67)
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FIGURE 3.14: Finite element comparison for the case of a single grating Fourier component:
A)x-component of electric field in cell for coupled wave model, the coloured fringes correspond
to the optical amplitude as shown in the adjacent colourbar. B)x-component of electric field
in cell for finite element simulation. C) Optical power spectrum at output of cell where ’◦’ is
the coupled wave approximation and ’×’ is the finite element simulation.

Figure 3.14 A and B compares the field calculated within the cell by the coupled wave model

and the finite element method. Part C compares the power spectra calculated by each method.

From the power spectrum it can be seen that the optical energy has coupled almost completely

from the incident beam into its two closest neighbours. The slight asymmetry in the coupling

is due to the presence of the off diagonal components in the dielectric tensor (this is considered

in more detail in Section 3.5.3). The optical power spectrum and field inside the cell show

good agreement with the finite element simulation. The differences in the power spectra are less

than10%. This verifies the model’s ability to predict the component amplitudes of each wave

and hence the electric field within the medium. We now wish to make full use of the model’s

features by considering a system with the same fundamental period but also with second and

third harmonics present. Furthermore, to make the system even more realistic with respect to the

experimental system we choose some arbritary profiles for these higher harmonics. Therefore

we choose as dielectric tensor
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FIGURE 3.15: Finite element comparison for the case of multiple grating wave vectors with
varying profile in thez direction: A) x-component of electric field in cell for coupled wave
model, the coloured fringes correspond to the optical amplitude as shown in the adjacent
colourbar. B)x-component of electric field in cell for finite element simulation. C) Optical
power spectrum at output of cell where ’◦’ is the coupled wave approximation and ’×’ is the
finite element simulation.

∆ε =

(
−0.05 0.03
0.03 0.05

)
cos (K · x)+

(
−0.1 0.05
0.05 0.1

)
e
− (z−Lz/2)2

L2
z cos (2K · x)+

(
−0.05 0.1
0.1 0.05

)
e

z
Lz cos (3K · x).

(3.68)

The field throughout the cell and the comparison with the finite element modelling in this case

is shown in Figure 3.15. Unlike the previous test case the majority of the energy remains in

the incident beamkx = 0 with energy transferring past the nearest neighbours into the second

diffracted order beams. Again we see good agreement between the electric fields and the optical

power spectrum with error less than one part in ten. This comparison verifies the ability of the

model to handle the higher harmonics and arbitrary spatial profiles of the grating. The only

difference between this and the liquid crystal profile is the addition of higher harmonics and the

possibility of less smooth spatial profiles. For the liquid crystal test case, we solve theQ tensor

model with an applied voltage of the form

Vapp = V0 cos2
(π

Λ
x
)
. (3.69)
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FIGURE 3.16: In-plane components of the dielectric tensor for the anisotropic liquid crystal.
The four images show the different components of the dielectric tensor.

FIGURE 3.17: A) x-component of electric field in cell for: A) Coupled wave model, the
coloured fringes correspond to the optical amplitude as shown in the adjacent colourbar. B)
Finite element simulation. C) Liquid crystal director profile showing molecular orientation and
contour lines showing equipotentials. D) Optical power spectrum at output of cell where ’◦’ is
the coupled wave approximation and ’×’ is the finite element simulation.
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The voltage amplitudeV0 = 5 has been chosen to give an interesting dielectric profile contain-

ing harmonics of the grating vector and a non-uniform profile in thez direction. Figure 3.16

shows the in plane components of the dielectric tensor throughout the cell. The second coupling

harmonic is confined close to the cell boundary whilst the fundamental grating vector penetrates

further into the cell. The component valuesa0 anda1 are substituted into equation (3.61), this

is then solved to give the amplitude of the different optical wave vectors. Figure 3.17 shows the

comparison of the electric field in the liquid crystal with the finite element modelling. In this

case the energy can be seen to transfer with a large asymmetry. In this case the asymmetry is

larger than in Figure 3.14 due to the size of the off diagonal elements of the dielectric tensor, see

Section 3.5.3.

Comparison to existing theories has been shown analytically in both Bragg and Raman-Nath

regimes. In terms of computation speed the finite element simulation typically takes approxi-

mately one minute to run with a wavelength of1µm whilst the coupled wave approach takes less

than one second for a non-trivial refractive index profile. For shorter wavelengths the coupled

wave approach will be significantly quicker as its computation time does not scale with wave-

length whilst the finite element simulation time does. The model shows good agreement with

the finite element simulations in all cases tested and will be a useful tool for modelling optical

coupling in more complex systems where computational speed and efficiency are required. We

now want to consider some of the predictions of this model in detail.

3.5.3 Asymmetric coupling

The comparison between the coupled wave approach and the finite element simulations detailed

in Section 3.5.2 showed an asymmetry developing between the positive and negative diffracted

orders. This can be explained by considering the off–diagonal elements in the dielectric tensor.

For a system whose coordinate axis have been chosen such that they coincide with the principal

axis of the dielectric tensor the refractive index is given by equation (3.26). In this case the

refractive index seen by a wave propagating at an angleθ to the optical axis will see the same

refractive index as one propagating at an angle of−θ. In other words, the ellipsoid of refraction

for this system will be aligned such that its major axis coincide with the coordinate axis and the

whole system is symmetric.

However, in the case of the beam coupling model the dielectric tensor is not completely diagonal.

The non-homogeneous part of the dielectric tensor has off diagonal components, and as such we

need a different method to define the refractive index. The simplest way is to consider the wave

equation in terms of the magnetic fieldH,

∇×ε−1∇ × H =
ω2

c2
H. (3.70)

Rearranging the left hand side of this equation and using Maxwell’s equation∇ · H = 0 we
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obtain,

kT ε−1k =
ω2

c2
, (3.71)

wherek = nk0 (sin θ, cos θ) is the optical wave vector. We assume a dielectric tensor which

has a small traceless symmetric part containing off diagonal elements,

ε =

(
ε11 − ηεd η

η ε22 + ηεd

)
, (3.72)

whereη � 1. Substituting into equation (3.71), we can obtain a more general expression for

the refractive index,

1
n2

= ε22 sin2 θ + ε11 cos2 θ + η
[
εd
(
cos2 θ − sin2 θ

)
− 2 cos θ sin θ

]
. (3.73)

This expression is no longer invariant with respect tox,−x reflections due to the final term

on the right hand side. An anisotropic medium not described by a diagonal tensor will not be

symmetric. This is true for the case of the beam coupling theory; the off diagonal elements

of the dielectric tensor mean that the true symmetry for the system isx,−x, η,−η andεd =
−εd. Physically the effect of the off diagonal components of the tensor is to rotate the ellipsoid

of refraction from the coordinate axis of the system making the interaction of the anisotropic

medium with the optical field asymmetric.

3.5.4 Beam coupling at normal incidence

In Section 3.3.2 we mentioned that, without some form of symmetry breaking, for two beams

incident on a liquid crystal cell whose bisector is normal to the cell surface we will see no gain.

We supported this statement with some simplified analysis based on the Fourier components

present in the refractive index grating seen by each beam. After recent experimental observation

of normal incidence gain from Dr O. Buchnev and Professor M. Kaczmarek we want to see if a

more in depth analysis based on our model allows us to observe and quantify this gain.

We start from equation (3.61) and consider the simplest possible normal incidence case, Bragg

regime coupling where only two beams are present. As such, equation (3.61) can be rewritten

as:

d

dz

 Ã(1)

Ã(2)

 = i


k

(1)
z +

ik0(ê(1)∆ε(0)ê(1))
4n(1)g(1)û

(1)
z

ik0(ê(1)∆ε(1)ê(2))
4n(1)g(1)û

(1)
z

ik0(ê(2)∆ε(1)∗ê(1))
4n(2)g(2)û

(2)
z

k
(2)
z +

ik0(ê(2)∆ε(0)ê(2))
4n(2)g(2)û

(2)
z


 Ã(1)

Ã(2)

 (3.74)

where we have absorbed the phases into the dielectric tensor and a superscript∗ denotes the

complex conjugate. It can be seen that beam coupling will only take place if the off diagonal

elements in the matrix are non-zero. As the dielectric tensor and, hence, the coupling matrix is
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symmetric then the condition which must be satisfied for coupling to take place is

ê(1) ·∆ε(1)ê(2) 6= 0. (3.75)

To keep the calculations simple we neglect the anisotropy of the liquid crystal in the derivation

of the polarisations. This is equivalent toεu = εuI, whereI is the identity matrix. Therefore,

the polarisations of the two fields are given by

ê(1) =

 sin(β + α)
0

cos(β + α)

 and ê(2) =

 sin(β − α)
0

cos(β − α)

 , (3.76)

whereβ is the angle the bisector of the two input beams makes with the cell normal andα is

the angle each beam makes with the bisector. Substituting this form of the polarisations into

equation (3.75) and using the knowledge that the dielectric tensor is traceless and symmetric we

obtain
ê(1) ·∆ε(1)ê(2) = ∆ε(1)11

(
sin2 β cos2 α− cos2 β sin2 α

)
+

∆ε(1)13 (2 cosβ sinβ) +

∆ε(1)33

(
cos2 α cos2 β − sin2 α sin2 β

)
.

(3.77)

For normal incidence, i.e.β = 0 this becomes

ê(1) ·∆ε(1)ê(2) = −∆ε(1)
11 sin2 α+ ∆ε(1)33 cos2 α. (3.78)

Note that if the liquid crystal is aligned in plane then∆ε11 = −∆ε33 and ê(1) · ∆ε(1)ê(2) =
−∆ε11. We now consider the case of a liquid crystal cell with a modulated applied electric field.

We assume that the modulation of the liquid crystal due to the electric field is small with respect

to the bulk alignment to the unmodulated part of the field. As the applied field is modulated,

the spherical angles which express the liquid crystals alignment (θ andφ) can be expressed as a

Fourier series which we write in the form

θ = θ0 + η
∞∑
n=1

θn(ηz)einKgz + θ∗n(ηz)e
−inKgz, (3.79a)

φ = φ0 + η

∞∑
n=1

φn(ηz)einKgz + φ∗n(ηz)e
−inKgz, (3.79b)

whereη � 1. To determine the coupling strength we need an expression for the Fourier tensor

coefficient of the first order Fourier component. This is obtained by first writing the director as

a Fourier series and neglecting termsO(η2)

n̂ = n̂0 + η

[
n̂1

∞∑
n=1

(
θne

inKgz + θ∗ne
−inKgz

)
+ sin θ0m̂1

∞∑
n=1

(
φne

inKgz + φ∗ne
−inKgz

)]
,

(3.80)

wheren̂0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)T , n̂1 = (cos θ0 cosφ0, cos θ0 sinφ0,− sin θ0)T
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andm̂1 = (− sinφ0, cosφ0, 0)T . Interestingly, ifθ0 = 0 (as is the case for strongly aligned liq-

uid crystal cells) then the modulation out of plane makes no difference to the coupling, at least

to first order in the modulation amplitude. This is exactly the case derived in Section 3.4, which

suggests that the extended analysis in Appendix C is only required for weakly aligned liquid

crystals. The tensor coefficients are then proportional to the productn̂⊗ n̂, excluding terms

O(η2) we obtain

n̂⊗ n̂ = n̂0 ⊗ n̂0 −
1
3
Id+ η

{
[n̂1 ⊗ n̂0 + n̂0 ⊗ n̂1]

∞∑
n=1

(
θne

inKgz + θ∗ne
−inKgz

)
+

sin θ0 [n̂0 ⊗ m̂1 + m̂1 ⊗ n̂0]
∞∑
n=1

(
φne

inKgz + φ∗ne
−inKgz

)}
+O(η2).

(3.81)

It is interesting to look at the different order terms separately as these provide a great deal of

insight into the coupling mechanisms. As the modulation of the liquid crystal occurs atO(η) it

can be seen that there is no coupling induced by theO(η0) terms. The tensor Fourier coefficients

atO(η1) are

∆ε11 = 2θ1n̂0xn̂1x + 2φ1 sin θ0n̂0xm̂1x, (3.82a)

∆ε33 = 2θ1n̂0zn̂1z + 2φ1 sin θ0n̂0zm̂1z. (3.82b)

Substituting the expressions for the vectorsn̂0, n̂1 andm̂1 we obtain

ê(1)∆ε(1)ê(2) = 2φ1 sin2 θ0 sinφ0 cosφ0 cos2 α− 2θ1 sin θ0 cos θ0
(
cos2 α+ sin2 α cos2 φ0

)
.

(3.83)

At this point we can make the following observations: Firstly, if the liquid crystal is aligned

symmetrically about thez axis, as would be expected for reasonably large applied field thenθ0 =
0 andê(1) ·∆ε(1)ê(2) = 0 resulting in no beam coupling. Secondly out of plane modulation of

the director will induce no coupling if it is symmetric, i.e.φ0 = 0. Therefore to obtain normal

incidence coupling atO(η) we require some physical symmetry breaking in the liquid crystal

alignment such thatθ0 6= 0. This can be achieved quite simply by inducing an asymmetry in the

anchoring conditions with respect to inversion about the surface normal.

Further insight can be obtained by looking at the termsO(η2) in the modulation strength. Whilst

the derivation of these coefficients is quite simple, the equations involved become quite long and

cumbersome. As such, only the resulting Fourier coefficients are quoted for the caseθ0 = 0,

ê(1) ·∆ε(1)ê(2) = − sin2 α cos2 φ0

∞∑
n=2

(
θnθ−n+1 + θ∗nθ

∗
−n−1 + θnθ

∗
n−1 + θ∗nθn+1

)
, (3.84)

where it is important to remember thatθ∗n = θ−n. In this case equation 3.84 is non–zero and

there is some coupling forφ0 6= π/2. As such, coupling can be observed for normal incidence.

The coupling is given by diffraction along the2Kg Fourier component, then back along the
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FIGURE 3.18: Beam coupling at normal incidence can be seen to occur if there are higher
Fourier components present in the diffraction medium. Energy is first diffracted by the2Kg

Fourier component and then back by theKg Fourier component. This process can also occur
with higher order Fourier components.

Kg component. This can also occur for higher order Fourier components providing the resulting

grating vector is±Kg, see Figure 3.18. However, this coupling is second order in the modulation

amplitude.

At this point it is sensible to ask whether or not the inclusion of termsO(η2) in equation (3.80)

would affect this result. By continuing the Taylor expansion it can be seen that the lowest

Fourier component in theO(η2) expansion will be2Kg. In order to provide a grating vector

Kg we require an additional term. The appropriate Fourier component in this case can only

be provided by theO(η) terms. Therefore, the resulting coupling would be third order in the

modulation strength and it’s effects will be negligible compared to theO(η2) terms.

In summary we observe that for two beams of equal intensities incident on a photorefractive

liquid crystal cell with symmetric director alignment, regardless of the amplitude of the tensor

Fourier coefficients we must still see no gain as the system is perfectly symmetric. To observe

gain at normal incidence then there must also be an asymmetry in the intensity of the two input

beams. The experimentally observed gain is measured for an input beam ratio of1000 therefore

any small coupling effects will be strongly amplified resulting in measurable second order gain.

3.6 Modelling photorefractive liquid crystal cells

The beam coupling model derived in this chapter and the liquid crystal model derived in Chapter

2 have been shown to be accurate. However, they do not completely describe the photorefractive

liquid crystal cell. One of the major issues is whether or not we can determine the voltage across

the liquid crystal layer. Factors affecting this voltage drop include: the presence of ions in the

liquid crystal layer, the relative impedance of each layer and the frequency of the applied field.

For AC fields, even of low frequency, the motion of ions is greatly reduced [110]. The effect of

increased frequency on the voltage distribution within the layers can be observed by fitting an
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FIGURE 3.19: Equivalent circuit for RC cell.

impedance ladder model to the liquid crystal cell [111]. In this section we model each layer of

the cell, recall Figure 3.1, as a simple RC circuit as shown in Figure 3.19. This circuit captures

the majority of the cells behaviour under the assumption that the slow AC field eliminates the

ion motion. The impedance of the each layer is given by

Zj =
Rj

iωRjCj + 1
, (3.85)

whereRj = Lj/(σjA) andCj = ε0εjA/Lj . HereA is the cell area,ε0 is the permittivity of free

space,σj , εj andLj are the conductance, relative permittivity and thickness of layerj, where

j = {LC,PV K,PI} denotes the liquid crystal, PVK and PI layers respectively. The values of

σj andεj and the resulting values forCj andRj for A = 4 · 10−4m2 are summarised in Table

3.1 [112, 113]. Note, the measured range ofσLC is quite large. Therefore, we consider a sample

of values in this range. The dielectric constant of the liquid crystal corresponds to planar aligned

E7.

Layer Lj σj εj Rj Cj

LC 12µm 10−5–10−10S/m 5–20 3 · 103–3 · 108Ω 5.9 · 10−9F
PI 20nm 10−14S/m 3.4 5 · 108Ω 6.0 · 10−7F
PVK 200nm 10−13S/m 5 5 · 108Ω 8.8 · 10−8F

TABLE 3.1: Numerical values of cell parameters for typical photorefractive liquid crystal cell.

The steady state voltage across the liquid crystal layerVLC as a function of the applied voltage

V is given byVLC = V ZLC/(ZLC + ZPI + ZPV K). We want to calculate the effect of a small,

intensity dependent, modulation in the resistance of the PVK on the voltage dropped across the

liquid crystal layer. We assume that the resistance of the PVK isRPV K = RPV K(1 + β(I)),
whereβ � 1 is the modulated part of the PVK resistance andI is the intensity of light on the

PVK layer. In the limitω = 0 the voltage drop is determined entirely resistively,

VLC = V
RLC
RTOT

[
1− RPV K

RTOT
β(I)

]
+O(η2), (3.86)

whereRTOT = RLC + RPI + RPV K . Typically asRLC � RPI andRLC � RPV K the

voltage drop across the liquid crystal in the DC regime is very small. Similarly if the frequency

of the applied voltage is high enough, typicallyω � 1/(CjRj) for all j, then the voltage is
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FIGURE 3.20: Voltage drop across liquid crystal cell. The plot shows the coefficient ofβ(I)
againstω. It can be seen that for low, but non-zero, frequency that the modulated part of the
voltage dropped across the liquid crystal layer increases. As the frequency increases further
the cell behaviour becomes dominated by the capacitance of the layers and the conductivity
modulation becomes smaller.

determined entirely capacitively,

VLC = V
CPV KCPI

CPV KCPI + CPV KCLC + CLCCPI
. (3.87)

In this case, asCLC � CPV K andCLC � CPI , the voltage drop across the liquid crystal is

large. However, asVLC is independent of the resistance of the photoconductor no diffraction

will take place. In the general case, relevant for the slow AC field,

VLC = V
ZLC
ZTOT

[
1− ZPV K

ZTOT
(1− iZPV KCPV Kω)β(I)

]
+O(β2(I)), (3.88)

whereZTOT = ZLC + ZPI + ZPV K . The effects of equation (3.88) can be understood by

plotting the coefficient ofβ(I) againstω for a range of liquid crystal conductances, see Figure

3.20. It can be seen that, although small, there is a broad peak in the amplitude of the modula-

tion coefficient which narrows and increases in amplitude with the liquid crystal conductance.

This suggests that there is a range of frequencies close to zero Hertz for which the diffraction

efficiency of the liquid crystal cell is largest. We note that for decreasing the conductance of the

liquid crystal increases the range of frequencies over which AC beam coupling can be observed

whilst reducing the overall effect of the modulation in the PVK resistance.

Using equation (3.88) we can see that, at zero Hz, a greater voltage modulation across the liquid

crystal can be obtained by increasing either the PVK resistance or the liquid crystal resistance

with respect to the PI. At low frequencies the increase in voltage across the liquid crystal layer

can be attributed to the capacitance of the PVK. Increasing this could provide a method of

obtaining a larger voltage drop across the liquid crystal at low frequency.
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Whilst this analysis explains some of the features of the cells, there is clearly work to be done in

optimising this system. Detailed charge modelling combined with a more thorough analysis of

the electric properties of the system will be required to determine the ideal conditions for beam

coupling in an AC field.

3.7 Conclusion

In this chapter we have derived an extension to the existing anisotropic coupled wave equations

which allow us to model systems in the Bragg, Raman-Nath and intermediate regimes. Compar-

ison to existing theories has been shown analytically in both Bragg and Raman-Nath regimes.

Finite element simulations have also been used to confirm the model’s validity for all regimes.

The regime independent model developed here is a useful tool for studying the effects of beam

coupling in any geometry. The derivation, based on the assumption that the modulation is small,

does not make any assumptions regarding the size of the anisotropy. Further, as the liquid crystal

model is solved numerically it does not require that the electric field distribution is decoupled

from the liquid crystal alignment or that the optical axis of the liquid crystal is restricted to the

plane. The assumption that the first order component of the dielectric tensor is restricted to a

plane is an assumption included to simplify the number of waves considered for the case of a

liquid crystal. However, this is not a requirement of the method and the full equations, where

this is not the case, are included in Appendix C. The model takes into account all possible

coupling combinations between the various optical waves propagating though the medium. This

is achieved by considering higher order grating harmonics as well as all possible mismatch

terms. The use of a slowly varying grating profile in thez direction makes the model useful for

more complex systems such as the liquid crystal cell. In terms of computation speed the finite

element simulation typically takes1 minute to run whilst the coupled wave approach takes less

than1 second for a non-trivial refractive index profile.

The model shows good agreement with the finite element simulations in all cases tested and will

be a useful tool for modelling optical coupling in more complex systems where computational

speed and efficiency are required.

In comparison to the existing models of Jones and Cook [68] and Kubystkyiet al [99] this

model has the advantage that it is more versatile and relies on fewer assumptions. On the other

hand, unlike the existing models, the final equation must be solved numerically. Whilst it is

clear that under certain assumptions, e.g. small phase detuning, equation (3.61) can be solved

analytically this work is beyond the scope of this thesis. Researchers who wish to obtain a good

understanding of the dependence of gain on different system parameters should read the paper

by Jones and Cook if working in the Bragg regime [68] and the paper by Kubytskyi et al for the

Raman-Nath regime [99].



Chapter 4

Surface plasmon polaritons at a

metal–liquid crystal interface

A Surface Plasmon Polariton (SPP) is an electromagnetic excitation restricted to the boundary

between a metal and a dielectric. By adding a thin gold layer to the boundary of a photorefractive

liquid crystal cell a SPP can be excited that sees a refractive index which is dependent on the

alignment of the liquid crystal layer. Manipulating the liquid crystal alignment using external

beams whose energies are close to the excitation energy of the PVK allows control of the SPP.

Current application of SPPs are limited because they have very short propagation lengths due

to the optical absorption in the metal. In this chapter we consider how photorefractive liquid

crystal cells can be used to overcome these losses. This is a joint work split between theory and

experiment. The experimental results are provided by Dr David Smith and Stephen Abbot from

the school of Physics and Astronomy.

This chapter is arranged as follows: In Section 4.1 we provide an introduction to the existing

literature and a more formal introduction to the system we are studying. Section 4.2 provides

an introduction to the methods used to model SPP propagation. In Section 4.3 we describe a

numerical code based on the work of Moharam and Glytsis [2, 102] capable of modelling the

propagation of SPP at the interface between a photorefractive liquid crystal cell and a metal. In

Section 4.4 the SPP propagation model is combined with the liquid crystal model developed in

Chapter 2 to allow for experimental comparison. The final part of this chapter, Section 4.5, is

devoted to considering analytic and semi–analytic models to describe the propagation of SPP

in geometries which provide a good approximation to that of the photorefractive liquid crystal

cells, these models are compared to the numerical codes developed in Section 4.3 and show

good agreement.

66
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4.1 Introduction

The term Surface Plasmon Polariton (SPP) refers to the coupled oscillation of an electromagnetic

field with the electron cloud at the surface of a metal [114]. These excitations propagate along

a metal–dielectric interface and have amplitude which decays exponentially in both materials.

The discovery of SPPs is directly linked to the prediction of Surface Plasmons (SPs) by Ritchie

in 1957 [115]. Whilst studying the loss mechanisms of electromagnetic radiation in thin metal

films Ritchie predicted the existence of localised, non-propagating, plasma oscillations. This

prediction was experimentally verified in 1959 in two experimental papers, concerned with the

loss spectra of Aluminium and Magnesium, by Powell and Swan [116, 117].

The prediction and description of SPPs did not occur until 1960. In a paper based on the earlier

work of Ritchie, Stern and Farrell describe the energy loss of non–normal incidence electromag-

netic radiation [118]. Here the loss mechanism is the same with the exception that the optical

energy is transfered to a propagating SPP rather than a stationary SP. SPPs may be thought of as

propagating SPs. Alternatively SPs may be considered as the limiting case of SPPs as the group

velocity becomes infinitely large.

Since their discovery a huge number of papers on the properties and applications of SPPs have

emerged. Whilst the relevant concepts and properties of SPPs will be reviewed and discussed

here, the reader is directed towards two review articles [114, 119]. The first, published by

Zayats et al in 2004, describes the optics of SPPs including details about the excitation and

optical characterisation techniques. The second, published by Pitarke et al in 2006, describes

the physical properties of the solids which allow the excitation of these modes.

Due to their unique properties, such as their sensitivity to small changes in dielectric constants,

∼ O(10−14) [120, 121], SPPs have a wide variety of applications in both industry and academia.

These include resonance sensors [122], enhanced spectroscopy techniques capable of detecting

single molecules [123], waveguides [124], biosensors [125] and sub-wavelength optical appli-

cations such as nanoscale lithograthy [126].

The major limitation to the use of SPPs is their short propagation length which is typically of

the order of microns [126, 127]. Long range SPP modes can be found to exist in thin metallic

films [128]. These modes have propagation length of the order of millimetres [129, 130]. How-

ever, this is still too short. For the majority of potential SPP applications to become reality the

propagation lengths need to be increased.

One way to increase the propagation length of a SPP is by constantly coupling energy into it.

In general this is a non–trivial problem as the SPP wavenumber at a metal dielectric interface is

larger than the wavenumber of a propagating wave in the dielectric medium. As such the only

way SPP can be excited is via an evanescent wave in either the dielectric or the metal [126].

There are several ways to do this. The first of these, the Kretchmann configuration, Figure

4.1A, makes use of a dielectric prism adjacent to a metallic film and an incidence angle greater
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FIGURE 4.1: Plasmon excitation methods (taken from [114]) A) Kretchmann configuration.
B) Otto configuration. C) Grating coupler

than that for total internal reflection in the prism. At the angle of incidence for which the in

plane component of the optical wave vector is equal to the SPP wave vector, optical tunnelling

through the metal film will occur and the energy will couple into an SPP at the opposite side of

the film. The original paper by Kretchmann is only available in German [131]. However, a good

description of the method can be found in [114].

The Otto configuration [132] works in a similar way to the Kretchmann geometry, Figure 4.1B.

A SPP is excited in a thick metallic layer using a prism, a thin air gap and a thick metal layer.

Here total internal reflection occurs in the prism and the evanescent field in the air gap is coupled

to the SPP via optical tunnelling.

The method of SPP generation which is of interest in the context of this work is SPP excitation

using a diffraction grating [133] as shown in Figure 4.1C. Here we can illuminate the diffraction

grating with light from a much wider range of angles and couple energy from one of the various

diffracted orders into the SPP.

Grating couplers take two forms. Metallic grating couplers, where the grating is formed by a

corrugation at the metal surface, were first discovered in the context of “Wood’s anomalies” in

1902 [134, 135]. These anomalies refer to the large discrepancies between the total amount of

light incident on a metallic grating compared to the total amount reflected, a discrepancy now

known to be due to SPP generation. Such gratings have been widely studied in the literature

[136, 137, 138, 139]. The majority of these studies consider only shallow gratings where the

Rayleigh hypothesis holds. According to this hypothesis the electromagnetic field can be written

as the sum of the incoming wave and a series of reflected or transmitted outgoing waves [140]. If

this holds then the corrugation can be “flattened” by means of a coordinate transform. In general

this is not the case and in deep gratings the fields within the grooves of the grating must also

be considered. Studies concerned with deep gratings have been carried out [141]. These studies

discovered that SPPs can be generated not only along the surface but also within the grooves of

the grating.

The other form of grating couplers, which are relevant in this work, are dielectric gratings

[142, 143, 144, 145]. These have been widely studied as a means to pump energy into plas-

mons. However, typically these gratings are non–configurable and as such have limited applica-

tion. The use of diffraction gratings with SPPs leads to the possibility of SPP-SPP or SPP-light
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scattering. For configurable gratings, such as the photorefractive liquid crystal grating coupler,

energy can be coupled into signal carrying SPPs increasing their propagation length.

Here we are interested in the coupling of energy into an SPP using a photorefractive liquid

crystal cell. The use of SPPs applicable to liquid crystals have been widely studied by the group

of Barnes and Sambles. These studies include: SPP propagation in anisotropic materials [146],

the use of SPPs to probe the surface alignment [147], SPP induced non–linearity [148] and

bistability [149] and theoretical and experimental observation of guided mode resonances and

plasmonic resonance shift [150]. These studies clearly show the use of liquid crystal cells as a

versatile tool for manipulating plasmonic and optical guided modes.

From an optical point of view the liquid crystal cell can be considered simply as a series of differ-

ent layered media. Extensive numerical studies have been carried out regarding SPP interactions

in layered media. These Transmission matrix (or T–matrix) approaches involve writing the so-

lutions to Maxwell’s equations in each homogeneous layer as a Fourier series and matching the

tangential components of the fields at the boundaries. The resulting linear system of equations

can be solved to obtain the reflection and transmission of these structures. This method can be

extended to non-homogeneous materials, using the method of Berreman, by slicing them into a

large number of thin layers, each of which may be considered homogeneous [151].

T–matrix methods have been widely used in isotropic materials [3], anisotropic materials [152,

153] and chiral materials [154]. However, these methods become numerically unstable for a

large number of layers once the fields become evanescent. This is because both the exponentially

decaying and exponentially growing solutions to Maxwell’s equations must be considered in

each material. Although these exponentially unbounded terms must have zero amplitude, their

presence in the equations becomes a problem due to the finite numerical precision of a computer.

To overcome this the Scattering matrix (or S–matrix) approach was developed [155, 156, 157].

This method considers the field in terms of only decaying solutions, creating a stable numerical

code. These codes have been implemented by a number of different groups to study different

plasmonic systems [158, 159] and have been extended to include surface corrugations [160,

161]. A generalisation of these techniques, which is also easy to implement, is the rigorous

diffraction theory developed by Moharam et al [2, 102]. This method is particularly well suited

to grating structures and has been used to study single and cascaded anisotropic diffraction

gratings [103, 162, 163].

Whilst numerical methods provide a good model for the system as a whole it is important to

gain an understanding of the physical processes which affect the SPP propagation. Analytic

treatment of plasmons at the interface between a metal and an anisotropic dielectric have also

been considered. In general SPPs at such an interface can be described exactly [164]. However,

the equations involved in such a theory often become cumbersome and hard to deal with. To

overcome this, typical studies of such materials require that the optical axis of the anisotropic

medium is restricted to a plane [165, 166]. Using these simplifications dispersion relations for

SPP in anisotropic dielectric–metal–dielectric and metal–dielectric–metal structures have also
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FIGURE 4.2: Geometry of photorefractive liquid crystal cell used for SPP diffraction. A
diffraction grating is created within the liquid crystal layer using two external beams. The
effects of SPP diffraction can be studied by considering the reflected and diffracted intensity
from the cell.

been considered [167].

Perturbation techniques have been used extensively to help understand the reflection spectrum

of different SPP. These include studies of SPP resonance width [168, 169] and the change in SPP

propagation vector [170, 171] due to various perturbations. These papers consider the standard

analytic SPP resonance conditions derived for a single isotropic dielectric–metal interface as the

leading order solution. This result is then perturbed due to absorption in the metal and finite

width, non–ideal, metal films. However, in many cases, due to the powerful numerical tools

now available, these methods and results are often overlooked.

In this chapter we study the coupling properties of photorefractive–plasmonic liquid crystal cells

formed by adding a thin gold layer to the photoconducting surface of the photorefractive liquid

crystal cell. These devices, shown in Figure 4.2, provide an extremely versatile method for

manipulating SPP propagation. SPPs are excited by the input beam and propagate along the

interface between the gold and the photoconducting layer. For a thin enough photoconduct-

ing layer, approximately70nm in our cells, the SPP will extend into the liquid crystal region

allowing it to be manipulated through the liquid crystal alignment.

By applying a strong external field across the liquid crystal layer the refractive index near the

cell surface can be altered. Spatial modulation of this applied voltage, and therefore the liquid

crystal alignment, is achieved by varying the optical intensity on the photoconducting layer,

as in the beam coupling problem discussed in Chapter 3. This allows a number of optically

reconfigurable devices to be created, e.g. grating couplers, lenses and waveguides. Further, for

sufficiently large optical fields, non-linear interactions through the photoconducting layer will
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allow photorefractive SPP interactions to be observed.

To understand the behaviour of these devices we consider a simplified system both theoretically

and experimentally. A refractive index grating is created by two external grating beams, shown

in Figure 4.2. The SPP is excited using a, relatively weak, probe beam. The experimentally

measured intensity of the reflected and diffracted beams can then be used, in combination with

various modelling techniques, to understand the diffractive properties of the cell.

We model these devices in three stages. First the voltage drop across the liquid crystal is cal-

culated using a simple impedance ladder model, as described in Section 4.4. The liquid crystal

alignment is then calculated using the code described in Chapter 2. Finally the diffraction is

modelled using both the rigorous coupled wave theory of Moharam and Glytsis [2, 102] and

analytic techniques that provide a greater insight into the underlying physics.

4.2 Modeling surface plasmon polaritons

4.2.1 Optics of metals

To understand how SPP propagate at an interface it is important to first understand how electro-

magnetic radiation propagates in a metal, this can be modelled in the same way as in a dielectric.

The main difference is that the dielectric constant becomes complex and typically has a negative

real part. There is also a much stronger frequency dependence than is usually found in dielectric

materials [3]. These differences are due to the non-zero conductivity of the metal and can be

understood by considering Maxwell’s curl equations in a conducting medium:

∇ × E(x, t) = −µ0µr
∂H(x, t)

∂t

∇ × H(x, t) = ε0εr
∂E(x, t)

∂t
+ J(x, t)

(4.1)

whereJ(x, t) is the current density and is approximatelyσ(ω)E(x, t). Combining the two

equations to eliminateH(x, t) yields:

∇ × ∇ × E(x, t) = − 1
c2
µrεr

∂2E(x, t)
∂t2

− µrσ(ω)
∂E(x, t)

∂t
, (4.2)

which, using the substitutionE(x, t) = E(x)e−iωt, gives the Helmholtz equation

∇ × ∇ × E(x) =
ω2

c2
µr

[
εr +

iσ(ω)
ωε0

]
E(x). (4.3)

Under these conditions the permittivity and conductivity may be combined as a single, frequency

dependent, dielectric constant,

ε(ω) = εr +
iσ(ω)
ωε0

. (4.4)
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This will, in general, be a complex quantity with strong frequency dependence due to the non-

zero conductivity. Throughout the remainder of this chapter we will assume that the permittivity

of the metal can be treated as a single dielectric constant. Where numerical values are required

we use experimentally measured values for the real and imaginary parts of the refractive index

as a function ofω [172].

4.2.2 Surface plasmon polaritons

We now wish to determine the conditions required for a SPP to propagate along an interface.

We choose the coordinate system so that the boundary between the two materials is aty = 0.

We also assume that the magnetic field is transverse, i.e. it is polarised in thez–direction. It

will be shown later that this is the only type of SPP wave which can propagate. The electric and

magnetic fields at the boundary may be written as:

E (x, t) =
−A(n)

iωε0ε(n)

(
−sgn(y)k(n)

y , ikx, 0
)T

e−sgn(y)k(n)
y yei(kxx−ωt), (4.5a)

H (x, t) =
(
0, 0, A(n)

)T
e−sgn(y)k(n)

y yei(kxx−ωt), (4.5b)

where the superscript refers to the material of interest and sgn(y) = 1 andn = 1 for y > 0,

sgn(y) = −1 andn = 2 for y < 0. Substituting equations (4.5) into the wave equation allows

us to obtain the dispersion relationship for propagation in each material,

k(n)
y =

(
k2
x − ε(n)ω

2

c2

) 1
2

, (4.6)

which relates the decay of the electric and magnetic fields away from the boundary to the op-

tical wave numberkx. For exponential decay away from the boundary we require thatky is

both positive and real. To proceed we make use of Maxwell’s boundary conditions, i.e. the

tangential components ofE andH at the boundaries are continuous. These allow us to obtain

the following matrix relationship,(
1 −1
k
(1)
y

ε(1)
k
(2)
y

ε(2)

)(
A(1)

A(2)

)
= 0. (4.7)

For SPP to propagate with non-zero amplitude we require that equation (4.7) has a non-trivial

solution, i.e.
k

(1)
y

k
(2)
y

= −ε
(1)

ε(2)
. (4.8)

This equation tells us thatε(1) must have a different sign toε(2). Therefore, one of the materials

must be a metal and the other a dielectric. This is the general requirement for SPP propagation.

It can be seen that if eitherε(n) has a non-zero imaginary component then at least one of the

y components of the wave numbers will be imaginary and as such the SPP will no longer be
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localised at the boundary. Using equations (4.6) and (4.8) we can obtain an expression forkx,

the SPP wave number,

kx =
ω

c

√
ε(1)ε(2)

ε(1) + ε(2)
, (4.9)

where, for a propagating mode, we require that the term inside the square root is negative. As

mentioned in Section 4.2.1 the metal layer will have a complex dielectric constantε(2) with neg-

ative real part. Therefore, assumingε(1) is positive and real, we require|<(ε(2))| > ε(1). Metals

used for SPP excitation are typically those with small imaginary terms at optical frequencies.

This reduces the absorption losses allowing the SPP to propagate a useful distance. Typical met-

als used for such experiments are gold or silver. To understand the effects of the small imaginary

term on the SPP we consider the effect of a small perturbation inε(2) on the SPP wave number,

equation (4.9). This approximation neglects the variation in the decay lengths of the plasmon

induced by the absorption and any propagation away from the boundary which may also result.

We substituteε(2) = ε
(2)
r (1 + ηiε

(2)
i ) into equation (4.9) where typicallyη � 1. After some

manipulation, this yields

kx =
ω

c

√√√√[ ε(1)ε
(2)
r

ε(1) + ε
(2)
r

][
1 + η

1
2

ε(1)ε
(2)
i

ε(1) + ε
(2)
r

i+O
(
η2
)]
. (4.10)

From here we can obtain an approximation for the propagation length of the SPP. The1/e decay

lengthLSPP is given by [114]

1
LSPP

= 2=(kx) =
ω

c

(ε(1))
3
2 ε

(2)
i |ε(2)r |

1
2

(|ε(2)r | − ε(1))
3
2

. (4.11)

Typically, the propagation length of a SPP is small, of the order of10µm forλ = 632.8nm and

200µ m for λ = 1.55µ m for a gold metal layer [127].

We have shown that a SPP can exist at the interface between two different materials, one of

which has dielectric constant with negative real part, with decay lengthLSPP given by equation

(4.11), if the electromagnetic excitation is transverse magnetic. We now show that such an

excitation does not exist for a transverse electric field. We start from a transverse electric solution

to Maxwell’s equations,

E (x, t) =
(
0, 0, A(n)

)T
e−sgn(y)k(n)

y yei(kxx−ωt), (4.12a)

H (x, t) =
A(n)

iω

(
−sgn(y)k(n)

y , ikx, 0
)T

e−sgn(y)k(n)
y yei(kxx−ωt), (4.12b)

where the symbols have the same meaning as used above. Again using the boundary conditions

on the transverse components of the two fields we obtain a matrix equation(
1 1

k
(1)
y −k(2)

y

)(
A(1)

A(2)

)
= 0. (4.13)
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This time however, the solvability condition leads to the equation

k(1)
y + k(2)

y = 0. (4.14)

As such there is no solution for transverse electric fields in which the decay constantskz are

both positive, and therefore, no SPP relating to this type of wave. This section describes the

properties of an ideal SPP at the interface between two semi–infinite materials. In this case the

polarisation and propagation vectors can be determined analytically. We can also approximate

the propagation length of the SPP in terms of the absorption in the metal. This illustrates the

properties of the SPP which we build on throughout this chapter.

4.3 Numerical methods for surface plasmon propagation

The problem of modelling the interaction of SPP at the surface of a photorefractive liquid crystal

cell is not a trivial one. Before we develop approximate solutions to describe the physics of

these systems it is useful to formulate a numerical model of them. The method we use to model

the optical response of a plasmon LC cell is the rigorous diffraction theory [2, 102]. Before

we consider the implementation of this method we first look at general T–matrix methods for

layered materials.

4.3.1 T–matrix model for surface plasmon interaction

The T–matrix method is based on matching the wave–like solutions to Maxwell’s equations

in stratified homogeneous or harmonic media. The geometry is broken down into a series of

different layers which are homogeneous in the direction normal to the layer surface. For the

photorefractive liquid crystal cell the alignment layers and the gold may each be considered as

a single layer. However, the liquid crystal must be sliced into a large number of very thin layers.

These layers are small enough such that the variation of the liquid crystal alignment in each

layer is negligible, see Figure 4.3. The requirement that the fields are matched at the boundary

allows the field to be written as a linear combination of forward and reverse propagating waves

in the homogeneous case and a sum of linearly independent Fourier components in harmonic

materials.

To ensure that Maxwell’s equations are satisfied at the boundaries we require that the tangential

components of theE andH fields are continuous. Before we consider the more complex case of

an harmonic anisotropic material we consider the simplest possible case, homogeneous isotropic

dielectrics.

The starting point for such an expansion is the field representation in the layers. Here we are

interested in isotropic homogeneous materials. Therefore, the fields break down to TE and TM

modes. As we are interested in systems which can support SPP it is appropriate to consider only
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FIGURE 4.3: The photorefractive liquid crystal cell is broken down into layers. These are
homogeneous in they–direction but may be periodically modulated in the(x, z) plane. The
liquid crystal must be sliced into a large number of thin layers, each of which may be considered
homogeneous in they–direction.

the TM modes. Their fields can be expressed entirely in terms of the magnetic field. In the more

general case, which we will consider in Section 4.3.2, both the electric and the magnetic field

must be taken into account to allow for the coupling between TE and TM modes. We consider

a field which propagates in thex direction with wavenumberα0 and has transverse wave vector

β(n) in materialn. The magnetic fields in each material can be written in the form

H(n) = êzF
(n)ei(α0x+β(n)y−ωt) + êzR

(n)ei(α0x−β(n)y−ωt), (4.15)

whereF (n) andR(n) are the amplitudes of the forward or backward propagating waves andβ(n)

is found from the dispersion relation

β(n) =

√
ω2

c2
ε(n) − α2

0. (4.16)

In the case of propagating waves it makes sense to talk about forward and backwards waves.

When these fields become evanescent this distinction is less clear. From here on we define

the forward wave to be the wave which decays exponentially with increasingy if the field is

evanescent and the field that propagates in they direction for purely real modes. This distinction

becomes important in the more general case considered in Section 4.3.2. The problem now

reduces to findingF (n) andR(n) by solving Maxwell’s boundary conditions at each interface.

In the case of the TM modes we have to require that the tangential components of the magnetic

field and the corresponding electric field are continuous. In terms of the magnetic field these
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FIGURE 4.4: Typical reflection spectrum from a three layer Kretschmann geometry. The solid
line shows the theoretical results. The dotted line shows the experimental results (courtesy of
Dr David Smith and Stephen Abbot).

equations can be written as

H(n)

∣∣∣∣
y=L(n)

= H(n+1)

∣∣∣∣
y=L(n)

(4.17)

and
1
ε(n)

d

dy
H(n)

∣∣∣∣
y=L(n)

=
1

ε(n+1)

d

dy
H(n+1)

∣∣∣∣
y=L(n)

. (4.18)

These continuity conditions at each boundary can be expressed as a linear system, eiβ
(n)W (n)

e−iβ
(n)W (n)

β(n)

ε(n) e
iβ(n)W (n) −β(n)

ε(n) e
−iβ(n)W (n)


 F (n)

R(n)

 =

 1 1

β(n+1)

ε(n+1) −β(n+1)

ε(n+1)


 F (n+1)

R(n+1)


(4.19)

whereW (n) = L(n) − L(n−1) is the thickness of the layern. Note, from here we could re-

derive the plasmon conditions by settingF (n+1) andR(n) to zero, using equation (4.16) and

solving the resulting system of equations forα0. However, as we are interested in the methods

to generate plasmons we want to study the response of this system to a variety of differentα0.

Equation (4.19) is the standard T–matrix method. This can be written asT (n)h(n) = h(n+1),

whereh(n) = (F (n), R(n))T . This equation describes the propagating electromagnetic fields on

one side of a layer in terms of the fields on the other side.

The simple isotropic homogeneous T–matrix equations have been derived for an arbitrary num-

ber of layers. Although this result is not of direct relevance in studying the photorefractive liquid

crystal cell problem it can be used to accurately predict the excitation of surface plasmons.

We consider a three layer structure consisting of a glass prism of refractive index1.9, a metal

layer of thickness50nm adjacent to air (ε = 1). The reflection spectrum for light of wavelength

832nm we obtain the theoretical and experimental reflection spectra shown in Figure 4.4. The
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sharp dip observed is at the SPP resonance angle defined by equation (4.9). These reflection

curves are typical of surface plasmons. The peak reflection seen is the onset of total internal

reflection at the metal air interface. Increasing the angle slightly takes us closer to the SPP

resonance and we see a dip in reflectivity as energy is coupled to the surface mode. The quality

of the fit should not be surprising since for this simple structure the matrix theory is identical to

the Fresnel reflection coefficients which are used to experimentally obtain the thickness of the

various layers.

4.3.2 Rigorous diffraction theory

Using the ideas of the last section we now want to derive and implement the rigorous diffraction

theory of Moharam et al [2, 102]. The liquid crystal cell is divided into homogeneous layers

and we look for the general solution to Maxwell’s equations in each layer. Assuming harmonic

propagation it is enough to consider only the curl equations,

∇×E = −iωµ0H and ∇×H = iωε0εrE (4.20)

The dielectric tensor in each layer is written as a Fourier series with fundamental Fourier com-

ponentKg. Adopting the notation used in [162] the dielectric tensor in regionn takes the form

ε
(n)
δγ =

∞∑
l=−∞

ε
(n)
δγ,l exp (ilKg · x), (4.21)

whereε(n)
δγ,l are thel–th Fourier coefficients in mediumn of the dielectric tensor andδ, γ =

x, y, z. Scaling spacẽx = k0x, wherek0 = 2π/λ is the wavenumber in free space andλ is the

wavelength,K̃g = λ/Λ, whereΛ is the fundamental grating pitch, and the electric and magnetic

fieldsẼ =
√
ε0E andH̃ =

√
ε0H allows us to obtain the scaled derivatives∇̃ = k0∇ and the

scaled equations

∇̃× Ẽ = −iH̃ and ∇̃× H̃ = iεrẼ. (4.22)

For compactness of notation we shall omit the tilde and deal only with the scaled fields for the

remainder of this chapter. The fields in each layer are written as a Fourier series and broken

down into the components along the coordinate axes. It is assumed that the propagation vector

in the plane of the interface is known. It is only the field dependence in the direction normal to

the interface which is unknown. For an interface in the(x, z) plane the electric and magnetic

fields can be written as

E(n)(x) =
∞∑

p=−∞

[
E(n)
x,p (y)êx + E(n)

y,p (y)êy + E(n)
z,p (y)êz

]

exp {i [(kx + pKgx)x+ pKgyy + (kz + pKgz) z]}

(4.23a)
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and

H(n)(x) =
∞∑

p=−∞

[
H(n)
x,p (y)êx +H(n)

y,p (y)êy +H(n)
z,p (y)êz

]

exp {i [(kx + pKgx)x+ pKgyy + (kz + pKgz) z]} ,

(4.23b)

wherek is the propagation vector in the(x, z) plane andKgx refers to thex component ofKg.

To proceed we decompose Maxwell’s equations (4.22) into theirx, y, z components:

dH
(n)
z,p

dy
= −ipKgyH

(n)
z,p + i (kz + pKgz)H(n)

y,p+

i

∞∑
q=−∞

εxx,pqE
(n)
x,q + εxy,pqE

(n)
y,q + εxz,pqE

(n)
z,q ,

(4.24a)

i (kz + pKgz)H(n)
x,p− i (kx + pKgx)H(n)

z,p =

i

∞∑
q=−∞

εyx,pqE
(n)
x,q + εyy,pqE

(n)
y,q + εyz,pqE

(n)
z,q ,

(4.24b)

dH
(n)
x,p

dy
= −ipKgyH

(n)
x,p + i (kx + pKgx)H(n)

y,p−

i

∞∑
q=−∞

εzx,pqE
(n)
x,q + εzy,pqE

(n)
y,q + εzz,pqE

(n)
z,q ,

(4.24c)

dE
(n)
z,p

dy
= −ipKgyE

(n)
z,p + i (kz + pKgz)E(n)

y,p − iH(n)
x,p , (4.24d)

i (kz + pKgz)E(n)
x,p − i (kx + pKgx)E(n)

z,p = −iH(n)
y,p , (4.24e)

and
dE

(n)
x,p

dy
= −ipKgyE

(n)
x,p + i (kx + pKgx)E(n)

y,p + iH(n)
z,p . (4.24f)

Here the tensor Fourier coefficients areεδγ,pq = εδγ,p−q. For these equations to be considered

exact under the assumptions we have already made the summations on the right hand side of

equations (4.24a), (4.24b) and (4.24c) must be between±∞. However, these equations will be

accurate for a non-infinite summation providing that a sufficiently large number of terms is con-

sidered. Here we sum between±N and therefore consider2N+1 different Fourier components.

Typically, in simulations this value is increased until convergence is reached. Equations (4.24b)

and (4.24e) are two algebraic equations for the polarisation componentsE
(n)
y,p (y) andH(n)

y,p (y)
respectively. The remaining equations (4.24a), (4.24c), (4.24d) and (4.24e) form a system of

differential equations for the remaining polarisation components. After some manipulation this

system can be expressed as a differential eigenvalue problem for the tangential components of
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the fields and a linear algebraic system for the normal components,

dA
(n)
‖

dỹ
= iC(n)A

(n)
‖ , (4.25a)

A
(n)
⊥ = D(n)A

(n)
‖ , (4.25b)

whereA
(n)
‖ , A

(n)
⊥ , C(n) andD(n) in each layer are of the form given in [162], reproduced here

for convenience. We omit the superscript(n) in the submatrices for compactness,

A
(n)
⊥ =

(
ey(ỹ)
hy(ỹ)

)
, A

(n)
‖ =


ex(ỹ)
hz(ỹ)
ez(ỹ)
hx(ỹ)

 , (4.26)

C(n) =



kxε
−1
yy εyx + ky kxε

−1
yy kx − I kxε

−1
yy εyz −kxε−1

yy kz

εxyε
−1
yy εyx − εxx + k2

z εxyε
−1
yy kx + ky εxyε

−1
yy εyz − εxz − kzkx −εxyε−1

yy kz

kzε
−1
yy εyx kzε

−1
yy kx kzε

−1
yy εyz + ky −kzε−1

yy kz + I

εzx − εzyε
−1
yy εyx + kxkz −εzyε−1

yy kx εzz − εzyε
−1
yy εyz − k2

x εzyε
−1
yy kz + ky


(4.27)

and

D(n) =

 −ε−1
yy εyx −ε−1

yy kx −ε−1
yy εyz ε−1

yy kz

−kz 0 kx 0

 (4.28)

The sub-matrices,kδ, areM ×M diagonal matrices, whereM = 2N + 1, whose elements are

given bykδ of thepth wave,I is theM ×M identity matrix, the components of theM ×M

matrix εδγ are εδγ,pq, the tensor Fourier coefficients that match plane wavem to plane wave

n and eδ(ỹ) andhδ(ỹ) are vectors of dimensionM with elements given by the polarisation

components of thepth wave.

Equation (4.25a) can be solved as an eigenvalue problem using the substitution

A
(n)
‖ (y) =

N∑
j=−N

u
(n)
j a

(n)
j eiβ

(n)
j y, (4.29)

where the eigenvectoru(n)
j is the mode polarisation amplitude in the interface plane andβ

(n)
j is

the wavenumber of modej in they–direction. The undetermined coefficientsa(n)
j are found by
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matching the tangential components of the field at the boundaries. This leads to the condition

A
(n)
‖ (y)

∣∣∣∣
y=L(n)

= A
(n+1)
‖ (y)

∣∣∣∣
y=L(n)

, (4.30)

where theL(n) is they–coordinate of the boundary, see Figure 4.3. The equations are now in

the form of a standard T–matrix approach,

Ũ (n)C̃(n)ã(n) = Ũ (n+1)ã(n+1), (4.31)

whereŨ (n)
kj is thekth element of thejth eigenvectoru(n)

j , C̃(n)
kj is a diagonal matrix with el-

ementsexp (iβ(n)
j W (n)) for k = j and0 otherwise and̃a(n) is a vector whose elements are

the undetermined coefficientsa(n)
j . This method works well assuming the geometry does not

become large. If it does then, for evanescent waves, the matrixC̃(n) becomes ill conditioned.

To overcome this we use an S–matrix approach [155]. Firstly, we split the fields into forward

and backward waves. We also separate the electric and magnetic field components using row

and column operations such that

Ũ (n) =

(
U+
n U−

n

V +
n V −

n

)
, (4.32)

where the block matricesU+
n andU−

n are the forward and backward parts of the electric field and

V +
n andV −

n are the forward and backward parts of the magnetic field respectively. These have

undetermined coefficientsa±
n . The complex eigenvalues of equation (4.25a) can be written as

β
(n)±
j = β

(n)
j,c ±β

(n)
j,d , whereβ±j are the forward and backwards eigenvalues and have a common

partβj,c and a differenceβj,d. The matrix of complex phases can therefore be written as

C̃(n) =

(
ϕnCn 0

0 ϕnC
−1
n

)
, (4.33)

whereϕn is a diagonal matrix with elementsexp (iβ(n)
j,c W

(n)) andCn is a diagonal matrix with

elementsexp (iβ(n)
j,dW

(n)). In general we want to avoid exponentially growing or decaying

phase terms. These occur when the fields become evanescent andβ
(n)±
j become complex con-

jugate pairs. Therefore, the common terms will be real and matrixϕn will be well conditioned.

The differences will be complex causing the matrixCn to be ill conditioned. therefore we must

write the boundary conditions such that we can calculate the reflection spectrum without having

to calculateC−1
n . Using this notation the boundary conditions can be written as

U+
n ϕnCna

+
n + U−

n ϕnC
−1
n a−

n = U+
n+1a

+
n+1 + U−

n+1a
−
n+1 (4.34a)

and

V +
n ϕnCna

+
n + V −

n ϕnC
−1
n a−

n = V +
n+1a

+
n+1 + V −

n+1a
−
n+1. (4.34b)

The need to calculateC−1
n can be overcome by defining the S–matrix [155, 156, 157] which
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relates the reflected fielda−
n to the input fields

a−
n = Sna

+
n . (4.35)

Physically this is equivalent to considering the exponentially growing fields as a linear combi-

nation of the exponentially decaying fields. Therefore, the ill conditioned part of the system, as-

sociated with the exponentially growing waves, is eliminated. Substituting into equation (4.34)

allows us to eliminateC−1
n and obtain a well conditioned system to solve:

[
U+
n ϕnCn + U−

n ϕnC
−1
n Sn

]
a+
n =

[
U+
n+1 + U−

n+1Sn+1

]
a+
n+1 (4.36a)

[
V +
n ϕnCn + V −

n ϕnC
−1
n Sn

]
a+
n =

[
V +
n+1 + V −

n+1Sn+1

]
a+
n+1 (4.36b)

By eliminatinga+
n+1 we obtain

[
U+
n+1 + U−

n+1Sn+1

]−1 [
U+
n ϕnCn + U−

n ϕnC
−1
n Sn

]
−

[
V +
n+1 + V −

n+1Sn+1

]−1 [
V +
n ϕnCn + V −

n ϕnC
−1
n Sn

]
= 0

(4.37)

which, after some algebra, can be written as

Sn = CnM(Sn+1)−1N(Sn+1)Cn, (4.38)

where

M(Sn+1) =
[
U+
n+1 + U−

n+1Sn+1

]−1
U+
n ϕn −

[
V +
n+1 + V −

n+1Sn+1

]−1
V +
n ϕn (4.39a)

N(Sn+1) =
[
V +
n+1 + V −

n+1Sn+1

]−1
V −
n ϕn −

[
U+
n+1 + U−

n+1Sn+1

]−1
U−
n ϕn (4.39b)

Using the fact that the backward propagating field in the final layer must be zero we can compute

the S–matrices in an iterative manner. Note we do not need to computeC−1
n at any point. Using

a similar method the transmitted field can be calculated iteratively from the input field,

a+
n+1 =

[
U+
n+1 + U−

n+1Sn+1

]−1 [
U+
n ϕnCn + U−

nM(Sn+1)−1N(Sn+1)Cn
]
a+
n . (4.40)

These equations are well conditioned and can be used for general anisotropic harmonic media.

We implement the equations in MATLAB using standard build in functions to calculate the

eigenvalues and, hence, the field in each layer.
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4.4 Experimental comparison

Using the numerical model described in the previous section as well as experimental data, ob-

tained by Dr David Smith and Stephen Abbot, we can study the reflection spectrum of a pho-

torefractive liquid crystal cell. Whilst an exact quantitative comparison between theory and

experiment is not possible, as discussed in Section 3.6, we can obtain qualitative agreement.

The numerical code we have implemented is suitable for any configuration of grating and any

liquid crystal alignment. However, here we only study the system where the grating vector is

in the z direction, see Figure 4.2. The liquid crystal is modelled using the code developed in

Chapter 2. Once the liquid crystal alignment is found, its Fourier transform is used to describe

the dielectric profile of the liquid crystal layer. In this geometry the grating is created by the

interaction of two coherent beams in the(y, z) plane. The reflective and diffractive properties

of the grating are then probed using a separate input beam.

Before we consider the case of the grating it is interesting to see the response of the SPP to a

uniform applied voltage. This allows us to confirm that the theoretical predictions agree with the

experimental measurements. Experimentally we measure the reflection of a white light source

from the surface of a photorefractive plasmonic liquid crystal cell. This allows us to obtain

the reflected intensity as a function of the optical wavelength. This is measured for a variety

of different incidence angles and applied voltages. It is expected that, as observed in previous

work by Welford et al [150], at low voltages we will see a series of sharp reflectivity resonances

in the reflection spectrum. These correspond to the coupling to a series of different guided

modes. These modes are only expected at low voltages where the variation in the liquid crystal

alignment occurs away from the cell boundaries. Once the voltage is increased above a certain

threshold the liquid crystal alignment varies sharply close to the boundary and a shift in the SPP

resonance is expected.

The results obtained for this experiment are shown in Figure 4.5. Here reflection spectra are

shown for three different applied voltages; 0 Volts, 10 Volts and 20 Volts. Unfortunately, due

to the presence of interference fringes, generated from a misalignment of the experimental ap-

paratus, it is not possible to say for certain that the guided mode resonances are visible. It may

also be possible that, at these voltages, too much voltage is dropped across the liquid crystal

layer and the guided modes have already been cut off. The shift in the SPP resonance is much

more obvious. It can be seen that at 20 Volts the resonance angle has shifted significantly. This

is important as it shows that the SPP can be manipulated by the presence of the liquid crystal

layer.

Similar experimental results can be obtained for the SPP resonance shift due to an applied optical

field. For a fixed voltage the reflection spectrum is measured both with and without an external

20mW beam. The effect of the external beam is to change the resistance of the photoconductor.

This changes the voltage dropped across the liquid crystal causing a change in alignment. For a

high enough applied voltage, such that the liquid crystal is realigning close to the cell surface,
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FIGURE 4.5: Experimental observation of the shift in SPP resonance with applied voltage.
For sufficiently large applied voltage the alignment of the liquid crystal near the cell surface is
altered. This changes the refractive index seen by the SPP and, hence, changes the resonance
conditions. Experimental data by Dr David Smith and Stephen Abbot.

FIGURE 4.6: Experimental observation of the shift in SPP resonance with20mW illumination
at a fixed applied voltage. The effect of the external illumination is to change the resistance of
the photoconductive layer. This changes the voltage seen across the liquid crystal layer. Physi-
cally this effect is seen to be similar to the effect of changing the applied voltage. Experimental
data by Dr David Smith and Stephen Abbot.

the refractive index seen by the plasmon is changed and the resonance position shifts. This is

clearly observed in the experimental results shown in Figure 4.6 and confirms that it is possible

to manipulate the SPP using an external optical field.

Theoretically the SPP resonance can be modelled for a variety of different applied voltages. Fig-

ure 4.7 shows the effects of the applied voltage on the reflected intensity for a single wavelength

(800nm). The applied voltage causes the liquid crystal to realign slightly. At low voltages this
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FIGURE 4.7: Theoretical shift of SPP due to applied voltage at fixed frequency. At low voltage
it can be seen that sharp resonances appear in the reflection spectrum before the onset of total
internal reflection. These are the result of small realignments in the centre of the liquid crystal
cell, too far away from the surface to directly affect the SPP resonance conditions.

effect causes a strong coupling to the guided modes which can be seen as a series of resonances

before the onset of total internal reflection. As the voltage increases the plasmon resonance

shifts in agreement with the experimental observations.

For a large enough voltage drop across the liquid crystal is is possible to obtain qualitative fits

for the SPP resonance shifts observed both theoretically and experimentally. Figure 4.8 shows

the comparison of a reflection spectrum for 0 and 30 Volts. Based on the assumption that this

voltage is large enough to ensure complete realignment of the liquid crystal a qualitative fit can

be obtained.

The purpose of this work is to understand the effects of diffraction from a liquid crystal cell. Ex-

perimentally diffraction has been observed, Figure 4.9, for a4.5µm grating with≈ 3% diffrac-

tion efficiency for power transfer into the first diffracted order. This diffraction, however low,

is important as it provides a way of pumping energy into the SPP. Increased diffraction effi-

ciency, coupled with non–linear feedback between the SPP and the photoconductive layer are

the necessary conditions for photorefractive plasmonic gain.

Interestingly theoretical predictions of plasmonic gain show a similar percentage of diffracted

output power for a fully aligned liquid crystal. Whilst this is at a lower voltage than used in the

experiment it is expected that both these situations correspond to a fully aligned liquid crystal

layer. Figure 4.10 shows these results for a single optical wavelength (800nm). Again guided

modes can be seen to form at low voltages, an effect not yet observed in our experiments. At

high voltages there are two effects: The first is a shift of the SPP resonance due to the change in

the non modulated part of the liquid crystal alignment. The second is the diffraction of energy

into the higher diffracted orders.

Qualitatively the effects predicted theoretically agree with the experimental observations. How-

ever, at this stage it is not possible to obtain a quantitative theoretical experimental verification.
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FIGURE 4.8: Comparison between theoretical shift and experimental shift. For a sufficiently
large voltage drop across the liquid crystal layer the SPP resonance asymptotes to the reso-
nance associated with a cell with homeotropic alignment. In this situation the SPP reflection
spectra can be matched between theory and experiment. Experimental data by Dr David Smith
and Stephen Abbot.

As with the beam coupling experiments, see Section 3.6, one method to overcome some of these

difficulties is to use a slow AC field rather than a DC field to align the liquid crystals. This has

two effects: The first is to fix the time frame over which the ions can move reducing the com-

plexity of the system. The second effect, as shown in Section 3.6, is to provide a small increase

in the voltage dropped across the liquid crystal layer. These effects will increase the stability

and predictability of the experiments whilst decreasing the complexity of the cell modelling

allowing a quantitative comparison in the future.

4.5 Asymptotic methods for surface plasmon propagation

Exact theories for SPP propagation in anisotropic media do exist [164]. However, they are overly

complicated and highly cumbersome to work with. Here we develop approximation techniques

which can be used for SPP propagation in anisotropic media with either homogeneous or pe-

riodically modulated permittivity. In Section 4.5.1 we consider the propagation of a SPP at

the interface between a semi–infinite metal and a semi–infinite anisotropic dielectric. In Sec-

tion 4.5.2 we extend this work to consider the case where the permittivity of the dielectric is
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FIGURE 4.9: Diffraction of a SPP by liquid crystal dielectric grating. Diffraction peaks are
observed at with the correct angular separation for the±1 beams diffracted by a4.5µm grat-
ing. The0o plot shows the absorption of the plasmon, i.e.1 − I whereI is the normalised
intensity. The±1 diffracted images show the intensity of the+1 and−1 diffracted orders.
These intensities have been scaled for visualisation purpose. The measured diffraction effi-
ciency is≈ 3%. Experimental data by Dr David Smith and Stephen Abbot.

FIGURE 4.10: Theoretical prediction of diffracted energy by liquid crystal grating at a variety
of voltages. Main figure shows the reflection spectrum. The inset shows the intensity of the first
diffracted order.

periodically modulated.

4.5.1 Plasmon propagation in anisotropic media

Using the birefringence as a small parameter we can use perturbation techniques to approximate

the effect of anisotropy on the SPP. This is a valid approximation as the birefringence is typically

small, even in the case of high anisotropy liquid crystals. We consider a single interface between

two semi–infinite materials, a metal and a dielectric. The permittivity in the dielectric medium
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can be written as

εd =
{
no

[
I +

(
ne − no
no

)
ĉ ⊗ ĉ

]}2

= εd,0
[
I + ηεd,1ĉ ⊗ ĉ +O(η2)

] (4.41)

whereεd,0 = n2
o, ηεd,1 = 2

(
ne−no
no

)
, η � 1 is a smallness parameter,εd,1 ∼ O(1) and

εm = εm,0 (4.42)

in the metal. HereI is the identity matrix and̂c is the optical axis with componentscx, cy and

cz. All dielectric constants are assumed real and positive with the exception ofεm,0 which is

complex and has negative real part. We look for solutions which propagate along the boundary

between the two materials and decay exponentially away from the boundary. The interface is in

the(x, z) plane with the metal in the regiony > 0 and the dielectric in the regiony < 0. The

only solution at leading order is the standard isotropic transverse magnetic SPP.

We consider the effects of the perturbation to the operatorC(n), equation (4.27), developed in

the Section 4.3 where we wroteC(n) such that, for a known propagation vector in the plane

of the interface, the field dependence orthogonal to the interface is found via an eigenvalue

problem. Here we want to rewriteC(n) such that it is a self adjoint operatorH(n)
0 which acts on

the electric and magnetic fields to determine the modes at the interface. We findH(n)
0 using the

transformationH(n)
0 = LC(n)R where

L =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , R =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (4.43)

Note here we use the same scalings as in Section 4.3. The resulting operatorH(n)
0 acts on the

fields parallel to the interface plane,A(n) = RTA
(n)
‖ , whereA(n)

‖ is defined in Section 4.3. The

properties of the parallel fields are enough to describe the propagation of the surface plasmons.

The perpendicular components of the fields can be described using a method similar to the one

used in Section 4.3,A(n)
⊥ = D(n)RA(n), whereD(n) is defined in equation (4.28).

We consider a SPP propagating along the plane and decaying with distance from it. Under an

appropriate rotation of coordinate system we may consider only SPP propagating in thex direc-

tion. We want to study the effects of the anisotropy as a correction on the slow spatial scalex1.

Therefore, as in the beam coupling problem, Section 3.4, we set up a multiple scales expansion

scheme in the scaled spatial variables:x0 = x andx1 = ηx and the scaled derivatives

∂

∂x
=
∂x0

∂x

∂

∂x0
+
∂x1

∂x

∂

∂x1
=

∂

∂x0
+ η

∂

∂x1
. (4.44)

The operatorH(n)
0 can be written asH(n)

0 = H(n) + η
(
H̄(n) + D̄(n)

)
, whereH(n) andH̄(n) are



Chapter 4 Surface plasmon polaritons at a metal–liquid crystal interface 88

self adjoint algebraic operators,

H(n) =


εn,0−k2

x
εn,0

ky 0 0

ky εn,0 0 0
0 0 1 ky

0 0 ky εn,0 − k2
x

 (4.45a)

and

H̄(n) =


k2

xc
2
y

εn,0
cxcykx 0 kxczcy

cxcykx εn,0c
2
x 0 εn,0cxcz

0 0 0 0
kxczcy εn,0cxcz 0 εn,0c

2
z

 εp,1, (4.45b)

where for compactness of notation we have omitted the superscripts(n) within the operators.

The linear differential operator̄D(n) can be written as̄D(n) = D̄(n)
x ∂x1 + D̄(n)

y ∂y1 , where

D̄(n)
x =


2ikx
εn,0

0 0 0

0 0 0 0
0 0 0 0
0 0 0 2ikx

 , D̄(n)
y =


0 −i 0 0
−i 0 0 0
0 0 0 −i
0 0 −i 0

 , (4.46)

again for compactness of notation we have omitted the superscript(n) within the operators. We

now expandH(n)
0 A

(n)
0 = 0 in powers ofη to obtain

H(n)A(n) + η
[
H̄(n)A(n) + D̄(n)A(n) +H(n)Ā

(n)
]

+O(η2) = 0. (4.47)

The isotropic plasmonic modes are found from the requirement that the leading order equation

H(n)A(n) = 0 has non–trivial solutions in each material, Det(H(n)) = 0. From which we

obtain the dispersion relation(k(n)
x )2 + (k(n)

y )2 = εn,0. Finally we obtain the polarisations of

the fields from the requirementA(n) ∈ ker
(
H(n)

)
and the boundary conditionA(m) = A(d).

From here we notice that there are two polarisation vectors which satisfyA(n) ∈ ker(H(n)).
These correspond to the Transverse Electric (TE) and Transverse Magnetic (TM) modes which

have tangential polarisations

Û
(n)
1 = k

(n)
yq

ε2n,0+(k
(n)
y )2


− εn,0
k

(n)
y

1
0
0

 , Û
(n)
2 = 1q

1+(k
(n)
y )2


0
0

−k(n)
y

1

 . (4.48)

We will need to consider both of these polarisations when it comes to the first order equations.

However, at leading order, we find that only the transverse magnetic field satisfies the boundary

conditions. Therefore,̂U
(d)
1 = Û

(m)
1 = Û1 and we writeA(n) = Û1A

(n) with the constraint
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A(d) = A(m) = A(S) at y = 0. At this point, after some manipulation, we can obtain the

standard SPP magnetic fields

H(n) (x, t) = A(S)(x1)h(n)ei(k
(n)·x0−ωt) (4.49a)

and electric fields

E(n) (x, t) =
A(S)(x1)
εn,0

e(n)ei(k
(n)·x0−ωt), (4.50a)

whereA(S) is the amplitude at the surface and the polarisation and wave vectors are defined as

e(m) =

 iδm

−α0

0

 ,k(m) =

 α0

iδm

0

 ,h(m) =

 0
0
1

 (4.51)

in the metal and

e(d) =

 −iδd
−α0

0

 ,k(d) =

 α0

−iδd
0

 ,h(d) =

 0
0
1

 (4.52)

in the dielectric. Here

α0 =
√

εd,0εm,0
εd,0 + εm,0

, δm =
√
− εm,0εm,0
εd,0 + εm,0

, δd =
√
−

εd,0εd,0
εd,0 + εm,0

. (4.53)

From equation (4.53) we obtain the constraint|εm,0| > |εd,0| for propagating solutions. We

now consider the effect of the first order perturbation in both the metal and the dielectric. From

equation (4.47) the first order equations are(
H̄(n) + D̄(n)

)
Û1A

(n) +H(n)Ā
(n) = 0. (4.54)

Equation (4.54) is a vector equation which must be satisfied in all directions. We choose two of

these directions to be the leading order polarisation vectors. AsH(n) is self adjoint the projection

of the final term in equation (4.54) onto the polarisations is zero. Therefore we would expect

these two projections to relate thex1 andy1 derivatives inD̄(n). The remaining two projections

define the calculable part of the polarisation corrections. We require that these are equal in both

materials, this gives theO(η) conditionĀ
(m) = Ā

(d).

At this point we could project directly onto the TE and TM polarisations and solve the result-

ing equations for the correction to the wave vector and the decay constants. However, in the

dielectric medium it is clear that for an optical axis which has a component orthogonal to the

plane formed by the leading order polarisation and wave propagation vectors then there will be

some TE–TM mixing. If this is the case then the equationÛ
(d)
2 · (H̄(d) + D̄(d))Û1A

(d) = 0
has no solution. This is because, as the TE amplitude is zero, there is nothing to balance the
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perturbationεd,1 projected in this direction.

To overcome this we define the basis polarisation vectorsV
(d)
1 =

(
Û1 + Û

(d)
2

)
/2 andV

(d)
2 =(

Û
(d)
2 − Û1

)
/2 such thatV (d)

1 + V
(d)
2 = U1. In general we can assume that the component

of the field associated with each polarisation component may have a different decay constant

Û1A
(d)(x1, y1) = V

(d)
1 A

(d)
1 (x1, y1) + V

(d)
2 A

(d)
2 (x1, y1), (4.55)

with the constraint thatA(d)
1 (x1, 0) = A

(d)
2 (x1, 0). The choice ofV 1 andV 2 is arbitrary and has

the drawback that the expressions for the corrections to the decay constants become somewhat

complicated. This is not a problem as in general it is only the correction to the surface plasmon

wavenumber that we require.

Projecting onto the polarisationsV (d)
j gives us the equations for the first order dispersion relation

V
(d)
j ·

(
H̄(d) + D̄(d)

)
Û1A

(d) = 0, (4.56)

wherej = 1, 2 in the dielectric and

Û1 · D̄(m)Û1A
(m) = 0 (4.57)

in the metal. Only a single field needs to be considered in the metal as it is optically isotropic.

These two equations define the relationship between the variation of the two differently decaying

plasmonic components and the component of the wave vector in the plane. The expressions for

∂x1A
(n)
j in terms of∂y1A

(m), ∂y1A
(d)
1 and∂y1A

(d)
2 are

∂y1A
(m) = i

α0

δm
∂x1A

(m) (4.58a)

∂y1A
(d)
1 =

iα0

δd
∂x1 −

(δdcx + iα0cy)
2

δd
−
εdcz (icxδd − α0cy)

√
1− δ2d

δd
√
ε2d,0 − δ2d

 εd,1
2

A(d)
1

(4.58b)

∂y1A
(d)
2 =

iα0

δd
∂x1 −

(δdcx + iα0cy)
2

δd
+
εdcz (icxδd − α0cy)

√
1− δ2d

δd
√
ε2d,0 − δ2d

 εd,1
2

A(d)
2

(4.58c)

The boundary condition here is non-obvious as we can only determine the components ofĀ
(n)

which are orthogonal to ker(H(n)),

Ã
(n)

= −P(n)
(
H̄(n) + D̄(n)

)
Û1A

(n), (4.59)

whereÃ
(n)

is the calculable part of the polarisation correction andP(n) = Pinv
(
H(n)

)
is the
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Moore–Penrose pseudo inverse. We write the vectorsÛ
(n)
1 , Û

(n)
2 andÃ

(n)
as

Û
(n)
1 =

 û
(n)
1

0
0

 , Û
(n)
2 =

 0
0

û
(n)
2

 , Ã
(n)

=

(
S

(n)
1

S
(n)
2

)
, (4.60)

whereS
(n)
1 · û(n)

1 = 0 andS
(n)
2 · û(n)

2 = 0, recall equation (4.48). The TM vectors in the metal

and the dielectric are equal. Therefore,Ŝ
(m)
1 = Ŝ

(d)
1 = Ŝ1. The TE vectors in general are not

equal,S(m)
2 6= S

(d)
2 . This leads to the boundary conditions

S1 + C1mû1 = S1 + C1dû1 (4.61)

and

S
(m)
2 + C2mû

(m)
2 = S

(d)
2 + C2dû

(d)
2 , (4.62)

whereC1m, C1d, C2m andC2d are arbitrary constants. Equation (4.61) must be satisfied in

all directions, therefore it makes sense to project ontoŜ1 andû1. This leads to the boundary

condition

|S(m)
1 | = |S(d)

1 | (4.63)

and the relationC1m = C1d. Similarly equation (4.62) must be satisfied in all directions. How-

ever, in this casêu(m)
2 6= û

(d)
2 . Therefore, we can always find aC2m andC2d such that equation

(4.62) is satisfied and the only requirement atO(η) is equation (4.63). Using (4.58), (4.63) and

the requirement that∂x1A
(m) = ∂x1A

(d)
1 = ∂x1A

(d)
2 = ∂x1A

(S), we obtain the resulting equa-

tion for the variation inx1;

∂x1A
(S) = iα0

1
2
εm,0

(
εd,0c

2
x − εm,0c

2
y

)
ε2d,0 − ε2m,0

εd,1A
(S). (4.64)

From which we obtain the first order correction to the surface plasmon wave vector,kSPP =
α0(1 + ηkx,1), where

kx,1 =
1
2
εm,0

(
εd,0c

2
x − εm,0c

2
y

)
ε2d,0 − ε2m,0

εd,1. (4.65)

The perturbation due to the presence ofεd,1 can be verified by comparison to numerical simula-

tions, see Section 4.3. Figures 4.11, 4.12 and 4.13 show the comparison for different values of

εd,1. In the first two cases the numerics agree well with the analytic approximation. In the third

case however, it can be seen that there is a qualitative difference in the results. This is because,

for large enough anisotropy, the input beam used to numerically excite the plasmon can couple

to a propagating mode rather than directly to the plasmon. This causes the perturbation expan-

sion to fail as the qualitative behaviour of the solution has changed. Therefore, the expansion

is only valid if the SPP wavenumber is larger than the corresponding wavenumber for a prop-

agating field. In general terms this can be expressed as the the following inequality constraint;
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FIGURE 4.11: Comparison of analytic perturbation expansion and numerical T-matrix calcu-
lation of SPP wave vectors. Here we have usedη = 0.013 to test our perturbation expansion
with a real small number, in this case the maximum error is0.0011k0.

FIGURE 4.12: Comparison of analytic perturbation expansion and numerical T-matrix cal-
culation of SPP wave vectors. In this case we have used a much largerη = 0.130 to test the
perturbation expansion for a more interesting case, here we see a maximum error of0.0090k0.
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FIGURE 4.13: Comparison of analytic perturbation expansion and numerical T-matrix calcu-
lation of SPP wave vectors. In this caseη is no longer small,η = 0.267, with η2 = 0.07. Our
maximum calculated error is0.0446k0, however, by looking at the numerical values ofKSPP

we can see that there are features of the graph we have not yet captured in the perturbation ex-
pansion, it could be that although there is an SPP here we are unable to excite it as the energy
couples to a propagating mode in the anisotropic crystal.

√
εm,0εd,0
εm,0 + εd,0

>
√
εd,0 (1 + ηεd,1), (4.66)

i.e. the minimum possible SPP wavenumber must be greater than the largest possible optical

wavenumber for any orientation of the crystal axis. If this constraint is not satisfied then equation

(4.65) will become invalid for certain orientations of the optical axis. Equation (4.65) describes

the perturbation of the surface plasmon mode due to the presence of a homogeneous anisotropic

layer with arbitrary optical axis. This is shown to be quantitatively accurate when compared to

the numerical simulation as long as the condition (4.66) is satisfied. That is, the presence of the

anisotropy does not qualitatively change the behaviour of the system.

4.5.2 Coupled plasmonic equations

The coupled plasmonic equations are derived using the same procedure as in the anisotropic

case. The equations are solved at each order in each material and the boundary conditions

are matched. Conceptually the only difference is that instead of a single SPP propagating in

thex–direction there is a discrete set of SPPs propagating in the(x, z) plane. The interaction

between these SPP is included as a coupling term in the first order perturbation,H̄. We consider

a discrete number of SPPs propagating along the metal–dielectric interface in the(x, z) plane.
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The dielectric is assumed to have a small modulated component and can be written in a similar

way to equation (4.21),

εd = εd,0

[
I + η

∞∑
l=−∞

ε
(d)
δγ,l exp (ilKgz)

]
. (4.67)

The first stage in the derivation of the coupled plasmon equations is to understand how the

leading order equations change for a SPP propagating in the(x, z) plane at an angleθp to the

x–axis,

k
(d)
p =

 α0 cos θp
−iδd

α0 sin θp

 , k
(m)
p =

 α0 cos θp
iδm

α0 sin θp

 (4.68)

The polarisation and linear operators which describe the SPP propagation are rotated by the

rotation matrix

Rp =


cos θp 0 − sin θp 0

0 cos θp 0 − sin θp
sin θp 0 cos θp 0

0 sin θp 0 cos θp

 , (4.69)

such thatA(n)
p = RpÛ1A

(n)
p andH(n)

p = RpH(n)RT
p . Therefore, the leading order equation

for the propagation of a SPP in anisotropic homogeneous media at angleθp isH(n)
p A

(n)
p = 0 or

RpH(n)RT
pRpÛ

(n)
1 A(n)

p = 0. (4.70)

The rotation matrixRp is orthogonal, therefore, equation (4.70) simplifies toRpH(n)Û1A
(n)
p =

0. This is identical to the leading order equation for a SPP propagating along thex–axis which

has already been solved in Section 4.5.1. The propagation and decay constants are unchanged

by this rotation and are defined in equation (4.53). Therefore the leading order solution is a

series of SPP with amplitudesA(S)
p (x1) propagating in different directions along the interface.

The perturbation to the leading order operator which couples modeq into modep is written as

H̄(n)
pq =


α2

0 cos2 θpε
(n)
yy,(p−q)

εn,0
ε
(n)
xy,(p−q)α0 cos θp 0 α0 cos θpε

(n)
zy,(p−q)

ε
(n)
xy,(p−q)α0 cos θp εn,0ε

(n)
xx,(p−q) 0 εn,0ε

(n)
xz,(p−q)

0 0 0 0

α0 cos θpε
(n)
zy,(p−q) εn,0ε

(n)
xz,(p−q) 0 εn,0ε

(n)
zz,(p−q)

 ei(p−q)Kgz.

(4.71)

We proceed as in Chapter 3. The SPP are diffracted in the bulk of the dielectric as in the case

of the beam coupling equations. We consider only the case where the grating vector is in the

z–direction. The effect of this grating is to couple energy from theqth SPP into thepth SPP.

As in the case of the coupled wave equations we may not obtain perfect phase matching and

we need to consider the phase detuning in thex– direction. This is shown in Figure 4.14. The
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FIGURE 4.14: Coupling of SPP due to a periodically perturbed dielectric. Figure (A) shows
the coupling due to the fundamental Fourier component. Figure (B) shows the coupling due the
second harmonic.

coupling identity in this case is

k(d)
q = k(d)

p + (q − p)Kgêz + η∆kpqêx, (4.72)

where

∆kpq = α0(cos θq − cos θp) (4.73)

is the phase detuning term and is assumed to be first order. As discussed in Chapter 3 this may

not be the case. However, as the phase detuning becomes large the coupling becomes small.

Therefore, we would expect the error induced by this assumption to be negligible. Summing the

fields with equal spatial dependence and writing the first order polarisation correctionĀ
(n)
p =

RpŪ
(n)
A

(n)
p , allows us to obtain the first order equation;

H̄(n)
pq RqÛ1A

(n)
q ei∆kpqx1 + D̄(n)RpÛ1A

(n)
p +RpH(n)Ū

(n)
A(n)
p = 0. (4.74)

The leading order equation is satisfied for two vectors in the kernel ofH(n), the TE and TM

modes, which have vectorŝU
(n)
2 andÛ

(n)
1 respectively. As described in the previous section

the projection along the TE wave is singular and we obtain an equation which does not balance

at first order. Therefore, we need to consider two waves whose polarisation is formed from a

linear combination of the TE and TM waves,V 1 andV 2. Projecting equation (4.74) onto these

vectors we obtain

V
(d)
1 · RT

p H̄(d)
pq RqÛ1A

(d)
q ei∆kpqx1 + V

(d)
1 · RT

p D̄(d)RpÛ1A
(d)
p = 0 (4.75a)

and

V
(d)
2 · RT

p H̄(d)
pq RqÛ1A

(d)
q ei∆kpqx1 + V

(d)
2 · RT

p D̄(d)RpÛ1A
(d)
p = 0. (4.75b)

The differential operator is written as̄D(n) = D̄(n)
x ∂x1 + D̄(n)

y ∂y1 + D̄(n)
z ∂z1 . As we have ex-

pressed the field as a Fourier series in thez–direction the geometry is translationally symmetric

and, hence, the only variation in thez–direction will be a phase shift. Therefore, there is no

amplitude variation in the direction of the grating vector andD̄z = 0. We can simplify equa-

tion (4.75) by observing that they1 derivative corresponds to variation orthogonal to the plane
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of rotation. As such,̄Dy must be invariant with respect to the conjugacy action of the rotation

matrices,RT
p D̄

(n)
y Rp = D̄(n)

y . The only effect of the rotation on the first order derivatives is the

effect onD̄x. Using this simplification equations (4.75) become

V
(d)
1 · RT

p H̄(d)
pq RqÛ1A

(d)
q ei∆kpqx1 + V

(d)
1 ·

[
RT
p D̄(d)

x Rp + D̄(d)
y

]
Û1A

(d)
p = 0 (4.76a)

and

V
(d)
2 · RT

p H̄(d)
pq RqÛ1A

(d)
q ei∆kpqx1 + V

(d)
2 ·

[
RT
p D̄(d)

x Rp + D̄(d)
y

]
Û1A

(d)
p = 0. (4.76b)

Similarly, the equation in the metal is

Û1 ·
[
RT
p D̄(m)

x Rp + D̄(m)
y

]
Û1A

(m)
p = 0 (4.77)

We require the continuity of the polarisation amplitudes, using the same argument as presented

in Section 4.5.1 we only require this to be the case in the direction orthogonal to the TM mode.

This gives us the equation

V̂ ⊥ · P(d)RT
p H̄(d)

pq RqÛ1A
(d)
q ei∆kpqx1 + V̂ ⊥ · P(d)RT

p D̄(d)RpÛ1A
(d)
p =

V̂ ⊥ · P(m)RT
p D̄(m)RpÛ1A

(m)
p ,

(4.78)

whereP(n) = Pinv
(
H(n)

)
is the Moore–Penrose pseudo inverse andV̂ ⊥ =

(
Ŝ
T
1 , 0, 0

)T
.

Equations (4.76), (4.77) and (4.78) form a coupled system of partial differential equations for

the variation of the SPP amplitude in thex and y directions. We are only interested in the

variation of the amplitudes in the plane of propagation. As the SPP decay exponentially in they

direction on the fast scale then any coupling will quickly become negligible with distance away

from the boundary.

As in the homogeneous anisotropic case we must consider two different SPP components in

the dielectric which decay with different decay constants. Therefore, we writeÛ1A
(d)
p =

V 1A
(d)
p1 (x1, y1) + V 2A

(d)
p2 (x1, y1). We require that these amplitudes are equal at the boundary

to ensure the leading order equations are satisfied,A
(d)
p1 (x1, 0) = A

(d)
p2 (x1, 0) = A

(m)
p (x1, 0) =

A
(S)
p and∂x1A

(d)
p1 = ∂x1A

(d)
p2 = ∂x1A

(m)
p = ∂x1A

(S)
p . The system we must now solve is a4× 4

system for the derivatives∂y1A
(d)
p1 , ∂y1A

(d)
p2 , ∂y1A

(m)
p , and∂x1A

(S)
p .

Before we proceed we need to make a few simplifying observations. AsD̄y is block diagonal

and the first two entries of theV 1 andV 2 are identical we obtain

V 1 · D̄(d)
y V 1 = V 2 · D̄(d)

y V 2, (4.79a)

V 1 · D̄(d)
y V 2 = V 2 · D̄(d)

y V 1, (4.79b)
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and

V 1 · RT
p D̄(d)

x RpÛ1 = V 2 · RT
p D̄(d)

x RpÛ1. (4.79c)

Adding and subtracting equations (4.76a) and (4.76b) and using equations (4.79) we obtain

Û1 · RT
p H̄(d)

pq RqÛ1A
(S)
q ei∆kpqx1 + Û1 · RT

p D̄(d)
x RpÛ1A

(S)
p +

Û1 · D̄yÛ1

(
∂y1A

(d)
p1 + ∂y1A

(d)
p2

)
= 0

(4.80a)

and

Û2 · RT
p H̄(d)

pq RqÛ1A
(S)
q ei∆kpqx1 + Û2 · D̄yÛ2

(
∂y1A

(d)
p1 − ∂y1A

(d)
p2

)
= 0 (4.80b)

respectively. Equations (4.80a) defines the common part of they–variation of the amplitudes

in the dielectric. Equation (4.80b) defines the difference between the twoy derivatives. Using

equation (4.79) we notice that only the common part of they–derivative appears in the bound-

ary conditions. As the field decays exponentially away from the boundary we do not need to

consider variation in this direction. Therefore, we only consider equation (4.80a). This leads

to an interesting observation. Although considering the fields in terms of TE and TM modes in

the dielectric turns out to be a singular choice of basis vectors the error induced by this does not

affect the final equation for thex derivative of the field amplitudes.

Equations (4.77), (4.78) and (4.80b) form a3 × 3 linear system of equations,Ax = b, for the

spatial derivatives. After some simplification to the left hand side we can write

A =



εd,0δd
δ2d − ε2d,0

0
−2iεd,0α0

δ2d − ε2d,0

0 − εm,0δm
δ2m − ε2m,0

−2iεm,0α0

δ2m − ε2m,0

iεd,0

(
δ2d + ε2d,0

)
2
(
δ2d − ε2d,0

)2 −
iεm,0

(
δ2m + ε2m,0

)
2
(
δ2m − ε2m,0

)2

2εd,0δdα0(
δ2d − ε2d,0

)2 +
2εm,0δmα0(
δ2m − ε2m,0

)2


,

(4.81)

and

x =

 ∂y1A
(m)
p

∂y1(A
(d)
p1 +A

(d)
p2 )

cos θp∂x1A
(S)
p

 . (4.82)

The right hand side contains the coupling terms which, on the boundary, can be written as

b =

 Û1 · RT
p H̄

(d)
pq RqÛ1A

(S)
q ei∆kpqx1

0

V̂ ⊥ · P(d)RT
p H̄

(d)
pq RqÛ1A

(S)
q ei∆kpqx1

 . (4.83)
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Using a Gaussian elimination procedure we can obtain a simple equation for thex derivativeα0

(
εm,0δ

3
d − εm,0ε

2
d,0δd + εd,0δ

3
m − εd,0ε

2
m,0δm

)
δmεm,0

(
δ2m − ε2m,0

)(
δ2d − ε2d,0

) cos θp

 ∂x1A
(S)
p =

−i ε2d,0 + δ2d

2
(
δ2d − ε2d,0

)
δd

Û1 −
δ2d + ε2d,0(
δ2d − ε2d,0

) V̂
T
⊥P(d)

 · RT
p H̄(d)

pq RqÛ1A
(S)
q ei∆kpqx1 .

(4.84)

The bracketed terms on the right hand side describe the coupling of the of the plasmons due to

the presence of the grating and the boundary perturbation respectively. The term on the left hand

side provides the correction due to the fields in the metal. Using the change of variable

A(S)
p = Ã(S)

p e−iα0 cos(θp)x1 (4.85)

and equation (4.73) we can simplify equation (4.84) to obtain

cos θp∂x1Ã
(S)
p =

i

2

√
εd,0εm,0
εd,0 + εm,0

{
2 cos2(θp)Ã(S)

p +
εm,0

ε2d,0 − ε2m,0
U cp · RT

p H̄(d)
pq RqÛ1Ã

(S)
q

}
,

(4.86)

where the coupling directionU cp = (εm,0 + εd,0) V c + V d and

V c =
(
2εd,0/

√
εm,0 + εd,0

)
V̂
T
⊥P(d) + Û1, V d =

(
2εd,0/

√
εm,0 + εd,0

)
V̂
T
⊥P(d) − Û1

(4.87)

Equation (4.86) describes the coupling of SPPs at the interface between a semi infinite metal

and a semi infinite dielectric with periodically modulated permittivity. There are two different

sources of coupling, the permittivity grating in the bulk of the dielectric material and the modu-

lated permittivity at the interface. Had we considered only the bulk dielectric grating we would

have obtained coupled wave equations as described in Chapter 3. The effect of the boundary

condition is to induce a perturbation into the coupling directionU cp. Understanding the ef-

fect of this term should enable us to tailor the properties of the grating to maximise the energy

transfer.

This method provides a quantitative understanding of the coupling process. The resulting equa-

tion can be solved as a single eigenvalue problem for the variation in SPP amplitude with propa-

gation. This is a much simpler expression than the one used in the rigorous coupled wave theory

and will allow us to obtain a better understanding of the coupling mechanisms.

4.6 Conclusion

In this chapter we have implemented existing models to study the propagation of SPP at the

interface between a photorefractive liquid crystal cell and a thin gold layer. The resulting nu-
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merical code has been shown to agree qualitatively with experimental observations and provides

a great deal of information about the system. The S–matrix method used, in combination with

Berreman’s method, allows us to model complicated dielectric profiles such as the ones observed

in photorefractive liquid crystal cells.

To complement the existing numerical models we have also developed new analytic approxi-

mations to describe the propagation of SPP at an interface between a semi–infinite metal and

a semi–infinite dielectric. The resulting equations, derived assuming the birefringence of the

dielectric is small, are suitable for periodically modulated anisotropic materials. For the homo-

geneous anisotropic case these equations have been compared to the numerical code showing

good agreement with the calculated variation in the SPP wavenumber.

Approximation techniques provide a great deal of insight into the behaviour and coupling mech-

anisms between the SPP as they propagate along the surface. Therefore, these equations will be

of fundamental importance in understanding the conditions required to maximise the coupling

of energy into a SPP.

The approximation techniques developed here make the assumption that the dielectric is homo-

geneous in the direction normal to the interface. This assumption, whilst qualitatively correct,

does not model the liquid crystal variation in the liquid crystal profile in the direction normal to

the boundary. Understanding the effect of this non-homogeneity will involve a detailed study

of the SPP response to different liquid crystal alignments on both the short and long spatial

scales. Once an understanding of the SPP response has been developed suitable approximation

techniques may be found to model this effect.

The work carried out in this chapter, and the ongoing experimental work of Dr David Smith and

Stephen Abbot, suggests that the use of photorefractive liquid crystal cells will be an important

technique for the manipulation and amplification of SPPs. Further theoretical and experimen-

tal work is required to optimise these systems and obtain true photorefractive gain where the

diffraction grating is generated directly by the SPP.



Chapter 5

Conclusion and future work

In this thesis we have considered the interaction of electromagnetic fields with liquid crystals in

photorefractive cells. Two different optical geometries were studied and semi analytic models

were developed to describe these systems. Each of the three technical chapters of this thesis was

concerned with the modelling of one of the different aspects of these problems. In this chapter

we summarise the results and consider ways in which this work can be extended in the future.

In Chapter 2 we derived an approximation to theQ–tensor equations which describe liquid

crystal alignment. The resulting equations, published in SIAM Journal on Applied Mathemat-

ics, reduce the computation time by a factor of 100 whilst maintaining an error of order(10−4).
These equations were derived based on the assumption that the elastic and electrostatic energies

remain small, recall equation (2.18). This observation is true in defect-free geometries. If how-

ever, due to geometrical constraints or external fields, the liquid crystal alignment varies sharply

this assumption no longer holds and the equations we have derived break down. From a matched

asymptotic point of view this is equivalent to having only considered the outer expansion. The

corresponding inner expansion, valid only close to the defect core, could be used as a starting

point to extend this model so that it can be applied to structures in which defects form.

The liquid crystal model derived in Chapter 2 was used to predict the liquid crystal alignment in

a photorefractive liquid crystal cell. In Chapter 3 we combined this with a semi-analytic model,

published in Applied Physics B, which describes beam coupling. This approximate model was

shown to be accurate when compared to existing models and a finite element simulation of

Maxwell’s equations. The optical model is accurate and can be solved quickly using a numerical

code. However, it does not have an exact analytic solution which would provide a more complete

description of the physics. Although an exact analytic solution cannot be found, approximate

solutions may exist. Using appropriate perturbation techniques [173] it may be possible to derive

solutions which are valid in the regions of interest in photorefractive liquid crystal cells.

The comparison of the optical coupling model with experimental data is important if this theory

is to be used to predict the response of photorefractive liquid crystal cells. However, the models
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we are using do not fully describe the charge migration processes and electrochemestry at the

boundaries in the photorefractive cell. There is also a noticeable variation in the measured

values of the liquid crystal conductivity making it difficult to obtain reproducible experimental

results. The final part of Chapter 3 describes the possibility of using a slow AC field rather

than a DC field to reduce the effects if charge migration, simplifying the modelling required

and stabilising the experimental setup. The observation of higher photorefractive gain can be

explained qualitatively using the simplest of theoretical models. However, a much more in depth

analysis of the electrochemical properties is required in order to obtain a working electrical

model of the cell.

The final technical section to this thesis, Chapter 4, is concerned with the modelling of surface

plasmon polaritons at the interface between a photorefractive liquid crystal cell and a thin gold

layer. Powerful numerical techniques have been implemented to allow us to understand the

optical properties of these systems. The propagation of the surface plasmons at the interface be-

tween a semi–infinite metal and a semi–infinite anisotropic dielectric with periodic modulation

has been studied analytically. The coupled plasmonic equations derived predict the ability to

produce gain using the liquid crystal as a photorefractive medium. These equations have been

derived assuming that the dielectric is homogeneous in the direction normal to the interface.

Therefore whilst these equations provide an approximation to the coupling mechanisms they

cannot predict the coupling strength quantitatively. To understand these effects the first step

would be to perform a detailed analysis of the mode structure and SPP response to variations in

the dielectric permittivity on both the long and short scales would need to be obtained. Once the

response is fully characterised and understood the appropriate approximations to describe such

a system may be found.

Finally we observe that there is great scope for future work if we wish to model the non-linear

interactions between the surface plasmon polariton and the photoconducting layer. This opens

up the possibility of creating true photorefractive gain which could be used to overcome the

short propagation length of the plasmon.



Appendix A

Minimising the free energy

To find the critical points of the liquid crystal free energy we consider the minimisation of a

general system of equations

F (x) =
∫
V
f [yn(x)] dV, (A.1)

wheren = 1, 2, 3, ..., N andyn(x) are theN scalar functions of space. The critical points of

the system of equations are found by considering the points where the variation of the functions

due to a small perturbation is zero. We write this perturbation in the form

yn(x) = yn(0) + ηα(x), (A.2)

whereη � 1 andα(x) is any smooth, differentiable function which vanishes at the boundaries

of our domain. By differentiatingF (x) with respect toη, we obtain:

∂F

∂η
=
∫
V

∂f

∂yn

∂yn
∂η

+
∂f

∂(∂iyn)
∂(∂iyn)
∂η

dV = 0, (A.3)

Substituting equation (A.2) into (A.3) allows us to write:∫
V

[
∂f

∂yn
− ∂i

∂f

∂(∂iyn)

]
α(x)dV = 0. (A.4)

This can only be true for allα(x) if the term inside the square bracket is zero. This givesN

equations which must be simultaneously satisfied for equation (A.1) to be satisfied.
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Numerical Algorithm

B.1 Introduction

The numerical models used throughout this thesis rely on the ability to differentiate and integrate

smooth continuous functions quickly and accurately. As the domains of interest in this thesis

are relatively simple we use spectral collocation methods. We choose a Fourier discretisation

in thex–direction and a Gauss–Lobatto grid in thez–direction. The Gauss–Lobatto grid-points

are defined as the roots of the first derivative of the Chebyshev polynomialTn(x) and the end

points−1 and1 [174]. The high accuracy of these methods ensures that fewer spatial points

are required than would be the case for a finite difference method allowing us to obtain high

accuracy without incurring large computation times.

In this appendix we describe the methods used for the numerical algorithms. First, section

B.2 provides a brief description of the general collocation algorithm used to approximate the

derivatives. These approximations are looked at in more detail in sections B.3 and B.4. To

calculate the cross polarised intensity we need a way to approximate the integral in equation

(3.33). The method used for this is a Clenshaw-Curtis quadrature, which is described in section

B.5.

B.2 Differentiation

In solving the equations which determine the liquid crystal alignment we need to approximate

the derivatives using a numerical method. We have chosen to use spectral collocation methods

as they offer high accuracy and efficiency. The methods are straightforward: given a function

f(x), defined in an interval[a, b], we approximate its derivatives with

∂f

∂x
' Dv, (B.1)
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where,v is a vector whose components are the values off evaluated at discrete points inx,

vj = f(xj). Here we use two different spectral methods, one on a periodic grid, and one with

fixed boundary conditions on a Gauss-Lobatto grid. For convenience, the derivation of these

two differentiation matrices is summarised below. Full details can be found in [75].

The implementation of the derivatives on a two dimensional grid requires us to define the one

dimensional derivatives in both thex andz direction acting on a functionf(x, z) defined on a

grid (xi, zi). The derivatives over the entire grid are then found by taking the Kronecker product

of each derivative with the identity matrix. If the derivatives over the whole grid are denoted by

DX andDZ, we can relate them to the one dimensional derivatives using

DX = Id(Nz)⊗Dx,
DZ = Dz ⊗ Id(Nx),

(B.2)

where Id(Nx) and Id(Nz) are identity matrices with the same dimensions asDx andDz respec-

tively.

B.3 Periodic differentiation

The differentiation matrix,Dx, for a periodic grid,[0, 2π] is determined using a trigonometric

interpolant. The interval is discritised intoN = 2π/h points whereh is the grid spacing, and

for simplicity we assume thatN is always even. We can interpolate any functionf(xj) on our

grid using a linear combination of the periodic delta function which we define as:

δj =

1 if j = 0 (modN )

0 if j 6= 0 (modN ).
(B.3)

We wish to find a continuous periodic function which will interpolate the delta, from this we

may then write any function as a linear combination of these interpolants. The discrete Fourier

transform of the delta function is a constant,h. We take the inverse Fourier transform to find its

continuous interpolant:

p(x) = vj =
h

2π

1
2

N/2−1∑
k=−N/2

eikx +
1
2

N/2∑
k=−(N/2−1)

eikx

 ,

=
h

2π
cos(x/2)

N/2−1/2∑
k=−(N/2−1/2)

eikx,
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=
h

2π
cos(x/2)

e−i(N/2+1/2) − ei(N/2+1/2)

1− eix
,

=
h

2π
cos(x/2)

e−i(N/2)x − ei(N/2)x

e−ix/2 − eix/2
,

=
h

2π
cos(x/2)

sin(Nx/2)
sin(x/2)

,

=
h

2π
sin(Nx/2)
tan(x/2)

= Sn(x).

This is the periodic sinc function, any smooth periodic function can be represented as a linear

combination of these:

p(x) =
N∑
m=1

VmSn(x− xm), (B.4)

wherevm is the amplitude of the function at the pointxm. We now differentiate and write in

matrix form to obtain our matrixDx:

p′(x) =
N∑
m=1

VmSn′(x− xm),

=
N∑
m=1

Vm
h

2π

[
N

2
cos(nxj/2)cot(xj/2)− 1

2
sin(Nxj/2)cosec2(xj/2)

]
,

(B.5)

wherexj = jh. UsingN = 2π/h allows us to write the sinc function’s derivative as

Sn′(xj) =

0 if xj = 0 (modN )

1
2(−1)j cot(xj/2) if xj 6= 0 (modN ).

(B.6)

Using equations (B.5) and (B.6) we can writeDx in terms of the toeplitz matrix

Dx =



0 1
2 cot(Nh2 )

1
2 cot(1h

2 )
...

...

−1
2 cot(2h

2 )
... −1

2 cot(2h
2 )

...
... 1

2 cot(1h
2 )

1
2 cot(Nh2 ) 0


. (B.7)

This method of differentiation is exact for periodic functions which can be interpolated by a

trigonometric function with maximum wavenumberN . For a smooth function with infinitely

many continuous derivatives, the Fourier differentiation matrix has error||Dxv − ∂xf(x)|| ≤
O(hm) ash → 0 for anym. For further details on the accuracy of spectral methods see [75]

page 34.
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B.4 Chebyshev differentiation

Differentiation on the Gauss-Lobatto grid is performed by finding an unique polynomial which

interpolates the function we wish to differentiate. The derivative of the function is then approx-

imately the derivative of the interpolated polynomial. Thez component of the Gauss-Lobatto

grid is defined as

zj = cos(jπ/N), (B.8)

wherej = 0, 1, 2, ..., N . Here we write the interpolating polynomial in terms of the Lagrange

polynomials

pj(z) =
vj
aj

N∏
k=0
k 6=j

(z − zk), (B.9)

where

aj =
N∏
k=0
k 6=j

(zj − zk). (B.10)

We wish to write the derivative in terms of a matrix equation. Taking logs of equation (B.9) and

differentiating yields:

ln [pj(z)] = ln

vj N∏
k=0
k 6=j

(z − zk)

− ln [aj ] ,

p′j(z) =
vj
aj

N∏
k=0
k 6=j

(z − zk)
N∑
k=0
k 6=j

(z − zk)−1. (B.11)

By discretising in space we can write this as a differentiation matrix which takes the form

Dzjj =
N∑
k=0
k 6=j

(zj − zk)−1

Dzij =
1
aj

N∏
k=0
k 6=j

(zi − zk)−1 =
ai

aj(zi − zj)
.

(B.12)

This method of differentiation is exact for functions which can be interpolated by polynomials

of maximum degreeN . The accuracy of this method is comparable with the Fourier method,

this is based on the equivalence of Fourier points with Chebyshev points, for details see [75]

page 48.



Appendix B Numerical Algorithm 107

B.5 Clenshaw-Curtis quadrature

The numerical quadrature used to calculate the cross polarised intensity in equation (3.33) is a

Clenshaw-Curtis quadrature. The Clenshaw-Curtis quadrature formula is the formula of optimal

order, based on the fixed set of Chebyshev nodes. As opposed to the Gaussian quadrature which

is the formulae of optimal order based on an optimally chosen set of nodes. As the grid used in

this quadrature is the Gauss-Lobatto grid, we do not need to interpolate the solution to the liquid

crystal equations onto a different grid. We wish to calculate the integral

I =
∫ 1

−1
f(z)dz (B.13)

using the coordinate transformz = cos θ, 0 ≤ θ ≤ 2π. As such we can represent equation

(B.13) in terms of the Fourier transform off(cos θ):

I =
∫ π

0

∞∑
k=0

ak cos(2kθ) sin(θ)dθ, (B.14)

where

ak =
2
π

∫ π

0
f(cos θ) cos(2kθ)dθ. (B.15)

We can evaluate equation (B.14) by using standard integration techniques:

I =
1
2

∞∑
k=0

ak

[
cos[(2k − 1)θ]

2k − 1
− cos[(2k + 1)θ]

2k + 1

]π
0

(B.16)

Discretising in spaceθj = jπ/N wherej = 0, 1, 2, ..., N and substituting into equation (B.16)

gives

I =
1
2

∞∑
k=0

ak
1− 4k2

. (B.17)

As we have discretised on a finite grid we can truncate this series to the Nyquist frequency,

which isN/2 forN even and(N+1)/2 forN odd. All that remains is to calculate the values of

the Fourier coefficientsak. Based on the symmetry of the cosine terms, without loss of accuracy,

we can write equation (B.15) as

ak =
2
π

N∑
j=0

f(cos θj) cos(2kθj)
π

N
. (B.18)
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This allows us to write the final integral as

I =
N∑
j=0

f(cos θj)
2
N

Ñ∑
k=0

cos(2kθj)
1− 4k2

,

=
N∑
j=0

vjwj ,

(B.19)

wherevj are the values of the function at the pointszj , Ñ = N/2 for evenN , Ñ = (N + 1)/2
for oddN and

wj =
2
N

Ñ∑
k=0

cos(2kθj)
1− 4k2

. (B.20)



Appendix C

Coupled wave equations for general

dielectric perturbation

The model derived in Section 3.4 assumes that the perturbation to the dielectric tensor is in the

plane of wave propagation. Here we consider the situation where this is not the case and that

the first order tensor given in equation (3.49) is as general as possible. However, we retain the

assumption that the optical axis of the leading order tensor is in the plane formed by the optical

wave vectors. This means that not only do we have coupling between different modes but also

between ordinary and extraordinary components of the field. We note that formally to match

the boundary conditions for an incident field with general polarisation we need to consider both

the fields1 and2, see Figure 3.12C. In general however, the effect of these two fields will be a

broadening of the output spectrum and as such only field1 or 2 needs to be considered. Again

we work in the framework of the multiple scales expansion which is described in Section 3.4.

The electric field in the general case is written as a more general Fourier expansion inx:

Ej =
N∑

m=−N

{[
A

(m)
1o,j (ηz) ei

“
k

(m)
1o,j−k

(m)
1e,j

”
·x + A

(m)
1e,j (ηz)

]
eik

(m)
1e,j ·x

+
[
A

(m)
2o,j (ηz) + A

(m)
2e,j (ηz) ei

“
k

(m)
2e,j−k

(m)
2o,j

”
·x
]
eik

(m)
2o,j ·x

}
e−iωt,

(C.1)

where the subscriptj refers to the order of the expansion and the subscriptso, e and1, 2 reffer

to the ordinary and extraordinary components of the first and second set of waves respectively.

We substitute equations (C.1) and (3.49) into (1.3) and using the more general identities (which
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again can be derived graphically from Figure 3.12)

k
(m)
αe = k

(n)
βe + (m− n)Kêx +

(
k

(m)
αez − k

(n)
βez

)
êz,

k
(m)
αo = k

(n)
βo + (m− n)Kêx +

(
k

(m)
αoz − k

(n)
βoz

)
êz,

k
(m)
αe = k

(n)
βo + (m− n)Kêx +

(
k

(m)
αez − k

(n)
βoz

)
êz,

(C.2)

whereα, β = 1, 2. We expand to first order and, using the solvability condition from Section

3.4, we obtain a set of coupled wave equations for fields oscilating in the directionk1e

ik
(m)
1e

[
(k̂

(m)
1 · ê(m)

1e )∇1 + k̂
(m)
1 (ê(m)

1e ·∇1)− 2ê
(m)
1e (k̂

(m)
1 ·∇1)

]
A

(m)
1e +

ik
(m)
1e

[
k̂

(m)
1 (ê(m)

1o ·∇1)− 2ê
(m)
1o (k̂

(m)
1 ·∇1)

]
A

(m)
1o e

i
“
k

(m)
1o,j−k

(m)
1e,j

”
·x =

k2
0

2

N∑
n=−N

∆ε(n−m)

[
ê

(n)
1e A

(n)
1e e

i(k
(n)
1ez−k

(m)
1ez )z + ê

(n)
2o A

(n)
2o e

i(k
(n)
2oz−k

(m)
1ez )z +

ê
(n)
1o A

(n)
1o e

i
“
k

(n)
1o −k

(n)
1e

”
·x
ei(k

(n)
1ez−k

(m)
1ez )z + ê

(n)
2e A

(n)
2e e

i
“
k

(n)
2e −k

(n)
2o

”
·x
ei(k

(n)
2oz−k

(m)
1ez )z

]
,

(C.3)

A similar equation can be obtained in the direction ofk2o.

ik
(m)
2o

[
(k̂

(m)
2 · ê(m)

2e )∇1 + k̂
(m)
2 (ê(m)

2e ·∇1)− 2ê
(m)
2e (k̂

(m)
2 ·∇1)

]
A

(m)
2e e

i
“
k

(m)
2e,j−k

(m)
2o,j

”
·x+

ik
(m)
2o

[
k̂

(m)
2 (ê(m)

2o ·∇1)− 2ê
(m)
2o (k̂

(m)
2 ·∇1)

]
A

(m)
2o =

k2
0

2
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∆ε(n−m)
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ê
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1e e

i(k
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(n)
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·x
ei(k
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(C.4)

Between them these two equations describe the field variation completely. We can simplify

equation (3.55) by introducing the new variables

A
(m)
1e = Ã

(m)
1e e−ik

(m)
ez z, A

(m)
2o = Ã

(m)
2o e−ik

(m)
oz z,

A
(m)
1o = Ã

(m)
1o e

−i
“
k

(n)
1o −k

(n)
1e

”
·x
e−ik

(m)
ez z, A

(m)
2e = Ã

(m)
2e e

−i
“
k

(n)
2e −k

(n)
2o

”
·x
e−ik

(m)
oz z

(C.5)

and projecting onto the appropriate basis set for each wave. Equation (C.3) is a vector equation,

to ensure this is satisfied in all directions we project ontok̂
(m)
1 , ê(m)

1e andê
(m)
1o . We also have the
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symmetry requirement that the field is invariant in the direction orthogonal to the plane formed

by the set of wave vectors i.e.̂e
(m)
1o ·∇1A1j = 0. Similarly equation C.4 is projecting ontôk

(m)
2 ,

ê
(m)
2e andê

(m)
2o with the requirement that the field is invariant in theê

(m)
2o direction. In both cases

the projection ontôk
(m)
j , wherej = 1, 2, gives the divergence equation and hence the variation
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and

ik
(m)
2o

[
ê
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The remaining equations describe the variation of the ordinary and extraordinary components of

the two fields in their respective directions of energy flow. For the set of fields1 the projections
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respectively. For the second set of fields we obtain a similar set of equations the projections onto
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and

2ik(m)
2o

[(
ê
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respectively. These equations describe the coupling of energy in all directions and show clearly

that for∆ε out of the plane the ordinary and extraordinary fields become coupled. It is also clear

that for∆ε in the plane of propagation that these equations simplify to the equations described

in Section 3.4. The analysis of these equations is beyond the scope of this thesis, as for the

situations of interest they reduce to the simplified equations presented in Section 3.4. However,

it is clear that for the most general case these equations describe the coupling phenomena to first

order completely. We also note that whilst we have considered the fields1 and2 neccasary to

match the boundary conditions here, in reality it is sufficient to consider only one set, field1
or field 2, see Figure 3.12C. The result of not considering both fields will be a general spectral

broadening of the output.
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Abstract An extension to coupled wave theory suitable for

all regimes of diffraction is presented. The model assumes

that the refractive index grating has an arbitrary profile in

one direction and is periodic (but not necessarily sinusoidal)

in the other. Higher order diffracted terms are considered

and appropriate mismatch terms dealt with. It is shown that

this model is analytically equivalent to both the Bragg and

Raman–Nath regime coupling models under an appropriate

set of assumptions. This model is applied to cases such as

optical coupling in liquid crystal cells with photoconductive

layers. Its predictions are successfully compared to finite el-

ement simulations of the full Maxwell’s equations.

PACS 42.25.-p · 42.25.Fx · 42.25.Lc · 42.65.Hw · 42.70.Df

1 Introduction

The coupling of light due to diffraction from inhomoge-

neous, anisotropic materials has been studied for many years

[1–4] and is often referred to as occurring in one of two dis-

tinct regimes, Bragg and Raman-Nath.

Bragg regime coupling is characterised by the presence

of only two beams and was initially described in 1969 by

the coupled-wave theory of Kogelnik [1] for an isotropic

medium. This work was extended in 1997 by Montemezzani

and Zgonik [2] to include optically anisotropic materials.
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Raman-Nath diffraction occurs in cases of thin grat-

ings with multiple diffracted output beams for a single in-

put beam. Diffraction in this regime was first studied in

1936 [3]. This system is modelled by considering the mod-

ulated refractive index as a phase grating and neglecting

any anisotropy in the materials. In the past couple of years

modelling in the Raman–Nath regime has been extended us-

ing an approach similar to that of Kogelnik and Montemez-

zani to describe Raman–Nath diffraction in anisotropic me-

dia [4].

Although the models just described offer ease of im-

plementation and high computational efficiency they are

restricted to specific regimes. Differentiation between the

Bragg and Raman–Nath regimes is not always straight for-

ward as both the thickness of the medium and the refrac-

tive index profile affect the nature of the diffracted beams.

The first criteria used to distinguish the two regimes were

suggested by Kogelnik [1]. However, since then a variety of

ways have been suggested, as reviewed in [5], and more ap-

propriate criteria for both Bragg and Raman–Nath [6] cou-

pling regimes have been established.

From the analysis of these criteria, it is clear that there

is no distinct cut off point between Bragg and Raman–Nath

regimes. Indeed, there is an intermediate regime in which

neither theory is appropriate. A more rigorous method has

been developed, based on direct substitution of the refractive

index profile into Maxwell’s equations, for both isotropic

[7] and anisotropic [8] materials. It has been shown to

agree numerically with both the coupled-wave approach and

the Raman–Nath phase grating approach. Although offering

good agreement with the simpler theories this approach is

less computationally efficient as it involves solving 4n cou-

pled ODEs for n discrete wave vectors.

Bragg geometries were extensively used to observe two-

beam coupling gain in photorefractive crystals. For exam-
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ple in BaTiO3 and Rh : BaTiO3 crystals very high coupling

coefficients and diffraction efficiencies were observed [9].

More recently efficient beam coupling was shown in a wide

range of organic materials, such as fullerene [10] and CdSe

doped [11] liquid crystals, polymer-dispersed [12] and fer-

roelectric liquid crystals [13], polymeric composites [14],

hybrids with liquid crystals [15–17], light valves [17], pho-

toconductive polymer-liquid crystal structures [18, 19] and

photorefractive polymers [20, 21]. In most of these materials

either Bragg or Raman–Nath gratings could be created.

However, not all experimental geometries used in beam

coupling are simple. Recently, photorefractive effects have

been demonstrated using low power lasers in nematic liq-

uid crystal cells in both the Bragg [22] and the Raman–Nath

[23] regimes. Optical coupling is achieved by sandwiching

the liquid crystals between photoconductive or photorefrac-

tive layers. In the case of the photoconductive layer, such as

PVK : C60, which also serves as an alignment layer for the

liquid crystal, the interference of two incident beams will

create a region of modulated conductivity. A voltage applied

across the cell provides a modulated electric field across the

bulk liquid crystal sample which aligns the molecules and,

as such, affects the refractive index in the cell. As shown in

Fig. 1, such interaction leads to several diffracted orders be-

ing present: simple changes in the geometry of the incident

beams will move the system continuously from the Bragg to

the Raman–Nath regime, through the intermediate regime.

Application of a simple Bragg diffraction theory to a system

in the intermediate regime could lead to incorrect values of

coupling coefficients to be deduced.

This system has a number of features which complicate

the modelling. Firstly, due to the non-linear alignment of the

liquid crystals with the applied electric field, liquid crystal

Fig. 1 Schematic of liquid crystal beam coupling cell. The nematic

liquid crystal (NLC) is aligned by the Polyimide (PI) layer and the

photoconducting Polyvinyl Carbazole (PVK) layers

refractive index profiles are non-uniform in the z-direction

and contain many harmonics of the fundamental grating vec-

tor in the x-direction. Secondly, as nematic liquid crystal

molecules are symmetric with respect to inversion, it is nec-

essary to have a non-normal incidence angle for the bisector

of the two incident beams in order to obtain the correct grat-

ing vector [24]. This means that as the grating is created by

the superposition of the beams at the cell surface, there are

no waves which can be perfectly matched by the fundamen-

tal grating vector. Finally, as has already been mentioned, in

structures with liquid crystals beam coupling behaviour has

been observed in both the Bragg and Raman-Nath regimes,

so a model has to be capable of describing both of these be-

haviours.

In this paper, we present an extension to the coupled-

wave theory of Kogelnik and Montemezzani, which can be

used in the cases of Bragg, Raman–Nath and intermediate

regime coupling. This method is capable of handling refrac-

tive index profiles containing a fundamental sinusoidal mod-

ulation and any higher harmonics that may be present. As an

example we use the structure and geometry of a liquid crys-

tal cell with a photoconductive alignment layer. A finite el-

ement simulation which solves Maxwell’s equations is then

used to verify the models predictions.

In Sect. 2 we develop the beam coupling model from

Maxwell’s equations and show comparison to the existing

coupled-wave models of Montemezzani, and Kogelnik, and

the Raman–Nath phase grating approach. In Sect. 3 a model

for the liquid crystal cell is developed. Finally Sect. 4 pro-

vides details of the comparison between the method pre-

sented here and the finite element approach.

2 Beam coupling model

2.1 Derivation

We consider a medium which contains a periodic refractive

index grating in the x-, z-plane with a fundamental grating

wave number K = 2π
Λ

and any number of higher grating har-

monics pK where p = 2,3, . . . and Λ is the grating period.

The method we have developed is valid for gratings aligned

in any direction. However, to simplify the algebra, we as-

sume that the grating is aligned in the x-direction. This is,

for example, the case in photorefractive liquid crystal cells.

We further assume that the medium is birefringent and that

each Fourier component of the dielectric tensor, ��(p)(z),

may have a different profile in the z-direction so that the

dielectric tensor may be expressed as

�r = �u +
1

2

∞�

p=−∞

��(p)(z)ei(pKx+φ(p)), (1)
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Fig. 2 Possible couplings and

associated mismatch terms for

(a) the fundamental grating

period. (b) The second

harmonic. (c) The third

harmonic

where �u is the uniform part of the dielectric tensor and

φ(p) is the phase shift of the p-th grating Fourier compo-

nent. We choose our coordinate axes such that they coincide

with the principal axes of �u. Coupling can be achieved by

diffraction from the fundamental grating vector and any of

its higher harmonics, as illustrated in Fig. 2. It should be

noted that as the bisector of the two incident waves is not

normal, none of these terms are perfectly matched by the

fundamental grating vector. Therefore the coupling strength

will depend on not only the amplitude of the appropriate

coupling harmonic, but also on the size of the mismatch term

�K(m,n) = k
(m)
z − k

(n)
z .

The electric field in the material is assumed to be a super-

position of the plane waves which may be perfectly matched

by the grating vectors in the x-direction. Hence the field is

periodic in x with fundamental wave number K . We expand

it in a Fourier series in x as

E =

N�

m=−N

A(m)(z)ei(k
(m)·x−ωt), (2)

where ω is the optical angular frequency and k(m) =mKx̂+
k
(m)
z ẑ, with the constraint that |k(m)| = k0n

(m). Here k0 is

the free space wave number and n(m) is the refractive index

seen by the m-th wave. The total number of optical compo-

nents is 2N +1 where N = k0

|K| . Substituting (2) and (1) into

Maxwell’s equations and using

k(m) = k(n) + (m− n)Kx̂ +
�
k(m)
z − k(n)z

�
ẑ, (3)

we obtain a set of coupled-wave equations for the ampli-

tudes A(m):

�
ik(m) × ik(m) × A(m)

�
+

�
ik(m) × ∇ × A(m)

�

+
�
∇ × ik(m) × A(m)

�
+

�
∇ × ∇ × A(m)

�

=
ω2

c2
�uA

(m)

+
k2

0

2

N�

n=−N

��(n−m)A(n)eiΓ φ(n−m)

ei(k
(n)
z −k

(m)
z )z, (4)

where Γ = sgn(m− n) and Γ (0) = 0. We may neglect the

final bracketed term on the left hand side of this equation

as its terms consist of second derivatives, which, using the

slowly varying amplitude approximation, will be small. The

first term on each side of the equation describes the propa-

gation of light in an anisotropic medium [25],

ik(m) × ik(m) × A(m) =
ω2

c2
�uA

(m). (5)

This relates the optical wave vector to the wave polarisation

and dielectric tensor. As such the eigenvalues of this equa-

tion will determine the refractive indices and hence, the ve-

locities at which the light may propagate through the mater-

ial. The remaining terms in (4) describe the optical coupling

between the various plane wave amplitudes:

ik(m) × ∇ × A(m) + ∇ × ik(m) × A(m)

=
k2

0

2

N�

n=−N

��(n−m)A(n)eiΓ φ(n−m)

ei(k
(n)
z −k

(m)
z )z. (6)

We perform some vector algebra on the left hand side of (6)

and use k(m) = k̂(m)k(m) and A(m) = Â(m)A(m), where k̂(m)

is the unit wave vector, Â(m) the unit polarisation vector,

k(m) the optical wave number and A(m) the optical amplitude

of the m-th wave. Taking the dot product of Â(m) with both

sides of (6) gives

2ik(m)
��

k̂(m) · Â(m)
�
Â(m) − k̂(m)

�
· ∇A(m)

=
k2

0

2

∞�

n=−∞

G(n,m)A(n)eiΓ φ(n−m)

ei(k
(n)
z −k

(m)
z )z, (7)

where, to simplify notation, we have written G(n,m) =

Â(m)��(n−m)Â(n). The bracketed term on the left hand side

of (7) can be written as û(m)g(m), where û is the unit Poynt-

ing vector, g(m) = Â(m) · D̂(m) and D̂ is the electric dis-

placement unit vector. By writing k(m) = n(m)k0 we can

simplify (7) further to give

n(m)g(m)û(m)
z

dA

dz

(m)

=
ik0

4

N�

n=−N

G(n,m)A(n)eiΓ φ(n−m)

ei(k
(n)
z −k

(m)
z )z, (8)
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where, as A(m) is a function of only z, we have simplified

the derivative. We can simplify this system by introducing

the new variable

A(m) = Ã(m)e−ik
(m)
z z. (9)

Substituting (9) into (8) gives the simplified equations

û(m)
z

dÃ

dz

(m)

= ik(m)
z Ã(m) +

ik0

4n(m)g(m)

N�

n=−N

G(n,m)Ã(n)eiΓ φ(n−m)

,

(10)

which for the simple case of ��(n−m) being constant can be

solved as an eigenvalue eigenvector problem. For all other

cases the equations are solved using a Runge–Kutta method

in MATLAB.

Equation (10) describes the coupling of an arbitrary num-

ber of beams in a system whose dielectric profile is arbitrary

in the z-direction and modulated with fundamental period Λ

in the x-direction.

2.2 Comparison to existing models

Before we consider the application of this model we first

aim to show that under suitable approximations it may be re-

duced to the commonly used Bragg and Raman–Nath mod-

els. Here we show that as well as being numerically equiv-

alent for these geometries and optical incidence angles, the

equations are analytically identical for an appropriate set of

assumptions.

The Bragg case is straightforward. Under the assumption

of a single grating Fourier component, a constant dielectric

profile in the z-direction and the presence of only two waves,

(8) becomes

û(1)z

dA

dz

(1)

=
ik0

4n(1)g(1)
G(1,2)A(2)eiφei�Kz,

(11)

û(2)z

dA

dz

(2)

=
ik0

4n(2)g(2)
G(2,1)A(1)e−iφe−i�Kz.

These expressions become equal to those derived by Mon-

temezzani [2], once the assumption of zero absorption has

been made.

The comparison to Raman–Nath phase grating theory is

less obvious. Again, we begin by making the assumptions of

a single grating Fourier component of large wavelength, and

a constant dielectric profile in the z-direction. As the grating

wavelength is large the deviation in propagation angles of

the beams is small. Hence the mismatch term k
(n)
z − k

(m)
z is

small and may be neglected for thin materials. For compar-

ison, the system is simplified for an isotropic material with

all waves polarised in the same direction. If we then make

the normal Raman–Nath assumptions, i.e. we assume nor-

mal incidence and a π/2 phase shift, we may write (8) as

2 cos θ(m) 2n

k0��

dA

dz

(m)

=
�
A(m−1) −A(m+1)

�
, (12)

where θ(m) is the angle with respect to the surface normal at

which the m-th wave propagates. Using the assumption that

the wave propagation directions differ by a small amount

we may approximate θ(m) by the propagation angle of the

incident beam θ(i) = 0. To proceed we make the following

change of variable:

ζ =
k0��

2n
z. (13)

Making use of the Bessel recurrence relations it can be

seen that (12) is satisfied by the m-th order Bessel function

Jm(ζ ). This gives the optical envelope

A(m) = Jm(ζ )= Jm

�
k0��

2n
z

�

(14)

which is identical to the optical envelope predicted by the

Raman–Nath phase grating theory [3].

This analysis demonstrated how (8) is, under realistic as-

sumptions, equivalent to either Bragg or Raman–Nath the-

ory. The next step is to compare the model to finite element

simulations for the example system of a photorefractive liq-

uid crystal cell.

3 Liquid crystal model

To demonstrate the applications of this model we wish to

model a non-trivial beam coupling system. A typical liquid

crystal cell provides the perfect example of this due to its

highly non-linear alignment and high optical anisotropy.

We use a Landau–DeGennes Q tensor model [26] for

which the liquid crystal director field n̂ is modelled by a

traceless symmetric tensor

Q =
√

2S

�

n̂ ⊗ n̂ −
1

2
δ

�

, (15)

where δ is Kronecker’s δ function and S is the scalar order

parameter. Here we have used a 2 × 2 tensor which restricts

the liquid crystals reorientation to within a plane. The liquid

crystal alignment is then found through a minimisation of

the free energy in the system. The total free energy in the

cell may be expressed as [26]

F =

�

V

[Fe + Fd + Ft ]dV, (16)
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where Fe is the electrostatic free energy, Fd is the elastic

free energy and Ft is the thermotropic free energy. These

may be expressed in non-dimensional form as

Fd =
1

2
ξ2

0 |∇Q|2, (17)

Fe = −
1

2
χi(∇φ)2 − χaTr(QE), (18)

and

Ft =
1

2
T0Tr

�
Q2

�
−

√
6Tr

�
Q3

�
+

1

2

�
Tr

�
Q2

��2
, (19)

where ξ2
0 is the non-dimensional elastic constant, χi and χa

are the non-dimensional isotropic and anisotropic electrosta-

tic constants respectively, T0 the non-dimensional tempera-

ture, and E is the electrostatic tensor

E =
√

2|E|2
�

Ê ⊗ Ê −
1

2
δ

�

. (20)

We represent the alignment tensor Q on the basis of 2 × 2

traceless symmetric tensors [27],

Q =

1�

p=0

apT
(p), (21)

where

T (0) =
1

√
2

�
−1 0

0 1

�

, T (1) =
1

√
2

�
0 1

1 0

�

. (22)

Note that in this notation the scalar order parameter is

S = a2
0 +a2

1 . We then express the Euler–Lagrange equations

which minimise the free energy as

ξ2
0 ∇

2an − T0an − 2an
�
a2

0 + a2
1

�
+ χaen = 0. (23)

One of the major problems with solving these equations

is that the non-dimensional elastic and electrostatic con-

stants are several orders of magnitude smaller than the ther-

motropic coefficients. Various methods exist to overcome

this obstacle including; the use of adaptive finite element

meshing techniques [28], the scaling of the thermotropic co-

efficients [29] and the renormalisation of variables at each

step [30].

Here we use this difference in magnitudes to setup a mul-

tiple scales perturbation expansion in terms of the small pa-

rameter ξ2
0 . This has the advantage of simplifying the equa-

tions and the method of solution. However, a consequence of

the approximation is that we must assume that the scalar or-

der parameter has only small variations across the cell. This

prevents us from modelling any defects in the liquid crys-

tal alignment. At leading order this defines the scalar order

parameter as

T0 + a2
0 + a2

1 = 0. (24)

The first order correction determines the molecular align-

ment,

a0∇
2a1 − a1∇

2a0 + a0χ0a1 − a1χ0a0 = 0, (25)

where χ0 = χa/ξ
2
0 . The electric field within the cell can be

found by direct substitution of the dielectric tensor

� = �0�I δ +
1

√
2
�0�AQ, (26)

where �A and �I are the anisotropic and isotropic dielectric

coefficients respectively, into Maxwell’s equation ∇ ·D = 0

to give

∇
2φ + α∇Q · ∇φ = 0, (27)

where α is the non-dimensional, non-homogeneous dielec-

tric coefficient and φ is the electric potential in the cell.

Equations (24), (25) and (27) are solved numerically by first

discretising in space and then solving for steady state using

Broyden’s root finding method. The numerical differentia-

tion is carried out using a spectral collocation method [31]

for improved computational efficiency and accuracy.

4 Finite element comparison

The regime independent model has been compared against

the existing models for Bragg and Raman-Nath diffraction.

We now use comsol multiphysics, a finite element modelling

package to solve Maxwell’s equations directly and hence

verify its accuracy for the intermediate regime.

We define a rectangular geometry with sides parallel to

the x- and z-axis. The boundary conditions are periodic in

the x-direction with periodicity of the refractive index. The

finite element simulations are carried out with an optical

wavelength of 1 µm, as shorter wavelengths would require

an extremely fine finite element mesh and, hence, consider-

able computation time.

In order to verify the intermediate regime, we must first

define it using the dimensionless parameter q , as suggested

by Kogelnik [1], where

q =
2πλL

nuΛ2
, (28)

and nu is the average refractive index. Typically the Bragg

regime is defined for q ≥ 10 and the Raman–Nath regime

for q ≤ 0.1. The intermediate regime lies between these two

values.

We first verify that the model behaves correctly for a sin-

gle grating component K which is constant for all z. To en-

sure that q lies in the intermediate regime the following pa-

rameters are used: L = 12 µm, Λ = 11.5 µm, which give
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Fig. 3 x-Component of electric

field in cell for:

(a) coupled-wave model.

(b) Finite element simulation.

(c) Optical power spectrum at

output of cell where ‘◦’ is the

coupled-wave approximation

and ‘×’ is the finite element

simulation

Fig. 4 x-Component of electric

field in cell for:

(a) coupled-wave model.

(b) Finite element simulation.

(c) Optical power spectrum at

output of cell where ‘◦’ is the

coupled-wave approximation

and ‘×’ is the finite element

simulation

the regime parameter q = 1.4210. The incident electric field

is normal to the cell boundary z = 0. The refractive indices

chosen in this system correspond to those of a typical liquid

crystal, no = 1.5 and ne = 1.7 giving the dielectric profile

as

�r =

�
n2
o 0

0 n2
e

�

+

�
−0.1 0.05

0.05 0.1

�

cos(Kx). (29)

Figure 3 compares the field calculated within the cell by the

coupled-wave model and the finite element method. From

the power spectrum it can be seen that the optical energy

has coupled almost completely from the incident beam into

its two closest neighbours, with asymmetry observed be-

tween the +1 and −1 diffracted orders due to the small off-

diagonal component of the dielectric tensor interacting with

the polarisation asymmetry. The optical power spectrum and

field inside the cell show good agreement with the finite el-

ement simulation. The difference in the power spectra are

less than 10%. This verifies the model’s ability to predict

the component amplitudes of each wave and hence the elec-

tric field within the medium. We now wish to make full use

of the model’s features, by considering a system with the

same fundamental period, but also with second and third

harmonics present. Furthermore, to make the system even

more realistic with respect to the experimental system we

choose some arbitrary profiles for these higher harmonics.

Therefore we choose as the non-homogeneous part of the

dielectric tensor
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Fig. 5 In plane dielectric

profile for the anisotropic liquid

crystal. The four images show

the different profiles seen by the

light depended on its direction

of motion

Fig. 6 (a) x-Component of

electric field in cell for:

(a) coupled-wave model.

(b) Finite element simulation.

(c) Liquid crystal director

profile showing molecular

orientation and contour lines

showing equipotentials.

(d) Optical power spectrum at

output of cell where ‘◦’ is the

coupled-wave approximation

and ‘×’ is the finite element

simulation

�� =

�
−0.05 0.03

0.03 0.05

�

cos (K · x)

+

�
−0.1 0.05

0.05 0.1

�

e
−

(z−Lz/2)
2

L2
z cos (2K · x)

+

�
−0.05 0.1

0.1 0.05

�

e
z
Lz cos (3K · x). (30)

The field throughout the cell and the comparison with

the finite element modelling in this case is shown in Fig. 4.

Unlike the previous test case the majority of the energy re-

mains in the incident beam kx = 0 with energy transferring

past the nearest neighbours into the second diffracted order

beams. Again we see good agreement between the electric

fields and the optical power spectrum with error less than

one part in ten. This comparison verifies the models ability

to handle the higher harmonics and arbitrary spatial profiles

of the grating. The only difference between this and the liq-

uid crystal profile is the addition of higher harmonics and

the possibility of less smooth spatial profiles. For the liquid

crystal test case, we solve (24), (25) and (27) with an applied

voltage of the form

Vapp = V0 cos2

�
π

Λ
x

�

. (31)

The voltage amplitude V0 = 5 has been chosen to give an in-

teresting dielectric profile containing harmonics of the grat-

ing vector and a non-uniform profile in the z-direction (see

Fig. 5). The component values a0 and a1 are substituted

into (10), this is then solved to give the amplitude of the

different optical wave vectors. Figure 6 shows the compar-

ison of the electric field in the liquid crystal with the finite

element modelling. In this case the energy can be seen to

transfer asymmetrically. This is because of the size of the
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off-diagonal terms in the dielectric tensor in comparison to

the diagonal elements.

5 Conclusion

An extension to the anisotropic coupled-wave theory has

been derived allowing us to model systems in the Bragg,

Raman–Nath and intermediate regimes. Comparison to ex-

isting theories has been shown analytically in both Bragg

and Raman–Nath regimes. Finite element simulations have

confirmed the model validity for all regimes.

The model developed here takes into account all possible

coupling combinations between the various optical waves

propagating though the medium. This is achieved by consid-

ering higher order grating harmonics as well as all possible

mismatch terms. The use of an arbitrary grating profile in the

z-direction makes the model useful for more complex sys-

tems such as the liquid crystal cell. In terms of computation

speed the finite element simulation typically takes 1 minute

to run, whilst the coupled-wave approach takes <1 second

for a non-trivial refractive index profile.

The model shows good agreement with the finite element

simulations in all cases tested and will be a useful tool for

modelling optical coupling in more complex systems where

computational speed and efficiency are required.
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AN EFFICIENT Q-TENSOR-BASED ALGORITHM FOR LIQUID
CRYSTAL ALIGNMENT AWAY FROM DEFECTS∗
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Abstract. We develop a fast and accurate approximation of the normally stiff equations which
minimize the Landau–de Gennes free energy of a nematic liquid crystal. The resulting equations
are suitable for all configurations in which defects are not present, making them ideal for device
simulation. Specifically they offer an increase in computational efficiency by a factor of 100 while
maintaining an error of order (10−4) when compared to the full stiff equations. As this approximation
is based on a Q-tensor formalism, the sign reversal symmetry of the liquid crystal is respected. In this
paper we derive these equations for a simple two-dimensional case, where the director is restricted to a
plane, and also for the full three-dimensional case. An approximation of the error in the perturbation
scheme is derived in terms of the first order correction, and a comparison to the full stiff equations
is given.

Key words. Q-tensor, nematic liquid crystals, alignment, approximation methods, numerical
methods
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1. Introduction. The modeling and simulation of liquid crystals for device pur-
poses is an active area of research with a wide variety of applications [1, 14]. In most
applications macroscopic continuum models are used to determine liquid crystal align-
ment under the influence of an applied electric or magnetic field. There are two main
approaches to continuum modeling. The Frank–Oseen (FO) model [8, 20] describes
the liquid crystal in terms of a unit vector n̂, also referred to as the director. This
model is computationally very efficient. However, although the vector representation
of the liquid crystal may be considered quite intuitive, it is physically incorrect as it
does not respect the inversion symmetry of the liquid crystal; i.e., n̂ and −n̂ represent
the same state of the liquid crystal. This limits the application of the FO model to
geometries in which the liquid crystal orientation angle is bounded between 0 and π/2.
Further, the microscopic order of the nematic phase, which depends on temperature,
is not considered. This makes the model unsuitable for geometries in which defects,
nonsmooth variations in n̂, can occur.

To overcome these problems an approach was developed by de Gennes in which
the liquid crystal alignment is represented by a tensor, Q, which is proportional to
n̂⊗n̂ [7]. This tensor is invariant with respect to the transformation n̂ → −n̂. Further,
this theory takes into account the orientational order of the liquid crystal through the
temperature-dependent bulk energy, sometimes referred to as the thermotropic energy,
and can therefore be used to describe situations in which sharp variations in the
liquid crystal alignment—otherwise known as defects—occur. The main disadvantage
of this method is that, due to the difference in time scales between the thermotropic
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and elastic properties of the liquid crystals, the final equations are numerically stiff,
making computation expensive.

Often the advantages of using a Q-tensor model outweigh the disadvantage of in-
creased computation time. However, there are devices, such as photorefractive cells [6]
or spatial light modulators [19], in which the FO model is inappropriate as the liquid
crystals may rotate in an unbounded way. However, as there are no defects in these
cells, the Landau–de Gennes Q-tensor model is unnecessarily expensive to compute.

Numerical methods to overcome the stiffness of the full Q-tensor equations include
the scaling of the elastic and electrostatic coefficients [25] and the renormalization of
the liquid crystal director after each time step [11]. Codes also exist which solve the
full stiff equations. These are usually based around finite element simulations with
adaptive meshing techniques to eliminate the need for dense grids away from defects
[12, 27].

Although the separation in scales makes the Q-tensor equations computationally
expensive, the small parameters involved can be used to our advantage. Here we use a
multiple scales expansion technique to separate the two timescales. On the timescale
of interest, i.e., the slow reorientation time of the liquid crystal, the fast timescale
equations, which determine the order parameter, can be considered as having reached
equilibrium. The resulting equations for the slow timescale are nonstiff and can be
solved in a fraction of the time of the full equations. This approximation reduces the
computation time by a factor of approximately one hundred and is suitable for any
geometry in which the variation in the scalar order parameter may be assumed to be
small.

The paper is arranged as follows: In section 2 we introduce the equations govern-
ing the free energy of the liquid crystal and make an analogy between our approxima-
tion method and the Signorini method originally developed in elasticity [2, 10, 21]. In
section 3, to illustrate the method, we derive a simplified two-dimensional model for
the case where liquid crystal alignment is restricted to a plane. Equations for align-
ment are given and an estimate of the accuracy of the method is derived. In section 4
we apply the ideas and methods used in the two-dimensional case to derive equations
for the three-dimensional case. A method to approximate the error is also given. Fi-
nally section 5 details comparison with the FO and Q-tensor models that show that
the approximation we derive is both fast and accurate.

2. Free energy. We consider the dimensional liquid crystal free energy of the
form F̃ = F̃e(Q̃) + F̃d(Q̃) + F̃t(Q̃), where F̃e, F̃d, and F̃t are, respectively, the
electrostatic, elastic, and bulk free energies. The general form of the biaxial liquid
crystal alignment tensor, Q̃, written in terms of the orthogonal unit directors n̂ and
m̂, which define the major and minor crystal axes, respectively, is

(2.1) Q̃ =

√
3

2
S̃
(

n̂ ⊗ n̂
)

+

√
3

2
β̃
(

m̂ ⊗ m̂
)
,

where S̃ is the scalar order parameter, β̃ is the biaxiality parameter, I is the identity

matrix, and n̂ ⊗ n̂ = (n̂⊗ n̂− 1/3I) denotes a traceless symmetric tensor. The total
free energy may be obtained by integrating over the cell volume. In the absence of
external forces, such as electromagnetic fields or boundaries, this free energy reduces to
just the elastic and thermotropic free energies which are SO(3) invariant. Much work
has been done to obtain comprehensive expressions for the thermotropic and elastic
free energies. Details, including a full derivation of all possible SO(3) invariants up to
powers of Q̃4, can be found in [13, 15, 16].
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Throughout the remainder of this paper we shall assume the simplest possible
expressions for these free energies. It should be noted, however, that this restriction
is not a necessary condition for this method to work; rather it is a simplification used
to clarify the derivation.

The elastic free energy in its simplest form is derived using the one elastic constant
approximation. This can be written as

(2.2) F̃d =
L

2

∣∣∣∇Q̃
∣∣∣2 ,

where L is defined as L = K/(3S̃2) and K is the liquid crystal elastic constant. The
electrostatic free energy of the liquid crystal takes the form

(2.3) F̃e = −1

3
ε0ΔεTr

(
Q̃Ẽ
)
,

where

(2.4) Ẽ =

√
3

2
Ẽ ⊗ Ẽ,

ε0 is the permittivity of free space, Δε is the anisotropic relative permittivity, and
the electric field is denoted Ẽ = −∇ψ̃, where ψ̃ is the electric potential. The effect
of temperature on the liquid crystal alignment is described by the bulk free energy,
written in terms of a Landau power series expansion of Q̃ [7] with SO(3) invariance,

(2.5) F̃t =
1

2
A(T − T ∗)Tr

(
Q̃2
)
−√

6BTr
(
Q̃3
)

+
1

2
CTr2

(
Q̃2
)
,

where A, B, and C are the bulk thermotropic coefficients which are assumed to be
independent of temperature. The temperature dependence of this energy is described
entirely by T −T ∗, where T ∗ is the pseudocritical temperature at which the isotropic
phase becomes unstable.

To ensure the traceless symmetric properties of our Q̃ and Ẽ are respected, we
express the free energy on the basis of traceless symmetric tensors [22],

Q̃ =

5∑
p=1

ãpT
(p) and Ẽ =

5∑
p=1

ẽpT
(p),

where

(2.6)

T (1) =
1√
6

(−ex ⊗ ex − ey ⊗ ey + 2ez ⊗ ez) ,

T (2) =
1√
2

(ex ⊗ ex − ey ⊗ ey) , T (3) =
1√
2

(ex ⊗ ey + ey ⊗ ex) ,

T (4) =
1√
2

(ex ⊗ ez + ez ⊗ ex) , T (5) =
1√
2

(ey ⊗ ez + ez ⊗ ey) .

We rescale the order parameter S = 3C
2B S̃, the biaxiality parameter β = 3C

2B β̃, the

tensor field Q = 3C
2B Q̃, and the component fields ap = 3C

2B ãp and ep = ẽp/ψ
2
0 , where

ψ0 is a typical potential, ψ = ψ̃/ψ0. For compactness of notation, from now on
we adopt the convention of summing over repeated indices, unless stated otherwise.
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We also indicate with a and e the vectors with components ap and ep. Finally we
nondimensionalize to obtain the scaled free energy,

(2.7) F =
ξ20
2
|∇a|2 − χaa · e +

T0

2
|a|2 +

1

2
|a|4 −

√
6
∑
p,q,r

Tr
(
T (p)T (q)T (r)

)
apaqar.

The nondimensional elastic constant ξ20 , the electrostatic coefficient χa, and the scaled
temperature T0 are

ξ20 =
9C

2B2

L

L2
x

, χa =
9ε0ΔεC

2

2L2
xB

3
ψ2

0 , T0 =
T − T ∗

Tc − T ∗ ,

where Tc is the clearing point temperature and Lx is the characteristic length of
the geometry studied. We have rescaled space so that (x̂, ẑ) = (x, z)/Lx. Typically
T0 ∼ O(1), while ξ20 ∼ O(10−7) and χa ∼ O(10−6).

The separation in scales between the various terms in the free energy cause the
Euler–Lagrange equations, which minimize (2.7), to be stiff. As a result the computing
times required for even relatively simple geometries become very large. In situations
where the elastic and electrostatic free energies remain small we can initially consider
only the critical points of the bulk free energy. The elastic and electrostatic free
energies can then be considered as a perturbation. It is this assumption that makes
this method inappropriate for defect modeling.

2.1. Critical points under slightly broken symmetry. Before we consider
the case of the liquid crystal it is useful to consider a general free energy of the type
given in (2.7). The free energy F(a) consists of a symmetric bulk free energy perturbed
by a small symmetry breaking contribution from the elastic and electrostatic energies.
We denote these terms Ft(a) and L(a), respectively, where L(a) Ft(a) ∈ R

5 in the
three-dimensional case and L(a) Ft(a) ∈ R

2 in the two-dimensional case. For simplic-
ity we consider here the case that L(a) has only the electrostatic energy component, so
that the liquid crystal state is described by a single five-dimensional vector a, rather
than a five-component vector field a(x). This allows us to describe the perturbation
scheme in very general terms as the effect of a symmetry-breaking perturbation on an
invariant manifold of solutions of a set of ordinary differential equations. In the more
general case where the elastic energy is also considered we would have to deal with
partial differential equations for vector fields; however, we expect that the main ideas
outlined here would remain valid.

As the bulk energy is SO(3) invariant the critical points of Ft(a) will form an orbit
of solutions in the five-dimensional component space. Specifically, for the general case
corresponding to a biaxial minimizer, the group orbit will be a 3-manifold, while in the
special case corresponding to uniaxial minimizers the orbit reduces to a 2-manifold.

The effect of the first order perturbation L(a) is to break the symmetry and to
collapse the invariant manifold of critical points to a smaller set near the manifold.
This setting is very similar to the Signorini perturbation scheme, originally derived in
the context of elastostatics [2, 10, 21, 26], but of wider potential application [3]. This
scheme determines the equilibrium configuration of an elastic body under the effect of
applied stresses using a perturbation expansion in powers of the applied stress. In the
context of liquid crystals, the role of the “applied stresses” is played by the (small)
elastic and electrostatic forces, and our approximation is the first step of a standard
Signorini expansion.
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aInitial guess
Solution

1

2

Solution manifold M

M

M

0

1LL

Perturbed 
solution

Approximate
solution

Fig. 1. Graphical representation of the Signorini perturbation scheme. For some initial point
in the phase space (a1, a2) there is rapid convergence at a rate τ0 to the solution manifold. Motion
along the manifold, driven by the flow L, occurs much more slowly at a rate τ1. The critical point
on M0 is found when L is orthogonal to Ta. As M0 is close to M1 the solution can be approximated
by the point on M0 whose surface normal intersects M1 close to the perturbed solution.

We consider an orbit M0 consisting of the critical points of the bulk energy Ft(a)
with tangent space TaM0 at a ∈ M0. As M0 consists entirely of critical points, then
TaM0 ⊂ ker(H), where H is the Hessian of the bulk free energy. If the critical points
of the bulk free energy are nondegenerate in the direction normal to the manifold,
then the tangent space coincides with the kernel, TaM0 = ker(H). Therefore, M0 is
a normally hyperbolic invariant manifold for the flow, −∇aFt(a), where ∇a denotes
differentiation with respect to the components of the vector a.

The effects of the perturbative terms can be understood by the invariant manifold
theory. If the perturbed flow, −∇a(Ft + L), and its first derivative are sufficiently
close to the unperturbed flow, then there exists a smooth invariant manifold M1 close
to M0. The behavior of the perturbed flow along M1 will be comparable to the flow
restricted to M0 [26]. Specifically, a point p0 on M0 will correspond to a point p1 on
M1, where p1 is the intersection of the normal to M0 at p0 and M1. If all nonzero
eigenvalues of H are positive, then the dynamical behavior of the flow close to the
manifold will consist of exponential attraction towards the manifold followed by a
slow drift along it [9].

As the perturbation −∇a (Ft + L) is also a gradient vector field, then the local
minima on M1 will be attracting stationary points. For nondegenerate critical points
these are in 1 : 1 correspondence with the local minima of the perturbed function
restricted to the unperturbed manifold M0. The critical points restricted to M0 are
found when the flow L = −∇aL is orthogonal to Ta. This is represented graphically
for the simplified two-dimensional case in Figure 1.

In the simple two-dimensional case considered in section 3 the symmetry group
is SO(2) under the action of rotation on R

2. In this case there will be two critical
points on the perturbed manifold. These correspond to an unstable maximum and a
stable minimum.

In the three-dimensional case (see section 4), the situation is more complicated.
The bulk energy minimizers form an orbit of the conjugacy action of SO(3) on the
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five-dimensional space of traceless symmetric matrices (see section 4.2). This orbit is
parametrized locally by the direction of the major axis of the liquid crystal molecule
(two dimensions) together with a circle corresponding to the orientation of the minor
axis. For uniaxial minimizers of the bulk free energy, these circles of critical points
shrink to radius 0. The result is that liquid crystal orientation can be determined only
in terms of the major axis. To determine the orientation of the minor axis in cases
where the perturbation induces biaxiality, a further step in the expansion is required.

3. Two-dimensional case. As an example to illustrate the approximation
method it is helpful to look at a simplified two-dimensional case where the liquid
crystal director is restricted to the x, z plane. The alignment tensor is a 2× 2 uniaxial
tensor,

(3.1) Qij =
√

2S

(
n̂in̂j − 1

2
δij

)
.

We can proceed exactly as in section 2 with the simplified basis set of 2× 2 traceless
symmetric tensors:

(3.2) T1 = 1√
2

( −1 0
0 1

)
, T2 = 1√

2

(
0 1
1 0

)
.

Hence

Q =

2∑
p=1

apT
(p).

In this notation the scalar order parameter is S2 = Tr(Q2) = a2
1 + a2

2. The Euler–
Lagrange equations of motion, derived using the simplest form of the free energy,
are

(3.3) ∂τan = ξ20∇2an − T0an − 2an

(
a2
1 + a2

2

)
+ χaen,

where n = 1, 2, τ = t/τd, τd =
[
9C/(2B2)

]
ζ, and the viscosity, ζ, is related to Leslie’s

rotational viscosity γ1 by ζ = γ1/(3S̃
2).

3.1. Invariant manifold. Due to the smallness of ξ20 and χa, equation (3.3)
can be seen to have two different timescales. Taking η = ξ20 as the small parameter,
we can write the time derivatives in (3.3) as ∂τ = ∂τ,0 + η∂τ,1. Substituting into (3.3)
gives

(3.4) ∂τ0an + η∂τ1an = η∇2an − T0an − 2an

(
a2
1 + a2

2

)
+ ηχ0en,

where χ0 = χa/ξ
2
0 is O(1). Observing that only the bulk free energy changes on the

fast timescale, we assume that this scale determines only the scalar order parameter.
As we are interested only in the slow timescale, i.e., the timescale over which the
liquid crystal aligns, we can make the assumption that the fast timescale behavior
has reached equilibrium, i.e., ∂τ0 = 0. The slow scale behavior, which is present due
to the small elastic and electrostatic terms, will be obtained from the first order
correction.

To proceed the component representation of the liquid crystal is rewritten as a
power series expansion in η:

(3.5) an = an,0 + ηan,1 +O(η2),
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where an,j is the nth component of jth order. Substituting into (3.4) and retaining
terms only to O(η0) allows us to write

(3.6)
[
T0 + 2

(
a2
1,0 + a2

2,0

)]
an = 0,

which is satisfied if
(
a2
1,0 + a2

2,0

)
= −T0/2. As S2 = a2

1 + a2
2, equation (3.6) defines the

leading order approximation to the scalar order parameter,

(3.7) S2
0 = −T0/2.

This equation can also be derived by minimizing the corresponding Landau–de Gennes
free energy in terms of the scalar order parameter. As described in section 2.1, (3.7)
defines a manifold of critical points in the component space (a1,0, a2,0). For uniaxial
liquid crystals the critical points of the free energy are nondegenerate as T0 < 0.
We consider the effects of the elastic and electrostatic free energies as a symmetry-
breaking perturbation. In the context of the Signorini expansion this defines the flow
along the manifold with, in this case, a single unique minimum, found using the first
step of the Signorini expansion.

3.2. Kernel of adjoint (tangent space). This minimum, and hence the liquid
crystal alignment, can be found from the first order expansion of (3.3). Retaining terms
to O(η) and using (3.6) we obtain

(3.8) 4

(
a2
1,0 a1,0a2,0

a1,0a2,0 a2
2,0

)(
a1,1

a2,1

)
=

( ∇2a1,0 + χ0e1 − ∂τ1a1,0

∇2a2,0 + χ0e2 − ∂τ1a2,0

)
.

This is a system of linear equations for an,1 that can be written as Ha1 = L. Recall
that H is the Hessian of the bulk free energy. However, in this case this equation has no
unique solution as det(H) = 0. The Hessian is a symmetric real valued function, and
therefore H† = H, where H† denotes the adjoint of H. Therefore, as stated in section
2.1, for a nontrivial solution to exist, L · ker(H) = 0. As this is a two-dimensional
system, the kernel of H is a single vector V . This gives us the solvability condition
L · V = 0, where V = (−a2,0, a1,0)

T
is the eigenvector of zero eigenvalue of H.

Using the solvability condition, L · V = 0, we obtain the following equation for
a1,0 and a2,0:

(3.9) a1,0∂τ1a2,0 − a2,0∂τ1a1,0 = a1,0∇2a2,0 − a2,0∇2a1,0 + a1,0χ0e2 − a2,0χ0e1.

Equation (3.9) can be solved simultaneously with (3.6) to determine the liquid crystal
dynamics on the solution manifold.

3.3. Parameterization of the solution. By correctly parameterizing the com-
ponents a1,0 and a2,0 we can force the director onto the solution manifold, removing
the need to solve the leading order equation. As the leading order solution manifold is
SO(2) invariant, we parameterize the solutions in terms of the polar angle ϑ ∈ [0, 2π].
If we write

a1,0 = S0 sinϑ and a2,0 = S0 cosϑ,

then (3.7) is automatically satisfied. This representation can be used in (3.9) to de-
termine the time evolution of an,0:

(3.10) S2
0

∂an,0

∂τ1
= Vn

(
a1,0∇2a2,0 − a2,0∇2a1,0 + a1,0χ0e2 − a2,0χ0e1

)
,
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where Vn is the nth component of V . This equation confirms that the motion of the
director field is in the direction tangent to the manifold.

Equation (3.10) is an initial value problem for an,0 which can be solved using
standard numerical techniques for an initial set of an,0 on the manifold. It is important
to note that we need never calculate ϑ, as (3.10) is solved purely in terms of the
component representation, an,0. This ensures that the singularities expected in a
director model are overcome. It is possible to solve (3.10) for either n = 1 or n =
2 and calculate a2,0 or a1,0, respectively, from (3.7). However, this method is not
recommended, as computing the square root in (3.7) will introduce a sign ambiguity.
The extra computation required to correct this is inefficient and could potentially
make the code unstable.

3.4. Order one accuracy check. To determine the accuracy of the expansion,
we consider the perturbed manifold M1. The equations derived above are suitable
only in the case where M1 is sufficiently close to M0.

Physically the minimum distance between the leading order solution and M1 rep-
resents the correction S1 to the scalar order parameter, S = S0 + ηS1 + O(η2). In
general this can be calculated from the singular value decomposition of the O(η) equa-
tion (3.8). However, in two dimensions the correction can be calculated analytically.
After a little algebra we obtain

(3.11) S1 =
1√
−2T 3

0

[
a0 · ∇2a0 + χ0a0·e

]
.

The magnitude of S1 can be used to determine the validity of the perturbation ex-
pansion. If ηS1 becomes comparable with S0, then the expansion breaks down and
the liquid crystal has large variation in order parameter. If this happens, then the full
stiff equations (3.3) must be solved.

4. Three-dimensional case. The three-dimensional Euler–Lagrange equations
are computed in a similar way to the two-dimensional case:

η
∂a1

∂τ1
= η

(∇2a1 + χ0e1
)− T0a1 + 3

(
a2
1 − a2

2 − a2
3

)
+

3

2

(
a2
4 + a2

5

)− 2a1

5∑
k=1

a2
k,

(4.1a)

η
∂a2

∂τ1
= η

(∇2a2 + χ0e2
)− T0a2 − 6a1a2 +

3
√

3

2

(
a2
4 − a2

5

)− 2a2

5∑
k=1

a2
k,

(4.1b)

η
∂a3

∂τ1
= η

(∇2a3 + χ0e3
)− T0a3 − 3

(
2a1a3 −

√
3a4a5

)
− 2a3

5∑
k=1

a2
k,

(4.1c)

η
∂a4

∂τ1
= η

(∇2a4 + χ0e4
)− T0a4 + 3a1a4 + 3

√
3 (a2a4 + a3a5) − 2a4

5∑
k=1

a2
k,

(4.1d)

η
∂a5

∂τ1
= η

(∇2a5 + χ0e5
)− T0a5 + 3a1a5 + 3

√
3 (a3a4 − a2a5) − 2a5

5∑
k=1

a2
k,

(4.1e)
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where, as in the two-dimensional case, η = ξ20 and χ0 = χa/ξ
2
0 . The fast time deriva-

tives have been neglected as, on the timescale of interest, these variations will have
reached equilibrium. At this point, for compactness of notation, it is useful to define
the first order perturbation Lm in terms of the elastic and electrostatic contributions,

(4.2) Lm = ∇2am,0 + χem − ∂am,0

∂τ1
,

where m = 1, . . . , 5.

4.1. Invariant manifold. In the two-dimensional case the leading order equa-
tions are those which minimize the free energy in terms of the scalar order parameter.
This minimization fixes the liquid crystal director onto the solution manifold in the
two-dimensional space (a1, a2). A similar method can be used in the three-dimensional
case using the biaxial Q-tensor representation (2.1). It can be shown that the station-
ary points of the leading order free energy function, of the form given in (2.5), are
either uniaxial or isotropic [17]. As such the biaxiality parameter β must vanish at
leading order. Minimizing the free energy in terms of the scalar order parameter S,
as in the two-dimensional case, allows us to obtain the fast timescale equations. The
Euler–Lagrange equation of motion that minimizes the leading order scalar order
parameter, S0, is

(4.3)
∂S0

∂τ0
= −2S0

3 + 3S0
2 − T0S0,

which can be solved for a steady uniaxial state to obtain

(4.4) S0 =
3 +

√
9 − 8T0

4
.

Equation (4.4) defines the solution manifold in the five-dimensional component space.
The critical points on this manifold are nondegenerate, providing T0 is below the
superheating limit, T0 = 9/8 [18]. In terms of the component representation, the
scalar order parameter is given by

(4.5) S2
0 =

5∑
n=1

a2
n.

To fix the biaxiality order parameter to zero, we require

(4.6) a3
1,0 + 3a2

1,0 (S0 − a1,0) +
3
√

3

2

[
a2,0

(
a2
4,0 − a2

5,0

)
+ 2a3,0a4,0a5,0

]
= S3

0 .

These two equations define a 3-manifold in the five-dimensional component space.
However, as the leading order minimizers are uniaxial, there are only two undefined
parameters which relate to the angles the liquid crystal makes with the coordinate
axes. Therefore, as described in section 2.1, the 3-manifold corresponding to the biaxial
stationary points must reduce to a 2-manifold, leading to a degeneracy in the first
order correction. Specifically this allows us to determine only the direction of the
major crystal axis uniquely.
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4.2. Kernel of adjoint (tangent space). As in the two-dimensional case we
now need to find the first order correction to the leading order terms which will deter-
mine the unique solution on the manifold. Motion across the manifold is determined
by the first order perturbation Lm. The first order contribution from the bulk en-
ergy is invariant with respect to motion on the leading order manifold. Therefore, for
the equation to have a nontrivial solution, we require that the perturbation Lm be
orthogonal to the kernel of H. As Ker(H) = TaM0 the solvability condition is

(4.7) Lm
∂am,0

∂s
= 0,

where s parameterizes motion along the tangent space to the manifold. The derivative
of am,0 is found by considering the tensor Qij(0), which satisfies the perturbed Euler–
Lagrange equations. The motion of Qij(0) along the manifold by rotation in a spherical
coordinate system is defined by the rotation matrix Rij(s), which acts on Qij(0) by
the conjugacy action Qij(s) = Rip(s)Rjq(s)Qpq(0). The rotation matrix Rij(s) is
orthogonal, i.e., Rik(s)Rjk(s) = δij and Rij(0) = δij . Motion along the manifold
written in terms of the component representation is

(4.8) am,0(s) =
[
T

(m)
ji Rip(s)Rjq(s)T

(l)
pq

]
al,0(0).

The derivative of am,0 is found by differentiating (4.8) at s = 0:

(4.9)
∂am,0

∂s
= T

(m)
ji

[
R′

ip(0)δjqT
(l)
pq + δipR

′
jq(0)T (l)

pq

]
al,0(0).

To proceed we need to determine R′
ij(0); this can be obtained by differentiating the

identity Rip(s)Rjp(s) = δij at s = 0:

(4.10) R′
ip(0)δjp + δipR

′
jp(0) = 0.

For this equation to be satisfied R′
ij(0) must be a skewsymmetric tensor expressed on

the basis W (n), defined as

(4.11)

W (1) =
1√
2

(ey ⊗ ex − ex ⊗ ey) ,

W (2) =
1√
2

(ex ⊗ ez − ez ⊗ ex) ,

W (3) =
1√
2

(ez ⊗ ey − ey ⊗ ez) .

For each W (n) we obtain a different ∂am,0/∂s and thus three vectors, V (n), that span
the kernel. The solvability conditions can be written as

(4.12) LmV
(n)
m = 0,

where the spanning vectors can be explicitly written as

(4.13) V (n)
m = T

(m)
ki

(
T

(p)
ij W

(n)
jk −W

(n)
ij T

(p)
jk

)
ap,0,
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In terms of the O(η0) components the spanning vectors V (n) formed by each W (n)

are
(4.14)

V (1) =

⎛
⎜⎜⎜⎜⎝

0
−2a3,0

2a2,0

−a5,0

a4,0

⎞
⎟⎟⎟⎟⎠ , V (2) =

⎛
⎜⎜⎜⎜⎝

−√
3a4,0

a4,0

a5,0√
3a1,0 − a2,0

−a3,0

⎞
⎟⎟⎟⎟⎠ , V (3) =

⎛
⎜⎜⎜⎜⎝

√
3a5,0

a5,0

−a4,0

a3,0

−√
3a1,0 − a2,0

⎞
⎟⎟⎟⎟⎠ .

The first order equations require (4.12) to be satisfied in the direction of each spanning
vector. This gives us three equations, one for each of the skewsymmetric tensors W (n).
Substituting (4.2) into (4.12), the time-dependent equations are obtained:

(4.15) V (n)
m

∂

∂τ1
am,0 = V (n)

m

(
∇2am,0 + χem

)
,

where m = 1, . . . , 5.

4.3. How to solve equations/parameterization of equations. Equations
(4.15) describe the dynamics of the critical point structure on the generic 3-manifold.
However, as the bulk minimizers are uniaxial, these 3 equations must reduce to 2
corresponding to the reduction in the dimension of the manifold. Using guidance
from the two-dimensional case we exploit the SO(3) invariance of the bulk energy
and parameterize the component representation a0 in terms of the uniaxial Q-tensor
with principal axis defined by the spherical coordinate angles [θ, φ]:

(4.16) a0 = S0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − 3

2
sin2 θ√

3

2
sin2 θ

(
2 cos2 φ− 1

)
√

3 sin2 θ cosφ sinφ√
3 cos θ sin θ sinφ√
3 cos θ sin θ cosφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

For a free energy which supports biaxial phases the appropriate representation for the
component field would be a biaxial tensor expressed in terms of all three Euler angles.
Substituting into (4.15), we can simplify the time derivatives to obtain equations for
the time derivatives of θ and φ:

(4.17)

3S2
0

∂θ

∂τ1
=
(
cosφV (2)

m − sinφV (3)
m

)(
∇2am,0 + χem

)
,

3S2
0

∂φ

∂τ1
=

1

sin2 θ
V (1)

m

(
∇2am,0 + χem

)
.

These can be used to describe the time-dependent liquid crystal alignment in all
cases except where the liquid crystal is aligned close to the coordinate singularity
θ = 0, π. If this is the case, then we need to use a multigrid method [23]. We choose a
different set of coordinates (θ̃, φ̃), formed by rotating the existing coordinates about
the y axis. This second coordinate system produces a set of components which give
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time-dependent equations:

(4.18)

3S2
0

∂θ̃

∂τ1
=
(
cos φ̃V (2)

m − sin φ̃V (1)
m

)(
∇2am,0 + χem

)
,

3S2
0

∂φ̃

∂τ1
= − 1

sin2 θ̃
V (3)

m

(
∇2am,0 + χem

)
.

The second coordinate system is singular at θ̃ = 0, π, equivalent to θ = π/2 and
φ = 0, π. As such the two coordinate systems cannot be simultaneously singular for
a given director. Using the different coordinate systems, the time derivatives of ap,0

can be found from the least singular coordinate system as either

(4.19a)
∂ap

∂τ1
= V (1)

p

∂φ

∂τ1
−
(
sinφV (3)

p − cosφV (2)
p

) ∂θ

∂τ1

or

(4.19b)
∂ap

∂τ1
= −V (3)

p

∂φ̃

∂τ1
+
(
cos φ̃V (2)

p − sin φ̃V (1)
p

) ∂θ̃

∂τ1
.

The strength of the singularity in each coordinate system is determined by the size of
θ and θ̃. This can be directly measured from the size of the x and z components of the
director. An appropriate choice of representation, chosen arbitrarily to allow for some
overlap between the two, is to use [θ, φ] if |nz| ≤ 4/(3

√
2) and [θ̃, φ̃] if |nx| ≤ 4/(3

√
2).

If both of these conditions are satisfied, an average value of ∂ap/∂τ1 obtained from
each of the two representations is used.

4.4. Order one accuracy check. As in the two-dimensional case, we wish
to determine the correction to the scalar order parameter as an approximation of
the accuracy of our method. Unlike the two-dimensional case an analytic expression
cannot be obtained. Instead we use the method of singular value decomposition. Given
the degenerate O(η) equation Ha1 = L, we calculate the perturbed manifold M1

corresponding to the O(η) correction to the components a1, where

H11 = (4a1,0 − 6)a1,0 + T0 + 2
∑4

n=1 a
2
n,0,

H22 = 4a2
2,0 + 6a1,0 + T0 + 2

∑4
n=1 a

2
n,0,

H33 = 4a2
3,0 + 6a1,0 + T0 + 2

∑4
n=1 a

2
n,0,

H44 = 4a2
4,0 − 3a1,0 − 3

√
3a2,0 + T0 + 2

∑4
n=1 a

2
n,0,

H55 = 4a2
5,0 − 3a1,0 + 3

√
3a2,0 + T0 + 2

∑4
n=1 a

2
n,0,

H12 = (6 + 4a1,0)a2,0, H24 = (4a2,0 − 3
√

3)a4,0,

H13 = (6 + 4a1,0)a3,0, H25 = (4a2,0 + 3
√

3)a5,0,

H14 = (4a1,0 − 3)a4,0, H34 = 4a3,0a4,0 − 3
√

3a5,0,

H15 = (4a1,0 − 3)a5,0, H35 = 4a3,0a5,0 − 3
√

3a4,0,

H23 = 4a2,0a3,0, H45 = 4a4,0a5,0 − 3
√

3a3,0,

and Hij = Hji. The order parameter correction S1 is then determined from the
components of a1 orthogonal to the manifold, S1 = a0 · a1/S0.
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Table 1

Numerical values of nondimensional constants for a typical photorefractive liquid crystal cell.

K = 20× 10−12N
A = 0.13× 106J K−1m−3

B = 1.6× 106Jm−3

C = 3.9× 106Jm−3

T0 = −10
ε‖ = 9.1

ε⊥ = 4.1

S = 3.65Ŝ
L = 6.05× 10−12N
Lx = 12× 10−6m

Lz = 12× 10−6m
γ1 = 0.081Pa s

ζ = 0.037Pa s
τd = 2.56× 10−7s
ξ20 = 4.39 × 10−7

χa = 5.13× 10−6ψ2
0

χI = 3.25× 10−5ψ2
0

ψ0 = 1V

5. Examples. To demonstrate the use of the nonstiff approximate liquid crystal
equations, we consider a planar cell filled with liquid crystals. A spatially periodic
voltage is applied to one boundary, while the other is set to a uniform zero volts.
This is a realistic model for a photorefractive liquid crystal cell [6, 4], a device used
for optical coupling and as an optically addressable spatial light modulator. This
is an interesting device for testing this algorithm as it allows for three-dimensional
orientation of the liquid crystal directors and has a simple geometry.

Under appropriate conditions the test geometry is a square in the x, z plane.
Periodic conditions are imposed in the x direction such that a(x + Lx, z) = a(x, z),
and Dirichlet boundary conditions, corresponding to infinite anchoring strength, are
imposed at z = 0 and z = Lz. The liquid crystal is aligned by application of a
spatially modulated voltage ψ(x, Lz) = ψa sin2(πx/Lx) at one boundary, where ψa is
the applied voltage amplitude, while the other is earthed, ψ(x, 0) = 0.

First we verify the two-dimensional liquid crystal model derived in section 3. This
is done through comparison to the full stiff time-dependent Q-tensor equations and
through comparison to a time-dependent FO model. In this case the director orien-
tation is restricted to the x, z plane by the planar, in plane boundary conditions. As
is typical, due to the alignment layers used in these cells, a small pretilt is applied
at z = Lz. The parameters used in our simulation are given in Table 1. The spatial
derivatives are calculated using a pseudospectral method [24] and, for ease of im-
plementation, the time derivative is calculated using the MATLAB multistep solver
ODE113. A public domain version of the MATLAB code is available at [5].

The FO model is derived by minimizing the FO free energy [8, 20],

(5.1) F̃FO =
K

2
(∇θFO)2 − 1

2
ε0εu(Ẽ)2 − 1

2
ε0Δε

(
n̂ · Ẽ

)2

,

in terms of the director angle θFO,

(5.2)
∂θFO

∂τFO
= ∇2θFO +

1

2
δ1
[
sin 2θFO

(
E2

x − E2
z

)
+ 2 cos 2θFOExEz

]
,

where δ1 = (ε0Δε/K)ψ2
0 and τFO = t

[
K/(L2

xγ1)
]
. Starting from the same initial

conditions, the FO and Q-tensor models are integrated till steady state is reached.
The resulting configurations are compared and the differences are computed.

First we compare the FO model with the approximateQ-tensor model. We observe
that there is an area of the FO model which does not show good agreement with the
Q-tensor model. By plotting the resulting director field as vectors and comparing the
numerical gradient, it can be seen that these errors correspond to the points where
the FO model predicts unphysical gradients; see Figure 2.

Similarly we can compare the full stiff Q-tensor equations with the nonstiff ap-
proximate equations derived in section 3. Figure 3 shows a plot of the error in the
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Fig. 2. Comparison of liquid crystal alignment. The left and right images show the director
alignment for the FO model and the approximate Q-tensor model, respectively. Director fields for
both models are plotted, contour lines show areas of equal elastic energy, |∇θF O|2 = C in the FO
model, and |∇a|2 = C in the Landau–de Gennes model. The inaccuracy of the FO model can be
seen in the asymmetry of |∇θF O|2 near the boundary.

Fig. 3. Two-dimensional director field error calculation for a 10 volt spatially modulated elec-
tric field plotted on a logarithmic scale. The liquid crystal has strong planar anchoring boundary
conditions at z = 0 and z = Lz and periodic boundary conditions in the x direction. The error is
calculated both through calculation of the correction to the scalar order parameter S1/S0 (left) and
through comparison to the full stiff equations δa (right).
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Fig. 4. Typical director field plot calculated using approximate equations for a 5 volt spatially
modulated electric field. The shading corresponds to the voltage throughout the cell. The liquid crys-
tal alignment is parallel to the surface but twisted out of plane. This forces full three-dimensional
orientation of the liquid crystal when subject to a spatially modulated electric field.

approximate equation calculated using both the first order correction to the order
parameter, (3.11), and the difference in the two simulations divided by the leading
order scalar order parameter, (3.7),

(5.3) δa =
1

S0
||aapprox − astiff || .

Not only is the error very low, but when the two error plots are compared it can
be seen that the approximate error is qualitatively comparable with the difference
between the full stiff equations and the approximations derived here. In both plots
the error peaks around the points of highest liquid crystal variation. This is expected,
as these points correspond to those with highest elastic energy.

Second we compare the three-dimensional model, derived in section 4, with the
full stiff Q-tensor model. In this case the boundary conditions fix the director out of
plane in the y direction to allow for full three-dimensional reorientation.

The steady state alignment results are shown in Figure 4. The comparison to the
full stiff equations is shown in Figure 5 with error calculated using both the correction
to the scalar order parameter, calculated using singular value decomposition, and the
percentage error given in (5.3), where S0 for the three-dimensional case is given in
(4.4). Again it can be seen that the difference between the two methods is very low
and that the error approximation using the singular value decomposition method is
comparable to the true error. We find for the same number of grid points, 12 in
each spatial dimension, that the stiff code takes over an hour to converge, while the
approximate code converges to a solution with δa ∼ O(10−4) in a time of ≈45 seconds.

6. Conclusion. The approximate equations derived in this paper determine the
liquid crystal alignment, which minimizes the Landau–de Gennes free energy in the
absence of defects. They can be solved in a fraction of the time required to solve the
full stiff equations.

We have derived equations for both a two- and three-dimensional case and have
implemented both as nonstiff initial value problems in MATLAB. Estimates of the
accuracy of these equations have been derived in terms of the first order correction
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Fig. 5. Three-dimensional director field error calculation for a 5 volt spatially modulated electric
field plotted on a logarithmic scale. The liquid crystal has strong out-of-plane anchoring boundary
conditions at z = 0 and z = Lz and periodic boundary conditions in the x direction. The error is
calculated both through calculation of the correction to the scalar order parameter S1/S0 (left) and
through comparison to the full stiff equations δa (right).

to the component values and have been shown to give strong qualitative agreement
with the deviation of the approximation from the full stiff equations.

It should be noted that the free energy functions used in this paper are the
simplest possible forms of the free energy. However, generalization to other free energy
functions, whose bulk energy minimizers are uniaxial, is relatively straightforward.
Generalizing this method to situations where the free energy supports biaxial states
is also possible. In this case M0 is a 3-manifold and expressions must be found for the
equations of motion using a biaxial tensor representation with major and minor axes
determined using all three Euler angles.

The major advantage of these equations with respect to the full stiff minimizers
is that they can be computed in a fraction of the time while producing results with
error ∼O(10−4). This will be of great importance in medium- to large-scale models
where computational efficiency becomes an issue. The assumption that the elastic and
electrostatic free energies remain small makes these equations suitable for geometries
in which defects do not occur. As such these approximate equations will be of most
use in applications where defects are undesirable. This is the case in many optical
devices where smooth alignment of the liquid crystal is important, but the FO model
predicts nonphysical configurations.
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We report the first measurement of two beam coupling in a photorefractive liquid crystal cell with low frequency
(1-10 Hz) applied AC field. The gain measured is larger than that observed at equivalent DC fields. A simple
impedance ladder model is used to interpret the observed effect of the incident light and AC field. c© 2010
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Two beam coupling is a widely studied effect and has ap-
plications in holographic data storage and spatial light mod-
ulators [1]. It was originally investigated in photorefractive
crystals [2], where an interference pattern can create a space
charge field in the crystal bulk and via the electro-optic ef-
fect modulate the refractive index. This refractive index grat-
ing is responsible for two beam coupling. The natural bire-
fringence of liquid crystals makes them highly desirable for
two beam coupling: reorienting the liquid crystal molecules
with an electric field can lead to a strong refractive index
grating and, hence, to large beam coupling gain. This has
been achieved by applying a DC field either to liquid crystal
systems with photoconductive layers [3, 4] or to liquid crys-
tal doped in the bulk with photosensitive molecules such as
fullerenes or dyes [5]. These systems are: cheaper to manu-
facture than a photorefractive crystal; have comparable gain,
which, furthermore, can be enhanced with the addition of
ferroelectric nanoparticles [6]; and can operate at low beam
intensities. Unfortunately, a long exposure to a DC field can
degrade the liquid crystals or the alignment layers, limiting
the lifetime of the cells. Therefore, there is a clear need to
couple beams without an applied DC field. This has been
achieved, for example, by replacing the photoconductive layer
with a thin photorefractive window [7]. In this case, the space
charge field in the photorefractive crystal applies a modulated
electric field to the liquid crystal. However, while the photore-
fractive windows used in such systems lead to high gain, they
are also expensive. In this letter we investigate using a pho-
toconductive alignment layer and an applied sinusoidal AC
field to remove the need for expensive photorefractive win-
dows or for an applied DC field. We have measured efficient
coupling resulting in significant gain coefficients. Unlike other
liquid crystal devices such as SLMs or displays, where a high
frequency AC field is applied (tens to hundreds of Hz), we fo-
cus here on very low frequencies, between 1 and 10 Hz. The
gain measured in the Raman-Nath regime is larger than that
generated with an applied DC field.
The cell investigated was made from two ITO covered glass
substrates. One was coated with a polyimide (PI) layer and
the second with photoconductive polyvinyl carbazole doped
with fullerenes (PVK:C60). The substrates were rubbed, sep-
arated by 12 µm spacers and filled with nematic liquid crystal

E7 by capillary forces. The cell was placed in a standard two
beam coupling experimental setup, shown schematically in
Figure 1. The beam from the laser diode was split into two

Fig. 1. Experimental set-up. M- Mirror G- Glass block
VF- Variable P- Polariser ND filter SH- Shutters C- Cell
PD- Photodiodes

equal intensity beams (1mW) using a glass block and mirror
(Labelled G and M in Figure 1). The beams were made to
intersect in the centre of the cell tilted at 30 ◦ to the bisector
of the incident beams. The angle between the beams was such
that an interference pattern with a period of Λ=24µm formed
on the cell surface. This long period grating ensures that the
electric field penetrates through the whole cell [7]. The gain
ratio is defined as G = IB1+B2/IB1−B2, where IB1+B2 is the
intensity of beam 1 in the presence of beam 2 and IB1−B2

is the intensity of beam 1 in the absence of beam 2. The
exponential gain coefficients is calculated using

Γ =
1

L
ln

(

Gm

m−G + 1

)

, (1)

where L is the cell thickness and m is the ratio of intensities
of the incident beams [8]. As we are interested in the mag-
nitude of energy transfer it is important to ensure that m is
close to 1.
With a sinusoidal AC field applied to the cell, whilst illu-
minated by the two beams, several diffracted orders were
observed. This indicates that a diffraction grating in the
Raman-Nath regime had formed within the cell. Measuring
the gain coefficients shows that energy was transferred from
one beam to the other, demonstrating that beam coupling
was present. Measurements of the gain coefficients as a func-

1



tion of amplitude shows that below 3V there is no beam cou-
pling with an AC or DC field (see Figure 2). By 4V there is
measurable two beam coupling with both AC and DC applied
fields. These results indicate the threshold for reorientation is
between 3 V and 4 V and that it is not sensitive to frequency.
At all applied frequencies of the AC field, the gain coefficients
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Fig. 2. Gain coefficient vs Amplitude for different applied
frequencies.

increase with increasing amplitude and appear to be reach-
ing a peak at 10V. For every voltage above the threshold,
gain coefficients were larger than those measured in DC. The
peak DC gain coefficient, 44 cm−1, was observed at 16V (see
Table 1). The same gain coefficient could be achieved with
AC field but at much lower amplitudes. For example, at 10Hz
it is observed at only 6V and at 2Hz only 4V are required.
The maximum gain coefficient observed is 134 cm−1 at 2Hz,

Table 1. Amplitude necessary to observe the largest DC
gain of 44 cm−1

Frequency (Hz) Voltage(V ) Shift
0 16 N/A
1 3.8 12.2
2 4 12
3 4.3 11.7
8 5.5 10.5
10 6.5 9.5

approximately three times greater than the peak value meas-
ured in DC and approximately four and a half times greater
than the DC gain coefficient at the same voltage. Once the
amplitude of the applied AC exceeds the threshold, there is a
very sharp transition to large gain coefficients (see Figure 3).
The peak gain coefficient appears to shift slightly to higher
frequencies with larger voltage values. While the gain coeffi-
cient decreases monotonically for frequencies higher than the
peak gain frequency, it is still significantly higher than the
DC gain even at 10Hz. For example, the data for 10V shows
a peak at 134 cm−1 at 2Hz but then decays to 70 cm−1 by
10Hz. The data for 4V show the same trend with a peak of
50 cm−1 at 1Hz. By 5Hz the rate of decay has decreased,
but, there is measurable gain up to 10Hz. The same trend
has been observed in a second, validation, cell.
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Fig. 3. Gain coefficient vs Amplitude for different applied
frequencies.

The reorientation of the liquid crystal and, hence, the

Fig. 4. Equivalent circuit for liquid crystal cell.

strength of the observed diffraction is strongly related to the
voltage drop across the liquid crystal layer. Factors affecting
this voltage drop include: the presence of ions in the liquid
crystal layer, the relative impedance of each layer and the
frequency of the applied field. For an AC field, even of low
frequency, the motion of ions is greatly reduced [9]. We can
provide a semi-quantitative explaination of the gain vs fre-
quency behaviour using a simple toy model of the electrical
coupling between the layers [10]. Here we model each layer
in the cell as a simple RC circuit as shown in Figure 4. This
circuit captures the majority of the cells electrical behaviour
under the assumption that the slow AC field eliminates the
ion motion. The impedance of each layer is given by

Zj =
Rj

iωRjCj + 1
, (2)

where Rj = Lj/(σjA) and Cj = ǫ0ǫjA/Lj . Here A is the cell
area, ǫ0 is the permittivity of free space, σj , ǫj and Lj are
the conductance, relative permittivity and thickness of layer
j, with j = {LC, PI, PV K}. The values of σj and ǫj and the
resulting values for Cj and Rj for A = 4 · 10−4m2 are sum-
marised in Table 2. Note, the exact value of σLC is not accu-
rately known and varies with different liquid crystal samples.
Therefore, we consider a range of liquid crystal conductances.
The dielectric constant of the liquid crystal corresponds to
planar aligned E7.

The steady state voltage across the liquid crystal layer
VLC as a function of the applied voltage V is given by
VLC = V ZLC/(ZLC + ZPI + ZPV K). We calculate the effect

2



Table 2. Parameter values for a typical photorefractive
liquid crystal cell.

Layer Lj(nm) σj(S/m) ǫj

LC 12 · 103 10−5–10−10 5–20
PI [11] 20 10−14 3.4

PVK [12] 200 10−13 5

of a small, intensity dependent, modulation in the resis-
tance of the PVK on the voltage dropped across the liquid
crystal layer. We assume that the resistance of the PVK is
RPV K = RPV K [1 + ηβ(I)], where β(I) is the intensity de-
pendent part of the PVK resistance, η ≪ 1 and I is the optical
intensity at the PVK layer. In the limit ω = 0 the voltage
drop is determined entirely resistively

VLC = V
RLC

Rtot

[

1−
RPV K

Rtot

ηβ(I)

]

+ O(η2), (3)

where Rtot = RLC +RPI +RPV K . Typically, as Rlc ≪ RPI ≃
RPV K , the voltage drop across the liquid crystal in the DC
regime is very small. Similarly, if the frequency of the applied
voltage is high enough, typically ω ≫ 1/(CjRj) for all layers,
then the voltage is determined entirely capacitively

VLC = V
CPV KCPI

CPV KCPI + CPV KCLC + CLCCPI

. (4)

In this case, as Clc ≪ CPV K . CPI , the voltage drop across
the liquid crystal is large. However, as VLC is independent of
the resistance of the photoconductor, no diffraction will take
place. In the general case, relevant for the slow AC field
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Fig. 5. Modulation coefficient at fix voltage for a pla-
nar aligned cell at different frequencies and for different
liquid crystal conductances

VLC = V
ZLC

Ztot

[

1−
ZPV K

Ztot

(1− iZPV KCPV Kω) ηβ(I)

]

+O(η2),

(5)
where Ztot = ZLC + ZPI + ZPV K . The significance of equa-
tion (5) can be understood by plotting the coefficient of ηβ(I)
against ω for a range of liquid crystal conductances, see Fig-
ure 5. It can be seen that, although small, there is a broad
peak in the amplitude of the modulation coefficient which
narrows and increases in amplitude with the liquid crystal

conductance. This suggests that there is a range of frequen-
cies close to zero Hertz for which the diffraction efficiency
of the liquid crystal cell is largest. We note that decreasing
the conductance of the liquid crystal increases the range of
frequencies over which β(I) affects VLC , whilst reducing the
overall effect of the PVK. This analysis explains some of the
features of the cells, clearly more work has to be done in op-
timising this system. Detailed modelling of charge motion,
combined with a more thorough analysis of the electrical
properties of the system, will be required to determine the
ideal conditions for beam coupling assisted by an AC field.
In summary, efficient two beam coupling has been observed
in the Raman-Nath regime in liquid crystal cells with PVK
layer and with an applied sinusoidal AC field. A strong depen-
dence of the gain coefficient on frequency was observed with
a very sharp transition from the DC to the low frequency AC
regime. The largest gain coefficient observed was 134cm−1

at 2Hz and 10V. There is a clear shift to lower amplitudes
in case of an AC field, as compared with the DC regime, to
achieve the same value of gain. Furthermore, higher coupling
coefficients, up to a factor of three larger, have been observed
with AC field than with DC field.A semi–quantitative expla-
nation has been given, assuming the AC field reduces the
effect of charge migration, in terms of an impedance ladder
model.
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