The University of Southampton
University of Southampton Institutional Repository

Predicting fallers in a community-based sample of people with Parkinson's disease

Ashburn, Ann, Stack, Emma, Pickering, Ruth M. and Ward, Christopher D. (2001) Predicting fallers in a community-based sample of people with Parkinson's disease Gerontology, 47, (5), 277 - 281. (doi:10.1159/000052812). (PMID:11490147).

Record type: Article


BACKGROUND: The risk of people with Parkinson's disease (PD) falling is greater than that of the general population but to date, disease-specific predictors of falling have not been identified.

OBJECTIVES: To identify one or more features, which would predict individuals at risk of falling during a 3-month prospective follow-up study.

METHOD: A battery of standardised tests administered in the home and the laboratory with a 3-month follow-up telephone interview.

RESULTS: Sixty-three people with PD were recruited from GP practices. Eleven interview variables and six gait laboratory variables were used with subsamples (55 and 44 subjects, respectively) to fit predictive models for identifying future fallers. The number of falls in the previous year was the most important variable, without exception, to be selected as a predictor in various logistic regression models. A history of two or more falls had a sensitivity of 86.4% (95% CI 67.3-96.2%) and a specificity of 85.7% (95% CI 71.2-94.2%) in predicting falling in the next 3 months. CONCLUSION: Healthcare workers should be asking their patients with PD regularly and carefully about falling, and should consider instigating programmes of fall management for patients with PD who have fallen two or more times in the previous 12 months.

Full text not available from this repository.

More information

Published date: 1 September 2001
Keywords: disease, parkinson's disease, fallers, community, elderly


Local EPrints ID: 17790
ISSN: 0304-324X
PURE UUID: f99cc7c6-bddf-4ac7-b0bb-a8876f91c5ef

Catalogue record

Date deposited: 15 Nov 2005
Last modified: 17 Jul 2017 16:37

Export record


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.