The University of Southampton
University of Southampton Institutional Repository

Fire detection and fire characterization over Africa using Meteosat SEVIRI

Fire detection and fire characterization over Africa using Meteosat SEVIRI
Fire detection and fire characterization over Africa using Meteosat SEVIRI
Africa is the single largest continental source of biomass burning emissions and one where emission source strengths are characterized by strong diurnal and seasonal cycles. This paper describes the development of a fire detection and characterization algorithm for generating high temporal resolution African pyrogenic emission data sets using data from the geostationary spinning enhanced visible and infrared imager (SEVIRI). The algorithm builds on a prototype approach tested previously with preoperational SEVIRI data and utilizes both spatial and spectral detection methods whose thresholds adapt contextually within and between imaging slots. Algorithm validation is carried out via comparison to data from ~800 temporally coincident moderate resolution imaging spectroradiometer (MODIS) scenes, and performance is significantly improved over the prior algorithm version, particularly in terms of detecting low fire radiative power (FRP) signals. On a per-fire basis, SEVIRI shows a good agreement with MODIS in terms of FRP measurement, with a small (3.7 MW) bias. In comparison to regional-scale total FRP derived from MODIS, SEVIRI underestimates this by, on average, 40% to 50% due to the nondetection of many low-intensity fire pixels (FRP < 50 MW). Frequency-magnitude analysis can be used to adjust fire radiative energy estimates for this effect, and taking this and other adjustments into account, SEVIRI-derived fuel consumption estimates for southern Africa from July to October 2004 are 259-339 Tg, with emission intensity peaking after midday and reducing by more than an order of magnitude each night.
carbon, fires, remote sensing
0196-2892
1200-1218
Roberts, G.J.
fa1fc728-44bf-4dc2-8a66-166034093ef2
Wooster, M.J.
4b91034b-d585-49ec-85b2-0729f9bca9dc
Roberts, G.J.
fa1fc728-44bf-4dc2-8a66-166034093ef2
Wooster, M.J.
4b91034b-d585-49ec-85b2-0729f9bca9dc

Roberts, G.J. and Wooster, M.J. (2008) Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, 46 (4), 1200-1218. (doi:10.1109/TGRS.2008.915751).

Record type: Article

Abstract

Africa is the single largest continental source of biomass burning emissions and one where emission source strengths are characterized by strong diurnal and seasonal cycles. This paper describes the development of a fire detection and characterization algorithm for generating high temporal resolution African pyrogenic emission data sets using data from the geostationary spinning enhanced visible and infrared imager (SEVIRI). The algorithm builds on a prototype approach tested previously with preoperational SEVIRI data and utilizes both spatial and spectral detection methods whose thresholds adapt contextually within and between imaging slots. Algorithm validation is carried out via comparison to data from ~800 temporally coincident moderate resolution imaging spectroradiometer (MODIS) scenes, and performance is significantly improved over the prior algorithm version, particularly in terms of detecting low fire radiative power (FRP) signals. On a per-fire basis, SEVIRI shows a good agreement with MODIS in terms of FRP measurement, with a small (3.7 MW) bias. In comparison to regional-scale total FRP derived from MODIS, SEVIRI underestimates this by, on average, 40% to 50% due to the nondetection of many low-intensity fire pixels (FRP < 50 MW). Frequency-magnitude analysis can be used to adjust fire radiative energy estimates for this effect, and taking this and other adjustments into account, SEVIRI-derived fuel consumption estimates for southern Africa from July to October 2004 are 259-339 Tg, with emission intensity peaking after midday and reducing by more than an order of magnitude each night.

This record has no associated files available for download.

More information

e-pub ahead of print date: 12 March 2008
Published date: April 2008
Keywords: carbon, fires, remote sensing

Identifiers

Local EPrints ID: 178469
URI: http://eprints.soton.ac.uk/id/eprint/178469
ISSN: 0196-2892
PURE UUID: 61dae53f-c17c-4076-8805-cd7de7653be8
ORCID for G.J. Roberts: ORCID iD orcid.org/0009-0007-3431-041X

Catalogue record

Date deposited: 24 Mar 2011 15:43
Last modified: 14 Mar 2024 02:57

Export record

Altmetrics

Contributors

Author: G.J. Roberts ORCID iD
Author: M.J. Wooster

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×