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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Ehab M. ElSalamouny

One of the dominant properties of a global computing network is the incomplete in-
formation available to principals about each other. This was the motivation of using
the notion of probabilistic trust as an approach to security sensitive decision making
in modern open and global computing systems. In such systems any principal A uses
the outcomes of past interactions with another principal B to construct a probabilistic
model approximating the behaviour of B. Using this model, the principal A can take
decisions regarding interactions with B by estimating its future actions. Many existing
frameworks adopt the so-called ‘Beta model’. The main limitation of these frameworks
is that they assume the behaviour of any principal to be fixed, which is not realistic in
many cases.

In this thesis, we first address the application of probabilistic trust to optimise security
protocols, and specifically give an example where the Crowds anonymity protocol is ex-
tended to use trust information. We then address the problem of evaluating probabilistic
trust in principals exhibiting dynamic behaviours. In this respect, we formally analyse
the ‘exponential decay’ technique as an approach to coping with principals’ dynamic
behaviours. Given the identified limitations of this technique, a more general frame-
work for trust and reputation is introduced. In this framework, Hidden Markov Models
(HMMs) are used for modelling the dynamic behaviours of principals. This framework
is formally analysed in terms of a notion of ‘estimation error’.

Using an experimental approach based on Monte-Carlo methods to evaluate the expected
estimation error, the introduced HMM-based framework for trust and reputation is
compared to the existing Beta framework. The results show in general that the latter
is getting more promising in evaluating trust in principals (‘trustees’) having dynamic
behaviours as longer sequences of observations are available about such trustees.
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Chapter 1

Introduction

In a general network of principals, one important requirement is that a principal can
make security decisions regarding interactions with other principals. Such decisions
aim at minimising the risk of abusing or destroying resources in an interaction. To
make such security critical decisions, a principal needs to assess its confidence that an
interaction with a potential partner is subjectively secure. Such confidence is referred
to as the ‘trust’ of the given principal (called ‘truster’) in its potential partner (called
‘trustee’). Therefore, a notion of trust is fundamental to security preserving in a network
of principals.

Trust has traditionally been formalised in terms of authorisation, which essentially
amounts to determining whether a principal that issues a request to use a resource
should be trusted with this request and granted the resource. This approach to trust is
often referred to as policy based trust or credential based trust (cf. Section 3.1). Here
the trust in a principal is established by obtaining a sufficient amount of credentials
(proofs) pertaining to it. Given these credentials, certain policies are applied to grant
that principal certain access rights. The recursive problem of validating the credentials
is frequently solved by using a trusted third party to serve as an authority for issuing
and verifying credentials. In this setting, trust takes binary values in the sense that a
principal is either trusted or not trusted. This relies on the fact that trusted princi-
pals are proved to behave well and their behaviours are well known to their interactions
partners.

However, in modern open-ended networks (e.g. the Internet) principals can have au-
tonomously different behaviours and intentions which are incompletely known by other
principals and therefore can affect their security. Moreover, it is not practical in such
global networks to use third parties to issue and verify credentials because this again
raises the question of whether such parties are always trusted or not. Given these at-
tributes, credential-based trust is not entirely appropriate as a basis of interactions in
these networks simply because no principal can be assumed to be perfectly trusted. In
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2 Chapter 1 Introduction

fact there is always a probability that a principal exhibits a misbehaviour and violates
the agreed protocol.

In these systems, where each principal always has incomplete information about other
principals, interactions of a principal A with other principals are not assumed to be at
the same level of satisfaction, or even safety, to A. Thus principal A needs to evaluate
a quantitative measure for trust in each other principal B using the history of B’s
behaviour. This information is obtained from past interactions between A and B and
also from B’s reputation collected from other principals. Based on the output of this
trust evaluation process, A can choose its interaction partners. Note that the trust value
here is not binary as the case in credential-based trust, but rather is a number expressing
the level of trustworthiness. This view is known as the computational trust and also as
reputation based trust.

One approach to implementing the computational trust is the probabilistic trust, which
can broadly be characterised as aiming to build probabilistic models upon which to base
predictions about trustees’ future actions. Using these models, the trust of a truster
A in a trustee B is the probability, estimated by A, of particular outcomes of the next
interaction with B. This notion of trust resembles the trusting relationship between
humans as seen by Gambetta (1988).

Many systems for probabilistic trust management assume, sometimes implicitly, the
following scenario. There is a collection of principals (pi | i ∈ I), for some finite index
set I, which at various points in time can choose to interact in a pair-wise manner;
each interaction can result in one of a predefined set of outcomes, O = {o1, . . . , om}.
Typically, outcomes are determined by behaviours: when a principal pi interacts with
a partner pj , the behaviour of pj relative to the protocol used for interaction defines
the outcome. Hence, an essential component in the trust management framework is
the behaviour model of a principal. Jøsang and Ismail (2002) and Teacy et al. (2006),
for example, assumed that the outcome of an interaction between two principals is
probabilistically sampled from two potential events (success and failure). Specifically,
compliant behaviours represent successful interactions, whilst behaviours which diverge
from the interaction protocol determine failure. Nielsen et al. (2007), generalised the
outcome of a single interaction (a protocol run) to be a set of sub-events rather than
one event. Each sub-event is assumed to be probabilistically sampled from potential
sub-events enabled at a particular stage in the protocol run. Despite these differences,
the probabilistic systems share the following characteristics.

• They assume a particular probabilistic model for each principal behaviour.

• They put forward algorithms for approximating (or learning) a principal’s be-
haviour using the history of interaction with the given principal. An interaction
history is simply the sequence of the outcomes of past interactions with the princi-
pal. One framework used for this purpose is Bayesian analysis, where observations



Chapter 1 Introduction 3

(interaction histories) are used for inferring the probabilistic model of a principal’s
behaviour.

• A truster pi uses the behaviour probabilistic model of a trustee pj , to estimate
the probabilities of potential outcomes of a future interaction with pj . Based on
these probabilities, the trust of pi in pj is evaluated. For example, Teacy et al.
(2006) defined the trust of pi in pj to be an estimated probability that the next
interaction with pj is successful.

In many existing frameworks the so-called beta model (Jøsang and Ismail, 2002) is
adopted. This is a static model in the precise sense that the behaviour of any princi-
pal pj is assumed to be representable by a fixed probability distribution over outcomes,
invariantly in time. That is each principal pj is associated with a fixed real number
0 ≤ Θj ≤ 1 indicating the assumption that an interaction involving pj yields success
with probability Θj . This simple model gives rise to trust computation algorithms that
attempt to ‘guess’ pj ’s behaviour by approximating the unknown parameter Θj from
the history of interactions with pj (cf., e.g., Sassone et al., 2006).

There are several examples in the literature where the beta model is used, either im-
plicitly or explicitly, including Jøsang and Ismail’s beta reputation system (Jøsang
and Ismail, 2002), the systems described by Mui et al. (2002)) and by Buchegger
and Le Boudec (2004), the Dirichlet reputation systems (Jøsang and Haller, 2007),
TRAVOS (Teacy et al., 2006), and the SECURE trust model (Cahill et al., 2003). Re-
cently, the beta model and its extension to interactions with multiple outcomes (the
Dirichlet model) have been used to provide a first formal framework for the analysis
and comparison of computational trust algorithms (Sassone et al., 2006; Nielsen et al.,
2007; Krukow et al., 2008). In practice, these systems have found space in different
applications of trust, e.g., online auctioning, peer-to-peer filesharing, and mobile ad-hoc
routing.

All the existing systems apply Bayesian data analysis (see e.g. Sivia, 1996) to the
history of interactions h with a given principal pj to estimate the probability Θj that
an interaction with pj yields success. In this framework the family of beta probability
density functions (pdfs) is used, as a conjugate prior, together with the data h to derive a
posterior beta probability density function for Θj . The resulting beta function, denoted
by B(α, β), has the parameters α and β, where α = #s(h) + 1 (resp. β = #f(h) + 1)
is the number of successful (resp. unsuccessful) interactions in h augmented by one.
Full explanation can be found in Section 3.2.1 and the article by Sassone et al. (2006).
An important consequence of this representation is that it allows us to estimate the
so-called predictive probability, i.e., the probability that the next interaction with pj will
yield success (s), given the history h. Such an estimate is given by the expected value
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of Θj given the distribution B(α, β)

P (s | hB) = EB(α,β)(Θj) =
α

α + β
.

Thus, in this simple and popular model, the predictive probability depends only on the
number of past successful interactions and the number of past failures.

The major limitation of the current beta based systems is that they assume a fixed
probabilistic behaviour for each principal; that is for each principal, there exists a fixed
probability distribution over possible outcomes of its interactions. This assumption
of fixed behaviour may not be realistic in many situations, where a principal possibly
changes its behaviour over time. Just consider, e.g., the example of an agent which
can autonomously switch between two internal states, a normal ‘on-service’ mode and a
‘do-not-disturb’ mode. This limitation of the beta systems has been recognised by many
researchers e.g. Mui et al. (2002), Teacy et al. (2006), Xiong and Liu (2004), Jøsang
and Ismail (2002), and Buchegger and Le Boudec (2004). While in some of these works
(e.g. Mui et al., 2002; Teacy et al., 2006) it is only pointed out that the assumption
of fixed behaviour is not realistic, other works (e.g. Xiong and Liu, 2004; Jøsang and
Ismail, 2002; Buchegger and Le Boudec, 2004) employed the notion of ‘decay ’ principle
to favour recent events over information about older ones.

The decay principle can be implemented in many different ways, e.g., by using a finite
‘buffer’ to remember only the most recent n events (Xiong and Liu, 2004), or linear
and exponential decay functions, where each outcome in the given history is weighted
according to the occurrence time (old outcomes are given lower weights than newer
ones) (Jøsang and Ismail, 2002; Buchegger and Le Boudec, 2004). Whilst decay-based
techniques have proved useful in some applications, it will be shown through the analysis
in Chapter 5 that the decay principle is useful (for the purpose of predicting future
actions of the trustee) only when the trustee’s behaviour is highly stable, that is when
it is very unlikely to change its behaviour. Another limitation of this technique, which
is also shown in Chapter 5 is that the optimal value of the decay parameter depends on
the behaviour of the trustee which is hidden from its partners. Therefore there is still
need to develop methods to reliably evaluate the trust in trustees which change their
behaviours frequently, and at the same time do not require any information about the
hidden behaviour of the trustee.

1.1 Innovation

1.1.1 Dynamic behaviour modelling

In this thesis the assumption of fixed behaviour of a trustee, represented by a single
probability distribution Θ over outcomes, is lifted. Instead, the behaviour of the trustee
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is assumed to be ‘dynamic’ in a discrete sense. That is after each interaction, the
trustee can make a transition from its current state to another one; the probability
distribution Θ over potential outcomes of an interaction with the trustee is assumed
then to be dependent on the trustee’s underlying state rather than being fixed. To
facilitate learning the dynamic behaviour of the trustee, it is also assumed that the
number of its possible states is finite.

The probabilistic model for the trustee’s behaviour is assumed therefore to be state
based, where each state is associated with a probability distribution over possible out-
comes. Since the transition of the trustee between its states is hidden from its interaction
partners, and only its actions are observable, the Hidden Markov Models (HMMs) are
adopted for this modelling purpose. Such a representation of behaviour enables describ-
ing the ‘stability’ of the trustee as its expected probability of transition from the current
state to a different one (cf. Section 5.5).

1.1.2 Evaluating the quality of trust models

The representation of a trustee’s behaviour by a finite-state HMM λ provides a frame-
work for analysing the quality of different trust evaluation algorithms. Namely, given
a current state of the trustee, the probability distribution over possible outcomes of
interaction with the trustee can be evaluated. Such probability distribution is called
in this thesis the real predictive probability distribution. On the other hand, applying
a particular trust model to available observations about the trustee results in another
probability distribution (called the estimated predictive probability distribution) which is
meant to approximate the real predictive probability distribution. The quality of a trust
evaluation algorithm is therefore quantified by the expected difference, e.g. the quadratic
distance (cf. Section 5.4), and Kulback-Leibler divergence (Cover and Thomas, 2006),
between the real and estimated predictive distributions. This framework is adopted in
this thesis to evaluate and compare between trust models.

1.1.3 Analysis of the beta trust model with the decay principle

As the decay principle was proposed to cope with principals’ dynamic behaviours, it
is important to identify the cases where such technique is effective and also the cases
where it is not. Using HMMs to represent principals’ dynamic behaviours, the quality
evaluation framework described above in Section 1.1.2 is used to derive an expression for
the expected difference (‘estimation error’) between the real and estimated predictive
distributions. This error is analysed in terms of the decay factor as a user-defined pa-
rameter for the beta trust model, and also in terms of the trustee’s stability which is the
tendency of the trustee to preserve a fixed behaviour (i.e. preserve the same probabil-
ity distribution over outcomes). By deploying such error expression in an experimental
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setting, it is shown that the decay principle is effective (i.e. reduces the estimation er-
ror) only when the trustee’s behaviour is relatively stable, and the optimal decay factor
depends basically on the trustee’s behaviour which is hidden from the observer.

1.1.4 HMM-based trust and reputation models

Given the limitation of the decay technique in coping with principals’ dynamic behaviour,
a novel model for trust, called the HMM-based trust is proposed in Chapter 6, where
the hidden behaviour λ of the trustee is approximated by a finite-state HMM η. The
construction of the approximate model η is based on information about past interactions
with the trustee using the Baum-Welch training algorithm (cf. Section 2.5.4). The
HMM obtained is then used to compute the probability of each potential outcome in the
next interaction with the trustee, and therefore make predictions about the outcomes
of future interactions. It is shown in an experimental setting that the HMM-based
model outperforms the beta model with decay when the trustee’s behaviour is unstable
(dynamic), i.e. more likely to change its state rather than staying in the same current
state.

The HMM-based trust model requires having a sufficiently long history of interaction
with the trustee to obtain a reliable approximate behaviour HMM η for the trustee. In
many practical situations, the sequence of personal observations available to the truster
is not sufficiently long to learn the behaviour of a trustee. In these cases, learning the
behaviour of the considered trustee using such a short sequence would not be reliable
for obtaining an approximate model η for the trustee. In Chapter 7, a HMM-based
reputation model is described where the truster compensates its shortage of information
by collecting reputation reports (feedbacks) about the trustee from other principals
(reputation sources) who also interacted with the same trustee. The format of reputation
reports are described along with a reputation ‘mixing’ algorithm for using these reports
in the trust evaluation process.

1.1.5 Using trust information

As described earlier in this chapter, the main objective of evaluating trust in princi-
pals (trustees), is to make security sensitive decisions regarding interactions between
principals. Therefore, an important question is how trust information can be used in
the security policies which control the interactions between principals. The answer to
this question is challenging in the case of probabilistic trust, as there is always a risk
of interacting with a chosen peer. So security policies which are based on probabilistic
trust should be defined such that the likelihood of the risk is minimised. As an example
of employing the probabilistic trust in security protocols, Chapter 4 describes an appli-
cation of the probabilistic trust in the Crowds anonymity protocol (Reiter and Rubin,
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1998) aiming at preserving the anonymity of principals, i.e. hiding their identities from
observers (eavesdroppers) when they issue web transactions. It is shown that while each
member in the protocol has a particular probability of being ‘corrupted’, a required
level of anonymity (privacy) for all members may be achieved by the correct use of trust
information.

1.2 Thesis structure

The chapters in this thesis are organised as follows. In Chapter 2, we give a brief
mathematical background. This background includes Bayesian analysis as it has been
used in modern trust systems for estimating parameters of probabilistic models. We
also give a brief review for basic properties of discrete Markov chains (DMCs) followed
by a description of HMMs and their main problems.

Chapter 3 describes the traditional and also recent approaches to formalising the notion
of trust. That chapter starts by describing the classical approach to trust, known by
credential based trust, along with concepts related to this approach, e.g. credentials,
policies, trust negotiation, and policy languages. The chapter follows by describing the
modern approach of trust, the probabilistic trust, and models based on this approach,
e.g. the beta reputation model, and the Dirichlet reputation models.

Following the literature review, we focus in Chapter 4 on an application of probabilistic
trust as a basis for preserving anonymity, one of the increasingly important security
properties in modern computing networks. In this chapter trust information about
principals is assumed to be available. It is then described how this trust information
is employed to adjust the parameters of a well known anonymity protocols, called the
Crowds protocol (Reiter and Rubin, 1998). The chapter provides an overview of the
Crowds protocol, and then follows by presenting a proposal for an extension which
allows for using trust information.

After Chapter 4, the rest of the dissertation is concerned with the problem of computing
trust, and formulating reputation assuming that principals exhibit dynamic behaviour.
In this context, the dynamic behaviour of a principal is modelled by a finite-state HMM.
Since the decay principle was advised to avoid the assumption of fixed behaviour in the
existing beta trust model, Chapter 5 is devoted to analyse in details the existing beta-
based trust model with the principle of decay in order to identify its advantages and
also describe its limitations.

In Chapter 6, we try to cope with the limitations of the beta-based trust model by
introducing the HMM-based trust model as an approach to evaluate trust in principals
having dynamic behaviours. We describe the foundations of HMM-trust model, and
compare it to the existing beta-based trust model. Given the basic foundations of the



8 Chapter 1 Introduction

HMM-based trust model, we complete the framework of HMM-based trust by encom-
passing the notion of reputation in Chapter 7. The elements of a reputation report are
described along with an algorithm for combining available reputation reports. Finally,
in Chapter 8 we conclude our work and describe possible extensions.



Chapter 2

Mathematical background

This chapter describes the mathematical foundations required for analysing existing
probabilistic trust models, and also for solving the specific research problem of extend-
ing these models to capture different patterns of principals’ behaviours. This chapter
starts by describing the Bayesian inference which is a common framework to analyse
observations against assumed hypotheses. In Section 2.2, the problem of parameter es-
timation is then described along with different methods for solving it. Also the model
selection problem and common approaches for handling it are briefly described in Section
2.3.

Because Discrete Markov Chains (DMCs) are used in this work to model transitions
of principals between their internal states, DMCs are described along with the related
properties, irreducibility, recurrence, and aperiodicity in Section 2.4. A hidden Markov
model (HMM) is obtained by associating individual states of a DMC to probability
distributions over observables. As HMMs are chosen in this work to model principals’
dynamic behaviours, Section 2.5 describes HMMs and their basic problems. We also
review, in Section 2.6, different approaches to construct minimal HMMs from data sam-
ples. The last section 2.7 in this chapter is devoted to describing the useful ergodicity
and mixing properties of DMCs and HMM in the general context of random processes.

2.1 Bayesian inference

Bayesian inference is a statistical inference process in which observations are used to
update the probability that a hypothesis may be true (Sivia, 1996). Bayesian inference
involves collecting evidence which can be consistent or inconsistent with the assumed
hypothesis. As evidence accumulate, the degree of belief in such a hypothesis changes.
In this context, the belief is modelled as the probability that the hypothesis is true. The
name ’Bayesian’ comes from the use of the Bayes’ theorem in the inference process. The

9
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Bayes’ theorem is stated generally as

P (X | Y ) =
P (Y | X)× P (X)

P (Y )
, (2.1)

where X and Y are two events such that P (X) > 0 and P (Y ) > 0. In terms of a
hypothesis and observed data, Bayes’ theorem can be expressed as follows.

P (hypothesis | data) ∝ P (data | hypothesis)× P (hypothesis) .

The power of Bayes’ theorem lies in the fact that it relates the quantity of interest, the
belief (probability) that the hypothesis is true, to the term which we have a better chance
of being able to express, the probability of the observed data if the hypothesis was true.
The term P (hypothesis) is called the prior probability; it represents the belief in the
truth of the hypothesis before obtaining the observed data. Using Bayes’ theorem, the
prior probability is modified by the data likelihood under the hypothesis in question, or
P (data | hypothesis), and yields the posterior probability, P (hypothesis | data) which
represents the belief in the hypothesis truth in the light of the observed data. Note this
process encapsulates the process of learning.

The Bayesian approach have proved successful in several applications to quantify the
probability that a hypothesis is true. Many examples, including the following one are
described by Jaynes, 2003.

Example 2.1. Consider the hypothesis that the ‘perceived’ size of an object is linearly
correlated with the distance to the object. Observations (evidences) which confirm this
hypothesis are naturally accumulated by the human brain. With the help of Bayesian
inference, an adult can assign therefore a high probability to the truth of this hypothesis.
However, this truth can be doubted (assigned less probability) by a child walking in a
room having a magnifying mirrors.

The Bayesian approach has also applied to the problem of trust evaluation in networked
principals. In this particular problem, evidence (observations) about a principal (trustee)
is being collected by its interaction partners (trusters). Using the accumulated evidence,
a truster tries to ‘learn’ the behaviour of the trustee, and therefore assign a probability
distribution over possible hypotheses regarding future interactions with the trustee.

2.2 Parameter estimation

Given a probabilistic model which is defined by a set of free parameters, the parameter
estimation problem is the task of determining the model’s parameter values in the light
of observed data, or equivalently finding the model’s parameter values which explain the
observations in hand.
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2.2.1 Bayesian estimation

In this parameter estimation method, Bayesian inference is used to estimate the model
parameters using the given observations. For example, suppose it is required to find
how much a coin is Head-biased given the outcomes of a sequence of its flips. In terms
of the parameter estimation problem, the probabilistic model here is a fixed probability
distribution over the outcomes (head, tail) of any flip of the given coin, and it is required
to estimate the value of its parameter r = P (Head), that is the probability that a flip
experiment of this coin yields Head.

This problem can be formulated by considering an infinite number of hypotheses. Each
hypothesis corresponds to a specific value for r in the range from 0 to 1. To proceed with
the inference process, it is required to assign a prior probability to each hypothesis, that
is an initial probability density function (pdf) for r as a continuous random variable.
Each time we get an observation (head or tail), we use the Bayes’ theorem to update
the prior pdf. Figure 2.1(a) shows the posterior pdf for r after each observation in the
sequence H H T T H, starting from a uniform prior pdf. Figure 2.1(b) shows the
posterior pdf after observing 25 heads and 15 tails. It can be seen that the expected
value of r gradually approaches a specific value (0.6) which indicates our estimate for
r. Note also that the width of the posterior pdf becomes narrower with more data,
indicating more confidence in the estimate of r.

2.2.2 Maximum Likelihood Estimate (MLE)

In this approach parameter values are chosen such that the likelihood of observations
under the given model is the maximum (e.g. Myung, 2003). In other words, assuming
that the model λ(θ) is defined by the compound (multi-dimensional) parameter θ, the
optimum value θ̂ for the parameter θ is determined by the following equation,

θ̂ = argmax
θ

P (O | λ (θ)) . (2.2)

2.2.3 Expectation-Maximisation algorithm

In many cases, the observations O can be seen as incomplete data relying on non-
observed (hidden) data X. In such cases the hidden data X corresponding to the
observation O is not observed directly, but only indirectly through O. The requirement
in such cases is to choose the compound parameter θ of the underlying model such that
the probability of the observations, P (O | θ), is maximised. Because observations O

are dependent on the hidden data X, maximising P (O | θ) is not straightforward. One
efficient iterative algorithm for achieving this task is called Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). To explain the algorithm,
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(a) The posterior pdf for a coin bias-weighting after each symbol in the sequence H,H,T ,T ,H

(b) The posterior pdf for a coin bias-weighting after a
sequence of 25 heads and 15 tails

Figure 2.1: The evolution of the posterior pdf for the bias-weighting of a coin

• The following quantity is called the complete data log-likelihood under the param-
eter θ.

L (O,X | θ) = log P (O,X | θ) .

Since O is known, L (O,X | θ) can be seen as a function of the parameter θ and
the hidden random variable X.

• Letting the probability distribution of X be determined by an initial parameter
value θ0, and O, the function Q (θ | θ0) is defined to be the expected value of
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L (O,X | θ), that is,

Q (θ | θ0) = EX [L (O,X | θ) | O, θ0] =
∑
X

P (X | O, θ0) L (O,X | θ) . (2.3)

The function Q (θ | θ0) is then called the expectation of the complete data likelihood
given the observations O. It is shown by Dempster et al. (1977) that increasing Q (θ | θ0)
results in increasing observation probability P (O | θ). The algorithm thus goes as fol-
lows.

1. Choose an initial parameter value θ0.

2. (Expectation step): Evaluate Q (θ | θ0).

3. (Maximisation Step): Get the value θ1 which maximises Q (θ | θ0), that is

θ1 = argmax
θ

Q (θ | θ0) .

4. Let θ0 = θ1, and go to step (2).

The algorithm terminates when no value θ1 is found such that Q (θ1 | θ0) > Q (θ0 | θ0),
i.e. θ1 = θ0. The parameter value in this case corresponds to a local maximum of the
data probability function P (O | θ). An important application of the EM algorithm
is estimating the parameters of HMMs using given observations. Applying the EM
algorithm to this specific problem results in so-called Baum-Welch algorithm which is
described in details by Section 2.5.4.

2.3 Model selection

Model selection is the task of selecting a statistical model from a set of potential models,
given observations. This task involves using mathematical analysis to choose the best
model from the set of potential models. However, what is meant by best is controversial.
A good model selection technique balances between goodness of fit to observations on
one hand, and complexity on the other hand. The goodness of fit is measured by the
discrepancy between observed values and the values expected under the given model. On
the other hand, complexity of the model is measured by the number of free parameters
required to define the model. More complex models will be better able to adapt their
parameters in order to fit the given information, for example, a sixth-order polynomial
can exactly fit any six points. However, if the six points are randomly distributed about
a line, the model of a straight line would be enough to approximate the six points, and
therefore the sixth-order polynomial model would be of unnecessary complexity. A set
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of approaches have been proposed to achieve this compromise between the goodness of
fit and complexity of a model. In the following subsections, we give a short description
for two of these approaches, namely AIC and BIC.

2.3.1 Akaike Information Criterion (AIC)

In AIC (Akaike, 1974), model selection is based on balancing between the complexity of
the selected model and its fitness to the given observations. The complexity of a model
is defined by the number of independently adjusted parameters within the model. Given
a model λ, the Akaike Information Criterion AIC, of λ is defined by the equation

AIC (λ) = (−2) log (ML (λ)) + 2K (λ) ,

where ML (λ) is the maximum likelihood of the given observations under the model λ,
and K (λ) is the number of independently adjusted parameters within λ. The maximum
likelihood term ML (λ) indicates the fitness of the model to the given observations and
is defined by the equation,

ML (λ) = max
θ1,θ2,...,θk

P (O | λ (θ1, θ2, . . . , θk)) , (2.4)

where k = K (λ). When there are several models, the model which gives the minimum
value for AIC is selected. Therefore AIC, proposes selecting the model which maximises
fitness to the observations, and is as simple as possible.

2.3.2 Bayesian Information Criterion (BIC)

In this model selection method, also called Schwarz Information Criterion (SIC), the
criterion BIC of a given model λ is defined by the following equation (Schwarz, 1978).

BIC (λ) = ML (λ)− 1
2
K (λ) log n, (2.5)

where ML (λ) is the maximum likelihood of the given observations under the model λ,
K (λ) is the number of independently adjusted parameters within λ, and n is the number
of observations. When there are several models, the model which gives the maximum
value for BIC is selected as the best model for observations. Therefore, like AIC, the
BIC method balances between the fitness of the model to the observations, expressed by
ML (λ), on one hand, and its complexity, expressed by 1

2K (λ) log n on the other hand.
The difference is that BIC leans more than AIC towards lower-dimensional models with
larger number of observations n, since K (λ) is multiplied by log n.
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2.4 Markov chains

As we described in the introduction, we will use hidden Markov models (HMMs) to model
the behaviour of any principal in a global computing environment. Since a Markov chain
is essentially the underlying state transition system of any HMM, many properties of
HMMs are inherited from those of Markov chains. So, in this section we review some
fundamental properties of the homogeneous finite-state discrete Markov chains (DMCs).
These properties are used in our work to analyse HMMs.

Any DMC is characterised by an n×n state transition matrix A, where n is the number
of underlying states, and Aij is the probability of transiting to state j, given state i.
We consider only homogeneous DMC, in which the state transition matrix is fixed over
time. For a fuller treatment of the notions of Markov chains, the reader is referred to,
e.g., Grimmet and Stirzaker (2001); Norris (1997); Brémaud (1998).

2.4.1 Irreducibility

A DMC is irreducible if each state is reachable from any other state with a positive
probability. That is, at any time, from each state i, there is a positive probability to
eventually reach each state j. Denoting by Am

ij the (i, j)-entry of the mth power of
matrix A, it can be proved that Am

ij is the probability to reach state j in exactly m

transitions, given the chain is at state i. The condition of irreducibility can then be
expressed formally as follows.

Definition 2.1 (irreducibility). For A a DMC and i a state, we say that state i reaches
state j, written i 7→ j, whenever Am

ij > 0, for some finite m, and that A is irreducible if
i 7→ j, for all i and j.

2.4.2 Recurrence

A state i of a DMC can be classified as either recurrent or transient. The state i is
recurrent if starting from i, the chain is guaranteed to eventually return to i, otherwise
it is transient. Recurrent states can be positive or null recurrent. A state i is positive
recurrent if starting from i, the expected return time to i is finite (<∞). In the following,
we shall write qk = i to indicate that i is the kth state visited by a DMC in a given run
q0q1q2 · · · .

Definition 2.2 (classification of states). For A a DMC and i a state, we say that i is:

recurrent if P ( qk = i, for some q0 · · · qk | q0 = i ) = 1;

transient otherwise.
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It can be proved that a state j is recurrent if and only if
∑∞

m=0 Am
jj = ∞. This char-

acterisation has the following corollary. If state j is recurrent, then for any other state
i such that i 7→ j and j 7→ i, we have also

∑∞
m=0 Am

ii = ∞, which means that i is also
recurrent. This implies that i and j are either both recurrent or both transient. It also
follows that in an irreducible chain, where each state is reachable from any other state,
either all states are transient, or they all are recurrent.

Let Ti be a random variable representing the time of the first return to state i, namely
min{ k ≥ 1 | qk = i }. Using the homogeneity property of DMC, we can define the mean
return time of state i as

µi = E[Ti | q0 = i ].

Definition 2.3 (classification of recurrent states). For A a DMC and i a recurrent
state, we say that i is:

null if µi =∞;

positive if µi <∞.

If all states are positive recurrent, the DMC is said to be positive recurrent. In particular
if A is finite and irreducible, then it is positive recurrent. Positive recurrence of an
irreducible DMC guarantees the existence and uniqueness of the stationary probability
distribution described below.

Definition 2.4 (stationary distribution). A vector π = (πj | j ∈ Q) is a stationary
distribution on Q if

πj ≥ 0 for all j, and
∑

j∈Q πj = 1;

π A = π.

So if the stationary probability distribution is the initial distribution over a DMC states,
it will remains invariant in time, meaning that at any time the probability distribution
over the DMC states is the stationary distribution. In an irreducible chain, the mean
return time determines such invariant distribution.

Theorem 2.5 (existence of stationary distribution). An irreducible Markov chain has a
stationary distribution π if and only if all its states are positive recurrent. In this case,
π is the unique stationary distribution and is given by πi = µ−1

i .

Now we recall the fact that the states of a finite DMC are all positive recurrent if it is
irreducible. Since in our research we consider only the finite states DMC and hidden
Markov models (described later), we find that the condition of irreducibility guarantees
the existence of the stationary probability distribution according to this fact and the



Chapter 2 Mathematical background 17

above theorem. The existence of a stationary distribution is not sufficient to describe
the asymptotic behaviour of a DMC. However, the following condition of aperiodicity
guarantees convergence to the stationary distribution regardless of the DMC’s initial
distribution.

2.4.3 Aperiodicity

Definition 2.6 (aperiodicity). For A a DMC, the period of i is d(i) = gcd{m | Am
ii >

0 }. State i is aperiodic if d(i) = 1; and A is aperiodic if all its states are such.

Theorem 2.7 (convergence to stationary distribution). For A an irreducible, and ape-
riodic Markov chain, limm→∞Am

ij = µ−1
j , for all i and j.

The above convergence to the stationary distribution is shown by Theorem (8.9) in
(Billingsley, 1995) to be at an exponential rate as follows.

Theorem 2.8 (exponential convergence). For an irreducible and aperiodic finite-state
DMC, it holds that

|Am
ij − πj | ≤ Cρm ,

where C ≥ 0 and 0 ≤ ρ < 1.

A DMC which is positive recurrent, and aperiodic is called ergodic. Given the above
properties, it is obvious that Theorems (2.5) and (2.7) play the basic role to analyse the
asymptotic behaviour of a given ergodic DMC.

2.5 Hidden Markov Models (HMM)

A Hidden Markov Model (HMM) (Baum and Petrie, 1966) is a probabilistic finite state
machine which has been widely used for probabilistic sequence modelling. The approach
of HMM has been used in many applications including speech recognition (Bahl et al.,
1993; Rabiner, 1989), DNA and protein modelling (Hughey and Krogh, 1996), informa-
tion extraction (Seymore et al., 1999), handwritten character recognition (J. Hu; Brown,
1996), and gesture recognition (Eickeler et al., 1998).

A discrete-time first-order HMM is a probabilistic model that describes a stochastic
sequence of symbols O = o1, o2, . . . , oT as being an observation of an underlying (hidden)
random sequence of states Q = q1, q2, . . . , qT , where this hidden process is Markovian,
i.e. each state qi depends only on the previous one qi−1. Thus an HMM can be seen as
a Markov chain where each state is associated with a particular probability distribution
over the set of possible symbols (observations). However, a key difference between HMMs
and Markov chains is that in an HMM, state transitions are not observed as is the case
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in Markov chains, and only observations are visible. In the following we precisely define
discrete-time first-order HMMs, and describe their basic problems. For a more detailed
description, the reader is referred to, e.g., Rabiner (1989).

2.5.1 Definition

A discrete HMM is formally defined by the following elements:

• A set S = {1, 2, . . . , N} of (hidden) states.

• A state transition matrix A = {Aij} of size N ×N , where an element 0 ≤ Aij ≤ 1
is the probability of transition from state i to state j:

Aij = P (qt+1 = j | qt = i) , 1 ≤ i, j ≤ N

where qt denotes the state occupied by the system at time t. As Aij is a probability
distribution over the set of states, we always have ΣN

j=1Aij = 1 for any state i.

• A set V = {z1, z2, . . . , zK} of observation symbols. This set is called the alphabet
of the model. A sequence of observation symbols is the physical output of the
model, rather than the states themselves.

• An emission matrix B = {Bi (zk)} of size N×K, where an element 0 ≤ Bi (zk) ≤ 1
is the probability of observing symbol zk given the current state is i, that is,

Bi (zk) = P (ot = zk | qt = i) , 1 ≤ i ≤ N, 1 ≤ k ≤ K

As Bi (zk) is a probability distribution over the set of symbols, we always have∑K
k=1 Bi(zk) = 1 for any state i.

• Initial state probability distribution π = {πi}, where an element 0 ≤ πi ≤ 1 is the
probability of being in state i at the time 1, that is,

πi = P (q1 = i) , 1 ≤ i ≤ N

Also as π is a probability distribution over the set of states, we have
∑N

i=1 πi = 1.

Thus an HMM is completely defined by a five-tuple λ = (S, V,A,B,π). The probability
distributions A,B, and π are called the parameters of the given HMM.

2.5.2 HMM basic problems

There are three main problems involved with using HMMs:
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1. Given an HMM λ = (S, V,A,B,π), and an observation sequence O = o1o2, . . . , oT ,
we want to efficiently compute P (O | λ), that is the probability of the given ob-
servation sequence O, given the model λ. This is usually solved by the forward-
backward algorithm described later in Section 2.5.3.

2. Given an HMM λ = (S, V,A,B,π), and an observed sequence O = o1o2, . . . , oT ,
we want to determine the state sequence that most probably generated O, that is,
Q̂ = q̂1, q̂2, . . . , q̂T , where q̂i ∈ S such that,

Q̂ = argmax
Q

P (O,Q | λ) . (2.6)

This problem is solved by the Viterbi algorithm (Forney, 1973).

3. Given an observation sequence O = o1o2, . . . , oT , and an HMM model λ with a
specified number of states. We want to determine the values of the parameters
A,B,π of λ such that the probability of the sequence O is maximised under λ.
That is, (

Ā, B̄, π̄
)

= argmax
(A,B,π)

P (O | λ). (2.7)

The solution for this problem is obtained by adopting the maximum likelihood
estimate (MLE) approach described in Section 2.2.2. Applying MLE approach to
this problem yields the Baum-Welch algorithm which is described later in Section
2.5.4.

2.5.3 Forward-Backward algorithm

By the formal definition of a HMM stated in Section 2.5.1, the joint probability of a
sequence of observation O = o1 o2, · · · , oT , and an underlying sequence of states Q =
q1, q2, · · · , qT is given by the following equation

P (O,Q | λ) = πq1 ·Bq1(o1) ·Aq1q2 ·Bq2(o2) · · ·AqT−1qT ·BqT (oT ).

The probability of a sequence of outcomes O = o1 o2 · · · oT given a HMM λ is given
therefore by summing the joint probability P (O,Q | λ) over all possible underlying
sequences Q of states. That is the probability P (O | λ) is given by the following
equation.

P (O | λ) =
∑

q1,...,qT∈S

πq1 ·Bq1(o1) ·Aq1q2 ·Bq2(o2) · · ·AqT−1qT ·BqT (oT ). (2.8)

Since the number of permutations of the underlying state sequence Q is NT , the com-
putation of P (O | λ) using the above equation requires an order of 2T ·NT calculations
((2T − 1)NT multiplications and NT − 1 additions). That is the computation time is
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exponential in the sequence length T , and therefore is computationally impractical when
the given sequence O is very long.

The forward-backward algorithm has been introduced in the literature as a means for
practical evaluation of this probability with much lower computation cost. In the fol-
lowing we provide a brief description of this algorithm which evaluates the probability of
any observation sequence given a particular HMM model λ efficiently based on dynamic
programming techniques. The reader is referred to Rabiner (1989) for more details
on this algorithm. Given an HMM λ = (S, V,A,B,π), and an observation sequence
O = o1o2, . . . , oT , the probability P (O | λ) is obtained by inductively evaluating the
forward variable αt(i) defined by the following equation

αt (i) = P (o1o2 . . . ot, qt = i | λ) . (2.9)

That is αt(i) is the joint probability of the partial observation sequence, o1o2 . . . ot, (until
time t), and the state i at time t, given the model λ. A procedure, which we call the
‘forward’ procedure, evaluates P (O | λ) as follows.

1. Initialization:
α1(i) = πiBi(o1), 1 ≤ i ≤ N

2. Induction:

αt+1(j) =

(
N∑

i=1

αt (i) Aij

)
Bj (ot+1) , 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

3. Termination:

P (O | λ) =
N∑

i=1

αT (i) .

Considering the computation cost of the above procedure, observe that at each iteration
in the induction step (for a given t), the values of αt+1(j) are computed for all states j =
1, 2, . . . , N ; for each state j, the evaluation of αt+1(j) requires summing up N product
terms and one additional product calculation (for multiplying the sum by Bj (ot+1)).
Thus each induction step requires N(N + 1) multiplications and N(N − 1) additions.
Noting that the algorithm involves T − 1 induction iterations, and one initialization
step requiring N multiplications, the whole algorithm requires N(N + 1)(T − 1) + N

multiplications and N(N − 1)(T − 1) additions. That is the algorithm requires on the
order of N2 T calculations in total.

In a similar manner to the above procedure, the probability P (O | λ) can be also eval-
uated by the inductive evaluation of the so called backward variable, denoted by βt(i)
and defined as follows

βt (i) = P (ot+1ot+2 . . . oT | qt = i, λ) . (2.10)
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I.e. βt(i) is the conditional probability of the partial observation sequence ot+1ot+2 . . . oT

(from time t + 1 to the end) given that the state at time t is i, and the model λ. Using
the following procedure, which we call the ‘backward’ procedure, the probability of the
sequence O given the HMM λ can be evaluated.

1. Initialization:
βT (i) = 1, 1 ≤ i ≤ N

2. Induction:

βt(i) =
N∑

j=1

Aij Bj(ot+1) βt+1(j), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

3. Termination:

P (O | λ) =
N∑

i=1

πiBi(o1)β1(i).

Similar to the reasoning used for the forward procedure, the above backward procedure
requires also about N2 T calculations. Comparing the forward-backward algorithm to
the direct computation of the probability using Equation (2.8) which requires about
2T · NT calculations, it is obvious the the former is more efficient for evaluating the
probability of a given sequence. That is the computation cost in the forward-backward
algorithm is linear in the sequence length T rather than exponential in the case of
computation using Equation (2.8).

2.5.4 Baum-Welch algorithm

The problem of estimating the parameters of an HMM λ to maximise the likelihood
of given observations exactly coincides with the scenario of observed and hidden data
described in Section 2.2.3. In this context the observed data is the observed symbol
sequence, and the hidden data is the state sequence generating the observed symbol
sequence. Thus the EM algorithm is applicable to the problem of estimating HMM
parameters, yielding the so called Baum-Welch algorithm (Baum et al., 1970; Rabiner,
1989). It is shown by Rabiner and Juang (1993) and Bilmes (1997) how the Baum-Welch
algorithm can be derived from the EM algorithm. In the following we sketch the main
lines of this derivation.

Thinking of this problem in terms of the EM framework, we assume that we have an
initial (a priori) HMM λ′, and aim to derive an a posteriori HMM λ which maximises
the expected complete data likelihood which is defined generally by (2.3). Considering
an observed sequence of symbols O = o1 o2 . . . oT and the underlying hidden sequence of
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states q = q1 q2 . . . qT , the expected complete data likelihood can be written as follows

Q(λ′, λ) =
∑

q

P (q | O, λ′) log P (O, q | λ). (2.11)

The above function Q(λ′, λ) is also called the Baum’s auxiliary function. Our objective
now is to determine the optimal parameter values of the the a posteriori HMM λ which
maximises Q(λ′, λ). For doing so, we start by formulating the term log P (O, q | λ) in
terms of the parameters of λ as follows

log P (O, q | λ) = log πq1 +
T∑

t=2

log Aqt−1qt +
T∑

t=1

log Bqt (ot) , (2.12)

where πi denotes the probability that the initial state (q1) is i. Aij is the probability
of transition from state i to state j. Bi (zk) is the probability of observing the outcome
zk at state i. Refer to the description of the HMM elements in Section 2.5.1 for more
details about these notations.

Substituting Expression (2.12) in (2.11), the function Q(λ′, λ) can be written as follows

Q(λ′, λ) =
N∑

i=1

P
(
q1 = i | O, λ′

)
log πi +

N∑
i=1

N∑
j=1

T∑
t=2

P
(
qt−1 = i, qt = j | O, λ′

)
log Aij +

N∑
i=1

K∑
k=1

T∑
t=1

P
(
qt = i | O, λ′

)
δ (ot, zk) log Bi (zk) ,

(2.13)

where N is the number of states, K is the number of possible observation symbols, and
the δ-function δ (ot, zk) is defined as by:

δ (ot, zk) =

{
1 if ot = zk .

0 otherwise .
(2.14)

For convenience, Eq. (2.13) which formulates the auxiliary function can be rewritten as
follows.

Q(λ′, λ) = Qπ (π) +
N∑

i=1

QAi (Ai) +
N∑

i=1

QBi (Bi) , (2.15)

where π = [π1, π2, . . . , πN ] is the vector representing the initial state probability distri-
bution, Ai = [Ai1, Ai2, . . . , AiN ] is the vector representing the probability distribution
over state transitions from state i to other states, and Bi = [Bi(z1), Bi(z2), . . . , Bi(zK)]
is the vector representing the emission probability distribution over outcomes given state
i. The functions Qπ(π), QAi(Ai), and QBi(Bi) in the above equation are defined as
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follows

Qπ(π) =
N∑

i=1

P
(
q1 = i | O, λ′

)
log πi , (2.16)

QAi(Ai) =
N∑

j=1

(
T∑

t=2

P
(
qt−1 = i, qt = j | O, λ′

))
log Aij , (2.17)

QBi (Bi) =
K∑

k=1

(
T∑

t=1

P
(
qt = i | O, λ′

)
δ (ot, zk)

)
log Bi (zk) . (2.18)

Observe that each term in Equation (2.15) is a function of a probability distribution
which parametrises the a posteriori HMM λ. These distributions (π, Ai, Bi ∀i : 1 ≤
i ≤ N) are independent of each other, that is the choice of one of them does not affect
the choice of the others. Therefore the auxiliary function is maximised by maximising
each term in (2.15) separately. Observe furthermore that each of equations (2.16),(2.17),
and (2.18) is in the following form

F (y1, y2, . . . , yV ) =
V∑

v=1

wv log yv where
V∑

v=1

yv = 1 . (2.19)

Using the Lagrange multiplier technique for optimising a function subject to a constraint,
the constrained function F defined above can be easily proved to have a global maximum
at the point (ȳ1, ȳ2, . . . , ȳV ), where ȳv is given by

ȳv =
wv∑V

v=1 wv

.

Using the above fact, the parameters of the optimal a posteriori model λ are given as
follows

π̄i = P
(
q1 = i | O, λ′

)
, (2.20)

Āij =
∑T

t=2 P (qt−1 = i, qt = j | O, λ′)∑T
t=2 P (qt−1 = i | O, λ′)

, (2.21)

B̄i (zk) =
∑T

t=1 P (qt = i | O, λ′) δ (ot, zk)∑T
t=1 P (qt = i | O, λ′)

. (2.22)

In the above equations, the probability P (qt = i | O, λ′) is interpreted as the probability
of visiting state i at time t given an observation sequence O and a HMM λ′. This proba-
bility is denoted by the variable γt(i). Also the probability P (qt−1 = i, qt = j | h, λ′) can
be described as the probability of visiting states i and j at times t−1 and t respectively.
This probability is denoted by the variable ξt−1(i, j). In (Rabiner, 1989), it is shown
that each of these variables can be efficiently evaluated (in linear time) using the forward
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and backward variables αt(i), βt(i) described earlier in Section 2.5.3.

Equations (2.20), (2.21), and (2.22) are known in the literature as the HMM param-
eter re-estimation equations. Namely, given the parameters of the a priori HMM λ′,
these equations estimate the parameters of the a posteriori HMM λ. This re-estimation
process describe therefore one iteration in the Baum-Welch algorithm. In terms of the
variables γt(i) and ξt−1(i, j), the HMM parameter re-estimation equations can be written
as follows

π̄i = γ1(i) , (2.23)

Āij =
∑T

t=2 ξt−1(i, j)∑T
t=2 γt−1(i)

, (2.24)

B̄i(zk) =

∑T
t=1, ot=zk

γt(i)∑T
t=1 γt(i)

. (2.25)

With respect to the a priori HMM λ′, the above equations can be rewritten in a more
descriptive form as follows.

π̄i = expected number of times of visiting state i at time (t = 1)

Āij =
expected number of transitions from state i to state j

expected number of transitions from state i

B̄i (zk) =
expected number of times in state i and observing symbol zk

expected number of times in state i

Since the Baum-Welch algorithm is an instance of the general EM algorithm, it has the
same limitation that it converges to a local maximum for the likelihood function rather
than the global one. However, according to Rabiner (1989), either random (subject
to stochastic and nonzero value constraints) or uniform initial estimates of π and A

parameters could give useful reestimates of these parameters. Another problem is that
the Baum-Welch algorithm requires assuming a specific number of states.

2.5.5 Links between HMM and probabilistic automata

In general, many syntactic objects including HMMs, Probabilistic Finite-states Automata
(PFA), Deterministic Probabilistic Finite-states Automata (DPFA), and λ-Probabilistic
Finite-states Automata (λ-PFA) have been used to model and generate probabilistic
distributions over sets of possible infinite cardinality of sequences. Formal definitions
and properties of these objects are given by Vidal et al. (2005a) and Dupont et al. (2005).

Comparing HMM to other such probabilistic devices, it is shown by Dupont et al. (2005)
and Vidal et al. (2005b) that HMM is equivalent to Probabilistic Finite Automata
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(PFA) and λ-PFA. In other words, these models can be converted to each other, and
have therefore the same expressive power. On the other hand, it is shown by Vidal
et al. (2005a) that there exist probabilistic distributions that can be generated by PFA
but not by other probabilistic models like Deterministic Probabilistic Finite Automata
(DPFA). Therefore, HMM and PFA are more expressive than other probabilistic models
like DPFA.

2.6 HMM structure determination

As our aim is to approximate the dynamic behaviour of a principal by a HMM, this
section provides a review of different approaches to determine the structure of the HMM.
Generally, For modelling applications the HMM is estimated from sample data. In other
words, all these applications involve learning or adjusting the HMM to such data. A
practical and fundamental issue to be addressed when using HMM is the determination
of its structure, namely the topology (the non-zero transitions and emissions) and the
number of states. In this section we review the approaches used to tackle this problem.

2.6.1 HMM structure induction by Baum-Welch algorithm

One can think of the problem of determining the topology of an HMM as estimating
its state transition and emission probabilities assuming the model is fully connected.
The transition/emission which is estimated to be of zero probability (within an error
range) indicates the absence of such transition/emission. The Baum-Welch algorithm,
described by Section 2.5.4, and also by Rabiner (1989), can be used for estimating the
HMM parameters. However this algorithm converges to a local optimum, not necessarily
the global one, of the data likelihood function. Since the convergence optimum is highly
dependent on the choice of initial parameter values, one approach is to run the algorithm
starting from many different initial points in the parameter space, and choose the best
estimate. However, this approach is computationally expensive since the parameter
space is large due to the number of free parameters in the case of fully connected HMM.
It is worth noting that Baum-Welch algorithm assumes knowledge of the model size,
and therefore a method is still needed for determining the appropriate number of states.

2.6.2 Akaike and Bayesian information criteria

The problem of the HMM structure determination can be seen as a model selection
problem; thus the traditional model selection approaches AIC (Akaike, 1974), and BIC
(Schwarz, 1978) described previously in Section 2.3 are applicable. These methods are
based on trading off the likelihood of given data against the model complexity. In the
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case of HMM model selection, the complexity of a model depends on its size, namely its
number of states. Therefore these methods can be applied to HMM by training several
models, with different sizes to maximise data likelihood, and then choosing the one which
maximises a certain selection criterion. The main drawback of these approaches is that
they are computationally expensive since at least one full training session is required for
each candidate model size.

2.6.3 HMM induction by Bayesian model merging

This method is based on a general model inference approach called Best-First model
merging (Omohundro, 1992). In this approach, a complex model is constructed by
combining simple component models. Each of the component models fits a portion of
the available data. The whole model is simplified (generalised) by selectively merging
two of its component models. The best-first aspect is to always choose to merge the pair
of component models such that the loss in the data likelihood is minimised. The process
of merging component models is repeated until a stopping criterion is met.

Stolcke and Omohundro (1993) described the application of this approach to HMM
structure learning. The learning process is performed as follows.

• An initial model which exactly generates the available symbol strings is con-
structed. In this initial model, each input string is represented by a unique state
path with one state per symbol. Each state emits the corresponding symbol with
probability 1. Between any successive states in any path, there exists one tran-
sition whose probability is 1. The state paths are reachable from the start state
with a uniform probability distribution. The likelihood of data under this initial
model is 1.

• The current model is incrementally generalised by merging selected state pairs. As
the current model is generalised, the likelihood of data is decreased. States chosen
for merging are those whose merging maximises the model posterior probability
P (M | x) which is defined by the Bayes’ rule

P (M | x) ∝ P (x |M) P (M) .

Where P (x |M) is the likelihood of data x, and P (M) is the model prior prob-
ability. The prior P (M) is chosen to be biased toward simple models; therefore
maximising the posterior implies trading off the data likelihood against model
simplicity.

• When samples are newly available, the current model structure is adjusted to
incorporate the new data, and then generalised by state merging.
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• The model induction stops when any potential state merge results in decreasing
the model posterior.

One advantage of this approach is that HMM structure learning is performed in an
incremental way. The model size is adjusted when new observations are available. By
comparison, traditional model selection methods estimate models of different sizes from
scratch in order to select the best one. However the disadvantage of this approach is
that it finds a local optima for the model posterior probability function rather than the
global optima.

2.6.4 Designing a minimal HMM structure by bisimulation

This approach, introduced by Bicego et al. (2001), is based on identifying the number of
states in the minimal model by applying the notion of probabilistic bisimulation given
by Larsen and Skou (1991) as follows.

Given the data strings drawn from the alphabet V = {v1, v2, . . . , vM},

1. Train an initial HMM with the number of states N reasonably large with respect
to the given application. This number is determined using application-specific
heuristics. Let λ = (A,B, π) be the resulting HMM.

2. Transform the resulting model into a Fully Probabilistic Labeled Transition System
(FPLTS) G by the following procedure.

• The set of states in G is the same set of states in λ.

• Each transition between two states Si, Sj in λ where aij > 0 is replaced by
M edges whose labels are 〈aij , vk, Bi(k)〉, where Bi(k) is the probability of
emitting the symbol vk from state Si.

In this conversion each of aij , Bi(k) is approximated to the nearest one of defined
probability levels between 0 and 1. This probability quantization expresses the
accuracy of comparisons between states.

3. Run the probabilistic bisimulation algorithm, given by Baier et al. (2000), on G

to compute bisimulation equivalence classes. The optimal number of states N ′ in
the target HMM is the number of equivalence classes in G.

4. The optimal HMM is finally obtained by training an HMM with N ′ states.

Since this approach is based on identifying equivalence between states, the resulting
minimal HMM model is significantly close to the initial large one in terms of the data
likelihood, and the difference depends entirely on the probability approximation. There-
fore the resulting model has almost the same classification power as the large model.
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Comparing this approach to the BIC method, it has been proved experimentally that in
problems with a small alphabet (e.g. DNA modelling), this approach is faster since it
needs only two training sessions.

2.7 Stationarity, mixing and ergodicity

In this section we provide a brief description for the notion of a random process as a
generalisation of markov chains and hidden markov models. We describe the properties
of stationarity, mixing, and ergodicity which may hold for a random process. The
definitions of these properties are given along with the conditions on a random process
to enjoy each of these properties. We will then state the ergodic theorem, and show that
it applies to a HMM under certain conditions on its underlying DMC. This result is of
special importance in our analysis of trust models in the following chapters as the HMM
is adopted as a model for the principal’s behaviour. More details of these properties
for random processes can be found in e.g. (Grimmet and Stirzaker, 2001) and (Norris,
1997). Wider interpretations and applications of these properties in terms of the ergodic
theory are described in e.g. (Petersen, 1990) and (Billingsley, 1965).

2.7.1 Random processes

A random process Y , expressed as {Y (t) : t ∈ T}, is a sequence of random variables
indexed by a set T which represents the time. Each random variable Y (t) represents an
observation at the time instant t ∈ T . The value of Y (t) is drawn from the sample set
S. The set of all possible sequences of observations is denoted by ST .

The process Y is called continuous-time random process if the indexing set T is the set
of real numbers R, while it is called discrete-time random process if T is chosen as the
set of integer numbers Z. In the following text we confine ourselves to the discrete time
processes. Typical examples of a random process include the finite-state discrete-time
markov chain (DMC), where S is the finite set of its states, and also a discrete-time
HMM, where S is the set of observations.

A simple event A of the random process Y is specified by restricting the values of Y (t)
at particular time instants. Thus the event A is formally represented by the following
cylinder set.

A = {Y (i1) = j1, Y (i2) = j2, · · · , Y (in) = jn} , (2.26)

which represents the event of observing the values j1, j2, . . . , jn at times i1, i2, . . . , in

respectively. Composite events can be expressed by applying the set operations (union,
intersection, and complement) on cylinder sets of the above form.
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The time shift transformation τ is a mapping from the set of events to itself. That is
τ transforms an event A into another event, denoted by τ(A) by shifting the valuation
restriction of the random variables Y (t) one step ‘backward’ in time. Given the event A

expressed by Equation (2.26), the transformation τ is defined by the following equation.

τ(A) = {Y (i1 − 1) = j1, Y (i2 − 1) = j2, · · · , Y (in − 1) = jn} . (2.27)

As a notation, the event τ(τ(A)) is denoted by τ2(A), and in general the event τ(τk(A))
is denoted by τk+1(A) for k ≥ 0. Thus τh(A) is simply the event A shifted backward h

times where h ≥ 0.

τh(A) = {Y (i1 − h) = j1, Y (i2 − h) = j2, · · · , Y (in − h) = jn} . (2.28)

It also follows that the inverse transformation τ−1 shifts an event A ‘forward’ one step
in time. That is

τ−1(A) = {Y (i1 + 1) = j1, Y (i2 + 1) = j2, · · · , Y (in + 1) = jn} ,

and in general, for h ≥ 0,

τ−h(A) = {Y (i1 + h) = j1, Y (i2 + h) = j2, · · · , Y (in + h) = jn} .

Definition 2.9 (invariant event). An event A is called invariant if it holds that

τ−1(A) = A = τ(A).

That is an event A is invariant if it does not change when shifted. Given a DMC Y

having a set of S, examples of invariant events are given below.

1. The event A1 of converging to a state s, expressed by the following equation, is
invariant because it does not change if it is time-shifted by τ .

A1 =
{

lim
t→∞

Y (t) = s
}

.

2. Consider the event A2 that the sequence observations Y (t) are asymptotically
(when t → ∞) restricted to members of the set R ⊂ S. The event A2, expressed
as follows, is invariant.

A2 = {Y (t) ∈ R for all large t} .

In particular, if R = S, the event A2 occurs with probability 1, and therefore is
called a trivial event.

Since an invariant event does not change by shifting it in time, it can be seen as the
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event which specifies a condition on all observations in a sequence regardless of time.
In the case of a DMC, event A2, for instance, describes the condition that the whole
sequence converges to a set of states R, i.e. the observed states are eventually trapped
in a set R of states (called a recurrent class). This convergence should be seen as a
condition which applies to the whole sequence regardless of time.

2.7.2 Stationarity

Definition 2.10 (stationary process). A random process {Y (t) : t ∈ T} is stationary if
for all events A, it holds that

P
(
τ−k (A)

)
= P (A) = P

(
τk (A)

)
for any k ≥ 0.

That is for a stationary random process, the probability of any event is invariant with
respect to the time shift τ . This means that any finite sequence has the same probability
whether it is observed at time t or t + k, where k ≥ 0. Examples of stationary random
processes include stationary DMC, and A HMM with underlying stationary DMC. For
both these models, the probability of the event

{Y (k) = j0, Y (k + 1) = j1, · · · , Y (k + n) = jn}

depends only on the stationary distribution π, given by Definition (2.4), and the elements
of the given sequence j0, j1, · · · , jn regardless of the starting time k.

2.7.3 Mixing

Now we move to another property for the random processes, the mixing property defined
as follows.

Definition 2.11 (mixing process). A stationary random process {Y (t) : t ∈ T} is called
mixing if for any two events A and B it holds that,

lim
k→∞

P
(
A ∩ τ−k(B)

)
= P (A) P (B).

Note that the above condition for mixing can be also written as

lim
k→∞

P
(
τ−k(B) | A

)
= P (B).

In the above formulation, τ−k(B) represents particular conditions on the future obser-
vations (at time k), while A represents conditions on the present or past observations.
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Therefore, a random process is mixing if conditions on the future observations tends to
be probabilistically independent of initial conditions in the past. It can be easily shown
that an aperiodic irreducible DMC is mixing using the fact of the convergence of the
transition matrix Ak (See Theorem (2.7)). In the following, an analogous statement for
HMMs is given.

Proposition 2.12 (HMM mixing). A stationary finite-state HMM (S, V,A,B,π) is
mixing if the transition matrix A is irreducible and aperiodic.

Proof. Let Y be the random process generated by the the HMM (S, V,A,B,π). Con-
sider the following two events of Y

A = {Y (1) = u1, Y (2) = u2 . . . Y (n) = un} ,

B = {Y (1) = v1, Y (2) = v2 . . . Y (m) = vm} .

If we choose k such that k ≥ n, the time ranges of A and τ−k(B) do not overlap. The
joint event A ∩ τ−k(B) can then be expressed as follows

A ∩ τ−k(B) = {Y (1) = u1, Y (2) = u2, · · · , Y (n) = un,

Y (k + 1) = v1, Y (k + 2) = v2, · · · , Y (k + m) = vm}.
(2.29)

As mentioned in Section 2.4.1, the probability of reaching state j from state i in exactly
k transitions is given by the ijth entry of the matrix Ak, denoted by Ak

ij . Using Equa-
tion (2.8), and rewriting the summation, we get the following expression for the joint
probability P

(
A ∩ τ−k(B)

)
.∑

q1

πq1 · Bq1(u1) ·
∑
q2

Aq1q2 ·Bq2(u2) · · ·
∑
qn

Aqn−1qn · Bqn(un) ·

·
∑
qk+1

A(k−n+1)
qnqk+1

·Bqk
(v1) ·

∑
qk+2

Aqk+1qk+2
·Bqk+2

(v2) · · ·

·
∑
qk+m

Aqk+m−1qk+m
·Bqk+m

(vm) .

(2.30)

For simplifying the above expression we need to introduce some notations. Let N be
the size of the set of states S. For any observation v ∈ V , we define the N ×N diagonal
matrix Φ(v), and the column vector Φc(v) as follows

Φ(v) =


B1(v) 0 . . . . . .

0 B2(v) . . . . . .
... . . . BN−1(v)

...
. . . . . . . . . BN (v)

 (2.31)



32 Chapter 2 Mathematical background

Φc(v) =


B1(v)
B2(v)

...
BN (v)

 (2.32)

Using these notations the probability of A ∩ τ−k(B) can be expressed by rewriting
Expression (2.30) as a product of matrices.

P
(
A ∩ τ−k(B)

)
= π · Φ(u1) ·A ·Φ(u2) · · ·A · Φ(un) ·

· A(k−n+1) ·Φ(v1) ·A ·Φ(v2) · · ·

· A ·Φc(vm) .

(2.33)

Taking the limit when k →∞, we get the following equation.

lim
k→∞

P
(
A ∩ τ−k(B)

)
= π · Φ(u1) ·A ·Φ(u2) · · ·A · Φ(un) ·

·
(

lim
k→∞

A(k−n+1)

)
·Φ(v1) ·A ·Φ(v2) · · ·

· A ·Φc(vm) .

(2.34)

By Theorem (2.7), the matrix A(k−n+1) converges as k → ∞ if A is irreducible and
aperiodic. In this case each row in the matrix limk→∞A(k−n+1) is identical to the
stationary distribution vector π. Thus

Φ(un) ·
(

lim
k→∞

A(k−n+1)

)
=


B1(un) · π1 B1(un) · π2 . . . B1(un) · πN

B2(un) · π1 B2(un) · π2 . . . B2(un) · πN

... . . . . . .
...

BN (un) · π1 BN (un) · π2 . . . BN (un) · πN


= Φc(un) · π. (2.35)

Substituting Equation (2.35) in Equation (2.34) it follows that

lim
k→∞

P
(
A ∩ τ−k(B)

)
= π · Φ(u1) ·A · Φ(u2) · · ·A · Φc(un) ·

· π · Φ(v1) ·A · Φ(v2) · · · · A ·Φc(vm)

= P (A) · P (B).

2.7.4 Ergodicity

An ergodic process is defined in terms of invariant events defined by Definition (2.9).
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Definition 2.13 (ergodic process). A random process is called ergodic if the probability
of each invariant event is either 0 or 1.

Any event with probability 0 or 1 is called ‘trivial’, as it either ‘always’ or ‘never’
occurs. Therefore according to the above definition, the ergodic process is the one
where each invariant event (describing a time-invariant condition on the whole sequence
of observations) is trivial. An important relationship between the ergodicity and mixing
properties is stated by the following proposition.

Proposition 2.14. Any mixing process is ergodic.

Namely, for any invariant event B, it holds that τ−k(B) = B, for all k ≥ 0. By Definition
(2.11), if a process is mixing then P (A ∩B) = P (A) P (B). Taking A = B it follows
that P (B) = (P (B))2 which implies that P (B) is either 0 or 1.

Theorem 2.15 (ergodic theorem). For a stationary and ergodic random process Y , let
f be a real-valued function defined on the set ST of sequences generated by Y . Given a
sequence x ∈ ST , let f1(x), f2(x), . . . be a sequence of functions defined by

fk(x) = f
(
τk(x)

)
.

If
∣∣E[f ]

∣∣ <∞, then

1
n

n−1∑
k=0

fk(x)→ E[f ] almost surely.

In the above formulation for the ergodic theorem, 1
n

∑n
k=0 fk(x) is called the ‘time

average’ of the function f evaluated on given sequence x. The time average is therefore
a characteristic of the underlying sequence x. On the other hand, the expected value
E[f ] is called the ‘space average’ of the function f , and therefore is a characteristic of the
probability distribution over all potential sequences. The ergodic theorem establishes
the almost sure convergence of the time average to the space average when the random
process is ergodic.

In our concern about the problem of evaluating trust in networked principals, the se-
quence of outcomes observed over time by interacting with a principal is seen as a
random process, which reflects the dynamic behaviour of the principal. A trust evalua-
tion algorithm can be therefore seen as a function of such an observed sequence. Opting
to use ergodic HMMs for modelling principals’ behaviours, the ergodic theorem plays
an important role in analysing formal properties of trust models. In particular, this
theorem will be used to evaluate the beta-based trust in terms of the parameters of the
principal’s HMM, as shown in Chapter 5.





Chapter 3

State of the art

Security preservation in a network of principals is often associated with mechanisms
which ensure that principals conform to specified access control policies when accessing
resources belonging to each other. These policies are aimed to preventing, or at least
minimising, the abuse of such resources. To see the tight link between security and trust,
consider a principal A requesting to access a resource r owned by another principal B.
Assuming that the resource r is precious to the principal B, the access to r is granted
by B to the requesting principal A only if B has a sufficient confidence that A will not
abuse or destroy r; that is if B trusts A. Here many questions arise about this new
notion of trust between network principals. These questions address for example the
problems of formulating, computing, and updating the trust in a given principal. They
also address the problem of possible mechanisms of communicating trust information
between principals in a form of reputation reports.

In this chapter, different approaches to trust management are described. We start in
Section 3.1 by describing the traditional credential based trust, where a principal is
trusted to access a resource if sufficient credentials (proofs) entitling the principal to
access the resource are available. Subsequently, Section 3.2 describes the more recent
approach of probabilistic trust, where the trust in a principal is modelled by a probability
distribution over potential outcomes of interactions with the principal.

3.1 Credential based trust

Trust in a principal is traditionally viewed as an entire confidence that a principal is en-
titled to access a particular resource. This confidence is based on a proof of entitlement,
called a credential, which is issued to the principal by a trusted authority. That is a
principal is trusted to access a resource if it is able to provide a sufficient amount of cre-
dentials which proves its entitlement to access that resource. The access of any resource

35
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is usually controlled by a specific policy which determines the necessary credentials in
order to grant the resource access to a requesting principal, i.e. to establish trust in a
principal to access the resource. This is why this view of trust is known as credential
based trust and also policy based trust. This view of trust has a ‘binary’ nature in the
sense that a principal is either trusted to access a resource or not. This differs from the
‘gradual’ view of trust which defines a range of trust levels as described later in this
chapter.

In this section we give an overview of the credential based trust. We first describe the
concepts associated with credentials, including their forms, issuers, and the mechanisms
of exchanging policies and credentials between interacting parties. Existing trust man-
agement systems based on credentials are then described. Afterwards, typical aspects of
these system are discussed. In particular, we describe the notion of trust negotiation to
establish trust between interacting parties through exchanging policies and credentials
while minimising the disclosure of sensitive or private information about these principals.
Languages for specifying policies and credentials are also discussed.

3.1.1 Network security credentials

Digital credentials (or simply credentials) can be described as statements concerning a
principal which are issued by trusted third parties (organizations) and shown to other
principals (or organizations) (Chaum, 1985). Digital credentials are therefore similar
to paper credentials that people carry in their wallets (e.g. tickets, passports, licenses)
in the sense that they prove (certify) certain attributes assigned to a principal, or the
entitlement of the principal to particular rights.

A credential is usually formulated in the form of an attribute certificate (AC), where a
certificate authority issues a (signed) certificate to a principal (called the subject) stating
a particular attribute. In this way, a subject is trusted to have a particular attribute only
if a valid attribute certificate stating such attribute possession is available and digitally
signed by the appropriate authority. The validity of attribute certificates is assured by
ensuring, using cryptographic mechanisms, that the certificates are really produced and
signed by a trusted attribute authority.

While attribute certificates provide a means of authorization, i.e. determining which
principals can access individual resources, another type of certificates, known as identity
certificates certify the identities of subjects, and are issued by identity authorities. An
identity certificate includes both the subject’s identity information (name, address, etc.)
and the subject’s public key. The identity certificates provide a means of authenticating
messages’ senders. Consider, for example, a message which is claimed to be sent by Bob.
Assuming that such message is digitally signed using the sender’s private key, a receiver
Alice can use Bob’s public key, which is certified by a valid identity certificate to prove or
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disprove that Bob is the real message sender. A remarkable application which employs
identity certificates is the Pretty Good Privacy (PGP) (PGPi website, 2000), which pro-
vides secure data exchange (especially emails). In addition to its encryption/decryption
functions to preserve the confidentiality of a message, it employs the identity certificates
to provide the function of authenticating the sources of messages.

For formalising digital certificates, Rivest and Lampson (1996) introduced SDSI, a simple
infrastructure for identity certificates where public keys of principals are bound to unique
principal names. Rather than assuming the availability of a global directory of unique
principal names, SDSI allows for local name spaces where principals create their local
names to others. Local names can be linked together to form a longer name referring
to some principal. If for example “smith” refers to a principal by the local name “bob”,
who refers to another principal by the local name “alice”, then “smith” can refer to the
latter by (ref:bob alice).

Ellison et al. (1999) then proposed a variant model called SPKI which extends SDSI
capabilities to allow for attribute certificates in addition to identity certificates. The two
models (SDSI and SPKI) are merged together and currently known as SDSI/SPKI. While
identity certificates bind subjects’ names to their public keys to allow for authentication,
the attribute certificates bind attributes (or authorities) to the subjects’ names for the
purpose of authorization. In some cases both authentication and authorization functions
are required to grant a principal the access to a resource. Here the attribute certificate
provided by a requester must be linked (bound) to the requester’s identity certificate
(which may be issued by a different authority). Different approaches of binding the
attribute and identity certificates are described by Park and Sandhu (2000).

In SDSI/SPKI framework (Ellison et al., 1999), an attribute certificate is also called
authorization certificate if the certified attribute assigned to a subject represents a per-
mission to perform a specific task. In particular, this permission can allow the holder to
issue further authorization certificates to other principals. This implements the notion
of ‘delegating’ an authority from one principal to another. With this mechanism of au-
thority delegation, a set of credentials (certificates) can be linked in a credential chain,
in which a credential is issued by a certifying authority A to a subject B allowing her to
issue another credential to C. By tracing this chain backward to the trusted certifying
authority A, the credential held by C is verified and hence, trust can be established in C.
In other words, the credential chains provides a means for transferring trust transitively
to principals.

3.1.2 Centralised trust management systems

A simplistic approach to establish trust between principals is to employ a (trusted) cen-
tral server mediating between interacting parties. The job of this central server is to
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issue the essential credentials to its registered principals. A traditional protocol which
adopted this approach is Kerberos (Neuman and Ts’o, 1994), which was originally de-
signed to enable principals to authenticate their partners. According to this protocol, a
client wanting to interact with a server submits a request to a central “authentication
server”, which generates a session key and encrypt it twice to produce two separate cre-
dentials called “tickets” both sent to the client. One of these tickets can be decrypted
only by the client while the other can by decrypted only by the server. The client de-
crypts its ticket to uncover the session key, and sends the other ticket to the server which
extracts the session key. Sharing the same session key between the client and server,
enables them to verify the identity of each other by exchanging messages encrypted by
the shared session key.

While the central trust management approach implemented by Kerberos satisfies the
requirement of establishing trust between interacting parties by exchanging credentials,
this approach suffers from the dependency on a central server (the authentication server),
which plays the role of a global certifying authority. Another framework which also re-
lied on central trusted authorities for verifying identities is X.509, which was introduced
by the International Telecommunication Union (ITU). In its update (ITU-T, 1993), the
X.509 authentication framework made a step towards flexibility by basing the trust es-
tablishment on credential chains (also called ‘certification paths’) originating from the
trusted authorities rather than single credentials issued directly by these authorities. De-
spite this remarkable improvement, the assumption of central authorities is still essential
for verifying credential chains.

3.1.3 Decentralised trust management systems

Coping with the limitation of reliance on central authorities, a system called ‘Pretty Good
Privacy’ (PGP) was developed by Zimmermann (PGPi website (2000)) to establish trust
between principals exchanging emails. In PGP, each principal A arbitrarily specifies its
own basic set of trusted principals by holding their identity certificates (possibly signed
by them). Any of these trusted principals e.g. B can also ‘introduce’ another principal
C to A (by issuing an identity certificate for C). As A trusts B, it can also trust C.
Therefore, trust management in PGP is ‘decentralised’ in the sense that the trust in a
principal is assessed based on considering mutual trust between principals rather than
seeking credential chains originating from central authorities.

While PGP could successfully avoid the restriction of central authorities, it is designed
for a specific application, that is to provide privacy in email exchange. A trend of research
has then directed towards building trust management systems which can be used rather
by many applications, and are also decentralised. This problem was first addressed
by Blaze et al. who developed a system called PolicyMaker (Blaze et al., 1996, 1998).
PolicyMaker is a language enabling each principal to specify verified credentials, and
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also policies which describe the conditions of trusting other principals. The function
of PolicyMaker is then to answer queries about the trust in a given principal using
existing policies and credentials. Following PolicyMaker, its authors developed a variant
and simpler system called KeyNote (Blaze et al., 1999). The simplicity of KeyNote is
achieved by identifying principals by public keys rather than names. The problem of
binding public keys to principal names is assumed to be resolved outside KeyNote.

3.1.4 Trust negotiation

By definition, a credential implemented as an identity or attribute certificate, contains
information about the identity of the subject. Therefore, this private information is
disclosed when the credential is exchanged. Furthermore, when the principal issues
a request to access a resource belonging to a server, the server usually provides the
requester with the resource access policy. The disclosure of the policy itself can involve
disclosing sensitive information about the server. For example a server which announce
‘no access’ during a period of time due to maintenance may reflect the vulnerability of
this server to attacks as some protection mechanisms may be disabled in this period.

It would be an important requirement for both the client and server to disclose as
little information as possible (including policies and credentials) to achieve a successful
interaction. The process of establishing the sufficient trust between two parties is known
as trust negotiation (Winsborough et al., 2000). It is an iterative process of exchanging
policies and credentials between two parties to establish mutual trust between them and
hence complete a transaction.

The notion of trust negotiation was initially introduced by Winsborough et al. (2000),
which considers different potential strategies that negotiating principals can use for
exchanging their credentials. In this work, a credential is always protected by a credential
access policy (CAP). That is a negotiating principal can disclose a credential to its
negotiation partner only if the credential’s associated CAP is satisfied. In this respect,
two strategies are presented.

1. The eager strategy, where the principals turn over all their credentials as soon
as their CAPs are satisfied, without waiting for these credentials to be requested.
While this strategy is simple and efficient, it suffers from the drawback that a trust
negotiation can involve disclosing unnecessary credentials.

2. The parsimonious strategy, which is summarised as follows. A principal A receives
a request for a credential CA from the other principal B. After checking the CA’s
CAP, the principal A responds by requesting only the credentials CB (owned by B)
whose disclosures are necessary and sufficient to satisfy the CAP of the previously
requested credential CA. While this strategy is also efficient and tends to minimise
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the credential disclosures (on ‘need-to-know’ basis), it has the drawback of the
necessity of exchanging requests, which may again reveal sensitive information
about principals.

Considering the sensitivity of both credentials and access policies, a system called Trust-
Builder was presented and prototyped by Winselett et al. in Winslett et al. (2002). This
system establishes trust between two parties by devoting a security agent to each party
for handling trust negotiation. A security agent is composed of the following three basic
components:

1. negotiation strategy module, whose function is to determine the next policy or
credential to be disclosed to the other party according the current phase of nego-
tiation.

2. policy compliance checker, which determines the necessary credentials required to
satisfy a policy disclosed by the other party.

3. credential verification module, which verifies the other party’s credentials. This
involves signature validation, revocation check, and credential chain discovery if
needed.

A more recent system implementing trust negotiation is PeerTrust (Nejdl et al., 2004).
In this system, the authors have developed a trust negotiation language which facilitates
describing policies and credentials as first order Horn rules of the following form.

lit0 ← lit1, . . . , litn

where liti is a predicate P(t1, . . . , tm) which may state an attribute of a principal (peer).
The trust negotiation process amounts therefore to resolving together the set of rules
(policies and credential) available to a principal to prove or disprove the trustworthy of
the interacting peer to access a resource. This recursively involves querying only the
relevant rules, which could be provided by different peers. Therefore not more than
sufficient policies/credentials are disclosed to establish trust between two interacting
peers. Note here that the trust negotiation process does not necessarily involve only the
two interacting parties, but can also involve other parties, e.g. the certifying authorities.

Following the same approach of representing policies by logic rules, another trust ne-
gotiation framework called PROTUNE has been introduced by Bonatti and Olmedilla
(2005). The rules of PROTUNE allow for a remarkable class of predicates called ‘provi-
sional predicates’. Unlike other classes of predicates which are evaluated by querying the
current negotiation state of the negotiating peer (the set of true-valued predicates), a
provisional predicate can be made true by performing appropriate actions. An example
of provisional predicates is credential(C,K) which is evaluated to true if the negotiat-
ing peer already has a credential C signed by a principal whose public key is K; if not,
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the predicate credential(C,K) can still be made true by asking the appropriate princi-
pal to provide the credential C. Another example is do(service request), which is made
true if the peer successfully completes an application dependent procedure initiated by
invoking service request.

3.1.5 Security policies and trust languages

While the systems described above in Section 3.1.4 are addressing the problem of formu-
lating policies and credentials, they also describe the mechanisms of exchanging them in
the process of trust negotiation such that the disclosure of sensitive information is min-
imised. Independently, some substantial works have been focused solely on the problem
of formulating security policies resulting in different languages for expressing policies.

A notable system in this area which has been presented by Uszok and his colleagues is
KAoS (Uszok et al., 2003). KAoS provides a set of tools and services intended to specify,
manage, and enforce policies in application domains, where the entities and actions in
the given domain, and also the policies themselves are described as an ontology. In this
ontological representation, a policy is represented as an instance of a particular policy
type with values assigned to the relevant properties, e.g. the action class controlled by
the policy, the policy priority, etc. Basing the definition and management of policies
on ontological representation of the application domain gives KAoS an advantage of
adaptability to different domains.

Rather than using the ontology representation as a basis of specifying security policies,
another approach is to define the policies in the form of logic rules. This approach has
been adopted in many systems including PeerTrust (Nejdl et al., 2004) and PROTUNE
(Bonatti and Olmedilla, 2005) trust management systems which were briefly described
in Section 3.1.4.

In large scale enterprises containing millions of principals, security administration is not
as simple as small enterprises. If each assertion of an access permission to a principal is
specified by a separate policy, the total number of the enterprise policies can therefore
be extremely large to be manageable. Using the fact that many principals are usually
asserted the same set of permissions, a common approach to reducing the number of
policies is known as role-based access control (RBAC) (Sandhu, 1996). A role is simply
a set of permissions which are together asserted to (or revoked from) an entity. A
number of policy specification languages have adopted the RBAC approach, and hence
called role-based languages. An example of such languages is Cassandra (Becker and
Sewell, 2004). Instead of having a separate policy for asserting each single permission
to a principal, one Cassandra policy rule can assign/revoke a set of permissions as
one role to/from principals, given some constraints represented as predicates. This
separates the definitions of roles themselves from the policies, and therefore enhances
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the manageability of the system security.

Independently of expressing security policies, a trend of research has been directed to
formalising and expressing the notion of trust itself, that is defining trust values, and
specification of algorithmic rules assigning these trust values to principals. In this di-
rection Nielsen and his colleagues have described in (Nielsen and Krukow, 2003), and
(Carbone et al., 2003) simple languages which facilitate expressing trust policies. Here, a
trust policy specifies how the trust in a given principal is evaluated. It is notable in this
work that the binary view of trust is generalised. That is, the trust in a principal is not,
in general, restricted to trusted and untrusted, but can be rather drawn from a set of
values ordered in a lattice structure. The authors also make a clear distinction between
the trust policy which specifies how trust is computed, and the security policy which
specifies the decisions made by a principal given its evaluated trust in other principals.

3.2 Probabilistic models for trust

From the overview in Section 3.1, the credential based trust has a binary nature. That
is a principal is either trusted or untrusted to perform an action. Credentials are issued,
as proofs of trust, to a principal if its behaviour is well known, by the issuing authorities,
to comply with specific security obligations. By exchanging credentials between princi-
pals, they can base their mutual interactions on ‘proved’ knowledge about each other’s
behaviour. This trust approach is appropriate in closed networks, where principals have
sufficient information (through credentials) about their peers.

Nevertheless, in modern, large-scale networks (e.g. the Internet), interacting princi-
pals can have autonomously different behaviours and intentions which are incompletely
known by each other. This incomplete knowledge available to principals about each
other makes credentials not the appropriate evidence of trust because no principal is
‘perfectly’ trusted, that is guaranteed to conform to interaction-related policies. How-
ever, the trustworthiness of a principal can be reflected by the history of its interactions
with other principals (interaction history). Based on this idea, an approach of trust has
evolved where a principal (truster) tr evaluates a quantitative measure for its trust in
another principal (trustee) te using te’s interaction history. Note that the trust value
here is not binary as the case in credential-based trust, but rather a number expressing
the level of trustworthiness. This view of trust is known as the computational trust and
also as reputation based trust.

In this dissertation we focus on the notion of probabilistic trust which subsumes the
general category of the computational trust. The probabilistic trust can broadly be
characterised as aiming to build probabilistic models for principals’ behaviours using
the outcomes of historical interactions. Using these models, the trust of a truster tr
in a trustee te is the probability, estimated by tr, of particular outcomes of the next
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interaction with te. This notion of trust resembles the trusting relationship between
humans as seen by Gambetta (1988). In the following we discuss the research work done
in this area.

3.2.1 Beta trust model

As pointed out in Chapter 1, the most important component of any probabilistic trust
model is the behaviour model which is used to estimate the probabilities of future out-
comes. According to the beta trust model introduced by Jøsang and Ismail (2002), and
followed by other works, e.g. Teacy et al. (2006); Mui et al. (2002); Buchegger and
Le Boudec (2004), the behaviour of a trustee te is modelled by a fixed probability distri-
bution Θte over all possible outcomes of an interaction with te. Thus given a sequence
of outcomes h = o1 · · · on, the problem of estimating Θte can be solved by Bayesian
parameter estimation described in Section 2.2.1, where the parameter in this case is the
distribution Θte.

In the beta trust model the outcomes are either success s or failure f. Therefore, Θte

can be represented by a single probability θte, the probability that an interaction with
the given trustee te will be successful. Under the assumption of fixed θte, a sequence of
n outcomes h = o1 · · · on is a sequence of Bernoulli trials, and the number of successful
outcomes in h is probabilistically distributed according to a binomial distribution

P (h consists of k successes) =

(
n

k

)
θk
te (1− θte)

n−k .

It has been shown in the literature (see e.g. Casella and Berger, 2001) that the beta
probability density function (pdf) indexed by the parameters α and β

f (θte | α, β) =
Γ (α + β)
Γ (α) Γ (β)

θte
α−1 (1− θte)

β−1 ,

where Γ is the gamma function, is a conjugate prior to the binomial distribution. That
is if f (θte | αpr, βpr) is chosen as the a priori pdf of θte, then given a sequence h of
outcomes, the resulting a posteri pdf of θte is f (θte | αpost, βpost), the beta pdf with
parameters αpost and βpost, where the a posteri parameters are related to the a priori
ones and the outcome sequence h by the following equations

αpost = #s (h) + αpr and βpost = #f (h) + βpr,

where #s (h) and #f (h) are the numbers of successful and unsuccessful interactions in
h respectively.

Here the estimate for θte, the probability of having successful interaction, is naturally
evaluated as the expected value of θte according to its a posteri pdf. Using the properties
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of the beta pdf, this expected value is given by

E [θte] =
αpost

αpost + βpost
.

Observe that when the a priori pdf is chosen with parameters αpr = 1 and βpr = 1, the a
priori is exactly the uniform pdf which assigns equal likelihood to all values of θte in the
range [0, 1]. Such pdf indicates therefore ‘unbiased’ prior belief about θte, as no value is
more likely than another.

Taking the uniform pdf as the a priori pdf for θte, the parameters of the a posteriori pdf
αpost, βpost are related to the sequence h of outcomes as follows.

αpost = #s (h) + 1 and βpost = #f (h) + 1 ,

and the beta estimate for θte, which we denote by B (s | h), is therefore given by

B (s | h) =
#s (h) + 1

#s (h) + #f (h) + 2
. (3.1)

One advantage of the above model of the trust evaluation is that it encompasses a
mechanism for handling the reputation, i.e. using feedbacks (called reputation reports or
ratings) provided by other network peers (called reputation sources) about the trustee te
under consideration to enhance the trust evaluation process. Given the representation of
te’s behaviour by a fixed probability distribution (parametrised by θte), each interaction
with the trustee is seen as a Bernoulli trial regardless of the interacting partner. The
sequence h in the estimating equation (3.1) is correctly seen, therefore, as the sequence
of the outcomes of all historical interactions with te regardless of its partners in these
interactions. This allows for formulating a reputation report from a reputation source
rs as the pair

(#s (hrs) , #f (hrs)). (3.2)

where #s (hrs) (respectively #f (hrs)) is the count of successful (respectively unsuccess-
ful) interactions between rs and te in the sequence hrs of personal interactions between
rs and te. With a set of reputation reports (provided by different reputation sources), a
truster can evaluate the ingredients of the beta trust equation (3.1), as follows

#s (h) =
∑
rs

#s (hrs) ,

#f (h) =
∑
rs

#f (hrs) .

(3.3)
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3.2.2 Dirichlet reputation model

Following the beta model for trust and reputation, Jøsang and Haller (2007) introduced
the Dirichlet reputation model which is also followed by Nielsen et al. (2007). This
model generalises the beta reputation model such that the outcome of an interaction is
not restricted to be binary (success or failure), but rather takes a value from any set of
discrete rating levels, e.g. {very bad - bad - average - good - excellent}.

Given a set R = {1, 2, . . . , k} of possible outcomes, the Dirichlet reputation model keeps
the assumption that each trustee te has a fixed behaviour represented by a probability
distribution Θte over the set R. That is,

Θte = (θ1, θ2, . . . , θk), (3.4)

where θi denotes the probability that an interaction with te yields outcome i, and∑k
i=1 θi = 1. Similar to the beta trust model, the Bayesian framework is used to esti-

mate the unknown distribution Θte. For this purpose Θte is seen as a (vector) random
variable, for which we seek a (multidimensional) probability density function which can
be updated using given observations.

Given that in Dirichlet reputation model a single outcome is not restricted to be bi-
nary; a sequence h of outcomes is actually a sequence of independent multinomial trials
rather than binomial (Bernolli) trials. Given a sequence h of length n, the probabil-
ity of #1(h),#2(h), . . . ,#k(h) being the numbers of occurrences of outcomes 1, 2, . . . , k

respectively in h is given by the multinomial distribution defined as follows

P (#1(h),#2(h), . . . ,#k(h)) =
n!

#1(h)! #2(h)! . . . #k(h)!

k∏
i=1

θ
#i(h)
i .

It is shown in the literature (see e.g. Gelman et al., 2003) that the following Dirichlet
probability density function (pdf) indexed by the vector parameter α = (α1, α2, . . . , αk)

Dir (Θte | α) =
Γ
(∑k

i=1 αi

)
∏k

i=1 Γ (αi)

k∏
i=1

θi
αi−1 (3.5)

is a conjugate prior to the multinomial distribution, and hence the Dirichlet pdf is chosen
in the Bayesian framework to model the k-dimensional random variable Θte. Specifically,
if Dir (Θte | α) is the a priori pdf of Θte, and h is a given sequence of observations, then
the a posteriori pdf of Θte is Dir (Θte | α′), the Dirichlet pdf with a posteriori parameter

α′ = (α′1, α
′
2, . . . , α

′
k). (3.6)

The a posteriori parameter α′ is related to the a priori one α and the observation
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sequence h by the equation
α′i = #i (h) + αi, (3.7)

where #i (h) is the number of occurrences of outcome i in h, and 1 ≤ i ≤ k. One feature
of the parameter updating mechanism described by Eq. (3.7) is that prior information
about the pdf can be encoded by setting the a priori parameters (α1, α2, . . . , αk). In
particular, using the setting (1, 1, . . . , 1) makes the a priori pdf exactly the uniform
distribution (see Eq. (3.5)), indicating unbiased prior knowledge about Θte.

Since Dir (Θte | α) is a function of multi-dimensional vector Θte = (θ1, θ2, . . . , θk), it is
challenging to be visualised when k > 2. However for the specific case k = 3, Jøsang
and Haller (2007) proposed a convenient method for visualising the Dirichlet pdf. This
method is based on the observation that the constraint θ1+θ2+θ3 = 1 on the elements of
the variable vector Θte, defines the domain of Dir (Θte | α) in the 3-dimensional space
as an equilateral triangle with the corners (1, 0, 0), (0, 1, 0), and (0, 0, 1). Each of these
points indicates the extreme bias of the pdf towards one outcome. Thus the pdf can be
plotted by laying this triangle horizontally and plotting the pdf vertically. Figure 3.1
shows the plot of this function for different values of the parameter α = (α1, α2, α3).

From Eq. (3.7), the a posteriori parameter α′i is obtained by accumulating the number of
experienced occurrences of the corresponding outcome i. This also enables formulating
a reputation report as the vector

(#1 (h) ,#2 (h) , . . . ,#k (h)). (3.8)

Note that the above Dirichlet reputation report generalises the beta reputation report
(3.2). A set of reputation reports for a particular trustee te can be then added to each
other by a truster, which then uses Eq. (3.7) to get the a posteriori parameters of the
trustee’s Dirichlet pdf. By the properties of the Dirichlet pdf, the expected value of the
k-dimensional random variable Θte (described by (3.4)) is evaluated as follows

E[θi] =
α′i∑k

j=1 α′j
.

3.2.3 The TRAVOS model

In TRAVOS (Trust and Reputation model for Agent-based Virtual OrganisationS), de-
scribed by Teacy et al. (2006), the beta trust and reputation model is adopted to evaluate
trust between principals in a multi-agent environment. From the perspective of an agent,
an interaction with another one has two possible outcomes (success or failure). Namely,
an interaction between a truster tr and a trustee te is considered successful by tr if te
fulfils its obligations in the interaction. This model assumes that trustees have fixed
behaviours, that is te fulfils its obligations with a particular probability θte. Based on
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Figure 3.1: The plot of Dirichlet pdf for different values of the parameter α
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this assumption the trust of the truster tr in te is defined to be an estimated value for
θte from the perspective of tr.

The truster tr uses the outcomes of past interactions with te to evaluate its trust in te.
This evaluation is performed using the Bayesian inference. In the inference process (trust
assessment), the truster tr uses not only its own observations from direct interactions
with the trustee te, but also reputation reports (in the form given by (3.2)) collected
from other agents regarding their interactions with te.

While keeping the assumption that each agent has a fixed behaviour (represented by
a fixed probability of yielding successful interactions), TRAVOS made a step forward
by addressing the problem that a reputation report given by a reputation source about
a trustee te may be inaccurate, i.e. the report does not reflect the actual history of
interactions between the source and the trustee te. With respect to this issue, TRAVOS
advised an approach, where a truster tr estimates the probability that a reputation
report is accurate using the source’s past opinions (reports) about the trustee te and the
actual observations made by the truster itself about te. The truster uses this probability
of accuracy to discount the source’s report about te. More details about this approach
of handling inaccurate reports are given by Teacy et al. (2006).

3.2.4 Event-based trust model

In Event-based trust models introduced by Nielsen et al. (2007), the application of
probabilistic trust is generalised to include cases where the outcome of a single interaction
between two principals is a sequence of events rather than one event (success or failure).
A single interaction is seen as a run of the protocol which governs the interaction between
principals. The outcome of an interaction is thus a set of events where each event is
assumed to be probabilistically sampled from potential events enabled at a particular
stage in the protocol run.

Here, the interaction protocol is formally modelled by the notion of probabilistic conf-
usion-free event structure introduced by Varacca et al. (2004). At each particular point
in the protocol run, the set of possible events is called a choice point. An interaction
outcome, called a configuration, is simply a set of events, where each event is probabilis-
tically sampled from a choice point during the protocol run. The probability distribution
at each choice point over its events is assumed to be immutable over time and therefore,
fixed behaviour of principals is assumed.

Based on the above assumption of fixed behaviour, each choice point C is associated
with a fixed probability distribution ΘC over the set of events enabled at C. The trust
in a principal amounts therefore to estimating the probability distribution associated
with each choice point; this enables estimating the probabilities of possible interaction
outcomes (configurations).
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Given the observations (outcomes) of the past interactions with a trustee, the Bayesian
inference framework is used for estimating the distribution ΘC associated with each
choice point C. Since ΘC is defined over a set of multiple events, the procedure of
estimating ΘC for a single choice point C, associated with a trustee, coincides with the
procedure of estimating the parameters of a fixed behaviour trustee using the Dirichlet
reputation model (described above in Section 3.2.2). The difference here is that this
inference procedure has to be performed for each trustee’s choice point.

3.2.5 Exponential decay

It is worth noting that all systems described above have adopted the assumption that
the behaviour of each principal (trustee) is ‘fixed’; that is a principal’s behaviour is
modelled by a fixed probability distribution over the possible outcomes of an interaction
with such a principal. This assumption simplifies both modelling a principal behaviour
(as a probability distribution), and also the process of estimating the parameters of
this behaviour model (using Bayesian inference). However, this assumption represents
a major limitation in the above systems. In fact, a principal can in general change its
behaviour over time. This limitation has been recognised by many works (e.g. Mui
et al., 2002; Teacy et al., 2006; Xiong and Liu, 2004; Jøsang and Ismail, 2002; Buchegger
and Le Boudec, 2004; Nielsen et al., 2007). This is the reason of using the principle
of exponential decay, also known as the ’forgetting’ as introduced by Jøsang and Ismail
(2002).

The exponential decay principle is based on the idea that recent interaction outcomes
reflect the current behaviour of a principal more significantly than old outcomes. Since
the probabilistic trust in a principal corresponds to its current behaviour (as a proba-
bility distribution over possible interaction outcomes), the decay principle is proposed
to reduce (or ‘decay’) the effect of old observations on trust evaluation. This is imple-
mented by associating each outcome with a weight, such that old outcomes are given
less weight than more recent outcomes. More precisely, given an observation sequence
h = o1 o2 . . . on, an outcome oi is given the weight rn−i, where 0 ≤ r ≤ 1 is known as
the decay or forgetting factor. In particular, the oldest outcome o1 is given the weight
rn−1 while the most recent one on is given the largest weight 1. This results in decaying
(forgetting) old outcomes while taking recent ones into account.

With the weighting scheme described above the exponential decay has been introduced
to the beta reputation model by using the sum of weights associated with successes
(respectively failures) in place of the plain count #s(h) of successes (respectively #f(h)
of failures) in a given observation sequence h (see Eq. (3.1)). In the same way, the
mechanism of weighting observations by the decay factor is also applicable to the more
general Dirichlet model (described above in Section 3.2.2). In addition to their intro-
duction of the Dirichlet model, Josang and Haller, detailed in their paper (Jøsang and
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Haller, 2007) the usage of the exponential decay to enhance the model.

Later in Chapter 5 we will provide a detailed analysis for beta trust model with expo-
nential decay scheme in order to evaluate the estimation precision of this model given
a system exhibiting dynamic behaviour. In particular we show that the decay principle
does not improve beta estimation in all cases and it is highly effective when the system
is unlikely to change its behaviour.



Chapter 4

Application of probabilistic trust

to anonymity

This chapter addresses the general question of how trust information is used to maximise
the security and reliability of interactions between principals. The answer to this ques-
tion is straightforward in the case of credential based trust where a principal is either
trusted or not; a principal interacts with another only if they trust each others. In the
case of probabilistic trust, the usage of trust ratings is not of the same simplicity. Here,
trust ratings are represented as probabilities associated with trustees. This implies that
there is always a risk of interaction with any partner. Entire avoidance of the risk means
that a principal rarely interacts with others. A principal needs therefore to trade-off the
risk of interacting with others (depending on his trust in them) and the benefit gained
from such interactions.

In this chapter, we describe incorporating the notion of probabilistic trust in anonymity
protocols which aim at preserving the privacy (anonymity) of network principals. In par-
ticular, we focus on a well known anonymity protocol, called the Crowds. This protocol
is originally proposed by Reiter and Rubin (1998) to provide anonymous web transac-
tions, that is to hide the identity of transaction initiators from an external attacker who
may be monitoring or controlling the target server or another user’s computer.

In the Crowds anonymity protocol, a group of principals cooperate to hide the identity
of each other when sending a message to a server. Instead of delivering the massage to
the server directly, a message takes a random path to the server through the protocol
members, such that each node on the message path does not disclose the identity of
its preceding node. In this sense, a member is ‘honest’ if he follows the anonymity
protocol by forwarding the message to another member, and also not disclosing the
identity of its preceding node in the message path. Otherwise, the member is said to be
‘corrupted’. We also refer to a corrupted member as an attacker. The corruption of a
member can occur when his computer gets infected by a malicious program (e.g. a virus
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or a spyware) downloaded from a remote host. In this case the corrupted member is
monitored (and possibly controlled) by the remote host. Thus, the event that a message
is captured by an infected node implies disclosing the identity of the preceding node (on
the message path) to an attacker. A corrupted member switches back to be honest when
the malicious program is removed (or suppressed) by the member’s security system (e.g.
antiviral software).

The existing specification of the Crowds protocol assumes that a participating member
is either always ‘honest’ or always ‘corrupted’. Based on this assumption, the analysis
given by Reiter and Rubin (1998) shows that this protocol provides a level of anonymity
(privacy) called probable innocence if the number of corrupted members is under certain
limit. In this chapter we adopt a more realistic assumption that when a member receives
a message, he behaves honestly with a certain probability. This probability depends
therefore on the robustness of the member’s security system, such as the strength of his
firewall, the quality of his anti-virus system, and so on. Here the role of probabilistic
trust comes to light as it refers to the probability that a principal follows the agreed
interaction protocol. In the case of Crowds, the probabilistic trust in a member, is
therefore an estimate for his probability of being honest.

Trust rating (or simply, the trust) in a given member is determined by a trust manage-
ment module according to the available evidence about the trustee. This evidence can
be, for example, information about the anti-malware system employed by the member.
Using benchmark data or market reviews (reputation) of such a system, the trust in
it, and hence in the employing trustee can be evaluated. In doing so, the trust man-
agement module consults certain authorities, e.g. AV-Comparative (http://www.av-
comparatives.org/en/home), which publish the results of testing different anti-malware
systems against samples of malicious codes. Using such results, the likelihoods (trust
values) of such systems to prevent attacks are estimated. Additionally, the malicious
behaviour of a corrupted member may be also reflected by observables, e.g. delaying or
blocking the messages forwarded to him for the purpose of lowering the reliability of the
protocol. Such observables, if available to the trust management module, can contribute
to the trust evaluation.

Under the assumptions of probabilistic behaviour of individual protocol participants,
and the availability of trust information about them, we extend the specification of the
Crowds protocol to utilise the available trust information about each participant. Then,
through the analysis of the extended protocol (referred to as Crowds-trust) we describe
how the parameters of the protocol can be adjusted based on the given trust values to
provide a desirable level of anonymity to each participating member. The results of this
chapter have been also presented in our recent paper (Sassone et al., 2010).
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4.1 Anonymity protocols

The objective of any anonymity protocol is to hide aspects of the communication between
a user and a server (receiver). According to Pfitzmann and Waidner (1987), three
anonymity properties can be provided by an anonymity protocol: sender anonymity,
meaning that the identity of a message sender is hidden; receiver anonymity, meaning
that the identity of a message receiver is hidden, and unlinkability of sender and receiver,
meaning that the fact that a sender and receiver are communicating with each other is
hidden though each of them can be identified to be engaged in some communication.

This chapter specifically considers the protocols providing sender anonymity. The objec-
tive of these protocols is to conceal the identities of users interacting with target servers
from eavesdroppers who try to identify these users based on observations. An eavesdrop-
per can be the target server receiving a message from the user, or an intermediate node
in the path between the user and the server. While the content of a message sent by
the user can be protected using encryption techniques, it is not straightforward to hide
the identity of the sending user from the server. Namely, If a user forwards its message
directly to the server, the network address of the sender is exposed to the server, and
hence the user is identified (assuming the owner of the address is known by the server).

The first approach to hide senders’ identities from servers was to employ an additional
party (a proxy), which receives messages from the users and direct them to the desti-
nation servers. Examples for system using this approach include some web sites (e.g.
www.anonymizer.com), and the Lucent’s Personal Web Assistant (Gabber et al., 1997).
Indeed the major disadvantage of this approach is it suffers from a single point of fail-
ure. If the proxy is hijacked by an attacker, the anonymity of all users is broken. The
Crowds protocol (Reiter and Rubin, 1998) is then designed so that a user message is
directed to the server through a random path of users, rather than a single proxy. This
does not only hides the identity of the message originator from the end server, but also
from an attacker controlling an intermediate node in the message path.

4.1.1 Analysis framework and notations

The anonymity protocols can be seen as an instance of the the more general information-
hiding protocols designed to hide a certain fact (secret) from an observer (attacker)
who tries to infer the fact from observations resulting from the protocol runs. An
information-hiding protocol aims therefore at weakening the linkage between the fact
and its dependent observables. In the case of the sender anonymity, the secret is the
identity of a user initiating a transaction, while the related observable depends on the
protocol itself and the type of attack. If, for instance, the attacker controls (or monitors)
a ‘corrupted’ node j in the message path to the server, the observable can be the identity
of the node which forwards the message to j.
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In this chapter we adopt a general analysis framework commonly used in probabilis-
tic approaches to anonymity and information flow (e.g. Halpern and O’Neill, 2005,
Chatzikokolakis et al., 2008a, Malacaria and Chen, 2008, and Smith, 2009). In this
framework, the identity of a message initiator is called the anonymous input to the
protocol, and modelled by a random variable A ranging on a set A of finite values. A
protocol run results also in an observable which is modelled by a random variable O

ranging on a finite set O of finite values. A protocol is then represented by the matrix of
the conditional probabilities P (O = oj |A = ai) (or simply P (oj | ai)). The probability
P (oj | ai) is the probability of observing oj given that the anonymous input is ai, where
oj ∈ O and ai ∈ A.

It is assumed that the anonymous ‘random’ input (the value of A) is generated according
to an a priori publicly-known probability distribution. An adversary or eavesdropper
can see the output (observable) O of a protocol, but not the input. He is then interested
in deriving the value of the input from the observed output.

4.1.2 Quantifying anonymity

Based on the above probabilistic framework, an attacker may not have ‘certain’ knowl-
edge about the value of the protocol’s hidden input A (e.g. the sender’s identity).
However, he could, using an observed output, oj , to calculate a subjective probability
distribution over the set A of possible values of A. That is to calculate the conditional
probabilities P (ai | oj), the probability of ai being the input value given that the output
oj is observed, for all ai ∈ A. This conditional probability distribution has been used
in some works (e.g. Reiter and Rubin, 1998, Halpern and O’Neill, 2005) to quantify
the anonymity of a given protocol. Regarding ai as the event that a user i initiates a
transaction, the lower is P (ai | oj), the higher level of anonymity is provided to ai.

A notable trend of research goes also to use information-theoretic concepts to quantify
the quality of information hiding and anonymity protocols in the above probabilistic
setting (e.g. Shmatikov and Wang, 2006; Chatzikokolakis et al., 2007, 2008a,b; Bhargava
and Palamidessi, 2005; Malacaria and Chen, 2008; Hamadou et al., 2010). In these
works, information ‘leaked’ to an observer is quantified as the loss of uncertainty about
protocol inputs, due to an observation. Here the uncertainty about the hidden input
A before and after an observation O is modelled respectively by the entropy H(A)
and conditional entropy H(A |O) of the random variable A. The difference I(A ; O) =
H(A)−H(A |O), known as the mutual information between A and O, is then used to
quantify the information leaked to the observer due to O. The formal definitions and
properties of the entropy, conditional entropy, and mutual information can be found in
e.g. (Cover and Thomas, 2006).

As the main concern in this chapter is about incorporating trust in anonymity proto-
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cols, we adopt the former (and simpler) approach where the anonymity of a user i is
determined by the probability P (ai | oj), the probability that i is the message initiator,
given that an observable oj is detected by an observer.

4.1.3 The Crowds protocol

Crowds is a protocol proposed by Reiter and Rubin (1998) to allow Internet users
performing anonymous web transactions by protecting their identities as originators of
messages. The central idea to ensure anonymity is that the originator forwards the
message to another, randomly-selected user, which in turn forwards the message to
another user, and so on until the message reaches its destination (the end server). This
routing process ensures that, when a user is detected sending a message, there is a
substantial probability that he is simply forwarding it on behalf of somebody else.

More specifically, a crowd is a fixed number of users participating in the protocol. Some
members (users) in the crowd may be corrupted (the attackers), and they can collaborate
in order to discover the originator’s identity. The purpose of the protocol is to protect the
identity of the message originator from the attackers. When an originator –also known
as initiator– wants to communicate with a server, he creates a random path between
himself and the server through the crowd by the following process.

• Initial step: the initiator selects randomly a member of the crowd (possibly him-
self) and forwards the request to him. We refer to the latter user as the forwarder.

• Forwarding steps: a forwarder, upon receiving a request, flips a biased coin. With
probability 1 − pf he delivers the request to the end server. With probability pf

he selects randomly a new forwarder (possibly himself) and forwards the request
to him. The new forwarder repeats the same forwarding process.

The response from the server to the originator follows the same path in the opposite
direction. Each user (including corrupted users) is assumed to have only access to
messages routed through him, so that he only knows the identities of his immediate
predecessor and successor in the path, and the server. Figure (4.1) shows the operation
of Crowds, where a message originated by the user 2 follows a random path through
the users 1, 3, 3, 8, 9 to the target server 2. Note that in this run of the protocol, the
user 3, randomly, chose himself as the next forwarder.

4.1.4 Probable innocence

Reiter and Rubin (1998)) proposed a hierarchy of anonymity notions in the context
of Crowds. These range from ‘absolute privacy,’ where the attacker cannot perceive
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Figure 4.1: A message path in the Crowds protocol

the presence of communication, to ‘provably exposed,’ where the attacker can prove the
sender and receiver relationship. Clearly, as most protocols used in practice, Crowds

cannot ensure absolute privacy in presence of attackers or corrupted users, but can only
provide weaker notions of anonymity. In particular, in (Reiter and Rubin, 1998) the
authors propose an anonymity notion called probable innocence and prove that, under
some conditions on the protocol parameters, Crowds ensures the probable innocence
property to the originator. Informally, they define it as follows:

A sender is probably innocent if, from the

attacker’s point of view, the sender appears

no more likely to be the originator than to

not be the originator.

(4.1)

In other words, the attacker may have reason to suspect the sender being more likely
than any other potential sender to be the originator, but it still appears at least as likely
that he is not.

Let n be the number of users participating in the protocol and let c and m be the num-
ber of the corrupted and honest users, respectively, with n = m + c. Since anonymity
makes only sense for honest users, we define the set of anonymous events as A =
{a1, a2, . . . , am}, where ai indicates that user i is the initiator of the message.

As it is usually the case in the analysis of Crowds, we assume that when a message
is received by a corrupted member, he forwards it immediately to the end server, since
forwarding it any further cannot help him learn anything more about the identity of the
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originator. Thus in any given path, there is at most one detected user: the first honest
member to forward the message to a corrupted member. Therefore we define the set of
observable events as O = {o1, o2, . . . , om}, where oj indicates that user j forwarded a
message to a corrupted user. In this case it is also said that user j is detected by the
attacker.

In (Reiter and Rubin, 1998), the authors formalize their notion of probable innocence
via the conditional probability P (I |H) that the initiator is detected given that any user
is detected at all. Here H denotes the event that there is an attacker in the path, and I

is the event that it is precisely the initiator (as a node in the path) who forwarded the
message to the attacker.

Precisely, probable innocence holds if P (I |H) ≤ 1
2 . In the setting, described by Section

4.1.1, this probability can be written as
∑

i P (oi | ai, H) P (ai |H). Since the Crowds

protocol is symmetric, i.e. each initiator has the same probability of being detected, the
probability P (oi | ai, H) is the same for all users i. Therefore, the notion of probable
innocence used by Reiter and Rubin (1998) (i.e. P (I |H) ≤ 1

2) translates in our setting
as:

∀i. P (oi | ai,H) ≤ 1/2 (4.2)

It is shown by Reiter and Rubin (1998) that, in Crowds, the following holds:

P (oj | ai,H) =

{
1− m−1

n pf j = i
1
n pf j 6= i

(4.3)

Therefore, probable innocence (4.2) holds if and only if

m ≥ c + 1
pf − 1

2

pf

As previously noticed in several papers (e.g. Chatzikokolakis and Palamidessi, 2006),
there is a mismatch between the idea of probable innocence expressed informally in (4.1)
and the property actually proved by Reiter and Rubin, cf. (4.2). The former, indeed,
seems to correspond to the following interpretation given by Halpern and O’Neill (2005):

∀i. P (ai | oi) ≤ 1/2 (4.4)

The properties (4.2) and (4.4) however coincide under the standard assumption in
Crowds that the a priori distribution is uniform, i.e. that each honest user has equal
probability of being the initiator.

Finally it is remarkable that the concept of probable innocence was recently generalised
by Hamadou et al. (2010). Instead of just comparing the probability of being innocent
with the probability of being guilty, the paper considers the degree of the probability of
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being innocent. Formally, given a real number α ∈ [0, 1], a protocol satisfies α-probable
innocence if and only if

∀i. P (ai | oi) ≤ α (4.5)

Clearly α-probable innocence coincides with the standard probable innocence for α =
1/2.

4.2 Using trust information

The existing analysis of Crowds by Reiter and Rubin (1998) as well as other works
on anonymity assumes that participants in the protocol are divided into two classes:
honest members who always behave correctly and the bad guys or attackers who try
to break the protocol. Obviously, the clear separation between honest (‘trustworthy’)
members and attackers makes the analysis easier. However, this is clearly not a realistic
assumption for open and dynamic systems in the era of ubiquitous computing. In such
systems, a principal is not always guaranteed to behave honestly. Precisely, there is
always a probability that a principal gets corrupt, and violates the agreed protocol. This
calls for using the probabilistic notion of trust to reason about users behaviours, where
the probabilistic trust in a user is an estimated probability that he behaves correctly
(honestly).

In this section, the Crowds protocol is reformulated under the novel scenario where
each user behaves honestly with a certain probability, which is given by a trust value
associated with this user. Trust values for individual users are assumed to be computed
by a separate trust management module. We then study the effect of such probabilistic
behaviours of users on the anonymity properties of the protocol.

4.2.1 Crowds protocol extended

We now extend the Crowds protocol to take into account the trust levels of its par-
ticipating members. We associate a trust level tij ∈ [0, 1] to each pair of users i and
j to indicate the trust of user i in user j. Here tij denotes the probability that when
the principal i chooses principal j as a forwarder, j behaves honestly and protects i’s
identity. Accordingly each user i defines his policy of forwarding to other members (in-
cluding himself) based on his trust in them. A policy of forwarding for a user i is a
probability distribution {qi1, qi2, · · · , qin}, such that for all i,

∑n
j=1 qij = 1. Here qij

denotes the probability that j is chosen as a forwarder by i (given that i has decided to
forward the message).

Defining trust at an individual level as described above is certainly desirable in general.
However for some applications – specifically the Crowds protocol – it is more reasonable



Chapter 4 Application of probabilistic trust to anonymity 59

to consider a global notion of trust where trust in a user is common for everybody. In
other words tij = tkj for all i and k. Indeed, in the case of the Crowds protocol,
we want a trust in a user to reflect her robustness to being corrupted (a.k.a. infected).
Allowing each member to adopt his own level of trust would make the value of trust
subjective and could hardly reflect the user’s actual robustness against corruption.

It is therefore assumed that a trust in a user is global. Its value could be established
cooperatively by all members of the crowd or by a local authority (the blinder in case
of the Crowds protocol) based on evidence provided by the user. Accordingly, in the
rest of this chapter, we will simply write ti to denote the trust level of user i. Similarly
we require that the policy of forwarding to be common to all members of the ‘crowd’.
In other words, every participant treats any given user in the same way, as all of them
have the same trust in him. We therefore write {q1, q2, · · · , qn} to represent the common
forwarding policy.

Under these assumptions we now extend the protocol. When an initiator wants to
communicate with a server, he creates a random path between himself and the server
through the crowd by the following process.

• Initial step: with probability qj the initiator selects a member j of the crowd (pos-
sibly himself) according to the policy of forwarding {q1, q2, · · · , qn} and forwards
the request to him. We refer to the latter user as the forwarder.

• Forwarding steps: a forwarder, upon receiving a request, flips a biased coin. With
probability 1 − pf he delivers the request to the end server. With probability
pf × qk he selects a new forwarder k (possibly himself) and forwards the request
to him. The new forwarder repeats the same forwarding process.

4.2.2 Probable innocence revisited

In order to study the anonymity provided by the extended protocol, we first establish
our hypotheses of analysis. As in Section 4.1.4, we assume that corrupted members
will always deliver a request to forward immediately to the end server, since forwarding
it any further cannot help the attacker learn anything more about the identity of the
originator. Consequently when an infected user initiates a transaction, his message is
directly delivered to the end server.1

It is also assumed that the anonymous paths from users to servers are one-way. That is,
we do not consider the cases where there might be responses from servers to users which
would normally follow the same paths in reverse direction. Under these assumptions
there is always at most one corrupted member appearing on a path and corrupted
members always occupy the last position in the paths. Had we considered the reverse

1His anonymity is broken at the start, so there is no need to continue the anonymity protocol.
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direction too, there would be members appearing in a path while being not infected in
the forward direction, become corrupted by the time they receive the response from the
server. Hence they would report their predecessor as detected members, because these
are closer in the path to the initiator than the member detected in the forward direction.
We leave this significant case for future work.

Finally, while the analysis of the original Crowds considers the anonymous actions and
observables (detections) of only honest users, each user i, in our current analysis, has
probability ti of being honest when he initiates a request. Thus we extend the set of
anonymous events ai and observable events oi to the whole set of participating members.

Under these assumptions we study the privacy level ensured to each member participat-
ing in the protocol. This privacy level is indicated by the probability P (ai | oi), which
can be written as

P (ai | oi) =
P (ai, oi)
P (oi)

(4.6)

We first evaluate the denominator in the above expression. Let Hk be the event that the
first corrupted node in the message path to the server occupies the kth position, where
k ≥ 0. Note that H0 means that the initiator himself is corrupted.

P (oi,Hk) =



1
n(1− ti) k = 0

1
n ti
∑n

j=1 qj(1− tj) k = 1

∑n
j=1

1
n tj

(∑n
j=1 qjtj

)k−2
·

qiti

(∑n
j=1 qj(1− tj)

)
· pk−1

f k ≥ 2

(4.7)

The above equation for the case k ≥ 2 is implied by the fact that the message is initiated
by any honest participant, forwarded to k − 2 honest principals before it is passed to
the detected principal i, and finally to a corrupted one. For convenience, we will write
T =

∑n
j=1 qjtj and S =

∑n
j=1 tj . Since the joint events {oi,Hk}, for k ≥ 0 are mutually

exclusive, we evaluate P (oi) as follows.

P (oi) =
∞∑

k=0

P (oi,Hk)

=
1
n

(1− ti) +
1
n

ti(1− T )

+
∞∑

k=2

1
n

ST k−2 · qiti (1− T ) · pk−1
f

=
1
n

(
1− tiT + Spfqiti

(
1− T

1− pfT

))
(4.8)

From Equation (4.8), it is worth noticing that P (oi) = 0 only if T = 1 and ti = 1.
Observe that T = 1 means that tj = 1 for all participants j where qj 6= 0, i.e., all
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forwarders are always honest. In this case i is never detected by any forwarder. If
moreover ti = 1, the principal i is never detected by himself. Thus in the case where
T = 1 and ti = 1 the principal i is never detected by any corrupted node.

Now we turn to evaluating the probability P (ai, oi) appearing as the numerator in Equa-
tion (4.6). To such purpose, we first formulate the probability P (ai,Hk, oi), i.e., the
probability that i is the initiator and is also detected by a corrupted node at position k

in the message path.

P (ai,Hk, oi) =



1
n(1− ti) k = 0

1
n ti
∑n

j=1 qj(1− tj) k = 1

1
n ti

(∑n
j=1 qjtj

)k−2
·

qiti

(∑n
j=1 qj(1− tj)

)
· pk−1

f k ≥ 2

(4.9)

Similar to the argument of Equation (4.7), the formula in the case k ≥ 2 is implied by the
fact that the message is initiated by the principal i, forwarded to k−2 honest principals
before it is passed back to i, and finally to a corrupted principal. Since the joint events
{ai,Hk, oi}, for k ≥ 0 are mutually exclusive, we evaluate P (ai, oi) as follows.

P (ai, oi) =
∞∑

k=0

P (ai,Hk, oi)

=
1
n

(1− ti) +
1
n

ti(1− T )

+
∞∑

k=2

1
n

tiT
k−2 · qiti (1− T ) · pk−1

f

=
1
n

(
1− tiT + pfqit

2
i

(
1− T

1− pfT

))
(4.10)

Assuming P (oi) 6= 0, we substitute Equations (4.8) and (4.10) in Equation (4.6), and
we therefore get,

P (ai | oi) =
1− tiT + pfqit

2
i

(
1−T

1−pf T

)
1− tiT + Spfqiti

(
1−T

1−pf T

) (4.11)

From Equation (4.11), we observe that for a detectable principal i (i.e., P (oi) 6= 0),
it holds that P (ai | oi) > 0. That is, there is always a non zero probability that i is
the initiator if he is detected. This confirms the fact that Crowds never achieves the
highest degree of anonymity known as absolute privacy described by Reiter and Rubin
(1998).



62 Chapter 4 Application of probabilistic trust to anonymity

4.2.3 Provably exposed principals

It would also be interesting to investigate the conditions under which the protocol can
only ensure the degree of anonymity known as provably exposed to a given principal i.
This degree of anonymity, defined by Reiter and Rubin (1998), represents the lowest level
of anonymity where an attacker can prove the identity of the message initiator. This
happens when i is the only possible initiator, given that i is detected, i.e. P (ai | oi) = 1.
These conditions are precisely stated by the following proposition.

Proposition 4.1 (Provably exposed). For all user i such that P (oi) 6= 0, we have
P (ai | oi) = 1 if and only if one of the following conditions holds:

1. pf = 0

2. ti = 0

3. qi = 0

4. T = 1

5. S = ti

Proof. Solving the following equation P (ai | oi) = 1 using the formula given by Equation
(4.11) yields only the above conditions.

The following paragraphs discuss the meaning of these results. First note that pf = 0
means that the initiator picks his first forwarder (if he is not already corrupted) according
to the forwarding policy {q1, · · · , qn} (initial step of the protocol) who has to directly
deliver the message to the end server regardless of his being corrupted or not. Thus, in
this case a path is always at most of length 2 (not counting the end server). Hence, i

can only be detected at position 0 (by himself if he is initially corrupted) or at position
1 by his forwarder when the latter is corrupted. Therefore in both cases i is the only
possible initiator. That is if a principal i is detected then he must be the initiator.

In the case where ti = 0, i is always corrupted and therefore when he initiates a message,
he will detect himself and deliver the message directly to the end server (by assumption).
Hence nobody except himself will detect him. Thus i is detected if and only if he is the
initiator.

Consider the case where qi = 0, that is i is never chosen as a forwarder. In this case,
similar to the case pf = 0, i can be detected only at position 0 (by himself if corrupted),
or at position 1 if he forwards his message to a corrupted user. Indeed, when a corrupted
node detects i, he is sure that i is the initiator because it can never be a forwarder.
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The case T = 1 happens if and only if tj = 1 for all qj 6= 0, that is only ‘permanently’
honest members can be chosen as forwarders. In this case also, i is detected only if he
initiates a message and he is corrupted at the same time. Hence he detects himself.
Thus detecting i implies that i is the initiator.

Finally, suppose that S = ti. Here tj = 0 for all j 6= i, that is all participants other than
i are permanently corrupted. In this case if i is detected then he is the only possible
initiator because otherwise the initiator would be detected by himself at level 0 and
hence i is not detected. Therefore, in this case, if i is detected, he must be the initiator.

It is worth noticing that the original Crowds protocol is the protocol obtained by
assuming that each principal i is either always honest or always corrupted, i.e., ti ∈
{0, 1}, and by choosing a uniform forwarding policy, that is for all j,

qj =
1
n

.

Thus when the number of corrupted principals is c, we have

T =
n∑

j=1

qjtj =
n− c

n
,

and

S =
n∑

j=1

tj = n− c .

By substituting the values of qj , T and S in Equation (4.11) for a honest initiator i

(ti = 1), we get

P (ai | oi) = 1− pf

(
n− c− 1

n

)
.

The above expression is the same expression derived by Reiter and Rubin (1998) for the
original Crowds and given by Equation (4.3).

4.3 Achieving probable innocence

For any fixed number of principals n, the extended protocol described in the previous
section has three main parameters: the forwarding probability pf , members’ trust values
{t1, · · · , tn}, and the forwarding policy {q1, · · · , qn}. This section studies how each of
them affects the anonymity of the participating members. We begin by the probability
of forwarding pf .
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4.3.1 Probability of forwarding

The following result states that for fixed trust values {t1, · · · , tn} and forwarding policy
{q1, · · · , qn}, the probability P (ai | oi) for any participant i is a monotonically decreasing
function with respect to the forwarding probability pf .

Theorem 4.2 (Monotonicity).

∀i. ∂P (ai | oi)
∂pf

≤ 0.

Proof. By differentiating P (ai | oi), given by Equation (4.11), with respect to pf we
have

∂P (ai | oi)
∂pf

=
ti qi (1− T ) (1− tiT ) (ti − S)

((1− pfT )(1− tiT ) + pfSqiti(1− T ))2
(4.12)

Given that 0 ≤ tj ≤ 1 for any principal j, and T =
∑n

j=1 qjtj , we have 0 ≤ T ≤ 1 and
0 ≤ tiT ≤ 1. We have also ti ≤ S, because S =

∑n
j=1 tj . Thus,

∂P (ai | oi)
∂pf

≤ 0

That is P (ai | oi) is either fixed or decreasing with respect to pf .

From Equation (4.12) above, P (ai | oi) is fixed irrespective of pf if and only if i is
always corrupted (ti = 0), i is never used as a forwarder (qi = 0), all forwarders are
honest (T = 1), or all participants other than i are corrupted (S = ti). It has been
shown by Proposition 4.1 in the previous section that P (ai | oi) = 1 in these cases.

Theorem 4.2 justifies using a high value of pf as it decreases the probability of identifying
the initiator and therefore enhance his privacy. However, large pf implies that the
message path to the server is longer and therefore the performance of the protocol is
degraded. Thus a trade-off is required for choosing the forwarding probability pf .

Corollary 4.3 (Anonymity range).

∀i. 1 ≥ P (ai | oi) ≥ 1−
qiti

∑n
j 6=i tj

1− ti
∑n

j 6=i qjtj + qiti
∑n

j 6=i tj

Proof. By Theorem 4.2, and taking into account that 0 ≤ pf ≤ 1, the above range for
P (ai | oi) is obtained by substituting pf = 0 and pf = 1 in Equation (4.11).

The above corollary describes the range of the probability that a principal i is the
initiator given that i is detected. Note that with pf = 0, any initiator i is provably
exposed to the attacker (i.e. P (ai | oi) = 1), by Proposition 4.1. Taking pf = 1, on the
other end, minimizes P (ai | oi), but in this case the message never reaches the server.
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4.3.2 Trust values

We now turn our focus to the trust values. Observe that the anonymity of a member i,
indicated by P (ai | oi), is affected by the trust values tj of all participating members.
Therefore, the above lower bound can be used as a criterion to decide whether a new
member i is accepted to join the network or not based on his trust ti. For instance, such
a criterion can be chosen to achieve the α-probable innocence according to the following
theorem.

Theorem 4.4 (α-probable innocence). Let α ∈ [0, 1] be a positive value. If

∀i.
qiti

∑n
j 6=i tj

1− ti
∑n

j 6=i qjtj + qiti
∑n

j 6=i tj
≥ 1− α

then the extended protocol ensures α-probable innocence to all its participating members.

Proof. Results from Corollary 4.3 and Definition (4.5).

4.3.3 Forwarding policy.

We now propose a strategy for choosing a forwarding policy {q1, · · · , qn} based on the
trust information {t1, · · · , tn} in order to achieve α-probable innocence for a given de-
gree of privacy α. The main idea is that the forwarding probabilities qj are adjusted
depending on the given trust information tj .

Choosing the forwarding policy qi for a given user i can then be done by maintaining the
lower bounds of P (ai | oi) below a chosen threshold α, i.e. by achieving α-probable in-
nocence. By Theorem 4.4 the plausible values of qi are obtained by solving the following
system of linear inequalities.

1− α ≤
qiti

∑n
j 6=i tj

1− ti
∑n

j 6=i qjtj + qiti
∑n

j 6=i tj
1 ≤ i ≤ n

1 =
n∑

i=1

qi

Example 4.1. Consider an instance of the Crowds-Trust protocol where three principals
are involved. Let the trust values in these principals be:

t1 = 0.70, t2 = 0.97, t3 = 0.99
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Solving the above problem for α = 1
2 yields the two solutions:

0.2479 ≤ q2 ≤ 0.2620

1.1411− 3.4138 q2 ≤ q3 ≤ 0.5479− 1.0206 q2

q1 = 1− q2 − q3

and

0.2620 ≤ q2 ≤ 0.3074

0.3197− 0.2784 q2 ≤ q3 ≤ 0.5479− 1.0206 q2

q1 = 1− q2 − q3 .

Thus the following forwarding distribution satisfies the 1
2 -probable innocence:

q1 = 0.4575, q2 = 0.2620, q3 = 0.2805 .

However, if the uniform distribution is used (as in the original Crowds protocol), i.e.,
q1 = q2 = q3 = 1

3 , probable innocence is not achievable because the minimum value
of P (a1 | o1) according to Corollary 4.3 is 0.543, which is greater than 1

2 . Note that
the above set of constraints are not always solvable, in which case the required level of
anonymity cannot be provided to all members.

In the above example, observe that the forwarding policy increases the frequency at
which the less reliable user 1 will be involved in a message path. This makes it hard for
an attacker detecting 1 to identify him as the initiator, because the attacker knows that
1 frequently forwards messages for others, and hence it is substantially probable that
the initiator is another user. This compensates the relatively high probability (0.3) of
1 being detected by himself. However, the higher security for 1 is of course achieved at
the price of a lower overall security for other, more reliable, users (2 and 3). Namely,
forwarding their messages to the least reliable member (1) makes them more probable
to be detected by 1. Thus the above policy which grants a specific level of anonymity to
all users can be seen as a ‘social’ approach to crowds membership. The flexibility of the
extended protocol means that the forwarding policy can be chosen to provide a lower
degree of anonymity to a subset of the members to guarantee probable innocence to a
larger crowd (‘social strategy ’), or to reject principals having the low trust values who,
therefore, exhibit a greater threat to others (‘rational strategy ’).

4.4 Discussion

In this chapter we presented an application of the probabilistic trust to satisfy an impor-
tant security property, that is the anonymity of network users. In particular, we focused
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on the Crowds anonymity protocol and asked the question of how its existing analy-
ses are affected by postulating the presence of principals with probabilistic behaviours.
This amounts to providing each member i of the crowd with a probabilistic trust value
ti denoting the probability of i being honest (conforming with the protocol). The trust
value ti indicates also the robustness of i against corruption. As the focus in this chapter
is to illustrate the usage of trust values rather than inferring them, it is assumed that
these values are already given by a separate trust management module.

For allowing using trust values, the Crowds is extended to associate each user i a
preference level of forwarding qi denoting the probability of choosing him as the next
forwarder in the routing process. This allows for specifying the probabilities qi, as the
interaction policy, according to the participants trust values.

Given the probability of forwarding pf , a level of anonymity α, and the trust levels
t1, t2, · · · , tn of the crowd’s members, we have identified the conditions on the probability
of choosing a forwarder which are necessary to achieve α-probable innocence. Thus, in
the presence of untrusted members, the protocol users can exploit these results to derive
an interaction policy q1, q2, · · · , qn, if there exists any, that ensures them a level of
satisfactory anonymity.





Chapter 5

Estimation error of Beta trust

model with a decay scheme

As described in Chapter 1, the main objective of any probabilistic trust model is to
estimate the probability distribution over potential outcomes of the next interaction with
the principal under consideration (trustee). We refer to this probability distribution as
the predictive probability distribution. In the basic Beta trust model (Section 3.2.1), the
behaviour of a trustee is represented by a fixed probability distribution Θ over potential
interaction outcomes. While such a representation of a trustee’s behaviour simplifies
the inference of trust values, this representation is not always realistic. Namely, the
probability that a trustee interacts positively with its partners may change over time
depending on the trustee’s internal state(s); that is, a principal may exhibit dynamic
behaviour when it interacts with others.

For this reason, the exponential decay (described in Section 3.2.5) has been proposed by
Jøsang and Ismail (2002) to cope with principals dynamic behaviours. In this chapter
we aim to address the issue of whether and when exponential decay may be an optimal
technique for reasoning about principals dynamic behaviours. For this purpose, we
model a principal’s dynamic behaviour by a Hidden Markov Model (HMM) (described by
Section 2.5), where the probability distribution Θ over observables is allowed to change
according to state transitions rather then being fixed. Using this representation, we
study the estimation error induced by using the Beta model enhanced with exponential
decay to estimate the predictive probability distribution.

Under certain conditions on principals’ behaviours, namely that their probabilistic state
transition matrices are ergodic, we derive an analytic formula for the estimation er-
ror, which provides a first formal tool to assess precision and usefulness of the decay
technique. Also, we illustrate the obtained results by deploying it in an experimental
setting to show how the system stability, as a measure for state transition frequency, has
a dramatic impact on the precision of the Beta trust model enhanced by exponential

69
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decay. The analysis and results obtained in this chapter are also presented in our paper
ElSalamouny et al. (2009).

5.1 The exponential decay principle

One purpose of the exponential decay principle is to improve the responsiveness of the
Beta model to principals exhibiting dynamic behaviours. The idea is to scale by a
constant 0 < r < 1 the information about past behaviour, viz., #o(h) 7→ r ·#o(h), each
time a new observation is made. This yields an exponential decay of the weight of past
observations, as in fact the contribution of an event n steps in the past will be scaled down
by a factor rn. Qualitatively, this means that picking a reasonably small r will make the
model respond quickly to behavioural changes. Suppose for instance that a sequence of
five positive and no negative events has occurred. The unmodified Beta model would
yield a Beta pdf with parameters α = 6 and β = 1, predicting the next event to be
positive with probability higher than 0.85. In contrast, choosing r = 0.5, the Beta model
with exponential decay would set α = 1+31/16 and β = 1. This assigns probability 0.75
to the event that the next interaction is positive, as a reflection of the fact that some
of the weight of early positive events has significantly decayed. Suppose however that a
single negative event occurs next. Then, in the unmodified Beta model the parameters
are updated to α = 6 and β = 2, which still assign a probability 0.75 to ‘positive’ events,
reflecting the relative unresponsiveness of the model to change. On the contrary, the
model with decay assigns 63/32 to α and 2 to β, which yields a probability just above
0.5 that the next event is again negative. So despite having observed five positive events
and a negative one, the model with decay yields an approximately uniform distribution,
i.e., it considers positive and negative almost equally likely in the next interaction.

Of course, this may or may not be appropriate depending on the application and the
hypotheses made on principals behaviours. If on the one hand the specifics of the ap-
plication are such to suggest that principals do indeed behave according to a single,
immutable probability distribution Θ, then discounting the past is clearly not the right
thing to do, because all past outcomes are sampled from the same distribution Θ, and
therefore discounting past outcomes imposes inefficiency in learning Θ. If otherwise
one assumes that principals may behave according to different Θs as they switch their
internal state, then exponential decay for a suitable r may make prediction more accu-
rate, because old outcomes don’t reflect the current distribution Θ as significantly as the
more recent ones. The assumption in this chapter is precisely the latter, and the main
objective is to analyse the properties and qualities of the Beta model with exponential
decay in dynamic applications, where the dynamic behaviour of a principal is modelled
by a hidden Markov model.
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5.2 Modelling the real system

As mentioned earlier, the objective of any probabilistic trust model is to ‘estimate’ the
predictive probability distribution, that is the probability distribution over the outcomes
of next interaction with the trustee. In order to find an expression for the estimation
error, we need to model the outcome generating system by a suitable probabilistic model
which we call the real model. In this thesis we are interested in studying systems which
exhibit a dynamic behaviour, that is changing their behaviour over time. We mathe-
matically model the behaviour of the system at any time by a particular probability
distribution over possible outcomes. A system with a dynamic behaviour can therefore
be modelled by a multiple state transition system where each state exhibits a particular
behaviour (probability distribution). This naturally leads to choosing a generic Hidden
Markov Model (HMM) λ as the real model.

Following the results from the theory of Markov chains recalled in Section 2.4, we shall
work under the hypothesis that λ is ergodic. This corresponds to demanding that all
the states of λ remain ‘live’ (i.e., probabilistically possible) at all times. It then follows
by general reasons that λ admits a stationary probability distribution over its states Sλ

(cf. Theorem 2.5); we denote it by the row vector

πλ =
[

π1 π2 . . . πn

]
,

where πq denotes the stationary probability of the state q. If Aλ is the stochastic state
transition matrix representing the Markov chain underlying λ, vector πλ satisfies the
stationary equation

πλ = πλAλ. (5.1)

As we are only interested λ’s steady-state behaviour, and as the state distribution of
the process is guaranteed to converge to πλ after a transient period (cf. Theorem 2.7),
without loss of generality in the following we shall assume that πλ is indeed λ’s initial
distribution. Observe too that as λ is finite and irreducible, all components of πλ are
strictly positive and can be computed easily from matrix Aλ.

For simplicity, we maintain here the restriction to binary outcomes (s or f), yet our
derivation of the estimation error can be generalised to multiple outcomes cases (i.e.,
replacing beta with Dirichlet pdfs, cf. Jøsang and Haller, 2007; Nielsen et al., 2007).

5.3 Beta model with a decay factor

Consider observation sequences h` = o0 o1 · · · o`−1 of arbitrary length `, where o0 and
o`−1 are respectively the least and the most recent observed outcomes. Then, for r a
decay factor (0 < r < 1), the beta estimate for the probability distribution on the next
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outcomes { s, f } is given by (Br (s | h`) , Br (f | h`)), where

Br(s | h`) =
mr(h`) + 1

mr(h`) + nr(h`) + 2

Br(f | h`) =
nr(h`) + 1

mr(h`) + nr(h`) + 2

(5.2)

and

mr(h`) =
`−1∑
i=0

riδ`−i−1(s) nr(h`) =
`−1∑
i=0

riδ`−i−1(f) (5.3)

for

δi(X ) =

{
1 if oi = X ;
0 otherwise.

(5.4)

Under these conditions, obviously from Equations (5.3) and (5.4), the sum mr(h`) +
nr(h`) forms a geometric series, and therefore

mr(h`) + nr(h`) =
1− r`

1− r
. (5.5)

5.4 The error function

We call the real probability that the next outcome will be s, the real predictive proba-
bility, and denote it by σ. In contrast, we call the estimated probability that the next
outcome will be s the estimated predictive probability. The deviation of the estimated
predictive probability, given by Equation (5.2) from the real predictive probability σ is
expressed by the Beta estimation error, which we define by the following equation.

D2(σ || Br(s | h`)) = (Br(s | h`)− σ)2 (5.6)

That is the Beta estimation error is simply the squared difference (which we also refer
to as the quadratic distance) between the real and predictive probabilities, and hence
is denoted above by D2(. || .). Although, in this chapter, we are interested in binary
observation case (s or f), the quadratic distance measure can be in general extended
to the cases of multiple observations by summing the squared differences between the
corresponding probabilities of individual observations. The quadratic distance mea-
sure shares some properties with other measures of the statistical distance between
probability distributions. Specifically, the measure is 0 if and only if the real and es-
timated predictive probabilities are equal. Additionally, the measure is symmetric, i.e.
D2(µ || ν) = D2(ν || µ). Choosing the quadratic distance measure for formulating
the Beta estimation error is motivated by its advantage that its expected value, in the
case of Beta trust estimation, can be expressed analytically as will be shown in the next
section.
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Observe that whilst the real predictive probability σ depends on λ, the chosen represen-
tation of principal’s behaviour, and its current state, the estimated predictive probability
Br(s | h`) depends on the interaction history h` and the fixed decay parameter r. Thus
the Beta estimation error given by Equation (5.6) is basically a random variable. As
we aim to assessing the average ‘goodness’ of the Beta trust model at estimating the
predictive probability, we evaluate the expected Beta estimation error as the expected
value of the Beta estimation error. Note that the expected Beta estimation error de-
pends therefore only on the assumptions about the real model, the decay factor as the
parameter for the Beta trust model, and a specified length ` of sequences, upon which
estimation is performed.

5.4.1 Analysis of the expected Beta estimation error

In the following an expression is derived for the expected Beta estimation error paramet-
ric in ` as a step towards computing its limit for ` → ∞, and thus obtain the required
formula for the asymptotic estimation error. Here we start by expressing the expected
beta estimation error as a function of the behaviour model λ and the decay r. Formally,

Error `(λ, r) = E
[
D2(σ || Br(s | h`))

]
= E

[
(Br(s | h`)− σ)2

]
. (5.7)

As shown earlier in Section 5.4, the real predictive probability σ depends on the current
state of the real model λ, whereas the estimated predictive probability Br(s | h`) depends
on the observation sequence h`. Thus the expectation in Eq. (5.7) is taken over the
current state of λ and the sequence h`.

Using the definition in (5.2) for Br(s | h`), and writing a = mr(h`) + nr(h`) + 2 for
brevity, the error function is rewritten as:

Error `(λ, r) = E

[(
mr(h`) + 1

a
− σ

)2
]

=

E
[

1
a2

(
mr(h`)2 + 2mr(h`) + 1

)
− 2σ

a
(1 + mr(h`)) + σ2

]
.

(5.8)

Using (5.5), it holds that

a =
3− 2r − r`

1− r
. (5.9)

Observe now that a depends on the decay parameter r and the sequence length `. Using
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the linearity property of expectation, Equation (5.8) can be rewritten as:

Error `(λ, r) =
1
a2

E
[
mr(h`)2

]
+

2
a2

E
[
mr(h`)

]
+

1
a2

− 2
a
E [σ]− 2

a
E
[
σmr(h`)

]
+ E

[
σ2
]
.

(5.10)

In order to express the above error in terms of the real model λ and the decay r, it is
needed to express E

[
mr(h`)2

]
, E
[
mr(h`)

]
, E
[
σmr(h`)

]
, E
[
σ
]
, and E

[
σ2
]

in terms of
the parameters of the real model λ and r. We start with evaluating E

[
mr(h`)

]
.

Using the definition of mr(h`) given by (5.3) and the linearity of the expectation oper-
ator, we have

E [mr(h`)] =
`−1∑
i=0

ri ·E [δ`−i−1(s)]. (5.11)

Then, by Equation (5.4), we find that

E [δ`−i−1(s)] = P (δ`−i−1(s) = 1) . (5.12)

Denoting the system state at the time of observing oi by qi we have

P (δ`−i−1(s) = 1) =
∑
x∈Sλ

P
(
q`−i−1 = x, δ`−i−1(s) = 1

)
=
∑
x∈Sλ

P (q`−i−1 = x) P
(
δ`−i−1(s) = 1 | q`−i−1 = x

)
. (5.13)

where Sλ is the set of states in the real model λ.

Let the state success probabilities vector, Θλ, be defined as the column vector

Θλ =


θ1

θ2

...
θn

 (5.14)

where θq is the probability of observing s given the system is in state q. Notice that
these probabilities are given together with λ, viz., Bq(s) from Definition 2.5.1. As we
focus on steady state behaviours, exploiting the properties of the stationary distribution
πλ, Equation (5.13) can be rewritten as the scalar product of πλ and Θλ:

P (δ`−i−1(s) = 1) =
∑
x∈Sλ

πxθx = πλΘλ (5.15)
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Substituting in Equation (5.12) yields

E
[
δ`−i−1(s)

]
= πλΘλ , (5.16)

and substituting in (5.11) yields

E
[
mr(h`)

]
=

`−1∑
i=0

ri · πλΘλ . (5.17)

Since πλΘλ is independent of r, the geometric series summation rule is used to evaluate
the sum in the above equation, and obtain:

E
[
mr(h`)

]
=
(

1− r`

1− r

)
πλΘλ . (5.18)

Isolating the dependency on `, the above equation is written as follows

E
[
mr(h`)

]
=

πλΘλ

1− r
+ ε1(`), (5.19)

where
ε1(`) = −r` πλΘλ

1− r
. (5.20)

We now move on to simplify E
[
mr(h`)2

]
, the next addend to Error(λ, r). By the defi-

nition of mr(h`) in Equation (5.3), and using the linearity of expectation, it is obtained
that

E
[
mr(h`)2

]
= E

(`−1∑
i=0

riδ`−i−1(s)

)2


= E

[
`−1∑
i1=0

`−1∑
i2=0

ri1+i2 δ`−i1−1(s) δ`−i2−1(s)

]

=
`−1∑
i1=0

`−1∑
i2=0

ri1+i2 ·E [δ`−i1−1(s) δ`−i2−1(s)] . (5.21)

In fact, from the definition of δi(s) given by (5.4) above, it is obvious that

E
[
δ`−i1−1(s) δ`−i2−1(s)

]
= P

(
δ`−i1−1(s) = 1, δ`−i2−1(s) = 1

)
.
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Substituting in Equation (5.21) we get

E
[
mr(h`)2

]
=

`−1∑
i1=0

`−1∑
i2=0

ri1+i2P (δ`−i1−1(s) = 1, δ`−i2−1(s) = 1)

=
`−1∑
i=0

r2iP
(
δ`−i−1(s) = 1

)
+ 2

`−2∑
i1=0

`−1∑
i2=i1+1

ri1+i2P
(
δ`−i1−1(s) = 1, δ`−i2−1(s) = 1

)
=

`−1∑
i=0

r2iP
(
δ`−i−1(s) = 1

)
+ 2

`−2∑
i=0

`−1−i∑
k=1

r2i+kP
(
δ`−i−1(s) = 1, δ`−(i+k)−1(s) = 1

)
=

`−1∑
i=0

r2iP (δ`−i−1(s) = 1) + 2
`−2∑
i=0

r2i
`−1−i∑
k=1

rkP
(
δ`−i−1(s) = 1, δ`−i−1−k(s) = 1

)
.

(5.22)

Using the notation ı̂ = `− i− 1, the above equation is written as follows

E
[
mr(h`)2

]
=

`−1∑
i=0

r2iP (δı̂(s) = 1) + 2
`−2∑
i=0

r2i
`−1−i∑
k=1

rkP
(
δı̂(s) = 1, δı̂−k(s) = 1

)
. (5.23)

Note now that P (δı̂(s) = 1, δı̂−k(s) = 1) is the joint probability of observing s at times ı̂

and ı̂− k. This probability can be expressed as

P
(
δı̂(s) = 1, δı̂−k(s) = 1

)
=
∑
x∈Sλ

∑
y∈Sλ

P
(
qı̂ = x, δı̂(s) = 1, qı̂−k = y, δı̂−k(s) = 1

)
=
∑
x∈Sλ

P
(
qı̂ = x

)
P (δı̂(s) = 1 | qı̂ = x) · (5.24)

·
∑
y∈Sλ

P
(
qı̂−k = y | qı̂ = x

)
P
(
δı̂−k(s) = 1 | qı̂−k = y

)
.

We can rewrite (5.24) in terms of the state stationary probabilities vector πλ and the
state success probabilities vector Θλ, given by Equations (5.1) and (5.14), respectively.

P
(
δı̂(s) = 1, δı̂−k(s) = 1

)
=
∑
x∈Sλ

πxθx

∑
y∈Sλ

P
(
qı̂−k = y | qı̂ = x

)
θy . (5.25)

The above equation can be simplified further by making use of the time reversal model
of λ (cf. Brémaud, 1998; Norris, 1997) which, informally speaking, represents the same
model λ when time runs ‘backwards.’ If λ’s state transition probability matrix is Aλ =
( Aij | i, j = 1, . . . , n) then λ’s reverse state transition probability matrix is:

A′
λ =


A′11 A′12 . . . . . .

A′21
. . . . . . . . .

... . . . A′xy

...
. . . . . . . . . A′nn

 (5.26)
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where A′xy is the probability that the previous state is y given that current state is x.
Clearly, A′

λ is derived from Aλ by the identity:

A′xy =
πy

πx
Ayx (5.27)

which exist as, by the irreducibility of λ, all πx are strictly positive. It is easy to prove
that A′

λ is a stochastic matrix, and is irreducible when Aλ is such. Now, observing that
P (qı̂−k = y | qı̂ = x) is the probability that the kth previous state is y given that the
current state is x, Eq. (5.25) can be written in terms of πλ, Θλ and A′

λ as

P (δı̂(s) = 1, δı̂−k(s) = 1) =
(
πλ ×Θλ

T
)
A′

λ
k Θλ , (5.28)

where we use symbol × to denote the ‘entry-wise’ product of matrices. Let us now
return to Equation (5.23) and replace P

(
δı̂(s) = 1

)
and P (δı̂(s) = 1, δı̂−k(s) = 1) in it

using expressions (5.15) and (5.28), respectively.

E
[
mr(h`)2

]
=

`−1∑
i=0

r2iπλΘλ + 2
`−2∑
i=0

r2i
`−i−1∑
k=1

(
πλ ×ΘT

λ

) (
rA′

λ

)k Θλ (5.29)

Using the summation rule for geometric series, Equation (5.29) can be simplified to the
following expression

E
[
mr(h`)2

]
=
(

1− r2`

1− r2

)
πλΘλ+

2
`−2∑
i=0

r2i
(
πλ ×ΘT

λ

) (
rA′

λ − (rA′
λ)`−i

) (
I − rA′

λ

)−1 Θ , (5.30)

where I is the identity matrix of size n. Applying the geometric series rule again, the
above equation can be rewritten as

E
[
mr(h`)2

]
=
(

1− r2`

1− r2

)
πλΘλ + 2r

(
1− r2`−2

1− r2

)(
πλ ×ΘT

λ

)
A′

λ

(
I − rA′

λ

)−1 Θ

− 2r`
`−2∑
i=0

ri
(
πλ ×ΘT

λ

)
(A′

λ
`−i)(I − rA′

λ)−1Θ . (5.31)

Isolating the terms which depend on `, we write the above equation as follows

E
[
mr(h`)2

]
=

πλΘλ

1− r2
+

2r

1− r2

(
πλ ×ΘT

λ

)
A′

λ

(
I − rA′

λ

)−1 Θλ + ε2(`), (5.32)
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where

ε2(`) =
(
−r2`

1− r2

)
πλΘλ + 2

(
−r2`−1

1− r2

)(
πλ ×ΘT

λ

) (
A′

λ

) (
I − rA′

λ

)−1 Θ

− 2r`
`−2∑
i=0

ri
(
πλ ×ΘT

λ

) (
A′

λ
`−i
) (

I − rA′
λ

)−1 Θ (5.33)

Notice that in the formulation above we use an inverse matrix, whose existence is proved
by the following lemma.

Lemma 5.1. For A a stochastic matrix and 0 < r < 1, matrix (I − rA) is invertible.

Proof. We prove equivalently that

Det
(
I − rA

)
6= 0 (5.34)

By multiplying (5.34) by the scalar −r−1, we reduce it to the equivalent condition

−1
r
·Det

(
I − rA

)
= Det

(
A− 1

r
I
)
6= 0

Observe that Det
(
A − r−1I

)
is the characteristic polynomial of A evaluated on r−1,

which is zero if and only if r−1 is an eigenvalue of A. Since A has no negative entry, it
follows from Perron-Frobenius theorem (cf., e.g., Horn and Johnson, 1985) that all its
eigenvalues u are such that

|u | ≤ max
i

n∑
k=1

Aik.

As A is stochastic and r−1 > 1, this concludes our proof.

We now turn our attention to E [σmr(h`)], with σ the probability that the next out-
come is s. As σ depends on the current state q`−1, the expectation E

[
σmr(h`)

]
can be

expressed as
E [σmr(h`)] = E [R(x)] , (5.35)

with R(x) defined for x ∈ Sλ by

R(x) = E [σmr(h`) | q`−1 = x] . (5.36)

In other words, R(x) is the conditional expected value of σmr(h`) given that the current
state is x.

We define the state predictive success probabilities vector Φλ as the following column
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vector.

Φλ =


φ1

φ2

...
φn

 (5.37)

where φx is the probability that the next outcome after a state transition is s, given that
the current state is x. The entries of Φλ can be computed by

φx =
∑
y∈Sλ

Axyθy,

and therefore
Φλ = AλΘλ . (5.38)

Using the above, we can rewrite Equation (5.36) as

R(x) = E
[
φxmr(h`)

∣∣ q`−1 = x
]
, (5.39)

for x ∈ Sλ. Substituting mr(h`) with its definition in (5.3), we obtain

R(x) = E
[
φx

`−1∑
i=0

riδ`−i−1(s)
∣∣∣ q`−1 = x

]
= φxE

[`−1∑
i=0

riδ`−i−1(s)
∣∣∣ q`−1 = x

]
. (5.40)

Using the linearity of expectation, we then get

R(x) = φx

`−1∑
i=0

riE
[
δ`−i−1(s)

∣∣ q`−1 = x
]
. (5.41)

Since the possible values of δ`−i−1(s) are only 0 and 1, we have

E
[
δ`−i−1(s)

∣∣ q`−1 = x
]
= P

(
δ`−i−1(s) = 1

∣∣ q`−1 = x
)
.

Thus Equation (5.41) can be written as

R(x) = φx

`−1∑
i=0

riP
(
δ`−i−1(s) = 1

∣∣ q`−1 = x
)

= φx

`−1∑
i=0

ri
∑
y∈Sλ

P
(
q`−i−1 = y

∣∣ q`−1 = x
)

P
(
δ`−i−1(s) = 1

∣∣ q`−i−1 = y
)

= φx

`−1∑
i=0

ri
∑
y∈Sλ

P
(
q`−i−1 = y

∣∣∣ q`−1 = x
)

θy . (5.42)
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We now return to Equation (5.35) which expresses E
[
σmr(h`)

]
and, making use again

of the stationary distribution, substitute the expression above for R(x)

E
[
σmr(h`)

]
=
∑
x∈Sλ

P (q`−1 = x) R(x) =
∑
x∈Sλ

πxR(x)

=
∑
x∈Sλ

πxφx

`−1∑
i=0

ri
∑
y∈Sλ

P (q`−i−1 = y | q`−1 = x) θy . (5.43)

Exchanging the summations in the above equation, we get

E
[
σmr(h`)

]
=

`−1∑
i=0

ri
∑
x∈Sλ

πxφx

∑
y∈Sλ

P (q`−i−1 = y | q`−1 = x) θy . (5.44)

Comparing the above with Equations (5.25) and (5.28), we similarly obtain

E
[
σmr(h`)

]
=

`−1∑
i=0

ri
(
πλ ×ΦT

λ

)
A′

λ
i Θλ

=
(
πλ ×ΦT

λ

)(`−1∑
i=0

(rA′
λ)i

)
Θλ. (5.45)

As before, by Lemma 5.1, we can simplify the above formula as

E
[
σmr(h`)

]
=
(
πλ ×ΦT

λ

) (
I − (rA′

λ)`
) (

I − rA′
λ

)−1Θλ. (5.46)

Isolating the term which depends on `, we rewrite the above equation as follows

E
[
σmr(h`)

]
=
(
πλ ×ΦT

λ

) (
I − rA′

λ

)−1Θλ + ε3(`), (5.47)

where
ε3(`) = −r`

(
πλ ×ΦT

λ

)
(A′

λ)`
(
I − rA′

λ

)−1Θλ . (5.48)

Let us now consider E [σ]

E [σ] =
∑
x∈Sλ

P (q`−1 = x) φx =
∑
x∈Sλ

πxφx = πλΦλ.

Substituting Φ in the above equation by its definition in (5.38), we get

E [σ] = πλAλΘλ . (5.49)

Using the eigenvector property of πλ in Equation (5.1) we obtain

E [σ] = πλΘλ. (5.50)
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Finally, let us evaluate E
[
σ2
]

E
[
σ2
]

=
∑
x∈Sλ

P
(
q`−1 = x

)
φx

2 =
∑
x∈Sλ

πxφx
2 = πλ (Φλ ×Φλ) . (5.51)

We can now in the end return to the error formula (5.10) and substitute the expressions
we have so derived for its various components, viz., Equations (5.32), (5.19), (5.47),
(5.50) and (5.51). We therefore obtain the following formula for the expected Beta
estimation error

Error ` (λ, r) =
1
a2

(
πλΘλ

1− r2
+

2r

1− r2

(
πλ ×ΘT

λ

)
A′

λ

(
I − rA′

λ

)−1 Θλ

)
+

2
a2

(
πλΘλ

1− r

)
− 2

a

(
πλ ×ΦT

λ

) (
I − rA′

λ

)−1 Θλ

− 2
a
πλΘλ + πλ (Φλ ×Φλ) +

1
a2

+
2
a2

ε1(`) +
1
a2

ε2(`)−
2
a
ε3(`),

(5.52)

where ε1(`), ε2(`), and ε3(`) are given by equations (5.20), (5.33), and (5.48) respectively.
Also a is given by (5.9). Now, as we are interested in the asymptotic error, we evaluate
the limit of the above error when `→∞.

Error (λ, r) = lim
`→∞

Error ` (λ, r) . (5.53)

Since r < 1, it is obvious that

lim
`→∞

ε1(`) = lim
`→∞

ε2(`) = lim
`→∞

ε3(`) = 0,

and
lim
`→∞

a =
3− 2r

1− r
.

Therefore, and using a few algebraic manipulations we get our final asymptotic error
formula for the beta model with exponential decay.

Error (λ, r) =
(1− r)

(
4r2 − 3

)
(1 + r) (3− 2r)2

πλΘλ +
(

1− r

3− 2r

)2

+
2 (1− r) r

(3− 2r)2 (1 + r)

(
πλ ×ΘT

λ

)
A′

λ

(
I − rA′

λ

)−1 Θλ

− 2
(

1− r

3− 2r

)(
πλ ×ΦT

λ

) (
I − rA′

λ

)−1 Θλ + πλ (Φλ ×Φλ) .

(5.54)
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5.5 System stability

The stability of a system is, informally speaking, its tendency to remain in the same
state. In this section we describe the effect of system stability on the expected Beta
estimation error derived in Section 5.4. In particular, we show that if a system is very
stable, then the expected Beta estimation error tends to 0 as the decay r tends to 1;
as the limit of the decay model for r → 1 is indeed the unmodified Beta model, this
means that when systems are very stable, the unmodified Beta model achieves better
prediction than any decay model.

We introduce the notion of state stability which we define as the probability of transition
to the same state. Formally, given a HMM λ with set of states Sλ, the stability of a
state x ∈ Sλ is defined as

Stability (x) = P (qt+1 = x | qt = x) = Axx.

Building on that, we define the system stability of λ at time t, as

Stability t (λ) = P (qt+1 = qt) ,

that is the probability that the system remains at time t + 1 in the same state where it
has been at time t. System stability can therefore be expressed as

Stability t (λ) =
∑
x∈Sλ

P (qt = x) Axx. (5.55)

Note that the system stability depends on the diagonal elements of the transition matrix
Aλ. It also depends on the probability distribution over system states at the time t.
Assuming as before that the system is ergodic (cf. Definitions 2.1 and 2.6), when t tends
to ∞ the probability distribution over the system states converges to the stationary
probability distribution πλ. We call the system stability when t → ∞ the asymptotic
system stability, and denote it by Stability∞(λ).

Stability∞ (λ) =
∑
x∈Sλ

πxAxx. (5.56)

As the stationary probability distribution πλ over states depends on the state transi-
tion matrix Aλ — see Equation (5.1) — the asymptotic system stability of λ is thus
determined by the transition matrix Aλ.

Regarding the analysis of the effect of the system stability on the estimation, obviously
the error formula (5.54) is too complex to allow an analytical study of its curve. However,
given a particular system model with a specific stability, the beta estimation error can
be evaluated for different values of the decay factor r, which allows us to build sound
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Figure 5.1: Expected Beta estimation error versus decay factor given stability < 0.5

intuitions about the impact of stability on the beta estimation mechanism.

Consider the model λ with the stability s where

Aλ =



s 1− s
3

1− s
3

1− s
3

1− s
3 s 1− s

3
1− s

3

1− s
3

1− s
3 s 1− s

3

1− s
3

1− s
3

1− s
3 s


(5.57)

Given the above transition matrix, it can be easily verified that

πλ =
[

1
4

1
4

1
4

1
4

]
. (5.58)

Let the success probabilities vector Θλ be defined by

Θλ =


1.0
0.7
0.3
0.0

 (5.59)

Figure 5.1 shows the expected Beta estimation error when the system λ is unstable
(s < 0.5). It is obvious that the minimum error value is obtained when the decay
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Figure 5.2: Expected Beta estimation error versus decay factor given stability > 0.5

Figure 5.3: Expected Beta estimation error versus decay factor given stability > 0.9
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r tends to 1. The reason for this is that an unstable system is relatively unlikely to
stay in the same state, and therefore unlikely to preserve the previous distribution over
observations. If the estimation uses low values for the decay, then the resulting estimate
for the predictive probability distribution is close to the previous distribution; this is
unlikely to be the same as in the next time instant, due to instability. On the other hand,
using a decay r tending to 1 favours equally all previous observations, and according
to the following theorem the resulting probability distribution is almost surely (with
probability 1) the average of the distributions exhibited by the model states. Such
an average provides a better estimate for the predictive probability distribution than
approximating the distribution of the most recent set of states using low decay values.

Theorem 5.2. Given unbounded sequences generated by a HMM λ, the beta estimate
for the predictive probability with decay r → 1 is given by πλΘλ almost surely, where πλ

and Θλ are the stationary probability distribution and success probabilities vectors of λ,
respectively.

Proof. Given an `-length sequence h`, let the ‘nondecayed’ beta estimate, denoted by
B (s | h`), be defined as follows.

B (s | h`) = lim
r→1
Br (s | h`)

By Equations (5.2), (5.3), and (5.4), the above Beta estimate can be expressed as follows

B (s | h`) =

(∑`−1
i=0 δ`−i−1(s)

)
+ 1

` + 2
=

(∑`−1
k=0 δk(s)

)
+ 1

` + 2
. (5.60)

Since the HMM λ is assumed to be ergodic, the proof is now completed by applying the
ergodic theorem 2.15. Let the real valued function f(h`) be defined on sequences h` as
follows

f(h`) = δ0(s).

Then, using the time shift operator described by Equation (2.27), and the notation in
(2.28), we can write

f
(
τk (h`)

)
= δk(s).

Since it holds that
E [f(h`)] = πλΘλ <∞

by Equation (5.16), it follows by the ergodic theorem that

1
`

`−1∑
k=0

δk(s)→ πλΘλ almost surely. (5.61)
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Using the above equation to express the convergence of B (s | h`) given by (5.60), we get

B (s | h`)→ πλΘλ almost surely.

It is worth noticing that when s = 1/|Sλ|, the minimum expected beta error is 0,
when r → 1. In this case all elements of Aλ are equal and therefore, the predictive
probability of success is

∑
x∈Sλ

θx/|Sλ|, regardless of the current state. In other words,
the whole behaviour can effectively be modelled by a single probability distribution over
observations. The best approximation for this probability distribution is achieved by
considering the entire history using decay r → 1, because in this way the beta estimate
converges to the correct predictive distribution according to Theorem 5.2.

Systems which are relatively stable (i.e., with s > 0.5) are more likely to stay in the same
state rather than transitioning to a new state. In such case, approximating the proba-
bility distribution of a state by observing systems interactions provides a good estimate
for the predictive probability distribution. However, the quality of the approximation
depends heavily on the choice of an optimum value for decay. If the decay is too small,
the sequence of observation considered in the computation will prove too short to reflect
the correct distribution precisely. If otherwise the decay is too large (i.e., too close to 1),
then the resulting estimate approaches the average probability distribution as described
above. Figure 5.2 above shows the expected beta estimation error when the system λ is
relatively stable.

Figure 5.3 shows the expected beta estimation error for very stable systems, i.e., systems
with s > 0.9. In such case, observe that the expected estimation error is very sensitive
to the choice of the decay value. In fact, regarded as a function of s and r, the error
formula is pathological around point (1, 1). Observe that the formula is undefined for
r = 1, because in such a case all matrices (I − rA′) are singular. Worse than that,
there is no limit as s and r tend to 1, as the limiting value depends on the relative
speed of s and r. This is illustrated in Figure 5.4, which plots Error (λ, r) over the open
unit square for our running four-state model. A simple inspection of (5.54), with the
support of Lemma 5.1, shows that Error is continuous and well behaved on its domain,
as illustrated by the top-left plot. Yet, the cusp near (1, 1) –which is also noticeable in
graphs of Figure 5.3– reflects its erratic behaviour in that neighbourhood. The remaining
three graphs of Figure 5.4 show that the error function for s 7→ 1 and r 7→ 1 tends to
different values along different lines, and therefore prove that it admits no limit at (1, 1).
However, if stability is actually 1, the minimum expected estimation error tends to 0,
and the optimum decay value (which corresponds to the minimum expected estimation
error) tends to 1. The following theorem proves this observation formally.

Theorem 5.3. Let λ be a HMM. If Stability∞ (λ) tends to 1, then the asymptotic beta
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The error as a function of s and r The error along the line 4s = r + 3

The error along the line 2s = r + 1 The error along the line 4s = 3r + 1

Figure 5.4: Expected Beta estimation error for the four-states model

estimation error tends to 0 when the decay r tends to 1.

Proof. The asymptotic stability of a given system λ tends to 1 (i.e., a perfectly stable
system) if and only if all the diagonal elements of Aλ tend to 1; this means that Aλ

tends to the identity matrix I. As the latter is not irreducible, we first need to prove
that the error formula (5.54) remains valid for s = 1. In fact, irreducibility plays its role
in our assumption that the initial state distribution πλ is stable, which is obviously true
in the case of I because for any initial vector π, it holds

π I = π.

All the steps in the derivation can then be repeated verbatim, with the exception
of (5.27), which is undefined. Yet, it can easily be verified that I ′λ exists and is
the identity matrix. We can therefore evaluate the expected beta estimation error in
this case by replacing A′

λ by the identity matrix I in (5.54), while remembering that
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(I − rI)−1 = I(1− r)−1 and Φλ = IΘλ = Θλ. We get,

Error (λ, r) =
(1− r)

(
4r2 − 3

)
(1 + r) (3− 2r)2

πλΘλ +
(

1− r

3− 2r

)2

+
2 (1− r) r

(3− 2r)2 (1 + r)

(
πλ ×ΘT

λ

) 1
1− r

Θλ

− 2
(

1− r

3− 2r

)(
πλ ×ΘT

λ

) 1
1− r

Θλ + πλ (Θλ ×Θλ)

(5.62)

Then, observing that (
πλ ×ΘT

λ

)
Θλ = πλ (Θλ ×Θλ) ,

we obtain

Error (λ, r) =
(1− r)

(
4r2 − 3

)
(1 + r) (3− 2r)2

πλΘλ +
(

1− r

3− 2r

)2

+
(

2r

(3− 2r)2 (1 + r)
− 2

3− 2r
+ 1
)

πλ (Θλ ×Θλ)
(5.63)

and thus

Error (λ, r) =
(1− r)

(
4r2 − 3

)
(1 + r) (3− 2r)2

πλΘλ +
(

1− r

3− 2r

)2

+
(1− r)

(
3− 4r2

)
(1 + r) (3− 2r)2

πλ (Θλ ×Θλ) .

(5.64)

By inspection of the error formula above, when r → 1, the expected beta estimation
error obviously tends to 0. That is, when the given system is stable, zero expected
estimation error is achieved by choosing the decay r tending to 1, which is the same as
saying dropping the decay altogether and using the unmodified Beta model.

5.6 Discussion

This chapter has focussed on the exponential decay principle in the context of probabilis-
tic trust as a way to endow the well-known and widely-used Beta model with appropriate
mechanisms to account for dynamic behaviours. The main conclusion is that, despite the
attention the Beta model has received in the literature and its undoubted success ‘on-
the-ground,’ the assumption that principals can be represented by a single immutable
probability distribution is untenable in the real world.

Although this thesis in general advocates fully-fledged ‘stateful’ models, such as the
hidden Markov models, the purpose in this chapter was to ascertain to what extent
the decay principle put forward by some authors can provide the required support for
principals whose behaviour changes according to their (discrete) state transitions. In
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doing so, this chapter has described some mathematical properties of the Beta model
with exponential decay scheme, which suggest that the scheme will not be ideal in all
scenarios.

A formula has been then derived for the expected error of the Beta scheme with respect
to a representation of the ‘real model’ as a hidden Markov model, which can be used by
algorithm developers to understand the implications of choosing a decay factor. Finally,
we have exemplified one such analysis by plotting the error formula as a function of
the decay parameter r according to a notion of system stability. The evidence obtained
for the exercise, can be roughly summarised by saying that the choice of the ‘right’
parameter r remains highly sensitive and critical, and that anyway the choice of a decay
scheme over the unmodified Beta model appears sensible only when systems are relatively
stable, so that state changes happen rather infrequently.

The analysis is valid under the assumption of the ergodicity of the underlying Markov
chain, which in the case of finite-state systems reduces to just irreducibility and aperi-
odicity. Observe that the states of the model can be grouped in maximal classes –known
in the literature as ‘communicating’– whereby each state is reachable from any other
state in the same class. By definition, reducible chains admit multiple maximal classes;
every run of the system will eventually be ‘trapped’ in one of such classes, after which its
steady-state behaviour will be described by the irreducible (sub)chain consisting of only
the states in that class. As the given analysis focusses on asymptotic behaviours only,
this indicates that when the chain is reducible it may be sufficient to analyse each of the
(sub)models determined by the maximal irreducible communicating classes in the model.
The situation is more complex if the model fails to be aperiodic, as this indicates cyclic
asymptotic behaviours and, potentially, causal dependencies between events, whereby a
probabilistic analysis may anyway not be the best option.





Chapter 6

HMM-based trust model

In this chapter, we introduce the HMM-based trust model as an approach to evaluating
trust in principals exhibiting dynamic behaviour, i.e. changing their behaviour over
time. This model is also presented in our recent paper (ElSalamouny et al. (2010)).
The HMM-based trust model is based on approximating the behaviour of any given
principal p by a finite-state HMM ηp, called the approximate behaviour model for the
given principal p. Given any sequence hT of outcomes of interactions with p, the prob-
ability distribution over the potential outcomes of the next interaction with p can be
estimated using the p’s approximate behaviour model ηp. We call this estimated prob-
ability distribution the estimated predictive probability distribution of p. Following the
existing notion of probabilistic trust (described in Section 3.2), the estimated predictive
probability distribution defines the trust in the principal p.

In order to precisely define the HMM-based trust model, it is required to define a method
for computing the approximate behaviour model η for principal p, and also a method for
estimating the predictive probability distribution given a sequence hT of length T . As
a general notation which will be used in these definitions we will write the probability
of any random variable ζ, under a given probabilistic model R, as P (ζ | R).

The process of computing η for a principal p is basically learning the behaviour of p. This
is naturally performed by finding the probabilistic model which best ‘fits’ a given sample
sequence of outcomes of interactions with p. Here, the maximum likelihood criterion,
described by Section 2.2.2, is adopted as the criterion for the model fitness. Specifically,
let y = y1 y2 · · · yT be an observed sequence of outcomes of interactions with a given
principal, where T is an arbitrary length. Let also Rn denote any n-state HMM. Then,
using the sequence y, the n-state approximate behaviour model η is obtained by the
following equation.

η = argmax
Rn

P (hT = y | Rn) . (6.1)

That is η is the n-state HMM under which the probability of the given sequence y is

91
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maximised. The HMM model η can be therefore obtained by the Baum-Welch algorithm
which is described in Section 2.5.4 and detailed by Baum et al. (1970); Rabiner (1989).

Now we address the problem of estimating the predictive probability distribution given a
particular sequence of outcomes. Let hT = o1 o2 · · · oT be a random variable representing
any sequence of observed outcomes of interaction with the principal p, where o1 and oT

represent respectively the least and the most recent outcomes, and T is an arbitrary
length. Extending this notation to future outcomes, the outcome of the next interaction
with p is denoted by oT+1. Note that each outcome ot is therefore a random variable
representing the outcome at time t. Let also V = {1, 2, . . . ,K} be the alphabet of each
single outcome. Using the n-state approximate behaviour HMM η defined by Equation
(6.1), the estimated predictive probability distribution given a particular sequence of
outcomes w is denoted by Hη(. | w) and defined by the following equation.

Hη (z | w) = P (oT+1 = z | hT = w, η) =
P (hT = w, oT+1 = z | η)

P (hT = w | η)
. (6.2)

where z ∈ V . The above probabilities are efficiently evaluated by the forward-backward
algorithm described in Section 2.5.3, and detailed by Rabiner (1989).

Like other existing probabilistic trust models, the objective of the HMM-based trust
model is to estimate the predictive probability distribution for any given principal p,
that is the probability of each possible outcome in the next interaction with p. Therefore
it is a fundamental requirement that the approximate behaviour model η, computed for
the principal p is chosen such that the divergence of the estimated predictive distribution
from the real predictive distribution, also called the estimation error, is minimised.

To analyse this error, we need to model the real behaviour of the principal p. This allows
expressing the real predictive probability distribution of p. Given a particular sequence h

of observations about p, the estimation error can be therefore evaluated as the statistical
difference between the real and estimated predictive probability distributions.

The next section describes modelling the real behaviour of a principal in a network of
multiple principals, and distinguishes between two observable behaviours of a principal.
In Section 6.2, we turn our attention to defining and analysing the estimation error
incurred by applying the HMM-based trust evaluation described above, and discuss the
consistency of this trust evaluation approach. Section 6.3 describes a simulation-based
comparison between the HMM-based and Beta based trust models. We follow in Section
6.4 by discussing the likelihood convergence property of HMMs upon which the reliability
of the HMM-based trust model is based.
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6.1 Modelling the real system

Given the same reasons described in Section 5.2 we model the real behaviour of any
principal p by a HMM λ, which we call the real behaviour model of p. Possible behaviour
states p are modelled by corresponding states in λ. The transition of p from one state
to another is modelled by a state transition between the corresponding states in λ.

The state of the real model λ at the time of observing ot is denoted by the random
variable qt. Thus, for the real HMM λ, given that the current underlying state is x,
i.e. qT = x, we can compute the real predictive probability distribution, denoted by
P (. | x, λ), that is the probability of each possible next observation, z ∈ V , using the
following equation.

P (z | x, λ) = P (oT+1 = z | qT = x, λ)

=
∑
y∈Sλ

P (qT+1 = y | qT = x, λ) P (oT+1 = z | qT+1 = y, λ)

=
∑
y∈Sλ

(Aλ)xy (Bλ)yz . (6.3)

where Sλ, Aλ, and Bλ are respectively the set of states, the state transition matrix, and
the emission matrix of λ. The reader is referred to Section 2.5.1 for details about these
parameters. We shall also work under the hypothesis that λ is ergodic. This corresponds
to demanding that the Markov chain underlying λ is irreducible and aperiodic (more
details on these properties are given by Grimmet and Stirzaker (2001); Norris (1997);
Brémaud (1998), and also by Section 2.4). In the following we distinguish between two
types of behaviours, the general and relative behaviours of a trustee.

6.1.1 General and relative behaviour

In many cases, the behaviour of a principal te depends on its internal state which is
determined by a combination of te’s internal attributes. These attributes may include
te’s security (whether or not te is compromised by an attacker), and also te’s reliability
which is determined by available computational resources, e.g. processing power and
memory. The change of the principal’s security attribute is governed by the robustness
of its defence system against external attacks, while the change of its reliability attribute
depends on the performance of its operating system which determines the likelihood of
overloading and crashes, and also the likelihood of recovery given that the system is
overloaded.

Example 6.1. Figure 6.1 depicts a markov chain modelling the overall state transitions
of a principal, considering only its security S and reliability R attributes. If the principal
is secure (S = 1) at a particular interaction, it can become insecure (S = 0) at the next
interaction with probability 0.1. Given it is insecure in a particular interaction, it can
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Figure 6.1: State transition system for Example 6.1

be recovered to be secure in the next interaction with probability 0.5. If the principal
is reliable (has sufficient resources to handle an interaction) at a particular interaction
(R = 1), it can become unreliable (R = 0) in the next interaction with probability 0.2.
It can also recover from unreliability to reliability with probability 0.7. The overall state
transition probabilities are computed assuming the transitions of S and R attributes are
mutually independent.

The long term dynamic behaviour of te is hence driven by an assumed probabilistic
evolution of its internal state, where the probability distribution over possible outcomes
of a particular interaction involving te is determined by the current state of te. If for
instance, the principal is insecure (compromised by an external attack) or it is unreliable
due to overloading, it may exhibit Denial of Service (DoS) where it responds successfully
to requests from other principals with a low probability, whereas under normal conditions
(secure and reliable), it responds successfully to the same requests with high probability.
In many systems including this example, the outcome of an interaction between te and
another principal x depends only on the internal overall state of te regardless of the
identity of the partner x, especially in anonymous transactions where the identity of
the interaction partner x is hidden from te. We restrict our attention to these systems
where the behaviour of a principal depends only on its internal state regardless of the
partner. If the possible states of te are finite, then its dynamic behaviour can be then
modelled by a finite-state HMM which we call the te’s general behaviour model. Note
that the sequence of outcomes of all interactions involving te is a realisation of such te’s
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general behaviour model.

Definition 6.1. The general behaviour model λte of a principal te is the HMM which is
assumed to generate the sequence of outcomes of all interactions which involve te.

On the other hand, a particular truster tr, which aims at evaluating the trust in te,
observes a possibly different behaviour, the te’s behaviour relative to tr. This behaviour
is characterised by the sequence of outcomes resulting from only personal interactions
between tr and te. Since we define the trust of tr in te as the probability distribution
over possible outcomes of the next interaction between tr and te, the relative behaviour
of te to tr is the basis of evaluating this trust, and therefore we need to describe the
relative behaviour by the following theorem.

Theorem 6.2. Let the HMM λte = (π,A,B) be the general behaviour model of a
principal te, where the parameters A and B are independent of interacting partners.
Let also px be the probability that a principal x is the te’s partner at a given interaction.
Then, the probability of any sequence of outcomes observed only by x is given by a HMM
λtex = (π′A′,B′), called the relative behaviour model of te with respect to x, where

A′ = pxA (I − (1− px) A)−1 ,

π′ = π.A′,

B′ = B.

Proof. Let x interact with te at time τ . Then, the next interaction between x and te
occurs at time τ + 1 with probability px, and at time τ + 2 with probability (1− px)px.
In general, the next interaction between x and te occurs at time τ + k with probability
(1 − px)k−1px. Let te be in state u at time τ (when interacting with x). Then at time
τ + k, te will be in state v with probability (Ak)uv, that is the uvth entry of the matrix
A to the power k. As the state transition of te is independent of the identity of its
interaction partner, we express the probability of the joint event ete,x(u, k, v) that the
next interaction between x and te occurs at time τ + k and te makes a k-step state
transition from u to v.

P (ete,x (u, k, v)) = (1− px)k−1px.(Ak)uv.

Since the events ete,x(u, 1, v), ete,x(u, 2, v), . . . are mutually exclusive, the probability
A′

uv that te will be in state v when the next interaction between te and x occurs, is
evaluated by summing the probabilities of the above events.

A′
uv =

∞∑
k=1

P (ete,x(u, k, v))

=
∞∑

k=1

(1− px)k−1px.(Ak)uv
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Moving from the matrix entry notation to the matrix notation, and using the summation
rule of geometric series we obtain the following equation.

A′ =
∞∑

k=1

(1− px)k−1px.(Ak) (6.4)

= pxA (I − (1− px)A)−1 . (6.5)

where I is the identity matrix. Assuming px > 0, note that the matrix (I − (1− px)A)
in the above equation is invertable by Lemma 5.1. Indeed if px = 0, i.e. the principal
x never interacts with te, the behaviour of te is entirely hidden from x. In this case the
te’s relative behaviour to x is undefined.

Given that π is the initial probability distribution over te’s states, the probability dis-
tribution over the states when the first interaction with x occurs can be evaluated using
A′.

π′ = π.A′.

Lastly, since observation probabilities are dependent only on the current state of te, the
observation probability matrix exhibited when interacting with x is the same, that is

B′ = B.

It is worth noting that if π is the stationary distribution of A, then π is also the
stationary distribution of A′. This is verifiable by Equation (6.4) and the fact that
πAk = π:

πA′ = π

∞∑
k=1

(1− px)k−1px.(Ak)

= π

∞∑
k=1

(1− px)k−1px

= π. (6.6)

By Theorem 6.2, te’s relative behaviour observed by a principal x in the environment
can be described by a HMM λtex whose parameters depend on the general behaviour
of te and also the probability px at which, the principal x interacts with te. Based on
this result, the HMM-based trust framework is applicable to the sequence of outcomes
observed only by the principal x when interacting with te. Specifically, within the scope
of interaction between x and te, the real predictive probability distribution is computed
by substituting the real behaviour model λ in (6.3) by λtex. Thus, in our analysis of the
HMM-based trust, the real behaviour model λ will always refer to the relative behaviour
model of the trustee te, seen by a particular principal x.
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Another important implication of Theorem 6.2 is that the relative behaviour of te is the
same to all principals who have the same probability p of interacting with te. That is the
real model of te from the perspective of each of these principals is the same HMM λ. This
is useful as the information carried by observation sequences collected by these principals
can add together to give a better estimate about the real HMM model λ. This idea is
employed to enhance the reliability of HMM-based trust evaluation by using multiple
sequences as shown later in Section 6.4.1, and also to describe a reputation model in
Chapter 7.

6.2 The estimation error

As mentioned earlier in this chapter, the estimation error incurred when estimating
the predictive probability distribution is quantified as the statistical difference between
the real and estimated predictive distributions. In general there exist different mea-
sures for quantifying the statistical difference between two probability distributions. A
fundamental property of any measure of statistical difference between two probability
distributions µ and ν is that it is equal to zero if and only if µ and ν are identical.

Some of these measures are symmetric, e.g. the total variation distance and the Lp

distance (also known as the p-norm) (Rachev, 1991). Symmetric measures include also
the quadratic distance defined in Section 5.4 for the Beta estimation error. Because these
measures hold the property of symmetry, each of them is referred to as a distance between
the two probability distributions, in analogy with the euclidean distance between two
points in the euclidean space. That is the distance from the distribution µ to distribution
ν is the same as the distance from ν to µ. More details on symmetric measures and
their properties can be found in (Rachev, 1991) along with their applications in the
probability theory.

There are also non-symmetric measures for the difference between two probability dis-
tributions. These measures are used in many applications to measure ‘how far’ an
estimated (or empirical) distribution µ̂ is from a theoretical or real distribution µ which
is aimed to be estimated or approximated by µ̂. Therefore each of these measures is
referred to as divergence measure. That is, it is important here to distinguish the real
distribution from which the ‘estimated’ distribution diverges. As it is required to eval-
uate the quality of HMM-based trust model in estimating the predictive probability,
one of such measures, known as the relative entropy divergence (also Kullback-Leibler
divergence) (cf. Cover and Thomas, 2006) is adopted to quantify the estimation error,
that is the divergence of the estimated predictive distribution from the real predictive
distribution.

With λ a real model, the real predictive probability distribution depends only on the
current state of λ because of the Markovian property of λ (i.e. a state transition prob-
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ability depends only on the current state). Thus, given the current state is x, the real
predictive probability is denoted by P (. | x, λ), and evaluated by Equation (6.3). Using
the approximate behaviour model η as the parameter for the HMM-trust model, and
given a sequence hT = w of observations, the estimated predictive probability distribu-
tion, is denoted by Hη (. | w), and given by Equation (6.2). Now the estimation error,
expressed as the relative entropy divergence from the real predictive distribution to the
estimated predictive probability distribution is written as follows

DKL (P (. | x, λ) || Hη (. | w)) =
∑
z∈V

P (z | x, λ) log
(

P (z | x, λ)
Hη (z | w)

)
. (6.7)

Observe that the above divergence depends on the current state qT of λ, and the random
sequence of outcomes hT . The estimation error is therefore a random variable. To
assess the long-term estimation quality of the HMM-based trust model for estimating
the predictive probability distribution, we study in the next subsection the expected
estimation error, which is invariant of both the current state qT and the given sequence
hT , and depends only on the real model λ and the parameter η of the HMM-based trust
model.

6.2.1 Analysis of the expected estimation error for HMM-based trust

model

The expected estimation error, denoted by ErrorT (λ,Hη) is the expected value of the
estimation error given by Equation (6.7), where the expectation is evaluated on the
underlying random variables qT and hT . Thus

ErrorT (λ,Hη) = E [DKL (P (. | qT , λ) || Hη (. | hT ))] . (6.8)

In the following it is formally shown that adopting the maximum likelihood criterion,
defined by Equation (6.1), for choosing the approximate behaviour model η minimises
the expected estimation error of HMM-based trust model, and therefore is a consistent
method for choosing the parameters of the HMM-based trust model.

Equation (6.8) can be written as follows

ErrorT (λ,Hη) =
∑

w∈V T

∑
x∈Sλ

P (hT = w, qT = x | λ) ·

·DKL (P (. | x, λ) || Hη (. | w)) . (6.9)
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Using Equation (6.7) we rewrite the above equation.

ErrorT (λ,Hη) =
∑

w∈V T

∑
x∈Sλ

P (hT = w, qT = x | λ) ·

·
∑
z∈V

P (z | x, λ) log
(

P (z | x, λ)
Hη (z | w)

)
. (6.10)

Substituting P (z | x, λ) and Hη (z | w) using Equations (6.3) and (6.2) respectively, we
write the above equation as follows

ErrorT (λ,Hη) =
∑

w∈V T

∑
x∈Sλ

P (hT = w, qT = x | λ) ·

·
∑
z∈V

P (oT+1 = z | qT = x, λ) log
(

P (oT+1 = z | qT = x, λ)
P (oT+1 = z | hT = w, η)

)
=
∑

w∈V T

∑
x∈Sλ

∑
z∈V

P (oT+1 = z | qT = x, λ) ·

· P (hT = w, qT = x | λ) log
(

P (oT+1 = z | qT = x, λ)
P (oT+1 = z | hT = w, η)

)
.

(6.11)

Since the next outcome oT+1 depends only on the current state qT regardless of the
history sequence hT , we have

P (oT+1 = z | qT = x, λ) = P (oT+1 = z | hT = w, qT = x, λ) . (6.12)

Thus Equation (6.11) becomes

ErrorT (λ,Hη) =
∑

w∈V T

∑
x∈Sλ

∑
z∈V

P (oT+1 = z | hT = w, qT = x, λ) ·

· P (hT = w, qT = x | λ) log
(

P (oT+1 = z | qT = x, λ)
P (oT+1 = z | hT = w, η)

)
=
∑

w∈V T

∑
x∈Sλ

∑
z∈V

P (oT+1 = z, hT = w, qT = x | λ) ·

· log
(

P (oT+1 = z | qT = x, λ)
P (oT+1 = z | hT = w, η)

)
. (6.13)

The above equation can be simplified to the following equation

ErrorT (λ,Hη) = E [log P (oT+1 | qT , λ)]−E [log P (oT+1 | hT , η)] .

(6.14)

Observe that the first term in the above equation depends only on the real behaviour
model λ, while the second term depends on both the real and approximate behaviour
models λ and η. Denoting the first and second terms respectively by CT (λ) and
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HT (λ, η), we rewrite the above equation as follows.

ErrorT (λ,Hη) = CT (λ)−HT (λ, η) . (6.15)

Assuming that (Aη)ij > 0 for any states i, j, that is the state transition probabilities of
η are strictly positive, it has been proved by Baum and Petrie (1966) that the following
limit exists.

lim
T→∞

HT (λ, η) = H (λ, η) . (6.16)

Observe also that the limit limT→∞CT (λ) = C (λ) exists. This is because the ergodicity
of λ implies that the distribution of the random variable qT converges to a stationary
(fixed) distribution according to which the expectation E [log P (oT+1 | qT , λ)] is eval-
uated. The convergence of both CT (λ) and HT (λ, η) implies the convergence of the
expected estimation error (as T → ∞) to an asymptotic estimation error denoted by
Error (λ,Hη), and expressed as follows

Error (λ,Hη) = C (λ)−H (λ, η) . (6.17)

Also, by Theorem 3.2 in (Baum and Petrie, 1966) the log-probability of any observation
sequence hT is related to H (λ, η) as follows

1
T

log P (hT | η) a.s.→ H (λ, η) . (6.18)

The above equation means that the log-probability of a random sequence hT under the
approximate model η, divided by its length converges almost surely to H (λ, η). Here
‘almost surely’ (also known as ‘almost everywhere’ and ‘with probability 1’ ) convergence
means that the probability that the function 1

T log P (hT | η) converges to the above
limit is 1. That is

P

(
lim

T→∞

1
T

log P (hT | η) = H (λ, η)
)

= 1.

Equation (6.18) implies that choosing an approximate model η which maximises the
probability of a sufficiently long sequence hT almost surely maximises H(λ, η), and
therefore reduces the asymptotic estimation error given by Equation (6.17). Thus, the
maximum data likelihood criterion, expressed by Equation (6.1) is a consistent method
to obtain the approximate behaviour model, which is then used to estimate the predictive
probability distribution.

6.3 Comparison with Beta-based trust with decay princi-

ple

In this section we contrast HMM-based trust model described above against the existing
Beta-based trust model with exponential decay, described by Jøsang and Ismail (2002)
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and Sections 3.2.1,3.2.5 and analysed in Chapter 5, in terms of the expected estimation
error. In order to perform this comparison, it is essential to unify the estimation error
measure for the two models.

In the case of Beta-based trust model, we derived an analytical expression for the ex-
pected Beta estimation error, parametrized upon the decay factor. This estimation error
is based on the quadratic distance between the real and estimated predictive probability
distributions (see the definition in Section 5.4). The reason for choosing this particular
distance measure is that each of the Beta estimated predictive probabilities (given by
Equations (5.2)) is basically a sum of simple random variables (δi(X)) weighted by the
decay parameter.

Since the quadratic distance is a binomial expression, its expected value can be evalu-
ated by propagating the expectation operator (due to its linearity) to products of the
random variables (δi(X)), and therefore the computation of the whole expectation of
the quadratic distance between the real and estimated predictive distributions amounts
to evaluation of the expected values for products of random variables δi(X) which are
expressed using matrix algebra. The details of this derivation are given in Section 5.4.
Although any other distance measure can be approximated by a sum of polynomials
using the Taylor’s expansion, the resulting expression for the expected Beta estimation
error would be further complicated and also not exact.

In the case of HMM-based trust, on the other hand, we have no means to derive an
analogous expression for the expected estimation error using the quadratic distance.
This is because, each of the estimated predictive probabilities (given by Equations (6.2)),
is not a sum of simple random variables as the case in Beta-trust model. It is, rather,
a conditional probability of an outcome given a sequence of outcomes. By the results
of Baum and Petrie (1966), the expected value of the logarithm of this conditional
probability converges asymptotically to H(λ, η), a characteristic of the approximate
model η, given a real model λ.

Since the relative entropy divergence takes the form of the difference between log-
probabilities (see Equation (6.7)), the expected value of the HMM estimation error can
be expressed analytically in terms of H(λ, η) by propagating the expectation operator
to the log conditional probabilities. Thus the relative entropy divergence in the case of
HMM-based trust is favourable as it enables analysing the expected estimation error in
terms of the model parameter η. This analysis has been detailed in Section 6.2.1.

As a conclusion of the above discussion, it appears difficult to find a unified error met-
ric which can be evaluated analytically, or even numerically, for both Beta-based and
HMM-based trust models due to the nature of each of these models. So we use an HMM
simulation framework to simulate the real model λ and adopt Monte Carlo methods to
evaluate the expected estimation error in both models, and therefore perform the com-
parison between them. While we choose the relative entropy divergence as a unified error
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metric for comparing between Beta and HMM based models in terms of the expected
estimation errors, any other metric for the estimation error (e.g. the quadratic error)
can be also evaluated using the same simulation framework because the Monte-Carlo
framework is independent of the statistical difference measure as shown in the following
section.

6.3.1 Monte-Carlo based evaluation of the expected estimation error

In general, any probabilistic trust model is described by an estimating algorithm Aσ, with
a parameter σ, where the parameter (or the set of parameters) σ is specified or computed
according to the trust model. For a given principal p, the estimating algorithm Aσ is
fed with any observation sequence h generated by the p’s real system λ and computes
an estimated predictive probability distribution for p, denoted by Aσ(. | h).

In the case of Beta trust model, the estimating algorithm is denoted by Br, where the
parameter r is the decay factor, and the estimated predictive probability distribution
Br(. | h) is evaluated by Equations (5.2).

In the case of HMM-based trust model, on the other hand, the estimating algorithm
is denoted by Hη, where the parameter η is an approximate behaviour HMM. Note
that the parameter η is obtained by maximising the probability of any sufficiently long
sequence w generated by λ using Equation (6.1). Given any sequence of observations h,
the estimated predictive probability distribution Hη(. | h) is evaluated using Equation
(6.2).

Consider a HMM λ, the real model for a particular principal. Let the random variable hT

denote any generated sequence of observations of length T . Let also the random variable
uT denote the underlying hidden state sequence. Given an estimating algorithm Aσ (e.g.
Br or Hη), the expected estimation error using Aσ is given by the following equation.

ErrorT (λ, Aσ) = E [D (P (. | uT , λ) || Aσ (. | hT ))] . (6.19)

In the above equation D (P (. | uT , λ) || Aσ (. | hT )) is basically the divergence of the
estimated predictive probability distribution from the real predictive probability distri-
bution. Plugging any of the divergence measures into Equation (6.19), the expected
error can be approximated by the following Monte-Carlo procedure.

1. Simulate the real model λp to generate a large sample Sm of size m:

Sm = {(w1, u1), (w2, u2), . . . , (wm, um)}

where wj and uj are respectively the observation sequence, and the underlying
state sequence generated in the jth simulation run.
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2. For each pair (wj , uj),

(a) compute both P (. | uj , λ) and Aσ (. | wj), which are the real and estimated
predictive probability distributions, respectively.

(b) Evaluate the estimation error, denoted by ej , as

ej = D (P (. | uj , λ) || Aσ (. | wj)) . (6.20)

3. Approximate the required expected estimation error by evaluating the sample av-
erage:

ErrorT (λ, Aσ) ≈ 1
m

m∑
j=1

ej . (6.21)

The above approximation of the expected estimation error by the sample average is
based on the law of large numbers. Note that the approximation error can be made
arbitrarily small by making the sample size m sufficiently large.

6.3.2 Experiments

In the following experiments, we study the effect of the system stability, described in
Section 5.5, on both Beta estimation with a decay factor and HMM based estimation.
Thus, we consider the same s-stability real model λ used in 5.5, with the observation
alphabet V = {1, 2}, where the observation probability matrix is

Bλ =


1.0 0.0
0.7 0.3
0.3 0.7
0.0 1.0

 (6.22)

and the state transition matrix is

Aλ =



s 1− s
3

1− s
3

1− s
3

1− s
3 s 1− s

3
1− s

3

1− s
3

1− s
3 s 1− s

3

1− s
3

1− s
3

1− s
3 s


(6.23)

Recall that the parameter s in the transition matrix Aλ is called the system stability,
which indicates the tendency of the system to staying in the same state rather than
transiting to a different one.

For simplicity, and without loss of generality, we confine our HMM-based trust model
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Figure 6.2: Beta and HMM expected estimation errors versus decay factor given
stability < 0.5

to use only 2-state approximate behaviour models. In these experiments, we also base
our trust estimation on sequences of length 200.

For different stability values 0 ≤ s ≤ 1 and decay values 0 ≤ r ≤ 1, we apply the
Monte-Carlo procedure described above to evaluate the expected estimation error using
both Beta (Br) and 2-state HMM (Hη) trust algorithms. Each generated sample is of
size 10000.

Figure 6.2 shows Beta and HMM expected estimation errors when the system λ is unsta-
ble (s < 0.5). It is obvious that the minimum error value for Beta error is obtained when
the decay tends to 1. An informal explanation for this is given in Section 5.5. It is also
obvious that the HMM expected estimation error is lower than Beta expected estimation
error. The reason is that the 2-state HMM is a more flexible model to approximate the
real HMM λ than the Beta model which is, with decay 1, equivalent to 1-state HMM
model. It is worth noting that when stability is 0.25, the minimum expected beta error
is 0, when the decay is 1. The HMM expected estimation error is also approximately
0. In this case all elements of the transition matrix Aλ are equal and therefore, the
whole behaviour can effectively be modelled by a single probability distribution over
observations. This single probability distribution is perfectly approximated by taking
the whole history into account using Beta model with decay 1, and also with 2-state
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Figure 6.3: Beta and HMM estimation errors versus decay factor given stabilities 0.6,
0.7, 0.8, and 0.9

HMM where both states are equivalent, i.e. have the same probability distribution over
observations.

Figure 6.3 shows Beta and HMM estimation errors when the system λ is stable (sta-
bility > 0.5). Observe that both Beta with decay 1 and HMM estimation errors are
increasing as the stability is higher. The reason is that, at relatively high stability, old
observations become irrelevant to the current behaviour which determines the real pre-
dictive probability distribution. Hence, the estimation based on the whole history using
HMM or Beta with decay 1 is worse than the estimation with the same parameters when
the system is unstable, where both old and recent outcomes are relevant to the current
behaviour.

Observe also in the cases of high stability that HMM based estimation is better than
Beta estimation for most values of decay. However, for a particular range of decay, Beta
estimation is slightly better than HMM estimation. Using any decay value in this range
for Beta estimation, has the effect of considering only relatively recent outcomes which
characterise the current system behaviour and therefore give a better estimation for the
predictive distribution. Although using any value from this specific range of decay makes
Beta estimation better than HMM estimation, there is no formal means to determine
this range without information about the real model λ. Figure 6.4 shows the expected
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Figure 6.4: Beta and HMM estimation errors versus decay factor given stabilities
0.95, 1.0

estimation error when the system stability is close and equal to 1. As expected, at
stability 0.95, Beta estimation still exhibits lower expected estimation error than HMM
estimation only with optimal decay values. However, at stability 1, both Beta and HMM
achieve 0 estimation error. In this case, the system λ does not change its state, and
therefore any sequence is generated from one particular state in λ. This is equivalent
to the fixed behaviour case which can be modelled by both Beta function with decay 1
and also by a HMM having equivalent states.

6.4 Likelihood convergence property

It was shown in Section 6.2.1, that the consistency of the HMM-based trust model relies
on the likelihood convergence result for ergodic HMMs which was obtained by Baum and
Petrie (1966), and stated by Equation (6.18), recalled here

1
T

log P (hT | η) a.s.→ H (λ, η) .

For illustrating the above convergence property of ergodic HMMs, consider for instance
a HMM λ having the same parameters as the s-stable HMM used in Section 5.5 with
the stability parameter s set to 0.5. Let h be an observation sequence of length 2000
generated by λ. Let also η be a 2-state HMM trained on the sequence h using the Baum-
Welch algorithm. Then Figure 6.5 shows the convergence of 1

T log P (hT | η), where hT

is a T -length sub-sequence of h and 5 ≤ T ≤ 2000.

By the convergence property, the limit H (λ, η) can be approximated by 1
T log P (hT | η)

if the observation sequence hT is sufficiently long to maintain an arbitrary approximation
error margin for any model η. Using this approximation the HMM estimation error
expressed by (6.17) is thus minimised by maximising log P (hT | η), that is choosing the
model η under which the probability of the given observation sequence hT is maximised



Chapter 6 HMM-based trust model 107

Figure 6.5: Convergence of 1
T log P (hT | η) to the limit H(λ, η).

(See Criterion (6.1)).

Therefore, the reliability of the HMM-based trust model depends on the ‘goodness’ of
approximating the limit H (λ, η) by 1

T log P (hT | η) for any model η. In particular,
if 1

T log P (hT | η) is not an appropriate approximation of H (λ, η) (i.e. satisfying an
arbitrary error margin), then Criterion (6.1) does not necessarily maximises H (λ, η),
and therefore, by (6.17), the estimation error is not necessarily minimised as required.
In the following we describe a means of measuring the goodness of approximating the
limit H (λ, η) using the notion of the mean squared error (MSE). In terms of this measure
we will seek an approach to improving the approximation of H (λ, η).

In the context of interacting principals, let λ be the (real) relative behaviour HMM of a
trustee te, with respect to a truster tr. Let also η be an arbitrary approximate behaviour
HMM for te. In a period of time of arbitrary length, the truster tr interacts with te and
hence observes a sequence of outcomes hT , where T denotes the (random) length of hT .
Here we define the random variable G(hT | η) as follows.

G(hT | η) =
1
T

log P (hT | η)



108 Chapter 6 HMM-based trust model

The random variable G(hT | η) is simply a function of the random sequence hT , where
this function depends on the choice of the HMM η. The probability density function
(pdf) of G(hT | η) is determined, therefore, by the real behaviour HMM λ which defines
the probability distribution of the random sequence hT .

By the almost sure convergence of G(hT | η) to H (λ, η) in (6.18), the random variable
G(hT | η) is thus seen as an estimator for H (λ, η). The ‘goodness’ of this estimation
(approximation) can be measured by the mean squared error (MSE) which is defined
as the expected squared difference between the estimator and the parameter being esti-
mated (See e.g. Bickel and Doksum, 2000). The MSE of G(hT | η) with respect to the
limit H (λ, η) is therefore expressed as follows.

MSE (G(hT | η)) = E
[
(G(hT | η)−H (λ, η))2

]
(6.24)

In practise, the MSE of G(hT | η) highly depends on the length τ of the time period in
which the sequence hT is observed. Namely, the longer is the time period τ , the larger
is the expected length T of the observation sequence hT which results in a lower MSE,
by the convergence property (6.18).

In the probabilistic setting of interaction between principals, it is likely (with a non
zero probability) that the available sequence hT of observations resulting from the per-
sonal interactions between the truster and the trustee is not sufficiently long to make
1
T log P (hT | η) an acceptable approximation for H(λ, η). In this situation, another
expression (estimator) which uses extra information, is therefore needed to better ap-
proximate H(λ, η). The following section is devoted to describing this expression, which
approximates H(λ, η) using multiple observation sequences instead of one sequence.

6.4.1 Enhancing the convergence using multiple observation sequences

In the model for interacting principals, described in Section 6.1.1, it is assumed that each
principal i has, intrinsically, a fixed probability pi of being the te’s partner in a given
interaction. Informally, this probability indicates the tendency of peer i to interact with
the trustee te. With respect to a trustee te, we call the members of a set of principals
symmetric peers if they have the same tendency to interact with te.

Definition 6.3. The members of a set S of principals are said to be symmetric peers
with respect to a trustee te if they have the same probability of being the te’s partner
in a given interaction. That is,

pi = pj ∀i, j ∈ S.

By Theorem 6.2, the symmetric peers observe the same relative behaviour of te, mod-
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elled by a HMM λ. Thus they are expected to give consistent ‘opinions’ regarding the
behaviour of te, which help better approximate the te relative behaviour λ.

Consider a set of symmetric peers i = 1, 2, . . . ,M , interacting with the trustee te ran-
domly in an arbitrary period of time. Let hi be the sequence of outcomes observed
by principal i, where hi has the length Ti. Accordingly, define the random variable
Gi(hi | η) as follows.

Gi(hi | η) =
1
Ti

log P (hi | η)

where η is an arbitrary HMM. In the above definition each random variable Gi(hi | η) is a
function of the random Ti-length observation sequence observed by the peer i when inter-
acting with the trustee te. It follows from the symmetry between principals 1, 2, . . . ,M

that the variables Gi(hi | η) have the same probability distribution. Therefore, each of
them can be seen as an approximation for H(λ, η). This fact suggests taking the average
of Gi(hi | η) as a better estimator for H(λ, η). This improvement is expressed in terms
of the mean squared error as confirmed by the following theorem.

Theorem 6.4. Consider a set S = {1, 2, . . . ,M} of symmetric principals with respect
to a given trustee te, where each principal i observes the sequence hi of length Ti during
a fixed period of time. Let the average of the random variables Gi(hi | η) be defined as

Ḡ(S | η) =
1
M

M∑
i=1

Gi(hi | η). (6.25)

Then, it holds for all i ∈ S that

MSE(Ḡ(S | η)) ≤ MSE
(
Gi(hi | η)

)
,

where the equality holds if and only if

P
(
Gi(hi | η) = Gj(hj | η)

)
= 1 ∀i, j ∈ S. (6.26)

Proof. In the following we write Gi, Ḡ, and H as shorthands for Gi(hi | η), Ḡ(S | η), and
H(λ, η) respectively. By the symmetry of principals {i : i ∈ S}, the random variables
{Gi : i ∈ S} individually have the same probability distribution. Therefore, MSE(Gi) is
independent of i. That is

MSE(Gi) = MSE(Gj) ∀i, j ∈ S. (6.27)

Using the above equation and the definition of Ḡ in (6.25), the MSE of the average Ḡ



110 Chapter 6 HMM-based trust model

with respect to the limit H can be expanded as follows.

MSE(Ḡ) = E
[
(Ḡ−H)2

]
=

1
M2

E

( M∑
i=1

(Gi −H)

)2


=
1

M2

(
M MSE(Gi)

)
+

2
M2

M∑
u=1

M∑
v>u

E [(Gu −H) (Gv −H)] . (6.28)

Applying the triangle inequality, we get

MSE(Ḡ) ≤ 1
M2

(
M MSE(Gi)

)
+

2
M2

M∑
u=1

M∑
v>u

|E [(Gu −H) (Gv −H)]| . (6.29)

By the Cauchy–Schwarz inequality (see e.g. Theorem (9) in Grimmet and Stirzaker,
2001), it holds that

|E [(Gu −H) (Gv −H)]| ≤
√

E
[
(Gu −H)2

]√
E
[
(Gv −H)2

]
, (6.30)

where the equality holds if and only if

P (α (Gu −H) = β (Gv −H)) = 1,

for some real α, β at least one of them is non-zero. Taking into account that (Gu −H)
and (Gv −H) have the same mean, the above condition can be written equivalently as
follows.

P (Gu = Gv) = 1 (6.31)

Using Eq. (6.27), Inequality (6.30) can be written as follows for any u, v, i ∈ S.

|E [(Gu −H) (Gv −H)]| ≤ MSE(Gi) (6.32)

The proof is then completed by substituting Inequality (6.32) in (6.29).

According to Theorem 6.4, the average Ḡ(S | η) for a set S of symmetric principals is a
better approximation for the limit H(λ, η) than Gi

T (λ, η) in terms of the mean squared
error. This provides a formal basis of enhancing the approximation of H(λ, η) using
multiple sequences by choosing the approximate behaviour HMM η which maximises
the average Ḡ(S | η) rather than maximising the probability of a single sequence (i.e.
maximising Gi(hi | η)). Using this result for a set of symmetric peers, the criterion (6.1)
of choosing the approximate model η can be now generalised to use multiple sequences
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rather than one sequence as follows.

η = argmax
Rn

Ḡ(S | η)

= argmax
Rn

∑
i

1
Ti

log P
(
hi | Rn

)
(6.33)

Observe that the mean squared error of Ḡ(S | η) is not improved by using multiple
sequences if and only if the condition (6.26) holds. In fact this condition holds in the
following cases.

1. The observation sequences hi are sufficiently long so that Gi(hi | η) = H(λ, η)
(with respect to an arbitrary small error margin). The averaging does not provide
a significant advantage in this case as Gi(hi | η), for any i, is already equal to
H(λ, η). Note that this case happens when the time period, during which obser-
vation sequences are observed, is large enough to allow for such long sequences.

2. The HMM η is defined such that at each state, the probability distribution over
outcomes (the emission probability distribution) is uniform. In this case it holds,
for any sequence h = o1o2 . . . oT , that

log P (o1 | η) = log P (o2 | o1, η) = log P (o3 | o1 o2, η) = . . .

= log P (oT | o1 o2 . . . oT−1, η) = H(λ, η),

which implies that
1
T

log P (h | η) = H(λ, η).

That is the convergence to the limit H(λ, η) is already achieved by any in-hand
sequence hi, and similarly to the previous case there is no need for averaging to
approximate H(λ, η).

6.5 Discussion

This chapter has introduced the foundations for the HMM-based trust model. This
model is based on approximating the behaviour of any trustee by the n-states HMM η

which maximises the likelihood of the available history of observations. The approximate
behaviour model η is then used to evaluate the estimated predictive probability distri-
bution given any sequence of observations. With modelling the real dynamic behaviour
of principals by hidden Markov models, and using the results obtained by Baum and
Petrie (1966), we justified the consistency of the HMM-based trust model. This justifi-
cation relies on showing that maximising the likelihood of a given observation sequence
minimises the relative entropy between the real and estimated predictive probability
distributions.
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To assess the estimation quality of a particular trust algorithm, we use the notion of
expected estimation error that is the expected difference (divergence) between the real
and estimated predictive probability distributions. Since we have no means yet to eval-
uate the expected estimation error expressed by Equation (6.17) for the HMM-based
trust model using analytical or numerical methods, a Monte-Carlo algorithm, described
in Section 6.3.1, has been used for evaluating the expected estimation error.

Using an implementation of this algorithm, and adopting the relative entropy (Kullback-
Leibler divergence) as a measure for the estimation error, an experimental comparison
between HMM-based trust algorithm and the Beta-based trust algorithm with an expo-
nential decay scheme was performed. The results of this comparison are given in Section
6.3.2. These results shows that HMM-based trust algorithm gives a better estimation for
the predictive probability distribution when the trustee’s behaviour is highly dynamic.
When the real behaviour is more stable (less dynamic), the Beta-based algorithm with
the optimal value of decay gives slightly better estimation than the HMM-based algo-
rithm.

The HMM-based trust model relies on observing a sequence of interaction outcomes
rather than individual (and independent) outcomes. The order of the outcomes in
a single sequence, in fact, provides valuable statistical information about the trustee’s
underlying evolution of states, and hence helps better estimate the predictive probability
distribution. This ‘sequencing’ information is basically the reason why the HMM-based
trust model incurs a lower estimation error than the Beta trust model when the the
trustee’s behaviour is dynamic.

Nevertheless, the HMM-based estimation using a single observation sequence requires
that this sequence be sufficiently long as explained in Section 6.4. In practical cases where
such a long observation sequence is unavailable, Section 6.4.1 describes an approach to
reliable HMM-based estimation using multiple sequences. This approach compensates
the lack of a single long sequence by information from multiple sequences. This results in
a general criterion for choosing the approximate HMM model given multiple sequences.
This criterion is expressed by (6.33) and plays the basic role of extending the HMM-trust
model to encompass a model of reputation which is detailed in the following chapter.
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HMM-based reputation model

In Chapter 6, we described the foundations of our proposed HMM-based trust model
which forms the basic pillar in a probabilistic trust framework aimed at evaluating the
trust in a principal (trustee) exhibiting dynamic behaviour. Underlying this framework,
the dynamic behaviour of a trustee te is represented by a set of (behaviour) states
where each state is associated with a probability distribution over possible interaction
outcomes. The dynamic behaviour of te is thus reflected by probabilistic transitions
from one state to another.

As described earlier in Section 6.1.1, two descriptive behaviours of the trustee te are
distinguished. The first is called the general behaviour of te in which the probabilistic
state transition is modelled by a finite-state Markov chain (MC). This MC describes
the probabilistic evolution of te’s internal states from one interaction to a successive one
irrespective of its partners. Since each state is associated with a probability distribution
over potential interaction outcomes, the general behaviour of te is then modelled by a
finite-state HMM, called the general behaviour HMM. This HMM defines a probability
distribution over the sequences of outcomes of interactions involving te regardless of the
te partners. This representation involves an implicit assumption that the trustee does
not discriminate between different interaction partners, and the probability distribution
over interaction outcomes depends only on the trustee’s internal state which depends on
e.g. the security and integrity properties of the trustee as shown in Example 6.1.

On the other hand, a truster tr is usually interested in the outcomes of its ‘personal’
interactions with te, rather than all interactions of te. That is te defines its trust in te as
an estimated probability distribution over the potential outcomes of tr’s next interaction
with te. This requires modelling the so called relative behaviour of te with respect to
tr. Unlike the general behaviour of te which considers all interactions involving te, the
relative behaviour (with respect to tr) considers only the interactions between te and
tr. Specifically, a model for the relative behaviour of te with respect to tr is required to
define a probability distribution over sequences of outcomes of interactions between te

113
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and tr. To meet this requirement, it is assumed that, at a given interaction involving
te, the partner of te in this interaction is tr with a fixed probability ptr. Under this
assumption, Theorem 6.2 proves that the relative behaviour of te can be represented
by a finite-states HMM, called the relative behaviour HMM and denoted by λ, whose
parameters depend on te’s general behaviour HMM, and also on the probability ptr

associated with tr.

In order to evaluate the trust of tr in the trustee te, we seek approximating the (hidden)
relative behaviour HMM of te with respect to tr. While the parameters of te’s relative
behaviour HMM are hidden from tr, the sequence h of outcomes of interactions between
tr and te is observable to tr. The objective of the HMM-based trust model is therefore
to provide the truster tr a means for evaluating its trust in te using the given sequence
of observations h, that is to estimate the probability distribution over possible outcomes
of the next interaction with te. We also call this distribution an estimated predictive
probability distribution.

The HMM-based trust model employs the Baum-Welch algorithm to approximate the
relative behaviour HMM λ of the trustee by an arbitrary size finite-state HMM η, called
the approximate behaviour HMM. The estimated predictive probability is then evaluated
using Eq. (6.2). Following the representation of the (hidden) relative behaviour of te by
a HMM λ, it was shown that the trust evaluation algorithm is consistent in the sense that
the asymptotic error of estimating the predictive probability distribution is minimised
by choosing the approximate HMM model η which maximises the probability of the
historical sequence of observations h. This process of choosing the approximate model
which fits the historical sequence, is referred to as learning the trustee’s behaviour.

In many practical situations, the sequence of personal observations available to the
truster is not sufficiently long to learn the behaviour of a trustee. In these cases, learn-
ing the behaviour of the considered trustee using such a short sequence would not be
reliable for obtaining an approximate model η for the trustee. A traditional approach
to handle this shortage of information is to incorporate the reputation information in
the behaviour learning process. Reputation information can be simply described as the
feedback information collected from other principals about the trustee. This feedback
information is aimed to enrich the available information about the trustee’s behaviour to
the truster, and therefore enables the truster to more reliably approximate the trustee’s
behaviour and accordingly better estimate the predictive probability distribution over
possible outcomes of the next interaction with the trustee. Addressing the problem of
reputation requires answering two main questions:

• In which format should a principal, called a reputation source, phrase its reputation
report about a particular trustee ?

• How can a truster use the reports collected from different reputation sources, to
enhance the process of learning the trustee’s behaviour ?
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Clearly, the answer to these questions depends on the assumptions made about the
behaviour model of a principal. For example many existing frameworks are based on
the assumption that a trustee’s behaviour is modelled by a fixed probability distribution
over the interaction outcomes (observables). This is apparent in the Beta Reputation
System (Jøsang and Ismail, 2002) which is followed in TRAVOS (Teacy et al., 2006),
where the assumed fixed distribution considers only two possible outcomes (success,
fail). This assumption of a fixed distribution over interaction outcomes is also adopted
by Nielsen et al. (2007) and Jøsang and Haller (2007), where multiple outcomes are
considered instead of only two. According to this assumption of fixed distribution, a
single reputation report (feedback) given by a reputation source includes the count of
each outcome experienced by the source out of its interaction with the trustee (See
(3.2)). Mixing multiple reputation reports is performed in these systems by adding the
counts of corresponding outcomes in the given reports (See Eqs. (3.3)).

This solution to the reputation problem is consistent under the assumption of the fixed
behaviour (probability distribution) of the trustee, since the outcomes of interactions are
independent of each other, and therefore only the counts of occurrences of each outcome
(e.g. success or failure) are important to estimate this distribution.

Since our novel HMM-based trust model is based on representing the dynamic behaviour
of principals by a HMM rather than a fixed probability distribution over observables,
we ask for reputation information which reflects the ‘dynamicity’ of the trustee’s be-
haviour. A reputation report is therefore required to provides information about indi-
vidual trustee’s states. This is not trivial because the internal state transitions of the
trustee is hidden from the reputation source when it interacts with the trustee. However,
using the Baum-Welch algorithm, the truster can estimate some statistics about such
hidden states and their associated probability distributions over observables. Following
this idea we seek, in this chapter, a framework which answers the above two questions,
and therefore augments the basic HMM-based trust model by a reputation handling
mechanism.

7.1 General assumptions

The HMM-based trust model is based on representing the relative behaviour of any
trustee te by a stationary finite-state HMM λ. This representation involves the assump-
tion that a trustee has always a finite number of states, where each state is described by
a probability distribution (the emission distribution) over possible outcomes, and also
an immutable probability distribution (the state transition distribution) governing the
transition from the given state to other states.

In order for a set of reputation sources to give consistent opinions about the behaviour of
a trustee te behaviour, we assume that te interacts similarly with these sources. That is
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te has the same relative behaviour HMM λ with respect to the reputation sources. This
allows the principal mixing the reputation reports to better approximate the ‘unique’
hidden behaviour λ of te rather than concluding a model η which averages different
hidden behaviours. In the setting of general and relative behaviour models described
in Section 6.1.1, the relative behaviour of te with respect to a reputation source rs
depends on the probability prs at which the reputation source rs interacts with te. Thus
according to this setting, the proposed reputation model requires collecting reputation
from principals which interact with the trustee at the same probability p.

As shown in Chapter 6, the HMM-based trust evaluation is based on approximating the
relative behaviour of any trustee by a finite-state HMM η with an arbitrary number
of states. For the sake of unifying the form of reputation reports, it is assumed that
reputation sources agree on the structure of the approximate behaviour model η for a
trustee; namely the set of states S and the set of possible interaction outcomes V . Each
single reputation report can therefore have the same representation, whose semantics
depend on the agreed structure of η. The objective of the reputation mixing algorithm
is then to determine the parameter values of η from the given reputation reports.

Example 7.1. A set of peers can confine the approximate HMM of any trustee te to
the states ‘Honest(H)’ and ‘Corrupt(C)’, that is S = {H,C}. The outcome of any
interaction with te is also confined to the set V = {s, f}, which indicates successful and
unsuccessful interactions respectively. At state H, the trustee interacts successfully with
higher probability than interacting unsuccessfully, while vice versa in the state C.

7.2 Reputation framework

In the HMM based trust framework, consider a truster tr aiming at evaluating its trust
in a trustee te. Let h be the sequence of outcomes of interaction between tr and te,
observed by tr. The truster tr therefore tries to approximate the behaviour of te, by es-
timating the parameters of the optimal HMM model η which maximises the probability
of the observation sequence h seen only by tr, as indicated by Eq. (6.1). This param-
eter estimation process is performed by applying the Baum-Welch algorithm which is
described in Section 2.5.4.

As shown by Section 2.5.4 and Rabiner (1989), the Baum-Welch algorithm is basically
an instance of the Expectation-Maximization algorithm where maximising the data like-
lihood amounts to iteratively maximising the expected complete data likelihood. In each
iteration of the EM algorithm, an a priori model is used to evaluate the expected com-
plete data likelihood function, which is then optimised to obtain an a posteriori model.
This process is then repeated in the next iteration with replacing the a priori model by
the obtained a posteriori one. More details about the EM algorithm can be found in
Section 2.2.3 and Dempster et al. (1977).
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In the case of HMM parameter estimation, the expected complete data likelihood, also
called the Baum’s auxiliary function, is given by Eq. (2.11), which we rewrite in the
following form

Q
(
η′, h, η

)
=
∑

q

P
(
q | h, η′

)
log P (h, q | η) , (7.1)

where η′ and η are respectively the a priori and the a posteriori models. h and q are
respectively the observed sequence of outcomes and the corresponding (hidden) sequence
of states. More details about maximising the above function are given by Section 2.5.4,
and Rabiner and Juang (1993).

To handle the reputation problem, consider multiple principals 1, 2, . . . ,M which interact
with a trustee te. If these principals interact with te with the same probability, the
relative behaviour te with respect to each of them is the same according to Theorem
6.2. However, each principal u can obtain a different approximate model ηu for te which
maximises the probability of its own observation sequence hu.

Rather than having multiple approximate models which individually maximise different
sequences, it is required to obtain a single model which tries to maximise the ‘overall’
likelihood of the observation sequences hu. For this purpose, Criterion (6.33) is proposed
for choosing the optimal approximate model. That is we aim at finding the approximate
model η∗ which maximises a likelihood objective function G

(
h1, h2, . . . , hM | η

)
defined

as
G
(
h1, h2, . . . , hM | η

)
=
∑

u

1
Tu

log P (hu | η) , (7.2)

where Tu is the length of the sequence hu. Although the sequences hu are not indepen-
dent, maximising the above objective function tends to give better estimation results as
shown in Section 6.4.1. If all such sequences are available to one principal u, it would
be able to estimate η∗ iteratively using the EM algorithm. Indeed, it is not practical
for principals to exchange their whole observation sequences as reputation information
since each of these sequences is getting longer over time. So, we seek in the following
an alternative approach to estimate η∗ associated with the trustee te, using partial and
bounded information about the observation sequences.

Consider a single sequence h of observations. The log probability of h given a model η

is related to the auxiliary function, (7.1), by the following lemma.

Lemma 7.1. Given an observation sequence h, and a model η′,

log P (h | η) ≥ Q
(
η′, h, η

)
+R

(
η′, h

)
,

where
R
(
η′, h

)
= −

∑
q

P
(
q | h, η′

)
log P

(
q | h, η′

)
.



118 Chapter 7 HMM-based reputation model

Proof.

log P (h | η) = log

{∑
q

P (h, q | η)

}

= log

{∑
q

P
(
q | h, η′

) P (h, q | η)
P (q | h, η′)

}

= log
{
Eq

[
P (q, h | η)
P (q | h, η′)

∣∣∣∣h, η′
]}

≥(1) Eq

[
log
(

P (q, h | η)
P (q | h, η′)

) ∣∣∣∣h, η′
]

=
∑

q

P
(
q | h, η′

)
log

P (q, h | η)
P (q | h, η′)

=
∑

q

P
(
q | h, η′

)
log P (q, h | η)−

∑
q

P
(
q | h, η′

)
log P

(
q | h, η′

)
= Q

(
η′, h, η

)
+R

(
η′, h

)
.

The inequality (1) is obtained by applying Jensen’s inequality (see e.g. Theorem 2.6.2
in Cover and Thomas, 2006) to the log function. The equality holds when η = η′.

The above lemma expresses a lower bound for the log probability of h under any model
η, in terms of an a priori model η′. From the above proof, if η′ 6= η the exact difference
between this bound and the log probability of h depends clearly on the observation
sequence h, and the choice of η′, η. If full information about h is not available, the
best that can be done for maximising log P (h | η) is to maximise its lower bound with
respect to η. This amounts to maximising Q(η′, h, η) since R(η′, h) is independent
of the variable model η. While the auxiliary function Q (η′, h, η) still depends on the
observation sequence h, it will be shown that only partial, and also bounded information
about h is needed to maximise Q (η′, h, η).

7.2.1 Deriving a reputation algorithm

For any particular trustee, each reputation source u observes an observation sequence
hu = ou

1 ou
2 . . . ou

Tu
resulting from its ‘personal’ interactions with the trustee. A repu-

tation source therefore maintains an approximate behaviour model ηu for the trustee’s
behaviour. For maximising the likelihood objective function G

(
h1, h2, . . . , hM | η

)
de-

fined by (7.2), it is necessary to have full information about the sequences as shown
above. Since any particular principal has no access to the sequences observed by other
principals, we aim at finding the model η∗ which rather maximises a lower bound of
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G
(
h1, h2, . . . , hM | η

)
. Using Lemma 7.1, this lower bound is given by

∑
u

1
Tu
Q (ηu, hu, η) +

∑
u

1
Tu
R (ηu, hu) .

Regarding the approximate models ηu as a priori models for the trustee’s behaviour, the
problem of reputation mixing can be expressed as finding the optimal a posteriori HMM
η∗ which maximises the above lower bound of the likelihood objective function. Since∑

u
1

Tu
R (ηu, hu) is independent of the a posteriori model η, we write

η∗ = argmax
η

∑
u

1
Tu
Q (ηu, hu, η) . (7.3)

It will be shown in this section that full information about the sequences hu is not neces-
sary to maximise the above expression, while partial information about these sequences
are sufficient to perform the maximisation in (7.3). The derivation for the necessary in-
formation is inspired by the derivation of the Baum-Welch reestimation equations given
in (Rabiner and Juang, 1993).

Let qu = qu
1 , qu

2 , . . . , qu
Tu

denote the (hidden) sequence of states underlying the observa-
tion sequence hu. For performing the maximisation in 7.3, we need to formulate the func-
tion Q (ηu, hu, η) using its definition in (7.1). We start by formulating log P (hu, qu | η)
in terms of the parameters of η as follows

log P (hu, qu | η) = log πqu
1

+
Tu∑
t=2

log Aqu
t−1qu

t
+

Tu∑
t=1

log Bqu
t

(ou
t ) , (7.4)

where πi denotes the probability that the initial state (qu
1 ) is i. Aij is the probability

of transition from state i to state j. Bi (zk) is the probability of observing the outcome
zk at state i. Refer to the description of the HMM elements in Section 2.5.1 for more
details about these notations.

Substituting Expression (7.4) in (7.1), the functionQ (ηu, hu, η) can be written as follows.

Q (ηu, hu, η) =
N∑

i=1

P (qu
1 = i | hu, ηu) log πi +

N∑
i=1

N∑
j=1

Tu∑
t=2

P
(
qu
t−1 = i, qu

t = j | hu, ηu
)

log Aij +

N∑
i=1

K∑
k=1

Tu∑
t=1

P (qu
t = i | hu, ηu) δ (ou

t , zk) log Bi (zk) ,

(7.5)

where N is the number of states, K is the number of possible observation symbols, and
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the δ-function δ (ou
t , zk) is defined as by:

δ (ot, zk) =

{
1 if ot = zk;
0 otherwise.

(7.6)

Now we are ready to expressing the sum
∑M

u=1
1

Tu
Q (ηu, hu, η) in (7.3) by scaling Eq.

(7.5) by 1
Tu

, and then summing over the available reputation sources {1, 2, . . . ,M}. For
convenience, we write the resulting sum as follows

M∑
u=1

1
Tu
Q (ηu, hu, η) = Qπ (π) +

N∑
i=1

QAi (Ai) +
N∑

i=1

QBi (Bi) , (7.7)

where π = [π1, π2, . . . , πN ] is the vector representing the initial state probability distri-
bution, Ai = [Ai1, Ai2, . . . , AiN ] is the vector representing the probability distribution
over state transitions from state i to other states, and Bi = [Bi(z1), Bi(z2), . . . , Bi(zK)]
is the vector representing the emission probability distribution over outcomes given state
i. The functions Qπ(π), QAi(Ai), and QBi(Bi) in the above equation are defined as
follows

Qπ(π) =
N∑

i=1

(
M∑

u=1

1
Tu

P (qu
1 = i | hu, ηu)

)
log πi, (7.8)

QAi(Ai) =
N∑

j=1

(
M∑

u=1

1
Tu

Tu∑
t=2

P
(
qu
t−1 = i, qu

t = j | hu, ηu
))

log Aij , (7.9)

QBi (Bi) =
K∑

k=1

(
M∑

u=1

1
Tu

Tu∑
t=1

P (qu
t = i | hu, ηu) δ (ou

t , zk)

)
log Bi (zk) . (7.10)

Observe that each term in Equation (7.7) is a function of a probability distribution
which parametrises the HMM η. These distributions (π, Ai, Bi ∀i : 1 ≤ i ≤ N) are
independent of each other, that is the choice of one of them does not affect the choice
of the others. Therefore the overall sum (7.7) is maximised by maximising each term in
(7.7) separately. Observe furthermore that each of equations (7.8),(7.9), and (7.10) is in
the following form

F (y1, y2, . . . , yV ) =
V∑

v=1

wv log yv where
V∑

v=1

yv = 1. (7.11)

Using the Lagrange multiplier technique for optimising a function subject to a constraint,
the constrained function F defined above can be easily proved to have a global maximum
at the point (ȳ1, ȳ2, . . . , ȳV ), where ȳv is given by

ȳv =
wv∑V

v=1 wv

.
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Using the above fact, the parameters of the optimal a posteriori model η∗ are given as
follows

π̄i =

∑M
u=1

1
Tu

P (qu
1 = i | hu, ηu)∑M

u=1
1

Tu

, (7.12)

Āij =

∑M
u=1

1
Tu

∑Tu
t=2 P

(
qu
t−1 = i, qu

t = j | hu, ηu
)∑M

u=1
1

Tu

∑Tu
t=2 P

(
qu
t−1 = i | hu, ηu

) , (7.13)

B̄i (zk) =
∑M

u=1

∑Tu
t=1 P (qu

t = i | hu, ηu) δ (ou
t , zk)∑M

u=1
1

Tu

∑Tu
t=1 P (qu

t = i | hu, ηu)
. (7.14)

In the context of Baum-Welch algorithm description (Section 2.5.4, Rabiner, 1989;
Rabiner and Juang, 1993), P (qt = i | h, η), the probability of visiting state i at time
t given an observation sequence h and a HMM η is denoted by the variable γt(i).
Also P (qt−1 = i, qt = j | h, η), the probability of visiting states i and j at times t − 1
and t respectively is denoted by the variable ξt−1(i, j). In the same manner, we use
the variables γu

t (i) and ξu
t−1(i, j) to denote the probabilities P (qu

t = i | hu, ηu), and
P
(
qu
t−1 = i, qt = j | hu, ηu

)
respectively. Using these variables, Eqs (7.12),(7.13), and

(7.14) expressing the parameters of η∗ can be written as follows

π̄i =

∑M
u=1

1
Tu

γu
1 (i)∑M

u=1
1

Tu

, (7.15)

Āij =

∑M
u=1

1
Tu

∑Tu
t=2 ξu

t−1(i, j)∑M
u=1

1
Tu

∑Tu
t=2 γu

t−1(i)
, (7.16)

B̄i(zk) =

∑M
u=1

1
Tu

∑Tu
t=1, ou

t =zk
γu

t (i)∑M
u=1

1
Tu

∑Tu
t=1 γu

t (i)
. (7.17)

The above derivation for Eqs. (7.15- 7.17) proves therefore the following theorem.

Theorem 7.2. The parameters of the optimal a posteriori HMM η∗, defined by Eq.
(7.3), are given by Eqs. (7.15- 7.17).

From Eqs. (7.15- 7.17), it is noteworthy that the computation of η∗ parameters does not
require full specification of the observation sequences hu, where 1 ≤ u ≤M . It requires
however only some statistical functions of these sequences. Based on this fact, a concise
form of a reputation report and also a reputation mixing scheme can be devised as shown
below.
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7.2.2 Reputation mixing

By Eqs. (7.15), (7.16), and (7.17) we are ready to formulate the novel HMM-based
reputation framework. Starting by an initial HMM, each principal u applies the Baum-
Welch learning algorithm to its own sequence of observations hu to obtain an approxi-
mate HMM for the trustee. Referring to our assumptions in Section 7.1, the reputation
sources must agree on the structure of the approximate HMM; that is the number of
states N and the number of observables K. The Baum-Welch training performed by each
principal u results in an approximate behaviour HMM ηu for the trustee and also the
variables γu

t (i), ξu
t (i, j) for all 1 ≤ t ≤ Tu, and all i, j ∈ {1, 2, . . . , N}, k ∈ {1, 2, . . . ,K}.

In terms of these variables, a principal u formulates its reputation report about the
trustee as the tuple (

Tu , γ̄u
1 , γ̄u

Tu
, γ̄u , ξ̄

u
, ω̄u

)
.

While Tu is clearly the length of hu, each other element in the above reputation report
is basically a matrix defined as follows

γ̄u
1 =

[
γ̄u

1(1) γ̄u
1(2) . . . γ̄u

1(N)
]

where γ̄u
1 (i) =

1
Tu

γu
1 (i),

γ̄u
Tu

=
[

γ̄u
Tu

(1) γ̄u
Tu

(2) . . . γ̄u
Tu

(N)
]

where γ̄u
Tu

(i) =
1
Tu

γu
Tu

(i),

γ̄u =
[

γ̄u(1) γ̄u(2) . . . γ̄u(N)
]

where γ̄u(i) =
1
Tu

Tu−1∑
t=1

γu
t (i),

ξ̄
u =


ξ̄

u(1, 1) ξ̄
u(1, 2) . . . ξ̄

u(1, N)
ξ̄

u(2, 1) ξ̄
u(2, 2) . . . ξ̄

u(2, N)
... . . .

. . .
...

ξ̄
u(N, 1) ξ̄

u(N, 2) . . . ξ̄
u(N,N)

 where ξ̄
u(i, j) =

1
Tu

Tu∑
t=2

ξu
t−1(i, j),

ω̄u =


ω̄u(1, 1) ω̄u(1, 2) . . . ω̄u(1,K)
ω̄u(2, 1) ω̄u(2, 2) . . . ω̄u(2,K)

... . . .
. . .

...
ω̄u(N, 1) ω̄u(N, 2) . . . ω̄u(N,K)

 where ω̄u(i, k) =
1
Tu

Tu∑
t=1, ou

t =zk

γu
t (i).

Now for describing the reputation mixing algorithm, consider the following set of repu-
tation reports provided by M reputation sources.

{(
Tu , γ̄u

1 , γ̄u
Tu

, γ̄u , ξ̄
u
, ω̄u

)
: 1 ≤ u ≤M

}
In terms of the elements of these reputation reports, Eqs. (7.15)-(7.17), evaluating the
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parameters of the approximate behaviour HMM η∗, can be rewritten as follows.

π̄i =
∑M

u=1 γ̄u
1 (i)∑M

u=1
1

Tu

, (7.18)

Āij =
∑M

u=1 ξ̄u(i, j)∑M
u=1 γ̄u(i)

, (7.19)

B̄i(zk) =
∑M

u=1 ω̄u(i, k)∑M
u=1

(
γ̄u(i) + γ̄u

Tu
(i)
) . (7.20)

Using the above equations, a truster having a set of reputation reports (including its own
report) can compute an optimal approximate HMM for the trustee. This approximate
HMM is then used for evaluating the trust in the trustee using Eq. (6.2).

7.3 Performance analysis

It is important to highlight the additional computation cost required to extend the basic
HMM-based trust model, described in Chapter 6, to incorporate reputation information.
In other words, we ask the question what is the additional cost of using the ‘opinions’ of
other peers along with the personal opinion of the truster. In fact, this additional cost
includes the cost of computing, exchanging, and mixing the reputation reports.

The elements of a reputation report are evaluated by normalising the variables γu(i),
ξu(i, j), and ωu(i, k) by the length Tu of the observation sequence hu. These variables are
essential for the reputation source u to construct an approximate behaviour HMM ηu for
the trustee, even if the trust evaluation is based only on personal interactions between
u and the trustee. Thus the additional cost of formulating the reputation report is
just paid for the normalisation by Tu. Note also that the cost of the reputation mixing
process using Eqs. (7.18)-(7.20) is very insignificant compared to the cost of learning an
approximate model for the trustee using the Baum-Welch algorithm.

Therefore the significant cost of extending the HMM-trust model to incorporate rep-
utation, almost entirely lies in transporting the reputation reports between network
principals. Note that these reputation reports have to be updated on a regular ba-
sis to incorporate new observations experienced by the reputation sources. Therefore
the mechanism of exchanging reputation reports highly impacts the performance of the
system. An independent line of research can be directed for optimising this cost of
communicating the reputation reports.
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7.4 Experimental evaluation

In this section we evaluate the performance of the HMM-based reputation model in
terms of the expected estimation error. For this purpose, we adopt an experimental
approach based on simulating the general behaviour of a trustee. In this simulation,
the general behaviour of the trustee te is assumed to follow a given HMM. The other
principals (peers) in the network interact with te probabilistically in a fixed period of
time τ . For the purpose of simulation, it is assumed that interactions of te take place at
an average rate (interactions per unit time). Thus the total number of interactions of
te in a time interval τ tends to be proportional with τ . This allows for using the total
number of te’s interactions instead of a continuous measure for the observation time
period τ .

At any interaction involving te, the partner of te is principal i with a fixed probability
(interaction probability) pi. Assuming the trustee te experiences a number T of interac-
tions with its network peers, each network peer i observes a sequence hi of the outcomes
of its interactions with te, where hi is of length Ti. Each peer can therefore formulate
its own reputation report for te. Symmetric peers with respect to te can exchange their
reputation reports to approximate the te’s behaviour, and estimate their trust in te in
the form of an estimated predictive probability distribution (over observables). The es-
timation error can be then evaluated by comparing the estimated predictive probability
distribution to the real predictive distribution using Eq. (6.7).

Given the above simulation procedure, the expected estimation error can be obtained us-
ing the Monte-Carlo approach. Namely an m-size sample of estimation errors is obtained
by running the above simulation procedure m times, where at each run the estimation
error is evaluated. Making the sample size m arbitrarily large, the expected estimation
error is then obtained as the sample average, according to the law of large numbers.

It is remarkable that this evaluation procedure is independent of the used trust and
reputation models. In other words, the same procedure can be used for assessing dif-
ferent probabilistic observation-based reputation models. Taking the advantage of this
feature we will compare between our adopted HMM-based reputation model and the
traditional Beta reputation model (Jøsang and Ismail, 2002) in terms of the expected
estimation error (6.19), where the estimation error, at each simulation run, is defined
as the relative entropy divergence (given by Eq. (6.7)) from the real to the estimated
predictive probability distributions.

7.4.1 Impact of multiple reputation reports

Here we consider a set of two symmetric peers with respect to a trustee te. This set
includes a truster tr wanting to evaluate its trust in te, and a reputation source rs. Both
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Figure 7.1: The expected estimation error using the HMM-based reputation model.

peers tr and rs formulate their reputation reports for te. Assuming that the truster tr is
capable of receiving the rs’s reputation report, it is able to evaluate its trust in te either
using its own single reputation report, or using the two available reports, by the HMM
reputation mixing algorithm described in Section 7.2.2. In the following we compare
these two methods in terms of the expected estimation error.

Let the general behaviour of te be modelled by the s-stable HMM defined in Section
5.5 with the stability parameter s set to 0.9. In this modelling, the outcomes of any
interaction are confined to the binary set {s, f}. The interaction probability of tr ( and
also rs) is set to 0.2. This means that at any interaction with te, both the truster tr, and
the reputation source rs are individually likely to be the te’s partner with probability
0.2, while it remains a probability of 0.6 that any other principal is the te’s partner.

With these settings, the interaction between te and other network peers is simulated as
described earlier in Section 7.4. Figure 7.1, shows the impact of the described HMM-
based reputation model on the expected estimation error using multiple reputation re-
ports. One curve in this figure shows the estimation error resulting from using tr’s single
reputation report. The other curve shows the expected estimation error when the truster
tr uses its own reputation report along with the additional reputation report collected
from the reputation source rs.

In both cases note that the expected estimation error is getting lower, as the number of
interactions with te is getting higher. Indeed, this is because more observed interactions
add more information about the relative behaviour of the trustee te with respect to
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symmetric peers (tr abd rs). Therefore, learning the behaviour of the trustee, using
this accumulated information tends to enhance estimating the predictive probability
distributions, and hence reduces the estimation error.

Looking at the two curves in Figure 7.1, observe also that the proposed HMM reputation
mixing provides a lower expected estimation error when multiple reputation reports are
used. The improvement which results from mixing the two reputation reports is indi-
cated by the vertical difference between the two curves. Observe that this improvement
is getting less significant as the total number of interactions is getting larger. This is
because when the number of te’s interactions is larger, the individual observation se-
quences observed by tr and rs tend to be consequently longer. This makes one sequence
closer to be sufficient for learning the trustee’s behaviour with no need to additional
reputation reports.

7.4.2 Comparison with Beta reputation model

In the following, the simulation framework described earlier in Section 7.4 is used to con-
trast the HMM-based reputation model against the traditional Beta reputation model
described by Section 3.2.1 and also by Jøsang and Ismail (2002). Consider a truster
tr wanting to evaluate its trust in the trustee te using its own reputation report to-
gether with another reputation report collected from the reputation source rs. Again it
is assumed that tr and rs are symmetric with respect to te, and have the same inter-
action probability 0.2. The general behaviour HMM for the trustee is again set to the
same 0.9-stable HMM, used in Figure 7.1. With these settings, Figure 7.2 shows the
expected estimation error when the HMM-reputation model is used, and when the Beta
reputation model is used. From Figure 7.2, observe that for a relatively low number of
total interactions T with te, the beta model outperforms the HMM reputation model by
exhibiting a lower estimation error. In this case, the lengths of observation sequences
(observed by tr and rs) are not sufficiently long to capture the ‘dynamicity’ of the be-
haviour. This makes learning the approximate behaviour HMM based on such relatively
short sequences easily resulting in a HMM which is not a proper approximation for the
trustee’s relative behaviour, and hence a large estimation error compared to using Beta
reputation reports.

However, for large number of interactions (T ), the HMM reputation model exhibits a
lower expected estimation error than the Beta model. In this case, the sequences of
observations are long enough to reflect the dynamic behaviour of the trustee. Taking
advantage of the sequencing information in these observed sequences, the HMM repu-
tation model results in a reliable multiple-state HMM which approximates the hidden
dynamic behaviour of the trustee. The Beta model, on the other hand, ignores the
dynamic behaviour of the trustee and uses only the counts of observables to learn an
‘average’ probability distribution over possible outcomes as described in Section 3.2.1.
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Figure 7.2: The expected estimation error using HMM and Beta reputation models.

It is also apparent in Figure 7.2, that incorporating the decay factor 0.9 in the beta
model reduces the expected estimation error. With this respect, we studied in Chapter
5 the effect of the decay principle on the Beta estimation error, and found that the decay
factor does not necessarily reduce the estimation error. It was also concluded that the
proper values for the decay factor depend heavily on the stability of real behaviour model
of te which is assumed to be hidden from its interacting partners. Here, the HMM-based
reputation holds the advantage that no knowledge about the real behaviour is needed.

In conclusion, we advise using the beta reputation model when the number of interactions
with the trustee is relatively small, and using the proposed HMM-reputation model when
this number is large. One advantage in the proposed format of a HMM-reputation report,
is that it includes the length of the observed sequence. Based on this length information,
a truster can decide whether to use the simple beta model or the HMM model. Any
truster can arbitrarily define the least number of interactions with a trustee so that the
HMM-reputation model is used.

Consider, for example, a computer network where each peer provides a service (e.g.
routing) to other network peers. Assuming that each peer has a fixed identity (e.g. IP
address), reputation reports about a trustee can be accumulated based on interactions
with this trustee. The beta reputation model can be used initially when the sequences of
mutual interactions between peers are relatively short. Over the time, the sequences of
mutual interactions between peers become long enough such that the HMM reputation
model is more precise for evaluating trust in the network peers than the beta model.
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If the network peers are however mobile such that they leave and re-enter the network
with different identities, long sequences of interactions with a trustee are not always
available in this case and hence using beta reputation model is preferable for evaluating
the mutual trust based on the ‘short-term’ interactions between the network peers.



Chapter 8

Conclusion

In networks of interacting principals, each principal aims at protecting its resources from
being abused or destroyed during an interaction with others. This is the reason why
each principal usually tries to choose carefully its partners such that the risk of abusing
its resources by its chosen partners is minimised. In other words, a principal bases its
security policies on an estimated level of trust in each of its network peers. Therefore, the
general problem of achieving security between interacting principals amounts essentially
to formalising and computing trust between them.

In modern open-ended networks (e.g. the Internet) each principal can have autonomously
different behaviours and intentions which are incompletely known by other principals
and therefore can affect their security. Moreover, it is not practical in such networks to
use third parties to issue and verify credentials (certificates) because this again raises
the question of whether these parties are always trusted or not. Given these attributes,
the credential-based trust is not entirely appropriate as a basis of interaction in these
networks simply because no principal is assumed to be perfectly trusted; there is always
a risk of experiencing unsatisfactory outcomes of a given interaction with a partner.

Given the above characteristics of modern open-ended networks, the aim of security
decisions is then directed to minimising the risk of unsatisfactory interaction outcomes
rather than avoiding the risk at all. This requires assessing the ‘likelihood’ of the risk
associated with interacting with each potential partner. This leads to a modern notion
of trust called probabilistic trust which is the main concern of this thesis.

The probabilistic trust of a principal (truster) in a particular trustee is defined as the
probability distribution, estimated by the truster, over possible outcomes of an interac-
tion between the truster and the trustee. An important advantage of formalising the
trust in a trustee as a probability distribution is that mathematical tools provided by the
probability theory (e.g. Bayesian inference and maximum likelihood estimators) can be
used as formal means to estimate such a distribution based on the available observations
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about the trustee. Another advantage of this probabilistic notion of trust is related to
its usage as the core of security policies. Namely with the interpretation of trust as
a probability distribution over possible interaction outcome, a security policy/protocol
can be mathematically optimised so that the probability (likelihood) of experiencing
unsatisfactory interaction outcomes is minimised.

In this thesis, we addressed two questions. The first is how the probabilistic trust infor-
mation can be employed in security protocols to satisfy the requirement of minimising
the risk of abusing resources and violating the protocols. The other question is how
to evaluate the trust in principals exhibiting dynamic behaviours, given past observa-
tions about them. That is using a hidden Markov models (HMM) to model the hidden
dynamic behaviour of a trustee te, it is required to equip a truster tr with trust and
reputation models for estimating the probability distribution over possible outcomes of
the tr’s next interaction with te.

8.1 Main contributions

8.1.1 Using probabilistic trust in Crowds protocol

In Chapter 4 it is described how the probabilistic trust information about principals can
be used to optimise the Crowds anonymity protocol (Reiter and Rubin, 1998) aiming
to protecting the identity of the protocol members when they initiate web transactions.
In this chapter, each member i of the crowd is associated with a probabilistic trust value
ti denoting its probability of being ‘honest’ (i.e. conforming with the protocol) when it
receives a message from another member. The principal i is therefore assumed to be
‘corrupted’ (i.e. violating the protocol) with probability 1− ti.

For allowing using such trust values, the original Crowds protocol is extended such that
each user i is associated with a preference level of forwarding qi denoting the probability
of choosing it as the next forwarder in the routing process. This allows for specifying
the probabilities qi as the interaction policy, according to the participants trust values.

Given a probability of forwarding pf , a level of anonymity α, and trust levels t1, t2, · · · , tn
for crowd members, we identified the necessary conditions on the probabilities of forward-
ing qi which are necessary to achieve a level of anonymity called α-probable innocence.
Thus, in presence of untrusted members, the users of the protocol can exploit these re-
sults to derive an interaction policy q1, q2, · · · , qn, if there exists any, that ensures them
a level of satisfactory anonymity.
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8.1.2 Analysis of the decay principle

Since the exponential decay principle was proposed in the literature as an enhancement
of the Beta and Dirichlet trust models to cope with principals dynamic behaviour, it
is important to study the usefulness and limitations of this approach. Chapter 5 is
devoted to this purpose as it provides a detailed analysis of the Beta trust model with
exponential decay.

In this chapter, the dynamic behaviour of a trustee te is modelled by an ergodic finite-
state HMM λte, called te’s ‘real model’. Given a current state of λte, the probability
distribution over the outcomes of the next interaction with te is computed, and called the
predictive probability distribution. Applying the Beta trust model along with the decay
scheme to a sequence of previous outcomes of interacting with te, results in another
probability distribution, called the estimated predictive distribution. The quality of the
trust model is then measured by an estimation error defined as the statistical difference
between the (real) predictive distribution and the estimated predictive distribution.

A formula has been then derived for the expected estimation error of the Beta model
with a decay factor. This formula can be used to understand the implications of choosing
a decay factor. To study the effectiveness of the decay technique with respect to the
trustee’s dynamic behaviour, the expected Beta error is plotted as a function of the decay
parameter r according to a notion of system stability. It is found that the optimal value
of the parameter r is highly sensitive to the trustee’s stability, and the decay technique
appears effective only when systems are relatively stable, so that state changes happen
infrequently.

8.1.3 HMM-based trust model

In Chapter 6, a novel HMM-based trust model is introduced. Specifically, a trust algo-
rithm is proposed which evaluates an estimated predictive probability distribution given
a history of observations about the trustee. This algorithm is based on approximating
the behaviour of the trustee by the n-state HMM η which maximises the likelihood of
the available history of observations. The approximate model η is then used by the
truster to compute the estimated predictive probability distribution.

To assess the quality of the HMM-based trust model, the hidden behaviour of the trustee
te is assumed to follow a finite-state HMM λte (called the ‘real model’), which deter-
mines the (real) predictive probability distribution over the outcomes of next interaction
between the truster and the trustee. The HMM-based trust model is then formally
justified by showing that maximising the likelihood of the given observation sequence
minimises the expected relative entropy divergence between the real and estimated pre-
dictive probability distributions.
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Using a Monte-Carlo algorithm to evaluate the expected relative entropy divergence
between the real and estimated predictive probability distributions, an experimental
comparison between the HMM-based trust algorithm and the Beta-based trust algo-
rithm with an exponential decay scheme was performed. The results of this comparison
show that the HMM-based trust algorithm gives a better estimation for the predic-
tive probability distribution when the trustee’s behaviour is highly dynamic. When the
real behaviour of the trustee is more stable (less dynamic), the Beta-based algorithm
with the optimal value of the decay parameter gives slightly better estimation than the
HMM-based algorithm. However this improvement is still tied to the optimal choice of
the decay parameter which, as concluded earlier, depends on the ‘hidden’ behaviour of
the trustee.

Nevertheless, it is identified that computing the approximate behaviour model η using
only one observation sequence about the trustee te (representing direct interactions be-
tween the truster and the trustee) requires that this sequence be sufficiently long. With
respect to this issue, an approach is also proposed to compute η based on multiple se-
quences of observations about te, where these sequences are observed by other principals
(peers) as a result of their interactions with te. A fundamental condition of using this
approach is that these principals and the truster form a set of ‘symmetric peers’ S, where
the probability distribution over sequences observed by any peer x ∈ S about te is the
same regardless of the identity of x.

8.1.4 HMM-based reputation model

In Chapter 7, a model for reputation has been proposed as a supplement to the basic
HMM-based trust model. This model is intended to enhance the reliability of the trust
evaluation process by using feedback information about the trustee. Specifically, this
reputation model provides a formalism of reputation reports, i.e. the ratings given by
principals (reputation sources) about the trustee te. The reputation model also provides
a mixing algorithm which is used by the truster to combine the reputation reports
collected from different reputation sources together with its own report in order to
evaluate the trust in the trustee te.

The experimental approach employed in Chapter 6 for evaluating and comparing trust
models in terms of the expected estimation error has also been used in Chapter 7 to
investigate the impact of the HMM-reputation model on trust evaluation and also to
compare between this model and the existing beta reputation model.

It is found that the estimation error is significantly reduced when multiple reputation
reports are used in the trust evaluation process rather than using a single reputation
report (which corresponds to the truster’s personal experience about the trustee). It
is also shown that this improvement due to using reputation reports is getting less sig-
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nificant as the total number of interactions with the trustee is getting larger. This is
because larger number of total interactions with te implies longer sequences of obser-
vations experienced by reputation sources (including the truster), and hence a single
sequence tends to suffice for learning the trustee’s behaviour.

By comparison with the Beta reputation model, using the same number of reputation
sources, it is found that the Beta reputation model outperforms the HMM-based repu-
tation when the total number T of interactions with the trustee is relatively small. As T

gets larger, the HMM-based reputation model gradually improves in terms of the esti-
mation error, and eventually outperforms the Beta model when T is relatively large. In
fact, larger T implies longer sequences of observations about the trustee; such sequences
reflect more information about the trustee’s dynamic behaviour and therefore yield a
better approximation for such a dynamic behaviour which, in contrast, is ignored by the
Beta reputation model.

8.2 Future Work

8.2.1 Implementation

While this work has addressed the theoretical foundations of trust models, a promising
continuation can be directed to implementing such trust and reputation models in ex-
isting Internet access applications to evaluate the trust in e.g., web sites, FTP servers,
and web services. Technically, such models can be implemented as a plug-in which is
integrated with the existing web browsers. Such a ‘trust evaluation’ plug-in can au-
tomatically log the outcomes of interactions with different web sites, and therefore by
processing such outcomes, can provide the user estimates about the reliability of these
web sites. Reputation reports can be also phrased out of this logged information and
exchanged with other Internet users who also use instances of the ‘trust evaluation’
plug-in.

Another potential goal can be set to provide the service oriented architectures (SOAs)
a means to evaluate the probabilistic trust in the underlying web services. While trust
and reputation functions can be implemented as separate components and integrated
with the SOAs, these functions can be rather implemented in the SOA implementa-
tion framework (SOAIF), e.g. JAVA EE and .NET, where the runtime environment, in
which the SOA is running, automatically logs the outcomes of calls to the web services,
and therefore phrases reputation reports about these services. Implementing the trust
and reputation models on the SOAIF level provides a transparent means of exchanging
reputation reports between different SOAs which use the same web services.

However, an important issue to be handled in the above implementation ideas is the
mechanism of exchanging reputation reports between principals. A simplistic solution
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can be utilising a central server whose function is gathering reputation reports and
relaying them to the requesting principals. Despite the simplicity of this approach, it
suffers from two problems. The first is that the central server represents a single point
of failure; if this server fails to receive or deliver reputation reports, all principals relying
on this server are dramatically affected. The second problem is the possibility that the
server itself attacks the reputation of the web sites/services by altering the reputation
reports. In this respect, encryption mechanisms can provide a means to preserve the
confidentiality of exchanged reputation reports, by hiding the reports from the server
while allowing end principals to read them by decryption. A more promising approach
to exchanging reputation reports is to adopt peer-to-peer protocols which can typically
allow communicating the reputation reports between principals without the need to a
central coordination server.

8.2.2 Handling inaccurate reputation reports

In HMM-based reputation model, we had an implicit assumption that each reputation
source is honest. This means that each reputation source bases its opinion (reputation
reports) on actual outcomes between it and the trustee. Practically, some reputation
sources can provide corrupt reputation reports about the trustee to satisfy hidden selfish
attitudes. This problem is addressed in other reputation models (e.g. Teacy et al.,
2006) by using a mechanism for discounting the effect of the reports given by these
‘lying’ sources according to the reputation of these sources themselves. Researching
analogous approaches to tackle this problem in the HMM-based reputation model is a
useful extension.
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