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Abstract

In many observational studies, analysts estimate treatment effects using

propensity scores, e.g., by matching or sub-classifying on the scores. When

some values of the covariates are missing, analysts can use multiple imputation

to fill in the missing data, estimate propensity scores based on the m com-

pleted datasets, and use the propensity scores to estimate treatment effects.

We compare two approaches to implement this process. In the first, the ana-

lyst estimates the treatment effect using propensity score matching within each

completed data set, and averages the m treatment effect estimates. In the

second approach, the analyst averages the m propensity scores for each record

across the completed datasets, and performs propensity score matching with
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these averaged scores to estimate the treatment effect. We compare proper-

ties of both methods via simulation studies using artificial and real data. The

simulations suggest that the second method has greater potential to produce

substantial bias reductions than the first, particularly when the missing values

are predictive of treatment assignment.

Keywords: Missing data; Multiple imputation; Observational studies; Propen-

sity score.

1 INTRODUCTION

In many studies of causal effects, analysts can reduce the bias that results from

imbalanced covariate distributions, at least for observed covariates, using propensity

score matching1–5. The propensity score for any subject, e(xi), is the probability that

the subject receives the treatment given its vector of covariates xi; that is, e(xi) =

P (Ti = 1|xi), where Ti = 1 if subject i receives treatment and Ti = 0 otherwise. If two

units have the same propensity score, then their covariates can be shown to come from

the same distribution1. Thus, by selecting control units whose propensity scores are

similar to the treated units’ propensity scores, analysts can create a matched control

group whose covariates are similar to the treated group’s covariates. Analysts then

base inference on the treated and matched control groups, thereby avoiding any bias

that results from imbalanced covariate distributions in the two groups, at least for

those covariates in x. Other approaches to causal inference based on propensity

scores include sub-classification6,7, full matching8,9 and propensity score weighted-

estimation10.

Propensity scores are typically estimated via regressions of T on functions of

x11–14. When some covariate data are missing, these complete-data methods cannot

be easily applied. Several strategies exist for overcoming this complication6,15–17.

In this article, we focus on the use of multiple imputation18 to fill in the missing

covariate data. In multiple imputation, the analyst repeatedly imputes missing values
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by sampling from their predictive distributions (estimated with the observed data)

to create m > 1 completed datasets. The analyst then performs the complete-data

analysis in each imputed dataset and makes inferences by combining the resulting

point and variance estimates19.

After multiply-imputing the missing covariate data, the analyst can estimate the

propensity scores in each dataset via complete-data methods, thus obtaining m values

of each unit’s propensity score. What should the analyst do with these multiple

propensity scores? One approach is to match treated and control units within each

completed dataset, resulting in m estimates of treatment effects. The analyst then

averages thesem treatment effect estimates as the multiple imputation point estimate.

We call this the Within approach. Another approach is to average each unit’s m

propensity scores, match treated and control units based on their averaged scores, and

estimate the treatment effect from this single set of matched controls. We call this

the Across approach. Both of these approaches seem intuitively reasonable strategies:

which can we expect to be more effective? To our knowledge, this question has not

been thoroughly investigated, except for one simulation study that demonstrated its

complexities20.

In this article, we shed further light on this issue. To do so, we use two types

of simulations: a simple setting with artificial data, and a complicated setting with

actual data. In both, our goal is to estimate an average treatment effect on those

exposed, which we denote as τ . In Section 2, we formally define the Across and

Within approaches. In Section 3, we compare properties of point estimates from the

two approaches using simulation studies with artificial data. In Section 4, we extend

these simulations to show that iterating the Across approach can reduce mean squared

errors. In Section 5, we discuss difficulties in using the Across and Within approaches

for variance estimation via the usual multiple imputation formulas. In Section 6, we

compare the two approaches on genuine data concerning the effect of breast feeding

on the child’s cognitive development later in life. Finally, in Section 7, we conclude

with a summary of our findings.
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2 Across and Within approaches

Let X = (x1, . . . ,xn)′ be an n × p matrix of covariates, where xi = (xi1, . . . , xip)′

corresponds to the ith unit’s covariates, where i = 1, . . . , n. For each xi, let mi =

(mi1, . . . ,mip)′ be a vector of missing data indicators. Here, mij = 1 indicates xij

is missing, and mij = 0 indicates xij is observed. Let M = (m1, . . . ,mn)′ be the

n × p matrix of missing data indicators for X. Let Xmis = {xij : mij = 1} and

Xobs = {xij : mij = 0}. For each unit i, the binary treatment indicator is Ti ∈ {0, 1},

and the outcome is Yi. Let T = (T1, . . . , Tn)′ and Y = (Y1, . . . , Yn)′. We assume that

T and Y are fully observed.

In multiple imputation, values of Xmis are filled in m times with draws from the

predictive distribution, p(Xmis|Xobs,T ), resulting inm completed datasetsX
(1)
com, . . . ,X

(m)
com.

For each X
(k)
com, let e(x

(k)
i,com) be the estimated propensity score for unit i, where

i = 1, . . . , n and k = 1, . . . ,m. Each e(x
(k)
i,com) is estimated using only the data

in X
(k)
com, for example with a logistic regression of T on some function of X

(k)
com.

In the Across approach, we estimate the propensity score for each unit, eA,m(xi),

by averaging e(x
(k)
i,com) over the imputations, so that

eA,m(xi) =

∑m
k=1 e(x

(k)
i,com)

m
. (1)

Let eA,m = (eA,m(x1), . . . , e
A,m(xn))′. Analysts use eA,m to find a matched control set;

in this article we assume analysts use a one-to-one nearest neighbour matching scheme

without replacement, although alternative matching schemes such as matching with

replacement could also be used. Given the matched set, the analyst estimates τ in

the Across approach with

τ̂A,m = ȲT − Ȳ A,m
mc , (2)

where Ȳ A,m
mc is the mean of the matched control units’ outcomes selected in the Across

approach and ȲT is the mean of the treated units’ outcomes.

4



The Within approach uses the propensity scores estimated from each completed

dataset, e(X
(k)
com) = (e(x

(k)
1,com), . . . e(x

(k)
n,com))′, to obtain m matched control sets, one

for each X
(k)
com; that is, matching is performed separately in each X

(k)
com. Let Ȳ

(k)
mc be

the average of the outcomes for the matched controls in X
(k)
com, where k = 1, . . . ,m.

Let τ̂W,m,k = ȲT − Ȳ (k)
mc . The analyst estimates the treatment effect for the Within

approach using

τ̂W,m =
m∑

k=1

τ̂W,m,k/m. (3)

3 Simulation study of point estimate properties

We now compare the Across and Within approaches using simulations with artificial

data. For each simulation run, we generate two covariates X for n = 1100 records

such that xi = (xi1, xi2)
′ ∼ N(µ,Σ), where µ = (10, 10)′, and Σ has variances equal

to 5 with correlation 0.5. We generate the response Y so that, for all i,

Yi = xi1 + xi2 + εi, εi ∼ N(0, 1). (4)

Here, without loss of generality for additive treatment effects, τ = 0 for all simulations.

We introduce missing data into x2 based on missing at random mechanisms; we leave

x1 and Y fully observed. We consider three mechanisms for assigning treatment,

including (i) assignment depends only on x1, (ii) assignment depends only on x2,

and (iii) assignment depends equally on x1 and x2. We assign treatments so that the

estimate of τ from the difference in means of the treated and full control groups is

severely biased. Results of the simulations are presented in Sections 3.1 to 3.3, and

explanations for differences in the performances of the methods are in Section 3.4.
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3.1 Simulation 1: treatment assignment depends only on x1

In this simulation, we assign treatment from Bernoulli distributions where

logit (P (Ti = 1|xi)) = −7.8 + 0.5xi1. (5)

Thus, treatment assignment depends only on x1. In any dataset, this generates

approximately 100 treated units and 1000 control units. Figure 1 displays typical

covariate patterns that arise from this design.

We consider two mechanisms for introducing missing data in x2. In the first, we

randomly make some control units’ x2 values missing so that

logit (P (mi2 = 1|Ti = 0,xi)) = −10.1 + 0.9xi1. (6)

In this way, units with larger x1 values, which are the units most likely to be selected

as matches, are more likely to be missing their x2 values. Approximately 30% of

control units’ values of x2 are missing. In the second, we use the same missing data

patterns for the control units and also introduce missing values into 30% of the treated

units’ x2 through a missing completely at random (MCAR) mechanism. We use the

MCAR mechanism because the treated units already tend to have large values of x1.

We impute missing x2 from a normal linear regression of x2 on (x1, T ) with main

effects only, using the appropriate Bayesian posterior predictive distribution with flat

prior distributions. We do not control for Y in the imputations. This is done to

remain consistent with the philosophy of propensity score matching: manipulation of

covariates and the creation of a matched control set is done without consideration of

the outcome values15. In this way, causal inferences based on the propensity scores

are not affected by assumptions about the outcome variable. We note, however, that

it can be advantageous to include the outcome variable in imputation models21,22.

We note that we observed similar results when imputing missing x2 for treated and

control units with separate models.
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Figure 1: Plot of the covariate distribution in the simulation design where treatment
assignment depends on x1 together with the fitted regression line based on a normal
linear model for x2.

After multiple imputation of x2, we estimate the propensity scores e(x
(k)
i,com) for

each unit i in each of k = 1, . . . ,m completed datasets using a logistic regression

of T on (x1,x2). We then compute τ̂A,m and τ̂W,m as in Section 2. We repeat this

process 1000 times, each time using new values of (X,T,Y,M). We can then also

empirically estimate the true variance of the estimators τ̂A,m and τ̂W,m by taking the

sample variance of the 1000 estimates.

Table 1 summarizes the point estimates and variances of τ̂A,m and τ̂W,m across the

1000 simulations for different values of m. Both the Across and Within approaches

result in estimates of τ close to zero. The bias in τ̂A,m tends to be slightly smaller

than that of τ̂W,m, but its variance is slightly larger. The variance of τ̂W,m appears

to decrease as m increases; the variances show no such pattern for τ̂A,m. The Within

approach dominates on mean squared error, at least for these values of m.
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Across Within
m Pt. Est. Variance MSE Pt. Est. Variance MSE

Only control units missing x2

5 0.055 0.077 0.080 0.080 0.050 0.056
10 0.057 0.083 0.086 0.078 0.046 0.052
15 0.065 0.075 0.079 0.079 0.044 0.050
20 0.065 0.077 0.081 0.079 0.043 0.050
50 0.058 0.081 0.085 0.077 0.042 0.048

Treatment and control units missing x2

5 0.030 0.080 0.081 0.072 0.053 0.058
10 0.032 0.083 0.084 0.072 0.049 0.055
15 0.031 0.080 0.081 0.074 0.048 0.054
20 0.035 0.078 0.080 0.075 0.046 0.052
50 0.029 0.081 0.081 0.074 0.045 0.050

Table 1: Properties of treatment effect estimates from the Across and Within ap-
proaches in the simulation where treatment assignment depends only on x1. The av-
erage treatment effect estimate before introduction of missing data is 0.0738. When
only control units are missing x2, the average treatment effect estimates based on
only the complete cases is 1.118. When both treated and control units’ are missing
x2, the average treatment effect estimate based on only the complete cases is 0.8961.

3.2 Simulation 2: treatment assignment depends only on x2

In this simulation, we assign treatment from Bernoulli distributions where

logit (P (Ti = 1|xi)) = −7.8 + 0.5xi2. (7)

As before, this generates approximately 100 treated units and 1000 control units,

but now the treatment assignment depends only on x2. Figure 2 displays a typical

covariate distribution for this design. We introduce missing values in x2 using the

same two scenarios as in Section 3.1, and impute missing values from a normal linear

regression as before. We run the simulation 1000 times, each time using new values

of (X,T,Y,M).

Table 2 summarizes the results for different m. Here, τ̂A,m has substantially

smaller bias than τ̂W,m. When both treated and control units are missing x2, the bias

in τ̂A,m tends to decrease as m increases; this is not the case for τ̂W,m. The variance

8
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Figure 2: Plot of the covariate distribution in the simulation design where treatment
assignment depends on x2 together with the fitted regression line assuming a normal
linear model for x2.

of τ̂W,m continues to be lower than that of τ̂A,m and to decrease with m, whereas the

variance of τ̂A,m does not decrease with m. In this scenario, the Across approach

dominates on mean squared error.

3.3 Simulation 3: treatment assignment depends equally on

x1 and x2

In this simulation, we assign treatment from Bernoulli distributions where

logit (P (Ti = 1|xi)) = −7.8 + 0.255xi1 + 0.255xi2. (8)

This generates approximately 100 treated units with treatment assignment depending

equally on x1 and x2. Figure 3 displays a typical covariate distribution for this design.

We introduce missing values in x2 values using the same two scenarios as in Section

3.1, and impute missing values from a normal linear regression as before. We run the
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Across Within
m Pt. Est. Variance MSE Pt. Est. Variance MSE

Only control units missing x2

5 0.565 0.084 0.403 0.825 0.045 0.725
10 0.532 0.088 0.371 0.826 0.041 0.723
15 0.541 0.092 0.385 0.826 0.039 0.721
20 0.538 0.090 0.380 0.826 0.038 0.721
50 0.548 0.100 0.400 0.826 0.036 0.718

Treatment and control units missing x2

5 0.311 0.097 0.194 0.840 0.054 0.760
10 0.221 0.094 0.143 0.842 0.045 0.754
15 0.182 0.088 0.121 0.844 0.043 0.755
20 0.174 0.093 0.123 0.845 0.042 0.756
50 0.156 0.096 0.120 0.845 0.039 0.753

Table 2: Properties of treatment effect estimates from the Across and Within ap-
proaches in the simulation where treatment assignment depends on x2. The average
treatment effect estimate before introduction of missing data is 0.0614. When only
control units are missing x2, the average treatment effect estimate based on only the
complete cases is 0.7653. When both treated and control units’ are missing x2, the
average treatment effect estimate based on only the complete cases is 0.5580.

simulation 1000 times, each time using new values of (X,T,Y,M).

Table 3 summarizes the results for different m. Here, τ̂A,m again has consistently

smaller bias than τ̂W,m. The differences between the two point estimators are smaller

than observed in Table 2, yet larger than those observed in Table 1. The bias in τ̂A,m

decreases as m increases, whereas the bias in τ̂W,m does not depend on m. As before,

the variance of τ̂W,m is smaller than the variance of τ̂A,m, and it appears to decrease

with m. In this simulation, the Across approach dominates on mean squared error.

3.4 Reasons for differences in point estimates

In terms of bias reduction, both approaches perform similarly when treatment as-

signment is conditionally independent of the variables with missing data, whereas

the Across approach offers greater reductions when assignment is conditionally de-

pendent on the variables with missing data. This suggests that the importance of

10
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Figure 3: Plot of the covariate distribution in the simulation design where treatment
assignment depends equally on x1 and x2 with the fitted regression line assuming a
normal linear model for x2.

variables with missing data in treatment assignment is key to these differences, as we

now explain more fully.

When treatment assignment depends only on x1, which is fully observed, the true

(not estimated) propensity scores and matched control sets are identical for the Across

and Within approaches. However, since matching is based on estimated propensity

scores, the coefficient of x2 in the logistic regression is non-zero, so that x2 does

play a typically minor role in the matching. Nonetheless, values of x1 remain central

for matching even for estimated propensity scores. Hence, the Across and Within

estimated propensity scores are generally similar in this scenario, which explains the

similar bias reductions.

Interestingly in this scenario, the Across treatment effect actually is slightly closer

to τ = 0 than the treatment effect before introducing missing data. For control records

with missing x2, the Across method effectively averages over the distribution of x2

to compute propensity scores, resulting in estimates for those records that effectively
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Across Within
m Pt. Est. Variance MSE Pt. Est. Variance MSE

Only control units missing x2

5 0.370 0.059 0.196 0.548 0.042 0.343
10 0.338 0.056 0.170 0.551 0.039 0.343
15 0.323 0.053 0.158 0.550 0.038 0.341
20 0.319 0.056 0.158 0.549 0.038 0.339
50 0.316 0.056 0.156 0.550 0.036 0.338

Treatment and control units missing x2

5 0.275 0.080 0.155 0.550 0.046 0.349
10 0.236 0.077 0.133 0.551 0.042 0.345
15 0.209 0.079 0.122 0.553 0.040 0.346
20 0.204 0.079 0.120 0.553 0.039 0.345
50 0.196 0.081 0.120 0.551 0.038 0.342

Table 3: Treatment effect estimates from the Across and Within approaches in the
simulation design where treatment assignment depends equally on x1 and x2. The
average treatment effect estimates based on the covariates before introduction of
missing data is 0.0467. The average treatment effect estimates based on the complete
cases when missing data is only introduced into control units’ x2 value is 0.8917. The
average treatment effect estimates based on the complete cases when missing data is
introduced into both treatment and control units’ x2 value is 0.6973.

condition only on x1. This closer approximation of the true propensity score model

for records with missing x2 explains why the Across estimates have slightly lower bias

than the estimates before introducing missing data. We note that this averaging is

not a feature of the Within approach.

When treatment assignment depends on x2, as in Simulations 2 and 3, biases

increase for both approaches, mainly because now we match based on imputed rather

than actual x2. Within any completed dataset, the Within method results in very

close balance on x1 and on the completed version of x2 in the treated and matched

control set. However, balance on completed x2 does not imply balance on actual

x2. In fact, in the Within method, typically the imputed values of x2 for records in

the matched control sets were larger than those records’ true x2 values; thus, these

records’ true values of x2 were smaller than the true values of x2 for the treated

records. In the Across method, the distributions of true x2 and completed x2 were

12



similar; however, both sets of values were typically smaller than the true values of x2

for the treated records. The differences in true x2 values for the treated and matched

control sets were smaller in the Across method than in the Within method.

The Across method selects matched controls with missing x2 less frequently than

the Within method does, thus mitigating the problems from inaccurate balance on

true x2 in missing cases. For example, in Simulation 2, imputed values for x2 appear

in the matched control sets typically around 12% more often in the Within method

than in the Across method. Thus, it appears that the advantage of the Across method

derives from lesser reliance on (inaccurate) imputed values.

In all simulations, the bias in the Within method does not change (beyond simu-

lation error) as m increases. This is because, given the observed data, each treatment

effect estimate is independent and identically distributed. For the Across method,

however, the bias appears generally to decrease with m, with smaller reductions

for larger m. The estimated propensity scores in the Across method approach their

complete-data values as m increases, so that the matching is done on estimated scores

that are increasingly closer to fixed values.

With regard to trends in variances, in these simulations the variance for the Across

method appears not to decrease with m, whereas the variance for the Within method

does. The Across method results in only one propensity score (averaged across im-

putations) for each unit. Increasing m improves precision of the propensity score

estimates for cases with missing x2, but this improvement tends to reduce bias rather

than variance. On the other hand, the Within method averages treatment effects

over independently generated imputations; hence, as with all means, the variance

decreases as m increases.

3.5 Additional Simulations

To investigate if the differences in the Across and Within methods are artefacts of

matching without replacement, we repeated the simulations using matching with re-
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placement. The results, presented in Appendix 1 of the online supplement, indicate

similar bias and variance profiles as matching without replacement for these scenarios.

We also considered three other typical uses of propensity scores for estimating treat-

ment effects that were suggested by reviewers: inverse weighting of the propensity

score, regression including the propensity score as a covariate, and subclassification

of the propensity score. The results are presented in Appendix 2 of the online sup-

plement. Other than inverse weighting, the general trends in Sections 3.1 to 3.3 for

bias persist for these other estimation approaches. For inverse weighting, the Within

method tends to result in greater bias reductions than the Across method in all sce-

narios. We also note that, for these additional methods and the values of m considered

here, the variance of τ̂A,m can be smaller than the variance of τ̂W,m.

4 Augmenting the Across method

The Across method can be iterated r > 1 times on any dataset, i.e., independently

generate m completed datasets r times. One then can estimate τ using

τ̂Amr =
r∑

l=1

τ̂A,m,(l)/r, (9)

where τ̂A,m,(l) is the treatment effect estimate from iteration l. In fact, the Within

approach can be viewed as an augmented Across approach with m = 1 and r equal to

the number of imputed datasets, so that τ̂W,r = τ̂A,1,r. Hence, the decision about using

Across or Within approaches can be viewed as selecting (m, r). In this section, we

illustrate the potential for bias and variance reduction when setting r > 1 by repeating

the simulations from Section 3 with combinations of (m, r) such that m × r = 100.

We generate 1000 simulations, each time using new values of (X,T,Y,M).

Table 4 displays simulated expected values, variances, and MSEs of τ̂Amr for the

simulation design from Section 3.1. The table also includes expected values of two

multiple imputation variance estimators; we defer discussion of these until Section 5.
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m r Point estimate Variance MSE T pool T pair

Only control units missing x2

1 100 0.077 0.042 0.048 0.332 0.143
2 50 0.064 0.043 0.048 0.330 0.140
5 20 0.060 0.046 0.050 0.329 0.139
10 10 0.057 0.051 0.054 0.330 0.139
20 5 0.052 0.051 0.054 0.331 0.140
50 2 0.057 0.063 0.066 0.338 0.147
100 1 0.060 0.080 0.084 - -

Treatment and control units missing x2

1 100 0.075 0.045 0.051 0.335 0.148
2 50 0.051 0.046 0.049 0.333 0.144
5 20 0.038 0.048 0.050 0.331 0.141
10 10 0.030 0.052 0.053 0.331 0.141
20 5 0.024 0.053 0.053 0.334 0.144
50 2 0.028 0.067 0.068 0.338 0.147
100 1 0.016 0.081 0.081 - -

Table 4: Treatment effect estimates for different allocations of m and r in the simu-
lation design where treatment assignment depends on x1. Here, T pool and T pair are
the two multiple imputation variance estimators described in Section 5.

The effect of increasing m on bias reduction is modest. This is because the bias is

already small when m = 1, as evident in Table 1. As r increases, as expected the

variance of τ̂Amr is reduced. The smallest mean squared errors are obtained for (m =

2, r = 50), although there is little difference in MSEs up to m = 5. The preference

for smaller m reflect the greater gains in precision from increasing r compared to the

reductions in bias from increasing m.

Table 5 displays results from the simulation design of Section 3.2. Increasing

m has a noticeable effect on decreasing bias up until around m = 20, after which

reductions are modest. The variance continues to decrease as r increases. In these

simulations, setting m ≥ 10 results in the smallest MSEs. The preference for larger

m reflects the greater reductions in bias from increasing m compared to the gains

in precisions from increasing r. Results from the simulation design of Section 3.3,

displayed in Table 6, show similar patterns.

Given that different selections of (m, r) can result in different properties, how
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m r Point estimate Variance MSE T pool T pair

Only control units missing x2

1 100 0.825 0.035 0.716 0.332 0.199
2 50 0.666 0.039 0.482 0.332 0.183
5 20 0.560 0.046 0.360 0.329 0.167
10 10 0.538 0.057 0.346 0.327 0.162
20 5 0.540 0.067 0.358 0.328 0.161
50 2 0.546 0.087 0.385 0.333 0.165
100 1 0.547 0.105 0.403 - -

Treatment and control units missing x2

1 100 0.843 0.038 0.748 0.339 0.224
2 50 0.553 0.040 0.346 0.331 0.202
5 20 0.311 0.046 0.143 0.323 0.184
10 10 0.221 0.054 0.103 0.319 0.177
20 5 0.174 0.064 0.095 0.320 0.178
50 2 0.155 0.083 0.107 0.326 0.184
100 1 0.141 0.100 0.119 - -

Table 5: Treatment effect estimates for different allocations of m and r in the simu-
lation design where treatment assignment depends on x2. Here, T pool and T pair are
the two multiple imputation variance estimators described in Section 5.

should one determine them? Ideally, one generates large m and large r, so as to gain

benefits in bias reduction and precision. However, it may be impractical to make the

total number of imputations (mr) large, so that one must select an allocation. In

practice, of course, one does not have the luxury of repeated sampling from known

population models to aid decision-making. However, taken together, these simula-

tion results suggest a heuristic for selecting (m, r). When the missing data are not

important predictors of treatment assignment—which can be assessed from multiple

imputation inference—use a small m and large r. When the missing data are impor-

tant predictors of treatment assignment, use a large m and small r. We illustrate this

heuristic in Section 6.

For very large m, the role of r is essentially irrelevant. This is because, by the law

of large numbers, the propensity scores approach fixed values as m increases. Hence,

for very large m the matched controls obtained will be essentially the same in all sets

of m datasets (assuming unique propensity scores), so that τ̂A,m,(l) is fixed for any l.
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m r Point estimate Variance MSE T pool T pair

Only control units missing x2

1 100 0.549 0.036 0.337 0.316 0.107
2 50 0.447 0.033 0.233 0.319 0.093
5 20 0.370 0.034 0.170 0.320 0.082
10 10 0.340 0.036 0.152 0.321 0.078
20 5 0.325 0.038 0.143 0.321 0.077
50 2 0.313 0.046 0.144 0.326 0.080
100 1 0.310 0.055 0.151 - -

Treatment and control units missing x2

1 100 0.551 0.038 0.342 0.320 0.129
2 50 0.396 0.039 0.196 0.320 0.114
5 20 0.275 0.047 0.123 0.318 0.101
10 10 0.228 0.053 0.105 0.316 0.095
20 5 0.201 0.058 0.098 0.317 0.093
50 2 0.195 0.068 0.106 0.321 0.096
100 1 0.189 0.076 0.112 - -

Table 6: Treatment effect estimates for different allocations of m and r in the simu-
lation design where treatment assignment depends equally on x1 and x2. Here, T pool

and T pair are the two multiple imputation variance estimators described in Section 5.

5 Multiple imputation variance estimators

Multiple imputation frameworks are appealing for handling missing data in part be-

cause they facilitate accounting for uncertainty due to the presence of missing values.

Multiple imputation variance estimators comprise two terms: a complete-data vari-

ance (ū in the notation of Rubin18) and a between-imputation variance (b in the

notation of Rubin18). Unfortunately, it is difficult to estimate components of the

multiple imputation variance formula reliably for both the Across and Within meth-

ods, as we now document.

Regarding the complete-data variance component, we do not believe that there

is one commonly accepted variance estimator for propensity score matching, even

when X has no missing values. Some analysts use conservative two-sample variance

estimators23; some use matched pairs variance estimators24,25; and, others embed

treatment effect estimation in regression models based on the matched data26–28.

17



Regarding the between-imputation variance estimators, we first consider the Across

approach. Let b
(Am)
∞ be the between-imputation variance for the Across approach

based on m imputed datasets, defined as

b(Am)
∞ = lim

r→∞
b(Am)
r = lim

r→∞

r∑
l=1

(τ̂A,m,(l) − τ̂Amr)2/(r − 1), (10)

Obviously when r = 1, as in the standard Across approach, it is not possible to

construct a method of moments estimator of b
(Am)
∞ . The augmented Across approach

appears to alleviate this problem since r > 1. However, b
(Am)
r is not guaranteed to

exceed zero. For example, as m→∞, the Across propensity scores converge to fixed

points, so that one set of matched controls is used for all iterations r and b
(A∞)
r = 0.

This is the case for any missing data pattern, not just the one observed. Hence,

while b
(Am)
r /r can estimate the variability due to imputations given the observed

missing data pattern, b
(Am)
r itself cannot serve as a valid estimate of the variability

over repeated realizations of the missing data pattern.

To investigate the performances of multiple imputation variance estimators for

the augmented Across approach, we use the simulations of Section 4. We estimate

the complete data variance ū with the two-sample pooled variance estimator or the

matched pairs variance estimator; we denote the resulting multiple imputation vari-

ance estimates as T pool and T pair, respectively. Tables 4 - 6 display the averages of

T pool and T pair over the 1000 simulated datasets. Since we cannot construct a vari-

ance estimator when r = 1, we report these results only for r > 1. As evident in the

tables, both T pool and T pair greatly over-estimate the true variances, although T pair

has smaller bias than T pool.

For the Within approach, let b
(W )
∞ be the between-imputation variance for the

Within approach, defined as

b(W )
∞ = lim

m→∞
b(W )
m = lim

m→∞

m∑
l=1

(τ̂W,m,l − τ̂W,m)2/(m− 1), (11)
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Analysts can estimate b
(W )
∞ following the usual multiple imputation strategy: take

the unbiased estimator b
(W )
m , i.e., the sample variance of Ȳ

(k)
mc . Here it is clear that

b
(W )
m /m estimates variability due to imputations given the observed missing data

pattern. We also suspect that it is a reasonable estimator of the variability over

repeated realizations of the missing data mechanism, although to our knowledge this

has not been proved mathematically to be a randomization-valid variance estimator.

We note, however, that some researchers employ the multiple imputation variance

estimator for the Within case17,29. Tables 4 - 6 for the Within case (m = 1, r = 100)

suggest that this variance estimator can have positive bias.

Clearly, developing accurate multiple imputation variance estimators for both the

Across and Within approaches is a key area for future research.

6 Empirical Comparison Using Genuine Data

We now apply the Across and Within approaches on data intended to inform analysis

of the effects of breast feeding on child’s later cognitive development. The data are

a subset of the U.S. National Longitudinal Survey of Youth, commonly referred to

as the NLSY79. We have analyzed these data previously to illustrate latent class,

general location mixture models for multiple imputation of missing covariates. We

refer readers to our article25 on these techniques for more description of the data.

Our purpose here is to compare the Across and Within methods; we do not claim

that the analyses here represent valid causal inferences.

The response variable is the Peabody individual assessment test math score (PI-

ATM) administered to children at 5 or 6 years of age. The treatment variable is breast

feeding duration, which is measured in weeks. We dichotomize this variable into a

control condition, < 24 weeks, and a treatment condition, ≥ 24 weeks. The 24 week

cutoff corresponds to the number that has been given by the American Academy of

Pediatrics30 and the World Health Organization as a minimum standard for breast

feeding duration.
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We use the same fourteen covariates as in our previous analyses25. These include

child’s race (Hispanic, black or other), mother’s race (Hispanic, black, Asian, white,

Hawaiian/Pacific Islander/American Indian, or other), child’s sex, two variables in-

dicating whether the spouse or grandparents were present at birth, the number of

weeks the child was born premature (zero weeks, one to four weeks, and five or more

weeks with cut points determined from guidelines of the March of Dimes), the num-

ber of weeks that the mother worked in the year prior to giving birth (not worked at

all, worked between 1 and 47 weeks, worked 48-51 weeks, and worked all 52 weeks),

number of years between 1979 and the mother’s age at the child’s birth, mother’s

intelligence as measured by an armed forces qualification test, mother’s highest edu-

cational attainment, child’s birth weight, the number of weeks that the child spent in

hospital, the number of weeks that the mother spent in hospital, and family income.

We apply Box-Cox transformations31 to several variables to facilitate imputation

modeling. Three covariates were completely observed in the study, and nine covari-

ates had missing data rates of less than 10%. The two covariates with the largest

rates of missing data were family income (22.4%) and the number of weeks that the

mother worked in the year prior to giving birth (23.1%).

For this empirical comparison, we begin by creating a fully observed sample: we

discard all units with missing values in any covariates, breast feeding duration, or

PIATM score. We include youths only if they are first born and are singleton births.

The resulting data comprise 1306 youths, of whom 216 are treated. The difference

between the sample average PIATM for the 216 treated records and 1090 controls is

5.65.

Among these 1306 cases, several covariates are clearly imbalanced in the treated

and control groups. As examples, Figure 4 summarizes the distributions of mother’s

intelligence score and education for treated and control units, and Table 7 displays

the proportion of treated and control units in each level of child’s race. Treated units

tend to have higher mother’s intelligence scores, more mother’s years of education and

lower proportions of Hispanics and blacks. After matching on estimated propensity
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Figure 4: Box plots of mother’s intelligence score and mother’s years of education
respectively for treated and control units before matching.

race treated control
Hispanic 0.138 0.190

black 0.111 0.284
other 0.751 0.525

Table 7: Distribution of child’s race.

scores, which we computed with a logistic regression of treatment on main effects of

all covariates, the estimated treatment effect is 2.32.

To compare the Across and Within methods, we introduce missing values by ran-

domly sampling with replacement from the missing covariate patterns present in the

original data. This results in 717 units with fully observed covariates; the remainder

have some missing data. For imputation, we use the data augmentation algorithm

based on the general location model32, which is a convenient modeling strategy to

handle missing values in mixed categorical and continuous data. We run the model

for both treated and control records simultaneously, including an indicator for treat-

ment effect in the imputation model. We observe similar results when imputing the

missing values for treated and control units separately. We run the data augmen-

tation algorithm for 200000 iterations after discarding an initial 1000 as burn-in.
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m r Avg. τ̂A,m,r Var(τ̂A,m,r)
1 10000 1.61 0.39
5 5000 1.50 0.37

50 2000 1.46 0.36
100 200 1.48 0.37
500 100 1.45 0.26

1000 20 1.41 0.28
2000 10 1.35 0.15
5000 5 1.53 0.23

10000 1 1.60 NA

Table 8: Treatment effect estimates for different (m, r) combinations. The complete-
data treatment effect equals 2.32.

Autocorrelation diagnostics indicate that parameters are approximately uncorrelated

after twenty iterations of the algorithm, so that we have potentially 10000 completed

datasets to work with for the Across and Within approaches.

We repeat the process of generating missing data patterns and 10000 completed

datasets ten times. In each case, we compute τ̂A,m,r for various combinations of (m, r)

such that mr = 10000. Table 8 summarizes the averages and variances of τ̂A,m,r across

the ten replications. Generally, there is not much difference among the average point

estimates across the different combinations; in fact, the average τ̂A,m,r are within

simulation errors of one another. We note that all of the treatment effect estimates

are lower than the complete-data estimate of 2.32.

Why are the results similar for different values of (m, r)? In the simulation studies,

the Across and Within methods yield similar results when the missing values are not

strongly associated with treatment assignment. This is largely the case for these 1306

records: the variables with the highest fractions of missing data are not that strongly

associated with assignment, as indicated by the propensity score regression on the

1306 cases (see Appendix 3 in the online supplement for the results).

We also ran a simulation with a modest value of m, which is often the case in

practice. Specifically, we created 100 incomplete data sets by repeatedly drawing from

the missing data patterns. For each of these data sets, we ran the data augmentation

algorithm to generate 30 multiply imputed datasets. We compute both τ̂A,30,1 and
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τ̂A,1,30, i.e., the Across and Within methods used in Section 3. Figure 5 displays

boxplots of the treatment effect estimates from both methods. Both methods yield

similar point estimates on average, but the Within method has smaller variability.

These results accord with the findings from the simulations in Section 3.1.

●

●

Within Across

0
1

2
3

Figure 5: Box plots of the Within and Across treatment effect estimates in the simu-
lation involving NLSY79 data and mr = 30. The dotted line represents the treatment
effect based on the 1306 complete records.

7 Concluding remarks

In the simulations studied here, the Across approach had the potential for greater

bias reduction than the Within approach when treatment assignment depended on

the missing covariates. However, the Within approach resulted in smaller variances

than the Across approach. Of course, as with any simulation study, these results may

have limited generalizability. For some response surfaces, covariate distributions,

treatment assignments, or missing data patterns, it may be that one approach always

dominates the other. Alternatively, in other settings the two approaches may always

give the same answer, for example if data were missing only for control units in a region

of covariate space far away from that of the treated units (these units never would

be selected as matches). Furthermore, the choice of imputation model also affects

treatment effect estimates25, as might the choice of whether or not to condition on
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the response in the imputation models20. Thus, we recommend that analysts run

simulation studies akin to the one done on the complete cases in the breast-feeding

simulation study to get a rough guide of the relative potentials of each procedure for

bias reduction. When such studies are not possible, we suggest the augmented Across

approach as a default, since it showed the potential for greater bias reductions in the

artificial-data simulations. To choose m and r, we suggest following the heuristic

described in Sections 4 and 6. Further investigation and development of approaches

to select m and r represents an interesting direction for future research.
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