A comparison of two methods of estimating propensity scores after multiple imputation - online supplement

ROBIN MITRA*

School of Mathematics

University of Southampton, Southampton, SO17 1BJ, UK

 $Tel. \ (+44) \ 2380 \ 594550 \quad Email: \ R.Mitra@soton.ac.uk$

JEROME P. REITER

Department of Statistical Science

Duke University, Box 90251, Durham, NC 27708, USA

 $Tel. \ (+1) \ 919 \ 6685227 \quad Email: jerry@stat.duke.edu$

 st corresponding author

In the online supplement we present details of additional simulations and results that have been referred to in the main text of the paper. In Appendix 1 we present results of the treatment effect estimates from the Across and Within methods in the simulations of Section 3 when matching is performed with replacement. In Appendix 2 we investigate different applications of propensity scores to estimate treatment effects in the simulations of Section 3. In Appendix 3 we present the results of a logistic regression of treatment assignment on the covariates for the 1306 complete cases in the National Longitudinal Survey of Youth (NLSY) data before introduction of missing values.

Appendix 1 - Matching with replacement

We present results of the treatment effect estimates from the Across and Within methods in the simulations of Section 3 when matching is performed with replacement. We see similar properties in the bias and variance profiles to those in Section 3. The biases in both the Across and Within estimates are small when treatment only depends on x_1 . When treatment depends on x_2 the Across biases are consistently smaller than the Within biases. The variances of the Within estimates tend to decrease with m, and are always smaller than the corresponding variances of the Across estimates, which do not decrease with m.

	Across				Within			
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE		
On	ly control v	units missir	$ng \mathbf{x}_2$					
5	-0.004	0.097	0.097	0.033	0.053	0.054		
10	0.002	0.100	0.100	0.028	0.048	0.049		
15	0.010	0.091	0.091	0.030	0.045	0.046		
20	0.011	0.097	0.097	0.030	0.045	0.046		
50	-0.001	0.104	0.104	0.028	0.043	0.044		
Tre	atment and	d control ur	nits mis	$sing \mathbf{x}_2$				
5	-0.026	0.101	0.102	0.024	0.056	0.057		
10	-0.019	0.103	0.103	0.023	0.051	0.051		
15	-0.020	0.099	0.099	0.026	0.049	0.050		
20	-0.020	0.098	0.098	0.026	0.047	0.048		
50	-0.028	0.102	0.103	0.024	0.045	0.046		

Table 1: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_1 . The average treatment effect estimates based on the covariates before introduction of missing data is 0.0213.

		Α			XX7:11:	
		Across			Within	
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE
On	ly control a	units missir	$ng \mathbf{x}_2$			
5	0.444	0.114	0.311	0.803	0.050	0.695
10	0.408	0.111	0.277	0.809	0.043	0.697
15	0.414	0.116	0.288	0.810	0.040	0.696
20	0.411	0.115	0.283	0.811	0.038	0.696
50	0.419	0.127	0.303	0.811	0.035	0.693
Tre	eatment an	d control un	nits mis	$sing \mathbf{x}_2$		
5	0.213	0.127	0.172	0.825	0.062	0.742
10	0.133	0.128	0.146	0.827	0.047	0.731
15	0.107	0.123	0.134	0.828	0.043	0.729
20	0.093	0.126	0.135	0.828	0.042	0.729
50	0.080	0.132	0.139	0.827	0.038	0.722

Table 2: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is 0.0187.

	Across				Within			
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE		
On	$ly \ control \ u$	units missir	$ng \mathbf{x}_2$					
5	0.296	0.074	0.162	0.532	0.044	0.326		
10	0.258	0.076	0.142	0.534	0.038	0.323		
15	0.241	0.071	0.129	0.533	0.037	0.321		
20	0.227	0.074	0.126	0.532	0.036	0.319		
50	0.228	0.073	0.125	0.533	0.034	0.319		
Tre	atment an	d control ur	nits mis	$sing \mathbf{x}_2$				
5	0.209	0.105	0.149	0.534	0.049	0.334		
10	0.163	0.102	0.129	0.535	0.042	0.328		
15	0.132	0.106	0.123	0.536	0.040	0.328		
20	0.124	0.101	0.116	0.534	0.039	0.324		
50	0.114	0.105	0.118	0.533	0.037	0.321		

Table 3: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends equally on \mathbf{x}_1 and \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is 0.0172.

Appendix 2 - Alterative uses of propensity scores

We also investigated different applications of propensity scores to estimate treatment effects for the scenarios described in Section 3. These were: (1) Inverse weighting of the propensity scores^{1,2}, (2) Regression estimates of the treatment effect including the propensity score as a covariate³, and (3) Sub-classification based on the propensity score^{1,4}. In particular, we were interested in observing whether similar properties of the Across and Within methods would also be apparent in these uses of the propensity score.

Inverse weighting

To estimate treatment effects here, we first weight each unit's outcome, where the unit's weight is determined by its propensity score². The treatment effect is then estimated by the difference between the average of the weighted outcomes in the treatment group and the weighted outcomes in the control group. Using the notation in Section 2, we can compute treatment effect estimates using the Across and Within methods in the following way. We compute the Across treatment effect estimate by:

$$\hat{\tau}^{A,m} = \frac{1}{n} \sum_{i=1}^{n} \left\{ Y_i T_i - \frac{Y_i e^{A,m}(\boldsymbol{x}_i)}{1 - e^{A,m}(\boldsymbol{x}_i)} (1 - T_i) \right\},\tag{1}$$

and we compute the Within treatment effect estimate by:

$$\hat{\tau}^{W,m} = \frac{1}{m} \left[\sum_{k=1}^{m} \frac{1}{n} \sum_{i=1}^{n} \left\{ Y_i T_i - \frac{Y_i e(\boldsymbol{x}_{i,\text{com}}^{(k)})}{1 - e(\boldsymbol{x}_{i,\text{com}}^{(k)})} (1 - T_i) \right\} \right], \tag{2}$$

As with the simulations in Section 3, when treatment only depends on \mathbf{x}_1 both the Across and Within biases are relatively small. When treatment depends only on \mathbf{x}_2 or equally on \mathbf{x}_1 and \mathbf{x}_2 , the Within method has consistently lower biases than the Across method for all values of m. The variances of the Within estimates tend to be smaller than the variance of the Across estimates, and they tend to decrease as m increases. No such trend is evident in the variances of the Across estimates.

		Across			Within	
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE
Onl	$ly \ control \ v$	$units\ missin$	$ig \mathbf{x}_2$			
5	0.006	0.002	0.002	0.001	0.002	0.002
10	0.007	0.002	0.002	0.001	0.002	0.002
15	0.007	0.002	0.002	0.001	0.002	0.002
20	0.007	0.002	0.002	0.001	0.002	0.002
50	0.007	0.002	0.002	0.001	0.002	0.002
Tre	atment an	d control u	nits mis	$sing \mathbf{x}_2$		
5	0.009	0.002	0.003	0.000	0.002	0.002
10	0.010	0.002	0.003	0.000	0.002	0.002
15	0.010	0.002	0.003	0.000	0.002	0.002
20	0.010	0.002	0.003	0.000	0.002	0.002
50	0.010	0.002	0.003	0.000	0.002	0.002

Table 4: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_1 . The average treatment effect estimates based on the covariates before introduction of missing data is -0.0009.

	Across				Within			
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE		
On	$ly \ control \ v$	units missir	$ng \mathbf{x}_2$					
5	0.172	0.003	0.032	0.061	0.001	0.005		
10	0.181	0.003	0.036	0.061	0.001	0.005		
15	0.185	0.003	0.037	0.061	0.001	0.005		
20	0.186	0.003	0.038	0.061	0.001	0.005		
50	0.189	0.003	0.039	0.061	0.001	0.005		
Tre	atment and	d control ur	nits mis	$sing \mathbf{x}_2$				
5	0.174	0.003	0.033	0.065	0.001	0.006		
10	0.184	0.003	0.037	0.065	0.001	0.005		
15	0.187	0.003	0.038	0.065	0.001	0.005		
20	0.189	0.003	0.039	0.065	0.001	0.005		
50	0.192	0.003	0.040	0.065	0.001	0.005		

Table 5: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is -0.0015.

	Across				Within			
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE		
On	ly control v	units missir	$ng \mathbf{x}_2$					
5	0.089	0.002	0.010	0.042	0.001	0.003		
10	0.093	0.002	0.011	0.041	0.001	0.003		
15	0.095	0.002	0.011	0.041	0.001	0.003		
20	0.096	0.002	0.011	0.041	0.001	0.003		
50	0.098	0.002	0.012	0.041	0.001	0.003		
Tre	atment and	d control ur	nits mis	$sing \mathbf{x}_2$				
5	0.091	0.002	0.010	0.042	0.001	0.003		
10	0.096	0.002	0.011	0.042	0.001	0.003		
15	0.098	0.002	0.012	0.042	0.001	0.003		
20	0.099	0.002	0.012	0.042	0.001	0.003		
50	0.101	0.002	0.012	0.042	0.001	0.003		

Table 6: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends equally on \mathbf{x}_1 and \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is -0.0004.

Regression including the propensity score as a covariate

To estimate treatment effects, we regress the outcome variable on the treatment indicator, the propensity score, and other covariates. For the Across method we estimate the treatment effect $\hat{\tau}^{A,m} = \sum_{i=1}^{m} \frac{\hat{\tau}^{A,k}}{m}$, where $\hat{\tau}^{A,k}$ is the estimated regression coefficient from

$$E(Y_i) = \alpha^A + \beta^A e^{A,m}(\boldsymbol{x}_i) + \boldsymbol{\gamma}^{A'} \boldsymbol{x}_{i,\text{com}}^{(k)} + \hat{\tau}^{A,k} T_i.$$
(3)

For the within method, we estimate the treatment effect $\hat{\tau}^{W,m} = \sum_{i=1}^{m} \frac{\hat{\tau}^{W,k}}{m}$, where $\hat{\tau}^{W,k}$ is the estimated regression coefficient from

$$E(Y_i) = \alpha^W + \beta^W e(\boldsymbol{x}_{i,\text{com}}^{(k)}) + \boldsymbol{\gamma}^{W'} \boldsymbol{x}_{i,\text{com}}^{(k)} + \hat{\tau}^{W,k} T_i , \qquad (4)$$

where i = 1, ..., n. The Across method includes a common set of propensity scores in each regression model for each imputed $\boldsymbol{x}_{i,\text{com}}^{(k)}$. In contrast, the Within method uses the propensity scores estimated with $\boldsymbol{x}_{i,\text{com}}^{(k)}$.

As with the simulations in Section 3, when treatment only depends on \mathbf{x}_1 the biases for the Across and Within estimates are relatively small. When treatment depends only on \mathbf{x}_2 or equally on \mathbf{x}_1 and \mathbf{x}_2 , the Across method has consistently lower biases than the Within method for all values of m. In these cases, the Across biases decrease as m increases, and no such decrease is evident with the Within biases. The variance of the Within estimates tend to decrease with m, and no such trend is evident in the variance of the Across estimates.

		Across			Within				
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE			
On	Only control units missing \mathbf{x}_2								
5	0.004	0.026	0.026	0.005	0.028	0.029			
10	0.005	0.025	0.025	0.006	0.028	0.028			
15	0.005	0.025	0.025	0.006	0.027	0.028			
20	0.006	0.024	0.025	0.006	0.027	0.027			
50	0.006	0.024	0.024	0.007	0.027	0.027			
Tre	eatment and	d control un	nits mis	$sing \mathbf{x}_2$					
5	0.004	0.040	0.040	0.005	0.035	0.035			
10	0.004	0.040	0.040	0.005	0.035	0.035			
15	0.004	0.040	0.040	0.005	0.035	0.035			
20	0.003	0.040	0.040	0.005	0.034	0.034			
50	0.002	0.040	0.040	0.004	0.034	0.034			
-									

Table 7: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_1 . The average treatment effect estimates based on the covariates before introduction of missing data is 0.0011.

	Across				Within			
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE		
Oni	$ly\ control\ v$	ınits missir	$ng \mathbf{x}_2$					
5	0.171	0.022	0.051	0.624	0.022	0.411		
10	0.081	0.021	0.028	0.623	0.022	0.410		
15	0.049	0.021	0.024	0.624	0.021	0.411		
20	0.033	0.021	0.022	0.624	0.021	0.411		
50	0.001	0.021	0.021	0.625	0.021	0.411		
Tre	atment and	d control ur	nits mis	$sing \mathbf{x}_2$				
5	0.199	0.040	0.080	0.718	0.032	0.548		
10	0.084	0.039	0.046	0.720	0.030	0.549		
15	0.039	0.040	0.041	0.720	0.030	0.548		
20	0.015	0.040	0.040	0.719	0.030	0.548		
50	-0.029	0.040	0.040	0.719	0.029	0.546		

Table 8: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is -0.0011.

		1101000			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE
On	ly control v	units missir	$ng \mathbf{x}_2$			
5	0.151	0.024	0.047	0.396	0.024	0.180
10	0.107	0.024	0.035	0.396	0.023	0.180
15	0.091	0.024	0.032	0.396	0.023	0.180
20	0.082	0.024	0.031	0.396	0.023	0.180
50	0.067	0.024	0.029	0.396	0.023	0.180
Tre	eatment and	d control un	nits mis	$sing \mathbf{x}_2$		
5	0.172	0.041	0.070	0.439	0.031	0.224
10	0.120	0.043	0.057	0.439	0.030	0.223
15	0.101	0.044	0.055	0.439	0.030	0.223
20	0.090	0.045	0.053	0.439	0.030	0.223
50	0.071	0.046	0.051	0.439	0.030	0.223

Within

Table 9: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends equally on \mathbf{x}_1 and \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is -0.0017.

Sub-classification on the propensity score

Across

In this approach, we group units with similar values of propensity scores, and estimate the treatment effect within each of these groups. To estimate the treatment effect, we compute a weighted average of these estimates, where the weight assigned to each group is equal to the proportion of treated units in that group².

To form the groups, we use the sample quintiles of the propensity scores. For $j=1,\ldots,5$, let q_j be the value such that approximately j/5 units have $e(\boldsymbol{x}_i)$ satisfying $q_{j-1} < e(\boldsymbol{x}_i) \le q_j$, where $q_0 = 0$ and $q_5 = 1$. Let $Q_j = (q_{j-1}, q_j]$ for each j. For $j=1,\ldots,5$, let $n_j = \sum_{i=1}^n I(e(\boldsymbol{x}_i) \in Q_j)$ be the number of units in group j, and let $n_{jT} = \sum_{i=1}^n I(e(\boldsymbol{x}_i) \in Q_j)T_i$ be the number of treated units in group j; here, $I(\cdot)$ is the indicator function. We have

$$\hat{\tau} = \sum_{i=1}^{5} \frac{n_{jT}}{n_{T}} \left\{ \frac{\sum_{i=1}^{n} Y_{i} T_{i} I(e(\boldsymbol{x}_{i}) \in Q_{j})}{n_{jT}} - \frac{\sum_{i=1}^{n} Y_{i} (1 - T_{i}) I(e(\boldsymbol{x}_{i}) \in Q_{j})}{n_{j} - n_{jT}} \right\}$$
(5)

For the Across method, we determine each q_j and n_j using $e^{A,m}(\boldsymbol{x}_i)$, where $i=1,2,\ldots,m$

1, n. Using superscript A, m notation to distinguish the Across method, we have a treatment effect estimate of

$$\hat{\tau}^{A,m} = \sum_{j=1}^{5} \frac{n_{jT}^{A,m}}{n_{T}} \left\{ \frac{\sum_{i=1}^{n} Y_{i} T_{i} I(e(\boldsymbol{x}_{i}) \in Q_{j}^{A,m})}{n_{jT}^{A,m}} - \frac{\sum_{i=1}^{n} Y_{i} (1 - T_{i}) I(e(\boldsymbol{x}_{i}) \in Q_{j}^{A,m})}{n_{j}^{A,m} - n_{jT}^{A,m}} \right\}.$$
 (6)

For the Within method, we create quintiles and apply (17) in each completed dataset. Using superscript W, k notation to distinguish quantities for the kth completed dataset for the Within method, we have a treatment effect estimate of $e^{A,m}(\boldsymbol{x}_i)$, where i=1, ;n.

$$\hat{\tau}^{W,k} = \sum_{j=1}^{5} \frac{n_{jT}^{W,k}}{n_{T}} \left\{ \frac{\sum_{i=1}^{n} Y_{i} T_{i} I(e(\boldsymbol{x}_{i,\text{com}}^{(k)}) \in Q_{j}^{W,k})}{n_{jT}^{W,k}} - \frac{\sum_{i=1}^{n} Y_{i} (1 - T_{i}) I(e(\boldsymbol{x}_{i,\text{com}}^{(k)}) \in Q_{j}^{W,k})}{n_{j}^{W,k} - n_{jT}^{W,k}} \right\}.$$
 (7)

As with the simulations in Section 3, when treatment only depends on \mathbf{x}_1 the biases in the Across and Within methods are relatively small. When treatment depends only on \mathbf{x}_2 or equally on \mathbf{x}_1 and \mathbf{x}_2 , the Across method has consistently lower biases than the Within method for all values of m. The Across biases decrease as m increases, and no such decrease is evident with the Within biases. The variances of the Within estimates tend to decrease with m, and no such trend is evident in the variance of the Across estimates.

		Across			Within	
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE
On	$ly \ control \ v$	$units \ missin$	$ig \mathbf{x}_2$			
5	0.539	0.058	0.349	0.547	0.056	0.356
10	0.538	0.057	0.347	0.548	0.056	0.356
15	0.539	0.057	0.347	0.548	0.055	0.355
20	0.538	0.057	0.346	0.548	0.055	0.355
50	0.537	0.057	0.346	0.548	0.055	0.356
Tre	eatment an	d control ur	nits mis	$sing \mathbf{x}_2$		
5	0.523	0.063	0.336	0.548	0.059	0.359
10	0.521	0.062	0.333	0.547	0.058	0.358
15	0.520	0.062	0.333	0.548	0.058	0.358
20	0.519	0.061	0.330	0.547	0.058	0.358
50	0.518	0.061	0.330	0.547	0.058	0.357

Table 10: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_1 . The average treatment effect estimates based on the covariates before introduction of missing data is 0.5377.

	Across				Within			
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE		
On	ly control i	units missir	$ng \mathbf{x}_2$					
5	0.969	0.049	0.988	1.101	0.051	1.262		
10	0.922	0.051	0.900	1.100	0.050	1.261		
15	0.899	0.049	0.857	1.101	0.050	1.263		
20	0.884	0.050	0.832	1.101	0.050	1.263		
50	0.854	0.050	0.780	1.101	0.050	1.262		
Tre	atment an	d control ur	nits mis	$sing \mathbf{x}_2$				
5	0.710	0.060	0.564	1.120	0.052	1.307		
10	0.591	0.061	0.411	1.122	0.051	1.309		
15	0.540	0.063	0.355	1.122	0.051	1.309		
20	0.509	0.064	0.323	1.121	0.051	1.308		
50	0.444	0.067	0.264	1.121	0.050	1.307		

Table 11: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends only on \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is 0.5339.

	Across				Within			
m	Pt. Est.	Variance	MSE	Pt. Est.	Variance	MSE		
On	ly control v	units missir	$ng \mathbf{x}_2$					
5	0.841	0.052	0.760	0.870	0.053	0.810		
10	0.833	0.051	0.745	0.870	0.053	0.810		
15	0.829	0.052	0.740	0.871	0.053	0.811		
20	0.827	0.051	0.735	0.871	0.053	0.812		
50	0.825	0.052	0.733	0.871	0.053	0.811		
Tre	atment and	d control ur	nits mis	$sing \mathbf{x}_2$				
5	0.730	0.059	0.592	0.877	0.055	0.824		
10	0.707	0.060	0.560	0.877	0.054	0.823		
15	0.697	0.060	0.546	0.878	0.054	0.824		
20	0.691	0.060	0.538	0.877	0.054	0.823		
50	0.681	0.061	0.525	0.878	0.053	0.824		

Table 12: Treatment effect estimates from the Across and Within approaches in the simulation design where treatment assignment depends equally on \mathbf{x}_1 and \mathbf{x}_2 . The average treatment effect estimates based on the covariates before introduction of missing data is 0.5302.

Appendix 3: Results of Propensity Score Regression in NLSY data

Table 13 displays the results from a logistic regression of treatment assignment indicator on the covariates for the 1306 complete cases in the NLSY data before introduction of missing values. Also included is the proportion of missing cases for each variable. The variables with largest fractions of missing data, namely family income and weeks mother worked before birth, are not among the strongest predictors of treatment assignment, which include mother's highest attained level of education and mother's AFQT score.

Coefficient	Est	SE	95% CI	miss
Intercept	-3.98	1.15	(-6.24, -1.73)	0.00
Mother's race - Black	1.62	2.19	(-2.67, 5.92)	0.01
Mother's race - Asian	1.70	0.96	(-0.17, 3.58)	0.01
Mother's race - White	0.49	0.47	(-0.43, 1.41)	0.01
Mother's race - Hawaiin/PI/American Indian	0.76	0.55	(-0.32, 1.84)	0.01
Mother's race - Other	0.22	0.54	(-0.83, 1.27)	0.01
Child's race - Black	-2.22	2.18	(-6.49, 2.06)	0.00
Child's race - Not Black and Not Hispanic	-0.40	0.42	(-1.23, 0.42)	0.00
Child's sex - female	-0.23	0.16	(-0.55, 0.09)	0.00
Presence of spouse/partner at birth - 2	-0.88	0.50	(-1.86, 0.10)	0.02
Presence of spouse/partner at birth - 3	-0.33	0.33	(-0.97, 0.32)	0.02
Grandparents in HH 1 YR before birth - Yes	-0.13	0.36	(-0.82, 0.57)	0.02
Wks mother worked in YR before birth - 1-48 wks	-0.02	0.26	(-0.54, 0.49)	0.24
Wks mother worked in YR before birth - 49-51 wks	-0.27	0.31	(-0.89, 0.34)	0.24
Wks mother worked in YR before birth - 52 wks	-0.46	0.29	(-1.02, 0.10)	0.24
Weeks preterm - 1-4 weeks	0.06	0.22	(-0.37, 0.48)	0.03
Weeks preterm - >5 weeks	-0.93	0.82	(-2.55, 0.68)	0.03
Sq. root(mother's age - mother's age in 1979)	-0.07	0.12	(-0.31, 0.17)	0.00
Sq. root of mother's AFQT score	0.15	0.06	(0.04, 0.27)	0.03
Child's birth weight	-0.00	0.01	(-0.01, 0.01)	0.01
Log of number of days child spent in hospital	-0.67	0.39	(-1.44, 0.09)	0.04
Log of number of days mother spent in hospital	0.07	0.42	(-0.75, 0.89)	0.05
Mother's attained education	0.20	0.05	(0.10, 0.30)	0.02
Log of family income	0.02	0.10	(-0.16, 0.21)	0.22

Table 13: Summaries of the cofficients in the logistic regression to estimate treatment (estimated from the complete cases)

References

- Lunceford JK, Davidian M. Stratification and Weighting Via the Propensity Score in Estimation of Causal Treatment Effects: A Comparative Study. Statistics in Medicine. 2004;23(19):2937–2960.
- [2] Williamson E, Morley R, Lucas A, Carpenter J. Propensity scores: From naive enthusiasm to intuitive understanding; 2011. Statistical Methods in Medical Research (online early).
- [3] D'Agostino Jr RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine. 1998;17:2265–2281.
- [4] Rosenbaum PR, Rubin DB. Reducing Bias in Observational Studies Using Subclassification on the Propensity Score. Journal of the American Statistical Association. 1984;79:516–524.