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I. INTRODUCTION

Studies of thermotropic biaxial nematic liquid crystals continue to intrigue, frustrate and

excite. For example, it has long been appreciated that there should be more than one type of

biaxial nematic each with a different point group symmetry. Recently, however, it has been

shown how NMR spectroscopy might be used to distinguish between biaxial nematic phases

with different point group symmetries; in particular those with D2h and C2h symmetries [1].

Here, we refer to the symmetry of the singlet orientational distribution function and not

to the translational pair distribution function [2]. The original prediction of the existence

of biaxial nematic phases was based on a molecular field theory analysis which assumed

implicitly that the molecules and hence the phase could have D2h point group symmetry [3].

Subsequent theories have made this assumption explicit [4, 5]. However, just three years

after Freiser’s seminal work Boccara [6] in 1973 noted that nematic liquid crystals could

exist in a wide range of possible symmetries. These are Cn, C2v, Dn, C2h, Dnh, Sn and Dnd

where n is an integer. In addition, the influence of the phase symmetry on the components

of tensors representing its properties was also considered. Indeed this analysis mimicked, in

part, that presented by Bhagavantam and Suryanarayana [7] for the relationship between

the orientational symmetry of crystals and their tensorial properties.

The first molecular field theory of the biaxial nematic phase to make explicit use of the

D2h point group symmetry of the constituent molecules and the ground state phase was

presented by Straley [4]. He also noted that nematic phases with lower symmetry would

also be formed by molecules with the same low symmetry. However, he did not take this

idea further. In their paper describing the symmetries of liquid crystal phases Goshen et al.

[8] have returned to the question of the symmetries allowed for biaxial nematic phases and

added tetrahedral and octahedral to those given by Boccara [6]. The nature of topological

defects in nematics depends on the phase symmetry and in considering these Mermin [9], in

his review of the theory of defects, noted that there was no reason why only biaxial nematics

with D2h point group symmetry need to be considered. He pointed out that the defects in

the other biaxial nematics would also be different but he did not pursue this interesting idea.

The influence of the symmetry of biaxial nematics on their hydrodynamic behaviour,

both static and dynamic, has been examined by Liu [10] who considered a range of other

phase symmetries. In addition to the standard D2h he also included triclinic, C1 and Ci, as
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well as the less familiar biaxial phases with symmetries D6h, C6v, C6h, C6, D6, D3h and C3h.

These phases are distinguished by the different numbers of independent elastic constants and

viscosity coefficients that they possess. An analogous study of the hydrodynamic theory of

biaxial nematics has been performed by Kini [11]; this includes the flexoelectric polarisation

resulting from deformations of the director field. Here the phase symmetries considered are

monoclinic, C2, C2h and Cs, in addition to the triclinic, C1 and Ci. The parameters, elastic,

viscous and flexoelectric, required for each of the biaxial phases were determined.

The work by Mettout et al. [12] is of more direct relevance because it is one of the

first papers to describe a theory of biaxial nematic liquid crystals in which the molecular

symmetry and hence that of the phase is lower than D2h. This development was prompted

by the experimental observation of a polar biaxial nematic phase formed by a semi-rigid

thermotropic liquid crystal polymer of hydroxybenzoic acid and hydroxynaphthoic acid [13].

The theory is based on a Landau approach and for this the dominant orientational order

parameters were identified as first rank; for the assumed Cs symmetry of the molecules there

are six order parameters. Based on this the Landau theory predicts the formation of a polar

uniaxial nematic, that is with C∞v symmetry; and a polar biaxial nematic phase with Cs

symmetry. Introduction of a second rank ordering tensor into the theory clearly increases

the number of order parameter invariants, expansion coefficients and hence the complexity.

Indeed the theory predicts the existence of nematic phases with point group symmetries

D∞h, C∞v, D2h, C2v, Cs and, perhaps surprisingly, C1.

The discovery by Niori et al. of the banana phases [14] and the ensuing experimental

studies prompted Lubensky and Radzihovsky [15] to propose a Landau theory of the phases

and the transitions between them. When formulating the orientational order parameters

the V-shaped or bent-core molecules were taken to have C2v point group symmetry; the

phase symmetry was taken from experiment. Thus for the uniaxial nematic with D∞h

symmetry just a single quadratic order parameter is needed. However, for this phase to

undergo a transition to a uniaxial polar nematic with C∞v symmetry a polar or vector

order parameter is required together with a third rank tensor. This third rank tensor is

introduced because it is essential for the description of the spontaneously ordered chiral

phases with point group symmetries D2 and C2. The set of three order parameters, first,

second and third rank, is able to describe a host of nematic phases which also includes

those with point group symmetries D3h, C3v, D2d and C1h. Also of relevance are the tensor
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order parameters which are needed to create these order parameters from phases with higher

symmetry. Of particular interest for the bent-core mesogens is the transition from a biaxial

nematic with D2h symmetry to an achiral nematic with symmetry D2 where the mesophase

separates into domains of opposite handedness separated by domain walls. The extensive

and detailed analysis presented by Lubensky and Rodzihovsky [15] is aided by the use of

pictorial representations to show the idealised organisation in the different phases and their

change at the phase transitions.

The major challenge of working on a theory for bent-core molecules has also been ad-

dressed by Mettout [16] who used a single second rank ordering tensor. As a result he

was not able to predict the rich polymorphism found by Lubensky and Radzihovsky [15].

However, they did miss the biaxial nematic phase having C2h point group symmetry and

this was noted by Mettout [16]. In his own paper he was primarily concerned with so-called

conventional nematics, that is those with weakly biaxial molecules and unconventional ne-

matics with molecules having a more pronouced biaxiality such as the bent-core mesogens.

He points out that for unconventional mesogens there are two second rank tensorial order

parameters. For the principal axes of these to coincide within the biaxial nematic phase

then this requires the phase to possess D2h symmetry. If, however, only one of the principal

axes for the two tensors coincide then the biaxial nematic has C2h point group symmetry

and when none of the principal axes coincide the phase symmetry is Ci. The origin of the

driving force for the change in symmetry from D2h to C2h and then Ci was not explained.

Indeed the fact that the phase symmetry, C2h and Ci, is lower than that of the constituent

molecules is puzzling and was not commented on. Indeed it might have been expected that

the molecular symmetry should be the same or lower than the liquid crystal phases that are

formed.

Developing a molecular theory for biaxial nematic phases formed by real mesogenic

molecules is an especially challenging task. This obtains because the molecules are invariably

non-rigid and the conformers are of low symmetry. This challenging task has been tackled

by Mettout [17] albeit in the rigid-molecule limit. In his novel approach he introduces the

concept of an effective molecular symmetry; this is defined by considering the effect of the

true molecular symmetry on the elements of an orientational ordering tensor. This tensor is

taken to be the average of a Wigner function, 〈DL
pm〉, of rank L, although the tensor is often

taken to be second rank. As an example, when the molecular symmetry is D4h then the
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non-zero order parameters would be 〈D2
p0〉. This would also occur if the molecules have the

higher point group symmetry of D∞h which would be identified as the effective molecular

symmetry. With this effective symmetry it might be expected that such molecules would

only exhibit a uniaxial nematic phase. However, Mettout [17] indicates that they should also

form a biaxial nematic with D2h point group symmetry. Clearly to establish the symmetry

of the nematic phase some model theory is needed. This is appreciated by Mettout although

he does not describe the use of such an approach to determine the symmetries of the stable

nematic phases found for molecules with a particular effective symmetry. For a group of

symmetry classes for the constituent molecules such as D2h and still retaining a second rank

ordering tensor to characterise the effective symmetry it is apparent that this is the same as

the real molecular symmetry. It might have been anticipated that the phase symmetry of

this system in its ground state would also be D2h. Again Mettout suggests that the phase

symmetry of the ground state could be lower, that is C2h.

There would seem to be some doubt as to whether lowering the molecular symmetry from

D2h to C2h point group symmetry is necessary for the creation of the C2h biaxial nematic

phase. However, it is certainly to be expected that the ground state nematic structure

constituted of molecules with C2h symmetry should also have the same symmetry. At a

higher temperature the C2h biaxial nematic could undergo a transition to a biaxial nematic

with D2h symmetry. A sketch showing the idealised organisation of molecules with C2h

symmetry in these two biaxial nematic phases is shown in Fig. 1. The key feature in

these sketches is the orientation of the constituent molecules and not their translational

distribution. Following the ideas of Lubensky and Radzihovsky [15] it is of interest to

consider an average structure for the molecules in the different phases. Thus in the D2h

biaxial nematic phase there are two types of molecule which are related by a 180o rotation

about the molecular x-axis, a so-called internal rotation [16]. The addition of these two

gives a structure with D2h point group symmetry having an H-shaped cross section in the

xy plane (see Fig. 1(c)).

The ability to identify a biaxial nematic unambiguously has proved to be a major prob-

lem in the study of this intriguing phase [18, 19]. In view of the subtleties in the differences

between non-polar biaxial nematics with C2h and D2h symmetries as well as Ci the iden-

tification of these new biaxial nematics promises to present even greater problems [1]. To

help in this challenging task we have developed a molecular field theory for the phases,
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FIG. 1. A sketch of the idealised organisation of elongated molecules with C2h point group sym-

metry in a biaxial nematic phase with (a) C2h symmetry and (b) D2h symmetry. The coordinate

systems are those for the phase (XYZ) and for the molecule (xyz). (c) The cross-sections of the

average molecular structure formed by combining two molecular orientations.

isotropic, uniaxial nematic, biaxial nematic both D2h and C2h formed by molecules with C2h

symmetry. In this way we hope to contribute to our understanding of thermotropic biaxial

nematics and their investigation. The results of our theoretical studies are described in this

paper. We note that we shall not consider the possible formation of a biaxial nematic phase

with Ci symmetry here. As we shall see, the problem we have set ourselves is already a

challenging task and so we defer its extension to include the triclinic biaxial nematic until

later.

We begin in Sec. II with the orientational order parameters used to characterise the

nematic phases formed by the biaxial molecules. In Sec. III these are then employed

together with the intermolecular interaction coefficients allowed by the molecular symmetry

[20] to construct the internal energy of the phases. A variational analysis analogous to

that proposed by de Gennes [21] for uniaxial molecules in a uniaxial phase is then used

to determine the potential of mean torque and the anisotropic Helmholtz free energy. The

somewhat involved forms for these are subsequently simplified by reducing the number of

order parameters and intermolecular interaction coefficients to just three for each which is

sufficient to characterise the three nematic phases. These conventional second rank order
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parameters are found to be augmented by a new order parameter based on a rank one Wigner

function but with a pseudovector character. We end with a description and discussion of

the phases, as well as the transitions between them, predicted by the simplified or truncated

model.

II. ORDER PARAMETERS

The orientational order parameters are defined as the averages of the Wigner functions,

D2
pm(Ω), where Ω denotes the Euler angles, α, β, γ, linking the molecular and laboratory

frames [2]. The molecular axis, z, is defined as the two-fold rotation axis and x and y are

in the mirror plane orthogonal to z. It is convenient to take these axes to be those that

evolve, without rotation, into the other two-fold rotation axes when the molecule is changed

from C2h to D2h point group symmetry. In our model this would correspond to the two

outer boards constituting the molecule overlapping exactly (see Fig. 1). In the biaxial

nematic phase, also with C2h symmetry, Z corresponds to the two-fold rotation axis and

X and Y are the axes in the mirror plane orthogonal to Z. At the transition to the D2h

biaxial nematic the X and Y axes would transform into the axes with two-fold rotational

symmetry. In these axis systems the order parameters 〈D2
pm〉 with p,m = ±1 vanish and the

remaining independent order parameters are 〈D2
00〉, 〈D2

02〉 and 〈D2
0−2〉. The first label refers

to the phase and so these three order parameters appear when the uniaxial nematic phase is

formed. They remain in the biaxial nematic phase and are joined by six more 〈D2
20〉, 〈D2

−20〉,
〈D2

22〉, 〈D2
2−2〉, 〈D2

−22〉 and 〈D2
−2−2〉, when this phase has C2h symmetry. If, however, the

biaxial nematic has D2h symmetry then some order parameters become equal, namely

〈D2
20〉 = 〈D2

−20〉, (1)

〈D2
22〉 = 〈D2

−22〉, (2)

〈D2
2−2〉 = 〈D2

−2−2〉. (3)

This set of order parameters based on the Wigner functions does not provide a completely

convenient choice with which to distinguish between the two biaxial nematic phases and to

do this we use the following combinations. The three order parameters

〈I20〉 =
(

〈D2
20〉 − 〈D2

−20〉
)

/2i, (4)

7



〈Ra
22〉 =

[(

〈D2
22〉+ 〈D2

−2−2〉
)

−
(

〈D2
−22〉+ 〈D2

2−2〉
)]

/2, (5)

〈Ia22〉 =
[(

〈D2
22〉 − 〈D2

−2−2〉
)

−
(

〈D2
−22〉 − 〈D2

2−2〉
)]

/2i, (6)

vanish in the biaxial nematic with D2h point group symmetry but are non-zero in that with

C2h. The remaining three

〈R20〉 =
(

〈D2
20〉+ 〈D2

−20〉
)

/2, (7)

〈Rs
22〉 =

[(

〈D2
22〉+ 〈D2

−2−2〉
)

+
(

〈D2
−22〉+ 〈D2

2−2〉
)]

/2, (8)

〈Is22〉 =
[(

〈D2
22〉 − 〈D2

−2−2〉
)

+
(

〈D2
−22〉 − 〈D2

2−2〉
)]

/2i, (9)

are non-zero in both biaxial nematics. In keeping with these definitions the non-zero order

parameters for the uniaxial nematic are written as

〈R00〉 = 〈D2
00〉, (10)

〈R02〉 =
(

〈D2
02〉+ 〈D2

0−2〉
)

/2, (11)

〈I02〉 =
(

〈D2
02〉 − 〈D2

0−2〉
)

/2i. (12)

There is, in fact, an additional order parameter which vanishes in all but the biaxial

nematic with C2h symmetry. As we show in Appendix A this order parameter is defined in

terms of a first rank Wigner function D̃1
00(Ω). Here the tilde indicates that the function is

written in terms of pseudovectors and not vectors. As a consequence the order parameter,

〈D̃1
00〉, does not change sign on inversion through the centre of symmetry and so the order

parameter does not vanish in the C2h biaxial nematic. This contrasts with the polar order

parameter, 〈D1
00〉, defined in terms of vectors, which does vanish in the C2h phase. We

see, therefore, that the pseudovector based order parameter, 〈D̃1
00〉 also provides a way to

distinguish between the biaxial nematics with D2h and C2h point group symmetry. We note

that in our current notation the rank of the Wigner functions has been suppressed and so

for the two order parameters of rank 1 we shall retain 〈D̃1
00〉 and 〈D1

00〉.
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In devising the notation for these nine combinations of Wigner function based order

parameters we have decided against the use of simple letters, there are just too many. Instead

we build on the notation suggested by Biscarini et al. [22] for the case when the molecules

and phase have D2h symmetry since this gives some information about the structure of the

composite order parameter. Thus 〈R02〉 denotes the real part of 〈D2
02〉 while 〈I02〉 is its

imaginary part. Extending this notation 〈Ra
22〉 denotes the antisymmetric combination of

the real part of 〈D2
22〉 and that of 〈D2

−22〉. Similarly, 〈Is22〉 is the symmetric combination of

the imaginary part of 〈D2
22〉 and that of 〈D2

−22〉.
Although the Wigner function representation of the orientational order parameters is

powerful when developing the molecular field theory it does not always provide a physically

familiar description of the order. This can be achieved with the Cartesian description given

by the supertensor SAB
ab [21, 23] defined as

SAB
ab = 〈(3laAlbB − δaAδbB)〉/2, (13)

where the superscripts denote laboratory axes and subscripts molecular axes; laA is the

direction cosine between axes a and A. The components of the Cartesian supertensor are

related to the averages of combinations of Wigner functions by (see Appendix A)

〈R00〉 = SZZ
zz , (14)

〈R02〉 =
1√
6

(

SZZ
xx − SZZ

yy

)

, (15)

〈I02〉 =
√

2

3
SZZ
xy , (16)

which are non-zero in all of the nematic phases and related to the molecular symmetry. Thus

〈R02〉 provides a measure of the biaxiality in the molecular ordering when the molecular

symmetry is D2h and 〈I02〉, corresponding to an off-diagonal element in the Saupe ordering

matrix [23], indicates the effect on the ordering when the molecular symmetry is C2h. Within

the biaxial nematic phase with D2h symmetry the three new order parameters are

〈R20〉 =
1√
6

(

SXX
zz − SYY

zz

)

, (17)

〈Rs
22〉 =

1

3

[(

SXX
xx − SYY

xx

)

−
(

SXX
yy − SYY

yy

)]

, (18)

〈Is22〉 =
2

3

(

SXX
xy − SYY

xy

)

, (19)
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where 〈Is22〉 clearly represents a new term reflecting the phase biaxiality and is related to the

C2h molecular symmetry. Finally, there are four new order parameters which distinguish

between the C2h and the D2h biaxial nematic phase. At the second rank level there are three

of these, namely

〈I20〉 = −
√

2

3
SXY
zz , (20)

〈Ra
22〉 =

2

3

(

SXY
xy + SYX

xy

)

, (21)

〈Ia22〉 = −2

3

(

SXY
xx − SXY

yy

)

, (22)

which result from the SXY
ab off-diagonal elements of the supermatrix. The fourth order

parameter of this set is the pseudovector based first rank Wigner function 〈D̃1
00〉. This is

related to the anti-symmetric combination of elements of the supermatrix by

〈D̃1
00〉 =

2

3

(

SXY
xy − SYX

xy

)

; (23)

(see Appendix A).

III. MOLECULAR FIELD THEORY

To construct a molecular field theory based on these nine independent order parameters

we use the variational approach described by de Gennes [21]. This starts with the con-

struction of the thermodynamic internal energy from the dominant order parameters. As

experiment and simulation demonstrate these are invariably second rank [24, 25] which ex-

plains our prior concentration on the 〈D2
pm〉; they also allow us to distinguish between the

phases. We now need to construct a scalar product of these order parameters bearing in

mind that the intermolecular coefficients, u2mn, are also tensorial [20]. This gives

〈U〉 = −1/2
∑

u2mn〈D2
pm〉〈D2

−pn〉. (24)

Since m and n both take values from -2 to 2 there are 25 intermolecular coefficients but

this number can be reduced to just six independent terms by taking account of the system

symmetry and the C2h molecular symmetry [20]. They are u200, u202 ≡ u220, u20−2 ≡ u2−20,

u222, u2−2−2 and u2−22 ≡ u22−2. The symmetry-based arguments leading to this result are

given in Appendix B. As we shall see, to emphasise the symmetry of the problem we shall
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take combinations of these coefficients just as we did for the orientational order parameters.

The Helmholtz free energy is given, in the molecular field theory, as

A = −(1/2)
∑

u2mn〈D2
pm〉〈D2

−pn〉

+kBT

∫

f(Ω) ln f(Ω)dΩ, (25)

where, as yet, the singlet orientational distribution function, f(Ω), is unknown. It is de-

termined by a functional minimisation of A with respect to f(Ω) subject to the constraints

that it is normalised and that the order parameters 〈D2
pm〉 are the averages of D2

pm(Ω) with

f(Ω). This minimisation also leads to the potential of mean torque, U(Ω); the resultant

expression is somewhat formidable given its dependence on nine order parameters and six

intermolecular coefficients. To simplify its appearance we have divided it into three parts,

the first is responsible for the formation of the uniaxial nematic, the second drives the ap-

pearance of the biaxial nematic with D2h symmetry and the third part is responsible for the

creation of the biaxial nematic with C2h symmetry. The potential is then

U(Ω) = UU(Ω) + UD2h
(Ω) + UC2h

(Ω), (26)

where the individual terms responsible for driving the appearance of the three nematic

phases, NU , ND2h and NC2h [26] are

UU (Ω) = − [(〈R00〉+ 2γs〈R02〉 − 2γa〈I02〉)R00(Ω)

+ (2γs〈R00〉+ 4λs〈R02〉 − 2λ0〈I02〉)R02(Ω)

+ (−2γa〈R00〉 − 2λ0〈R02〉 − 4λa〈I02〉) I02(Ω)] ,

(27)

UD2h
(Ω) = −2 [(〈R20〉+ γs〈Rs

22〉 − γa〈Is22〉)R20(Ω)

+ (γs〈R20〉+ λs〈Rs
22〉 − (1/2)λ0〈Is22〉)Rs

22(Ω)

+ (−γa〈R20〉 − (1/2)λ0〈Rs
22〉 − λa〈Is22〉) Is22(Ω)] ,

(28)

UC2h
(Ω) = −2 [(〈I20〉+ γs〈Ia22〉+ γa〈Ra

22〉) I20(Ω)

+ (γa〈I20〉+ (1/2)λ0〈Ia22〉 − λa〈Ra
22〉)Ra

22(Ω)

+ (γs〈I20〉+ λs〈Ia22〉+ (1/2)λ0〈Ra
22〉) Ia22(Ω)] .

(29)
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In these expressions for U(Ω) we have scaled the potential of mean torque with the inter-

molecular coefficient, u200. More importantly the particular combinations of order parame-

ters appropriate for the three nematic phases have lead us to introduce related combinations

of intermolecular coefficients. These real, scaled combinations are

γs = (u220 + u2−20)/2u200,

γa = (u220 − u2−20)/2iu200,

λs = (Reu222 + u2−22)/2u200,

λa = (Reu222 − u2−22)/2u200,

λ0 = (u222 − u2−2−2)/2iu200, (30)

where the labels s and a denote symmetric and antisymmetric combinations of particular

intermolecular coefficients. This choice is especially convenient because when the mesogenic

molecule has D2h symmetry the antisymmetric combinations vanish as does λ0 since then

u222 is real and equal to u2−2−2. This leaves the expected three independent coefficients as

u200, u220 and u222. When, however, the molecule has C2h symmetry the three coefficients,

γs, λa and λ0, are no longer zero and provide a measure of the extent to which it deviates

from D2h symmetry. These coefficients enter all three contributions to the potential of

mean torque since the molecular symmetry influences the orientational ordering in all three

nematic phases. In contrast, the key order parameters for the contributions to the potential

for the three nematic phases only appear in the potential of mean torque associated with

that phase.

Given the potential of mean torque we can construct the orientational Helmholtz free

energy. This can then be minimised with respect to the order parameters to determine

their temperature dependence from which the transition temperatures and phase map are

estimated [27]. However, since there are nine order parameters and six intermolecular coeffi-

cients for this nematogen it is a formidable task. We have, therefore, sought to simplify the

problem while retaining its essential physics. One possible strategy with which to achieve

this is suggested by the four independent order parameters when both the molecules and

the biaxial nematic phase have D2h symmetry. These order parameters, 〈R00〉, 〈R02〉, 〈R20〉
and 〈Rs

22〉, are of particular interest since, in the limit of high order, as 〈R00〉 tends to unity,

the order parameters 〈R02〉 and 〈R20〉 tend to zero while 〈Rs
22〉 also tends to unity (see Eqs.

(14), (15), (17) and (18)). At higher temperatures 〈R00〉 and 〈Rs
22〉 remain dominant and
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a molecular field theory based, in essence, on just these two order parameters with u220 set

equal to zero to ensure the order parameters remain zero also captures much of the essential

behaviour [28]. For biaxial nematogenic molecules with C2h symmetry in a biaxial phase

also with C2h symmetry we see that in the high order limit 〈R00〉, 〈Rs
22〉 and 〈Ra

22〉 are ex-

pected to be large whereas the remaining six order parameters should be small. If we set

them to zero in the potential of mean torque together with γs, γa and λ0 then we obtain the

truncated potential

Utrun(Ω)/u200 = − [〈R00〉R00(Ω)

+ 2λs〈Rs
22〉Rs

22(Ω) + 2λa〈Ra
22〉Ra

22(Ω)] . (31)

The Helmholtz free energy associated with this takes the form

A/u200 = (1/2)
(

〈R00〉2 + 2λs〈Rs
22〉2 + 2λa〈Ra

22〉2
)

−T ∗ lnQ,

(32)

where the partition function is given by

Q =

∫

exp (−U∗
trun(Ω)/T

∗) dΩ, (33)

U∗
trun(Ω) is the scaled potential of mean torque, Utrun(Ω)/u200, and T ∗ is the scaled temper-

ature, kBT/u200.

We have not included terms involving the pseudovector based order parameter, 〈D̃1
00〉, in

the molecular field theory. Our reason for the omission is not that the order parameter is

small; it is not, as we shall show in Sec. IV. Our argument for ignoring this contribution is

the following. The new term in the internal energy would take the form

〈U〉 = −(1/2)ũ100〈D̃1
00〉2. (34)

Since the order parameter is invariant under inversion through the centre of symmetry for

the constituent molecules then for the contribution to the internal energy not to vanish the

intermolecular coefficient, ũ100, should also be invariant under inversion. For molecules with

C2h point group symmetry the supertensor intermolecular coefficients, uLmn will vanish if L

is odd [20]. However, this would not be the case for ũ100 if it is a component of a pseudo-

supertensor; this would be consistent with ũ100 being constructed from an anti-symmetric
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molecular interaction second rank tensor. We are not aware of molecular interactions which

involve non-symmetric tensors [7] so that the anti-symmetric components can be assumed

to be insignificant. However, relating the supertensor components to the excluded volume

between two molecules [4] may change this perception. We shall consider this possibility in

the following Section.

It seems appropriate to finish this section by commenting on the likely reliability of the

predictions of our theory for molecules with C2h point group symmetry. Molecular field

theories clearly have the advantage of simplicity which results from the major approxima-

tion of decoupling the direct orientational correlations between molecules. The effect of this

approximation has been explored for nematics by comparing the predictions with the results

of computer simulations. In these the pair potential is usually chosen to be consistent with

the Helmholtz free energy which forms the basis of the molecular field theory. Using this

approach there have been numerous tests of the predictions of the Maier-Saupe theory for

uniaxial nematics [24, 29, 30]. These have shown that the predictions are surprisingly reli-

able. As the system becomes more complicated, for example the molecules and phase are

biaxial with D2h point group symmetry, it is important to see if the molecular field predic-

tions are any less reliable. Again simulation results are available for this symmetry and it

appears that the predictions are still good [22, 31, 32]. Of particular importance is the phase

map showing how the nematic phases formed vary with the molecular biaxiality parameters.

The agreement between theory and simulation appears to be reliable at both a qualitative

and even semi-quantitative level. This agreement extends to the temperature variation of

the order parameters characterising the different phases. It seems likely, therefore, that the

predictions of our molecular field theory will be just as reliable; indeed this expectation is

consistent with preliminary results of computer simulations.

IV. CALCULATIONS, PARAMETERIZATION AND RESULTS

In order to determine the phase stability at a given temperature, the scaled free energy

is mininised with repect to the three order parameters 〈R00〉, 〈Rs
22〉 and 〈Ra

22〉 using the

MATLAB minimisation function fmincon. It is a function to find the minima of a non-

linear smooth function with non-linear smooth constraints. In the computer program we

specifically chose the method of Active Set Sequential Quadratic Programming. The algo-

14



rithm is an application of Newton’s method to the first order optimality conditions for the

minimisation of a function. It generates a quadratic program at each step and can be solved

to obtain the search direction and so find the next iterate. In fmincon, at each step a quasi-

Newtonian approximation of the Hessian matrix is employed instead of a direct calculation.

In addition, the Active Set method is used to deal with constraints. A description of these

methods can be found in the book by Nocedal and Wright [33]. Since this method only finds

local minima of the free energy corresponding to different nematic phases, we often need to

make comparison between the values of the free energy at the local minima to obtain the

global minimum at a given temperature. Moreover, the integration of the partition function

over the Euler angles is performed by a method suggested by Bisi, Romano and Virga [34].

The first step in the application of our molecular field theory is to select the scaled

parameters λs and λa. It would be desirable to relate these parameters to the molecular

geometry even for that as idealised as the structure in Fig. 1. However, to achieve this the

only quantity to our knowledge, that might be related to intermolecular supertensor is the

excluded volume [4]. In this approach the excluded volume is expanded in a basis of Wigner

functions and the expansion coefficients, aLmn, are taken to be related to the supertensor

uLmn. The use of the excluded volume is especially relevant because it is associated with

the repulsive forces thought to be important in determining liquid structure. For block-

shaped molecules with D2h point group symmetry Straley has obtained analytic expressions

for the three independent supertensor components u200, u220 and u222 based on a particular

and limited choice of the relative molecular orientations. For molecules with C2h point

group symmetry it is not possible to obtain analytic expressions even in this approximate

way. Numerical values for the components of the interaction supertensor can be determined

but this tends to obscure the physics of the problem [35]. However, general symmetry

based arguments show that the expansion coefficient a100 is not zero [36]. Although this

coefficient does not vanish we require a specific model for the molecular shape, with C2h

point group symmetry, to determine how large it might be in comparison with the second

rank coefficients, a2mn. Preliminary calculations for some trial structures having C2h point

group symmetry indicate that a100/a200 is negligibly small [37]. This suggests that the

contribution of the pseudovector order parameters to the molecular field theory may be

ignored. However, more detailed calculations of the excluded volume expansion coefficients

for different C2h models need to be undertaken to confirm this.
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In view of this difficulty we were guided in our choice of the scaled coefficient λs by

results which Sonnet, Virga and Durand obtained [38] in their calculations for what is, in

essence, the two-order parameter model. Thus for λs = 0.2 they find the phase sequence

ND2h−NU −I. We have used this value together with a range of values for λa and from the

temperature dependence of the order parameters we have determined the variation of the

transition temperatures as a function of the relative biaxiality λa. The results for the phase

maps are shown in Fig. 2a. For λa of zero we find the transitions NU − I and ND2h−NU in

agreement with those reported by Sonnet et al. [38]. We see that the NU−I and ND2h−NU

transition temperatures do not change with λa, as required, because it does not contribute to

the orientational order of the phases involved. However, as soon as λa does deviate from zero

we find that the biaxial nematic phase with C2h symmetry and identified by the non-zero

value of 〈Ra
22〉 as well as the order parameters 〈R00〉 and 〈Rs

22〉, appears in the phase map.

For small values of λa the transition NC2h − ND2h is observed to be second order. The

stability of the NC2h phase grows with increasing λa, as is to be expected. What was not

anticipated was the appearance of another biaxial nematic phase at the point at which the

ND2h − NU transition line meets the NC2h − ND2h phase boundary. This new phase was

identified by the fact that the biaxial order parameter 〈Rs
22〉 is zero, while 〈R00〉 and 〈Ra

22〉
are not; since one order parameter is absent we denote this phase, for the moment, as NB−.

This phase separates the biaxial nematic, NC2h, first from the uniaxial nematic and then

from the isotropic phase. Its existence had not been expected because in the biaxial nematic

phase NC2h it was thought that all three major order parameters would occur together and

that the order parameter 〈Ra
22〉 would vanish before 〈Rs

22〉. The fact that the reverse can

occur may be attributed to the absence of coupling between the order parameters and the

angular function associated with a different order parameter in Eq. (31). The transition

between the new biaxial nematic NB− and the NC2h phase is found to be second order while

that to the isotropic phase is first order. We shall return to the identification of this biaxial

nematic phase at the end of the Section.

The occurrence in a nematic phase of the biaxial orientational order reflected by 〈Rs
22〉

is controlled in the truncated molecular field model by the scaled biaxiality coefficient, λs.

We have, therefore, repeated our calculations with the larger value for λs of 0.3 to explore

its influence on the appearance of the new phase, NB−, in the phase map. When λa is zero

the system exhibits the phase sequence ND2h −NU − I but now the extent of the uniaxial
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FIG. 2. (Color online) The phase map predicted by the truncated model potential (see Eq. (31))

for a nematogen composed of biaxial molecules with C2h symmetry; the phase behaviour is shown

as a function of the relative biaxiality coefficient λa, with λs of (a) 0.2, (b) 0.3 and (c) 0.4. The

phase previously labelled as NB− is here indicated by ND2h(⊥) given its subsequent identification.

The dashed line indicates second order phase transitions and solid lines denotes first order phase

transitions; a circle shows a tricritical point. The vertical crosses indicate the temperature over

which the order parameters shown in Fig. 3 were calculated.

nematic is considerably reduced as is apparent from the results in Fig. 2(b). What will not

be clear is that the ND2h −NU transition is first order showing that this transition exhibits

tricritical behaviour [38]. As soon as λa departs from zero the NC2h phase appears and

the NC2h −ND2h transition temperature grows with λa as we had observed for the smaller
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value of λs. At the triple point we do not detect a transition to the NB− phase and nor did

this phase appear at the boundary between the NC2h and I phases as we had found when

λs was 0.2, in keeping with our expectations.

We have also explored another region of the phase map by setting λs equal to the higher

value of 0.4. According to the calculation of Sonnet et al. [38] with λa equal to zero the

system exhibits a first order transition directly from the isotropic phase to the ND2h phase.

Then as λa increases from zero the ND2h − I transition temperature does not change, as

expected and shown in Fig. 2(c). More interestingly, first the NC2h − ND2h transition

temperature and then that for the NC2h−I transition grow with λa. As for the calculations

with λs of 0.3, the system exhibits only the NC2h and ND2h biaxial nematic phase but not

the NB− phase. This is in keeping with the larger value for λs driving the appearance of the

order parameter 〈Rs
22〉 and so inhibiting the formation of the NB− phase.

The phase maps shown in Fig. 2 were constructed from the temperature dependence

of the three order parameters, 〈R00〉, 〈Rs
22〉 and 〈Ra

22〉. However, this dependence is of

interest in its own right and so we have shown in Fig. 3 the variation of these dominant

order parameters with the scaled temperature calculated with λs of 0.20 and λa of 0.15

and 0.31. The results for λa of 0.15 are shown in Fig 3(a); here we see that 〈R00〉 is the

first order parameter to appear on lowering the scaled temperature T ∗, corresponding to

the formation of the uniaxial nematic phase from the isotropic at T ∗ of 0.2202. The order

parameter changes discontinuously in keeping with the expected first order nature of the

transition [23]. To obtain the order of the phase transition from the calculations, we have

determined the order parameters and the scaled temperature both to four decimal places.

The phase transition is taken as second order if the order parameters corresponding to the

lower symmetry phase changes continuously at the phase transition. In other words, the

minimum of the free energy corresponding to the lower symmetry phase is always the global

minimum. On the other hand, the order parameters corresponding to the lower symmetry

phase changes discontinuously at the first order phase transition. In our methodology it

means that just slightly above the transition temperature we would find a region where

there are two minima of the free energy. One minimum corresponding to the lower symmetry

phase is the local minimum whereas the other free energy minimum corresponding to the

higher symmetry phase is the global minimum. As the temperature is lowered further the

next order parameter to appear is 〈Rs
22〉 at T ∗ of 0.1674 corresponding to the formation
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FIG. 3. (Color online) The dependence of the three order parameters 〈R00〉, 〈Rs
22〉 and 〈Ra

22〉

calculated with λs = 0.2 and (a) λa = 0.15 and (b) λa = 0.31 on the scaled temperature T ∗. In

addition the temperatures variation of the pseudovector based order parameter, 〈D̃1
00〉, is shown in

comparison with (a) 〈Ra
22〉 and (b) 〈Rs

22〉.

of the biaxial nematic with D2h symmetry. The order parameter, 〈Rs
22〉, is seen to grow

continuously at the ND2h − NU transition in keeping with its second order character [28].

The final order parameter to appear is 〈Ra
22〉, on the formation of the C2h biaxial nematic

phase at T ∗ of 0.1497. The order parameter seems to grow continuously but steeply at the

phase transition suggesting that it is second order. It is also of interest that the rate of

change of the other two order parameters 〈R00〉 and 〈Rs
22〉 with temperature, also increases

when the NC2h phase is formed. The behaviour of the system for the larger value of λa
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of 0.31 is, as we have seen, more surprising. The first phase to appear is the uniaxial

nematic which necessarily has the same transitional properties as when λa is 0.15. However,

unlike the system with the lower value of λa the next order parameter to appear is 〈Ra
22〉

and not 〈Rs
22〉 expected for the biaxial nematic with D2h symmetry. The symmetry of the

phase with non-zero order parameters 〈R00〉 and 〈Ra
22〉 is not known so it was designated

as NB−. The discontinuity in 〈R00〉 and in 〈Ra
22〉 at the NB− − NU transition for T ∗ of

0.2148 suggests that this is first order. At T ∗ of 0.1976 the third order parameter, 〈Rs
22〉,

appears growing relatively rapidly but continuously with decreasing temperature indicating

that the NC2h −NB− transition is second order. This transition can also be discerned from

the change in the variation of 〈Ra
22〉 and 〈R00〉 with the scaled temperature.

The other order parameter, 〈D̃1
00〉, constructed from two pseudovectors, does not appear

in the molecular field theory and so cannot be determined from the free energy. It can,

however, be obtained from the singlet orientational distribution function, f(Ω), calculated

from the truncated potential of mean torque. Thus

〈D̃1
00〉 =

∫

D̃1
00(Ω)f(Ω)dΩ, (35)

where

f(Ω) = Q−1 exp (−U∗
trun(Ω)/T

∗); (36)

here U∗
trun(Ω) is given by Eq. (31) and the orientational partition function, Q, is given by

Eq. (33). The integration in Eq. (35) is taken over O(3) to allow for the mirror plane in

both the molecule and the phase with C2h point group symmetry. However, because D̃1
00(Ω)

is a pseudovector this is not necessary because the average 〈D̃1
00〉 can be written as

〈D̃1
00〉 =

∫

SO(3)

D1
00(Ω)f(Ω)dΩ. (37)

The temperature dependence of 〈D̃1
00〉 is shown in Fig. 3(a) calculated for λs = 0.2 and

λa of 0.15; this system exhibits the phase sequence NC2h − ND2h − NU − I. The order

parameter is zero in the ND2h and NU phases but then starts to grow when the NC2h phase

is entered. This behaviour is as we had anticipated. What we had not expected was that

the behaviour of the two order parameters, 〈Ra
22〉 and 〈D̃1

00〉 would parallel each other quite

so closely. That is 〈D̃1
00〉 also grows rapidly from zero and at the lowest temperature studied

has reached a high value of 0.9853 which is close to the limiting value found for 〈Ra
22〉 but

higher than this. The implication of this near equality can be seen immediately from the
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Cartesian versions of these two order parameters given in Eqs. (21) and (23). The difference,

〈Ra
22〉 − 〈D̃1

00〉, is just 4SYX
xy /3 and so our results show that the order parameter SYX

xy must

be small; this is certainly the case in the high order limit where it vanishes. We also show

the variation of 〈D̃1
00〉 with temperature now calculated for λs of 0.2 and λa equal to 0.31 in

Fig. 3(b). This parameterization is especially interesting because it yields the intermediate

biaxial nematic phase NB− of as yet, unknown symmetry. The variation of 〈D̃1
00〉 in the

various phases helps us to identify NB−. We find that 〈D̃1
00〉 is zero in all but the low

temperature phase where the three second rank order parameters are also non-zero. This

confirms our earlier assignment of this as an NC2h phase. In the NB− phase although the

order parameter 〈Ra
22〉 expected for a phase with C2h point group symmetry is non-zero 〈D̃1

00〉
vanishes thus suggesting that this phase does not have C2h symmetry. The non-vanishing

order parameter 〈Ra
22〉 shows, however, that the phase is biaxial and that possibly it has

D2h point group symmetry for which 〈Rs
22〉 vanishes but 〈Ra

22〉 and 〈R00〉 are non-zero. A

sketch of the molecular organisation satisfying these constraints, at least in the high order

limit, is given in Fig. 4. We also show in Fig. 4 the average molecular structure obtained by

internal rotation of the molecule by 180o about x and 90o about z and merging this with the

original molecules. As expected this average structure has D2h point group but with different

rotation axes to that found for the molecules in the D2h(||) biaxial nematic (see Fig. 1(c)).

In principle an average structure with D2h symmetry could also be constructed from two

molecules in which one is rotated about z with respect to the other by an arbitrary angle.

However, the form of the truncated potential of mean torque for the system studied and its

parameterisation requires that this angle is 90o. The fact that the order parameter 〈Ra
22〉 is

not zero but 〈Rs
22〉 is suggests that the choice of the laboratory and molecular axis systems is

not appropriate for this particular molecular organisation. Inspection of the sketch in Fig. 4

suggests that the only choice which would fit would involve a rotation of both molecular and

laboratory frames about z and Z, respectively by 45o. The new axis systems are shown in

Fig. 4 and now it is clear that the molecular x′ axes tend to be parallel to the new laboratory

X′ axis. In general, this transformation also appears to solve the problem of identifying the

phase symmetry. Thus they correspond to the change of α to α ± π/4 for the laboratory

frame and γ to γ∓π/4 for the molecular frame. These transformations lead to a remarkable
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FIG. 4. A sketch of the idealised organisation of molecules with C2h point group symmetry in

the biaxial nematic phase, ND2h(⊥), in which the minor axes of half the molecules tend to be

perpendicular to those of the other half. The axis systems, (x′ y′ z) and (X′ Y′ Z), show the

symmetry axes for this idealised ND2h phase and the molecules forming it. The cross-section of

the average structure obtained by merging molecules in which the x axes are orthogonal is also

shown.

change in the functions defining the two order parameters. Thus

Ra
22(α, β, γ)

π/4−−−−−→
rotations

Rs
22(α

′, β, γ′) (38)

Rs
22(α, β, γ)

π/4−−−−−→
rotations

Ra
22(α

′, β, γ′) (39)

where the two rotations take place about the z and Z axes. The results of the transformation

to the new molecular and laboratory frames interchanges the order parameters 〈Rs
22〉 and

〈Ra
22〉 so that in the new frames 〈Rs

22〉 is non-zero and now it is 〈Ra
22〉 that vanishes. This

is just what is expected for a biaxial nematic phase with D2h point group symmetry. To

distinguish between the two ND2h phases we have added the symbols (‖) and (⊥) to indicate

whether the molecular minor axes are parallel or perpendicular in the biaxial nematic phase.
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V. SUMMARY AND CONCLUSION

It is usually assumed either explicitly or implicitly that biaxial nematic phases possess

D2h point group symmetry. However, for many years it has been appreciated that biaxial

phases of lower symmetry could also be formed. To aid in gaining an understanding of this

behaviour we have developed a molecular field theory for a biaxial nematic with C2h point

group symmetry constituted from molecules with the same symmetry. This theory requires

a knowledge of the independent orientational order parameters for the phase. There are, in

fact, nine second rank order parameters and a single pseudovector based order parameter

of rank one; although it is not expected to make any significant contribution to the theory.

This large number contrasts with the four second rank order parameters needed for the D2h

biaxial nematic composed of molecules having the same symmetry. In the theory for this

phase there are just three molecular interaction parameters but this number grows to six

for the C2h system. The evaluation of these interaction parameters is a challenging task and

the best, if not the only, model now available for this is based on the excluded volume of the

molecules [4]. We have avoided this problem and reduced the complexity of the theory by

retaining just the three dominant order parameters. The theory is, therefore, an extension of

the Sonnet-Virga-Durand theory [38] for biaxial nematics with D2h point group symmetry to

those with C2h symmetry. The resulting simplification reduces the number of intermolecular

coefficients to just three. Two of these, λs and λa, are related to the molecular biaxiality;

for molecules with D2h symmetry λa vanishes. The appearance of the D2h biaxial nematic

is controlled by λs and that for the C2h phase by λa. In fact, the choice of these parameters

generates a very rich phase behaviour with phase sequences,

NC2h − I,

NC2h −ND2h(||)− I,

NC2h −ND2h(||)−NU − I,

NC2h −ND2h(⊥)− I,

NC2h −ND2h(⊥)−NU − I.

In addition, the model also reveals the existence of two biaxial nematics with D2h point

group symmetry. In one the minor molecular axes tend to be parallel as might be expected

but in the other they tend to be perpendicular. We have yet to discover whether one D2h
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phase can undergo a transition into the other. As Sonnet et al. [38] have discovered the

ND2h−NU transition exhibits a tricritical behaviour passing from second order to first order

with increasing molecular biaxiality, λs, at about 0.3 for our definition of the parameter.

Similarly, we find three tricritical points, one for each of the phase maps with λs of 0.2, 0.3

and 0.4. For λs of 0.2 we find the tricritical point along the ND2h(⊥)−NU transition line at

λa = 0.3. The tricritical point for λs of 0.3 is found at λa = 0.22 along the NC2h −ND2h(‖)
transition line. Finally, the phase map for λs = 0.4 it is located at λa = 0.24 along the

NC2h −ND2h(‖) transition line.

The model which we have developed for the biaxial nematic phase with C2h point group

has been considerably simplified from the complete theory. However, it still retains much of

the essential physics and shows a rich phase behaviour. It seems clear that there are many

facets of this model which merit further exploration. It is likely that the phase maps together

with orientational order parameters will prove to be a valuable aid to the interpretation of

experimental studies of mesogens thought to exhibit the biaxial nematic phase with C2h

point group symmetry. They may also lead to a better understanding of the relationship

between the principal axes for macroscopic tensorial properties and the directors for this low

symmetry biaxial nematic phase.

Finally, we wish to note that in our model of C2h molecules that constitute the nematic

phases we have taken the C2(z) rotation axis to be parallel to the molecular long axis. This

is apparent from the sketch of the molecules shown in Fig. 1 and the fact that the order

parameter 〈R00〉 is large and positive in all of the nematic phases. However, there is no reason

why for calamitic mesogenic molecules the C2 axis needs to be parallel to the molecular long

axis. Relaxing this implicit constraint is an interesting problem, in particular to explore to

what extent the nematic phases formed when the C2 axis is parallel or perpendicular to the

molecular long axis differ. This is a problem that we shall certainly return to.
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Appendix A

Here we wish to provide a justification for the assertion concerning the need to include a

pseudovector order parameter for a biaxial nematic phase with C2h point group symmetry

composed of molecules having the same symmetry. Our starting point is the Cartesian

supermatrix describing the orientational order of the phase. Each element in this matrix of

matrices is given by [21, 22]

SAB
ab = 〈(3laAlbB − δabδAB)〉/2, (A1)

where the lower case letters define the molecular axes and the upper case letters are the

laboratory axes, the laA are the direction cosines between the molecular axis a and the

laboratory axis A and δab is the Kronecker delta function. If we define z to be the C2

rotation axis in the molecule and Z that in the laboratory then the ordering supermatrix

has the form
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SXX
xx SXY

xx 0 SXX
xy SXY

xy 0 0 0 0

SYX
xx SYY

xx 0 SYX
xy SYY

xy 0 0 0 0

0 0 SZZ
xx 0 0 SZZ

xy 0 0 0

SXX
yx SXY

yx 0 SXX
yy SXY

yy 0 0 0 0

SYX
yx SYY

yx 0 SYX
yy SYY

yy 0 0 0 0

0 0 SZZ
yx 0 0 SZZ

yy 0 0 0

0 0 0 0 0 0 SXX
zz SXY

zz 0

0 0 0 0 0 0 SYX
zz SYY

zz 0

0 0 0 0 0 0 0 0 SZZ
zz



























































































. (A2)

In determining the number of independent order parameters of this supermatrix we note

that from their definition in Eq. (A1) the diagonal submatrices are symmetric about their

diagonals. In marked contrast, the two off-diagonal submatrices are not symmetric about

their diagonals [39] since, for example,

SXY
xy (≡ 〈3lxXlyY/2〉), (A3)

clearly differs from

SYX
xy (≡ 〈3lxYlyX/2〉). (A4)

The non-symmetric matrix can be written as the sum of an anti-symmetric matrix and a

symmetric matrix
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xy 0
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0 (SXY
xy − SYX

xy )/2 0

−(SXY
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xy )/2 0 0
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(A5)

+





















SXX
xy (SXY

xy + SYX
xy )/2 0

(SXY
xy + SYX

xy )/2 SYY
xy 0

0 0 SZZ
xy





















.

Including this separation of the off-diagonal matrices into the supermatrix, SAB
ab , results

in a symmetric ordering supermatrix and an anti-symmetric ordering supermatrix. The

symmetric supermatrix contains 25 non-zero elements. However, allowing for the symmetry

about the diagonals and the fact that the traces
∑

A SAA
ab and

∑

a S
AB
aa vanish leaves a

total of nine independent component order parameters. These Cartesian components are

linearly related to the nine order parameters defined in terms of the Wigner functions (see

Eqs (4) - (12) and (14) - (22)). The anti-symmetric ordering supermatrix contains just a

single independent element since SXY
xy = SYX

yx and SXY
yx = SYX

xy . We take this independent

component to be SXY
xy −SYX

xy (see Eq. (A5)) The direction cosines occuring in this element can

be written as the scalar products of the unit vectors defining the molecular and laboratory

frames. That is

SXY
xy − SYX

xy = (3/2)〈(x ·X)(y ·Y)− (x ·Y)(y ·X)〉, (A6)

and use of the Binet-Cauchy identity [40] allows this to be written as

SXY
xy − SYX

xy = (3/2)〈(x ∧ y) · (X ∧Y)〉. (A7)

The two cross products define, in a sense, the axes z and Z in the molecular and laboratory

frames, respectively. There is, however, a fundamental difference between the conventional

axes, z and Z, which are polar vectors, that is they change sign under inversion through the

centre of symmetry of the respective coordinate system. In contrast the vectors defined by
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the cross products are axial or pseudovectors, that is they do not change sign under inversion.

To distinguish between these two classes of vector we add a tilde to the pseudovectors so

that the independent element of the anti-symmetric supermatrix is given by

SXY
xy − SYX

xy = (3/2)〈z̃ · Z̃〉. (A8)

Since neither z̃ nor Z̃ changes sign when inverted through the centre of symmetry of their

respective frames this means that the order parameter (SXY
xy −SYX

xy ) is invariant under inver-

sion and does not vanish for a molecule with C2h point group symmetry in a phase having the

same symmetry. This contrasts with the behaviour of the analogous order parameter 〈z ·Z〉
defined in terms of the axes in the molecular and laboratory frames. These are conventional

vectors and so change sign when the respective system, molecule or laboratory, is inverted

through the centre of symmetry. In consequence the polar order parameter 〈z·Z〉 will change
sign and so must vanish in the C2h phase, unlike the pseudovector order parameter, 〈z̃ · Z̃〉.

We have introduced these order parameters using the Cartesian language since this leads

logically to the definition of the pseudovector order parameter. However, this and the polar

order parameter can also be written in terms of Wigner functions. Thus

〈z · Z〉 = 〈D1
00〉, (A9)

and

〈z̃ · Z̃〉 = 〈D̃1
00〉, (A10)

where the tilde again indicates the definition in terms of pseudovectors for the molecule and

for the phase. The consequence of this is that 〈D1
00〉 will change sign on inverting through

the centre of symmetry in the C2h phase and so this polar order parameter will vanish. This

contrasts with the behaviour of the pseudovector order parameter which does not change

sign on inversion and so does not vanish in a C2h phase composed of molecules with the

same symmetry. We note that Mettout [17] has also considered the pseudovector and polar

order parameters based on rank one Wigner functions.

Appendix B

Here we show in a little detail that, based on the C2h point group symmetry of the

molecules, there are just six non-zero components of the interaction supertensors, u2mn [20].
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(a) The molecules comprising the system are identical and so

u2mn = u2nm, (B1)

where the subscript m refers to molecule 1 and n refers to molecule 2.

(b) The internal energy 〈U〉 constructed from the invariants in Eq. (24) is real so that

[20(a)]

u∗
2mn = (−)m+nu2−m−n, (B2)

(c) The C2(z) element of C2h requires that for u2mn the subscripts m and n can only take

values 0 and ±2.

These three constraints lead to the following six independent non-zero components of the

interaction supertensor, u2mn,

(1) u200,

(2) u202 = u220,

(3) u20−2 = u2−20,







These components are related

by u∗
202 = u20−2 and

u∗
220 = u2−20.

(4) u222,

(5) u2−2−2,







These components are related

by u∗
222 = u2−2−2.

(6) u22−2 = u2−22.

The two components given against (6) are real since u∗
22−2 = u2−22.

Although these six independent components were obtained by symmetry based arguments

it is possible that transformation to a new molecular frame by rotation about the C2(z) axis

could reduce the number further. We have explored this possibility and it seems to be

feasible. Rotation of the axis system about z through an angle γ causes the components of

the supertensor to change according to

u′
2mn = u2mn exp {i(m+ n)γ}. (B3)

Here the prime denotes the value following the rotation. In order for, say, λ0 (see Eq. (30)),

to vanish we require

u222 exp (i4γ)− u2−2−2 exp (−i4γ) = 0. (B4)
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To solve this equation for γ we write

u222 = a222 + ib222, (B5)

and since u2−2−2 is u∗
222 then

u2−2−2 = a222 − ib222. (B6)

Substitution of these two results into Eq. (B4) then gives the rotation angle making λ0

vanish as

tan 4γ = −b222/a222. (B7)

Similar arguments show that for γa to be zero the rotation angle is

tan 2γ = −b220/a220, (B8)

and for γs to be zero requires

tan 2γ = a220/b220. (B9)

Thus the three coefficients can be made to vanish but not simultaneously, each requires a

different angle of rotation. This could simplify the complete molecular field theory to some

extent. In addition, it would provide an unambiguous way in which to define the x and y

molecular axes. In contrast the more important relative coefficient λa cannot, in general, be

made to vanish. We shall return to this possibility as well as other ways of simplifying the

problem in a subsequent paper [41].
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