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Abstract

Numerical simulation of multiphase flow often represents a challenging task for clas-

sical Computational Fluid Dynamics (CFD) schemes based on the macroscopic de-

scription of the fluid state (continuum hypothesis) leading to the Navier-Stokes

equations. The reason lays in the fact that these flows are often driven by phenom-

ena originating at meso- or micro-scales.

This dissertation concerns the lattice Boltzmann (LB) method and its applica-

bility to multiphase liquid/liquid or liquid/gas system. This method derives from

kinetic theory, which uses statistics to describe the fluid state. Although quite re-

cently appeared, the LB method is attracting more and more attention essentially

because its kinetic nature allows a simple incorporation of small scale physics with-

out suffering from the computational penalties of Molecular Dynamics schemes. The

algorithm, which consists essentially nodal relaxation (collision) and streaming along

the links of a regular spaced lattice, is highly efficient and simple to parallelize; be-

sides the LB equation does not present nonlinear convective terms. To deal with

multiphase flows the Shan-Chen (SC) model has been adopted in this study. This

approach is one of the most widely used because of its simplicity. The basic theory

of LB as well as the description and some validation of the SC model are the main

subjects of the first part of this dissertation.

The basic LB algorithm suffers of instabilities when applied to high-Reynolds

flows; even the SC model is all but perfect: one of its most important defects con-

sists in the very low density ratio achievable (O(10)). The second part of this

dissertation will therefore present an improved formulation of the basic SC model,

based on some recently proposed strategies. For example the incorporation of dif-

ferent equations of state into the LB allows to increase the density ratio of one or

two orders of magnitude, while a different formulation of the collision step (Multiple
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Relaxation Times LB) allows to overcome the stability issues at low-viscous flows.

This improved SC model is finally applied to simulate binary droplet collisions. The

results are compared with experiments and show a very good qualitative agreement.
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Chapter 1

Introduction

This thesis is devoted to the presentation of a numerical scheme known as the Lattice

Boltzmann Method (LB), and to the demonstration of its performance with special

emphasis on multiphase flow problems.

The LB is quite a recent numerical approach, since it dates back to the late

eighties. To properly introduce this method and, at the same time, to better under-

line the differences between LB and classic Computational Fluid Dynamics (CFD)

solvers, it is worthwhile to remember the different possible ways to describe the

state of a complex physical system. The first approach consists of expressing the

state of the system by means of a number of observable, and therefore measurable,

properties. According to statistical mechanics, such an approach is referred to as

coarse-grained, observational or macroscopic [11]. Considering a fluid, it is clear that

this approach corresponds to he continuum hypothesis: in this case the state of the

fluid is completely specified in terms of extensive quantities like density, momentum

and total energy. Treating the fluid as a continuum means these quantities can be

considered as functions of spatial coordinates and time, smoothly varying on the

whole extension of the system. A conservation equation can be written for everyone

of these quantities, to describe its rate of change due to fluxes across the frontier

of the domain occupied by the fluid, and due to productions inside the domain.

This set of equations is universally known as Navier-Stokes equations (NS). The NS

are second order, partial differential equations, nonlinear in the convection term,

and rarely an analytic solution can be obtained: often, even finding a numerical
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1. INTRODUCTION

one may prove to be a difficult task. Many of the difficulties encountered are just

caused by the nonlinearity; a linear model should be, if existing, very welcomed.

But, since that nonlinearity is in turn caused by the way the convection term is

modeled in the framework of the continuum hypothesis, it is clear that getting rid

of the macroscopic approach must be the first step in the search for a linear model.

An alternative approach considers the system as a collection of N discrete ele-

ments: the state of the whole system at any time t is determined once the state of any

single element is known. Adopting again the terminology of statistical mechanics,

this description is referred to as fine-grained, dynamical, or microscopic [11]. One

question immediately arises: how can the microscopic configuration of the system

be evaluated? The first idea is to track the trajectory of every single molecule i of

mass mi, considered point-wise, by means of Newtonian mechanics: it is possible to

assume as state variables the space coordinates and the speed components ( ri and

ξi), and thus it is necessary to integrate a set of fN ordinary second order differen-

tial equations (with proper initial and boundary conditions), f being the number of

degrees of freedom of every molecule:

mi
d2ri

dt2
= Fi (1.1a)

ri(t = 0) = r0i (1.1b)

ξi(t = 0) = ξ0i (1.1c)

In (1.1a) the right-hand side represents the force acting upon the considered

molecule because of intermolecular interactions. Considering a fN -dimensional

space the microscopic, or ”dynamic”, state of the system can be expressed by a

point in such space, referred to as Phase Space. Often, instead of this Newtonian

description, an equivalent Hamiltonian one can be adopted, which proves to be more

suitable to describe systems having complex not mono-atomic molecules that possess

even rotational degrees of freedom. The main drawback of such kind of description

consists in the excessive computational cost, which is above the capabilities of any

available computer since even a small volume of fluid contains an enormous amount

of molecules. In order to reduce that cost consists in introducing “pseudoparticles”

or “macromolecules”, each representing a huge number, say R, of real ones. For
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1. INTRODUCTION

such a simplified system, equation (1.1a) can be written as:

MI
d2RI

dt2
= FI + DI , I = 1, .., NR, (1.2)

where RI represents a coarse-grained coordinate, MI =
∑R

i=1 mi is the total

mass of the I-th macromolecule, and NR << NA is the total number of macro-

molecules. The term DI models all the details of the underlying finer scales. A

further approximation could consist in getting rid of this last term, and solve the

(1.1a), applied to a limited number of molecules: this is the basic idea of molecular

dynamics (MD). If the objective is to simulate macroscopic physics, the model is

still full of unnecessary microscopic details included in the right-hand side of (1.2),

making molecular dynamics a computational tool which is suitable only for very

small time and length scales.

Another approach to describe the microscopic configuration of a fluid is, accord-

ing to Kinetic theory, to employ probability distribution functions: the microscopic

configuration is described by means of statistics. These functions evolve according

to very complex ”transport” equations, the most famous being the Boltzmann’s

equation. Kinetic theory aims to build a bridge between the molecular and the

macroscopic worlds, rather than to deal with macroscopic dynamics: in fact, NS

can be recovered from the aforementioned Boltzmann equation, once it is solved:

unfortunately, this is a non-linear integral-differential equation, very complicated to

integrate either analytically or numerically.

So far, it does not seem to be possible to find a model simpler than NS, but able

to simulate macroscopic fluid dynamics. Both Newtonian and kinetic descriptions

have been showed to lead to very complex models: that is essentially due to the fact

they are full of microscopic details: one could wonder whether such detail is truly

necessary. What if one should think of targeting the macroscopic description, by

means of a fictitious microscopic one? Such a model should be totally unsuitable

to effectively represent the real microscopic behaviour of a fluid, but nevertheless, if

correctly implemented, could be suitable to represent the macroscopic one. It could

be sufficient just to ask the model to ensure isotropy, conservation of mass, momen-

tum and energy, respect the second law of thermodynamics (irreversibility), and to

preserve the rheological nature (Newtonian, non-Newtonian, Bingham) of the con-

sidered fluid. Such an approach could seem quite strange, but has its foundation in
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1. INTRODUCTION

the consideration, due to Gibbs, that the same microscopic state, say A, corresponds

to a set of microscopic configurations that it is not possible to observe, called the

dynamic image of A, which, in turn, implies an accurate microscopic description is

not necessary to obtain an accurate macroscopic one.

The Lattice Gas Cellular Automata (LGCA) can be derived from the above

idea. The phase-space is completely discretized in such a method: fictitious particles

stream and collide on a fixed lattice. These fictitious particles can stream with only

a small number of velocities, instead of the infinite ones characterizing their real

counterparts. Each velocity is associated with one direction in the lattice model

considered. The name of this method reveals the fact that it belongs to a class

of models, named Cellular Automata. These models appeared for the first time in

the early fifties, thanks to S. Ulam and J. Von Neumann. Their distinctive feature

is that all the state variables are discrete, and are updated by means of simple

evolutionary rules, usually local: thus, they are perfect candidates for massively

parallel computations. Nevertheless their simplicity, the Cellular Automata have

been demonstrated to be able of modelling very complex systems. The LGCA (and

LB) also belongs to the family of the so-called Discrete Velocity Models (DVM),

because of the limited number of velocities allowed. Because of its parallel nature,

the absence of round-off error, the ease in handling complicated geometries, a great

enthusiasm rapidly grew up about LGCA in the mid-eighties; unfortunately, it was

later frustrated by the emerging of a series of pitfalls that annihilated all its potential

advantages, as it will be shown later. The LB took off just as the cure for such

drawbacks, through a series of successive evolutions. After more than a decade,

although many issues still needs to be addressed, it can certainly be said that LB

has emerged as a valid alternative to classic CFD tools in many applications, and

there are problems, including pore scale modeling or multiphase flows with sharp

interfaces, where it could be defined as the best choice. Besides, its kinetic nature

makes it very promising for microfluidic applications, that are often characterized

by forces having their origin on a microscale like electrochemical interactions.
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1.1. OUTLINE OF THE THESIS

1.1 Outline of the thesis

Chapter 2 summarizes the continuum approach and the kinetic theory. In Chapter

3, the LB is presented, starting from its ancestor, the LGCA; the second part of the

chapter deals with the linearized LB with discretized Bathangar-Gross-Krook col-

lision operator (LBGK), currently the most used and simplest LB implementation;

finally the modelling of boundaries within the LB framework is discussed. Simple

two-dimensional channel flow and lid-driven cavity cases are adopted as validation.

The multiphase/multicomponent Shan-Chen (SC) LB is presented in its basic form

in Chapter 4, together with different test cases. In Chapter 5 the Multiple Relax-

ation Times LB (MRT-LB) is presented as solution that increases the stability of

LB at high Reynolds numbers and shows its potential by extending the lid-driven

cavity case. Chapter 6 is concerned with some improvements of the SC model that

have been proposed in the last years; the improved SC scheme is applied in Chapter

7 to the binary droplet collision case at different geometries. Finally, conclusions

and directions for future work are discussed in Chapter 8.
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Chapter 2

Two Different Approaches

In this chapter the two different ways of describing the state of a fluid, according to

continuum hypothesis and kinetic theory, will be presented. These two approaches

lead respectively to the Navier-Stokes and the Boltzmann equation. The Navier-

Stokes equation can be recovered from the Boltzmann equation via a perturbative

technique referred to as the Chapman-Enskog expansion. Before presenting the

details of these two approaches it is important to remark that the continuum hy-

pothesis cannot always be applied, while the kinetic description always holds: if,

and only if, the smallest macroscopic characteristic length scale, Lhydro (for instance

the diameter of a pipe) is much greater than the largest microscopic characteristic

length scale, that is the molecular mean free path, Lmfp, the continuum approxima-

tion is reasonable, because the measured values of intensive and extensive quantities

do not depend on microscopic fluctuations.

2.1 Navier-Stokes Equations

A control volume Ω, fixed, or translating with constant velocity, in an inertial ref-

erence frame is considered; having defined ∂Ω as its boundary, dS is an elementary

surface, part of the boundary, identified by the normal vector n pointing outside the

volume. The Navier Stokes equations represent how the three observable extensive

quantities specifying the fluid state (namely density, momentum and energy) vary

with time because of fluxes across ∂Ω and productions inside Ω. To derive these
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2.1. NAVIER-STOKES EQUATIONS

equations just the Gauss’ theorem for a vector field A, in a D dimensional space,

and the Reynolds transport theorem for a scalar field B, are necessary:

∫

Ω

∇ · AdΩ =

∫

∂Ω

A · ndS (2.1a)

d

dt

∫

Ω

BdΩ =

∫

∂Ω

(
∂B

∂t
+ ∇ · (Bu)

)
dS (2.1b)

in these equations, u(x, t) is the macroscopic velocity field. Unless otherwise

reported, greek letters like α, β, γ, δ are used to indicate Cartesian components of

vectorial fields like velocities or gradients, while ∂α = ∂
∂xα

. Here, and in what follows,

the Einstein convention for summation over repeated indexes in a D-dimensional

space has been applied1. If a fluid with no viscous dissipation is considered, the

conservation equations are named Euler equations and can be written, in their local

formulation, as:

∂tρ + ρ∂αuα = 0 (2.2a)

∂t(ρuα) = −∂βΠ
(0)
αβ α, β = 1 . . . D (2.2b)

ρ∂tE + ρuα∂αE = −∂α(puα) (2.2c)

where ρ is the density, E =
(
e + u2

2

)
is the total specific energy, composed by

internal and kinetic contributions, and Π
(0)
αβ , represents the inviscid momentum flux

tensor, defined by:

Π
(0)
αβ = pδαβ + ρuαuβ. (2.3)

This tensor represents the flux of α-th component across the elementary surface

having β as normal vector. Equations (2.2a)-(2.2c) are written in Eulerian form. A

Lagrangian representation is also possible.

Real fluids are, of course, viscid, and thus the flux tensor has to be modified to

take into account stresses due to shear and compression. Because of random molec-

ular motion, faster molecules migrating into regions occupied by slower molecules

1XαYα =
∑D

α=1
XαYα.
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give them part of their momentum. That diffusive momentum flux tends to accel-

erate slower fluid regions and to decelerate faster ones, and, for a Newtonian fluid,

is related to the the strain rate, by the following relation:

Π
(1)
αβ = −µ̃αβγδEγδ, (2.4)

where Π
(1)
αβ is the viscous stress tensor, and Eγδ is the strain rate tensor. The

4-th order tensor µ̃αβγδ relating the aforementioned quantities has to be an isotropic

tensor, because (2.4) must be invariant under any rotation or translation of the

reference frame. The most general form for such kind of tensors is:

µ̃αβγδ = Aδαβδγδ + Bδαγδβδ + Cδαδδβγ. (2.5)

More details concerning tensor isotropy can be found in Appendix A. The strain

rate tensor depends on the velocity gradient one, gαβ = ∂βuα, that can be decom-

posed into a symmetrical and an asymmetrical term, as follows:

gαβ = gS
αβ + gA

αβ =
1

2
(gαβ + gβα) +

1

2
(gαβ − gβα) . (2.6)

Only the symmetric part, gS
αβ, is responsible for deformation, while the asym-

metrical part gA
αβ accounts for rigid rotations. The final form of strain rate tensor

is, therefore:

Eαβ = 2gS
αβ = ∂αuβ + ∂βuα. (2.7)

Inserting equations (2.7) and (2.5) into (2.4) and defining respectively the shear

viscosity as µ = B +C and the bulk viscosity as ζ = 2A, the so-called viscous stress

tensor can be written as:

Π
(1)
αβ = −µ (∂αuβ + ∂βuα) − ζ∂γuγδαβ. (2.8)

It is possible now to express the total momentum flux tensor for a viscous fluid:

Παβ = Π
(0)
αβ + Π

(1)
αβ , (2.9)

and the momentum balance equation as:
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2.1. NAVIER-STOKES EQUATIONS

∂t(ρuα) = −∂βΠαβ. (2.10)

The substitution of equations (2.2b) and (2.8) into (2.10) allows to write the

momentum balance equation for a compressible fluid as follows:

∂tρuα + ∂βρuαuβ = −∂αp + µ (∂αuβ + ∂βuα) + ζ∂γuγδαβ. (2.11)

The conservation equation for total specific energy can be written as:

ρ∂tE + ρuα∂αE = −∂α(puα) + ∂α(k (∂αT )) + Φ, (2.12)

where the linear phenomenological relation that links thermal flux q to tem-

perature gradient ∇T by means of thermal conductivity k has been employed:

qα = −k∂αT ; the first term in the right-hand side represent the reversible work

due to compression, while Φ is the so-called dissipation function, measuring the rate

at which mechanical energy is irreversibly dissipated into thermal one:

Φ =

(
µ − ζ

2

D

)
∂2

αuα +
1

2
µ (∂αuβ + ∂βuα)2 . (2.13)

To close the system of (2.2a), (2.11) and (2.12) the particular kind of fluid has

to be specified, by means of an equations of state (EOS) : in the case of a perfect

gas, for instance, it is possible to write p = ρmR0T , where R0 is the universal

gas constant. In (2.11) and (2.12) the transport coefficients µ, ζ and k depend on

density, pressure and especially on temperature; if such dependence is negligible the

coefficients can be treated as constants, allowing to simplify the NS equations. If

the fluid can be considered as incompressiblethe system of equations can be written

as:

∂αuα = 0 (2.14a)

∂tuα + uβ∂βuα = −1

ρ
∂αp + ν∂2

αuα (2.14b)

ρ∂tE + ρuα∂αE = µ (∂αuβ + ∂βuα) ∂βuα + ∂αqα, (2.14c)

where ν = µ/ρ is the kinematic shear viscosity. For an incompressible fluid,

taking the divergence of the (2.14b), leads to the following elliptic Poisson equation,
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which can be used to eliminate the pressure from the set of equations:

∂2
αp = −ρ∂βuα∂αuβ. (2.15)

Navier-Stokes equations have almost all the symmetries of Newtonian mechanics,

thus they possess invariance under continuous spacial-temporal translations, arbi-

trary three-dimensional rotations (isotropy), and Galilean transformations. Because

of viscous dissipation, they do not possess invariance under time reversions. Pre-

viously it has been showed that the isotropy of NS lays in the form of the viscous

momentum flux tensor (see (2.7)). The requisite of Galilean invariance, instead,

determines the form of the nonlinear convective term: the factor multiplying the

momentum convective flux has to equal one [1].

2.2 Kinetic Theory

According to Kinetic theory, the fluid is seen as discrete, composed by a number N

of molecules, each moving according to Newtonian mechanics laws. Since the num-

ber of degrees of freedom for such a system is in the order of Avogadro’s constant

NA it makes no sense trying to determine the trajectory of any individual molecule.

Kinetic theory is not interested in describing the evolution of single molecules, but

the collective behaviour of the system by means of statistics. The idea is to consider

a collection of identical K systems having N particles, let them start from the same

initial condition and observe the outcomes, in this case the molecular configura-

tions, of every try. Then it is possible to define a N-particles probability distribution

function (N-PDF) as fN(x1,x2, · · · ,xN , ξ1, ξ2, · · · , ξN , t) as indicating the relative

number of systems that, at time t, exhibits a configuration in which particle 1 oc-

cupies position x1 with microscopic velocity ξ1, particle 2 occupies position x2 with

microscopic velocity ξ2, and so on. The fN is said to contain the full statistics of the

whole system [12]. For such function, applying the Liouville theorem, it is possible

to write a transport equation in the form:

Df

Dt
= ∂tf + ξ · ∇f = Ω(f, f), (2.16)

where Ω(f, f) is a collision operator. Said M a generic integer in the interval
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[1, N ], it is possible to define an M-particles probability distribution function (M-

PDF) fM , which is related to the fN by the following relation:

fM (x1, · · · ,xM , ξ1, · · · , ξM , t) =

=

∫
fN(x1, · · · ,xN , ξ1, · · · , ξN , t)dxM+1 · · · dxNdξM+1 · · · , dξN (2.17)

Definition (2.17) allows to write a hierarchy of equations for fN (Liouville equa-

tion, fN−1 . . . f1 (the Boltzmann equation). The first equation of this hierarchy,

which is referred to as BBGKY after Bogoliuibov, Born, Green, Kirkwood and

Yvon derived it independently (for more details, see [13]) is given by:

∂fN

∂t
+

N∑

i

[
ẋi ·

∂fN

∂xi

+ ṗi ·
∂fN

∂pi

]
= 0. (2.18)

In equation (2.19) the following substitution has been performed:

ṗi = −
N∑

j=1,j 6=i

∂Vij

∂xi

, (2.19)

where Vij = Vij||xi − xj|| is the pair-wise intermolecular potential. The whole

hierarchy can be expressed by a general transport equation for the generic fM :

∂fM

∂t
+

M∑

i

ẋi·
∂fM

∂xi

−
M∑

i,j=1,i6=j

∂Vij

∂xi

·∂fM

∂pi

= (N−M)

∫
dxM+1dξM+1

∂ViM+1

∂ri

·
(

∂fM+1

∂pi

− ∂fM+1

∂pM+1

)
.

(2.20)

Equation (2.20) corresponds to a hierarchy of integral-differential equations called

the BBGKY hierarchy, after . Going down on the hierarchy it is possible to write the

transport equation for a single-particle PDF f , the Boltzmann equation. This equa-

tion, which Ludwig Boltzmann derived in 1872, is particularly significant, because

macroscopic quantities can be recovered as momenta of a single-particle PDF:

• Density
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ρ(x, t) = m

∫
f(x, ξ, t)dv (2.21)

• Momentum

ρ(x, t)u(x, t) = m

∫
ξf(x, ξ, t)dξ (2.22)

• Temperature

T (x, t) =
m

3nkB

∫
(ξ − u) · (ξ − u) f(x, ξ, t)dξ. (2.23)

2.2.1 The Boltzmann Equation and the H-Theorem

The Boltzmann equation is concerned with the one-particle distribution function f .

This distribution function completely describes the state of the particle, and the

only two causes for its variation are the application of an external force field and

the collisions,

∂f

∂t
+ ξ · ∂f

∂x
+ F · ∂f

∂ξ
= Ω(f, f), (2.24)

in which the first two terms represents the Lagrangian derivative of f , with the

third term representing the effect of an external force term F inducing an acceleration

a; on the right-hand side of (2.24) appears the Collision operator. More details

about its derivation can be found, for instance, in [13]. Here it is worth recalling

that the assumptions upon which that equation is based. Molecules are considered as

hard spheres. The collision term can be initially expressed by means of two-particle

distribution function f2(x1,x2, ξ1, ξ2, t), expressing the probability of finding, at time

t, two molecules having relative distance and velocities suitable to collide. Given N

monoatomic molecules having diameter dp the Boltzmann-Grad limit prescribes that

N → ∞ and dp → 0, so that the quantity Nd2
p tends to a finite value. The density

is low, making acceptable the hypothesis of two-body collisions. Most importantly,

the chaos assumption (Stossanslauz ), means the state of the two molecules going to

collide is not correlated. That last assumption implies that the two events “particle

1 in position x1 with velocity ξ1” and “particle 2 in position x2 with velocity ξ2”,
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are statistically independent : thus, f2 can be expressed as product of single-particle

distribution functions f1:

f2(x1,x2, ξ1, ξ2, t) = f1(x1, ξ1, t)f1(x2, ξ2, t). (2.25)

The collision is considered as a totally elastic process. Two molecules are obvi-

ously correlated after having experienced a collision, but for an extremely limited

time. The resulting final form of the collision operator is:

Ω(f, f) =

∫

R3

∫

S+

| V · n | [f(x1, ξ
′
1
)f(x1, ξ

′
2
) − f(x1, ξ1)f(x1, ξ2)]dndξ2, (2.26)

having defined ξ1 and ξ2 respectively as the post-collisional velocities of two

particles, and corresponding pre-collisional ones by primes, while V = ξ1 − ξ2. The

integration is taken over the whole three dimensional vectorial space of velocities

and over the hemisphere S+ including all the directions so that the particles are

moving away from each other after the collision. One could be interested in searching

functions φ so that the following equality holds:

∫

R3

φ(ξ)Ω(f, f)dξ = 0. (2.27)

It can be demonstrated that such a φ (called collisional invariant) can only have

the following form:

φ(ξ) = a + b · ξ + c| ξ |2. (2.28)

Besides, the following Boltzmann inequality holds:

∫
Ω(f, f) ln f dξ ≤ 0. (2.29)

In (2.29) the equal sign applies if ln f is a collision invariant. In that last case,

it is possible to write:

f = exp(a + b · ξ + c| ξ |2) (2.30)
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which is known as a Maxwellian distribution, and represents an equilibrium status

for density ρ0 and temperature T0. Probably the following form is more familiar:

f eq =
ρ

m

(
m

2πkBT

)3/2

exp

(−m(ξ − u) · (ξ − u)

2kBT

)
(2.31)

where kB is the Boltzmann constant and m is the molecular mass. It is important

to note that f eq depends on the particle position x only implicitly via the local values

of macroscopic quantities. Defining the so-called H-function:

H =

∫
f ln f dξ, (2.32)

it is possible to demonstrate by using (2.27) that H is a monotonically decreas-

ing function of time, dH(t)/dt ≤ 0. This is the Boltzmann’s local H-Theorem. The

H-function is bounded from below, and this bound corresponds to the value related

to an equilibrium state, when f is a Maxwellian distribution. A global H-Theorem,

for the whole system, can be derived as well. This is analog of the second law of

thermodynamics, if H is identified with the negative of specific entropy divided by

the Boltzmann’s constant. Interested readers can refer to [12] to find out demonstra-

tions of this theorem. Once solved the (2.24), macroscopic hydrodynamics equations

can be recovered, together with the transport coefficients expressed as functions of

microscopic quantities. The main problem is represented by the complex form of

Ω(f, f) (2.26). In order to tackle this issue simplified forms of the collision oper-

ator have been proposed in the past, justified by the consideration that the large

amount of details in the two-body interaction contained into (2.26) is not likely to

have a significant influence on observable flow quantities. Of course there are two

constraints the generic simplified collision operator J(f, f) must satisfy:

• Conservation of the collisional invariants of Ω(f, f).

• Existance of an H-theorem.

Both these constraints are fulfilled by the most popular of these simplified op-

erators, which was proposed by Bhatnagar, Gross and Krook [14] and is there-

fore referred to as the BGK operator. The idea behind this formulation is that

each collision modified f by an amount proportional to its departure from the local

Maxwellian distribution define by equation (2.31):
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2.2.2. RECOVERING MACROSCOPIC HYDRODYNAMICS

J(f, f) = −1

λ

[
f − f (0)

]
(2.33)

where λ is a characteristic collision time. The final form of the Boltzmann

equation with BGK collision operator is therefore given by:

∂f

∂t
+ ξ · ∂f

∂x
+ F · ∂f

∂ξ
= −1

λ

[
f − f (0)

]
. (2.34)

2.2.2 Recovering Macroscopic Hydrodynamics

The Chapman-Enskog expansion is a way to solve the Boltzmann equation by means

of an asymptotic perturbation technique. This section is intended to give a brief

summary of the procedure; the whole expansion can be found for instance in [13].

For the sake of simplicity the external force term is not considere here. Besides

the BGK formulation for the collision operator is adopted. Equation (2.34) can be

expressed in non-dimensional form as [1]:

∂tf + ξ · ∇f = − 1

ελ

[
f − f (0)

]
, ε = Kn =

Lmfp

Lhydro
. (2.35)

In (2.35) the perturbation parameter, ε, corresponds to the Knudsen number Kn

, which represents the ratio between the characteristic lenght scale of the macroscopic

flow that is being considered Lhydro and the mean molecular free path Lmfp . The

normal solution of (2.35) depends on local microscopic quantities according to:

f(x, ξ, t) = f(x, ξ; ρ,u, T ). (2.36)

It is possible to write the distribution functions expanding them in terms of ε:

f =
∞∑

n=0

εnf (n), (2.37)
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2.2.2. RECOVERING MACROSCOPIC HYDRODYNAMICS

where the following constraints hold:

∫
dξf (0)




1

ξ

(ξ − u)2


 = ρ




1

u

Dθ


 (2.38a)

∫
dξf (1)




1

ξ

(ξ − u)2


 = 0, (2.38b)

meaning that only the first order term contribute to determine the macroscopic

quantities, mass, momentum and energy. The higher order terms contribute to the

gradients of these quantities. The collision term can be expanded in a similar way:

Ω(f, f∗) =
∞∑

n=0

εnΩ(n), Ω(n) =
∑

k+l=n

Ω(f (k), f (l)
∗ ). (2.39)

The normal solution of Boltzmann equation can be obtained by solving the equa-

tions successively derived from (2.35) for the different terms of the expansion (2.37).

The 0-th order solution is found out to correspond to the Maxwellian equilibrium

distribution (2.31). The solution for the first order term f (1) is expressed by:

f (1) = −λ(∂tf
(0) + ξα∂αf (0)). (2.40)

The macroscopic conservation equations can be finally obtained as moments of

the Boltzmann equation with the normal solutions previously obtained:

∫
dξ(∂tf + ξ · ∇f)




1

ξ
1
2
(ξ − u)2


 = 0. (2.41)

Inserting in (2.41) only the 0-th order term of the expansion (2.37) leads to

the Euler equations, while adding the first-order one leads to the Navier-Stokes

equations.
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Chapter 3

The Lattice Boltzmann Method

This chapter is dedicated to the presentation of the Lattice Boltzmann method

(LB). Historically, the LB originated to cure the pitfalls of the Lattice Gas Cellu-

lar Automata (LGCA). Therefore the chapter will start with a description of this

last method, underlying its merits and limitations: every of these drawbacks was

addressed by successive improvements of LB, so the path leading from LGCA to

the most commonly used LB, the single-relaxation time LB, will be described. The

following section are devoted to introduce the different lattice models, to discuss

the implementation and the accuracy of different kinds of boundary conditions, to

illustrate how to scale back from lattice quantities to the corresponding physical

ones. The last part of the chapter illustrates the performance of this basic LB

implementation through some classical test cases.

3.1 The Lattice Gas and the birth of LB

Let us consider a discrete phase space in D dimensions defined by a regular lattice

L univocally described by a set of b velocity vectors ei|{0, 1, . . . , b − 1} connect-

ing each lattice site to its neighbours. In two-dimensions an example of such a

structure is given by the lattice possessing hexagonal symmetry (b = 6). On that

lattice, termed D2Q6 model (meaning two-dimensional, six velocity model) or FHP-

I model (after Frisch, Hasslacher and Pomeau, who first employed that model [15]),

fictitious particles having identical mass m = 1 move according to the following set
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3.1. THE LATTICE GAS AND THE BIRTH OF LB

of prescriptions:

• The particles can move only in the six prescribed directions defining the lattice,

with velocity given by the corresponding ei.

• In a single time step all particles jump on the next neighbour node according

to their speed. Either longer or shorter jumps are prohibited.

• There cannot be two particles at the same time on the same node moving

toward the same node, therefore, at every time step, the single node can host

a maximum of six particles having the six different speed allowed by the lattice

(exclusion principle).

Figure 3.1: Lattice configuration for FHP-I model at two time steps: each arrow represent a

particle momentum. The black arrows are related to time t, while the hollow ones to time t + 1,

after propagation and/or collision (from [1]).

Once fixed such prescriptions, the state of the system at any single lattice node

can be completely specified by a sequence of zeros or ones, the values assumed

by a set of six occupation functions, ni(x, t), one for every lattice link. The i-th

occupation function will be one at time t if the node hosts a particle traveling along

the i-th link, and 0 otherwise: six bits are thus required to express the local state,

while, with N the total number of lattice sites, expressing the global state of the

18



3.1. THE LATTICE GAS AND THE BIRTH OF LB

lattice requires 6N bits. This system is totally discrete, and belongs to the family

of Cellular Automata. The evolutionary rules consist of two steps: propagation

and collision, to mimic what the particles of a real fluid experience. During the

propagation step, particles are synchronized in jumping to the next neighboring

lattice according to their speed. The propagation operator, S, can be considered as

a shift. Once reached their destination, particles redistribute their momentum along

the different directions characterizing the lattice in the collision step. The collision

operator Ωi[n] is local, and, whatever is its form, must conserve the local mass and

momentum of the particles hosted on the site. To do that, considering the boolean

nature of occupation functions, it is clear that this operator can just be equal to

[−1, 0, 1] [16]. Besides, the collision operator must satisfy the so-called semi-detailed

balance, which simply means that one post-collisional state can correspond to a set

of different pre-collisional states. This property introduces irreversibility into lattice

gas dynamics. The aforementioned processes can be condensed in one equation only,

the Lattice Gas Cellular Automata (LGCA) equation:

ni (x + ei∆t, t + ∆t) − ni (x, t) = Ωi[n], i = 0, . . . , 5 (3.1)

where n = (n0(x, t), . . . , n5(x, t))T is the vector of the occupation functions.

In the following the index i will be referred to the different directions of L and

the explicit reference to the extremes 0 . . . b − 1 will be omitted. The (3.1) can

be considered as the lattice equivalent of the Boltzmann equation, (2.32), without

forcing. It is clear that such an extremely simplified model fails in conveniently

representing the complex dynamics of a real fluid at microscopic level: the phase-

space is completely discretized meaning while real fluid particles can move freely

in every direction, here they are forced to move on a fixed set of directions,and

with a fixed set of speeds! Nevertheless our target is to obtain realistic macroscopic

hydrodynamics and this representation can be adopted for that purpose, provided

that L has enough geometric symmetries to allow the building of isotropic 4-th order

tensors, as those present in NS (see (2.8)). This is not a trivial aspect, because not

all the lattice models one may think of satisfy this requirement. The best example

is the cross-shaped four speed termed HPP (after Hardy, Pazzis and Pomeau who

defined it) for two-dimensional simulations: this was the first lattice-gas model ever

developed but, as it is demonstrated in Appendix A, it failed in recovering the NS
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3.1. THE LATTICE GAS AND THE BIRTH OF LB

equations. In the limit of low Mach numbers, a Chapman-Enskog expansion, similar

to that presented in Chapter 2, allows to recover the NS equations. The LGCA

attracted a lot of interest from the scientific community in the eighties, because of

the following merits:

• The state of every single node can be described by just six bits, therefore the

memory savings are consistent.

• The method works on boolean and integer quantities, therefore there is no

round-off error and there is unconditional stability.

• The method is intrinsically parallel.

• Ease in dealing with complex geometries, thanks to the bounce-back boundary

condition (described in a successive section).

Unfortunately, at the same time LGCA possesses severe drawbacks:

• High statistical noise, due to the Boolean nature of the occupation functions,

forcing to perform averages on a big number of sites to have smooth hydrody-

namic fields. That makes vain the memory savings previously mentioned.

• The collision operator is very complex, and its degree of complexity increases

exponentially as more physics is added to the model (think of multiphase

flows), or simply when three-dimensional problems are faced.

• The macroscopic equations obtained are not Galilean-invariant, and the pres-

sure depends unphysically on velocity.

• The number of possible collisions allowed by the lattice is too small (see Figure

3.2), making impossible to reach high Reynolds numbers in the simulations

(less collisions mean higher mean free path, which, in turns, means higher

viscosity).

Despite many efforts, these defects could not be completely cured, until, in 1989

Mc Namara and Zanetti [17] solved the first of them, the high statistical noise:

substituting the occupation functions with their averages, fi , and adopting Boltz-

mann’s chaos assumption (no particles correlation before collision) they wrote the

real-value counterpart of (3.1), the first Lattice-Boltzmann equation:
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3.2. FROM LCGA TO LBGK

fi (x + ei∆t, t + ∆t) − fi (x, t) = Ωi[f ] (3.2)

where this time f = (f0(x, t), . . . , f5(x, t)) is the vector of the averages relatedto

the considered lattice node. These functions can be interpreted as the probability

distribution functions (PDF) of the different particle populations moving on the

lattice.

3.2 From LCGA to LBGK

The first obstacle was at the end overcome, but all the others still remained. The

collision operator inherits all the properties of mass, momentum and energy con-

servation from its LGCA counterpart, including the semi-detailed balance. Having

defined a local discrete H-function as h =
∑

i fi(x, t) log(fi(x, t)), it can be demon-

strated [18] that this lst property is a sufficient condition to satisfy the local (dis-

crete) H-Theorem. As seen in the previous Chapter, this allows us to expand the

distribution functions around the Maxwellian distribution. This consideration was

used by Higuera and Jimenez [19], to simplify the collision operator: their idea was

to use a scattering matrix Sij, driving two-particle collisions only:

Ωi =
∑

j

Sij[fj − f eq
j ]. (3.3)

This simpler collision operator could be used in three-dimensional simulations.

To address the final two pitfalls, it was necessary to take the idea of the lattice-

gas to its extreme consequences: since that the only goal is reproducing realistic

macroscopic hydrodynamics with an extremely simplified, and therefore fictitious,

microscopic model, why one should depend on the ”real” collisions of a model so far

from being realistic? Higuera, Succi and Benzi [20] developed a new model by tuning

the scattering matrix just on macroscopic hydrodynamics, getting rid of the limited

collisionality of the underlying lattice. They achieved that goal relating the nonzero

eigenvalues of Sij to the transport coefficients (the kinematic viscosity, for instance,

is directly controlled by the leading nonzero eigenvalue). The final step consisted

in a further simplification, replacing the full scattering matrix with a diagonal form

Sij = −ωδij in which ω represents a relaxation frequency and its inverse τ a relaxation
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3.2. FROM LCGA TO LBGK

Figure 3.2: Collisions allowed by FHP-I model (From [1]). All the possible collision configura-
tions have been reported, except for those leaving the state on the node unchanged and for those
equivalent because of the lattice symmetry. The total mass and momentum have to be conserved by
the collision operator. Two- and four-particles collisions are undeterministic, while three-particle
ones are deterministic.
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3.2. FROM LCGA TO LBGK

time. This formulation is therefore referred to as Single Relaxation Time LB (SRT).

The final collision operator obtained is the lattice version of the already mentioned

model proposed by Bathnagar, Gross and Krook (BGK), and the resulting Lattice

Boltzmann is termed LBGK model:

fi (x + ei∆t, t + ∆t) − fi (x, t) = −1

τ
(fi (x, t) − f eq

i (x, t)) . (3.4)

In (3.4), ∆t is the time step, expressed in physical units; ∆x = |ei|∆t is the

distance between two consecutive lattice sites. The most general form of the equi-

librium PDF, f eq
i :

f eq
i = Ai + Bieiαuα + Ciu

2 + Dieiαeiβuαuβ + O(u3). (3.5)

The constants Ai, Bi, Ci and Di appearing in (3.5) are determined in order

to recover the correct macroscopic fluid dynamics at inviscid level, that means the

Euler equations. The constraints that the f eq
i has to fulfill are:

ρ =
∑

i

f eq
i (3.6a)

ρuα =
∑

i

f eq
i eiα (3.6b)

Π
(0)
αβ =

∑

i

f eq
i eiαeiβ = pδαβ + ρuαuβ. (3.6c)

As stated in kinetic theory the viscous part of the stress tensor comes from the

non-equilibrium part of the fi:

Π
(1)
αβ =

∑

i

fneq
i eiαeiβ =

∑

i

(fi − f eq
i )eiαeiβ. (3.7)

What is obtained is the following form [21]:

f eq
i (ρ,u) = ρwi

(
1 +

1

c2
s

eiαuα +
1

2c4
s

ēiαēiβuαuβ

)
. (3.8)

where cs =
√

RT is termed the lattice speed of sound and is a constant depending

on the lattice model, and the coefficients wi are weighting factors that allow to build
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3.2. FROM LCGA TO LBGK

isotropic tensors even on irregular lattice models like those described in the next

section. The tensors Qiαβ = ēiαēiβ are the traceless part of eiαeiβ and are therefore

defined as Qiαβ = eiαeiβ − c2
sδαβ.

After having described the whole process that led to the LB from the LGCA

method it is important to emphasize that the LB can be also derived directly from

the Boltzmann equation, via the following steps [22]:

• Integration of equation (3.34) over a time step ∆t.

• Low Mach number expansion of the equilibrium Maxwellian distribution func-

tion (2.31):

f eq ≈
ρ exp

(
−ξ2

2RT

)

(2πRT )D/2
×

[
1 +

(ξ · u)

RT
+

(ξ · u)2

2(RT )2
− u2

2RT

]
+ O(u3). (3.9)

• Discretizationof the velocity space ξ in order to obtain the minimum necessary

{ei|i = 0 . . . b − 1} required to recover the NS equations.

Whatever is the approach adopted, the Navier-Stokes equations are recovered

by means of a multi-scale expansion. The details of this process can be found for

instance in [1]; here only the basic ideas are reported. The first step consists in

introducing one spatial and two time scales as follows:

∂t = ε∂t1 + ε2∂t2 (3.10a)

∂α = ε∂α1
. (3.10b)

In this way physical phenomena occurring at different time scales can be sepa-

rately examined emphasizing their separated contribution to the equations of mo-

tions. The definitions (3.10a) and (3.10b) The generic distribution function is as well

expressed as power series respect to the small parameter ε ≪ 1: fi =
∑∞

k=0 εkfk
i .

The first two terms are sufficient to recover the NS equation, so the power series is

truncated as follows:

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + O(ε3) = f eq

i + fneq
i + O(ε2), (3.11)
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The second step consists in Taylor-expanding up to second order terms the left

hand side of (3.4). Through some algebra the incompressible NS are obtained with

a O(Ma3) term, therefore the LB is said to be a weakly compressible method. Ther-

modynamic pressure and kinematic viscosity are written as:

p = c2
sρ. (3.12)

and

ν =
2τ − 1

6

∆x2

∆t
=

(
τ − 1

2

)
c2
s∆t (3.13)

Pressure is therefore obtained by a state equation, rather than by solving an

elliptic equation like (2.15), while (3.13) prescribes that τ > 0.5. Some comments

concerning the numerical implementation of LB are in order now. First of all it

is important to note that the Courant-Fredrick-Levy number (CFL) is equal to 1,

making LB quite inefficient for solving steady state problems. From (3.13) it is clear

that the spatial and temporal discretization are related to the kinematic viscosity

of the fluid to be simulated. Since cs is determined by the chosen lattice structure

L, the temperature is frozen and the presented implementation should be referred

to as athermal LB [23]. From kinetic theory the actual definition of sound speed is

cs =
√

γRT where γ = cp/cv = 1 + (2/D). In the presented formulation the ratio

of specific heat is therefore 1, meaning the fluid molecules that are being modelled

have infinite degrees of freedom, which of course does not make any physical sense.

The lattice speed of sound is therefore a numerical artifact of the LB formulation,

a pseudo-compressibility parameter that allows the flow to relax to the appropiate

incompressible viscous solution1. If the fluid to be simulated has to retain its physical

1The direct counterpart of LB among classical CFD schemes is the Chorin method of artificial
compressibility [24], in which the isothermal NS equations (2.14a)-(2.14c) are subsituted by:

∂tρ + ∂αρ0uα = 0 (3.14a)

∂tuα + uβ∂βuα = − 1

ρ0

∂αP + ν∂2

αuα + gα (3.14b)

P =
ρ

δ
(3.14c)

where ρ0 is the reference density of the incompressible fluid, ρ is the artificial density, δ = 1/
√

cs

is the artificial compressibilty based on the artificial sound speed cs.
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speed of sound the coupling among space and time scales imposed by (3.13) can

make LB just not practical at all [25]: taking water as example (cs ≈ 1500m/s,

ν ≈ 10−7m2/s), a LB simulation with τ = 1 would require ∆x = O(10−8m) and

∆t = O(10−11s)! Concerning the stability, from (3.13) it is clear that to reach high

Reynolds number with a fixed space and time discretization one needs to reduce

the relaxation time. Unfortunately the LBGK formulation become unstable when

τ ≈ 0.5 [26]. Alternatively one can increase the number of nodes reducing the lattice

space, but that makes the simulation computationally expensive. A way to tackle

this last issue will be described in the next chapter.

Thermal LBGK has so far proved to be less robust than its athermal couterpart;

energy dynamics is accounted by increasing the number of speeds in order to match

an increased number of kinetic moments, but that makes the schemes prone to

instabilities because of the occurrance of high-order dispersion relations [23]; besides

the Prandtl number Pr is limited to 0.5 because of the SRT formulation [27].

3.3 The Entropic lattice Boltzmann formulation

As stated in the previous section, the BGK formulation is prone to instabilities

when dealing with low-viscosity flows. Instability is related to the occurrance of

negative distribution functions. A LB formulation which is supported by a “lattice”

equivalent of Boltzmann H-theorem (see chapter 2) should possess a higher stabil-

ity. Unfortunately none of the formulations adopting an f eq
i given by a polynomial

velocity-dependent expression like (3.5) can obey an H-theorem [28]. It is never-

theless possible to build alternative formulations of the equilibrium distributions

fulfilling this requirement. That is the idea on which the Entropic lattice Boltzmann

schemes (ELB) [29, 30, 31] are based. The first element characterizing these schemes

is the definition of a convex discrete H-function, that can be obtained evaluating

the Boltzmann H-function (2.32) via the Gauss-Hermite quadrature [31]:

H =
b−1∑

i=0

fi ln

(
fi

wi

)
. (3.15)

The local equilibrium distribution has to minimize the H-function, as well as to

fulfill the constraints (3.6a)-(3.6c). The most general expression in D-dimensional
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space is given by [29]:

fM
i = ρwi

D∏

α=1

(
2 −

√
1 − u′2

α

) (
2√
3
u′

α +
√

1 − u′2
α

1 − u′
α/
√

3

)eiα/
√

3cs

, (3.16)

where the M reminds that equation (3.16) is analogous to the ordinary Maxwellian

distribution given by equation (2.31). The ELB equation is given by:

fi (x + ei∆t, t + ∆t) − fi (x, t) = −α⋆β
(
fi (x, t) − fM

i (x, t)
)
. (3.17)

Equation (3.17) is characterized by a variable collisional frequency θ = α⋆β; β is

related to the kinematic viscotiy as follows:

β =
∆t

2τ + ∆t
, (3.18)

while α⋆ is derived by solving the following nonlinear equation:

H(f) = H(f + α(f − f eq)). (3.19)

Further details about the resolution of equation (3.19) can be found for instance

in [31]. This formulation achieved unconditional numerical stability. Another alter-

native formulation to tackle the stability issue, the Multiple-Relaxation-Times LB

(MRT-LB), will be presented in chapter 5.

3.4 Lattice Models

The FHP-I model was the first L which it was possible to build isotropic fourth-

order tensors. In the successive years, other models were developed, like the FHP-

II, having a rest particle permanently laying on the site. This last feature was

introduced in LGCA to increase the number of collisions allowed by the lattice in

order to reach higher Re numbers, and was kept in LB too. A lattice model is

uniquely identified by the number of dimensions D and by the number of speeds Q:

therefore the FHP-I is referred to as D2Q6 model, while the FHP-II is the D2Q7 one.

Currently, the most employed model for two dimensional simulations is the D2Q9,
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while for three dimensional ones, models with 15, 19 and 27 velocities are available.

All these last models are termed non-regular lattices or multi-speed lattices (MSL)

and , as demonstrated in Appendix A, it was necessary to introduce weighting factors

wi in order to preserve isotropy of the lattice tensors up to fourth order. Each lattice

structure has at least three types of wi, corresponding respectively to the particle

at rest, e0, and to “slow” and “fast” speeds. D3Q27 has got a further class of

vectors, indicated as “fastest” speeds. All these coefficients are reported in Table

3.1, together with the corresponding value of cs, while the vectors defining each

lattice model are listed below; finally, Figure 3.3 illustrates all these L structures.

Model Rest Slow Fast Fastest c2
s

D2Q7 1/2 1/4 NE NE 1/4

D2Q9 4/9 1/9 1/36 NE 1/3

D3Q15 2/9 1/9 1/72 NE 1/3

D3Q19 1/3 1/18 1/36 NE 1/3

D3Q27 8/27 2/27 1/54 1/216 1/3

Table 3.1: Parameters characterizing different lattice models. NE means not existing: infact

only D3Q27 model has three kinds of speeds, while D2Q7 has just two kinds of speeds.

eD2Q7
i =





(0, 0), i = 0

(±1, 0), i = 1 . . . 2

(± cos
π

3
,± sin

π

3
), i = 3 . . . 6

(3.20)

eD2Q9
i =





(0, 0), i = 0,

(±1, 0), (0,±1), i = 1 . . . 4

(±1,±1), i = 5 . . . 8

(3.21)
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Figure 3.3: Different lattice models for two- and three-dimensional simulations: the zero

speed vector is indicated by a circle, while the slow, fast and fastest speed vectors are respectively

represented by black, blue and red arrows.
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eD3Q15
i =





(0, 0), i = 0,

(±1, 0), (0,±1), i = 1 . . . 4

(±1,±1), i = 5 . . . 8

(3.22)

eD3Q19
i =





(0, 0, 0), i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 . . . 6

(±1,±1, 0), (0,±1,±1), (±1, 0,±1), i = 7 . . . 18

(3.23)

eD3Q27
i =





(0, 0, 0), i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1 . . . 6

(±1,±1, 0), (0,±1,±1), (±1, 0,±1), i = 7 . . . 18

(±1,±1,±1), i = 19 . . . 26

(3.24)

3.5 Inserting a body force

In many applications the flow is driven or influenced by a body force F. Many

different ways to incorporate the effects of body forces into the LB framework have

been proposed: this section is dedicated to a brief description of the most common

methods. It is worth to underline that all of them led to the corresponding Navier-

Stokes equation via the Chapman-Enskog expansion.

3.5.1 Calculating the equilibrium distribution via an altered

velocity (Method I)

This method consists in modifying the equilibrium speed appearing in (3.8) to take

into account the momentum change occurring at each time step because of the force

F. We have f eq
i = f eq

i (ueq, t) where:
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EQUATION (METHOD II)

ueq = u +
τ

ρ
F. (3.25)

In (3.25) u =
∑

i fiei/ρ. The macroscopic fluid momentum j is the average of

the momentum before and after the collision:

j = ρu +
1

2
F (3.26)

This method is first-order accurate in ∆u, and it is part of the original formula-

tion of the so-called Shan-Chen model for multiphase flows, which will be described

in Chapter 4.

3.5.2 Adding an addictional term to the Boltzmann equa-

tion (Method II)

The Boltzmann equation incorporating the effect of a body force is given by (2.24).

It is very difficult to evaluate the term ∂ξf . Nevertheless, because of the H-theorem

it is reasonable to consider the distribution function to be always quite close to its

equilibrium value, making it possible to write:

∂ξf ≈ ∂ξf
eq = −ξ − u

RT
f eq (3.27)

This idea can be applied also into a LB scheme: the collision operator of (3.4) is

modified by adding a new term related to the body force, according to the expression:

Ωi = −1

τ
(fi (x, t) − f eq

i (x, t)) +
(ei − u) · F

c2
s

f eq
i . (3.28)

The equilibrium distribution function is left unchanged, and the macroscopic mo-

mentum is obtained by (3.20). This method is applied for instance in the multiphase

model proposed in [32].

3.5.3 Exact Difference Method (EDM)

Both methods I and II lead to NS equations characterized by an unphysical term

given by ∂β(nτ−1/2) (uαFβ + uβFα) [33]. This method was proposed in [34] and [35].
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3.6. BOUNDARY CONDITIONS

In order to introduce it, let us consider a uniform flow with density ρ and velocity

u. In this case the distribution function is the Maxwell-Boltzmann one (2.39). If

a short uniform pulse force F along the flow direction is applied, the distribution

functions persist in the equilibrium form but at a shifted velocity u + ∆u. For the

LB that means fi(x, t + ∆t) = f eq
i (u + ∆u) if initially the relation fi(x, t) = f eq

i (u)

holds. In the EDM the body force effect is accounted by adding a new term to the

collision operator like in Method II:

fi (x + ei∆t, t + ∆t) − fi (x, t) = −1

τ
(fi (x, t) − f eq

i (u, t)) + ∆f eq
i , (3.29)

where

∆f eq
i = f eq

i (u + ∆u, t) − f eq
i (u, t) with ∆u =

F∆t

ρ
. (3.30)

With this new method it is possible to achieve fi(x, t + ∆t) = f eq
i (u + ∆u) if

initially fi(x, t) = f eq
i (u). The distribution function are therefore just shifted in the

velocity space, but remain in equilibrium. The velocity change is not dependant on

the τ like it happens in Methods I and II. The action of the body force is computed

exactly, although the LB is a discrete method, therefore this method is called the

Exact Difference Method (EDM). Moreover, the EDM is fully consistant with the

most general formulation of the Boltzmann equation in presence of a body force

(2.24), it is easy to implement and determines a modest increment of computational

load, because it requires only a further calculation of f eq
i . Besides, it can be coupled

to whatever form of the collision operator Ω, as it will be demonstrated in Chapter

6. Finally the Chapman-Enskog expansion of equation (3.29) shows that no any

addictional incorrect terms related to F appear in the NS equations [34].

3.6 Boundary Conditions

In this section some of the different kinds of boundary conditions (BCs) developed

for LB are reviewed. As for every CFD method, even in LB a fundamental role in

determining the accuracy is played by the BCs, which, of course, have to be expressed
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3.6. BOUNDARY CONDITIONS

in terms of the probability distribution functions. Considering a computational

domain enclosed by a boundary ∂Ω and a lattice node x which in the most general

case has one or more of its links cut by ∂Ω. After the streaming step some of the

fi(x, t) are unknown. The formulation of the BCs in the framework of LB consists in

the determination of these unknown distribution functions incoming from a fictitious

layer of points outside the computatinal domain, f in
i , in terms of the known ones

fj [16] in order to recover the macroscopic quantities or the macroscopic gradients

prescribed at that boundary: .

f in
i (x) =

∑

y

∑

j

B(x − y)fout
j (x). (3.31)

Figure 3.4: General framework for Boundary conditions.

In (3.31) B is the BC operator, depending on x but even of the neighbouring

nodes y. Figure 3.4 explains the point: for the sake of simplicity, a two-dimensional

flow dealt with the D2Q9 model is considered; besides the node x lays exactly on

a straight boundary. After the propagation phase in x there are 6 known distri-

bution functions, namely f0, f1, f3, f4, f7 and f8, while f2, f5 and f6 have to be

determined. It is important to underline that some boundary conditions schemes

like those presented in [36] and [37] are based on the substitution of the whole set

of distribution functions. In these schemes the vision of a fictitious layer outside

the computational domain is abandoned. The boundary condition scheme should

account for the physical modelling of the interaction occurring on the boundary, for
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3.6.1. PERIODIC BOUNDARIES

instance between a fluid and a solid surface. Since it has to respect the constraints

imposed by the mass and momentum conservation, it can happen that the number

of unknown overtakes the number of constraints, leaving some “degrees of freedom”

to insert physical models. Therefore, when developing a new BC, the challenge is to

include as much relevant interface physics as possible without making too hard the

problem from a mathematical point of view. Keeping in mind the recovery of macro-

scopic quantities like density and speed one might think of simply assigning to the

unknown fi the corresponding equilibrium values: this strategy has been followed

for instance in works like [38], [39] or [4], concerning the simulation of the flow in a

lid-driven cavity in order to model the moving wall. This approach is intuitive but

not correct, because it ignores the nonequilibrium part of the distribution function

which, as seen in (3.7), is responsible for the viscous part of the stress tensor [40]

and is directly related to the velocity gradients. Therefore this approach has not

been considered in this study. In what follows the implementation of some typical

boundary conditions like periodic and solid boundaries into the LB framework will

be discussed, while two of the different schemes proposed in the literature for pres-

sure (which should be termed density boundary conditions because of (3.12)) and

velocity BC are reviewed in this section, namely the one proposed by Zou and He

[41] (ZH) and the extrapolation scheme proposed by Guo et al. [42] and [43].

3.6.1 Periodic boundaries

After this brief introduction, let us start with periodic boundaries: dealing with

such boundaries is very simple in LB, because all that has to be done is copying the

outgoing PDFs from a boundary as the incoming PDFs of the opposite boundary.

3.6.2 Dealing with solid walls

Much work has been devoted to search for accurate BCs for solid walls: the sim-

plest model available for such purpose comes from LGCA, and is called full-way

bounce back scheme(BBK). According to this scheme, depicted in Figure 3.5, when

a particle distribution streams to a wall node it scatters back in the opposite di-

rection, toward the originating node, reached in two time steps. The BBK is very

easy to implement, and can be employed to represent even complex geometries like

34



3.6.2. DEALING WITH SOLID WALLS

curvilinear surfaces that are approximated as stairs. Adopting this scheme means

no collision process occurs at the boundary because not all the fi are known. If the

velocity is measured after the application of the boundary condition, but before the

application of successive propagation step, a non zero slip velocity can be measured

on the boundary: in [44] an expression of such velocity was given for the Poiseuille

flow case, from which it is clear the BBK is first-order accurate only:

us =
2uc

3n2
[(2τ − 1) (4τ − 3) − 3n] (3.32)

In (3.32) n is the channel width in lattice units. A first improvement is given

by the so-called modified bounce-back scheme: it consists in mirroring the unknown

PDFs with the corresponding opposite distributions streaming out from the compu-

tational domain:

f in
i = fout

ī , (3.33)

where f in
i is the unknown, incoming PDF on the i-th direction, while fout

ī
is

the outgoing PDF along the opposite direction ī. This time, collision occurs on the

node, because all the distributions are known. This scheme has the advantage of

not requiring a special treatment for corner nodes and most importantly achieves a

second-order accuracy [44], as confirmed by the expression of the slip velocity:

us =
uc

3(n − 1)2
[4τ (4τ − 5) + 3] . (3.34)

Another variant consists in applying the BBK scheme, but placing the wall be-

tween the bounce-back and the first fluid raw: this scheme, termed halfway bounce-

back (HWBBK), is second order accurate [44]. It is worth to underline that these

orders of accuracy were obtained for a simple case like the Poiseuille flow. Further

investigation is necessary for more complicated flows, like the driven cavity problem.
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3.6.3. ZOU AND HE SCHEME

(a) Pre-streaming (t) (b) Post-streaming (t)

(c) Bounce Back (t) (d) Post-streaming (t+1)

Figure 3.5: BBK scheme on a D2Q9 lattice. Bounce-back nodes are depicted in

black.

3.6.3 Zou and He scheme

This scheme can be applied to both velocity and pressure boundaries. Considering

again Figure 3.4, in both cases the unknowns are f2, f5, and f6, plus respectively

the density ρ and the speed component normal to the boundary. Four equations are

therefore necessary: the first three come from (3.6a) and (3.6b); the remaining equa-
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3.6.3. ZOU AND HE SCHEME

tion is obtained assuming extending the bounce-back rule to the non-equilibrium

part of the fi,n normal to the considered boundary:

f
(1)
i,n = f

(1)
i,nopp (3.35)

where ei,nopp = −ei (in the particular case of Figure 3.4 equation (3.35) means

f2 − f eq
2 = f4 − f eq

4 ). Considering for instance Figure 3.4 as representing a velocity

boundary it is possible to write after some algebra:

ρ =
1

1 − uy

[f0 + f1 + f3 + 2(f4 + f7 + f8)] (3.36a)

f2 = f4 +
2

3
ρuy (3.36b)

f5 = f7 −
1

2
(f1 − f3) +

1

2
ρux +

1

6
ρuy (3.36c)

f6 = f8 +
1

2
(f1 − f3) −

1

2
ρux +

1

6
ρuy. (3.36d)

The collision step is applied even on boundary nodes. Special treatment is re-

quired on corner nodes, where the previously seen constraints are not enough to

match the number of unknown distributions. An example is reported in Figure 3.6:

supposing to deal with top node of a channel inlet the unknowns relative to the

black node are ρ, f1, f4, f5, f7 and f8.

The idea is to use the same constraints seen before, plus another non-equilibrium

bounce-back rule because there are two couples of distribution functions normal to

the boundaries: in this case that means f2 − f eq
2 = f4 − f eq

4 and f1 − f eq
1 = f3 − f eq

3 .

The density is extrapolated by the closest node where it is known (the red node in

Figure 3.6). The final outcome is given by:

f1 = f3 (3.37a)

f4 = f2 (3.37b)

f5 = f7 =
1

2
(ρ − f0) − (f2 + f3 + f6) (3.37c)

f8 = f6 (3.37d)
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3.6.3. ZOU AND HE SCHEME

Figure 3.6: Sketch of distribution functions at a corner node (indicated in black). The un-
knowns are depicted by dashed arrows.

A similar procedure can be followed on the other corner nodes. It is important

to notice that this BC can model a general velocity boundary, therefore it is possible

to impose a velocity profile at an inflow, or even to deal with moving walls (as will

be shown in the next chapter). This BC enforces the velocity value explicitly, but

nothing is specified about the stress tensor. Nevertheless it can be demonstrated

that the stress tensor is correctly recovered. For three-dimensional problems the

algorithm needs to be modified, because from (3.6a) and (3.6b) come four equations,

which do not match the five (L = D3Q15) or nine (L = D3Q19) unknowns. The

procedure suggested in [41] is quite complex: considering again a velocity boundary,

first of all (3.35) is applied to all the unknown populations, recovering the normal

macroscopic velocity un; subsequently the excess of momentum in the remaining

directions β is evaluated as:

δβ =
∑

i6=n

f
(1)
i eiβ forβ 6= n. (3.38)

The last step of this procedure consists in the redistribution of δβ over the un-

known distributions in order to obtain the final non-equilibrium part consistent with

(3.6b), which is here termed g
(1)
i :
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3.6.3. ZOU AND HE SCHEME

g
(1)
i = f

(1)
i −

∑

β 6=n

1

nβ

eiβδβ for all unknown fi, (3.39)

where nβ is the number of unknown particle populations having eiβ 6= 0. The

complexity of this process makes the ZH scheme not the best choice for 3D simula-

tions. This scheme cannot be applied to curved boundaries.

3.6.3.1 Extrapolation BC

Considering the boundary node depicted in Figure 3.7 and the unknown f2(B, t) dis-

tribution, it can be written as the summation of an equilibrium and non-equilibrium

part f2(B, t) = f eq(B, t)2 + fneq(B, t)2. This BC consists in computing both these

terms with an extrapolation from the corresponding distribution in the neighbour

fluid node E (indicated in red in Figure 3.7). Starting from fneq
2 , from (3.11) comes

that fneq
2 = εf

(1)
2 . Since node B is neighbour of node E and ∆x = εc fneq

2 can be

extrapolated from node E, as fneq
2 (B, t) = ε(f 1(E, t)2 + O(ε) = fneq

2 (E, t) + O(ε)2.

The next step is to determine the equilibrium part. Considering for instance a ve-

locity boundary, the unknown on node B is the density ρE. Adopting the f eq
i form

proposed in [45] for reduce compressibility effects it is possible to approximate the

equilibrium distribution using the density in node E:

Figure 3.7: Sketch of extrapolation boundary condition.
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f̄ eq
2 = ρEwi + ρ0wi

(
1

c2
s

eiαuBα +
1

2c4
s

ēiαēiβuBαuBβ

)
. (3.40)

Since ρE − ρB = (e2 · ∇ρ)∆x = O(Ma2ε) it is possible to write:

f eq
2 (B, t) = f̄ eq

2 + O(Ma2ε). (3.41)

From (3.13) the Ma number can be related to the Re as follows:

Ma = Uc/cs =

(
τ − 1

2

)
Re

3L
∆x. (3.42)

Chosing τ to have
(
τ − 1

2

)
Re
L

= O(1) will lead to Ma = O(ε), thus from (3.41)

second order accuracy follows. Pressure boundaries can be modelled in a similar

way, obtaining the same order of accuracy.

3.7 Rescaling to physical quantities

Table 3.2 summarizes the relations occurring between the most important fluid

properties expressed in lattice units (LU) and the corresponding physical ones: in

the formulas reported, m represents the molecular weight of the considered fluid,

while c = ∆x/∆t is referred to as the lattice speed .

3.8 Test Cases

In this section the accuracy of the different BC schemes for solid walls modelling will

be discussed by considering two classical test cases, namely the Poiseuille flow and

the lid-driven cavity. These cases are both 2D so the L is the D2Q9 model defined

by (3.21).

3.8.1 Poiseuille Flow

It is interesting to discuss the relation between the body force and the flow one wants

to simulate. For some simple cases it is easy to relate F to the flow characteristics.
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3.8.1. POISEUILLE FLOW

Quantity LB Real

Density ρ =
∑

i fi ρreal=mρ

Macroscopic speed u = 1
ρ

∑
i fiei ureal=cu

Speed of sound cs creal
s =csc

Pressure p = c2
sρ preal=

(
∆x
∆t

)2
mp

Relaxation time τ τ real=τ∆t

Kinematic viscosity ν = (2τ − 1)/6 νreal=ν ∆x2

∆t

Table 3.2: Relations between lattice and physical quantities.

The two-dimensional Poiseuille flow is such an example: for Re ≤ 2000 the regime

is laminar and both the time derivative and the nonlinear advection terms are null.

Given x, y and u respectively to represent the main flow direction, the crossflow

direction and the x-velocity component, the incompressible NS (2.14b) reduces to a

balance between the pressure and the viscous term:

∂xp = −ν∂yyu. (3.43)

The flow is pressure driven; it was shown before that pressure and density are

related by a state equation in the LB framework, and that the term cs is related to the

temperature: for an isothermal, and incompressible flow like this one the question

is obvious: where does the pressure gradient come from? This is the drawback of

avoiding to solve a Poisson equation: since that the speed of sound has to be of

O(1) in lattice units, pressure and density fluctuation are of the same order. The

solution, if one wants to keep density constant (apart from the small variations due

to the aforementioned weakly compressible nature of the method), is to mimic the

effect of the pressure gradient by means of a constant body force. Equation (3.43)

can be analytically solved, giving a parabolic velocity profile depending only on the

y coordinate:

ūx =
4Uc

H

(
1 − y

H

)
(3.44a)

ūy = 0 (3.44b)
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3.8.1. POISEUILLE FLOW

where Uc is the maximum speed, reached in the centre of the channel cross

section, and H is half of the height of the channel itself. The pressure gradient G

driving the flow can be related to this velocity:

pin − pout

L
=

8ρνUc

H2
. (3.45)

Where pin and pout are respectively the constant pressures at inflow and outflow

sections. It is now sufficient to put into (3.45) G = pin−pout

L
and to apply periodic BC

at inflow/outflow sections of the channel to observe the expected parabolic profile.

This flow case was studied here with the LBGK model. The full-way bounce-back

(BBK), the modified bounce-back (ModBBK), and the ZH scheme were employed

and their accuracy evaluated at two Re numbers, 6 and 30. In all the simulations

the following conditions were used:

• The tube length is twice its height.

• The initial density is ρ0 = 1.0.

• A parabolic velocity profile with maximum speed Umax is imposed at the inflow,

while a constant density (pressure) ρout = 1.0 is imposed at the outflow. Both

these boundary conditions are realized employing the scheme proposed by Zou

and He, explained in the previous section.

• Relative error is measured by means of the expression:

E =

∑
i,j (|ux(i, j) − ūx(i, j)| + |uy(i, j) − ūy(i, j)|)∑

i,j (|ūx(i, j)| + |ūy(i, j)|)
, (3.46)

where all the sums are defined on the whole computational domain, while

ūx(i, j) and ūy(i, j) are the analytical solution values as defined by equations

(3.44a) and (3.44b) .

• Convergence is evaluated every ∆t = 1000 steps, and is considered achieved

when the 2 velocity fields fulfil the following condition:

∑
x

√
(ux(x, t) − ux(x, t − ∆t))2 + (uy(x, t) − uy(x, t − ∆t))2

∑
x

√
(ux(x, t − ∆t)2 + uy(x, t − ∆t)2)

≤ 10−8 (3.47)
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3.8.1.1 Re=6

The relaxation time equals 1.0, so that kinematic viscosity is, in lattice units, ν =

1/6 in every simulations. Different grids have been considered, namely 20×11,

40×21, 80×41 and 160×81: the centreline velocity is chosen respectively equal to

umax = 0.1, 0.05, 0.025, 0.0125, according to the desired Re. Figure 3.8 summarizes

the results obtained: as it is possible to see from the left picture, related to the

160×81 case, the u-component velocity profile along the cross-section of the channel

matches the analytic solution almost perfectly, especially employing ModBBK and

Zou-He BCs; the simple BBK exhibits a slight discrepancy, especially in the centre

of the channel, where velocities laying above the analytic ones are produced. More

interesting is the picture on the right, showing the trend of relative error (3.46) as

the grid resolution is increased. From the computed values, the slopes of the curves

related to BBK, ModBBK and Zou-He BCs are, respectively, -1 and -2 confirming

the less accuracy achieved by BBK. In this case, the ModBBK proves to be the best

BC among those tested.

(a) (b)

Figure 3.8: Summary of results for Re=6 case: (a) Comparison between analytic and computed

solutions employing different kinds of BCs for the 160x81 case. (b) Comparison of the accuracies

of the tested BCs.
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3.8.1.2 Re=30

The relaxation time equals 0.6, so that kinematic viscosity is, in lattice units,

ν = 1/30 in every simulations. The same grids of the previous case have been

considered: the centreline velocity is chosen, once again, respectively equal to

umax = 0.1, 0.05, 0.025, 0.0125, so to always get the desired Re. As Figure 3.9

shows, the results obtained are qualitatively similar to the previous case. Once

again the analytic solution is matched almost perfectly, and once again the BBK

demonstrates to be the less accurate BC.

(a) (b)

Figure 3.9: Summary of results for Re=30 case: (a) Comparison between analytic and com-
puted solutions employing different kinds of BCs for the 160x81 case. (b) Comparison of the
accuracies of the tested BCs.

3.8.2 The Lid-Driven Cavity

So far, the numerical experiments related to the Poiseuille flow confirmed what was

expected: the BBK is first-order accurate only, while BCs like modified bounce-back

or the one proposed by Zou and He achieve a second-order accuracy. But is that

always true? To answer that question, it is worth to consider a more complicated

flow: the two-dimensional lid-driven cavity problem constitutes such an example.

Many important phenomena like longitudinal and corner vortices, Taylor-Görter

vortices, transition and turbulence can be observed in this closed geometry. That

made this flow the object of a high number of either experimental or numerical
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studies. A complete review of the literature concerning this case is given in [46].

Given a rectangular cavity with depth H̄, width W̄ and aspect ratio Dc = H̄/W̄ ,

the fluid flow is driven by the top wall moving at speed U0. The resulting Reynolds

number is Re = W̄U0/ν. In this section the most widely studied case of Dr = 1 is

examined. Table 3.1 summarizes the simulation parameters for some of the different

cases studied. Since there is no analytical solution for this flow the benchmark is

given by the performance reported in other CFD and LB works.

Re U0 ν(∆x2/∆t) τ Grid Size

100 0.01 0.0256 0.5768 257×257

200 0.1 0.128 0.884 257×257

400 0.1 0.064 0.692 257×257

1000 0.1 0.0256 0.5768 257×257

Table 3.3: Simulation parameters for the lid-driven cavity flow.

The kinetic viscosity, in lattice units, is obtained from the Reynolds number;

then, the relaxation time is computed by using equation (3.13). Each case is studied

applying, for the three solid walls, the same three boundary conditions considered

for the Poiseuille flow and the ZH scheme for the moving wall. Figure 3.10 shows

the streamlines for the four cases. The streamlines have been calculated using

TECPLOT ™: the result was similar to what found by integrating with trapezoidal

rule the velocity field as done in [38]. These pictures are relative to the usage of

ModBBK as BC for solid walls; anyway, all the simulations show a good behaviour

of simple BBK, while applying the scheme of Zou and He to all the walls does not

give satisfying results. It is clearly visible the movement of the centre of the primary

vortex, as the Reynolds number increases, toward the bottom of the cavity. The good

performance of BBK scheme is evident from Figure 3.10, where the non-dimensional

velocity components computed along the horizontal symmetry lines are compared

to the benchmark solutions of Hou et al. The results are compared, in each case, to

those obtained in [38]. The plots reported show a very good performance achieved by

the BBK scheme, which corresponds to a solution almost indistinguishable from the

benchmark one. That is not surprising, since in [38], the same scheme is employed
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at solid walls, while the moving wall is modelled giving the distribution functions

their equilibrium value, as previously stated. It is important, anyway, to underline

that the ModBBK scheme does not produce significantly better profiles. Table

3.4 reports the coordinate of the centres of the vortex formed in the cavity. The

computed values are compared again with [38] and to those obtained by Ghia [47]. In

this last work, a multigrid solver related to a vorticity-stream function formulation

is employed. In LB, since that the primary variables are the PDFs, the stream

function can be obtained by integrating the velocity component. Once again, the

agreement is encouraging and the performance of BBK is very close to that of

ModBBK scheme. To evaluate the accuracy of the different boundary conditions,

a series of tests with Re = 1000 and three different meshes have been conducted:

coarse (65×65), medium (129×129) and fine (257×257); the accuracy is evaluated

using the formula [48]:

n ≈ log [(
∑ | φ2h − φ4h | /N) (

∑ | φh − φ2h | /N)]

log(2)
(3.48)
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(a) Re=100 (b) Re=200

(c) Re=400 (d) Re=1000

Figure 3.10: Streamlines computed for the different cases.
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Re Ψc xc yc Ψl(×104) xl yl Ψr(×103) xr yr

100 a 0.1034 0.6172 0.7344 -0.0175 0.0313 0.0391 -0.0125 0.9453 0.0625

b 0.1030 0.6196 0.7373 -0.0172 0.0392 0.0353 -0.0122 0.9451 0.0627

c 0.1031 0.6192 0.7370 -0.0173 0.0390 0.0355 -0.0124 0.9451 0.0626

d 0.1036 0.6180 0.7365 -0.0183 0.0365 0.0397 -0.0120 0.9448 0.0625

400 a 0.1139 0.5547 0.6055 -0.142 0.0508 0.0469 -0.645 0.8875 0.1188

b 0.1121 0.5608 0.6078 -0.130 0.0549 0.0510 -0.619 0.8902 0.1255

c 0.1122 0.6192 0.6078 -0.132 0.0547 0.0511 -0.621 0.8902 0.1257

d 0.1144 0.6180 0.6060 -0.140 0.0503 0.0478 -0.624 0.8870 0.1199

1000 a 0.1179 0.5313 0.5625 -2.31 0.0859 0.0781 -1.75 0.8594 0.1094

b 0.1178 0.5333 0.5647 -2.22 0.0902 0.0784 -1.69 0.8667 0.1137

c 0.1178 0.5334 0.5645 -2.22 0.0900 0.0784 -1.66 0.8664 0.1135

d 0.1176 0.5320 0.5630 -2.28 0.0870 0.0777 -1.80 0.8603 0.1115

Table 3.4: Vortex centres: values of stream function and coordinates for respectively primary

central vortex (c), lower left (l) and lower right ones (r) . a) Ghia. b) Hou et al.. c) Present study

with BBK. d) Present study with ModBBK

In equation (3.48), φ represents the quantity considered to test the accuracy, in

this case the u-component of velocity; φh, φ2h and φ4h are respectively the value

of u on fine, medium and coarse grids, with lattice space doubled each time. An

accuracy of 1.8 has been found for ModBBK scheme, while the simple BBK achieves

1.40. That result is consistent to what was found by Lai et al. [49]. Here the same

test to verify the accuracy was performed, but the BBK scheme was compared to

that developed by Mei, Luo and Shyy [50] for curved boundaries. As previously

observed, the first-order accuracy for BBK scheme was analytically demonstrated

just for fully developed channel flows. What is found here suggests BBK can still be

a good compromise between accuracy and ease in implementation and versatility.

Besides, this last series of tests demonstrates that it is not necessary to use too finer
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3.8.2. THE LID-DRIVEN CAVITY

a grid to accurately describe the flow field.
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Figure 3.11: Non-dimensional profiles of velocity components along the symmetry planes of

the cavity, for the different cases, computed using BBK and ModBBk for solid walls, and compared

to benchmark test by Hou et al..

In the previous sections the LB was shown to be a weakly compressible method.

This compressibility error has been evaluated conducting a series of dedicated tests
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3.8.2. THE LID-DRIVEN CAVITY

with Reynolds number constantly equal to 100. To represent the compressibility,

the mean variation of density, defined as:

ρ̄ =

∑
i ρ(xi, t)

N
, (3.49)

is computed, with N representing the total number of lattice nodes. The average

variation of density across the lattice is given by:

∆ =
1

ρ̄

√∑
(ρ − ρ̄)2/N. (3.50)

This quantity is evaluated with three different speeds of the moving wall, namely

U0 = 0.1, 0.05 and 0.01, and its values are listed in Table 3.5, along with the Mach

number . The table shows that:

U 0.1 0.05 0.01

Ma 0.173 0.0867 0.0173

∆(×103) 2.0 0.74 0.056

Table 3.5: Density fluctuation (Re=100).

∆(Uc = 0.05) ≈ 1

4
∆(Uc = 0.1) (3.51a)

∆(Uc = 0.01) ≈ 1

25
∆(Uc = 0.05). (3.51b)

The values found are in agreement with those stated in [51].
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Chapter 4

Multi-Phase lattice Boltzmann

So far, this thesis has only dealt with single-phase, single component LB. Neverthe-

less, it is just in simulating multiphase/multicomponent flows that LB shows its true

potential. Multiphase flows are ubiquitous in nature and are fundamental in many

industrial applications. Gas-liquid flows as well as particle flows are characterized

by surface forces developing at the molecular level. The accuracy of a numerical

scheme in simulating such flows depend on how these interfacial interactions are

incorporated into it. For classic CFD solvers it may prove very difficult to deal

with applications involving sharp interfaces (which means the interface tickness is

negligible when compared with the characteristic length scale associated to the mo-

tion of the bulk fluids) often changing topologically in time or characterized by high

density or concentration gradients. Additional averaged terms have to be inserted

in NS equations, increasing the complexity, while for a method originating from a

microscopic description of fluids, like LB, the task can be definitively easier. Molec-

ular dynamics can be a valid alternative, only on extremely small time and length

scales because of computational cost.

Since the appearance of LB, twenty years ago, many multiphase models have

been proposed. This chapter is concerned with one of the oldest, but nevertheless

still one of the most used of these schemes: the Shan-Chen (SC) multiphase model

[52] for liquid/gas flows. This chapter opens with some remarks on the behavior

of nonideal fluids, followed by the description of the SC model; then some results

related to two cases, the single droplet under microconfined shear flow and he T-
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4.1. NON-IDEAL FLUIDS

shaped micromixer are presented. Since these flows are both multicomponent, the

extension defined in [53] will be also reviewed briefly. In both cases, the theory

presented is related to the original formulation of the model, adapted to nonregular

lattice structures L. The limitations of this implementation are listed in the last

part of the chapter, together with a review of other multiphase LB models.

4.1 Non-ideal fluids

An ideal gas is a theoretical gas composed of a set of randomly-moving, non-

interacting point particles. The ideal gas concept is useful because it obeys the

ideal gas law, a simplified equation of state, and is amenable to analysis under sta-

tistical mechanics. At normal ambient conditions such as standard temperature and

pressure, most real gases behave qualitatively like an ideal gas. Generally, deviation

from an ideal gas tends to decrease with higher temperature and lower density, as

the work performed by intermolecular forces becomes less significant compared with

the particles’ kinetic energy, and the size of the molecules becomes less significant

compared to the empty space between them.

The ideal gas model tends to fail at lower temperatures or higher pressures, when

intermolecular forces and molecular size become important. At some point of low

temperature and high pressure, real gases undergo a phase transition, such as to a

liquid or a solid. The model of an ideal gas, however, does not describe or allow

phase transitions. These must be modeled by more complex equations of state,

although it is important to remember that presently there is no single equation of

state that accurately predicts the properties of all substances under all conditions.

Probably the most famous equation of state is the van der Waals (vdW) :

p =
ρRT

1 − bρ
− aρ2. (4.1)

Equation (4.1) is an example of cubic EOS, which means when expanded has

volume terms raised to the first, second, and third power. Most commonly encoun-

tered phase equilibrium calculations, such as vapour-liquid equilibria, involve only

two phases for which a cubic equation is suitable. Cubic equations have the ad-

vantage that the three values of volume can be obtained analytically without the

need for an iterative solution procedure. The parameters a and b measures respec-
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4.1. NON-IDEAL FLUIDS

tively the attractive forces between the molecules and the repulsive effect due to the

molecular size. For a given EOS it is interesting to plot the isotherms at different

temperatures. It can be seen that there exists a temperature Tc = (8a/27Rb) above

which the isotherms do not look much different from those for the ideal gas. However,

at T = Tc the isotherm develops an inflection point at (pc = a/27b2, ρc = 1/3b).

Finally, for T < Tc the p(ρ) curve becomes non-monotonic. The point (pc, ρc, Tc)

defines the critical point of the liquid gas transition. Above the critical point liquid

and gas phases cannot be distinguished. It is useful at this point to introduce the

so-called reduced variables ρR = ρ/ρc , pR = p/pc and TR = T/Tc so that all liquid

gas systems should look the same in these reduced variables. Figure 4.1 reports the

isotherms pR(ρR) of the vdW EOS at different reduced temperatures. Other EOS

possess isotherms with similar shapes.

Figure 4.1: Isotherms related to the vdW EOS at different reduced temperatures.

The isotherm for TR = 0.9 is evidenced in Figure 4.2b. It is clear that the red

portion of the curve is linearly unstable since (∂p/∂ρ) < 0. That means a this portion

of the isotherm must be unphysical [54]. It is interesting to plot the dependance

of the molar Gibbs potential on the pressure at constant T . This potential can be

computed from the Gibbs-Duhem relation, here rewritten in terms of the specific

density:

dµ = −sdT + ρ−1dp, (4.2)
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where s is the specific entropy. Integrating equation (4.2) at constant tempera-

ture and knowing the value of the potential in a point A of the curve it is possible

to compute the value of µ in every other point:

µB − µA =

∫ B

A

ρ−1 dp. (4.3)

Equation (4.3) is represented in Figure 4.2b. Examining these figures it is possi-

ble to see that for p < pB and p > pH the density of the system is unique at a given

pressure, while for pB < p < pH there are potentially three states corresponding

to the same pressure: of course the system cannot stay in the unphysical region,

while among the two remaining states the system takes the one characterized by the

minimum µ. Points C and G possess the same value of the potential as it can be

seen in Figure 4.2b: only at this pressure two states of the system (liquid and gas

phases) can coexist.

Figure 4.2: (a) vdW isotherm at TR = 0.9. (b) Isothermal dependence of the molar Gibbs

potential on pressure at TR = 0.9.

At every temperature is therefore possible to determine this unique pressure and

the corresponding densities, obtaining the so-called coexistance curve. Below pC

the system takes the densities indicated by the branch AC of the isotherm (gas

phase), while above pC the system takes the densities related to the branch CI

(liquid phase). Since µC = µG from equation (4.3) it follows that areas indicated

by closed regions CDE and EFG are equal. The physical isotherm is therefore
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4.2. THE SHAN-CHEN MODEL

obtained after this equal area (or Maxwell) construction is applied to the original

curve and is represented in Figure 4.3.

Figure 4.3: Physical vdW isotherm at TR = 0.9 after the equal-area construction.

4.2 The Shan-Chen Model

In chapter 3 it has been shown that the standard LB formulation simulates incom-

pressible NS with an ideal EOS (3.12). In order to study multiphase flows nonideal

effects have to be considered. The SC model consists in expressing the interparticle

interactions via a specific force computed as the gradient of a scalar potential:

F ≈ c2
sψG∇ψ(x, t). (4.4)

The SC model depends substantially on three elements: the scalar ψ, the con-

stant G and the way in which its gradient is computed on L. The first element, ψ

is referred to as the effective mass and depends on the local value of macroscopic

density, ψ(x, t) = ψ(ρ(x, t)). A typical choice ([52], [55] or [56]) is :

ψ = ρ0 [1 − exp(−ρ/ρ0)] , (4.5)

where ρ0 is a normalization constant usually set equal to unity. This form of

the effective mass reduces to the density ρ in the limit ρ ≪ 1, whereas at high

density (ρ ≫ 1), it shows a saturation. This latter is crucial to prevent density
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4.2. THE SHAN-CHEN MODEL

collapse of the high-density phases: infact the SC potential is purely attractive,

so that a mechanism stabilizing the high-density phase is mandatory to prevent

density collapse. This form is therefore quite empirical and will be shown later not

able to achieve high density ratios. This issue will be addressed in chapter 6. The

constant G is termed the coupling constant and, as it will be shown in subsequent

sections, it plays the role of temperature. Concerning the numerical evaluation of

the gradient appearing in (4.4) many different finite difference schemes are possible

in principle. Generally speaking one has to choose a certain number N of lattice

nodes yi|{i = 1 . . . N} surrounding x; say ci = x − yi|{i = 1 . . . N}, the next step

is to define a set of coefficients w(|c2
i |) weighting the contributions of the different

nodes, bearing in mind some constraints:

• To preserve isotropy the sites must be symmetrical about all the axis.

• Closer sites must have a bigger influence than far ones.

• The weighting factors w(|c2
i |) must be chosen so to build at least 4-th order

isotropic lattice tensors.

The scheme most commonly adopted allows the computation of the gradient of

a generic scalar φ considering only the nearest and next-nearest sites to x [57]:

∂αφ(x, t) =
∑

i6=0

wiei · α̂ [φ(x + ei) − φ(x − ei)]

2c2
s

. (4.6)

The most general form of (4.4) is therefore given by:

Fα (x, t) = −c2
sψ(x, t)

∑

i

w(|c2
i |)Gψ (x + ci , t) ciα. (4.7)

The standard way of incorporating the effect of F into the LB is to alter the

macroscopic speed appearing in (3.8) via method I explained in the previous chapter

((3.25)):

ueq = u +
τ

ρ
F (4.8)

The macroscopic momentum is computed via (3.20). It is important to observe

that while the mass is always conserved by the collision operator, local momentum
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is not preserved anymore, and that this momentum variation between pre- and

post-collisional states is just given by the interparticle force:

∑

i

Ωieiα =
∑

j

Fα. (4.9)

Total momentum is still conserved. The EOS associated to the SC model is:

p = ρc2
s +

c2
s

2
G

[
ψ2(ρ)

]
. (4.10)

To model wettability phenomena or multiphase flows in porous media it is nec-

essary to incorporate fluid/surface interactions. That can easily be done in the SC

framework [58], introducing another force term similar to what defined in equation

(4.7):

Fw(x) = −ψ(x)
∑

i

w(|c|2i )Gwψw(x + ci)ci, (4.11)

where Gw is another coupling constant allowing this time to control the contact

angle, while ψw is just a switch being one if yi = x + ci belongs to a solid surface.

With this scheme either wetting (setting Gw < 0) or unwetting (setting Gw > 0)

fluids can be modelled. Analytical expressions of the contact angle determined by

SC model can be found in [59] or [60].

4.3 Meaning of the Coupling Constant

The performance of a multiphase model can be evaluated examining how the model

reproduces the interface evolution in time. Ideally, the model should produce

isotropic interfaces; concerning the thickness, it is certainly not possible to obtain

the values in the order of Angstroms typical of physical interfaces, but nevertheless

the principle is that smaller is better. Most of all the model should be able to at-

tain phase separation at temperatures below the critical level. Besides, the pressure

difference computed at interfaces should be consistent with the Laplace law. In this

section the SC model is demonstrated to fulfil such requirements.

In what follows, equation (4.5) with ρ0 = 1.0 is chosen as effective mass; by

plotting p − ρ curves at different values of G the temperature-like behaviour of the
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coupling constant can be clearly seen [61]. Given G below a certain “critical” value

Gc there coexists two densities at the same pressure. The determination of the

critical values for density and coupling constant proceeds exactly as for any other

EOS: by solving the system ∂ρp|T=Tc
= ∂2

ρ2p|T=Tc
= 0 one finds that ρc = ln 2 and

Gc = −2/9, making evident that T = −1/G. By measuring the liquid-gas densities

on the opposite sites of a flat interface at a given G < Gc it is possible to build

the coexistence curve related to the SC-EOS [62]. The equilibrium densities ρg and

ρl are reported in Figure 4.4 together with the corresponding density ratio, which

reaches its maximum at ≈ 40.
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Figure 4.4: Coexistence curve and density ratios for SC with EOS given by (4.10).

A 100×100 fully periodical domain is filled by a fluid modelled with equa-

tion (4.10) with the adding of a small amount of fluctuating noise [10]: ψ(ρ) =

ψ(
∑

i fi + νξ), where ν is a random value in [−1, 1] and ξ = 0.001 is the noise.

The “temperature” is G = −5.5 with uniform initial density ρg < ρ̄ < ρl. The

relaxation time is τ = 1.0. Letting the simulation run for about 1200 time steps a

complete phase separation can be observed, as reported in Figure 4.5. Here liquid

and gaseous phases are reported respectively in red and blue. The system finally

reaches a minimum energy configuration with the remaining of only one rounded

bubble surrounded by liquid. Different tests have been conducted at different noise

levels, resulting in phase separation even at ξ = 1E−6 (of course reducing the noise

level increased the time necessary to observe separation), while the flow was unstable

for ξ > 0.01.
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(a) t=0 (b) t=400

(c) t=500 (d) t=600

(e) t=700 (f) t=1200

Figure 4.5: Time evolution of phase separation process. G = −5.5.
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The next case considered concerns a single static liquid droplet surrounded by

vapour. The grid is 51×51×51 and periodic BC are again employed. D3Q19 model

is adopted. The droplet has initial radius Ri = 12 and is placed at the centre of the

domain. The test run till a 3D equivalent of the convergence condition (3.40) was

satsfied. The coupling constant and the relaxation time takes the same values seen

before, while the droplet and vapour are initialized with the equilibrium densities

obtained by the coexistence curve. The final configuration of the bubble can be

viewed in Figure 4.6, where the small interdiffusion region close to the interface can

be appreciated. The velocity field should ideally be zero everywhere. The simulation

instead produces not-negligible velocities in the interfacial region, which are referred

to as spurious currents. These unphysical currents increase with the density ratio

till they cause the simulation to blow up: their reduction is therefore crucial in order

to achieve high density ratios like those encountered in real gas-liquid flows. Besides,

when considering moving objects like for instance colliding droplets it is important

that the measured velocity field is not “polluted” by spurious currents: since the

characteristic speed has always to respect the low-Mach constraint, it can be really

hard to distinguish between physical and unphysical velocities. The maximum values

of spurious currents module will be indicated here and in what follows as |u|s . In

this particular case, with G = −5.9 a value of |u|s = 0.025 was measured. Further

tests conducted at G = −5, G = −6.5 and G = −7 resulted in u|s respectively equal

to 0.0063, 0.04 and 0.0915, while the case G = −7.5 was unstable.

Evaluating the pressure values far from the interface and the corresponding den-

sity gradients, it is possible to determine the surface tension from Laplace’s law:

pi − po =
σ

2Rf

. (4.12)

Different initial radii have been tested (10, 12, 14, 16, 18), and the pressure jump

has been computed, together with the final radius, for every test. As it is possible

to see in Figure 4.7 the computed points fit a straight line quite well, therefore the

Laplace’s law is correctly approximated.
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Figure 4.6: a) Density profile on x=25 and z=25. b) Velocity vectors and density conturs in

the xy plane at z=25.

Figure 4.7: Test of Laplace’s law
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4.4 Extension to multicomponent flows

In a multicomponent flow different sets of f j
i and f j,eq

i have to be defined for each

species j|{0 . . . Ns − 1}, as well as different SRT “stream and collide” equations like

(3.4):

f j
i (x + ei∆t, t + ∆t) − f j

i (x, t) = − 1

τ j

(
f j

i (x, t) − f j,eq
i (x, t)

)
. (4.13)

In equation (4.13) τ j represents the relaxation time characterizing the j-th

species. The interparticle force this time has also to take into account interactions

among different components:

Fj
α(x) = −c2

sψ
j(x)

∑

i

∑

j̄

w(|c|2i )Gjj̄ψ
j̄(x + ci)ciα, (4.14)

The coupling constant turns out to be a coupling matrix this time, with Gjj̄ = Gj̄j.

The interaction strength between species j and j̄ is controlled by Gjj̄, which has to

be positive in order to enforce separation between them. A common choice of the

effective mass for multicomponent flows is ψj = ρj [63]. For each species it is possible

to evaluate the momentum change produced by the corresponding force computed

by equation (4.14) like for the single fluid case:

uj,eq = u′ +
τ j

ρ
F, (4.15)

where u′ represents an average speed :

u′ =

∑
j

mj

τj

∑
i f

j
i ei

∑
j

mj

τj

∑
i f

j
i

. (4.16)

The total density at any lattice site is intuitively computed adding the densities of

the single species. The macroscopic momentum is computed by making the average

between the pre- and post-collisional states:

ρuα =
∑

i

f j
i eiα +

1

2

∑

j

F j
α, (4.17)
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Finally, the kinematic viscosity computed by the SC model with multiple com-

ponent is given by:

ν = c2
s

∑

j

χj

(
τ j − 1

2

)
, (4.18)

where χj = ρj
/ ∑

j ρj represents the local value of the mass fraction for j-th

species.

4.5 Droplet deformation in microconfined shear

The deformation and breakup of a droplet immersed in a liquid matrix and confined

in a microscopical geometry are fundamental in many microfluidic applications [64].

Despite that the this kind of flow has received less attention than the unbounded

case, where the moving walls are far enough from the droplet to consider the flow as

characterized by only one length scale, the radius of the undeformed droplet R. This

assumption, together with the Newtonian nature of continuous and drop phases, is

the basis of the theory of Taylor, according to which the flow regime is completely

governed by two nondimensional quantities: the capillary number Ca, which rep-

resents the ratio between shear and interfacial stresses, and the viscosity ratio λ

between the droplet and the continuous phase. Given γ̇, µ, ρ and σ respectively

the shear rate, the continuous phase viscosity, density and the surface tension, it

is possible to define the capillary number and the Reynolds number respectively as

Ca = Rµγ̇/σ and Re = ρR2γ̇/µ. To consider wall effects one more nondimensional

quantity has to be defined, the gap R/H where H is half of channel height in the ve-

locity gradient direction. In [65] a systematic study of this flow is reported: the two

higly viscous Newtonian liquids (polybutene for the continuous phase and a mixture

of silicone oils for the dispersed phase) have λ ≈ 1 and nearly the same density, so

that buoyancy effects can be neglected. The deformation of the droplet is observed

at different shear rates and gaps, observing an increased deformation as the gap is

reduced. The wall influence is here studied with the LB and the multicomponent

SC model. In order to conveniently reproduce the experiments in [65], the two flu-

ids the have same densities ρ1 = ρ2 = 0.3 and viscosities τ1 = τ2 = 1.5, while the

coupling matrix is given by G11 = G22 = 0 and G12 = G21 = 10. The effective mass
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for each species is chosen as the density: ψj = ρj. By means of a static droplet test

the surface tension σ was computed. Three dimensional simulations were conducted

using the D3Q19 model, and the ZH boundary condition for the moving walls. The

Ca and R/H were varied in the range 0.1 − 0.2 and 0.16 − 0.4, and the droplet

radius R correspondingly varied from 8 to 20 in lattice units. For each configura-

tion the deformation was evaluated as D = L−B
L+B

, where L and B are respectively

twice the maximum and minimum distancies occurring from the droplet centre to

its border. Figure 4.8 illustrates the effect of reducing the gap R/H at constant

Ca. The droplet is more elongated in because of the increased velocity gradient at

the extremes. Comparing the velocity flow field inside the droplet it is possible to

observe one vortical swirl occupying the whole droplet in case (a), while in (b) the

top and bottom are interested by two swirls because of increased inertial effects.

X

Y

Z

(a) (b)

Figure 4.8: Drop under microconfined shear flow at Ca=0.1 and (a) R/H=0.18; (b) R/H=0.18.

Figure 4.9 compares the LB simulations with the predictions from the analytical

model developed in [2] for all the studied cases. The deformation D was measured

once the steady state had been reached. Oscillations were reported at high Reynolds

numbers [66], but that is not the case here, because Re ≪ 1. For both Ca = 0.1

and Ca = 0.2 the average difference is 3%, demonstrating the validity of the LB.

A further reduction of the gap causes the droplet to assume extremely elongated

shapes, more oriented on the flow direction. An unstable case is summarized by

Figure 4.10, corresponding to Ca = 0.46 and R/H = 0.7. It is possible to observe

the the double pinch-off at the ends of the neck region. The comparison with Figure
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3 from [65] demonstrates the LB correctly reproduces the process. As reported in

the experiments, the daughter droplets have almost the same size, suggesting the

microconfined shear flow can be used to generate monodisperse emulsions.

Figure 4.9: Comparison of droplet deformation at different confinements between LB and the

predictions of [2] at Ca = 0.1 and Ca = 0.2.

Figure 4.10: Drop breakup at Ca = 0.46 and R/H = 0.7. For the sake of clarity the walls are

depicted too.

65



4.6. THE T-SHAPED MICROMIXER

4.6 The T-shaped Micromixer

The mixing of two fluids is an essential process in many microfluidic devices em-

ployed in biomedical and biochemical processes like DNA purification, polymerase

chain reaction (PCR), protein folding and enzyme reaction. The performance of

these processes relies on rapid (order of milliseconds) and effective mixing of sam-

ples and reagent flowing in microchannels. The design of such a device has to take

into account the limitations induced by the particular flow regimes occurring at

microscales. Since typically Re < 1, microflows are laminar. The NS equation is

reduced to (3.31). Turbulence cannot be used to promote mixing, which instead

relies on intermolecular diffusion and convection, both characterized by a specific

time scale. If l is the length characterizing the mixing process, Ū the mean speed

in the microchannel and D12 the mutual diffusion coefficient of the couple of flu-

ids considered, the time scales for diffusive and convective mixing tD and tC , are

respectively [67] [68]:

tD =
l2

2D12

(4.19a)

tC ≈ l

Ū
. (4.19b)

The ratio between tC and tD is expressed by the Peclet number Pe:

Pe =
lŪ

D12

. (4.20)

Finally, the channel length Lm is given by:

Lm = Ū × tD = Pe × l (4.21)

The evaluation of these quantities for real problems shows the difficulties in the

design of a micromixer: diffusion in fact is quite a slow process, and a time for

complete mixing in the order of milliseconds can be achieved only if l amounts to

a few microns; if l > 10µm diffusion is not efficient, cause Lm would get unaccept-

able, even because longer channels mean higher pressure gradient, with consequent

problems in the design of the micropump. In other words, l ≥ 100µm and Pe > 100
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define a field of operative conditions that necessitates some form of speed up of the

mixing process that does not involve a great increase of pressure drop driving the

flow, which would complicate the design of the micropump. Micromixers are com-

monly classified as active or passive. Active mixing is based on the supply of energy

external to the device, while in passive mixing the flow energy due to pumping or

hydrodynamic potential is used to restructure the flow in a way which results in

faster mixing. The interested reader can find a complete review of the many dif-

ferent solutions proposed in the last years in [69]. In this section the focus will be

on passive micromixers, and precisely on probably the simplest type: the T-shaped

micromixer. This device is simply constituted by two inlet channels leading 2 fluid

streams into a main microchannel where they flow parallel. A variant is the Y-

shaped micromixer, in which the inlets are inclined. In order to increase the mixing

efficiency of such a device, in [3] was proposed to place obstacles in the main channel

of a Y-micromixer. Obstacles do not generate turbulence in the low Re flow regime

characterizing the flow, but their effect is to stir the fluid creating transversal mass

transport. The obstacles can be easily realized by excimer laser or silicon machining.

In [3] the effect of eight diffeferent obstacle layouts on the mixing efficiency of an

Y-sensor was determined by two-dimensional numerical simulations employing the

commercial code MemCFD by CoventorWave ™. This approximation is acceptable

when, say W and H respectively the width and the height of the main channel cross

section, W ≫ H. The fluids considered were water and ethanol at Pe = 200. Table

4.1 reports the main properties of these two substancies.

Fluid Viscosity (kg µm−1s−1) D12 (µm2s−1) Density (kg µm−3)

Water 9.0×10−10 1.2×103 9.998×10−16

Ethanol 1.2×10−9 1.2×103 7.89 ×10−16

Table 4.1: Properties of water and ethanol at 20◦ C.

The mixing efficiency εmix was evaluated for each configuration as in [70]:

εmix =

(
1 −

∫ 2l

0
|χ − χ∞|dy

∫ 2l

0
|χ0 − χ∞|dy

)
× 100%, (4.22)

where χ is the mass concentration distribution at the outflow section, χ∞ is the

concentration corresponding to a complete mixing and χ0 is the initial concentration
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distribution. The LB with the multicomponent SC model has been tested on the

same eight configurations in this study. Two-dimensional simulations where per-

formed for all the configurations listed in Table 4.2 using D2Q9 model. To have all

the boundaries perfectly aligned on the grid, the T-shaped geometry was chosen:

this choice was justifid by what is reported in [71], where it was demonstrated that

the inclination of the inlets has not a significant effect on the mixing efficiency. The

T-sensor is depicted in Figure 4.11, in which one of the obstacle layouts fabricated

and tested in [3] is also reported, while the different obstacle layouts listed in Table

4.2 are sketched in Figure 4.12. Some configurations (indicated here and in the fol-

lowing as “C”) are included in others with bigger number of obstacles, and therefore

are represented in red.

Figure 4.11: T-sensor geometry with obstacle layouts. The photographic image from [3] refers

to part of one of the obstacle layouts considered in the experiments.

Configuration number 1 2 3 4 5 6 7 8

Number of obstacles 0 1 1 2 3 9 9 18

Table 4.2: Different configurations tested in [3] and in the present study.
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Figure 4.12: Geometry of the different configurations tested.

L H W Win Lin Dobst L1 L2 L3 H1

[3](µm) 1200 (2000) 100 300 200 - 60 - 100 300 90
LU 700 (1000) - 150 100 300 30 100 50 150 45

Table 4.3: Micromixer geometrical parameters in [3] (expressed in µm) and in the present
study (expressed in lattice units).

Table 4.3 compares the most relevant geometrical quantities indicated in Figures

4.11-4.12 between LB simulations and [3]; the main channel is 2mm and 1000 grid

nodes long respectively in [3] and in the present study. The resulting lattice space

∆x is therefore 2µm, while the 2 fluids have density and viscosity ratios consistent

with the properties of real fluids reported in Table 4.1. Like in the previous case,

the effective mass for each species is chosen as the density: ψj = ρj. Once ψ and

the coupling matrix elements are fixed, the diffusivity is determined by measuring

the decay of a concentration wave like what was done in [55] and [72]. In order to

get the desired Peclet number of 200, the coupling matrix for this case is given by

G11 = G22 = 0 and G12 = G21 = 1. The BC were BBK on all obstacle surfaces and
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channel walls, ZH scheme for inlet sections and extrapolation scheme described in

section 3.7.2 for the outflow section. In order to evaluate the gradient in equation

(4.13) with the usual isotropic scheme a “ghost” layer of nodes is placed immediately

outside the outflow section: i and j are the indexes on x and y directions, the

abscissas of a ghost node, outflow section node and inside node at constant j will be

indicated by i, io and io−1 respectively. The density on each node io−1 is therefore

extrapolated according to ρi = 4
3
ρo − 1

3
ρi−1. The first test intends to evaluate the

dependance of the mixer efficiency on the flow rate. No obstacles are considered

here. Figure 4.13 illustrates the effect of increasing fluid 1 (water) inflow speed U

from 0.1 to 0.5 by showing fluid 1 (water) concentration contours. Both fluids have

the same flow rate, so the inlet velocity of fluid 2 (ethanol) is adjusted accordingly.

The concentration profiles for fluid 1 in the middle and at the outflow sections of the

main channel(indicated with a red and a black line in Figure 4.13) can be seen in

Figure 4.14 a and b. Slow flows do not need any obstacle to exibit a high degree of

mixing. In what follows the inlet velocity of water is fixed to 0.5. Figures 4.15-4.19

illustrate the performance of the different configurations. The obstacles brake the

symmetry of parabolic velocity profile (here with a small discontinuity because of

the small viscosity difference between the 2 fluids) giving diffusion more time to act.

This is evident in Figure 4.20 where the streamlines and velocity vectors are showed

for configurations 4 and 8. The efficiencies are listed in Table 4.4, evidencing how to

increase the performance it is not sufficient simply to put more obstacles; the layout

makes the difference, as can be deducted by the huge increase when passing from

C2 to C3 which both possess one obstacle only. C8 proves to be the most efficient

configuration, because it forces the fluid to migrate laterally more than any other

configuration tested. Table 4.4 also reports the corresponding efficiencies computed

in [3], evidencing a close agreement with the performance of a commercial code.

The only exception was configuration C3, which was found to be less efficient than

C2, while in [3] it achieves twice the efficiency of C2. This discrepancy is probably

due to a different vertical position of the obstacle in this study wth respect to

what is simulated in [3], as confirmed by the very close match for the other seven

configurations.
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Figure 4.13: Fluid 1 concentration contours at different U : (a) 0.1, (b) 0.15, (c) 0.5.

(a) (b)

Figure 4.14: Concentration profiles for fluid 1 (water) at main channel mid-section (a) and

outflow sections (b).
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(a) C1 (b) C2

Figure 4.15: LB simulation of T-micromixer for configurations 1 and 2 as proposed in [3].

(a) C3 (b) C4

Figure 4.16: LB simulation of T-micromixer for configurations 3 and 4 as proposed in [3].
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(a) C5 (b) C6

Figure 4.17: LB simulation of T-micromixer for configurations 5 and 6 as proposed in [3].

Figure 4.18: LB simulation of T-micromixer for configuration 7 as proposed in [3].
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Figure 4.19: LB simulation of T-micromixer for configuration 8 as proposed in [3].

(a) C4 (b) C8

Figure 4.20: Particular of streamlines (a) and velocity vectors (b)for C4 and C8.

74



4.7. LIMITATIONS OF THE SC MODEL

Efficiency (%)

Configuration [3] LB

1 18.0 17.2
2 21.0 22.
3 42.0 20.2
4 44.0 43.8
5 46.0 46.2
6 32.0 31.4
7 53.0 51.3
8 61.0 60.7

Table 4.4: Comparison between the mixing efficiency in [3] and those computed in the present
study with LB for all the different configurations.

4.7 Limitations of the SC model

The different cases presented in this chapter demonstrated how a model like the SC,

developed almost twenty years ago, might still be applicable to a variety of problems

with success. Nevertheless the SC model presents some important limitations, which

opened a lot of room for improvement or for developing new multiphase models.

These defects are listed below:

• Low density ratio achievable: O(10)

• Thermodynamic inconsistency: the thermodynamic temperature is not ex-

plicitly defined; besides the Maxwell construction is satisfied only if ψ = ρ.

Unfortunately this is the form of effective mass most prone to instabilities.

• Surface tension coupled to the density ratio: once chosen the coupling constant

G or matrix Gjj̄ and the effective mass ψ the surface tension is fixed. If for

instance a flat interface it is possible to show [73] that:

σ =

∫ +∞

−∞
(Pyy − Pxx) dy = −Gc4

s

2

∫ +∞

−∞
|∂yψ|2dy (4.23)

which makes evident the dependance of σ on G and ψ.
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4.8 Other multiphase LB schemes

Historically, the first multiphase model was developed for LGCA by Rothman and

Keller in 1988 [18]. This approach, referred to as colour model, consisted in identi-

fying the two phases with different colours (red and blue). The collision operator is

modified in order to enforce surface tension among the 2 fluids by sending particles

of a certain colour prefrebly to neighbour sites where that colour is dominant. An

interparticle force depending on colour gradient acts in order to recover interfacial

phenomena like Laplace equation: in this way particles of the same colour are encour-

aged to aggregate. Of course this approach suffered of all the defects of LGCA that

have been pointed out in chapter 3. Thanks to the work of Gunstensen et. al [74]

and Grunau et al [75]the colour model was finally integrated into the LBGK frame-

work. Another class of multiphase/multicomponent models is given by the so-called

free-energy-based models [76]. Their basic idea is to incorporate phenomenological

models of interface dynamics like Cahn-Hilliard or Ginzburg-Landau by means of a

free energy functional, that attains the minimum value in the equilibrium state. The

pressure tensor is defined using the Cahn-Hilliard’s approach for non-equilibrium

thermodynamics. Multicomponent implementations of this approach can be found

in [77] or [78] can be described as “top-down”, because macroscopic parameters like

surface tension can be directly supplied to the model, by choosing an appropriate

form of the free energy. The main limitation of this model consists in the occur-

rance of Galilean non-invariant terms in the hydrodynamic equations. He, Shan

and Doolen [32] proposed a model which is based on a discretization of Boltzmann

equation with specific force applied F(2.24). The specific force includes gravity but

most importantly an itermolecular interaction term which accounts for either a term

expressed as gradient of a scalar potential, representing mean-field approximation,

or Enskog’s correction to consider the effect of exclusion molecular volume. This

model, which will be referred to in what follows as HSD LB, employs two sets of

PDFs, one for the velocity field and the second to reconstruct an index function that

is used to track the interface, as it happens in volume of fluid or level set methods.

Finally it is worth to remember that multiphase means even particle flows: the LB

has been applied with success also to these kinds of flows, which pose issues in the

implementation of BC as well as in the updating of particle positions. All these

problems were addressed for instance in [79] [80] and [81].
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Chapter 5

The Multiple-Relaxation-Time

LBE

5.1 Introduction

In the previous chapter the basic theory of the lattice Boltzmann method has been

presented. The approach followed was to emphasize the continuity of this method

with its boolean ancestor, the LGCA, the defects of which were addressed by the

successive implementations of the LB. In [22] was demonstrated that LB can be

viewed as a special finite difference discretization of the Boltzmann equation (2.24).

Whatever the approach adopted, the passage from kinetic theory described in chap-

ter 2 to a feasible numerical scheme involves the following formal discretization:

• ξ ⇒ ei

• f ⇒ fi

• f eq ⇒ f eq
i

As seen in the previous chapter, these approximations allow the writing of a

linear evolution equation:

f (x + ei, t + 1) − f (x, t) = S (f − f eq) (5.1)
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Here and in what follows the LBE is written in lattice units, so that ∆x = ∆t =

1. Obviously passing from infinite possible speeds to a discrete velocity spaceRb

creates truncation errors and numerical artifacts in the transport coefficients that

can influence significantly the macroscopic hydrodynamics and the stability of LB.

A Fourier analysis is helpful to stress this point. Given a two dimensional flow

characterized by a uniform and steady density ρ and velocity u = (ux, uy) with a

small imposed fluctuation, so that fi = f eq
i + δf , the LBE with linearized collision

operator can be written in vector form as [1]:

δf (x + ei, t + 1) − δf (x, t) = S(δf). (5.2)

In Fourier space (5.2) takes the form:

δf(k, t + 1) = A−1 [I + S] δf(k, t + 1). (5.3)

In (5.3) k = (kx, ky) is the wave vector and Aαβ = exp (ieα · k) δαβ is the dis-

placement operator. If L = A−1 [I + S], the solution of (5.3) is equivalent to an

eigenvalue problem:

det[L − zI] = 0. (5.4)

HydrodynamicTransport coefficients, as well as the hydrodynamic modes are

determined by the eigenvalues zα of L [82]:

ν(k) =
1

k2
Re[ln zT (k)] (5.5a)

g(k)V cosφ =
1

k
Im[ln zT (k)] (5.5b)

1

2
ν(k) + ζ(k) = − 1

k2
Re[ln z±(k)] (5.5c)

cs(k) ± g(k)V cosφ = ∓1

k
Im[ln z±(k)], (5.5d)

where zT and z± are respectively related to the transverse (shear) and the two

longitudinal (sound) hydrodynamic (conserved) modes. Taylor-expanding equations

(5.5) in k it is possible to write:
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ν(k) = ν0 + ν1k
2 + . . . + (−1)nνnk

2n + . . . (5.6a)

ζ(k) = ζ0 + ζ1k
2 + . . . + (−1)nζnk2n + . . . (5.6b)

cs(k) = cs0 + cs1k
2 + . . . + (−1)ncsnk2n + . . . (5.6c)

g(k) = g0 + g1k
2 + . . . + (−1)ngnk

2n + . . . (5.6d)

The coefficient g indicates the Galilean invariancy of the model (ideally it should

be equal to 1). It is important to observe that the usual Chapman-Enskog process

leads just to the transport coefficients in the limit k = 0, which are all isotropic.

Unfortunately anisotropies and violations of Galilean invariance appear already at

second order in k when u 6= 0 [82]. Ideally one would like an LB implementation

that could be optimized in order to minimize these effects but that is impossible

in the LBGK scheme seen so far, because the only parameter which is possible to

tune is the relaxation time related to kinematic viscosity ν. Nevertheless, equation

(5.6b) reminds that there is also a bulk viscosity ζ appearing because of the weak

compressible nature of LB. If there were the way of controlling ζ indipendently on

ν, or in other words of supplying the LB with some hyperviscosity, the stability of

the scheme could be enhanced.

So far the LB implementation presented was related to the vector space defined

by the velocity vectors characterizing L, V
b. Another stream and collide linearized

representation is possible, in the b-dimensional vector space M
b based on the b

velocity moments of the distribution functions, ̺i|{i = 0, 1, . . . , b − 1}:

̺ (x + ei, t + 1) − ̺ (x, t) = −Ŝ (̺ − ̺eq) (5.7)

Using this representation is justified considering that from kinetic theory it is well

known that many hydrodynamic processes depends on coupling between different

modes of collision operator of (2.32). These modes are directly related to moments,

making this last representation quite convenient in order to incorporate physics into

the LB. Besides, the physical significance of the moments makes the corresponding

relaxation times directly linked with transport coefficients. The two representations

have to be related by a linear transformation, so that:
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̺ = M f (5.8a)

f = M−1̺ (5.8b)

where M = (v0,v1, . . . ,vb−1)
T . To constuct this b × b matrix is necessary to

define from ei|{i = 0, 1, . . . , b− 1} a new set of linearly indipendent vectors vi|{i =

0, 1, . . . , b − 1} representing an orthogonal basis for the new space. The guideline

followed is to have a diagonal collision matrix Ŝ in (5.7) so to have the simplest

possible collision operator even in M
b. This goal can be accomplished via a Gram-

Schmidt procedure in order to diagonalize the collision matrix S of (5.1). The

resulting vi are the eigenvectors of matrix S:

Ŝ = M · S · M−1 = diag (s0, s1, . . . , sb−1) (5.9)

Finally, combining equations (5.1),(5.7), (5.8)-(5.8b) and finally (5.9) it is pos-

sible to write the Multiple-Relaxation-Times lattice Boltzmann (MRT-LB) equation

as [83]:

f (x + ei, t + 1) − f (x, t) = −M−1Ŝ (̺ − ̺eq) (5.10)

The moments can be distinguished into conserved (hydrodynamic) and non-

conserved (kinetic), depending on whether they are conserved by the collision pro-

cess. For athermal flows the first group is composed by density and momentum

components. The ̺eq
i |{i = 0, 1, . . . , b − 1} are functions of the conserved moments

and inherits the symmetries of the underlying L. As will be shown in the next sec-

tion, their expressions provides a first set of parameters that can be tuned in order

to reduce the effects of numerical artifacts of the scheme. Other parameters are

naturally given by the relaxation times: in this case the relaxation of each moment

can be controlled separately [82]. By the definition of conserved moments follows

that the corresponding relaxation times can take whatever value. Special care has

to be followed when body forces are modelled via method I described by (3.18),

as pointed out in [84]. The algorithm behind (5.9) involves some additional steps

when compared to LBGK schemes; it is infact firstly necessary to switch from V
b
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to M
b via (5.8), in order to perform collision in this space using diagonal matrix Ŝ;

finally the post-collisional moments are projected back into the V
b via (5.8b) and

the obtained distribution functions undergo the streaming step in order to complete

the update for that time step. The additional computational cost can be reduced

by optimizing the matrix-vector products as specified for instance in [85].

5.1.1 D2Q9 Model

After having described the most general implementation of MRT-LB a specific in-

sight on the implementation related to D2Q9 lattice will be given in this section.

The moments for this model are given by:

̺ = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T . (5.11)

they are the density ρ, the momentum j and heat q flux components, the energy

e and its square ε and finally the diagonal and off-diagonal terms of the stress tensor

pxx and pxy. The most general form of the equilibrium moments is [82]:

̺eq
1 = eeq =

1

4
α2ρ +

1

6
γ2 (j · j) (5.12a)

̺eq
2 = εeq =

1

4
α3ρ +

1

6
γ4 (j · j) (5.12b)

̺eq
4,6 = qeq

x,y = − 1

2ρ
c1jx,y (5.12c)

̺eq
7 = peq

xx =
1

2ρ
γ1

(
j2
x − j2

y

)
(5.12d)

̺eq
8 = peq

xy =
1

2ρ2
γ3jxjy (5.12e)

The free parameters are α2, α3, γ1...4 and c1. Their values can be calculated

optimizing the scheme according to the guidelines previously mentioned. The op-

timization process involves the analysis of different simple flow cases. The first

example is the flow without streaming velocity: in the k = 0 limit the speed of

sound, the shear and the bulk viscosities are given by:
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c2
s =

1

3

(
2 +

α2

8

)
(5.13a)

ν0 =
2 − c1

12

(
1

s8

− 1

2

)
(5.13b)

ζ0 =
c1 + 10 − 12c2

s

24

(
1

s2

− 1

2

)
. (5.13c)

Since the transport coefficient have to be positive the following bounds for the

parameters of the equilibriummomenta and the relaxation times can be defined:

α2 > −16 (5.14a)

−4 < c1 < 2 (5.14b)

0 < s2 < 8 (5.14c)

0 < s8 < 8 (5.14d)

Considering instead a flow with constant streaming velocity U = (Ux, Uy) which

forms an angle φ with the wave vector k; equations (5.5) indicates that to the first

order in k the eigenvalues zT and z± give the phase gU cos φ and the sound speed

cs. In order to have g0 = 1 one has to set γ1 = γ4 = 2/3, while γ2 = 18. In order

to eliminate the anisotropy in the U-dependence of the shear wave attenuation one

must chose c1 = −2. All those values lead to the following expression for the shear

viscosity in the limit k = 0:

ν0 =
[
s2(2 − s8)

[
c2
s + (1 − 3c2

s)U
2 cos2 φ

]
+ 3 [2(s8 − s2)+

s8(s2 − 2) cos2 φ
]
U4 cos2 φ

] [
6s2s8(U

2 cos2 φ + c2
s)

]
.

(5.15)

In the same limit the bulk viscosity has the following expression:
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ζ0 =
(
U cos φ

√
U2 cos2 φ + c2

s

{
12U2

[
(s2 − s8) + s2(s8 − 2) cos2 φ

]
+

(2s2 − 3s2s8 + 4s8) (1 − 3c2
s)

}
+ 3U4 cos2 φ

[
cos2 φ (2s2 − 3s2s8 − 8s8) +

6(s2 − s8)] + 2U2 cos2 φ
[
6 (s2s8 − s2 − s8) c2

s + s8(2 − s2)
]
+

c2
s

[
6U2(s2 − s8) + s8(2 − s2)(2 − 3c2

s)
])

/
{
12s2s8(U

2 cos2 φ + c2
s)

}
.

(5.16)

The streaming velocity U has therefore got a second order effect on ν0, which

can be eliminated by using a 13-speeds lattice, together with a first-order effect on

ζ0 that can be tackled by setting α2 = −8. Finally, in order to obtain the SRT-LB

formulation when all the relaxation times are equal to 1/τ the remaining parameters

α3 and γ4 have respectively to be given the values of 4 and -18. Further details can

be found in [82]. Here it is sufficient to write the final expressions of the equilibrium

moments:

̺eq
1 = eeq = −2ρ + 3 (j · j) (5.17a)

̺eq
2 = εeq = ρ − 3 (j · j) (5.17b)

̺eq
4,6 = qeq

x,y = −1

ρ
jx,y (5.17c)

̺eq
7 = peq

xx =
1

ρ

(
j2
x − j2

y

)
(5.17d)

̺eq
8 = peq

xy =
1

ρ2
jxjy (5.17e)

The collision matrix in moment space has the following form:

Ŝ = diag (0, s2, s3, 0, s5, 0, s7, 0, s8, s9) , (5.18)

where the zero terms are related to conserved moments and s8 = s9 are related

to the kinematic viscosity; from equations (5.13) and (5.14) it follows that:

ν =
1

3

(
1

s8

− 1

2

)
=

1

3

(
1

s9

− 1

2

)
. (5.19)
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The other relaxation times are usually set equal to 1. In [82] a local stability

analysis for a system with fully periodic boundaries led to s2 = 1.63, s3 = 1.14 and

s5 = s7 = 1.92. The influence of boundary conditions, that can completely change

the stability behaviour, was not discussed. Finally, The matrix relating the velocity

and momentum spaces is:




1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1




5.2 Application: the lid-driven cavity

In order to verify the increased stability of the MRT-LB over the SRT scheme at

high Re numbers the driven cavity is reconsidered as a test case in this section.

In the previous chapter some results have been presented related to the simplest

case with Dc = 1 at relatively low Re. The first part of this section will therefore

extend the results reported in [4], while in the second part the square cavity will be

again considered, but at exceptionally high Re. These last cases are an extension

of what is reported in [86]. All these flows were simulated here with the previously

seen implementation of MRT-LB for D2Q9 model. For each geometry the flow

is described by plotting the streamlines and the vorticity contours. The values of

the relaxation frequencies relative to non-conserved modes were set respectively to

s2 = 1.1, s3 = 1.0 and s5 = s7 = 1.2, since the values reported at the end of the

last section were found to cause instabilities in many configurations. The remaining

two frequencies were set to s8 = s9 = 1/τ . The f eq
i are in the form proposed in

[45] to limit density fluctuations around the initial density ρ0 = 1.0. Finally, the

boundary conditions adopted are BBK for all walls but for the moving, which is

modelled with the extrapolation scheme described in the previous chapter. That
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5.2.1. RECTANGULAR CAVITY

choice of BC marks a difference with both the LB works considered in this section

as benchmark: infact, in [4] the BC for the moving wall consists in simply assigning

to the unknown distributions their equilibrium value, fi = f eq
i |{U0, 0}, while in [86]

the extrapolation scheme is applied to model the entire cavity walls.

5.2.1 Rectangular cavity

In [4] LB simulations of flows in cavities with Dc ∈ [0.1, 7] and Re ∈ [0.01, 5000]

are considered. The standard LB algorithm relies on a regular L. This approach

results in a huge number of points in cavities with high aspect ratios; in order to

tackle this problem, an interpolated LB (interested reader can refer for instance to

[87] or [88]) scheme is adopted. Here the standard approach has been followed, but

the cases where Dc > 1 where run parallel. In all the simulations the moving wall

is resolved with 256 nodes, and U0 = 0.1 in lattice units. The first case studied is

Dc = 0.1. In [4] this simulation is conducted at Re = 5000, while here Re = 7500,

Re = 10000 and Re = 20000 where considered. The streamlines for all these Re are

reported in Figure 5.1, including the case at Re = 5000 from [4]. When compared

to Re = 5000, the third vortex which in the top of the cavity is more intense,

together with the vortex close to the lower wall at (x̄, ȳ) = (0.81, 0.026). Besides

a new vortical structure centered in (0.65, 0.0242) appears. Increasing Re to 10000

lead most notably to the developement of this last vortical structure, the center of

which moves leftwards, together with the left corner vortex. Finally at Re = 20000

a succession of uniform vortex stuctures occupying the whole cavity is visible. In

respect to Re = 5000 case the number of vortical structures increased almost 4 times

for Re = 20000. Vorticity contours are instead represented in Figure 5.2 The next

case considered is related to Dc = 0.5. This case was widely treated in [4]: Figure 3

from this reference shows the evolution of the vortical structures when Re changes

from 0.01 to 5000. In the first case there is just one big central vortex plus two at the

corners. As Re is increased the cavity is occupied principally by two counterrotating

structures: the original vortex moved towards the right wall of the cavity, while a

less intense structure occupies almost the whole left part of the cavity. This regime

can be observed in Figure 5.3 (a).
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Figure 5.1: Streamlines for Dc = 0.1 and (a) Re = 5000 (from [4]), (b) Re = 7500, (c)

Re = 10000, (d) Re = 20000.

Figure 5.2: Vorticity contours Streamlines for Dc = 0.1 and (a) Re = 7500, (b) Re = 10000

and (c) Re = 20000.
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5.2.1. RECTANGULAR CAVITY

This configuration substantially holds also at Re = 7500, as showed in Figure

5.3(b), but a new vortical structure is apperaring on the lower wall. Finally Figure

5.3 (c) is related to Re = 10000 and shows that the separation between the two

main structures is more and more pronounced; the part of the left vortex that laid

in the right half of the cavity is now an independent vortical structure; the corner

vortices have increased as well.

Figure 5.3: Vorticity contours (left column) and streamlines (right column)for Dc = 0.5 and

(a)Re = 5000 (from [4]), (b) Re = 7500 and (c) Re = 10000.

Finally, flow is examined for Dc = 3.2. For Dc > 1 the trend reported in [4]

sees the cavity occupied by a succession of three counterotating vortical structures

disposed regularly from top to bottom, each of them extending for the whole width

of the cavity. These vortices have centres almost aligned on the vertical symmetry

axis and their intensity decreases as the distance from the top wall increases. Corner
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5.2.1. RECTANGULAR CAVITY

vortices are negligible. Once again, raising Re breaks the symmetry of this config-

uration: other vortices appear at the boundaries of bigger structures, as showed in

Figure 5.4, which reports the streamlines related to cases Re = 1000, Re = 7500

and finally Re = 10000; these new vortices interact with the three bigger struc-

tures and either at Re = 7500 or at Re = 10000 the cavity is occupied by four big

vortices, as can be seen in figures 5.4b and 5.4c. It is interesting to note that the

bottom vortex moved rightwards leaving space to the upper one. A further increase

of Re is likely to split the upper vortex in 2 new structures. The vorticity contours

for Re = 7500 and Re = 10000 are also reported in figures 5.5a and 5.5b. It is

important to underline that in [4] the case Dc = 3.2 is tested only at Re = 1000.

Figure 5.4: Streamlines for the case Dc = 3.2 at (a) Re = 1000, (a) Re = 7500 and (c)

Re = 10000.
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Figure 5.5: Vorticity for the case Dc = 3.2 at (a) Re = 7500 and (b) Re = 10000.

5.2.2 Square cavity at high Re

In [86] the flow in a square cavity was simulated with LB for Re up to Re = 1E6.

This limit has been further increased here, up to Re = 2.5E6 (Figure 5.9). Flow

regimes at Re = 1.25E6 (Figure 5.6), Re = 1.5E6 (Figure 5.7) and Re = 2E6

(Figure 5.8) are also reported. The grid size is 513×513; tests with a finer grid,

1025×1025 did not demonstrate signficant differencies. Once again, each case is

described via the corresponding streamlines and vorticity contours. The relaxation

time τ was varied in the range [0.50012288, 0.50006144]. Obviously, since there are

no experimental or numerical works at similar Re, the accuracy of these results is

questionable; what matters here is that they prove the superior stability of MRT-LB,

which allowed stable direct numerical simulations of quite a complex flow.
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(a) (b)

Figure 5.6: Streamlines (a) and vorticity contours (b) for Dc = 1 and Re = 1.25E6.

(a) (b)

Figure 5.7: Streamlines (a) and vorticity contours (b) for Dc = 1 and Re = 1.5E6.
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(a) (b)

Figure 5.8: Streamlines (a) and vorticity contours (b) for Dc = 1 and Re = 2E6.

(a) (b)

Figure 5.9: Streamlines (a) and vorticity contours (b) for Dc = 1 and Re = 2.5E6.
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5.3 Other MRT formulations

A further MRT formulation is the Two-Relaxation-Time (TRT) [89], [90]. Having

defined link as a pair of opposite lattice velocities, a link-wise collision operator is

introduced as an alternative to the MRT scheme previously defined. This formu-

lation can be applied to any kind of lattice structure L. The projections are the

symmetric and the anti-symmetric parts of a pair of populations with opposite ve-

locities. Link-operators and MRT collision coincide for one particular configuration

of eigenvalues associated to symmetric and anti-symmetric basis vectors. This con-

figuration, suitable for both mass and momentum conservation equations, is called

the TRT operator. The TRT collision equals the BGK collision in terms of com-

putational time and simplicity, but it benefits from additional collision freedom to

improve stability, like the MRT operators.

In [91] it was noticed that the MRT-LB previously introduced is not related to

kinetic theory, but rather is a numerical trick based on the weakly compressible

nature of LB; a different MRT formulation was presented in [91]. The starting

point is an ELB scheme: as seen in chapter 3, the ELB formulation is based on the

definition of a Maxwellian equilibrium fM (3.15) which possesses all the properties

of an equilibrium distribution (conservation of mass and momentum) plus being

the solution of the problem of minimizing a discrete H-function (3.16). In [91] the

equilibrium function has to minimize H under the further constraint of prescribed

diagonal components of stress tensor. The generalized Maxwellian found takes the

following expression:

fG,i = ρ
∏

α=x,y

wi(eiα)
3(c2 − Παα)

2c2

(√
Παα + cuαα

Παα − cuαα

)eiα/c (
2
√

Π2
αα − c2u2

αα

c2 − Παα

)e2
iα/c2

.

(5.20)

This new kind of distribution function is the lattice counterpart of the anisotropic

Gaussian distribution of kinetic theory fG exp−(1/2)(e − U) · Π−1 · (e − U). Con-

sidering the plane (Πxx, Πyy) and having defined T (Π) = Πxx + Πyy as the trace of

the stress tensor, it is possible to define two points M and C; the first corresponds to

fM defined by equation (3.15), while the second is the point for which a given trace

corresponds to the minimum of HG = H(fG). A linear interpolation characterized
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by the parameter λ between these two points determines the point E of generalized

equilibrium:E(λ) = (1 − λ)M + λE. The collision operator is given by:

Ω = ωI (fGE(λ) − f) , (5.21)

where fGE = fG,i

(
ρ,u, ΠE

xx(u, T ), ΠE
yy(u, T )

)
. At low Mach numbers ΠE

αα =

ΠM
αα + λT−TM

2
+ O(U)4 and after some algebra one can write:

Ω′ = A (fM(λ) − f) , (5.22)

where A = ωBΛB−1 and the transformation matrices expressions:

Λ = diag

(
[0, 0, 0],

[
r+ r−

r− r+

]
, [1, 1, 1]

)
(5.23a)

B =
(
1, ex, ey, e

2
x, e

2
y, exey, e

2
xey, exe

2
y, e

2
xe

2
y

)T
, (5.23b)

where r± = (r ± 1)/2 and r = 1 − λ. Equation (5.22) defines a MRT operator

Ω′ characterized by matrix A which possess two-relaxation times (ω and δ = rω)

which are directly related respectively to the shear and bulk viscosities:

ν =
c2

3ω
(5.24a)

ζ =
c2

3δ
(5.24b)

This model was tested in [91] on Taylor-Green vortex flow, showing its effec-

tiveness with respect to the SRT-LB formulation in improving the stability of the

algorithm. Besides, the implementation of this model is simpler than MRT formu-

lation previously defined.
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Chapter 6

Improving the SC model

As seen in the last chapter one of the main defects of the SC model is the low density

ratio achievable. That is strictly coupled with the existence of spurious currents at

interfaces. In this chapter some strategies for addressing this issue are presented,

based on the incorporation of different EOS and on the increased accuracy of the

gradient operator appearing in equation (4.4). The performance of the model at low

viscosities is also investigated: the performance of the different ways of incorporating

a body force like that upon which the SC model is based is also discussed.

6.1 Inserting new EOS

In [10] but most notably in [9] it was shown how to incorporate different EOS widely

used in the description of nonideal fluid behaviour. To illustrate this idea we consider

again the van der Waals EOS:

p =
ρRT

1 − bρ
− aρ2 (6.1)

As seen in chapter 4, the constants a and b are directly related to the critical

properties of the fluid via relations specific for each EOS. For the vdW EOS they

are:

ρc =
1

3b
, pc =

a

27b2
, Tc =

8a

27Rb
. (6.2)
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Considering a single component case, the thermodynamic pressure computed by

the SC model is given by equation (4.10) and depends on the form of the effective

mass; setting the pressure computed by (4.10) equal to that computed by (6.1)

means writing an equation for the effective mass ψ, that can be finally expressed as:

ψ =

√
2 (p − ρc2

s)

G c2
s

=

√
2p⋆ (x, t)

Gc2
s

(6.3)

where p⋆ (x, t) is the nonideal part of the EOS. Equation (6.3) is very simple,

but has an important implication: it brings an explicit temperature inside the SC

model, thanks to (6.1); the resulting expression for the specific force associated to

SC model is therefore:

Fα (x, t) = −c2
s

√
2p⋆ (x, t)

Gc2
s

∑

i

w(|e2
i |)G

√
2p⋆ (x + ei, t)

Gc2
s

eiα. (6.4)

With this form of ψ the coupling constant is nothing but a sign function that

has to insure the positivity of the square root argument; when computing (6.3)

G = sgn(p⋆) has to be stored in order to compute (6.4), which takes the final form:

Fα (x, t) = −c2
s

√
2|p⋆ (x, t) |

c2
s

∑

i

w(|e2
i |) sgn(p⋆)

√
2|p⋆ (x + ei, t) |

c2
s

eiα. (6.5)

This sign saving strategy was shown to be a potential cause of instabilities [92].

In fact, Taylor-expanding the summation in (6.5)the approximation error is given

by:

1

2

√
2|p⋆|
c2
s

∇
{

∆[sgn(p⋆)]

√
2|p⋆|
c2
s

|ξ,t

}
, (6.6)

where ξ ∈ [x,x + ei]. Since the derivative of square root is not bounded close

to zero the error expressed by (6.6) can get arbitrarily high in the case p⋆ has a

root in the interval [x,x + ei]. This risk can be avoided by getting rid of the square

root; since (5.1) can be rewritten as F = −∇(0.5Gc2
sψ

2) it is possible to discretize

ψ2 instead of ψ [92]:
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Fα = −
∑

i

w(|e2
i |)p⋆(x + ei , t)eiα. (6.7)

Whatever is the form of forcing adopted it is important to underline that any

EOS available in the literature can be incorporated into the SC formulation using

(6.3). A given EOS is characterized by the relations between constants a and b and

the critical temperature, pressure and density. Following [9] other EOS which are

known for being more complex but at the same time more accurate than the vdW

have been considered in this study, namely:

• Redlich-Kwong (RK): EOS

p =
ρRT

1 − bρ
− aρ2

√
T (1 + bρ)

, (6.8)

with

a =
0.42748R2T 2.5

c

pc

, b =
0.08664RTc

pc

(6.9)

• Redlich-Kwong-Soave (RKS):

p =
ρRT

1 − bρ
− aα(T )ρ2

1 + bρ
(6.10)

α(T ) =
[
1 +

(
0.480 + 1.574ωA − 0.17ωA

2
) (

1 −
√

T/Tc

)]2

(6.11)

a =
0.42748R2T 2

c

pc

, b =
0.08664RTc

pc

(6.12)

where ωA is termed acentric factor .

• Peng-Robinson (PR):

p =
ρRT

1 − bρ
− aα(T )ρ2

1 + 2bρ − bρ2 (6.13)
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α(T ) =
[
1 +

(
0.37464 + 1.54226ωA − 0.26992ωA

2
) (

1 −
√

T/Tc

)]2

(6.14)

a =
0.45724R2T 2

c

pc

, b =
0.0778RTc

pc

(6.15)

• Carnahan-Starling (CS) [93]

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − (bρ/4))3 − aρ2 (6.16)

a =
0.4963R2T 2

c

pc

, b =
0.18727RTc

pc

(6.17)

RK, RKS and PR are all cubic EOS: when compared to the vdW they model

differently the attraction term of the vdW. On the contrary, in CS the repulsive

term is different. The presence of the acentric factor in RKS and PR gives these

EOS more flexibility to model real fluids, because ωA is specific for each substance.

In what follows the results have been evaluated in terms of reduced variables :

ρR =
ρ

ρc

, pR =
p

pc

, TR =
T

Tc

, (6.18)

where the subscript “c” identifies the critical properties. In this way one may

easily pass from the lattice to the physical value of a certain property. Concerning

the parameters, the choice was a = 9/49 and b = 2/21 for the vdW EOS, while RK,

RKS and PR EOS are evaluated with a = 2/49 and b = 2/21; finally for the CS

EOS a = 1 and b = 4. The gas constant R is set equal to 1 for all the EOS. The

relaxation time is 1 as well. These values are taken from [9]. The first test consists

of comparing the coexistence curve obtained by numerical simulations (flat interface

test) with the theoretical curve predicted by the Maxwell equal-area construction

introduced in chapter 4. Equation (4.4) is evaluated either with the “sign saving

strategy” (Equation (6.5)) or as proposed in [92] (Equation (6.7)). The case of

CS-EOS is illustrated in Figure 6.1, from which it is possible to see an excellent

agreement when (6.5) is used: the maximum density ratio achieved was about 3250
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at TR = 0.5. When discretizing ψ2 instead of ψ the simulations were unstable at the

density ratios higher than O(10) for all the EOS. This order of magnitude is more

or less what can be achieved by using the vdW-EOS. In [92] just the vdW was the

only EOS for which the coexistence curve was computed using a = 9/8, b = 1/3 and

R = 1. The use of this set of parameters did not improve the results here. It is thus

possible to conclude that the set of parameters used in [9] do not cause the change

of sign of (6.6), while the reason for the instabilities when using equation (6.7) is

coincident with the first term of the body force in [94]:

Fα = ∂αp⋆ + ρk∂α(∂β∂βρ). (6.19)

This form of the body force is referred to as potential form in [57]. The second

contribution missing in (6.7) is associated with the interfacial stress and should

balance the thermodynamic pressure gradient. The effect of this term is to avoid a

step-function-like profile at the interface, which would cause instabilities [94].
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Figure 6.1: Comparison between analytical and LB-computed coexistence curve for CS-EOS
using ether (6.5) or (6.7). The parameters are a = 1, b = 4 and R = 1.

The second test consists of taking a single spherical droplet in a fully periodic

domain and in evaluating the maximum density ratio achievable and the correspond-

ing value of the spurious current |u|s. The grid size is 51× 51 × 51 and the initial

radius is 10∆x. For PR and RKS the acentric factor is ωA = 0.344, corresponding

to water. Table 6.1 reports the results which are substantially coincident with those
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presented in [9]. The interface thickness was measured as function of TR in Figure

6.2 for the CS-EOS with (6.5). It is possible to observe how it diverges as TR → 1.

The minimum value is instead ≈ 2.1 for TR = 0.55.

EOS λmax Tmin
R |u|s

SC 60.3 0.58 0.09

vdW 13.9 0.72 0.015

RK 117.65 0.65 0.0687

RKS 85.27 0.79 0.087

PR 2687.7 0.585 0.137

CS 1352.27 0.525 0.14

Table 6.1: Comparison of maximum density ratios achieved with different EOS as reported in

[9] and [10]. The corresponding reduced temperatures and module of spurious currents are also

reported. For SC-EOS is intended (4.10).

Figure 6.2: Interface thickness as function of reduced temperature for CS-EOS with a = 1,

b = 4 and R = 1. Continuous line represent the best fitting for the computed values.
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6.2 Carbon dioxide flow in microchannels

The usage of carbon dioxide, CO2, as a refrigerating fluid in microsystems is getting

more and more consideration because of its particular critical properties: since Tc =

31◦C, CO2 vaporization occurs at near critical pressure. That means high vapour

density and low surface tension and liquid viscosity in operational conditions. In this

section the CO2 coexistence curve was taken as a benchmark to test for the SC-LB

with the original effective mass expressed by equation (4.5) as well as with the new

form that incorporates the previously defined EOS (equation (6.3)). In [9] the ability

of the different EOS to reproduce real fluid properties were evaluated considering the

system water/steam. The simulations suggested PR as the best EOS for the steam

side of the coexistence curve, while RK was the best in approximating the branch of

the curve related to the liquid state. The acentric factor to be used for RKS and PR

EOS is CO2 ωA = 0.228 for carbon dioxide (while for H2O ωA = 0.335). The results

can be seen in Figure 6.3 relative to the reduced temperature range [0.85, 1] in which

this fluid is used: the best EOS results are for the RKS for both the branches of

the coexistence curve, while the PR completely fails in approximating the liquid

branch; exactly the opposite behaviour can be seen for the CS-EOS (even if the

error is reduced). Finally, the behaviour of vdW-EOS is the worst, confirming the

low accuracy of this EOS.

In [6] the different flow regimes of liquid/gas CO2 were observed in a microchan-

nel at various mass flux and vapour volume fractions φV . The experiments revealed

a prevalence of slug flow and annular regimes respectively at low and high φV . The

slug flow regime is characterized by the aggregation of the bubbles in plugs which are

often bullet shaped : the plugs are separated by liquid regions where small dispersed

bubbles can occur. The annular flow regime consists in liquid layers at the tube walls

surrounding the vapor flow in the core. In this last cases, droplet entrainment was

often observed. Here a qualitative comparison has been performed, similar to what

was done in [5], where an improved version of the free-energy LB with vdW-EOS

was employed. The formulation reported in [5] corrects lack of Galilean invariance

typical of the standard free-energy model by adding a new term to the pressure

tensor which depends on the density gradient [95]; besides, this model has the pe-

culiarity of having the coefficient of equation (6.1) dependent on temperature and

it allows the extimation of the exact thickess of the LB-simulated interface.
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Figure 6.3: Comparison of experimental and simulated CO2 coexistance curve for different

EOS implemented into the SC model: a) Original SC EOS (Equation (4.10)). b) vdW EOS; c)

RK EOS; d) RKS EOS; e)PR EOS; f) CS EOS.
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The fluid simulated in [5] is CO2 scaled with a dimensionless parameter X, so that

real fluid properties are recovered when X → 1. The same scaling is adopted here.

Gravitational effects are ignored, and temperature is kept constant, while thermal

effects are considered in [5]. A total amount of randomly distributed vapour bubbles

corresponding to the desired φV is placed in a two-dimensional channel. Bounce back

and Periodic BC are imposed respectively on walls and inflow/outflow sections, and

the flow is assumed to be fully-developed pressure driven, with ∇p corresponding

to the desired mass flow.

The first case considered is taken from [5]: the lattice is 513×513 and the tem-

perature, vapour volume fraction and mass flow are respectively T = 25◦C, φV = 0.5

and G = 900 kg/m2s. Periodic boundaries are adopted for inflow/outflow sections,

while the channel walls are modelled with the BBK scheme. Finally the scaling

parameter X is set equal to 60. The evolution of the flow from bubbly to annular

can be appreciated in Figure 6.4: from top to bottom, it is possible to observe the

flow field at various channel locations normalized by the channel height as reported

in [5], in this study [96] and in the corresponding experimental case from [6].

Figure 6.4: From top to bottom, the computation of CO2 annular flow in [5], the simulation

in the current study (the liquid is represented in red) and a similar experiment in [6]
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It should be noted that the results of a temporal simulation at different time

instants correspond to different streamwise locations in the experimental visualiza-

tion. Very large liquid droplets form and then evaporate. Such features are harder

to identify in experiments [6]. The annular flow regime develops quicker in the

present study than in [5], but that is consistent with the random initialization of

the process. The qualitative agreement with [6] is satisfactory.

The next case considered shows the development of slug flow from a low vapour

volume fraction: the lattice in this case is 257×1025, and the corresponding experi-

mental case is T = 20◦C, φV = 0.35 and G = 250 kg/m2s. Once again the expected

flow regime is correctly reproduced by the LB simuation, as it can be appreciated

in Figure 6.5.

Figure 6.5: From top to bottom, the evolution from bubbly to slug flow for CO2 in the current

study (the liquid is represented in red) and a similar experiment in [6].
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6.3 Origin of the spurious currents

In [97] the origin of the spurious currents compromising the stability of the SC model

especially at high density ratios was showed to lay in the insufficient order of isotropy

of the discretized gradient operator in equation (4.4). In fact, Taylor-expanding this

equation it is possible to write:

Fα = −Gc2
sψ(x)

(
E

(2)
αβ ∂βψ(x) +

1

3!
E

(4)
αβγδ∂βγδψ(x) +

1

5!
E

(6)
αβγδθζ∂βγδθζψ(x)+

+
1

7!
E

(8)
αβγδθζξκ∂βγδζξκψ(x) + . . .

)
,

(6.20)

with zero odd tensors because of lattice symmetry and even m-order tensors

given by:

E(m)
α1α2..αm

=
∑

l

w(|c|l)clα1
clα2

...clαm
. (6.21)

In order to correctly approximate the gradient the first term of left-hand side

of equation (6.20) is required to be the unit tensor, δαβ. As previously stated, the

effective mass ψ depends on density ρ. For the case of a static droplet ρ has an

axisimmetric (in 2D) or a spherical distribution (in 3D). It follows that ∇f should

possess the radial component only, which can be accomplished only if all the lattice

tensors appearing in (6.20) are isotropic. Unfortunately whatever the numerical

scheme used to discretize the gradient, the finite set of velocity vectors will make

this constraint impossible to fulfill for higher order tensors E
(m)
i1i2..im

. That will always

cause an azimuthal component to exist, which on turn will generate circulating flow

around the interface like Figure 4.3b illustrates. The most commonly used scheme to

discretize the gradient in equation (4.4), given by equation (4.6), insures the isotropy

of the first two terms on left-hand side of (6.20). What can be done to improve the

accuracy of left-hand side of (6.20) is to make higher order lattice tensors isotropic

up to a certain order n. Of course that means to find a proper set of Nl lattice

vectors cl|{l = 0 . . . Nl − 1} and the corresponding set of weights w(|c|l). This was

done in [97] reaching isotropy up to 8th order in both 2D and 3D and extended in

[73] where 16th and 10th order were reached respectively for 2D and 3D cases.
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Weights E(4) E(6) E(8) E(10) E(12) E(14) E(16)

w(1) 1
3

4
15

4
21

262
1785

68
585

19414
228375

285860656
3979934595

w(2) 1
12

1
10

4
15

93
1190

68
1001

549797
10048500

2113732952
43779280545

w(4) 1
120

1
60

7
340

1
45

175729
7917000

940787801
43779280545

w(5) 2
315

6
595

62
5005

50728
3628625

124525000
8755856109

w(8) 1
5040

9
9520

1
520

3029
913500

15841927
3979934595

w(9) 2
5355

4
4095

15181
7536375

2046152
795986919

w(10) 1
7140

2
4095

221
182700

14436304
8755856109

w(13) 2
405045

68
279125

18185828
43779280545

w(16) 1
480480

1139
26796000

13537939
14009369774

w(17) 0 68
2968875

231568
3979934595

w(18) 17
1425060

1516472
43779280545

w(20) 17
5742000

18769
1591973838

w50(25) 1
32657625

184
315867825

w34(25) 1
32657625

464
795986919

w(26) 1448
4864364505

w(29) 148
4864364505

w(32) 629
400267707840

Table 6.2: Weights up to the 16th order approximation for two-dimensional lattice models.

The weights for velocities |cl| = 25 have to be chosen differently according to the direction in

the two-dimensional space. The notation wab(|cl|) stands for the velocity vector (±a,±b) plus

permutations.
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Here the vectors required for each order of isotropy, as well as the corresponding

weights are reported in Table 6.2 for 2D and in Table 6.3 for 3D simulations. The

interested reader will find in [73] an extensive explanation on how to calculate these

coefficients.

Weights E(4) E(6) E(8) E(10)

w(1) 1
6

2
15

4
45

352
5355

w(2) 1
12

1
15

1
21

38
1071

w(3) 1
60

2
105

271
14280

w(4) 1
60

2
105

271
14280

w(5) 1
315

53
10710

w(6) 1
630

5
2142

w(8) 1
5040

41
85680

w221(9) 1
4284

w300(9) 1
5355

w(10) 1
10710

w(11) 1
42840

Table 6.3: Weights up to the 10th order approximation for three-dimensional lattice models.

The weights for velocities |cl| = 9 have to be chosen differently according to the direction in the

three-dimensional space. The notation wabc(|cl|) stands for the velocity vector (±a,±b,±c) plus

permutations.
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E(4) E(6) E(8) E(10) E(12) E(14) E(16)

2D 8 12 24 36 48 80 100

3D 18 32 92 170 - - -

Table 6.4: Number of nodes necessary to determine gradients isotropic up to different orders

for both 2 (L =D2Q9) and 3D (L =D3Q19) cases.

To check the effect of increasing the isotropy of the gradient operator, a simula-

tion of a static 3D drop was run using CS-EOS with the usual parameters, τ = 1 on

a 51×51×51 grid. The initial radius was 16. Gradient schemes with isotropy of 4,

6, 8 and 10 were tested. The local Ma number representing the spurious currents

was measured at the end of the simulation for x = y = 25 and reported in Figure

6.6. A significant reduction of the local Ma (about 2.5 times) can be observed when

increasing the order of isotropy from 4 to 10, but this result has to be evaluated

considering also the increased computational cost.

Figure 6.6: Interface thickness as function of reduced temperature for CS-EOS with a = 1,

b = 4 and R = 1.

In fact, as can be read in Table 6.4, the number of nodes required for a gradient

10th order isotropic is almost 10 times that for the case of 4. That made the
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6.4. COMBINING SC, EDM AND MRT SCHEMES

execution time 2.73 times higher than what required for standard 4-th order isotropic

scheme. Besides the presence of non-periodic boundaries make the implementation

of higher-order schemes more difficult. The use of this technique has to be therefore

carefully considered. This is the first time in which this strategy is applied together

with effective masses different from the original SC model. In fact, in [73] equation

(4.5) was used with ρ0 = 1. The reduction of the local Mach number when increasing

the isotropy from 4 to 10 was about the same measured here.

6.4 Combining SC, EDM and MRT schemes

So far the simulations were all conducted at τ = 1. What happens when τ → 0.5?

Considering always the static 3D droplet case with , the SRT-LB gets unstable

already at τ < 0.75 when the reduced temperature corresponds to a high density

ratio. That happens for all the EOS, and it is not surprising. The MRT formulation

illustrated in chapter 5 is expected to improve the situation. Considering always

the CS-EOS with the usual set of parameters, this formulation allowed us to reach

a minimum viscosity of 1/384 at TR = 0.8, when the density ratio is about 15. A

further reduction of TR made the minimum viscosity achievable dropping down by

O(10). As stated in chapter 4, in the standard SC formulation the application of the

body force given by equation (4.7) led to a modified velocity in the f eq
i according

to Method I discussed in chapter 3 (Equation (3.25)). What if the EDM is applied

instead? The whole LB equation takes the form:

f (x + e, t + 1) − f (x, t) = −M−1S (̺ − ̺eq(u)) + (f eq(u + ∆u) − f eq(u)) , (6.22)

where ∆u = F∆t
ρ

.

The result of the application of EDM can be seen in Figure 6.7, where the

maximum Mach number is plotted as function of ν at Tr = 0.65, which corresponds

to a density ratio of 150. The range of viscosities at which the simulations are stable

is the same as those obtained by MRT with SC implemented with method I, but at

a density ratio 10 times higher. The MRT-SC LB without EDM scheme allowed us

to reach at this same temperature a minimum viscosity of ≈ 1/20.
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6.4. COMBINING SC, EDM AND MRT SCHEMES

This result proves the EDM allows a more effective incorporation of a generic

body force into the LB formulation than method I exposed in chapter 3, which is

the standard choice for SC model. The second order accuracy in terms of velocity

gradient guaranteed by the EDM is fundamental to improve stability at high den-

sity ratios, where the relevant density gradients between liquid and gaseous phases

induce, especially at the beginning of the simulation, strong velocity gradients.

At the end of this chapter it is therefore possible to conclude that the basic

SC model can be significantly improved. The combination of well-known cubic

EOS, higher-order schemes for gradient calculation, MRT and finally EDM has been

realized for the first time in this study and is the main achievement of this research.

Figure 6.7: Maximum module of spurious currents as function of kinematic viscosity at TR =

0.65 for the CS-EOS with a = 1, b = 4 and R = 1.
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Chapter 7

Binary droplet collisions

In the previous two chapters it was illustrated how to address the issues of achieving

low Reynolds numbers and density ratios with the combination of LBGK and SC

models. The use of a more realistic EOS and the increased isotropy of the gradient

operator were shown to address the first issue, while the incorporation of body forces

using the EDM and the MRT scheme provided the desidered stability at low viscosi-

ties. This combination has therefore the potential to greatly extend the capabilities

of LB in the field of multiphase flows. In this final chapter this improved formulation

is applied to the simulation of binary droplet collision. The first part of this chapter

concerns the description of the physics involved and the review of existing literature,

including other works based on LB. The consistency of LB with experiments and

analythical models is demonstrated in the second part of the chapter.

7.1 Introduction

Droplet collisions are encountered either in natural phenomena or in many engi-

neering applications like for instance rain formation and engine fuel sprays. The

parameters characterizing this phenomenon are the densities and viscosities of liq-

uid and gaseous phases, respectively ρl, ρg, µl and µg, the surface tension σ, the

droplets radii R1 and R2, their relative speed U0 and finally their displacement χ

in the direction normal to U0. These quantities are reported in Figure 7.1. The

whole process is therefore described by six nondimensional quantities which are the
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Weber and Reynolds numbers, respectively given by We = ρlU
2(R1 + R2)/σ and

Re = ρlU(R1 +R2)/µL, the size, density and viscosity ratios, and finally the impact

factor B = χ/(R1 + R2).

Figure 7.1: Physical and geometrical parameters characterizing binary droplet collision.

Experimental studies like [98, 99] considered water droplets in air, while in stud-

ies like [100, 101, 7] where more oriented to industrial applications, because the

fluids involved where ethanol or C4H30 in air or nitrogen. Five possible collisional

regimes were identified in these studies: adopting the notation of [7], it is possible to

observe coalescence (Regime I), bouncing (II), coalescence with major deformation

(III), head-on separation (IV) and off-centre separation (V). These regimes can be

identified by transition curves in the B−We plane. Coalescence occurs at very small

We, when the gas is pulled out of the gap between the approaching droplets till the

thickness of this gap reduces to the order of molecular interaction. If the minimum

thickness is higher than this value, the droplets will not touch, and bouncing will

instead occur. Regime III occurs at intermediate We, when the initial kinetic en-

ergy is sufficient only to cause extensive deformation to the coalesced droplet, but

not to break this one in two. At high We number it is possible to observe Regimes

IV or V,depending on B. In these two regimes the coalesced droplet can experi-

ence either disruption, that produces again two droplets,or fragmentation, producing

catastrophic break-up into many small droplets. All the different collision regimes

are represented in Figure 7.2, either as regions in the plane B−We or with pictures

taken by the experiments reported in [7].
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Figure 7.2: Summary of all possible collision outcomes. Pictures of post-collisional outcomes

are taken from [7].

7.2 Review of other numerical studies

Droplet collisions represent a challenging case for numerical simulations, because

of the necessity of following the evolution of variable interfaces. The goal of these

investigations was also to provide to the CFD community a series of images of the

collisional dynamics to use as benchmark for their numerical methods.

Concerning methods that are based on NS equations, one of the first works was

[102] in which the head-on collision of two-dimensional droplets were studied via the

marker-and-cell (MAC) method. Axisymmetric and fully three-dimensional front-

tracking methods were employed in [103] and [104] to study respectively head-on and

off-centre collisions; altough many interesting results are reported the authors note
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that bouncing and coalescence regimes were obtained by artificially prescribing the

rupture of a thin gaseous film. Volume of fluid (VOF) was instead used in [105] and

[106]; this last work studies again head-on collision in an axisymmetric reference: two

VOF indicator functions are used, one for each droplet, to track the interfaces, while

a local grid refinement strategy is adopted in order to increase resolution around

droplet interfaces. Regimes I-IV were observed in this way and compared with [7].

In [8] regime I was studied using the Galerkin finite-element method in conjunction

with the spine-flux method for interface tracking. The Level-set method is instead

used in [107], providing remarkable agreement either with the experiments of [7] or

[99] except for regime I which was not possible to observe. All these methods require

some artificial technique for interface tracking.

Droplet collision has also been simulated with LB; in [108] the original SC model

was applied at a density ratio of ≈ 30; more important are the results reported

in [109] and [110], relative respectively to collisions between equal- and unequal-

size droplets at Re = 2000: the free energy method was applied in these two works,

coupled with a projection method necessary to enforce a zero-divergent velocity field.

The density ratio reported was 50 in both cases but the authors claim higher values

can be reached, with an increase of computational cost due to the projection step.

[111] coupled the MRT scheme with the HSD multiphase model to simulate head-on

collisions in an axisymmetric implementation of the LB. Some fully 3D simulations

where also reported. The density ratio was 4. Finally in [112] simulations of some

cases from [7] were reported at density ratios varying from 50 to 70 using the SC-

MRT LB.

7.3 Results

In this study, the LB method is adopted to simulate three-dimensional binary droplet

with equal size colliding at different values of We , Re and B. The lattice structure

L used is the D3Q19 model. The goal is to explore all the regions of B −We plane

in order to verify the ability of the LB in reproducing the five different collision

regimes previously described. To do that, the single-component two phase SC model

is adopted. The EOS used to compute ψ in equation (4.1) is the Carnahan-Starling

(equation (6.16)) with the same parameters seen in the previous chapter. The sign-
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saving strategy is adopted to numerically implement the SC model via equation

(6.5). Finally, in (6.5), the discrete gradient operator has sixth order isotropy (all

the corresponding vectors and weights are listed in Table 6.3). For each case the

known quantities in lattice units are the density ratio and the corresponding surface

tension obtained with the static droplet case. Once chosen the initial radii what

remain to determine are the initial relative speed and the kinematic viscosity. The

definitions of We and Re provide the necessary equations to calculate them. As

seen in the last chapter if τ ≤ 0.75 the SRT formulation is usually unstable and the

MRT-LB coupled with EDM is adopted (6.20). In this case the relaxation times are

equal to 1 except s9 = s11 = s13 − s16 = 1/τ [83] (see Appendix B). The first tests

conducted reproduce the cases reported in the first part of [8] where pure coalescence

was studied for equally sized droplets colliding at B = 0 in vacuum. The We is fixed

to 1, while Re ranges from 5 to 60. Considering a cylindrical coordinate system z, r

with origin fixed at the collision point and z directed along the symmetry axis,

this kind of collision is characterized by essentially four steps: initial deformation,

during which a radially expanding disc, called a lamella, is produced; the lamella

expands radially since the fluid inside moves towards the extremes; depending on

the amount of inertia a rim bounding the lamella can be formed. Subsequently the

lamella collapses in a jet that expands along z until the deformation is a maximum;

finally the extremes move back towards the origin and a new oscillation takes place

till the coalesced drop reaches a spherical shape. The same kind of test was repeated

here, at four Reynolds numbers: 5, 10, 30 and 60. LB would be unstable without

any fluid outside the droplets, so a density ratio of 400 was chosen. The droplets are

resolved with R1 = R2 = 32 lattice nodes. For Re = 5 and Re = 10 the relaxation

time was close to 1 and SRT was used; that was not the case for the last two Re,

in particular for Re = 60 where τ = 0.54. The maximum deformation on both axes

as well as the period of the first oscillation are reported for each Re in Figure 7.3

(a) and (b). Viscous effects act on both axes, but since they are proportional to

velocity gradients it is expected a major dissipation along radial direction; that is

confirmed by Figure 7.3, from which a similar elongation along the radial direction

can be observed for Re ≥ 10. The comparison with the corresponding results from

[8] shows quite good agreement.

After this first test the collision reported in [7] are considered. It is important

to underline that the experiments are characterized by a density ratio of ≈ 600 and
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(a) (b)

Figure 7.3: Evaluation of coalesced droplet deformation at different Re: (a) Variation of mini-
mum thickness along z, zmin and maximum radius rmax (b) Variation of first period of oscillation.
In both pictures the results are compared with the corresponding cases reported in [8].

the viscosity ratio is ≈12, while here LB simulations run with a single-component

model at lower density ratio, therefore the characteristic time of each simulation

cannot match the value relative to the corresponding experimental case. Regime I

is observed in Figure 7.4(b), corresponding to case“a” in [7], (Re = 14.8, We = 0.2

and B = 0.2). The grid is 201 × 181 × 181 and the droplet radii are 40∆x. At

this regime, viscous and surface effects dominate over inertial ones and the droplets

approach each other quite slowly. That holds of course also in lattice units, allowing

only for this case to run the simulation at TR = 0.58, corresponding to a density

ratio of 1000. The coalesced drop takes a cylindrical shape, than tends to reach a

spherical configuration in order to minimize surface energy, reproducing the trend

observed in the experiments which is reported in Figure 7.4 (a). The following

cases are always characterized by a density ratio of 150. Regime III is illustrated in

Figure 7.5 and 7.6, corresponding respectively to cases “f” (Re = 210.8, We = 32.8

and B = 0.08) and “k” (Re = 327.7, We = 70.8 and B = 0.25) from [7]. The

expected different behaviour under different B is clearly reproduced. In the first

case, the tangential component of the impact inertia is almost zero, and a thin disk
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is initially formed, that later contracts and forms a cylinder and then a dumbbell,

without any rupture of the film. In the second case, the higher tangential component

of the impact inertia is expected to cause an extensive rotational motion, and that

is precisely what the simulation shows. In both cases the grid is 251 × 141 × 141

and the droplet radii are 30∆x.

(a) (b)

Figure 7.4: Comparison between experiments from [7] (a) and LB simulation (b) for Re = 14.8,

We = 0.2 and B = 0.2 (t*=tU/2R).

Figure 7.7 is related to case“g” (Regime IV) (Re = 228, We = 37.2 and B =

0.01): the evolution is similar to case “f” and previously seen, but this time initial

kinetic energy is enough to overtake the surface tension force and split the coalesced

drop. Again, good agreement is found with the experiments.

A further increase of B causes a reduction of the contact region: if We is high

enough, like in case “ m” (Re = 302.8,We = 60.1 and B = 0.55), Regime V is

observed: the LB simulation in Figure 7.8 clearly reproduces the formation of a

thin neck linking two main globules and its subsequent rupture by means of the so-

called end-pinching mechanism, producing three droplets. Because of the off-centre

collision a consistent rotation of the globules as well as the ligament connecting them

can be observed.
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(a) (b)

Figure 7.5: Comparison between experiments from [7] (a) and LB simulation (b) for Re =

210.8, We = 32.8 and B = 0.08 (t*=tU/2R).

(a) (b)

Figure 7.6: Comparison between experiments from [7] (a) and LB simulation (b) for Re =
327.7, We = 70.8 and B = 0.25 (t*=tU/2R).
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(a) (b)

Figure 7.7: Comparison between experiments from [7] (a) and LB simulation (b) for Re = 228,

We = 37.2 and B = 0.01 (t*=tU/2R).

(a) (b)

Figure 7.8: Comparison between experiments from [7] (a) and LB simulation (b) for Re =

302.8,We = 60.1 and B = 0.55 (t*=tU/2R).

Considering the same geometry of the previous case but increasing the We the

inertial effects are increased and the result is a further fragmentation of the first
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child droplet, which splits into other 3 smaller drops with the same mechanism.

Figure 7.9 summarizes this case.

Finally, case “o” from [7] is simulated. Here the impact factor reaches 0.71, so

there is no rotation of the ligament, but just of the globules. That produces one

elongated child droplet, which is driven by the surface tension to the minimization

of its surface energy corresponding to a spherical-shaped final configuration, without

any further rupture. The last row of Figure 7.10 illustrates in detail the final part

of the collision process concerning the child droplet formed because of the double

pinch-off at its extremes. This droplet undergoes a process similar to the last part of

case “f” previously seen: the two globules formed as a consequence of the pinch-off

merge in a lamella that later takes on a spherical shape. This demonstrates the

ability of the model to catch complex dymanics at different scales.

Figure 7.9: Off-centre collision at We = 138, Re = 302.8 and B = 0.55.

The formulation previously discussed allowed us to have stable simulations of

all the cases reported in [7]. Figure 7.11 summarizes all the tests conducted. The

regions of the We − B plane corresponding to the expected regimes are separated

by experimentally obtained curves. The different symbols represent the outcomes

obtained by the LB simulations: spheres are associated to Regime I, squares to
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Regime III, triangles and diamonds respectively to regimes IV and V. As can be seen

in Figure 7.11 the simulations correcty predict the post-collisional regime in most

of the cases. All the regimes were observed, except bouncing. The bouncing cases

had always a pure coalescence outcome. In the author’s opinion that may depend

on insufficient resolution in the collision region, but most of all on an insufficient

repulsion among the phases due to the single component scheme adopted.

Figure 7.10: Off-centre collision at We = 64.9, Re = 312.8 and B = 0.71.

7.4 Discussion and Conclusions

The highest density ratio was 1000 for regime I at Re = 14. The low inertial regimes

are the most stable at high density ratios. The next step might be to verify the LB

reproduces the scaling law for the evolution of length and diameter of the bridge

forming between the droplets (Figure 7.4b) proposed in [113]. Unfortunately when

coming to collisions in regimes III, IV and V (high We-high Re cases) things are

complicated by the overlapping of extremely high spurious currents with the imposed

flow field, and it was not possible to mantain an experiment-like density ratio. For

these regimes in fact it had to be decreased to 150. Investigation on how to further
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Figure 7.11: Summary of tests conducted and comparison with expected prediction by [7].

reduce the spurious currents is thus necessary. Nevertheless even at not too small

reduced temperatures these regimes may prove impossible to reach, because of the

low-Ma constraint of LB that might be violated by the initial relative speed U0. In

fact, as discussed before, once chosen the initial droplet diameter Di, the definitions

of We and Reynolds numbers are used as equations to determine the ν and U0.

If for instance the case with the highest We number reached (We =407,Re=134)

is considered, each droplet was initialized with U0/2 = 0.22, which is already well

above a safe level (U0 ≤ 0.1). Since computational cost limits the freedom to

increase the droplet diameter, a more convenient inital speed could be found if σ

could be reduced. Unfortunately the impossibility of tuning the surface tension σ

once fixed the density ratio is another defect of the SC model as stated in chapter 4,

while this feature is instead offered by the free energy model as well as by the HSD

model. Anyway the density ratios reached in this study are significantly higher than

what reported in similar works by other authors [109] [110] [111]. Besides, the SC

model does not require two different sets of PDFs like the models employed in the

aforementioned works.
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Conclusions

The simulation of complex gas-liquid flows with the lattice Boltzmann (LB) method

has been the objective of this research work. During its first twenty years the LB

has evolved from a simple real-value therapy to the statistical noise of the lattice

gas cellular automata (LGCA) into a numerical scheme able to simulate realistic

fluid dynamics. The thesis summarizes this process throughout its different chap-

ters: what was emphasized is the different nature of LB when compared to classical

Navier-Stokes based solvers. The fact that kinetic theory includes the continuum

description justified the search for a numerical scheme which could not be affected

by non-linearities coming from macroscopic description (chapter 2). Chapters 3 and

4 present the most simple formulations for both single- and multi-phase LB, namely

the SRT-LB and the SC model. These chapters summarize, with some exceptions,

the state of the method in 1994, when [52] appeared. Altough this 1994-LB was

already capable to simulate flows like the deformation and breakup of a droplet

under shear flow or the T-micromixer, it still was limited to highly viscous flows

with low density ratios. Fifteen years are quite a long period, and many of the

improvements proposed in these years for the SC model were reported in chapter

5 and in the first part of chapter 6. The last section of this chapter shows how all

these new developements can be combined into a SC-type scheme possessing the

following features:

• Different EOS incorporated with respect to that proposed in [52], which allow

to reach high density ratios.

• Exact difference method (EDM) for a better inclusion of body force effect

especially at low ν.

• Gradient operator with higher degree of isotropy to reduce spurious currents
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at interfaces.

• Multiple-relaxation-time (MRT) formulation to improve the stability at high

Reynolds.

This new extended SC model represents the main contribution of this research

project, and has been succesfully applied in Chapter 7 to the simulation of binary

droplet collision at density ratios higher than reported in other works. The quali-

tative and quantitative agreement respectively with the experiments reported in [7]

and the with the results presented in [8] confirmed the validity of this new approach.

The results related to this case, as well as those reported in chapters 4 and 6 open

the possibilities for further studies. There is room for further improvement of the

model too, as will be explained in the next section.

Future work

The binary droplet collision demonstrated that including EOS like the CS or PR

may allow to reach realistic liquid-gas density ratios for the static droplet or flat

interface cases, but it is not sufficient for rapidly moving interfaces. As seen in the

previous chapter tuning the surface tension σ at a fixed density ratio may help, but

this limitation has not been addressed in this study: ideally it would be preferable

to mantain the SC model basic features (force term derived by a scalar potential,

natural phase separation, one only set of fi) and inserting some form of control of

σ into this framework. A strategy for controlling the surface tension in a SC-like

scheme was proposed for instance in [114], based on the incorporation into (4.1) of

a further term −k∇∇2ρ. Another solution was proposed in [73] and consisted in

the introduction of another coupling constant for this purpose. In the same paper

it is shown how to significantly reduce the spurious currents by simply rescaling the

effective mass. All these strategies were developed for the basic SC model with EOS

given by (4.2). Their performance with different EOS like those tested in chapter 6

is unknown. As stated in chapter 6 discretizing the square of a scalar potential can

be convenient, but a further term is requested at high density ratios. A solution

could be given by the stress form of the forcing term given in [57] (Equation (12)),

where this form is claimed to produce a smoother pressure profile across the interface
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than the potential form (6.19). This work is based on the HSD model but this idea

could be implemented into the SC model as well. Either the potential or the stress

form are compatible with the EDM scheme. Finally further work is needed on

the multicomponent SC model in terms of density ratio, which remains at best of

O(10). Each of the applications presented in this thesis can be further extended.

The T-micromixer for instance can be used as the starting point for examining many

different problems: first of all the layouts could consist in circular obstacles with

different radius, or in obstacles with totally different geometries (rectangular for

example). Of course extension to three-dimensional flow should also be considered.

This geometry is not limited to mixing problems, has a huge number of applications

in microfluidics: for instance it is used to produce droplets in [115] a numerical

investigation of the breakup dynamics of streams of immiscible fluids is conducted

by using a phase-field model; another application is the Membraneless Laminar

Flow Fuel Cell (LFFC) [116]-[117] where this geometry sees the parallel flow of

fuel (hydrogen, methanol or formic acid) and oxidant streams not separated by a

porous membrane as happens in conventional fuel cells. Getting rid of the membrane

means not facing dryout at high temperatures (the membrane has constantly to be

hydrated to work efficiently) as well as fuel crossover. Examples of LB applied to

electrochemical and reactive flow problems are for instance [118] and [119], where

suitable boundary conditions for modeling electrodes were defined, or [35] where the

SC coupled with the EDM scheme was used to model the hydrodynamic flow, while

the transport equations for charged species are solved by considering additional LB

equations relative to zero-mass components (passive scalars).
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Appendix A

Elements of tensor symmetry

A.1 General form of isotropic tensors

The set of orthogonal transformations O includes rotations and reflections. A ten-

sor Tα1α2...αn
is of n-th rank is defined isotropic if is invariant with respect to any

ortogonal transformation:

Tα1α2...αn
= Tβ1β2...βn

Oα1β1
Oα2β2

...Oαnβn
. (A.1)

The following theorem [120] defines the forms of isotropic tensors up to 4-th

rank:

• There are no isotropic tensors of rank 1 (vectors)

• Any isotropic tensor of rank 2 is proportional to δαβ

• Any isotropic tensor of rank 3 is proportional to ǫαβγ
1

• There are 3 linear indipendent tensors of rank 4:

δαβδγδ, δαγδβδ, δαδδβγ. (A.2)

1Levy-Civita symbol ǫαβγ : ǫ123 = ǫ312 = ǫ231 = 1, ǫ132 = ǫ321 = ǫ213 = −1 and 0 otherwise.
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A.2. ISOTROPY OF LATTICE TENSORS

It follows that the most general form for any rank 4 tensor is given by a linear

combination of these 3 elementary tensors:

Tαβγδ = Aδαβδγδ + Bδαγδβδ + Cδαδδβγ, (A.3)

where A, B and C are arbitrary constants.

In three dimensions, equation (A.2) leads to the following constraints to be

fulfilled by constants A, B and C:





T1111 = T2222 = T3333 = A + B + C

T1122 = T1133 = T2211 = T3311 = T2233 = T3322 = A

T1212 = T2323 = T1313 = T2121 = ... = B

T1221 = T2332 = T1331 = T2112 = ... = C

(A.4)

A.2 Isotropy of lattice tensors

Given a k-dimensional space and a lattice model defined by a set of b speeds, the

most general form of the n-th rank tensor LDkQb
α1α2...αn

that can be built on that lattice

(referred to as lattice tensor) is given by:

LDkQb
α1α2...αn

=
b−1∑

i=0

eiα1
eiα2

..eiαn
. (A.5)

As stated in Chapter 3, in order to get the correct macroscopic description of

the fluid state from the LB equation it is necessary choose a lattice that allows

the construction of isotropic tensors of rank 2 and 4. In what follows the isotropy

of these tensors for some of the most popular lattice models is checked by using

the previosly reported theorem. Either single-speed (HPP and FHP-I/FHP-II) or

multi-speed (D2Q9 and D3Q19)lattice models are considered. The speeds defining

all these models are reported in Chapter 3.
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A.2.1. D2Q4 (HPP)

A.2.1 D2Q4 (HPP)

The rank 2 and 4 tensors have respectively the forms:

{
Lαβ = 2δαβ

Lαβγδ = 2δαβγδ.
(A.6)

Lαβ is thus isotropic, while Lαβγδ not. That explains why this lattice is not

suitable for getting the NS equations.

A.2.2 D2Q6/D2Q7 models (FHP-I / FHP-II)

For both these lattice models the rank 2 and 4 tensors have respectively the forms:





Lαβ = 3δαβ

Lαβγδ =
3

4
(δαβδγδ + δαγδβδ + δαδδβγ) ,

(A.7)

therefore both tensors are isotropic.

A.2.3 D2Q9 and D3Q19 models

The rank 2 lattice tensor built on D2Q9 and D3Q19 lattices are respectively given

by:

{
LD2Q9

αβ = 6δαβ

LD3Q19
αβ = 10δαβ,

(A.8)

therefore both of them are isotropic. To obtain rank 4 tensors the constants A,

B and C in (A.2) have to be determined according to the constraints given by (A.4).

For the 2 lattice models considered, that system can be respectively written as:
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A.3. GETTING ISOTROPIC TENSORS FOR MSL MODELS

{
A + B + C = 6

A = 4, B = 4, C = 4
(A.9)

for the D2Q9 and as

{
A + B + C = 10

A = 4, B = 4, C = 4
(A.10)

for the D3Q19 lattice. In both cases rank 4 tensors are therefore not isotropic.

A.3 Getting isotropic tensors for MSL models

In order to recover rank 4 isotropic tensors for MSL models, weighting factors have

to be introduced for the different speeds, obtaining the general form:

LDkQb−MSL
α1α2...αn

=
b−1∑

i=0

wieiα1
eiα2

..eiαn
. (A.11)

In what follows the suffix “MSL”is omitted for the sake of simplicity.

A.3.1 D2Q9 model

In this case, choosing wi = 1 for speed 1 and wi = 1/4 for speed
√

2 leads to isotropic

tensors for either rank 2 or rank 4, having the following forms:

{
LD2Q9

αβ = 3δαβ

LD2Q9
αβγδ = δαβδγδ + δαγδβδ + δαδδβγ.

(A.12)
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A.3.2 D3Q19 model

By choosing wi = 2 for speed 1 and wi = 1 for speed
√

2 isotropic tensors for either

rank 2 or rank 4 are obtained:

{
LD3Q19

αβ = 12δαβ

LD3Q19
αβγδ = 4 (δαβδγδ + δαγδβδ + δαδδβγ) .

(A.13)
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Appendix B

MRT D3Q19 model

This appendix presents the implementation of the MRT scheme relative to the

D3Q19 model. The vectors defining this L structure are given by (3.23). The

components of the basis of orthogonal vectors are:





v0i = ‖ei‖0

v1i = 19‖ei‖2 − 30

v2i =
(
21‖ei‖4 − 53‖ei‖2 + 24

)
/2

(B.1)





v3i = eix

v5i = eiy

v7i = eiz

(B.2)





v4i =
(
5‖ei‖2 − 9

)
eix

v6i =
(
5‖ei‖2 − 9

)
eiy

v8i =
(
5‖ei‖2 − 9

)
eiz

(B.3)
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B. MRT D3Q19 MODEL

{
v9i = 3e2

ix − ‖ei‖2

v11i = e2
iy − e2

iz

(B.4)

{
v13i = eixeiy

v14i = eiyeiz

(B.5)

{
v10i =

(
3‖ei‖2 − 5

) (
3eix − ‖ei‖2

)

v12i =
(
3‖ei‖2 − 5

) (
e2

iy − e2
iz

) (B.6)





v15i = eixeiz

v16i =
(
e2

iy − e2
iz

)
eix

v17i =
(
e2

iz − e2
ix

)
eiy

v18i =
(
e2

ix − e2
iy

)
eiz

(B.7)

where i ∈ {0, 1, ..18}. The corresponding 19 moments are given by:

̺ = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
T .

(B.8)

while the matrix M driving the transformation between the two spaces is defined

as follows:
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B. MRT D3Q19 MODEL




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 −1 1

0 −4 0 0 4 0 0 1 −1 −1 1 0 0 0 0 1 −1 −1 1

0 0 1 0 0 −1 0 1 1 −1 −1 1 −1 −1 1 0 0 0 0

0 0 −4 0 0 4 0 1 1 −1 −1 1 −1 −1 1 0 0 0 0

0 0 0 1 0 0 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 −4 0 0 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 −1 −1 2 −1 −1 1 1 1 1 −2 −2 −2 −2 1 1 1 1

0 −4 2 2 −4 2 2 1 1 1 1 −2 −2 −2 −2 1 1 1 1

0 0 1 −1 0 1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1

0 0 −2 2 0 −2 2 1 1 1 1 0 0 0 0 −1 −1 −1 −1

0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 −1 1 1 −1

0 0 0 0 0 0 0 −1 −1 1 1 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 1 1 −1 −1




As for the D2Q9 case it is possible to recognize the density and the components

of momentum and heat flux along the cartesian axes, together with the energy and

energy square terms. The moments referred to the diagonal terms of symmetric

traceless viscous stress tensor are 3pxx and pww = pyy − pzz, while the off-diagonal

terms are given by pxy, pyz and pxz. Finally there are two quadratic order terms,

3πxx and πww, which possess the same simmetry of the diagonal part of the traceless

tensor pαβ and three cubic-order moments mx, my and mz which are part of third

rank tensor.

The diagonal collision matrix in Mb is:

Ŝ = diag (0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) , (B.9)
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B. MRT D3Q19 MODEL

The description of this implementation is complete once the equilibrium values

for the non-conserved moments are defined; like for the D2Q9 case the elements of

̺eq are functions of the conserved moments and are invariant under the symmetry

group of L:

eeq = −11ρ +
19

ρ0

j · j (B.10a)

εeq = ωερ +
ωεj

ρ0

j · j (B.10b)

qeq
x,y,z = −2

3
jx,y,z (B.10c)

peq
xx =

1

ρ0

(
3j2

x − j · j
)
, peq

ww =
1

ρ0

(
j2
y − j2

z

)
(B.10d)

πeq
xx = ωxxpi

eq
xx, πeq

ww = ωxxpi
eq
ww (B.10e)

peq
xy =

1

ρ0

jxjy, peq
yz =

1

ρ0

jyjz, peq
xz =

1

ρ0

jxjz (B.10f)

meq
x = meq

y = meq
z = 0 (B.10g)

where wε, wεj and wxx are free parameters of the model. In order to recover the

corresponding SRT-LBM these values are set respectively to wε = 3, wεj = −5.5 and

wxx = −0.5. The bulk ζ and the kinematic ν viscosities are respectively obtained

as:

ζ =
5 − 9c2

s

27

(
1

s1

− 1

2

)
=

2

9

(
1

s1

− 1

2

)
(B.11)

ν =
1

3

(
1

s9

− 1

2

)
=

1

3

(
1

s13

− 1

2

)
. (B.12)

In order to reduce the density fluctuations that afflict LBM simulations of in-

compressible flows a different formulation of the f eq
i was proposed in [45] for the

SRT-LBM. The MRT-counterpart of these scheme requires a different formulation

of the ̺eq vector:
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B. MRT D3Q19 MODEL

eeq = −11δρ +
19

ρ0

j · j (B.13a)

εeq = ωεδρ +
ωεj

ρ0

j · j (B.13b)

qeq
x,y,z = −2

3
jx,y,z (B.13c)

peq
xx =

1

ρ0

(
3j2

x − j · j
)
, peq

ww =
1

ρ0

(
j2
y − j2

z

)
(B.13d)

πeq
xx = ωxxpi

eq
xx, πeq

ww = ωxxpi
eq
ww (B.13e)

peq
xy =

1

ρ0

jxjy, peq
yz =

1

ρ0

jyjz, peq
xz =

1

ρ0

jxjz (B.13f)

meq
x = meq

y = meq
z = 0 (B.13g)

where ρ0 is the average density, usually set to unity in LU, and δρ is the density

fluctuation. The stability of the MRT scheme can be furtherly improved via an

optimal choice of the adjustable parameters appearing in (B.10a) and (B.13a); in

[82] a local stability analysis for a system with fully periodical boundaries gave the

following set of values:

wxx = 0 wε = 0 wεj = −475

73
(B.14a)

s1 = 1.19 s2 = s10 = 1.4 s4 = 1.2 s16 = 1.98 (B.14b)
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Appendix C

The Chapman-Enskog expansion

In this section the complete derivation of the NS equations via a multiscale expansion

will be given. For the sake of simplicity the starting equation will be the BGK model

with SRT, (3.4). Besides the lattice model is D2Q9. Analogous procedures can be

followed for MRT model ([] or []), as well as SC models for both single and multi-

component cases ([63]).

The starting point will be equation (3.4), here rewritten as:

fi (x + ei∆t, t + ∆t) = (1 − ω)fi (x, t) + ωf
(0)
i (x, t) . (B.1)

where ω = τ−1 and f (0) = f eq. The first step is to introduce two time and one

spactial scale as follows:

∂t = ε∂t1 + ε2∂t2 (B.2a)

∂α = ε∂α1
. (B.2b)

Once introduced these scales, the generic distribution function around can be

expnded around its equilibrium value:

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + O(ε3), (B.3)

As seen in chapter 3, the first and second moment of equilibrium PDF have to
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C. THE CHAPMAN-ENSKOG EXPANSION

correspond to local density and momentum: therefore, the following constraints on

equilibrium and non-equilibrium parts of distribution functions hold:

∑

i

f
(0)
i = ρ (B.4a)

∑

i

f
(0)
i eiα = ρuα (B.4b)

∑

i

f
(k)
i = 0 k = 1, 2, . . . (B.4c)

∑

i

f
(k)
i ei = 0 k = 1, 2, . . . (B.4d)

The left hand side of (B.1) can be Taylor-expanded up to second order terms

(∆xi = ei∆t):

fi (x + ei∆t, t + ∆t) = fi (x, t) + ∆t∂tfi + ∆teiα∂αfi

+
(∆t)2

2
[∂t∂tfi + 2eiα∂t∂αfi + eiαeiβ∂α∂βfi] + O

(
∂3fi

)
. (B.5)

Substituing these expansion into (B.1) leads to:

0 = fi (x, t) + ∆t∂tfi + ∆teiγ∂γfi

+
(∆t)2

2
[∂t∂tfi + 2eiα∂t∂αfi + eiαeiβ∂α∂βfi]

+ O
(
∂3fi

)
− fi (x, t) + ω

(
fi (x, t) − f

(0)
i (x, t)

)

= ε∆t
[
∂t1f

(0)
i + eiγ∂γ1

f
(0)
i

]

+ ε2∆t
[
∂t1f

(1)
i + ∂t2f

(0)
i + eiγ∂γ1

f
(1)
i

]

+ ε2 (∆t)2

2

[
∂t1∂t1f

(0)
i + 2eiγ∂t1∂γ1

f
(0)
i + eiβeiγ∂β1

∂γ1
f

(0)
i

]

+ εωf
(1)
i + ε2ωf

(2)
i + O(ε3) (B.6)
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C.1. FIRST ORDER TERMS IN ε

Rearraging (B.6) in terms of orders of ε yields:

0 = εE
(0)
i + ε2E

(1)
i + O(ε3), (B.7)

where

E
(0)
i = ∂t1f

(0)
i + eiγ∂γ1

f
(0)
i +

ω

∆t
f

(1)
i (B.8a)

E
(1)
i = ∂t1f

(1)
i + ∂t2f

(0)
i + eiγ∂γ1

f
(1)
i + ∆t

[
1

2
∂t1∂t1f

(0)
i + eiγ∂t1∂γ1

f
(0)
i +

1

2
eiβeiγ∂β1

∂γ1
f

(0)
i

]
+

ω

∆t
f

(2)
i

(B.8b)

The next step consists in calculating the zero-th and first lattice moments of the

terms E
(0)
i and E

(0)
i in order to get Euler and NS equations.

C.1 First order terms in ε

From (B.8a) and using the relation
∑

i eiαeiβ = 6c2δαβ, togheter with (B.4a)-(B.4d)

we have:

∑

i

E
(0)
i = ∂t1ρ + ∂γ1

jγ (B.9a)

∑

i

E
(0)
i eiα = ∂t1jα + ∂β1

Π
(0)
αβ . (B.9b)

The inviscid momentum flux tensor is given by:

C.2 Second order terms
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Appendix D

List of contributions

The research carried out during this PhD project generated one published paper in

a peer-reviewed journal and two published conference proceedings. These contribu-

tions are listed here in chronological order:

• E. Monaco, K. H. Luo and R. S. Qin, “Lattice Boltzmann simulations for

microfluidic and mesoscale phenomena”. New trends in fluid mechanics re-

search: Proceedings of the Fifth International Conference in Fluid Mechanics,

Shanghai, August 2007. Tsinghua University and Springer.

• K. H. Luo, J. Xia and E. Monaco, “Multiscale modeling of multiphase flows

with complex interactions”. Journal of Multiscale Modeling 1 (1), 2009.

• E. Monaco, K. H. Luo and G. Brenner, “Lattice Boltzmann simulations of

binary droplet collisions by a multiphase multiple relaxation time model”.

Proceedings of Parallel CFD conference 2008 (in press).

The results described in this thesis have been also presented in several meetings

and conferencies. The most important are:

• E. Monaco, K. H. Luo and R. S. Qin, “A study on micromixing enhancement

by optimization of the obstacles layout in a T-Shaped micromixer using the

lattice Boltzmann method”. Poster presentation at “Micro and Nano-scale

flows: Advancing the engineering Science and Design”. 7-8 December 2006.

University of Strathclyde, Glasgow
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D. LIST OF CONTRIBUTIONS

• E. Monaco, K. H. Luo and R. S. Qin, “Lattice Boltzmann Simulation of Carbon

Dioxide Multiphase Flow in Microchannels”. Oral presentation at “ICMMES,

International Conference on Mesoscopic Methods in Engineering and Sciences,

2007” conference. 16-20/ July 2007. München, Germany.

• E. Monaco, K. H. Luo and G. Brenner, “Lattice Boltzmann simulations of

binary droplet collisions by a multiphase multiple relaxation time model”.

Oral presentation at “Parallel CFD conference 2008”. 19-22 May 2008. Lyon,

France.

• E. Monaco, K. H. Luo and G. Brenner “Lattice Boltzmann simulations of bi-

nary droplet collisions by a multiphase multiple relaxation time model”. Oral

presentation at “ICMMES, International Conference on Mesoscopic Meth-

ods in Engineering and Sciences, 2008”. 16-20 June 2008. Amsterdam, The

Netherlands.

• E. Monaco, K. H. Luo and G. Brenner “Numerical investigation on the effi-

ciency of a passive micromixer with the Lattice Boltzmann method”. Accepted

for oral presentation at “ECCOMAS CFD 2010, The fifth European Confer-

ence on Computational Fluid Dynamics”. 14-17 June 2010. Lisbon, Portugal.
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[62] G. Máyer, Házi G, J. Páles, A. Imre, B. Fischer, and T. Kraska. On the system

size of lattice Boltzmann simulations. Int. J. Mod. Phys. C, 15(8):1049–1060,

2004.

[63] J. Chin and P. Coveney. Lattice Boltzmann study of spinodal decomposition

in two dimensions. Phys. Rev. E, 66, 2002.

[64] H. A. Stone, A. D. Stroock, and A. Ajdari. Engineering flows in small devices:

Microfluidics toward a lab-on-a-chip. Ann. Rev. Fluid Mech, 36:381–411, 2004.

[65] V. Sibillo, G. Pasquariello, M. Simeone, V. Cristini, and S. Guido. Drop

deformation in microconfined shear flow. Phys. Rev. Lett., 97, 2006.

[66] Y. Y. Renardy and V. Cristini. Effect of inertia on drop breakup under shear.

Phys. Fluids, 13(1):7–13, 2001.

[67] A. Einstein. On the motion of small particles suspended in liquids. Ann. Phys.

Lpz., 17:549–560, 1905.

[68] E. M. Purcell. Life at low reynolds number. Am. J. Phys., 45:3–11, 1977.

145



BIBLIOGRAPHY
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