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Abstract

Numerical simulation of multiphase flow often represents a challenging task for clas-
sical Computational Fluid Dynamics (CFD) schemes based on the macroscopic de-
scription of the fluid state (continuum hypothesis) leading to the Navier-Stokes
equations. The reason lays in the fact that these flows are often driven by phenom-
ena originating at meso- or micro-scales.

This dissertation concerns the lattice Boltzmann (LB) method and its applica-
bility to multiphase liquid/liquid or liquid/gas system. This method derives from
kinetic theory, which uses statistics to describe the fluid state. Although quite re-
cently appeared, the LB method is attracting more and more attention essentially
because its kinetic nature allows a simple incorporation of small scale physics with-
out suffering from the computational penalties of Molecular Dynamics schemes. The
algorithm, which consists essentially nodal relaxation (collision) and streaming along
the links of a regular spaced lattice, is highly efficient and simple to parallelize; be-
sides the LB equation does not present nonlinear convective terms. To deal with
multiphase flows the Shan-Chen (SC) model has been adopted in this study. This
approach is one of the most widely used because of its simplicity. The basic theory
of LB as well as the description and some validation of the SC model are the main
subjects of the first part of this dissertation.

The basic LB algorithm suffers of instabilities when applied to high-Reynolds
flows; even the SC model is all but perfect: one of its most important defects con-
sists in the very low density ratio achievable (O(10)). The second part of this
dissertation will therefore present an improved formulation of the basic SC model,
based on some recently proposed strategies. For example the incorporation of dif-
ferent equations of state into the LB allows to increase the density ratio of one or

two orders of magnitude, while a different formulation of the collision step (Multiple



Relaxation Times LB) allows to overcome the stability issues at low-viscous flows.
This improved SC model is finally applied to simulate binary droplet collisions. The

results are compared with experiments and show a very good qualitative agreement.
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Chapter 1

Introduction

This thesis is devoted to the presentation of a numerical scheme known as the Lattice
Boltzmann Method (LB), and to the demonstration of its performance with special
emphasis on multiphase flow problems.

The LB is quite a recent numerical approach, since it dates back to the late
eighties. To properly introduce this method and, at the same time, to better under-
line the differences between LB and classic Computational Fluid Dynamics (CFD)
solvers, it is worthwhile to remember the different possible ways to describe the
state of a complex physical system. The first approach consists of expressing the
state of the system by means of a number of observable, and therefore measurable,
properties. According to statistical mechanics, such an approach is referred to as
coarse-grained, observational or macroscopic [11]. Considering a fluid, it is clear that
this approach corresponds to he continuum hypothesis: in this case the state of the
fluid is completely specified in terms of extensive quantities like density, momentum
and total energy. Treating the fluid as a continuum means these quantities can be
considered as functions of spatial coordinates and time, smoothly varying on the
whole extension of the system. A conservation equation can be written for everyone
of these quantities, to describe its rate of change due to fluxes across the frontier
of the domain occupied by the fluid, and due to productions inside the domain.
This set of equations is universally known as Navier-Stokes equations (NS). The NS
are second order, partial differential equations, nonlinear in the convection term,

and rarely an analytic solution can be obtained: often, even finding a numerical



1. INTRODUCTION

one may prove to be a difficult task. Many of the difficulties encountered are just
caused by the nonlinearity; a linear model should be, if existing, very welcomed.
But, since that nonlinearity is in turn caused by the way the convection term is
modeled in the framework of the continuum hypothesis, it is clear that getting rid
of the macroscopic approach must be the first step in the search for a lznear model.

An alternative approach considers the system as a collection of N discrete ele-
ments: the state of the whole system at any time ¢ is determined once the state of any
single element is known. Adopting again the terminology of statistical mechanics,
this description is referred to as fine-grained, dynamical, or microscopic [11]. One
question immediately arises: how can the microscopic configuration of the system
be evaluated? The first idea is to track the trajectory of every single molecule i of
mass m;, considered point-wise, by means of Newtonian mechanics: it is possible to
assume as state variables the space coordinates and the speed components ( r; and
&), and thus it is necessary to integrate a set of fN ordinary second order differen-
tial equations (with proper initial and boundary conditions), f being the number of

degrees of freedom of every molecule:

i,
mid—; ~ F, (1.1a)
&(t=0) = & (1.1c)

In (1.1a) the right-hand side represents the force acting upon the considered
molecule because of intermolecular interactions. Considering a fN-dimensional
space the microscopic, or ”"dynamic”, state of the system can be expressed by a
point in such space, referred to as Phase Space. Often, instead of this Newtonian
description, an equivalent Hamiltonian one can be adopted, which proves to be more
suitable to describe systems having complex not mono-atomic molecules that possess
even rotational degrees of freedom. The main drawback of such kind of description
consists in the excessive computational cost, which is above the capabilities of any
available computer since even a small volume of fluid contains an enormous amount
of molecules. In order to reduce that cost consists in introducing “pseudoparticles”

or “macromolecules”, each representing a huge number, say R, of real ones. For
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such a simplified system, equation (1.1a) can be written as:

d’R;
dt?

M, =F,+D;, I=1,..,Ng, (1.2)

where R; represents a coarse-grained coordinate, M; = ZR m; is the total

i=1
mass of the I-th macromolecule, and Np << N, is the total number of macro-
molecules. The term D; models all the details of the underlying finer scales. A
further approximation could consist in getting rid of this last term, and solve the
(1.1a), applied to a limited number of molecules: this is the basic idea of molecular
dynamics (MD). If the objective is to simulate macroscopic physics, the model is
still full of unnecessary microscopic details included in the right-hand side of (1.2),
making molecular dynamics a computational tool which is suitable only for very
small time and length scales.

Another approach to describe the microscopic configuration of a fluid is, accord-
ing to Kinetic theory, to employ probability distribution functions: the microscopic
configuration is described by means of statistics. These functions evolve according
to very complex "transport” equations, the most famous being the Boltzmann’s
equation. Kinetic theory aims to build a bridge between the molecular and the
macroscopic worlds, rather than to deal with macroscopic dynamics: in fact, NS
can be recovered from the aforementioned Boltzmann equation, once it is solved:
unfortunately, this is a non-linear integral-differential equation, very complicated to
integrate either analytically or numerically.

So far, it does not seem to be possible to find a model simpler than NS, but able
to simulate macroscopic fluid dynamics. Both Newtonian and kinetic descriptions
have been showed to lead to very complex models: that is essentially due to the fact
they are full of microscopic details: one could wonder whether such detail is truly
necessary. What if one should think of targeting the macroscopic description, by
means of a fictitious microscopic one? Such a model should be totally unsuitable
to effectively represent the real microscopic behaviour of a fluid, but nevertheless, if
correctly implemented, could be suitable to represent the macroscopic one. It could
be sufficient just to ask the model to ensure isotropy, conservation of mass, momen-
tum and energy, respect the second law of thermodynamics (irreversibility), and to
preserve the rheological nature (Newtonian, non-Newtonian, Bingham) of the con-

sidered fluid. Such an approach could seem quite strange, but has its foundation in
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the consideration, due to Gibbs, that the same microscopic state, say A, corresponds
to a set of microscopic configurations that it is not possible to observe, called the
dynamic image of A, which, in turn, implies an accurate microscopic description is
not necessary to obtain an accurate macroscopic one.

The Lattice Gas Cellular Automata (LGCA) can be derived from the above
idea. The phase-space is completely discretized in such a method: fictitious particles
stream and collide on a fixed lattice. These fictitious particles can stream with only
a small number of velocities, instead of the infinite ones characterizing their real
counterparts. Each velocity is associated with one direction in the lattice model
considered. The name of this method reveals the fact that it belongs to a class
of models, named Cellular Automata. These models appeared for the first time in
the early fifties, thanks to S. Ulam and J. Von Neumann. Their distinctive feature
is that all the state variables are discrete, and are updated by means of simple
evolutionary rules, usually local: thus, they are perfect candidates for massively
parallel computations. Nevertheless their simplicity, the Cellular Automata have
been demonstrated to be able of modelling very complex systems. The LGCA (and
LB) also belongs to the family of the so-called Discrete Velocity Models (DVM),
because of the limited number of velocities allowed. Because of its parallel nature,
the absence of round-off error, the ease in handling complicated geometries, a great
enthusiasm rapidly grew up about LGCA in the mid-eighties; unfortunately, it was
later frustrated by the emerging of a series of pitfalls that annihilated all its potential
advantages, as it will be shown later. The LB took off just as the cure for such
drawbacks, through a series of successive evolutions. After more than a decade,
although many issues still needs to be addressed, it can certainly be said that LB
has emerged as a valid alternative to classic CFD tools in many applications, and
there are problems, including pore scale modeling or multiphase flows with sharp
interfaces, where it could be defined as the best choice. Besides, its kinetic nature
makes it very promising for microfluidic applications, that are often characterized

by forces having their origin on a microscale like electrochemical interactions.



1.1. OUTLINE OF THE THESIS

1.1 Outline of the thesis

Chapter 2 summarizes the continuum approach and the kinetic theory. In Chapter
3, the LB is presented, starting from its ancestor, the LGCA; the second part of the
chapter deals with the linearized LB with discretized Bathangar-Gross-Krook col-
lision operator (LBGK), currently the most used and simplest LB implementation;
finally the modelling of boundaries within the LB framework is discussed. Simple
two-dimensional channel flow and lid-driven cavity cases are adopted as validation.
The multiphase/multicomponent Shan-Chen (SC) LB is presented in its basic form
in Chapter 4, together with different test cases. In Chapter 5 the Multiple Relax-
ation Times LB (MRT-LB) is presented as solution that increases the stability of
LB at high Reynolds numbers and shows its potential by extending the lid-driven
cavity case. Chapter 6 is concerned with some improvements of the SC model that
have been proposed in the last years; the improved SC scheme is applied in Chapter
7 to the binary droplet collision case at different geometries. Finally, conclusions

and directions for future work are discussed in Chapter 8.



Chapter 2

Two Different Approaches

In this chapter the two different ways of describing the state of a fluid, according to
continuum hypothesis and kinetic theory, will be presented. These two approaches
lead respectively to the Navier-Stokes and the Boltzmann equation. The Navier-
Stokes equation can be recovered from the Boltzmann equation via a perturbative
technique referred to as the Chapman-Enskog expansion. Before presenting the
details of these two approaches it is important to remark that the continuum hy-
pothesis cannot always be applied, while the kinetic description always holds: if,
and only if, the smallest macroscopic characteristic length scale, L4, (for instance
the diameter of a pipe) is much greater than the largest microscopic characteristic
length scale, that is the molecular mean free path, L,,s,, the continuum approxima-
tion is reasonable, because the measured values of intensive and extensive quantities

do not depend on microscopic fluctuations.

2.1 Navier-Stokes Equations

A control volume (2, fixed, or translating with constant velocity, in an inertial ref-
erence frame is considered; having defined 0€) as its boundary, d.S is an elementary
surface, part of the boundary, identified by the normal vector n pointing outside the
volume. The Navier Stokes equations represent how the three observable extensive
quantities specifying the fluid state (namely density, momentum and energy) vary

with time because of fluxes across 02 and productions inside €. To derive these
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equations just the Gauss’ theorem for a vector field A, in a D dimensional space,

and the Reynolds transport theorem for a scalar field B, are necessary:

/ V- AdQ) = A -ndS (2.1a)
Q G)

d OB
— | BdQ) = — - (B 2.1
7 /. L;(at+v (uOdS (2.1b)

in these equations, u(x,t) is the macroscopic velocity field. Unless otherwise
reported, greek letters like «, 3,7,0 are used to indicate Cartesian components of
vectorial fields like velocities or gradients, while 0, = %. Here, and in what follows,
the Einstein convention for summation over repeated indexes in a D-dimensional
space has been applied'. If a fluid with no viscous dissipation is considered, the
conservation equations are named Fuler equations and can be written, in their local

formulation, as:

Op + pOsia = 0 (2.2a)
Opus) = -0l  a,f=1...D (2.2b)
POE + puaOu B = —04(puy) (2.2¢)

where p is the density, £ = (e + “2—2) is the total specific energy, composed by

internal and kinetic contributions, and Hg)ﬁ), represents the inviscid momentum flux
tensor, defined by:
H((xoﬁ) = péaﬁ + puqUg. (23)

This tensor represents the flux of a-th component across the elementary surface
having [ as normal vector. Equations (2.2a)-(2.2c) are written in Eulerian form. A
Lagrangian representation is also possible.

Real fluids are, of course, viscid, and thus the flux tensor has to be modified to
take into account stresses due to shear and compression. Because of random molec-

ular motion, faster molecules migrating into regions occupied by slower molecules

XoYo =30 X, Y.
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give them part of their momentum. That diffusive momentum flux tends to accel-
erate slower fluid regions and to decelerate faster ones, and, for a Newtonian fluid,

is related to the the strain rate, by the following relation:

1 ~
H((;[/B) = _:uaﬂ"/éE’yé? (24)
where HSﬁ) is the viscous stress tensor, and E.s is the strain rate tensor. The
4-th order tensor fi,3,5 relating the aforementioned quantities has to be an isotropic
tensor, because (2.4) must be invariant under any rotation or translation of the

reference frame. The most general form for such kind of tensors is:

ﬁa,@'y& = A(Sab’(;«/é + B5m555 + Cda(g(Sﬁy. (25)

More details concerning tensor isotropy can be found in Appendix A. The strain
rate tensor depends on the velocity gradient one, g.s = Jsu,, that can be decom-

posed into a symmetrical and an asymmetrical term, as follows:

1 1
Jas = Gs + g = 3 (Jap + gpa) + 5 (Yap — 9pa) - (2.6)

Only the symmetric part, ggﬁ, is responsible for deformation, while the asym-
metrical part géﬂ accounts for rigid rotations. The final form of strain rate tensor

is, therefore:

Eaﬂ = 295/3 = 8au5 + 8@1@. (27)

Inserting equations (2.7) and (2.5) into (2.4) and defining respectively the shear
viscosity as u = B+ C and the bulk viscosity as ( = 2A, the so-called viscous stress

tensor can be written as:

Hfjﬁ) = — 1 (Oaug + Oga) — CO4UOap- (2.8)

It is possible now to express the total momentum flux tensor for a viscous fluid:
_ 170 1)
Mo =10,5 + 4, (2.9)

and the momentum balance equation as:
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O(pua) = —0sllap. (2.10)

The substitution of equations (2.2b) and (2.8) into (2.10) allows to write the

momentum balance equation for a compressible fluid as follows:

Orpug + Ogpugg = —0ap + 1t (Oats + Ogtla) + (04U Oap- (2.11)

The conservation equation for total specific energy can be written as:

POE + punOnE = —04(pua) + 0a(k (0,.T)) + P, (2.12)

where the linear phenomenological relation that links thermal flux q to tem-
perature gradient VT' by means of thermal conductivity k£ has been employed:
o = —kO,T; the first term in the right-hand side represent the reversible work
due to compression, while ® is the so-called dissipation function, measuring the rate

at which mechanical energy is irreversibly dissipated into thermal one:

2 1
b = <,u — QE) 8§ua + 5[/« (8au5 + 8gua)2 . (2.13)

To close the system of (2.2a), (2.11) and (2.12) the particular kind of fluid has
to be specified, by means of an equations of state (EOS) : in the case of a perfect
gas, for instance, it is possible to write p = pmRyT, where R, is the universal
gas constant. In (2.11) and (2.12) the transport coefficients p, ¢ and k depend on
density, pressure and especially on temperature; if such dependence is negligible the
coefficients can be treated as constants, allowing to simplify the NS equations. If
the fluid can be considered as incompressiblethe system of equations can be written
as:

O, = 0 (2.14a)

1
O + uglpu, = 5 WP+ V02U, (2.14b)
POLE + pun0nE = p(0aug + 0ptia) O5ta + Oala, (2.14c)

where v = p/p is the kinematic shear viscosity. For an incompressible fluid,
taking the divergence of the (2.14b), leads to the following elliptic Poisson equation,

9



2.2. KINETIC THEORY

which can be used to eliminate the pressure from the set of equations:

O2p = —pOatiaOutis. (2.15)

Navier-Stokes equations have almost all the symmetries of Newtonian mechanics,
thus they possess invariance under continuous spacial-temporal translations, arbi-
trary three-dimensional rotations (isotropy), and Galilean transformations. Because
of viscous dissipation, they do not possess invariance under time reversions. Pre-
viously it has been showed that the isotropy of NS lays in the form of the viscous
momentum flux tensor (see (2.7)). The requisite of Galilean invariance, instead,
determines the form of the nonlinear convective term: the factor multiplying the

momentum convective flux has to equal one [1].

2.2 Kinetic Theory

According to Kinetic theory, the fluid is seen as discrete, composed by a number N
of molecules, each moving according to Newtonian mechanics laws. Since the num-
ber of degrees of freedom for such a system is in the order of Avogadro’s constant
N 4 it makes no sense trying to determine the trajectory of any individual molecule.
Kinetic theory is not interested in describing the evolution of single molecules, but
the collective behaviour of the system by means of statistics. The idea is to consider
a collection of identical K systems having N particles, let them start from the same
initial condition and observe the outcomes, in this case the molecular configura-
tions, of every try. Then it is possible to define a N-particles probability distribution
function (N-PDF) as fn(x1,X2, -+ ,Xn,&1,&, -+ , &N, t) as indicating the relative
number of systems that, at time ¢, exhibits a configuration in which particle 1 oc-
cupies position x; with microscopic velocity &;, particle 2 occupies position x, with
microscopic velocity &, and so on. The fy is said to contain the full statistics of the
whole system [12]. For such function, applying the Liouville theorem, it is possible

to write a transport equation in the form:
Df
Dt

where Q(f, f) is a collision operator. Said M a generic integer in the interval

hf+&-Vf=Q(f.f) (2.16)

10
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[1, N], it is possible to define an M-particles probability distribution function (M-
PDF) far, which is related to the fy by the following relation:

fM(le" aXMasla"' 7£Mat):
= /fN(Xla"' XN, €, aENat)dXM-i-l"'dXNdéM-i-l"' ,d€N (2~17)

Definition (2.17) allows to write a hierarchy of equations for fy (Liouville equa-
tion, fy_1...f1 (the Boltzmann equation). The first equation of this hierarchy,
which is referred to as BBGKY after Bogoliuibov, Born, Green, Kirkwood and

Yvon derived it independently (for more details, see [13]) is given by:

fy  o=[. Ofv . Ofn]
W—f‘z |:Xi' aXi +pi' 3pi = 0. (2'18)

In equation (2.19) the following substitution has been performed:

N

pi=— ), Ny (2.19)

. 0X;
J=Lg#

where Vj; = Vj;||x; — x,|| is the pair-wise intermolecular potential. The whole

hierarchy can be expressed by a general transport equation for the generic fj;:

Ofy . Ofu al Vi Ofu / OVinis1 (Ofmr Ofuna

ZiM . _ 20 M N M : _

ot +; o, J; L, Oxi Op, (N=M) [ dxaradina =5 =\ 750" ™ aparn
(2.20)

Equation (2.20) corresponds to a hierarchy of integral-differential equations called
the BBGKY hierarchy, after . Going down on the hierarchy it is possible to write the
transport equation for a single-particle PDF f | the Boltzmann equation. This equa-
tion, which Ludwig Boltzmann derived in 1872, is particularly significant, because

macroscopic quantities can be recovered as momenta of a single-particle PDF:

e Density

11
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p(x,t) = m/f(x,&,t)dv (2.21)

e Momentum
plox.tyux.t) = m [ €7(x.6.0)dg (2.22)

e Temperature
T(xt) = g [ (€= w) - (6~ u) f(x.& 1)dE (2.23)

2.2.1 The Boltzmann Equation and the H-Theorem

The Boltzmann equation is concerned with the one-particle distribution function f.
This distribution function completely describes the state of the particle, and the
only two causes for its variation are the application of an external force field and

the collisions,

of
ot

+£-§—}{+F‘g—£=9(f,f), (2.24)

in which the first two terms represents the Lagrangian derivative of f, with the
third term representing the effect of an external force term F inducing an acceleration
a; on the right-hand side of (2.24) appears the Collision operator. More details
about its derivation can be found, for instance, in [13]. Here it is worth recalling
that the assumptions upon which that equation is based. Molecules are considered as
hard spheres. The collision term can be initially expressed by means of two-particle
distribution function fo(x1, X2, &1, &2, 1), expressing the probability of finding, at time
t, two molecules having relative distance and velocities suitable to collide. Given N
monoatomic molecules having diameter d, the Boltzmann-Grad limit prescribes that
N — oo and d, — 0, so that the quantity N df, tends to a finite value. The density
is low, making acceptable the hypothesis of two-body collisions. Most importantly,
the chaos assumption (Stossanslauz), means the state of the two molecules going to
collide is not correlated. That last assumption implies that the two events “particle

1 in position x; with velocity &;” and “particle 2 in position x, with velocity &7,

12
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are statistically independent: thus, fs can be expressed as product of single-particle

distribution functions fi:

fa(x1,%2,€1,62,1) = fi(x1, &1, 1) f1(X2, &2, 1). (2.25)

The collision is considered as a totally elastic process. Two molecules are obvi-
ously correlated after having experienced a collision, but for an extremely limited

time. The resulting final form of the collision operator is:

0.0 = [ [ 1Vnl 067 ) S 6 fa gldndéa, (226)

having defined &; and &» respectively as the post-collisional velocities of two
particles, and corresponding pre-collisional ones by primes, while V. = & — €. The
integration is taken over the whole three dimensional vectorial space of velocities
and over the hemisphere ST including all the directions so that the particles are
moving away from each other after the collision. One could be interested in searching

functions ¢ so that the following equality holds:

| o©0a(s, pig=o (2:27)

It can be demonstrated that such a ¢ (called collisional invariant) can only have

the following form:

pE&)=a+b-E+c €. (2.28)

Besides, the following Boltzmann inequality holds:

/Q(f, fin f dé <0, (2.29)

In (2.29) the equal sign applies if In f is a collision invariant. In that last case,

it is possible to write:

f=explat+b-€+c &) (2.30)

13
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which is known as a Mazwellian distribution, and represents an equilibrium status

for density py and temperature 7. Probably the following form is more familiar:

o2 () () e

where kp is the Boltzmann constant and m is the molecular mass. It is important
to note that f°¢ depends on the particle position x only implicitly via the local values

of macroscopic quantities. Defining the so-called H-function:

H:/flnf de, (2.32)

it is possible to demonstrate by using (2.27) that H is a monotonically decreas-
ing function of time, dH(¢)/dt < 0. This is the Boltzmann’s local H-Theorem. The
H-function is bounded from below, and this bound corresponds to the value related
to an equilibrium state, when f is a Maxwellian distribution. A global H-Theorem,
for the whole system, can be derived as well. This is analog of the second law of
thermodynamics, if H is identified with the negative of specific entropy divided by
the Boltzmann’s constant. Interested readers can refer to [12] to find out demonstra-
tions of this theorem. Once solved the (2.24), macroscopic hydrodynamics equations
can be recovered, together with the transport coefficients expressed as functions of
microscopic quantities. The main problem is represented by the complex form of
Q(f, f) (2.26). In order to tackle this issue simplified forms of the collision oper-
ator have been proposed in the past, justified by the consideration that the large
amount of details in the two-body interaction contained into (2.26) is not likely to
have a significant influence on observable flow quantities. Of course there are two

constraints the generic simplified collision operator J(f, f) must satisfy:
e Conservation of the collisional invariants of Q(f, f).
e Existance of an H-theorem.

Both these constraints are fulfilled by the most popular of these simplified op-
erators, which was proposed by Bhatnagar, Gross and Krook [14] and is there-
fore referred to as the BGK operator. The idea behind this formulation is that
each collision modified f by an amount proportional to its departure from the local

Maxwellian distribution define by equation (2.31):

14
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J(f ) =—<[f = 1] (2.33)

1
A
where )\ is a characteristic collision time. The final form of the Boltzmann

equation with BGK collision operator is therefore given by:

af . of of 1

HE g o=t [F - 1), (2.34)

2.2.2 Recovering Macroscopic Hydrodynamics

The Chapman-Enskog expansion is a way to solve the Boltzmann equation by means
of an asymptotic perturbation technique. This section is intended to give a brief
summary of the procedure; the whole expansion can be found for instance in [13].
For the sake of simplicity the external force term is not considere here. Besides
the BGK formulation for the collision operator is adopted. Equation (2.34) can be

expressed in non-dimensional form as [1]:

(2.35)

Of +&Vf=-[f -0, e=Fn=

In (2.35) the perturbation parameter, €, corresponds to the Knudsen number Kn
, which represents the ratio between the characteristic lenght scale of the macroscopic
flow that is being considered Lhydro and the mean molecular free path mep . The

normal solution of (2.35) depends on local microscopic quantities according to:

fx,8,1) = f(x, & p,u,T). (2.36)

It is possible to write the distribution functions expanding them in terms of ¢:

F=> e, (2.37)
n=0

15
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where the following constraints hold:

1] 1
/ defO ¢ = p| u (2.38a)
(€& —u)? | Do
]
/ dg o 3 = 0, (2.38b)
| (6 —u)?

meaning that only the first order term contribute to determine the macroscopic
quantities, mass, momentum and energy. The higher order terms contribute to the

gradients of these quantities. The collision term can be expanded in a similar way:

Of, f7) =Y e, oW =" (" ). (2:39)
n=0 k+l=n
The normal solution of Boltzmann equation can be obtained by solving the equa-
tions successively derived from (2.35) for the different terms of the expansion (2.37).
The 0-th order solution is found out to correspond to the Maxwellian equilibrium
distribution (2.31). The solution for the first order term f™) is expressed by:

FO = X0 + £,.0. ). (2.40)

The macroscopic conservation equations can be finally obtained as moments of

the Boltzmann equation with the normal solutions previously obtained:

[dw@svevn| ¢ | =0 (2.41)
;€ —u)?’
Inserting in (2.41) only the O-th order term of the expansion (2.37) leads to

the Euler equations, while adding the first-order one leads to the Navier-Stokes

equations.
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Chapter 3

The Lattice Boltzmann Method

This chapter is dedicated to the presentation of the Lattice Boltzmann method
(LB). Historically, the LB originated to cure the pitfalls of the Lattice Gas Cellu-
lar Automata (LGCA). Therefore the chapter will start with a description of this
last method, underlying its merits and limitations: every of these drawbacks was
addressed by successive improvements of LB, so the path leading from LGCA to
the most commonly used LB, the single-relaxation time LB, will be described. The
following section are devoted to introduce the different lattice models, to discuss
the implementation and the accuracy of different kinds of boundary conditions, to
illustrate how to scale back from lattice quantities to the corresponding physical
ones. The last part of the chapter illustrates the performance of this basic LB

implementation through some classical test cases.

3.1 The Lattice Gas and the birth of LB

Let us consider a discrete phase space in D dimensions defined by a regular lattice
L univocally described by a set of b velocity vectors €;|{0,1,...,b — 1} connect-
ing each lattice site to its neighbours. In two-dimensions an example of such a
structure is given by the lattice possessing hexagonal symmetry (b = 6). On that
lattice, termed D2(Q)6 model (meaning two-dimensional, six velocity model) or FHP-
[ model (after Frisch, Hasslacher and Pomeau, who first employed that model [15]),

fictitious particles having identical mass m = 1 move according to the following set

17
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of prescriptions:

e The particles can move only in the six prescribed directions defining the lattice,

with velocity given by the corresponding e;.

e In a single time step all particles jump on the next neighbour node according

to their speed. Either longer or shorter jumps are prohibited.

e There cannot be two particles at the same time on the same node moving
toward the same node, therefore, at every time step, the single node can host
a maximum of six particles having the six different speed allowed by the lattice

(exclusion principle).

Figure 3.1: Lattice configuration for FHP-I model at two time steps: each arrow represent a
particle momentum. The black arrows are related to time ¢, while the hollow ones to time ¢t 4 1,

after propagation and/or collision (from [1]).

Once fixed such prescriptions, the state of the system at any single lattice node
can be completely specified by a sequence of zeros or ones, the values assumed
by a set of six occupation functions, n;(x,t), one for every lattice link. The i-th
occupation function will be one at time ¢ if the node hosts a particle traveling along
the ¢-th link, and 0 otherwise: six bits are thus required to express the local state,

while, with N the total number of lattice sites, expressing the global state of the
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lattice requires 6N bits. This system is totally discrete, and belongs to the family
of Cellular Automata. The evolutionary rules consist of two steps: propagation
and collision, to mimic what the particles of a real fluid experience. During the
propagation step, particles are synchronized in jumping to the next neighboring
lattice according to their speed. The propagation operator, S, can be considered as
a shift. Once reached their destination, particles redistribute their momentum along
the different directions characterizing the lattice in the collision step. The collision
operator {;[n] is local, and, whatever is its form, must conserve the local mass and
momentum of the particles hosted on the site. To do that, considering the boolean
nature of occupation functions, it is clear that this operator can just be equal to
[—1,0,1] [16]. Besides, the collision operator must satisfy the so-called semi-detailed
balance, which simply means that one post-collisional state can correspond to a set
of different pre-collisional states. This property introduces irreversibility into lattice
gas dynamics. The aforementioned processes can be condensed in one equation only,
the Lattice Gas Cellular Automata (LGCA) equation:

n; (X + e;At, t + At) — n; (x,t) = Q;[n], i=0,...,5 (3.1)

where n = (ng(x,t),...,n5(x,t))” is the vector of the occupation functions.
In the following the index ¢ will be referred to the different directions of £ and
the explicit reference to the extremes 0...b — 1 will be omitted. The (3.1) can
be considered as the lattice equivalent of the Boltzmann equation, (2.32), without
forcing. It is clear that such an extremely simplified model fails in conveniently
representing the complex dynamics of a real fluid at microscopic level: the phase-
space is completely discretized meaning while real fluid particles can move freely
in every direction, here they are forced to move on a fixed set of directions,and
with a fixed set of speeds! Nevertheless our target is to obtain realistic macroscopic
hydrodynamics and this representation can be adopted for that purpose, provided
that £ has enough geometric symmetries to allow the building of isotropic 4-th order
tensors, as those present in NS (see (2.8)). This is not a trivial aspect, because not
all the lattice models one may think of satisfy this requirement. The best example
is the cross-shaped four speed termed HPP (after Hardy, Pazzis and Pomeau who
defined it) for two-dimensional simulations: this was the first lattice-gas model ever

developed but, as it is demonstrated in Appendix A, it failed in recovering the NS
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equations. In the limit of low Mach numbers, a Chapman-FEnskog expansion, similar
to that presented in Chapter 2, allows to recover the NS equations. The LGCA

attracted a lot of interest from the scientific community in the eighties, because of

the following merits:

The state of every single node can be described by just six bits, therefore the

memory savings are consistent.

The method works on boolean and integer quantities, therefore there is no

round-off error and there is unconditional stability.
The method is intrinsically parallel.

Ease in dealing with complex geometries, thanks to the bounce-back boundary

condition (described in a successive section).

Unfortunately, at the same time LGCA possesses severe drawbacks:

High statistical noise, due to the Boolean nature of the occupation functions,
forcing to perform averages on a big number of sites to have smooth hydrody-

namic fields. That makes vain the memory savings previously mentioned.

The collision operator is very complex, and its degree of complexity increases
exponentially as more physics is added to the model (think of multiphase

flows), or simply when three-dimensional problems are faced.

The macroscopic equations obtained are not Galilean-invariant, and the pres-

sure depends unphysically on velocity.

The number of possible collisions allowed by the lattice is too small (see Figure
3.2), making impossible to reach high Reynolds numbers in the simulations
(less collisions mean higher mean free path, which, in turns, means higher

viscosity).

Despite many efforts, these defects could not be completely cured, until, in 1989
Mc Namara and Zanetti [17] solved the first of them, the high statistical noise:

substituting the occupation functions with their averages, f; , and adopting Boltz-

mann’s chaos assumption (no particles correlation before collision) they wrote the

real-value counterpart of (3.1), the first Lattice-Boltzmann equation:
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3.2. FROM LCGA TO LBGK

fi(x+ e At t+ At) — fi (x,t) = Q;[f] (3.2)

where this time f = (fo(x,t),..., f5(x,t)) is the vector of the averages relatedto
the considered lattice node. These functions can be interpreted as the probability
distribution functions (PDF) of the different particle populations moving on the

lattice.

3.2 From LCGA to LBGK

The first obstacle was at the end overcome, but all the others still remained. The
collision operator inherits all the properties of mass, momentum and energy con-
servation from its LGCA counterpart, including the semi-detailed balance. Having
defined a local discrete H-function as h =), f;(x,t)log(fi(x,t)), it can be demon-
strated [18] that this Ist property is a sufficient condition to satisfy the local (dis-
crete) H-Theorem. As seen in the previous Chapter, this allows us to expand the
distribution functions around the Maxwellian distribution. This consideration was
used by Higuera and Jimenez [19], to simplify the collision operator: their idea was

to use a scattering matriz S;;, driving two-particle collisions only:

Q, = Z Silfi — I3 (3.3)

This simpler collision operator could be used in three-dimensional simulations.
To address the final two pitfalls, it was necessary to take the idea of the lattice-
gas to its extreme consequences: since that the only goal is reproducing realistic
macroscopic hydrodynamics with an extremely simplified, and therefore fictitious,
microscopic model, why one should depend on the ”real” collisions of a model so far
from being realistic? Higuera, Succi and Benzi [20] developed a new model by tuning
the scattering matrix just on macroscopic hydrodynamics, getting rid of the limited
collisionality of the underlying lattice. They achieved that goal relating the nonzero
eigenvalues of S;; to the transport coefficients (the kinematic viscosity, for instance,
is directly controlled by the leading nonzero eigenvalue). The final step consisted
in a further simplification, replacing the full scattering matrix with a diagonal form

Sij = —wd;; in which w represents a relazation frequency and its inverse 7 a relazation
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Input State Output State
3 2
4 1
3 2 5 6
4 1
5 6 3 2

tn
=)

3 2
4 1
5 6
3 2
4 1
5 6

Figure 3.2: Collisions allowed by FHP-I model (From [1]). All the possible collision configura-
tions have been reported, except for those leavigg the state on the node unchanged and for those
equivalent because of the lattice symmetry. The total mass and momentum have to be conserved by
the collision operator. Two- and four-particles collisions are undeterministic, while three-particle
ones are deterministic.
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time. This formulation is therefore referred to as Single Relazation Time LB (SRT).
The final collision operator obtained is the lattice version of the already mentioned
model proposed by Bathnagar, Gross and Krook (BGK), and the resulting Lattice
Boltzmann is termed LBGK model:

fi(x+ e At t + At) — f; (x,t) = —% (fi (x,t) = f{9(x,t)) . (3.4)

In (3.4), At is the time step, expressed in physical units; Az = |e;|At is the
distance between two consecutive lattice sites. The most general form of the equi-
librium PDF, f{:

fieq = Az + Biemua + CZ'U2 + Diemeiguauﬁ -+ O(Ug) (35)

The constants A;, B;, C; and D; appearing in (3.5) are determined in order
to recover the correct macroscopic fluid dynamics at inviscid level, that means the
Euler equations. The constraints that the f{? has to fulfill are:

po= 2 I (3.62)

pua = Y [l (3.6b)
Hgg = Z f{leineip = Pdas + puaug. (3.6¢)

As stated in kinetic theory the viscous part of the stress tensor comes from the

non-equilibrium part of the f;:

00 =" f%ieis = > (fi — f{)eiatis. (3.7)
What is obtained is the following form [21]:
ff(p,a) 1+ ! + L e (3.8)
(p,u) = pw; —€iglle + ==€inCigllaUg | . .
i \Ps p 2 24 plUallp

where ¢, = v RT is termed the lattice speed of sound and is a constant depending
on the lattice model, and the coefficients w; are weighting factors that allow to build
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3.2. FROM LCGA TO LBGK

isotropic tensors even on irregular lattice models like those described in the next
section. The tensors Qo3 = €in€ip are the traceless part of e;oe;3 and are therefore
defined as Qjap = €inCis — C20ap-

After having described the whole process that led to the LB from the LGCA
method it is important to emphasize that the LB can be also derived directly from

the Boltzmann equation, via the following steps [22]:
e Integration of equation (3.34) over a time step At.

e Low Mach number expansion of the equilibrium Maxwellian distribution func-
tion (2.31):

(&-uw?
RT ' 2(RT)? 2RT

+ O(u?). (3.9)

e Discretizationof the velocity space & in order to obtain the minimum necessary

{eili =0...b— 1} required to recover the NS equations.

Whatever is the approach adopted, the Navier-Stokes equations are recovered
by means of a multi-scale expansion. The details of this process can be found for
instance in [1]; here only the basic ideas are reported. The first step consists in

introducing one spatial and two time scales as follows:

8,5 = €8t1 -+ 52@2 (310&)
Do = 20, (3.10D)

In this way physical phenomena occurring at different time scales can be sepa-
rately examined emphasizing their separated contribution to the equations of mo-
tions. The definitions (3.10a) and (3.10b) The generic distribution function is as well
expressed as power series respect to the small parameter ¢ < 1: f; = > 77, ek fk.
The first two terms are sufficient to recover the NS equation, so the power series is

truncated as follows:

Fi= fO 4 efM 128D L O(®) = fr+ 7+ O(e?), (3.11)
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3.2. FROM LCGA TO LBGK

The second step consists in Taylor-expanding up to second order terms the left
hand side of (3.4). Through some algebra the incompressible NS are obtained with
a O(Ma?) term, therefore the LB is said to be a weakly compressible method. Ther-

modynamic pressure and kinematic viscosity are written as:

p=cp. (3.12)
and
27 — 1 Az? 1
v = 76 T‘Z = (T - 5) AL (3.13)

Pressure is therefore obtained by a state equation, rather than by solving an
elliptic equation like (2.15), while (3.13) prescribes that 7 > 0.5. Some comments
concerning the numerical implementation of LB are in order now. First of all it
is important to note that the Courant-Fredrick-Levy number (CFL) is equal to 1,
making LB quite inefficient for solving steady state problems. From (3.13) it is clear
that the spatial and temporal discretization are related to the kinematic viscosity
of the fluid to be simulated. Since ¢, is determined by the chosen lattice structure
L, the temperature is frozen and the presented implementation should be referred
to as athermal LB [23]. From kinetic theory the actual definition of sound speed is
¢s = v/YRT where v = ¢,/c, = 1+ (2/D). In the presented formulation the ratio
of specific heat is therefore 1, meaning the fluid molecules that are being modelled
have infinite degrees of freedom, which of course does not make any physical sense.
The lattice speed of sound is therefore a numerical artifact of the LB formulation,
a pseudo-compressibility parameter that allows the flow to relax to the appropiate

incompressible viscous solution!. If the fluid to be simulated has to retain its physical

'The direct counterpart of LB among classical CFD schemes is the Chorin method of artificial
compressibility [24], in which the isothermal NS equations (2.14a)-(2.14c) are subsituted by:

O¢p + Oapotie, =0 (3.14a)
1

Ottt + ug0aug = —p—@aP + V@iua + ga (3.14b)
0

P= g (3.14c)

where py is the reference density of the incompressible fluid, p is the artificial density, 6 = 1/,/cs
is the artificial compressibilty based on the artificial sound speed cs.
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3.3. THE ENTROPIC LATTICE BOLTZMANN FORMULATION

speed of sound the coupling among space and time scales imposed by (3.13) can
make LB just not practical at all [25]: taking water as example (¢, ~ 1500m/s,
v ~ 107"m?/s), a LB simulation with 7 = 1 would require Az = O(107%m) and
At = O(107Hs)! Concerning the stability, from (3.13) it is clear that to reach high
Reynolds number with a fixed space and time discretization one needs to reduce
the relaxation time. Unfortunately the LBGK formulation become unstable when
7 ~ 0.5 [26]. Alternatively one can increase the number of nodes reducing the lattice
space, but that makes the simulation computationally expensive. A way to tackle
this last issue will be described in the next chapter.

Thermal LBGK has so far proved to be less robust than its athermal couterpart;
energy dynamics is accounted by increasing the number of speeds in order to match
an increased number of kinetic moments, but that makes the schemes prone to
instabilities because of the occurrance of high-order dispersion relations [23]; besides
the Prandtl number Pr is limited to 0.5 because of the SRT formulation [27].

3.3 The Entropic lattice Boltzmann formulation

As stated in the previous section, the BGK formulation is prone to instabilities
when dealing with low-viscosity flows. Instability is related to the occurrance of
negative distribution functions. A LB formulation which is supported by a “lattice”
equivalent of Boltzmann H-theorem (see chapter 2) should possess a higher stabil-
ity. Unfortunately none of the formulations adopting an f{¢ given by a polynomial
velocity-dependent expression like (3.5) can obey an H-theorem [28]. It is never-
theless possible to build alternative formulations of the equilibrium distributions
fulfilling this requirement. That is the idea on which the Entropic lattice Boltzmann
schemes (ELB) [29, 30, 31] are based. The first element characterizing these schemes
is the definition of a convex discrete H-function, that can be obtained evaluating

the Boltzmann H-function (2.32) via the Gauss-Hermite quadrature [31]:

b—1 f
H=> fn <E) . (3.15)
i=0 g

The local equilibrium distribution has to minimize the H-function, as well as to

fulfill the constraints (3.6a)-(3.6¢). The most general expression in D-dimensional
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3.4. LATTICE MODELS

space is given by [29]:

D 2 / 1 2 eia/\/gcs
THla + — u/?
M= pw; | | 2—41- uff) : 3.16
Ji P ( ( 1— u’a/\/g > ( )

where the M reminds that equation (3.16) is analogous to the ordinary Maxwellian

a=1
distribution given by equation (2.31). The ELB equation is given by:
fi(x+eAt,t+At) — f; (x,t) = —a*B (fi (x,t) — [M (x,1)) . (3.17)

Equation (3.17) is characterized by a variable collisional frequency 6 = o*3; (3 is

related to the kinematic viscotiy as follows:

At

= 3.18
g 27 + At (3.18)

while o is derived by solving the following nonlinear equation:
H(f) = H(f + o(f — £°9)). (3.19)

Further details about the resolution of equation (3.19) can be found for instance
in [31]. This formulation achieved unconditional numerical stability. Another alter-
native formulation to tackle the stability issue, the Multiple-Relaxation-Times LB
(MRT-LB), will be presented in chapter 5.

3.4 Lattice Models

The FHP-I model was the first £ which it was possible to build isotropic fourth-
order tensors. In the successive years, other models were developed, like the FHP-
I, having a rest particle permanently laying on the site. This last feature was
introduced in LGCA to increase the number of collisions allowed by the lattice in
order to reach higher Re numbers, and was kept in LB too. A lattice model is
uniquely identified by the number of dimensions D and by the number of speeds Q:
therefore the FHP-I is referred to as D2Q)6 model, while the FHP-II is the D2Q7 one.

Currently, the most employed model for two dimensional simulations is the D2Q9,
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3.4. LATTICE MODELS

while for three dimensional ones, models with 15, 19 and 27 velocities are available.

All these last models are termed non-regular lattices or multi-speed lattices (MSL)

and , as demonstrated in Appendix A, it was necessary to introduce weighting factors

w; in order to preserve isotropy of the lattice tensors up to fourth order. Each lattice

structure has at least three types of w;, corresponding respectively to the particle

at rest, ey, and to “slow” and “fast” speeds.

D3Q)27 has got a further class of

vectors, indicated as “fastest” speeds. All these coefficients are reported in Table

3.1, together with the corresponding value of c,, while the vectors defining each

lattice model are listed below; finally, Figure 3.3 illustrates all these £ structures.

Model Rest Slow Fast Fastest 2
D2Q7  1/2 1/4 NE NE 1/4
D2Q9  4/9 1/9 1/36 NE  1/3
D3Q15  2/9 1/9 1/72 NE  1/3
D3Q19 1/3  1/18 1/36 NE 1/3
D3Q27  8/27 2/27 1/54 1/216 1/3

Table 3.1: Parameters characterizing different lattice models. NE means not existing: infact

only D3Q27 model has three kinds of speeds, while D2Q7 has just two kinds of speeds.

D2Q9

(Oa0)7 =0
(£1,0), i=1...2
(j:cosg,j:sin%), i =
(0,0), =0,
(£1,0), (0,%1), i=1...
(£1,41), i=5...8
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Figure 3.3: Different lattice models for t%g- and three-dimensional simulations: the zero
speed vector is indicated by a circle, while the slow, fast and fastest speed vectors are respectively

represented by black, blue and red arrows.
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(0,0), =0,
e — 0 (£1,0), (0,+1), i=1...4
(£1,+1), i=5...8

(0,0,0), =0,
el3@l — (£1,0,0), (0,£1,0), (0,0,+1), i=1 ...
(+£1,41,0), (0,+1,+1), (£1,0,+1), i=7 ...
(
(0,0,0), i=0,
D321 _ (+1,0,0), (0,£1,0), (0,0,+1), i=1...6
' (£1,41,0), (0,+1,+1), (£1,0,%1), i=7...
(£1,41,41), =19 ... 26

\

3.5 Inserting a body force

(3.22)
(3.23)
18
5 (3.24)

In many applications the flow is driven or influenced by a body force F. Many

different ways to incorporate the effects of body forces into the LB framework have

been proposed: this section is dedicated to a brief description of the most common

methods. It is worth to underline that all of them led to the corresponding Navier-

Stokes equation via the Chapman-Enskog expansion.

3.5.1 Calculating the equilibrium distribution via an altered

velocity (Method I)

This method consists in modifying the equilibrium speed appearing in (3.8) to take

into account the momentum change occurring at each time step because of the force

F. We have f{? = ff%(u®,t) where:
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3.5.2. ADDING AN ADDICTIONAL TERM TO THE BOLTZMANN
EQUATION (METHOD II)

u=u+ _F. (3.25)
P

In (3.25) u = ), fie;/p. The macroscopic fluid momentum j is the average of

the momentum before and after the collision:

1
j=pu+tF (3.26)

This method is first-order accurate in Au, and it is part of the original formula-
tion of the so-called Shan-Chen model for multiphase flows, which will be described
in Chapter 4.

3.5.2 Adding an addictional term to the Boltzmann equa-
tion (Method II)

The Boltzmann equation incorporating the effect of a body force is given by (2.24).
It is very difficult to evaluate the term J¢ f. Nevertheless, because of the H-theorem
it is reasonable to consider the distribution function to be always quite close to its

equilibrium value, making it possible to write:

Oef ~ O [ = —ﬁR_Tuf“’ (3.27)

This idea can be applied also into a LB scheme: the collision operator of (3.4) is

modified by adding a new term related to the body force, according to the expression:

Lt g e+ 2 (3.28)

T s

Q;

The equilibrium distribution function is left unchanged, and the macroscopic mo-
mentum is obtained by (3.20). This method is applied for instance in the multiphase
model proposed in [32].

3.5.3 Exact Difference Method (EDM)

Both methods I and II lead to NS equations characterized by an unphysical term
given by d3(n7—1/2) (uaFs + ugF,) [33]. This method was proposed in [34] and [35].
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3.6. BOUNDARY CONDITIONS

In order to introduce it, let us consider a uniform flow with density p and velocity
u. In this case the distribution function is the Maxwell-Boltzmann one (2.39). If
a short uniform pulse force F along the flow direction is applied, the distribution
functions persist in the equilibrium form but at a shifted velocity u 4+ Au. For the
LB that means f;(x,t+ At) = f{?(u+ Au) if initially the relation f;(x,t) = f/*(u)
holds. In the EDM the body force effect is accounted by adding a new term to the

collision operator like in Method II:

fi (X + eiAtat + At) - fz (Xv t) = _% (fz <X7 t) - fieq (u7 t)) + Afieqv (329)

where

AffT = ff9(u+ Au,t) — f{%(u,t) with Au= F—At (3.30)
p

With this new method it is possible to achieve fi(x,t + At) = f*(u+ Au) if
initially f;(x,t) = f{?(u). The distribution function are therefore just shifted in the
velocity space, but remain in equilibrium. The velocity change is not dependant on
the 7 like it happens in Methods I and II. The action of the body force is computed
exactly, although the LB is a discrete method, therefore this method is called the
Ezact Difference Method (EDM). Moreover, the EDM is fully consistant with the
most general formulation of the Boltzmann equation in presence of a body force
(2.24), it is easy to implement and determines a modest increment of computational
load, because it requires only a further calculation of f{?. Besides, it can be coupled
to whatever form of the collision operator €2, as it will be demonstrated in Chapter
6. Finally the Chapman-Enskog expansion of equation (3.29) shows that no any

addictional incorrect terms related to F appear in the NS equations [34].

3.6 Boundary Conditions

In this section some of the different kinds of boundary conditions (BCs) developed
for LB are reviewed. As for every CFD method, even in LB a fundamental role in

determining the accuracy is played by the BCs, which, of course, have to be expressed
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3.6. BOUNDARY CONDITIONS

in terms of the probability distribution functions. Considering a computational
domain enclosed by a boundary 0f2 and a lattice node x which in the most general
case has one or more of its links cut by 0€2. After the streaming step some of the
fi(x,t) are unknown. The formulation of the BCs in the framework of LB consists in
the determination of these unknown distribution functions incoming from a fictitious
layer of points outside the computatinal domain, fiin, in terms of the known ones
f; [16] in order to recover the macroscopic quantities or the macroscopic gradients

prescribed at that boundary: .

M) =33 Blx - y) 2% (x). (3.31)

y g
N , s

L ) ( S

6 2 5
- o )
v — L

0"‘ .“0
"‘ 0”
4

Figure 3.4: General framework for Boundary conditions.

In (3.31) B is the BC operator, depending on x but even of the neighbouring
nodes y. Figure 3.4 explains the point: for the sake of simplicity, a two-dimensional
flow dealt with the D2Q9 model is considered; besides the node x lays exactly on
a straight boundary. After the propagation phase in x there are 6 known distri-
bution functions, namely fo, fi, f3, f1, fr and fg, while f5, f5 and fs have to be
determined. It is important to underline that some boundary conditions schemes
like those presented in [36] and [37] are based on the substitution of the whole set
of distribution functions. In these schemes the vision of a fictitious layer outside
the computational domain is abandoned. The boundary condition scheme should

account for the physical modelling of the interaction occurring on the boundary, for
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3.6.1. PERIODIC BOUNDARIES

instance between a fluid and a solid surface. Since it has to respect the constraints
imposed by the mass and momentum conservation, it can happen that the number
of unknown overtakes the number of constraints, leaving some “degrees of freedom”
to insert physical models. Therefore, when developing a new BC, the challenge is to
include as much relevant interface physics as possible without making too hard the
problem from a mathematical point of view. Keeping in mind the recovery of macro-
scopic quantities like density and speed one might think of simply assigning to the
unknown f; the corresponding equilibrium values: this strategy has been followed
for instance in works like [38], [39] or [4], concerning the simulation of the flow in a
lid-driven cavity in order to model the moving wall. This approach is intuitive but
not correct, because it ignores the nonequilibrium part of the distribution function
which, as seen in (3.7), is responsible for the viscous part of the stress tensor [40]
and is directly related to the velocity gradients. Therefore this approach has not
been considered in this study. In what follows the implementation of some typical
boundary conditions like periodic and solid boundaries into the LB framework will
be discussed, while two of the different schemes proposed in the literature for pres-
sure (which should be termed density boundary conditions because of (3.12)) and
velocity BC are reviewed in this section, namely the one proposed by Zou and He
[41] (ZH) and the extrapolation scheme proposed by Guo et al. [42] and [43].

3.6.1 Periodic boundaries

After this brief introduction, let us start with periodic boundaries: dealing with
such boundaries is very simple in LB, because all that has to be done is copying the

outgoing PDF's from a boundary as the incoming PDF's of the opposite boundary.

3.6.2 Dealing with solid walls

Much work has been devoted to search for accurate BCs for solid walls: the sim-
plest model available for such purpose comes from LGCA, and is called full-way
bounce back scheme(BBK). According to this scheme, depicted in Figure 3.5, when
a particle distribution streams to a wall node it scatters back in the opposite di-
rection, toward the originating node, reached in two time steps. The BBK is very

easy to implement, and can be employed to represent even complex geometries like
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3.6.2. DEALING WITH SOLID WALLS

curvilinear surfaces that are approximated as stairs. Adopting this scheme means
no collision process occurs at the boundary because not all the f; are known. If the
velocity is measured after the application of the boundary condition, but before the
application of successive propagation step, a non zero slip velocity can be measured
on the boundary: in [44] an expression of such velocity was given for the Poiseuille

flow case, from which it is clear the BBK is first-order accurate only:

_ 2u,
~ 3n?2

In (3.32) n is the channel width in lattice units. A first improvement is given

(27 — 1) (47 — 3) — 3n] (3.32)

Us

by the so-called modified bounce-back scheme: it consists in mirroring the unknown
PDF's with the corresponding opposite distributions streaming out from the compu-

tational domain:

fiin _ fgout7 (3.33)

where fz-in is the unknown, incoming PDF on the i-th direction, while f;OUt is
the outgoing PDF along the opposite direction 7. This time, collision occurs on the
node, because all the distributions are known. This scheme has the advantage of
not requiring a special treatment for corner nodes and most importantly achieves a

second-order accuracy [44], as confirmed by the expression of the slip velocity:

U

S [47 (47 — 5) + 3]. (3.34)

Ug =

Another variant consists in applying the BBK scheme, but placing the wall be-
tween the bounce-back and the first fluid raw: this scheme, termed halfway bounce-
back (HWBBK), is second order accurate [44]. It is worth to underline that these
orders of accuracy were obtained for a simple case like the Poiseuille flow. Further

investigation is necessary for more complicated flows, like the driven cavity problem.
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Figure 3.5: BBK scheme on a D2Q9 lattice. Bounce-back nodes are depicted in

black.

3.6.3 Zou and He scheme

This scheme can be applied to both velocity and pressure boundaries. Considering
again Figure 3.4, in both cases the unknowns are f5, f5, and fg, plus respectively
the density p and the speed component normal to the boundary. Four equations are

therefore necessary: the first three come from (3.6a) and (3.6b); the remaining equa-
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tion is obtained assuming extending the bounce-back rule to the non-equilibrium

part of the f;, normal to the considered boundary:

(1) _ @)
fi,n - fi,nopp (335)
where €; 0y, = —€; (in the particular case of Figure 3.4 equation (3.35) means

fo— f57 = fa— fi%). Considering for instance Figure 3.4 as representing a velocity

boundary it is possible to write after some algebra:

p = 1—1u [fo+ fit fa+2(fa+ fr+ fs)] (3.36a)
f2 = fut gpuy (3.36D)
s = Jri— %(ﬁ —f3)+%pux+épuy (3.36¢)
fe = Jfs+ %(fl — f3) — %pux + %puy. (3.36d)

The collision step is applied even on boundary nodes. Special treatment is re-
quired on corner nodes, where the previously seen constraints are not enough to
match the number of unknown distributions. An example is reported in Figure 3.6:
supposing to deal with top node of a channel inlet the unknowns relative to the
black node are p, f1, fi, f5, fr and fs.

The idea is to use the same constraints seen before, plus another non-equilibrium
bounce-back rule because there are two couples of distribution functions normal to
the boundaries: in this case that means fo — f39 = fy — f{% and f1 — fi? = f5 — f3".
The density is extrapolated by the closest node where it is known (the red node in

Figure 3.6). The final outcome is given by:

fi = Js (3.37a)
fi = [ (3.37h)
fs = fr= %(p—fo)— (f2+ f3+ fo) (3.37c)
fs = Je (3.37d)
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Figure 3.6: Sketch of distribution functions at a corner node (indicated in black). The un-
knowns are depicted by dashed arrows.

A similar procedure can be followed on the other corner nodes. It is important
to notice that this BC can model a general velocity boundary, therefore it is possible
to impose a velocity profile at an inflow, or even to deal with moving walls (as will
be shown in the next chapter). This BC enforces the velocity value explicitly, but
nothing is specified about the stress tensor. Nevertheless it can be demonstrated
that the stress tensor is correctly recovered. For three-dimensional problems the
algorithm needs to be modified, because from (3.6a) and (3.6b) come four equations,
which do not match the five (£ = D3Q15) or nine (£ = D3@Q19) unknowns. The
procedure suggested in [41] is quite complex: considering again a velocity boundary,
first of all (3.35) is applied to all the unknown populations, recovering the normal
macroscopic velocity u,; subsequently the excess of momentum in the remaining

directions (3 is evaluated as:

0 = Z fi(l)ew for # n. (3.38)

i#n
The last step of this procedure consists in the redistribution of dg over the un-
known distributions in order to obtain the final non-equilibrium part consistent with
(3.6b), which is here termed g\":

i .
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1
M — @ _ § :_ 305 for all unk ; 3.39
9; f —eipds  for all unknown fis ( )

B#n
where ng is the number of unknown particle populations having e;s # 0. The
complexity of this process makes the ZH scheme not the best choice for 3D simula-

tions. This scheme cannot be applied to curved boundaries.

3.6.3.1 Extrapolation BC

Considering the boundary node depicted in Figure 3.7 and the unknown fo(B,t) dis-
tribution, it can be written as the summation of an equilibrium and non-equilibrium
part fo(B,t) = f(B,t)s + f*(B,t)s. This BC consists in computing both these
terms with an extrapolation from the corresponding distribution in the neighbour
fluid node E (indicated in red in Figure 3.7). Starting from f;*?, from (3.11) comes
that f7°¢ = ef{". Since node B is neighbour of node E and Az = ec 7 can be
extrapolated from node E, as f3/(B,t) = e(fY(E,t)s + O(e) = f3“U(E,t) + O(e)*.
The next step is to determine the equilibrium part. Considering for instance a ve-
locity boundary, the unknown on node B is the density pgp. Adopting the f{¢ form
proposed in [45] for reduce compressibility effects it is possible to approximate the

equilibrium distribution using the density in node E:

O
—
A
e -
Y ‘D

—C
L
«

A= ) \
8%, fz 5
) 3 B“" o e
T
Z s 2 2
4 ‘4 \ 8

Figure 3.7: Sketch of extrapolation boundary condition.
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3.7. RESCALING TO PHYSICAL QUANTITIES

e 1 I
2! = pEW; + pow; (geiauBa + ﬁemewuBauBﬁ) - (3.40)

Since pp — pp = (ey - Vp)Axr = O(Ma®e) it is possible to write:
S4B, t) = 51+ O(Mae). (3.41)

From (3.13) the Ma number can be related to the Re as follows:
1
Ma=U./cs = (7‘ — —) EAI. (3.42)

Chosing 7 to have (7 — 1) ¢ = O(1) will lead to Ma = O(g), thus from (3.41)
second order accuracy follows. Pressure boundaries can be modelled in a similar

way, obtaining the same order of accuracy.

3.7 Rescaling to physical quantities

Table 3.2 summarizes the relations occurring between the most important fluid
properties expressed in lattice units (LU) and the corresponding physical ones: in
the formulas reported, m represents the molecular weight of the considered fluid,

while ¢ = Az /At is referred to as the lattice speed .

3.8 Test Cases

In this section the accuracy of the different BC schemes for solid walls modelling will
be discussed by considering two classical test cases, namely the Poiseuille low and
the lid-driven cavity. These cases are both 2D so the £ is the D2Q9 model defined
by (3.21).

3.8.1 Poiseuille Flow

It is interesting to discuss the relation between the body force and the flow one wants

to simulate. For some simple cases it is easy to relate F to the flow characteristics.
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3.8.1. POISEUILLE FLOW

Quantity LB Real
Density p="3f  pr=mp
Macroscopic speed u= %Zl fie;  u=cu

Speed of sound Cs c;’eal:csc

2

Pressure p= cip preal:(%) mp
Relaxation time T rreal =7 At
Kinematic viscosity v=(2r—-1)/6 vel=pAZ

Table 3.2: Relations between lattice and physical quantities.

The two-dimensional Poiseuille flow is such an example: for Re < 2000 the regime
is laminar and both the time derivative and the nonlinear advection terms are null.
Given z, y and u respectively to represent the main flow direction, the crossflow
direction and the x-velocity component, the incompressible NS (2.14b) reduces to a

balance between the pressure and the viscous term:

Ozp = —V0yyu. (3.43)

The flow is pressure driven; it was shown before that pressure and density are
related by a state equation in the LB framework, and that the term ¢, is related to the
temperature: for an isothermal, and incompressible flow like this one the question
is obvious: where does the pressure gradient come from? This is the drawback of
avoiding to solve a Poisson equation: since that the speed of sound has to be of
O(1) in lattice units, pressure and density fluctuation are of the same order. The
solution, if one wants to keep density constant (apart from the small variations due
to the aforementioned weakly compressible nature of the method), is to mimic the
effect of the pressure gradient by means of a constant body force. Equation (3.43)
can be analytically solved, giving a parabolic velocity profile depending only on the

y coordinate:

i o= o <1_E> (3.44a)
u, = 0 (3.44b)
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3.8.1. POISEUILLE FLOW

where U, is the maximum speed, reached in the centre of the channel cross
section, and H is half of the height of the channel itself. The pressure gradient GG

driving the flow can be related to this velocity:

Pin — Pout _ 8pVUc
L H?

Where p;,, and p,,; are respectively the constant pressures at inflow and outflow

(3.45)

sections. It is now sufficient to put into (3.45) G = PinZPeut and to apply periodic BC
at inflow /outflow sections of the channel to observe the expected parabolic profile.
This flow case was studied here with the LBGK model. The full-way bounce-back
(BBK), the modified bounce-back (ModBBK), and the ZH scheme were employed
and their accuracy evaluated at two Re numbers, 6 and 30. In all the simulations

the following conditions were used:
e The tube length is twice its height.
e The initial density is pg = 1.0.

e A parabolic velocity profile with maximum speed U, is imposed at the inflow,
while a constant density (pressure) p,,; = 1.0 is imposed at the outflow. Both
these boundary conditions are realized employing the scheme proposed by Zou

and He, explained in the previous section.

e Relative error is measured by means of the expression:

Zz‘,j <|ux(@7]) - Ex(%]” + |uy(2>]) - dy(%])l)
2y (a2, 9) [y (2, 9)1) ’

where all the sums are defined on the whole computational domain, while

FE =

(3.46)

Uy (i, ) and (i, j) are the analytical solution values as defined by equations
(3.44a) and (3.44b) .

e Convergence is evaluated every At = 1000 steps, and is considered achieved

when the 2 velocity fields fulfil the following condition:

> o \/(ux(x, t) — ug(x,t — At))2 + (uy(x,t) — uy(x,t — At))2
SV (U (x, 6 — At + uy(x,t — At)?)
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3.8.1. POISEUILLE FLOW

3.8.1.1 Re=6

The relaxation time equals 1.0, so that kinematic viscosity is, in lattice units, v =
1/6 in every simulations. Different grids have been considered, namely 20x11,
40x21, 80x41 and 160x81: the centreline velocity is chosen respectively equal to
Umaz = 0.1, 0.05, 0.025, 0.0125, according to the desired Re. Figure 3.8 summarizes
the results obtained: as it is possible to see from the left picture, related to the
160x81 case, the u-component velocity profile along the cross-section of the channel
matches the analytic solution almost perfectly, especially employing ModBBK and
Zou-He BCs; the simple BBK exhibits a slight discrepancy, especially in the centre
of the channel, where velocities laying above the analytic ones are produced. More
interesting is the picture on the right, showing the trend of relative error (3.46) as
the grid resolution is increased. From the computed values, the slopes of the curves
related to BBK, ModBBK and Zou-He BCs are, respectively, -1 and -2 confirming
the less accuracy achieved by BBK. In this case, the ModBBK proves to be the best
BC among those tested.

0.014 — o
10 E —— BBK
r F — —e — ModBBK
0012 - — - — Analytic solution r ——————— Zou&He
L BBK

I — —— ModBEK
0.01 ZouaHe 10

Relative Error
>

oy L . 1 . . L . L LY i
20 40 60 a0 1o L 1 L L 1 L T IR I
20 40 60 B0 100

Y {Measured in lattice units) Lattice nodes on cross section

(a) (b)

Figure 3.8: Summary of results for Re=6 case: (a) Comparison between analytic and computed
solutions employing different kinds of BCs for the 160x81 case. (b) Comparison of the accuracies

of the tested BCs.
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3.8.1.2 Re=30

The relaxation time equals 0.6, so that kinematic viscosity is, in lattice units,
v = 1/30 in every simulations. The same grids of the previous case have been
considered: the centreline velocity is chosen, once again, respectively equal to
Umaz = 0.1, 0.05, 0.025, 0.0125, so to always get the desired Re. As Figure 3.9
shows, the results obtained are qualitatively similar to the previous case. Once
again the analytic solution is matched almost perfectly, and once again the BBK

demonstrates to be the less accurate BC.

0.014 —

0012 - - - gzmum\mnn , — e+ BBK
o — hedsek L — —s— - ModBBK
L o ZouiHe F ———= Zou & He
0.01 h r
s
B = E o

& LN 5
0.008 - o () 5 otk
i o L b
L) [ F e,
L = r -,
- e,
0.006 |- % ‘*A....,‘
B (v .‘"-..
I 10 e,
E B,
0.004 |- E e,
| [’ F i
e
L —
0.002 - r o
-,
[ 10t i
5 . . 1 . . 1 . . 1 . . E . . IS ISR IRRVERN SENN RVAN N |
20 40 80 80 20 3 40 50 60 70 80
Y ( measured in lattice units) Lattice nodes on cross saction
(a) (b)

Figure 3.9: Summary of results for Re=30 case: (a) Comparison between analytic and com-
puted solutions employing different kinds of BCs for the 160x81 case. (b) Comparison of the
accuracies of the tested BCs.

3.8.2 The Lid-Driven Cavity

So far, the numerical experiments related to the Poiseuille flow confirmed what was
expected: the BBK is first-order accurate only, while BCs like modified bounce-back
or the one proposed by Zou and He achieve a second-order accuracy. But is that
always true? To answer that question, it is worth to consider a more complicated
flow: the two-dimensional lid-driven cavity problem constitutes such an example.
Many important phenomena like longitudinal and corner vortices, Taylor-Gorter
vortices, transition and turbulence can be observed in this closed geometry. That

made this flow the object of a high number of either experimental or numerical
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3.8.2. THE LID-DRIVEN CAVITY

studies. A complete review of the literature concerning this case is given in [46].
Given a rectangular cavity with depth H, width W and aspect ratio D. = H/W,
the fluid flow is driven by the top wall moving at speed Uy. The resulting Reynolds
number is Re = WUy /v. In this section the most widely studied case of D, = 1 is
examined. Table 3.1 summarizes the simulation parameters for some of the different
cases studied. Since there is no analytical solution for this flow the benchmark is

given by the performance reported in other CFD and LB works.

Re U v(Az?/At) T Grid Size

100 0.01 0.0256 0.5768  257x257
200 0.1 0.128 0.884  257x257
400 0.1  0.064 0.692  257x257
1000 0.1  0.0256 0.5768 257x257

Table 3.3: Simulation parameters for the lid-driven cavity flow.

The kinetic viscosity, in lattice units, is obtained from the Reynolds number;
then, the relaxation time is computed by using equation (3.13). Each case is studied
applying, for the three solid walls, the same three boundary conditions considered
for the Poiseuille flow and the ZH scheme for the moving wall. Figure 3.10 shows
the streamlines for the four cases. The streamlines have been calculated using
TECPLOT ™: the result was similar to what found by integrating with trapezoidal
rule the velocity field as done in [38]. These pictures are relative to the usage of
ModBBK as BC for solid walls; anyway, all the simulations show a good behaviour
of simple BBK, while applying the scheme of Zou and He to all the walls does not
give satisfying results. It is clearly visible the movement of the centre of the primary
vortex, as the Reynolds number increases, toward the bottom of the cavity. The good
performance of BBK scheme is evident from Figure 3.10, where the non-dimensional
velocity components computed along the horizontal symmetry lines are compared
to the benchmark solutions of Hou et al. The results are compared, in each case, to
those obtained in [38]. The plots reported show a very good performance achieved by
the BBK scheme, which corresponds to a solution almost indistinguishable from the

benchmark one. That is not surprising, since in [38], the same scheme is employed
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3.8.2. THE LID-DRIVEN CAVITY

at solid walls, while the moving wall is modelled giving the distribution functions
their equilibrium value, as previously stated. It is important, anyway, to underline
that the ModBBK scheme does not produce significantly better profiles. Table
3.4 reports the coordinate of the centres of the vortex formed in the cavity. The
computed values are compared again with [38] and to those obtained by Ghia [47]. In
this last work, a multigrid solver related to a vorticity-stream function formulation
is employed. In LB, since that the primary variables are the PDFs, the stream
function can be obtained by integrating the velocity component. Once again, the
agreement is encouraging and the performance of BBK is very close to that of
ModBBK scheme. To evaluate the accuracy of the different boundary conditions,
a series of tests with Re = 1000 and three different meshes have been conducted:
coarse (65 x 65), medium (129 x 129) and fine (257 x 257); the accuracy is evaluated
using the formula [48]:

. log [(O | dpan — Gan | /N) O | dn — dan | /N)]
log(2)

(3.48)
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(a) Re=100 (b) Re=200

(c) Re=400 (d) Re=1000

Figure 3.10: Streamlines computed for the different cases.
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Re v, T Ye U, (x10%) X Ui U,.(x10%) Z, Yy
100 a 0.1034 0.6172 0.7344 -0.0175 0.0313 0.0391 -0.0125 0.9453 0.0625
b 0.1030 0.6196 0.7373 -0.0172 0.0392 0.0353 -0.0122 0.9451 0.0627
¢ 0.1031 0.6192 0.7370 -0.0173 0.0390 0.0355 -0.0124 0.9451 0.0626
d 0.1036 0.6180 0.7365 -0.0183 0.0365 0.0397 -0.0120 0.9448 0.0625
400 a 0.1139 0.5547 0.6055 -0.142 0.0508 0.0469 -0.645 0.8875 0.1188
b 0.1121 0.5608 0.6078 -0.130 0.0549 0.0510 -0.619 0.8902 0.1255
c 0.1122 0.6192 0.6078 -0.132 0.0547 0.0511 -0.621 0.8902 0.1257
d 0.1144 0.6180 0.6060 -0.140 0.0503 0.0478 -0.624 0.8870 0.1199
1000 a 0.1179 0.5313 0.5625 -2.31 0.0859 0.0781 -1.75 0.8594 0.1094
b 0.1178 0.5333 0.5647 -2.22 0.0902 0.0784 -1.69 0.8667 0.1137
¢ 0.1178 0.5334 0.5645 -2.22 0.0900 0.0784 -1.66 0.8664 0.1135
d 0.1176 0.5320 0.5630 -2.28 0.0870 0.0777 -1.80 0.8603 0.1115

Table 3.4: Vortex centres: values of stream function and coordinates for respectively primary
central vortex (c), lower left (1) and lower right ones (r) . a) Ghia. b) Hou et al.. c¢) Present study

with BBK. d) Present study with ModBBK

In equation (3.48), ¢ represents the quantity considered to test the accuracy, in
this case the u-component of velocity; ¢p, ¢on, and ¢4, are respectively the value
of u on fine, medium and coarse grids, with lattice space doubled each time. An
accuracy of 1.8 has been found for ModBBK scheme, while the simple BBK achieves
1.40. That result is consistent to what was found by Lai et al. [49]. Here the same
test to verify the accuracy was performed, but the BBK scheme was compared to
that developed by Mei, Luo and Shyy [50] for curved boundaries. As previously
observed, the first-order accuracy for BBK scheme was analytically demonstrated
just for fully developed channel flows. What is found here suggests BBK can still be
a good compromise between accuracy and ease in implementation and versatility.

Besides, this last series of tests demonstrates that it is not necessary to use too finer
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a grid to accurately describe the flow field.
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Figure 3.11: Non-dimensional profiles of velocity components along the symmetry planes of

the cavity, for the different cases, computed using BBK and ModBBk for solid walls, and compared

to benchmark test by Hou et al..

In the previous sections the LB was shown to be a weakly compressible method.

This compressibility error has been evaluated conducting a series of dedicated tests
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3.8.2. THE LID-DRIVEN CAVITY

with Reynolds number constantly equal to 100. To represent the compressibility,
the mean variation of density, defined as:
__ 2ip(xit)
== 3.49
p N (3.49)
is computed, with N representing the total number of lattice nodes. The average

variation of density across the lattice is given by:

A=Y= 2. (3:50)

This quantity is evaluated with three different speeds of the moving wall, namely
Uy = 0.1,0.05 and 0.01, and its values are listed in Table 3.5, along with the Mach
number . The table shows that:

U 0.1 0.05 0.01

Ma 0.173 0.0867 0.0173
A(x10%) 20  0.74  0.056

Table 3.5: Density fluctuation (Re=100).

A(U. = 0.05) ~ }lA(UC ~0.1) (3.51a)
1
AU, =0.01) ~ =AU, = 0.05). (3.51b)

The values found are in agreement with those stated in [51].
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Chapter 4

Multi-Phase lattice Boltzmann

So far, this thesis has only dealt with single-phase, single component LB. Neverthe-
less, it is just in simulating multiphase/multicomponent flows that LB shows its true
potential. Multiphase flows are ubiquitous in nature and are fundamental in many
industrial applications. Gas-liquid flows as well as particle flows are characterized
by surface forces developing at the molecular level. The accuracy of a numerical
scheme in simulating such flows depend on how these interfacial interactions are
incorporated into it. For classic CFD solvers it may prove very difficult to deal
with applications involving sharp interfaces (which means the interface tickness is
negligible when compared with the characteristic length scale associated to the mo-
tion of the bulk fluids) often changing topologically in time or characterized by high
density or concentration gradients. Additional averaged terms have to be inserted
in NS equations, increasing the complexity, while for a method originating from a
microscopic description of fluids, like LB, the task can be definitively easier. Molec-
ular dynamics can be a valid alternative, only on extremely small time and length
scales because of computational cost.

Since the appearance of LB, twenty years ago, many multiphase models have
been proposed. This chapter is concerned with one of the oldest, but nevertheless
still one of the most used of these schemes: the Shan-Chen (SC) multiphase model
[52] for liquid/gas flows. This chapter opens with some remarks on the behavior
of nonideal fluids, followed by the description of the SC model; then some results

related to two cases, the single droplet under microconfined shear flow and he T-
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4.1. NON-IDEAL FLUIDS

shaped micromixer are presented. Since these flows are both multicomponent, the
extension defined in [53] will be also reviewed briefly. In both cases, the theory
presented is related to the original formulation of the model, adapted to nonregular
lattice structures £. The limitations of this implementation are listed in the last

part of the chapter, together with a review of other multiphase LB models.

4.1 Non-ideal fluids

An ideal gas is a theoretical gas composed of a set of randomly-moving, non-
interacting point particles. The ideal gas concept is useful because it obeys the
ideal gas law, a simplified equation of state, and is amenable to analysis under sta-
tistical mechanics. At normal ambient conditions such as standard temperature and
pressure, most real gases behave qualitatively like an ideal gas. Generally, deviation
from an ideal gas tends to decrease with higher temperature and lower density, as
the work performed by intermolecular forces becomes less significant compared with
the particles’ kinetic energy, and the size of the molecules becomes less significant
compared to the empty space between them.

The ideal gas model tends to fail at lower temperatures or higher pressures, when
intermolecular forces and molecular size become important. At some point of low
temperature and high pressure, real gases undergo a phase transition, such as to a
liquid or a solid. The model of an ideal gas, however, does not describe or allow
phase transitions. These must be modeled by more complex equations of state,
although it is important to remember that presently there is no single equation of
state that accurately predicts the properties of all substances under all conditions.
Probably the most famous equation of state is the van der Waals (vdW) :

pRT 2
— . 4.1
b (4.1)

p:

Equation (4.1) is an example of cubic EOS, which means when expanded has
volume terms raised to the first, second, and third power. Most commonly encoun-
tered phase equilibrium calculations, such as vapour-liquid equilibria, involve only
two phases for which a cubic equation is suitable. Cubic equations have the ad-
vantage that the three values of volume can be obtained analytically without the

need for an iterative solution procedure. The parameters a and b measures respec-
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4.1. NON-IDEAL FLUIDS

tively the attractive forces between the molecules and the repulsive effect due to the
molecular size. For a given EOS it is interesting to plot the isotherms at different
temperatures. It can be seen that there exists a temperature T, = (8a/27Rb) above
which the isotherms do not look much different from those for the ideal gas. However,
at T = Tc the isotherm develops an inflection point at (p. = a/270?, p. = 1/3b).
Finally, for T" < T, the p(p) curve becomes non-monotonic. The point (p,, pe, Tt)
defines the critical point of the liquid gas transition. Above the critical point liquid
and gas phases cannot be distinguished. It is useful at this point to introduce the
so-called reduced variables pr = p/p. , pr = p/p. and Tg = T'/T, so that all liquid
gas systems should look the same in these reduced variables. Figure 4.1 reports the
isotherms pr(pr) of the vdW EOS at different reduced temperatures. Other EOS

possess isotherms with similar shapes.

o 0.8

Figure 4.1: Isotherms related to the vdW EOS at different reduced temperatures.

The isotherm for Tk = 0.9 is evidenced in Figure 4.2b. It is clear that the red
portion of the curve is linearly unstable since (Op/dp) < 0. That means a this portion
of the isotherm must be unphysical [54]. It is interesting to plot the dependance
of the molar Gibbs potential on the pressure at constant T'. This potential can be
computed from the Gibbs-Duhem relation, here rewritten in terms of the specific

density:

dp = —sdT + p~dp, (4.2)

23



4.1. NON-IDEAL FLUIDS

where s is the specific entropy. Integrating equation (4.2) at constant tempera-
ture and knowing the value of the potential in a point A of the curve it is possible

to compute the value of y in every other point:

B
pB — fa = /A p~" dp. (4.3)

Equation (4.3) is represented in Figure 4.2b. Examining these figures it is possi-
ble to see that for p < pg and p > py the density of the system is unique at a given
pressure, while for pg < p < py there are potentially three states corresponding
to the same pressure: of course the system cannot stay in the unphysical region,
while among the two remaining states the system takes the one characterized by the
minimum p. Points C' and G possess the same value of the potential as it can be
seen in Figure 4.2b: only at this pressure two states of the system (liquid and gas

phases) can coezist.

(a) (b)

Figure 4.2: (a) vdW isotherm at T = 0.9. (b) Isothermal dependence of the molar Gibbs

potential on pressure at T = 0.9.

At every temperature is therefore possible to determine this unique pressure and
the corresponding densities, obtaining the so-called coexistance curve. Below po
the system takes the densities indicated by the branch AC' of the isotherm (gas
phase), while above pc the system takes the densities related to the branch CT
(liquid phase). Since puc = pe from equation (4.3) it follows that areas indicated
by closed regions CDE and EFG are equal. The physical isotherm is therefore
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obtained after this equal area (or Maxwell) construction is applied to the original

curve and is represented in Figure 4.3.

Figure 4.3: Physical vdW isotherm at Tr = 0.9 after the equal-area construction.

4.2 The Shan-Chen Model

In chapter 3 it has been shown that the standard LB formulation simulates incom-
pressible NS with an ideal EOS (3.12). In order to study multiphase flows nonideal
effects have to be considered. The SC model consists in expressing the interparticle

interactions via a specific force computed as the gradient of a scalar potential:

F ~ GV (x,t). (4.4)

The SC model depends substantially on three elements: the scalar v, the con-
stant G and the way in which its gradient is computed on £. The first element,
is referred to as the effective mass and depends on the local value of macroscopic
density, ¥(x,t) = ¥(p(x,t)). A typical choice ([52], [55] or [56]) is :

Y = po [l —exp(—p/po)], (4.5)

where pg is a normalization constant usually set equal to unity. This form of
the effective mass reduces to the density p in the limit p < 1, whereas at high

density (p > 1), it shows a saturation. This latter is crucial to prevent density
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collapse of the high-density phases: infact the SC potential is purely attractive,
so that a mechanism stabilizing the high-density phase is mandatory to prevent
density collapse. This form is therefore quite empirical and will be shown later not
able to achieve high density ratios. This issue will be addressed in chapter 6. The
constant G is termed the coupling constant and, as it will be shown in subsequent
sections, it plays the role of temperature. Concerning the numerical evaluation of
the gradient appearing in (4.4) many different finite difference schemes are possible
in principle. Generally speaking one has to choose a certain number N of lattice
nodes y;[{i = 1... N} surrounding x; say ¢;, = x — y;|{i = 1... N}, the next step
is to define a set of coefficients w(|c?|) weighting the contributions of the different

nodes, bearing in mind some constraints:

e To preserve isotropy the sites must be symmetrical about all the axis.
e Closer sites must have a bigger influence than far ones.

e The weighting factors w(|c?|) must be chosen so to build at least 4-th order

isotropic lattice tensors.

The scheme most commonly adopted allows the computation of the gradient of

a generic scalar ¢ considering only the nearest and next-nearest sites to x [57]:

@aqb(x, t) _ Z Ww;€; - a [¢<X + ei) - ¢<X - el)] ‘ (46)

2
o 2cz

The most general form of (4.4) is therefore given by:

F, (x,t) = —c(x, ) Y _w(|c})Ge (x + ¢; 1) Cia (4.7)

The standard way of incorporating the effect of F into the LB is to alter the

macroscopic speed appearing in (3.8) via method I explained in the previous chapter

((3.25)):

i =u+ _F (4.8)
p

The macroscopic momentum is computed via (3.20). It is important to observe

that while the mass is always conserved by the collision operator, local momentum
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4.3. MEANING OF THE COUPLING CONSTANT

is not preserved anymore, and that this momentum variation between pre- and

post-collisional states is just given by the interparticle force:

> Qeia = Fa (4.9)

Total momentum is still conserved. The EOS associated to the SC model is:

p=rct+ SG [ (4.10)

To model wettability phenomena or multiphase flows in porous media it is nec-
essary to incorporate fluid/surface interactions. That can easily be done in the SC

framework [58], introducing another force term similar to what defined in equation
(4.7):

Fou(x) = =9(x) Y w(|cf})Gutu(x + c))e;, (4.11)

where G,, is another coupling constant allowing this time to control the contact

angle, while 1, is just a switch being one if y; = x + ¢; belongs to a solid surface.

With this scheme either wetting (setting G,, < 0) or unwetting (setting G,, > 0)

fluids can be modelled. Analytical expressions of the contact angle determined by
SC model can be found in [59] or [60].

4.3 Meaning of the Coupling Constant

The performance of a multiphase model can be evaluated examining how the model
reproduces the interface evolution in time. Ideally, the model should produce
isotropic interfaces; concerning the thickness, it is certainly not possible to obtain
the values in the order of Angstroms typical of physical interfaces, but nevertheless
the principle is that smaller is better. Most of all the model should be able to at-
tain phase separation at temperatures below the critical level. Besides, the pressure
difference computed at interfaces should be consistent with the Laplace law. In this
section the SC model is demonstrated to fulfil such requirements.

In what follows, equation (4.5) with py = 1.0 is chosen as effective mass; by

plotting p — p curves at different values of G the temperature-like behaviour of the
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4.3. MEANING OF THE COUPLING CONSTANT

coupling constant can be clearly seen [61]. Given G below a certain “critical” value
G. there coexists two densities at the same pressure. The determination of the
critical values for density and coupling constant proceeds exactly as for any other
EOS: by solving the system 0,p|r—r. = 832p|T:TC = 0 one finds that p. = In2 and
G. = —2/9, making evident that T'= —1/G. By measuring the liquid-gas densities
on the opposite sites of a flat interface at a given G < G, it is possible to build
the coexistence curve related to the SC-EOS [62]. The equilibrium densities p, and

p1 are reported in Figure 4.4 together with the corresponding density ratio, which
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Figure 4.4: Coexistence curve and density ratios for SC with EOS given by (4.10).

A 100x100 fully periodical domain is filled by a fluid modelled with equa-
tion (4.10) with the adding of a small amount of fluctuating noise [10]: ¥ (p) =
(>, fi + v€), where v is a random value in [—1,1] and £ = 0.001 is the noise.
The “temperature” is G = —5.5 with uniform initial density p, < p < p;. The
relaxation time is 7 = 1.0. Letting the simulation run for about 1200 time steps a
complete phase separation can be observed, as reported in Figure 4.5. Here liquid
and gaseous phases are reported respectively in red and blue. The system finally
reaches a minimum energy configuration with the remaining of only one rounded
bubble surrounded by liquid. Different tests have been conducted at different noise
levels, resulting in phase separation even at & = 1E~° (of course reducing the noise

level increased the time necessary to observe separation), while the flow was unstable
for £ > 0.01.
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Figure 4.5: Time evolution of phase separation process. G = —5.5.
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The next case considered concerns a single static liquid droplet surrounded by
vapour. The grid is 51x51x51 and periodic BC are again employed. D3Q19 model
is adopted. The droplet has initial radius R; = 12 and is placed at the centre of the
domain. The test run till a 3D equivalent of the convergence condition (3.40) was
satsfied. The coupling constant and the relaxation time takes the same values seen
before, while the droplet and vapour are initialized with the equilibrium densities
obtained by the coexistence curve. The final configuration of the bubble can be
viewed in Figure 4.6, where the small interdiffusion region close to the interface can
be appreciated. The velocity field should ideally be zero everywhere. The simulation
instead produces not-negligible velocities in the interfacial region, which are referred
to as spurious currents. These unphysical currents increase with the density ratio
till they cause the simulation to blow up: their reduction is therefore crucial in order
to achieve high density ratios like those encountered in real gas-liquid flows. Besides,
when considering moving objects like for instance colliding droplets it is important
that the measured velocity field is not “polluted” by spurious currents: since the
characteristic speed has always to respect the low-Mach constraint, it can be really
hard to distinguish between physical and unphysical velocities. The maximum values
of spurious currents module will be indicated here and in what follows as |uls . In
this particular case, with G = —5.9 a value of |u|; = 0.025 was measured. Further
tests conducted at G = —5, G = —6.5 and G = —7 resulted in ul, respectively equal
to 0.0063, 0.04 and 0.0915, while the case G = —7.5 was unstable.

Evaluating the pressure values far from the interface and the corresponding den-

sity gradients, it is possible to determine the surface tension from Laplace’s law:

g

—. 4.12
2Ry ( )

Di — Po =

Different initial radii have been tested (10,12, 14,16, 18), and the pressure jump
has been computed, together with the final radius, for every test. As it is possible
to see in Figure 4.7 the computed points fit a straight line quite well, therefore the

Laplace’s law is correctly approximated.
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4.4 Extension to multicomponent flows

In a multicomponent flow different sets of fj and fj’eq have to be defined for each
species j|[{0. . — 1}, as well as different SRT “stream and collide” equations like
(3.4):

fl(x+ et t+ A — f] (x.t) = —% (7 (1) = £ (x,1)) (4.13)

In equation (4.13) 7/ represents the relaxation time characterizing the j-th
species. The interparticle force this time has also to take into account interactions

among different components:
F(x) = —c¢ (x Zzw lc|)G;5¢ (X + €;)cia, (4.14)

The coupling constant turns out to be a coupling matriz this time, with G; it
The interaction strength between species j and j is controlled by Gj;7, which has to
be positive in order to enforce separation between them. A common choice of the
effective mass for multicomponent flows is 109 = p/ [63]. For each species it is possible
to evaluate the momentum change produced by the corresponding force computed

by equation (4.14) like for the single fluid case:

) J
Wl = o + F, (4.15)
P

where u’ represents an average speed :

Z] T Z fjez
Z] - Z fJ .

The total density at any lattice site is intuitively computed adding the densities of

,_

(4.16)

the single species. The macroscopic momentum is computed by making the average

between the pre- and post-collisional states:
. 1 ,
_ J, j
Plg = EZ flein + 5 Ej F7, (4.17)
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Finally, the kinematic viscosity computed by the SC model with multiple com-

ponent is given by:

/1
— 2 VR I 4.18
v=c Ej X (T 2>, (4.18)

where y/ = p’ / Zj p’ represents the local value of the mass fraction for j-th

species.

4.5 Droplet deformation in microconfined shear

The deformation and breakup of a droplet immersed in a liquid matrix and confined
in a microscopical geometry are fundamental in many microfluidic applications [64].
Despite that the this kind of flow has received less attention than the unbounded
case, where the moving walls are far enough from the droplet to consider the flow as
characterized by only one length scale, the radius of the undeformed droplet R. This
assumption, together with the Newtonian nature of continuous and drop phases, is
the basis of the theory of Taylor, according to which the flow regime is completely
governed by two nondimensional quantities: the capillary number C'a, which rep-
resents the ratio between shear and interfacial stresses, and the viscosity ratio A
between the droplet and the continuous phase. Given 7, u, p and o respectively
the shear rate, the continuous phase viscosity, density and the surface tension, it
is possible to define the capillary number and the Reynolds number respectively as
Ca = Ruy/o and Re = pR*Y/u. To consider wall effects one more nondimensional
quantity has to be defined, the gap R/H where H is half of channel height in the ve-
locity gradient direction. In [65] a systematic study of this flow is reported: the two
higly viscous Newtonian liquids (polybutene for the continuous phase and a mixture
of silicone oils for the dispersed phase) have A &~ 1 and nearly the same density, so
that buoyancy effects can be neglected. The deformation of the droplet is observed
at different shear rates and gaps, observing an increased deformation as the gap is
reduced. The wall influence is here studied with the LB and the multicomponent
SC model. In order to conveniently reproduce the experiments in [65], the two flu-
ids the have same densities p; = po = 0.3 and viscosities 71 = 7 = 1.5, while the

coupling matrix is given by Gi; = Goo = 0 and G5 = Go; = 10. The effective mass
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4.5. DROPLET DEFORMATION IN MICROCONFINED SHEAR

for each species is chosen as the density: 17 = p’. By means of a static droplet test
the surface tension o was computed. Three dimensional simulations were conducted
using the D3Q19 model, and the ZH boundary condition for the moving walls. The
Ca and R/H were varied in the range 0.1 — 0.2 and 0.16 — 0.4, and the droplet

radius R correspondingly varied from 8 to 20 in lattice units. For each configura-

L-B
L+B>

twice the maximum and minimum distancies occurring from the droplet centre to

tion the deformation was evaluated as D = where L and B are respectively
its border. Figure 4.8 illustrates the effect of reducing the gap R/H at constant
Ca. The droplet is more elongated in because of the increased velocity gradient at
the extremes. Comparing the velocity flow field inside the droplet it is possible to
observe one vortical swirl occupying the whole droplet in case (a), while in (b) the

top and bottom are interested by two swirls because of increased inertial effects.

Figure 4.8: Drop under microconfined shear flow at Ca=0.1 and (a) R/H=0.18; (b) R/H=0.18.

Figure 4.9 compares the LB simulations with the predictions from the analytical
model developed in [2] for all the studied cases. The deformation D was measured
once the steady state had been reached. Oscillations were reported at high Reynolds
numbers [66], but that is not the case here, because Re < 1. For both Ca = 0.1
and Ca = 0.2 the average difference is 3%, demonstrating the validity of the LB.
A further reduction of the gap causes the droplet to assume extremely elongated
shapes, more oriented on the flow direction. An unstable case is summarized by
Figure 4.10, corresponding to Ca = 0.46 and R/H = 0.7. It is possible to observe
the the double pinch-off at the ends of the neck region. The comparison with Figure
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3 from [65] demonstrates the LB correctly reproduces the process. As reported in
the experiments, the daughter droplets have almost the same size, suggesting the

microconfined shear flow can be used to generate monodisperse emulsions.
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Figure 4.9: Comparison of droplet deformation at different confinements between LB and the

predictions of [2] at Ca = 0.1 and Ca = 0.2.
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Figure 4.10: Drop breakup at Ca = 0.46 and R/H = 0.7. For the sake of clarity the walls are
depicted too.
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4.6 The T-shaped Micromixer

The mixing of two fluids is an essential process in many microfluidic devices em-
ployed in biomedical and biochemical processes like DNA purification, polymerase
chain reaction (PCR), protein folding and enzyme reaction. The performance of
these processes relies on rapid (order of milliseconds) and effective mixing of sam-
ples and reagent flowing in microchannels. The design of such a device has to take
into account the limitations induced by the particular flow regimes occurring at
microscales. Since typically Re < 1, microflows are laminar. The NS equation is
reduced to (3.31). Turbulence cannot be used to promote mixing, which instead
relies on intermolecular diffusion and convection, both characterized by a specific
time scale. If [ is the length characterizing the mixing process, U the mean speed
in the microchannel and D5 the mutual diffusion coefficient of the couple of flu-
ids considered, the time scales for diffusive and convective mixing tp and t¢o, are
respectively [67] [68]:

tp = 4.1
P~ 9Dy, (4-192)
l
The ratio between t¢ and tp is expressed by the Peclet number Pe:
U
Pe=—. 4.20
Do (4.20)
Finally, the channel length L,, is given by:
Ln,=Uxtp=Pexl (4.21)

The evaluation of these quantities for real problems shows the difficulties in the
design of a micromixer: diffusion in fact is quite a slow process, and a time for
complete mixing in the order of milliseconds can be achieved only if [ amounts to
a few microns; if [ > 10pm diffusion is not efficient, cause L,, would get unaccept-
able, even because longer channels mean higher pressure gradient, with consequent

problems in the design of the micropump. In other words, [ > 100um and Pe > 100
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define a field of operative conditions that necessitates some form of speed up of the
mixing process that does not involve a great increase of pressure drop driving the
flow, which would complicate the design of the micropump. Micromixers are com-
monly classified as active or passive. Active mixing is based on the supply of energy
external to the device, while in passive mixing the flow energy due to pumping or
hydrodynamic potential is used to restructure the flow in a way which results in
faster mixing. The interested reader can find a complete review of the many dif-
ferent solutions proposed in the last years in [69]. In this section the focus will be
on passive micromixers, and precisely on probably the simplest type: the T-shaped
micromizer. This device is simply constituted by two inlet channels leading 2 fluid
streams into a main microchannel where they flow parallel. A variant is the Y-
shaped micromizer, in which the inlets are inclined. In order to increase the mixing
efficiency of such a device, in [3] was proposed to place obstacles in the main channel
of a Y-micromixer. Obstacles do not generate turbulence in the low Re flow regime
characterizing the flow, but their effect is to stir the fluid creating transversal mass
transport. The obstacles can be easily realized by excimer laser or silicon machining.
In [3] the effect of eight diffeferent obstacle layouts on the mixing efficiency of an
Y-sensor was determined by two-dimensional numerical simulations employing the
commercial code MemCFD by CoventorWave ™. This approximation is acceptable
when, say W and H respectively the width and the height of the main channel cross
section, W > H. The fluids considered were water and ethanol at Pe = 200. Table

4.1 reports the main properties of these two substancies.

Fluid Viscosity (kg um™'s™') Dyy (um?s™') Density (kg pm=3)

Water  9.0x10710 1.2x103 0.998x 1016
Ethanol 1.2x107° 1.2%x103 7.89 x10716

Table 4.1: Properties of water and ethanol at 20° C.

The mixing efficiency e, was evaluated for each configuration as in [70]:

T2 X = Xeoldy
iz = | 1— 2% x 100%, (4.22)
fo ‘XO - Xoo|dy

where Y is the mass concentration distribution at the outflow section, y, is the

concentration corresponding to a complete mixing and Y is the initial concentration
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distribution. The LB with the multicomponent SC model has been tested on the
same eight configurations in this study. Two-dimensional simulations where per-
formed for all the configurations listed in Table 4.2 using D2Q9 model. To have all
the boundaries perfectly aligned on the grid, the T-shaped geometry was chosen:
this choice was justifid by what is reported in [71], where it was demonstrated that
the inclination of the inlets has not a significant effect on the mixing efficiency. The
T-sensor is depicted in Figure 4.11, in which one of the obstacle layouts fabricated
and tested in [3] is also reported, while the different obstacle layouts listed in Table
4.2 are sketched in Figure 4.12. Some configurations (indicated here and in the fol-
lowing as “C”) are included in others with bigger number of obstacles, and therefore

are represented in red.

Water Ethanol

Inlet Inlet

=

Figure 4.11: T-sensor geometry with obstacle layouts. The photographic image from [3] refers

to part of one of the obstacle layouts considered in the experiments.

Configuration number 1 2 3 4 5 6 7 8

Number of obstacles 0 1 1 2 3 9 9 18

Table 4.2: Different configurations tested in [3] and in the present study.
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Figure 4.12: Geometry of the different configurations tested.
L H W W, Ly Dgpst In Lo Ly Hy
[3](wm) 1200 (2000) 100 300 200 - 60 - 100 300 90
LU 700 (1000) - 150 100 300 30 100 50 150 45

Table 4.3: Micromixer geometrical parameters in [3] (expressed in pm) and in the present
study (expressed in lattice units).

Table 4.3 compares the most relevant geometrical quantities indicated in Figures
4.11-4.12 between LB simulations and [3]; the main channel is 2mm and 1000 grid
nodes long respectively in [3] and in the present study. The resulting lattice space
Ax is therefore 2um, while the 2 fluids have density and viscosity ratios consistent
with the properties of real fluids reported in Table 4.1. Like in the previous case,
the effective mass for each species is chosen as the density: ¥’/ = p’. Once ¢ and
the coupling matrix elements are fixed, the diffusivity is determined by measuring
the decay of a concentration wave like what was done in [55] and [72]. In order to
get the desired Peclet number of 200, the coupling matrix for this case is given by
Gi1 = Gao = 0 and G = Go; = 1. The BC were BBK on all obstacle surfaces and
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channel walls, ZH scheme for inlet sections and extrapolation scheme described in
section 3.7.2 for the outflow section. In order to evaluate the gradient in equation
(4.13) with the usual isotropic scheme a “ghost” layer of nodes is placed immediately
outside the outflow section: ¢ and j are the indexes on x and y directions, the
abscissas of a ghost node, outflow section node and inside node at constant j will be
indicated by 1, 7, and i,_; respectively. The density on each node i,_; is therefore
extrapolated according to p; = %po — %pi,l. The first test intends to evaluate the
dependance of the mixer efficiency on the flow rate. No obstacles are considered
here. Figure 4.13 illustrates the effect of increasing fluid 1 (water) inflow speed U
from 0.1 to 0.5 by showing fluid 1 (water) concentration contours. Both fluids have
the same flow rate, so the inlet velocity of fluid 2 (ethanol) is adjusted accordingly.
The concentration profiles for fluid 1 in the middle and at the outflow sections of the
main channel(indicated with a red and a black line in Figure 4.13) can be seen in
Figure 4.14 a and b. Slow flows do not need any obstacle to exibit a high degree of
mixing. In what follows the inlet velocity of water is fixed to 0.5. Figures 4.15-4.19
illustrate the performance of the different configurations. The obstacles brake the
symmetry of parabolic velocity profile (here with a small discontinuity because of
the small viscosity difference between the 2 fluids) giving diffusion more time to act.
This is evident in Figure 4.20 where the streamlines and velocity vectors are showed
for configurations 4 and 8. The efficiencies are listed in Table 4.4, evidencing how to
increase the performance it is not sufficient simply to put more obstacles; the layout
makes the difference, as can be deducted by the huge increase when passing from
C2 to C3 which both possess one obstacle only. C8 proves to be the most efficient
configuration, because it forces the fluid to migrate laterally more than any other
configuration tested. Table 4.4 also reports the corresponding efficiencies computed
in [3], evidencing a close agreement with the performance of a commercial code.
The only exception was configuration C3, which was found to be less efficient than
C2, while in [3] it achieves twice the efficiency of C2. This discrepancy is probably
due to a different vertical position of the obstacle in this study wth respect to
what is simulated in [3], as confirmed by the very close match for the other seven

configurations.
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(a) (b) (c)

Figure 4.13: Fluid 1 concentration contours at different U: (a) 0.1, (b) 0.15, (c) 0.5.
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Figure 4.14: Concentration profiles for fluid 1 (water) at main channel mid-section (a) and

outflow sections (b).
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% _

(a) C1 (b) C2

Figure 4.15: LB simulation of T-micromixer for configurations 1 and 2 as proposed in [3].

—

(a) C3 (b) C4

Figure 4.16: LB simulation of T-micromixer for configurations 3 and 4 as proposed in [3].
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(a) C5 (b) C6

Figure 4.17: LB simulation of T-micromixer for configurations 5 and 6 as proposed in [3].

Figure 4.18: LB simulation of T-micromixer for configuration 7 as proposed in [3].
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LB simulation of T-micromixer for configuration 8 as proposed in [3].

Figure 4.19
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Figure 4.20
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Efficiency (%)

Configuration  [3] LB
1 18.0 17.2
2 21.0 22.
3 42.0 20.2
4 44.0 43.8
5 46.0 46.2
6 32.0 31.4
7 53.0 51.3
8 61.0 60.7

Table 4.4: Comparison between the mixing efficiency in [3] and those computed in the present
study with LB for all the different configurations.

4.7 Limitations of the SC model

The different cases presented in this chapter demonstrated how a model like the SC,
developed almost twenty years ago, might still be applicable to a variety of problems
with success. Nevertheless the SC model presents some important limitations, which
opened a lot of room for improvement or for developing new multiphase models.

These defects are listed below:

e Low density ratio achievable: O(10)

e Thermodynamic inconsistency: the thermodynamic temperature is not ex-
plicitly defined; besides the Maxwell construction is satisfied only if ¥ = p.

Unfortunately this is the form of effective mass most prone to instabilities.

e Surface tension coupled to the density ratio: once chosen the coupling constant
G or matrix G;; and the effective mass ¢ the surface tension is fixed. If for

instance a flat interface it is possible to show [73] that:

+o00 QC4 +oo )
o= / (Pyy — Ppp)dy = ——= / |0y |*dy (4.23)

oo 2 [e.o]

which makes evident the dependance of ¢ on G and .
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4.8 Other multiphase LB schemes

Historically, the first multiphase model was developed for LGCA by Rothman and
Keller in 1988 [18]. This approach, referred to as colour model, consisted in identi-
fying the two phases with different colours (red and blue). The collision operator is
modified in order to enforce surface tension among the 2 fluids by sending particles
of a certain colour prefrebly to neighbour sites where that colour is dominant. An
interparticle force depending on colour gradient acts in order to recover interfacial
phenomena like Laplace equation: in this way particles of the same colour are encour-
aged to aggregate. Of course this approach suffered of all the defects of LGCA that
have been pointed out in chapter 3. Thanks to the work of Gunstensen et. al [74]
and Grunau et al [75]the colour model was finally integrated into the LBGK frame-
work. Another class of multiphase/multicomponent models is given by the so-called
free-energy-based models [76]. Their basic idea is to incorporate phenomenological
models of interface dynamics like Cahn-Hilliard or Ginzburg-Landau by means of a
free energy functional, that attains the minimum value in the equilibrium state. The
pressure tensor is defined using the Cahn-Hilliard’s approach for non-equilibrium
thermodynamics. Multicomponent implementations of this approach can be found
in [77] or [78] can be described as “top-down”, because macroscopic parameters like
surface tension can be directly supplied to the model, by choosing an appropriate
form of the free energy. The main limitation of this model consists in the occur-
rance of Galilean non-invariant terms in the hydrodynamic equations. He, Shan
and Doolen [32] proposed a model which is based on a discretization of Boltzmann
equation with specific force applied F(2.24). The specific force includes gravity but
most importantly an itermolecular interaction term which accounts for either a term
expressed as gradient of a scalar potential, representing mean-field approximation,
or Enskog’s correction to consider the effect of exclusion molecular volume. This
model, which will be referred to in what follows as HSD LB, employs two sets of
PDFs, one for the velocity field and the second to reconstruct an index function that
is used to track the interface, as it happens in volume of fluid or level set methods.
Finally it is worth to remember that multiphase means even particle flows: the LB
has been applied with success also to these kinds of flows, which pose issues in the
implementation of BC as well as in the updating of particle positions. All these

problems were addressed for instance in [79] [80] and [81].
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Chapter 5

The Multiple-Relaxation-Time
LBE

5.1 Introduction

In the previous chapter the basic theory of the lattice Boltzmann method has been
presented. The approach followed was to emphasize the continuity of this method
with its boolean ancestor, the LGCA, the defects of which were addressed by the
successive implementations of the LB. In [22] was demonstrated that LB can be
viewed as a special finite difference discretization of the Boltzmann equation (2.24).
Whatever the approach adopted, the passage from kinetic theory described in chap-

ter 2 to a feasible numerical scheme involves the following formal discretization:
e £= ¢

o =/
o f= fi"

As seen in the previous chapter, these approximations allow the writing of a

linear evolution equation:

f(x+e,t+1)—f(x,t)=S(f—£) (5.1)
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5.1. INTRODUCTION

Here and in what follows the LBE is written in lattice units, so that Az = At =
1. Obviously passing from infinite possible speeds to a discrete velocity spaceR?
creates truncation errors and numerical artifacts in the transport coefficients that
can influence significantly the macroscopic hydrodynamics and the stability of LB.
A Fourier analysis is helpful to stress this point. Given a two dimensional flow
characterized by a uniform and steady density p and velocity u = (u,,u,) with a
small imposed fluctuation, so that f; = f+ df, the LBE with linearized collision

operator can be written in vector form as [1]:

OF (x +e;,t + 1) — 6f (x, 1) = S(6f). (5.2)

In Fourier space (5.2) takes the form:

Sf(k,t +1) = A [T+ S]6f(k,t +1). (5.3)

In (5.3) k = (ky, ky) is the wave vector and A,z = exp (ie, - k) dop is the dis-
placement operator. If L = A~ [I+ S|, the solution of (5.3) is equivalent to an

eigenvalue problem:

det[L — 2I] = 0. (5.4)

HydrodynamicTransport coefficients, as well as the hydrodynamic modes are

determined by the eigenvalues z, of L [82]:

(k) = 5 Refln 21 (k) (5.50)
ﬂMWm¢:?mmw&ﬂ (5.5b)
%mnxwz—%mm%mn (5.5¢)
e.(K) + g(K)Veosé — F—TmlIn 2. (K)], (5.5)

k

where zpr and zy are respectively related to the transverse (shear) and the two
longitudinal (sound) hydrodynamic (conserved) modes. Taylor-expanding equations

(5.5) in k it is possible to write:
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v(k) =vo+uk® + ..+ (=D ", kK 4 (5.6a)
(k) =Co+ Gk + ..+ (=D)"CGE + ... (5.6b)
cs(k) = coo + catk? + .+ (= 1) "cen B + . (5.6¢)
g(k) =go+ gk* + ...+ (=1)"g k™ + ... (5.6d)

The coefficient g indicates the Galilean invariancy of the model (ideally it should
be equal to 1). It is important to observe that the usual Chapman-Enskog process
leads just to the transport coefficients in the limit k = 0, which are all isotropic.
Unfortunately anisotropies and violations of Galilean invariance appear already at
second order in k when u # 0 [82]. Ideally one would like an LB implementation
that could be optimized in order to minimize these effects but that is impossible
in the LBGK scheme seen so far, because the only parameter which is possible to
tune is the relaxation time related to kinematic viscosity v. Nevertheless, equation
(5.6b) reminds that there is also a bulk viscosity  appearing because of the weak
compressible nature of LB. If there were the way of controlling ¢ indipendently on
v, or in other words of supplying the LB with some hyperviscosity, the stability of
the scheme could be enhanced.

So far the LB implementation presented was related to the vector space defined
by the velocity vectors characterizing £, V°. Another stream and collide linearized
representation is possible, in the b-dimensional vector space M’ based on the b
velocity moments of the distribution functions, g;[{i =0,1,...,b—1}:

o(x+e,t+1)—g(xt)=-S(g— ) (5.7)

Using this representation is justified considering that from kinetic theory it is well
known that many hydrodynamic processes depends on coupling between different
modes of collision operator of (2.32). These modes are directly related to moments,
making this last representation quite convenient in order to incorporate physics into
the LB. Besides, the physical significance of the moments makes the corresponding
relaxation times directly linked with transport coefficients. The two representations

have to be related by a linear transformation, so that:
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o=Mf (5.8a)

f=M'lp (5.8b)

where M = (vg, vy, ... ,Vb,l)T. To constuct this b X b matrix is necessary to
define from e;|{i =0,1,...,0— 1} a new set of linearly indipendent vectors v;|{i =
0,1,...,b — 1} representing an orthogonal basis for the new space. The guideline

followed is to have a diagonal collision matrix S in (5.7) so to have the simplest
possible collision operator even in MP. This goal can be accomplished via a Gram-
Schmidt procedure in order to diagonalize the collision matrix S of (5.1). The

resulting v; are the eigenvectors of matrix S:

S=M-S-M" = diag (so, 51, ., 51) (5.9)

Finally, combining equations (5.1),(5.7), (5.8)-(5.8b) and finally (5.9) it is pos-
sible to write the Multiple- Relazation-Times lattice Boltzmann (MRT-LB) equation
as [83]:

f(x+e,t+1)—f(x,t)=—-M"S(o— %) (5.10)

The moments can be distinguished into conserved (hydrodynamic) and non-
conserved (kinetic), depending on whether they are conserved by the collision pro-
cess. For athermal flows the first group is composed by density and momentum
components. The ¢{|{i = 0,1,...,b — 1} are functions of the conserved moments
and inherits the symmetries of the underlying £. As will be shown in the next sec-
tion, their expressions provides a first set of parameters that can be tuned in order
to reduce the effects of numerical artifacts of the scheme. Other parameters are
naturally given by the relaxation times: in this case the relaxation of each moment
can be controlled separately [82]. By the definition of conserved moments follows
that the corresponding relaxation times can take whatever value. Special care has
to be followed when body forces are modelled via method I described by (3.18),
as pointed out in [84]. The algorithm behind (5.9) involves some additional steps

when compared to LBGK schemes; it is infact firstly necessary to switch from V?
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to M? via (5.8), in order to perform collision in this space using diagonal matrix S;
finally the post-collisional moments are projected back into the V® via (5.8b) and
the obtained distribution functions undergo the streaming step in order to complete
the update for that time step. The additional computational cost can be reduced

by optimizing the matrix-vector products as specified for instance in [85].

5.1.1 D2Q9 Model

After having described the most general implementation of MRT-LB a specific in-
sight on the implementation related to D2Q9 lattice will be given in this section.

The moments for this model are given by:

. . T
0= (p.e,€,Jz, Gz, Jys Qys Puws Puy) - (5.11)

they are the density p, the momentum j and heat q flux components, the energy
e and its square € and finally the diagonal and off-diagonal terms of the stress tensor

Pzz and pg,. The most general form of the equilibrium moments is [82]:

o == i%/) + é’h (G-d) (5.12a)
oy = = iasp + éw G-J) (5.12b)
Qi,qﬁ =gy, = _icljm,y (5.12¢)
6= it = o (2 53) (5.124)
05 =poy = Q—;ﬂsajxjy (5.12¢)

The free parameters are awo, a3, 71,4 and c¢;. Their values can be calculated
optimizing the scheme according to the guidelines previously mentioned. The op-
timization process involves the analysis of different simple flow cases. The first
example is the flow without streaming velocity: in the k = 0 limit the speed of

sound, the shear and the bulk viscosities are given by:
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1 «Q

2= (242 5.13

=32+ 3 (5.132)
2-¢ (1 1
- - = 13b
D (38 2) (5.13b)
c+10-12¢2 (1 1

— s=—=. 1

o 24 <32 2) (5.13¢)

Since the transport coefficient have to be positive the following bounds for the

parameters of the equilibriummomenta and the relaxation times can be defined:

ay > —16 (5.14a)
—4<c <2 (5.14b)
0<sy<8 (5.14c)
0<sg<8 (5.14d)

Considering instead a flow with constant streaming velocity U = (U,, U,) which
forms an angle ¢ with the wave vector k; equations (5.5) indicates that to the first
order in k the eigenvalues zy and zy give the phase gU cos ¢ and the sound speed
¢s. In order to have gy = 1 one has to set 71 = 4 = 2/3, while 5 = 18. In order
to eliminate the anisotropy in the U-dependence of the shear wave attenuation one
must chose ¢; = —2. All those values lead to the following expression for the shear
viscosity in the limit k = 0:

Vo = [52(2 — s5) [} + (1 = 3¢2)U? cos® ¢ + 3 [2(ss — s2)+

(5.15)
ss(s2 — 2) cos® @] U* cos® @] [6sass(U” cos® ¢ + ¢2)] .

In the same limit the bulk viscosity has the following expression:
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(o= <U coS ¢\/U2 cos? ¢ + 2, {12U2 [(32 — 5g) + 55(s5 — 2) cos? gzﬂ +
(255 — 38255 + 4ss) (1 — 3¢%) } + 3U* cos® ¢ [cos” ¢ (25 — 3sas5 — 855) +
6(s2 — ss)] + 2U% cos® ¢ [6 (s255 — 52 — s3) ¢z + s5(2 — s2)] +

2 [6U%(s5 — s5) + s5(2 — $2)(2 — 3¢2)]) / {125285(U* cos® ¢ + ) } .
(5.16)

The streaming velocity U has therefore got a second order effect on v, which
can be eliminated by using a 13-speeds lattice, together with a first-order effect on
(o that can be tackled by setting as = —8. Finally, in order to obtain the SRT-LB
formulation when all the relaxation times are equal to 1/7 the remaining parameters
as and 74 have respectively to be given the values of 4 and -18. Further details can
be found in [82]. Here it is sufficient to write the final expressions of the equilibrium

moments:

o' =e""=—-2p+3(-j) (5.17a)
0y =e“"=p—=3(-J) (5.17D)
046 = ¢4 = _%jx,y (5.17c¢)
o7 = pil = % (72 -4 (5.17d)
05! = poy = %jzjy (5.17e)

The collision matrix in moment space has the following form:

~

S = diag (0, s9, 53,0, 85,0, $7,0, S5, S9) , (5.18)

where the zero terms are related to conserved moments and sg = sg are related

to the kinematic viscosity; from equations (5.13) and (5.14) it follows that:

(% _ %) | (5.19)



5.2. APPLICATION: THE LID-DRIVEN CAVITY

The other relaxation times are usually set equal to 1. In [82] a local stability
analysis for a system with fully periodic boundaries led to s, = 1.63, s3 = 1.14 and
s5 = s7 = 1.92. The influence of boundary conditions, that can completely change
the stability behaviour, was not discussed. Finally, The matrix relating the velocity

and momentum spaces is:

(101 1 1 1 1 1 1]
4 —1 1 -1 -1 2 2 2 2
4 -2 -2 -2 —21 1 1 1
0 1 0 -1 1 -1 -1 1
0 -2 0 2 0 1 -1 -1 1
O 0 1 0 -1 1 1 -1 -1
0O 0 -2 0 2 1 1 -1 -1
0O 1 -1 1 -10 0 0 0
O 0 0 0 0 1 -1 1 -1

5.2 Application: the lid-driven cavity

In order to verify the increased stability of the MRT-LB over the SRT scheme at
high Re numbers the driven cavity is reconsidered as a test case in this section.
In the previous chapter some results have been presented related to the simplest
case with D, = 1 at relatively low Re. The first part of this section will therefore
extend the results reported in [4], while in the second part the square cavity will be
again considered, but at exceptionally high Re. These last cases are an extension
of what is reported in [86]. All these flows were simulated here with the previously
seen implementation of MRT-LB for D2Q9 model. For each geometry the flow
is described by plotting the streamlines and the vorticity contours. The values of
the relaxation frequencies relative to non-conserved modes were set respectively to
ss = 1.1, s3 = 1.0 and s5 = sy = 1.2, since the values reported at the end of the
last section were found to cause instabilities in many configurations. The remaining
two frequencies were set to sg = so = 1/7. The f{? are in the form proposed in
[45] to limit density fluctuations around the initial density py = 1.0. Finally, the
boundary conditions adopted are BBK for all walls but for the moving, which is

modelled with the extrapolation scheme described in the previous chapter. That
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choice of BC marks a difference with both the LB works considered in this section
as benchmark: infact, in [4] the BC for the moving wall consists in simply assigning
to the unknown distributions their equilibrium value, f; = f{4|{Up, 0}, while in [86]

the extrapolation scheme is applied to model the entire cavity walls.

5.2.1 Rectangular cavity

In [4] LB simulations of flows in cavities with D. € [0.1,7] and Re € [0.01, 5000]
are considered. The standard LB algorithm relies on a regular £. This approach
results in a huge number of points in cavities with high aspect ratios; in order to
tackle this problem, an interpolated LB (interested reader can refer for instance to
[87] or [88]) scheme is adopted. Here the standard approach has been followed, but
the cases where D, > 1 where run parallel. In all the simulations the moving wall
is resolved with 256 nodes, and Uy = 0.1 in lattice units. The first case studied is
D. = 0.1. In [4] this simulation is conducted at Re = 5000, while here Re = 7500,
Re = 10000 and Re = 20000 where considered. The streamlines for all these Re are
reported in Figure 5.1, including the case at Re = 5000 from [4]. When compared
to Re = 5000, the third vortex which in the top of the cavity is more intense,
together with the vortex close to the lower wall at (z,y) = (0.81,0.026). Besides
a new vortical structure centered in (0.65,0.0242) appears. Increasing Re to 10000
lead most notably to the developement of this last vortical structure, the center of
which moves leftwards, together with the left corner vortex. Finally at Re = 20000
a succession of uniform vortex stuctures occupying the whole cavity is visible. In
respect to Re = 5000 case the number of vortical structures increased almost 4 times
for Re = 20000. Vorticity contours are instead represented in Figure 5.2 The next
case considered is related to D. = 0.5. This case was widely treated in [4]: Figure 3
from this reference shows the evolution of the vortical structures when Re changes
from 0.01 to 5000. In the first case there is just one big central vortex plus two at the
corners. As Re is increased the cavity is occupied principally by two counterrotating
structures: the original vortex moved towards the right wall of the cavity, while a
less intense structure occupies almost the whole left part of the cavity. This regime

can be observed in Figure 5.3 (a).
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0.1
(a)
0
01 g
(b) 0.05

Figure 5.1: Streamlines for D. = 0.1 and (a) Re = 5000 (from [4]), (b) Re = 7500, (c)

Re = 10000, (d) Re = 20000.

Figure 5.2: Vorticity contours Streamlines for D, = 0.1 and (a) Re = 7500, (b) Re = 10000
and (c) Re = 20000.
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This configuration substantially holds also at Re = 7500, as showed in Figure
5.3(b), but a new vortical structure is apperaring on the lower wall. Finally Figure
5.3 (c) is related to Re = 10000 and shows that the separation between the two
main structures is more and more pronounced; the part of the left vortex that laid
in the right half of the cavity is now an independent vortical structure; the corner

vortices have increased as well.

Figure 5.3: Vorticity contours (left column) and streamlines (right column)for D, = 0.5 and
(a)Re = 5000 (from [4]), (b) Re = 7500 and (c¢) Re = 10000.

Finally, flow is examined for D. = 3.2. For D. > 1 the trend reported in [4]
sees the cavity occupied by a succession of three counterotating vortical structures
disposed regularly from top to bottom, each of them extending for the whole width
of the cavity. These vortices have centres almost aligned on the vertical symmetry

axis and their intensity decreases as the distance from the top wall increases. Corner
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vortices are negligible. Once again, raising Re breaks the symmetry of this config-
uration: other vortices appear at the boundaries of bigger structures, as showed in
Figure 5.4, which reports the streamlines related to cases Re = 1000, Re = 7500
and finally Re = 10000; these new vortices interact with the three bigger struc-
tures and either at Re = 7500 or at Re = 10000 the cavity is occupied by four big
vortices, as can be seen in figures 5.4b and 5.4c. It is interesting to note that the
bottom vortex moved rightwards leaving space to the upper one. A further increase
of Re is likely to split the upper vortex in 2 new structures. The vorticity contours
for Re = 7500 and Re = 10000 are also reported in figures 5.5a and 5.5b. It is
important to underline that in [4] the case D. = 3.2 is tested only at Re = 1000.

Figure 5.4: Streamlines for the case D. = 3.2 at (a) Re = 1000, (a) Re = 7500 and (c)
Re = 10000.
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(a)

Figure 5.5: Vorticity for the case D. = 3.2 at (a) Re = 7500 and (b) Re = 10000.

5.2.2 Square cavity at high Re

In [86] the flow in a square cavity was simulated with LB for Re up to Re = 1FE6.
This limit has been further increased here, up to Re = 2.5E6 (Figure 5.9). Flow
regimes at Re = 1.25E6 (Figure 5.6), Re = 1.5FE6 (Figure 5.7) and Re = 2E6
(Figure 5.8) are also reported. The grid size is 513x513; tests with a finer grid,
1025x1025 did not demonstrate signficant differencies. Once again, each case is
described via the corresponding streamlines and vorticity contours. The relaxation
time 7 was varied in the range [0.50012288, 0.50006144]. Obviously, since there are
no experimental or numerical works at similar Re, the accuracy of these results is
questionable; what matters here is that they prove the superior stability of MRT-LB,

which allowed stable direct numerical simulations of quite a complex flow.
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Figure 5.7: Streamlines (a) and vorticity contours (b) for D. = 1 and Re = 1.5E6.
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Figure 5.9: Streamlines (a) and vorticity contours (b) for D. = 1 and Re = 2.5F6.
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5.3 Other MRT formulations

A further MRT formulation is the Two-Relaxation-Time (TRT) [89], [90]. Having
defined link as a pair of opposite lattice velocities, a link-wise collision operator is
introduced as an alternative to the MRT scheme previously defined. This formu-
lation can be applied to any kind of lattice structure £. The projections are the
symmetric and the anti-symmetric parts of a pair of populations with opposite ve-
locities. Link-operators and MRT collision coincide for one particular configuration
of eigenvalues associated to symmetric and anti-symmetric basis vectors. This con-
figuration, suitable for both mass and momentum conservation equations, is called
the TRT operator. The TRT collision equals the BGK collision in terms of com-
putational time and simplicity, but it benefits from additional collision freedom to
improve stability, like the MRT operators.

In [91] it was noticed that the MRT-LB previously introduced is not related to
kinetic theory, but rather is a numerical trick based on the weakly compressible
nature of LB; a different MRT formulation was presented in [91]. The starting
point is an ELB scheme: as seen in chapter 3, the ELB formulation is based on the
definition of a Maxwellian equilibrium fj; (3.15) which possesses all the properties
of an equilibrium distribution (conservation of mass and momentum) plus being
the solution of the problem of minimizing a discrete H-function (3.16). In [91] the
equilibrium function has to minimize H under the further constraint of prescribed
diagonal components of stress tensor. The generalized Mazxwellian found takes the

following expression:

fGVi - p H wi(eia)Q—CZ Haa — ClUqq 02 - Haa

eia/c 61204/62
3(c? — o) ( I, + cuaa) (2 Iz, — c%ia)

a=x,y

This new kind of distribution function is the lattice counterpart of the anisotropic
Gaussian distribution of kinetic theory fg exp—(1/2)(e — U)-II"! - (e — U). Con-
sidering the plane (II,,,1l,,) and having defined T'(IT) = 11, + I, as the trace of
the stress tensor, it is possible to define two points M and C; the first corresponds to
far defined by equation (3.15), while the second is the point for which a given trace

corresponds to the minimum of Hg = H(fg). A linear interpolation characterized
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by the parameter \ between these two points determines the point E of generalized
equilibrium:E(X) = (1 — A)M + AE. The collision operator is given by:

Q = Wl (fap(\) — f), (5.21)

where fop = fau (p,w, 15 (u,T), 112 (u,T)). At low Mach numbers 11, =

1M + M= 4 O(U)* and after some algebra one can write:

Q = A (fu()) — ), (5.22)

where A = wBAB™! and the transformation matrices expressions:

A = diag ([0, 0,0], [” T‘] 1,1, 1}) (5.23a)

r— Ty

2 2 2 2 2 T
B = (1,e$,ey,em,ey,emey,emey,e$ey,emey) , (5.23b)

where 7y = (r +£1)/2 and r = 1 — A\. Equation (5.22) defines a MRT operator
Q' characterized by matrix A which possess two-relaxation times (w and 6 = rw)

which are directly related respectively to the shear and bulk viscosities:

(5.24a)

(5.24b)

This model was tested in [91] on Taylor-Green vortex flow, showing its effec-
tiveness with respect to the SRT-LB formulation in improving the stability of the
algorithm. Besides, the implementation of this model is simpler than MRT formu-

lation previously defined.
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Chapter 6

Improving the SC model

As seen in the last chapter one of the main defects of the SC model is the low density
ratio achievable. That is strictly coupled with the existence of spurious currents at
interfaces. In this chapter some strategies for addressing this issue are presented,
based on the incorporation of different EOS and on the increased accuracy of the
gradient operator appearing in equation (4.4). The performance of the model at low
viscosities is also investigated: the performance of the different ways of incorporating
a body force like that upon which the SC model is based is also discussed.

6.1 Inserting new EOS

In [10] but most notably in [9] it was shown how to incorporate different EOS widely
used in the description of nonideal fluid behaviour. To illustrate this idea we consider
again the van der Waals EOS:

pRT 2

- - 1
P=1 (6.1)

As seen in chapter 4, the constants a and b are directly related to the critical
properties of the fluid via relations specific for each EOS. For the vdW EOS they

are:

1 a 8a

c = 57 c = s TC = .
Pe =3y Pe™ o7 97Rb

(6.2)
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Considering a single component case, the thermodynamic pressure computed by
the SC model is given by equation (4.10) and depends on the form of the effective
mass; setting the pressure computed by (4.10) equal to that computed by (6.1)

means writing an equation for the effective mass v, that can be finally expressed as:

~2(p—pcd)  |2p*(x,1)
Y = \/—g 2 \/—gcg (6.3)

where p* (x,t) is the nonideal part of the EOS. Equation (6.3) is very simple,

but has an important implication: it brings an explicit temperature inside the SC
model, thanks to (6.1); the resulting expression for the specific force associated to
SC model is therefore:

(X + e, t)
F, (x,t) = — —eia. 6.4
(x.1) Loy Z G (6.4)

With this form of ¢ the coupling constant is nothing but a sign function that
has to insure the positivity of the square root argument; when computing (6.3)

G = sgn(p*) has to be stored in order to compute (6.4), which takes the final form:

9 ) 2p* ot
F, (x,t) = —c |p * Z ) sgn(p )\/ p*(x+e )|eia. (6.5)

2
Cs

This sign saving strategy was shown to be a potential cause of instabilities [92].
In fact, Taylor-expanding the summation in (6.5)the approximation error is given
by:

1 /2p] 2|p*|
3 C—EV {A[Sgﬂ(l? )] 2 le.c (6.6)

where &€ € [x,x + €;]. Since the derivative of square root is not bounded close
to zero the error expressed by (6.6) can get arbitrarily high in the case p* has a
root in the interval [x,x + €;]. This risk can be avoided by getting rid of the square
root; since (5.1) can be rewritten as F = —V(0.5Gc??) it is possible to discretize

1? instead of ¢ [92]:
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Zw (|e)p*(x + e; , t)eia. (6.7)

Whatever is the form of forcing adopted it is important to underline that any
EOS available in the literature can be incorporated into the SC formulation using
(6.3). A given EOS is characterized by the relations between constants a and b and
the critical temperature, pressure and density. Following [9] other EOS which are
known for being more complex but at the same time more accurate than the vdW

have been considered in this study, namely:

e Redlich-Kwong (RK): EOS

p 6.8
1=y VT (1+tp) ©8)
with

0.42748 R?T?" 0.08664RT.
a= < b=— (6.9)
Pe Pe
e Redlich-Kwong-Soave (RKS):
pRT  ac(T)p?
= - 1
P= "0 1t (6.10)
2
o(T) = [1 +(0.480 + 1.574wy — 0.17w,?) (1 - \/T/Tcﬂ (6.11)
0.42748 R*T? . ART.,
| OAYUSRT? | O00S664RT, 612
Pe Pc
where wy is termed acentric factor .
e Peng-Robinson (PR):
RT T)p?
b= P ao(T)p (6.13)

1—bﬂ_ 1+ 2bp — bp?
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a(T) = [1 + (037464 + 1.54226w,4 — 0.26992w,42) (1 - \/T/Tc>] " (6.14)

A5T24R?T? . T,
a:O D724R | b:OO778RC (6.15)
Pe Pc
e Carnahan-Starling (CS) [93]
1+bp/4+ (bp/4)? — (bp/4)°
(1—(bp/4))
4 272 A8T2TRT.,
CL:O 963 R c b:0 8T2TR (6.17)

Dc Pe

RK, RKS and PR are all cubic EOS: when compared to the vdW they model
differently the attraction term of the vdW. On the contrary, in CS the repulsive
term is different. The presence of the acentric factor in RKS and PR gives these
EOS more flexibility to model real fluids, because w4 is specific for each substance.
In what follows the results have been evaluated in terms of reduced variables:

P p T

= pr=2, Tpr=—, 6.18
Pe f Pe r T, ( )

PR =

where the subscript “c” identifies the critical properties. In this way one may
easily pass from the lattice to the physical value of a certain property. Concerning
the parameters, the choice was a = 9/49 and b = 2/21 for the vdW EOS, while RK,
RKS and PR EOS are evaluated with @ = 2/49 and b = 2/21; finally for the CS
EOS a = 1 and b = 4. The gas constant R is set equal to 1 for all the EOS. The
relaxation time is 1 as well. These values are taken from [9]. The first test consists
of comparing the coexistence curve obtained by numerical simulations (flat interface
test) with the theoretical curve predicted by the Maxwell equal-area construction
introduced in chapter 4. Equation (4.4) is evaluated either with the “sign saving
strategy” (Equation (6.5)) or as proposed in [92] (Equation (6.7)). The case of
CS-EOS is illustrated in Figure 6.1, from which it is possible to see an excellent

agreement when (6.5) is used: the maximum density ratio achieved was about 3250
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at Tr = 0.5. When discretizing ¢)? instead of v the simulations were unstable at the
density ratios higher than O(10) for all the EOS. This order of magnitude is more
or less what can be achieved by using the vdW-EOS. In [92] just the vdW was the
only EOS for which the coexistence curve was computed using a = 9/8, b = 1/3 and
R = 1. The use of this set of parameters did not improve the results here. It is thus
possible to conclude that the set of parameters used in [9] do not cause the change
of sign of (6.6), while the reason for the instabilities when using equation (6.7) is
coincident with the first term of the body force in [94]:

Fo = 0up™ + pkOa(9505p). (6.19)

This form of the body force is referred to as potential form in [57]. The second
contribution missing in (6.7) is associated with the interfacial stress and should
balance the thermodynamic pressure gradient. The effect of this term is to avoid a

step-function-like profile at the interface, which would cause instabilities [94].

11
Maxwell Construction
O SC-LBEquation (6.5)
* SC-LB Equation (6.7)

5N
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Figure 6.1: Comparison between analytical and LB-computed coexistence curve for CS-EOS
using ether (6.5) or (6.7). The parameters are a =1, b=4 and R = 1.

The second test consists of taking a single spherical droplet in a fully periodic
domain and in evaluating the maximum density ratio achievable and the correspond-
ing value of the spurious current |u|s. The grid size is 51x 51 x 51 and the initial
radius is 10Axz. For PR and RKS the acentric factor is ws = 0.344, corresponding

to water. Table 6.1 reports the results which are substantially coincident with those
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6.1. INSERTING NEW EOS

presented in [9]. The interface thickness was measured as function of Tk in Figure
6.2 for the CS-EOS with (6.5). It is possible to observe how it diverges as T — 1.

The minimum value is instead =~ 2.1 for Tk = 0.55.

EOS )\maX Téﬂln |U|S

SC 60.3 058  0.09
vdW 13.9 0.72  0.015
RK 117.65 0.65  0.0687
RKS 85.27 0.79  0.087
PR 2687.7  0.585 0.137
CS 1352.27 0.525 0.14

Table 6.1: Comparison of maximum density ratios achieved with different EOS as reported in
[9] and [10]. The corresponding reduced temperatures and module of spurious currents are also

reported. For SC-EOS is intended (4.10).

Interface Thickness

1 | | | |

06 08 09

07 .
Reduced Temperature

Figure 6.2: Interface thickness as function of reduced temperature for CS-EOS with a = 1,

b =4 and R = 1. Continuous line represent the best fitting for the computed values.
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6.2 Carbon dioxide flow in microchannels

The usage of carbon dioxide, CO,, as a refrigerating fluid in microsystems is getting
more and more consideration because of its particular critical properties: since T, =
31°C', CO4 vaporization occurs at near critical pressure. That means high vapour
density and low surface tension and liquid viscosity in operational conditions. In this
section the CO4y coexistence curve was taken as a benchmark to test for the SC-LB
with the original effective mass expressed by equation (4.5) as well as with the new
form that incorporates the previously defined EOS (equation (6.3)). In [9] the ability
of the different EOS to reproduce real fluid properties were evaluated considering the
system water /steam. The simulations suggested PR as the best EOS for the steam
side of the coexistence curve, while RK was the best in approximating the branch of
the curve related to the liquid state. The acentric factor to be used for RKS and PR
EOS is COy wq = 0.228 for carbon dioxide (while for HoO w4 = 0.335). The results
can be seen in Figure 6.3 relative to the reduced temperature range [0.85, 1] in which
this fluid is used: the best EOS results are for the RKS for both the branches of
the coexistence curve, while the PR completely fails in approximating the liquid
branch; exactly the opposite behaviour can be seen for the CS-EOS (even if the
error is reduced). Finally, the behaviour of vdW-EOS is the worst, confirming the
low accuracy of this EOS.

In [6] the different flow regimes of liquid/gas COy were observed in a microchan-
nel at various mass flux and vapour volume fractions ¢y,. The experiments revealed
a prevalence of slug flow and annular regimes respectively at low and high ¢y. The
slug flow regime is characterized by the aggregation of the bubbles in plugs which are
often bullet shaped: the plugs are separated by liquid regions where small dispersed
bubbles can occur. The annular flow regime consists in liquid layers at the tube walls
surrounding the vapor flow in the core. In this last cases, droplet entrainment was
often observed. Here a qualitative comparison has been performed, similar to what
was done in [5], where an improved version of the free-energy LB with vdW-EOS
was employed. The formulation reported in [5] corrects lack of Galilean invariance
typical of the standard free-energy model by adding a new term to the pressure
tensor which depends on the density gradient [95]; besides, this model has the pe-
culiarity of having the coefficient of equation (6.1) dependent on temperature and

it allows the extimation of the exact thickess of the LB-simulated interface.
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Figure 6.3: Comparison of experimental and simulated CO5 coexistance curve for different
EOS implemented into the SC model: a) Original SC EOS (Equation (4.10)). b) vdW EOS; c)
RK EOS; d) RKS EOS; ¢)PR EOS; f) CS EOS.



6.2. CARBON DIOXIDE FLOW IN MICROCHANNELS

The fluid simulated in [5] is CO4 scaled with a dimensionless parameter X, so that
real fluid properties are recovered when X — 1. The same scaling is adopted here.
Gravitational effects are ignored, and temperature is kept constant, while thermal
effects are considered in [5]. A total amount of randomly distributed vapour bubbles
corresponding to the desired ¢y is placed in a two-dimensional channel. Bounce back
and Periodic BC are imposed respectively on walls and inflow /outflow sections, and
the flow is assumed to be fully-developed pressure driven, with Vp corresponding
to the desired mass flow.

The first case considered is taken from [5]: the lattice is 513x513 and the tem-
perature, vapour volume fraction and mass flow are respectively 1" = 25°C, ¢y = 0.5
and G = 900 kg/ m’s. Periodic boundaries are adopted for inflow/outflow sections,
while the channel walls are modelled with the BBK scheme. Finally the scaling
parameter X is set equal to 60. The evolution of the flow from bubbly to annular
can be appreciated in Figure 6.4: from top to bottom, it is possible to observe the
flow field at various channel locations normalized by the channel height as reported

in [5], in this study [96] and in the corresponding experimental case from [6].

Floww dieclion

L 3

Figure 6.4: From top to bottom, the computation of COy annular flow in [5], the simulation

in the current study (the liquid is represented in red) and a similar experiment in [6]
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6.2. CARBON DIOXIDE FLOW IN MICROCHANNELS

It should be noted that the results of a temporal simulation at different time
instants correspond to different streamwise locations in the experimental visualiza-
tion. Very large liquid droplets form and then evaporate. Such features are harder
to identify in experiments [6]. The annular flow regime develops quicker in the
present study than in [5], but that is consistent with the random initialization of
the process. The qualitative agreement with [6] is satisfactory.

The next case considered shows the development of slug flow from a low vapour
volume fraction: the lattice in this case is 257x 1025, and the corresponding experi-
mental case is T" = 20°C, ¢y = 0.35 and G = 250 kg/mQS. Once again the expected
flow regime is correctly reproduced by the LB simuation, as it can be appreciated

in Figure 6.5.

Figure 6.5: From top to bottom, the evolution from bubbly to slug flow for CO3 in the current

study (the liquid is represented in red) and a similar experiment in [6].
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6.3. ORIGIN OF THE SPURIOUS CURRENTS

6.3 Origin of the spurious currents

In [97] the origin of the spurious currents compromising the stability of the SC model
especially at high density ratios was showed to lay in the insufficient order of isotropy
of the discretized gradient operator in equation (4.4). In fact, Taylor-expanding this

equation it is possible to write:

1

1
a0 B 505,50 (%) + =B 5005000 (x)+

F. = —Geu(x) (Eﬁfﬁ)wx) n .

6.20
) (6.20)
+ﬁEaﬁ’Y59C£naﬁ’75C£ﬁw(X) + ...,

with zero odd tensors because of lattice symmetry and even m-order tensors

given by:

E&Tgaz..am = Zw(|cyl)clalcla2---clam- (621)
!

In order to correctly approximate the gradient the first term of left-hand side
of equation (6.20) is required to be the unit tensor, J,5. As previously stated, the
effective mass 1) depends on density p. For the case of a static droplet p has an
axisimmetric (in 2D) or a spherical distribution (in 3D). It follows that V f should
possess the radial component only, which can be accomplished only if all the lattice
tensors appearing in (6.20) are isotropic. Unfortunately whatever the numerical
scheme used to discretize the gradient, the finite set of velocity vectors will make
this constraint impossible to fulfill for higher order tensors Efﬁ;lm That will always
cause an azimuthal component to exist, which on turn will generate circulating flow
around the interface like Figure 4.3b illustrates. The most commonly used scheme to
discretize the gradient in equation (4.4), given by equation (4.6), insures the isotropy
of the first two terms on left-hand side of (6.20). What can be done to improve the
accuracy of left-hand side of (6.20) is to make higher order lattice tensors isotropic
up to a certain order n. Of course that means to find a proper set of N; lattice
vectors ¢;[{l = 0...N; — 1} and the corresponding set of weights w(|c|;). This was
done in [97] reaching isotropy up to 8th order in both 2D and 3D and extended in
[73] where 16th and 10th order were reached respectively for 2D and 3D cases.
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Weights EW g6 RO gl  g012) E04) E16)
w(1) 1 4 4 262 68 19414 285860656
3 15 21 1785 585 228375 3979934595
w(2) 1 1 4 93 68 549797 2113732952
12 10 15 1190 1001 10048500 13779280545
w(4) 1 1 7 1 175729 940787801
120 60 340 15 7917000 13779280545
w(5) 2 6 62 50728 124525000
315 595 5005 3628625 8755856109
w (8) 1 9 1 3029 15841927
5040 9520 520 913500 3979934595
w(9) 2 4 15181 2046152
5355 1095 7536375 795986919
1 2 221 14436304
w ( 10) 7140 4095 182700 8755856109
2 68 18185828
w (13) 405045 279125 13779280545
1 1139 13537939
w(16) 480480 26796000 14009369774
68 231568
w ( 1 7) 0 2068875 3979934595
17 1516472
w(18) 1425060 13779280545
17 18769
w(20) 5742000 1591973838
1 184
Ws0 (25) 32657625 315867825
1 464
W34 (25> 32657625 795986919
1448
w(26) 4864364505
148
w(29) 4864364505
629
w (32) 100267707840

Table 6.2: Weights up to the 16th order approximation for two-dimensional lattice models.
The weights for velocities |¢;] = 25 have to be chosen differently according to the direction in
the two-dimensional space. The notation wgp(|c;|) stands for the velocity vector (+a,=+b) plus

permutations.
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6.3. ORIGIN OF THE SPURIOUS CURRENTS

Here the vectors required for each order of isotropy, as well as the corresponding
weights are reported in Table 6.2 for 2D and in Table 6.3 for 3D simulations. The
interested reader will find in [73] an extensive explanation on how to calculate these

coefficients.

Weights E®W g© g& g0

w(1) R R
w(2) B Ton
w(3) W T T
w(4) & 105 T
w(d) T T
w(6) 35 s
w(8) o s
Wao1(9) @
w300(9) %55
w(10) oF G
w(11) 5T

Table 6.3: Weights up to the 10th order approximation for three-dimensional lattice models.
The weights for velocities |c;| = 9 have to be chosen differently according to the direction in the
three-dimensional space. The notation wgp.(|c;|) stands for the velocity vector (ta,+b, £c¢) plus

permutations.
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6.3. ORIGIN OF THE SPURIOUS CURRENTS

EW g6 g6 g0 gl2 gt g6

2D 8 12 24 36 48 80 100
3b 18 32 92 170 - - -

Table 6.4: Number of nodes necessary to determine gradients isotropic up to different orders

for both 2 (£ =D2Q9) and 3D (£ =D3Q19) cases.

To check the effect of increasing the isotropy of the gradient operator, a simula-
tion of a static 3D drop was run using CS-EOS with the usual parameters, 7 = 1 on
a 5H1x51x51 grid. The initial radius was 16. Gradient schemes with isotropy of 4,
6, 8 and 10 were tested. The local Ma number representing the spurious currents
was measured at the end of the simulation for x = y = 25 and reported in Figure
6.6. A significant reduction of the local Ma (about 2.5 times) can be observed when
increasing the order of isotropy from 4 to 10, but this result has to be evaluated

considering also the increased computational cost.

03r

02 —&—— Order4
—=—— Order6
———— Order8
0.1 —a—— Order10

| 1 | | |
-0.3
0

Figure 6.6: Interface thickness as function of reduced temperature for CS-EOS with a = 1,
b=4and R=1.

In fact, as can be read in Table 6.4, the number of nodes required for a gradient
10th order isotropic is almost 10 times that for the case of 4. That made the
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execution time 2.73 times higher than what required for standard 4-th order isotropic
scheme. Besides the presence of non-periodic boundaries make the implementation
of higher-order schemes more difficult. The use of this technique has to be therefore
carefully considered. This is the first time in which this strategy is applied together
with effective masses different from the original SC model. In fact, in [73] equation
(4.5) was used with pg = 1. The reduction of the local Mach number when increasing

the isotropy from 4 to 10 was about the same measured here.

6.4 Combining SC, EDM and MRT schemes

So far the simulations were all conducted at 7 = 1. What happens when 7 — 0.57
Considering always the static 3D droplet case with , the SRT-LB gets unstable
already at 7 < 0.75 when the reduced temperature corresponds to a high density
ratio. That happens for all the EOS, and it is not surprising. The MRT formulation
illustrated in chapter 5 is expected to improve the situation. Considering always
the CS-EOS with the usual set of parameters, this formulation allowed us to reach
a minimum viscosity of 1/384 at Tr = 0.8, when the density ratio is about 15. A
further reduction of Tk made the minimum viscosity achievable dropping down by
O(10). As stated in chapter 4, in the standard SC formulation the application of the
body force given by equation (4.7) led to a modified velocity in the fi? according
to Method I discussed in chapter 3 (Equation (3.25)). What if the EDM is applied
instead? The whole LB equation takes the form:

f(x+et+1)—f(x,t)=-M"'S(g—0“u))+ (fu+ Au) — f“(u)), (6.22)

FAt
o
The result of the application of EDM can be seen in Figure 6.7, where the

where Au =

maximum Mach number is plotted as function of v at T,. = 0.65, which corresponds
to a density ratio of 150. The range of viscosities at which the simulations are stable
is the same as those obtained by MRT with SC implemented with method I, but at
a density ratio 10 times higher. The MRT-SC LB without EDM scheme allowed us

to reach at this same temperature a minimum viscosity of ~ 1/20.
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This result proves the EDM allows a more effective incorporation of a generic
body force into the LB formulation than method I exposed in chapter 3, which is
the standard choice for SC model. The second order accuracy in terms of velocity
gradient guaranteed by the EDM is fundamental to improve stability at high den-
sity ratios, where the relevant density gradients between liquid and gaseous phases
induce, especially at the beginning of the simulation, strong velocity gradients.

At the end of this chapter it is therefore possible to conclude that the basic
SC model can be significantly improved. The combination of well-known cubic
EOS, higher-order schemes for gradient calculation, MRT and finally EDM has been

realized for the first time in this study and is the main achievement of this research.
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Figure 6.7: Maximum module of spurious currents as function of kinematic viscosity at Tr =

0.65 for the CS-EOS with a =1, b=4 and R =1.
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Chapter 7

Binary droplet collisions

In the previous two chapters it was illustrated how to address the issues of achieving
low Reynolds numbers and density ratios with the combination of LBGK and SC
models. The use of a more realistic EOS and the increased isotropy of the gradient
operator were shown to address the first issue, while the incorporation of body forces
using the EDM and the MRT scheme provided the desidered stability at low viscosi-
ties. This combination has therefore the potential to greatly extend the capabilities
of LB in the field of multiphase flows. In this final chapter this improved formulation
is applied to the simulation of binary droplet collision. The first part of this chapter
concerns the description of the physics involved and the review of existing literature,
including other works based on LB. The consistency of LB with experiments and

analythical models is demonstrated in the second part of the chapter.

7.1 Introduction

Droplet collisions are encountered either in natural phenomena or in many engi-
neering applications like for instance rain formation and engine fuel sprays. The
parameters characterizing this phenomenon are the densities and viscosities of lig-
uid and gaseous phases, respectively p;, pg, 11 and g4, the surface tension o, the
droplets radii R; and R,, their relative speed Uy and finally their displacement yx
in the direction normal to Ug. These quantities are reported in Figure 7.1. The

whole process is therefore described by six nondimensional quantities which are the
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Weber and Reynolds numbers, respectively given by We = p,U?(R; + Ry)/o and
Re = pU(Ry + R2)/ur, the size, density and viscosity ratios, and finally the impact
factor B = x/(R1 + Ra).

Figure 7.1: Physical and geometrical parameters characterizing binary droplet collision.

Experimental studies like [98, 99] considered water droplets in air, while in stud-
ies like [100, 101, 7] where more oriented to industrial applications, because the
fluids involved where ethanol or CyH3y in air or nitrogen. Five possible collisional
regimes were identified in these studies: adopting the notation of 7], it is possible to
observe coalescence (Regime 1), bouncing (I1), coalescence with major deformation
(III), head-on separation (IV) and off-centre separation (V). These regimes can be
identified by transition curves in the B—We plane. Coalescence occurs at very small
We, when the gas is pulled out of the gap between the approaching droplets till the
thickness of this gap reduces to the order of molecular interaction. If the minimum
thickness is higher than this value, the droplets will not touch, and bouncing will
instead occur. Regime III occurs at intermediate WWe, when the initial kinetic en-
ergy is sufficient only to cause extensive deformation to the coalesced droplet, but
not to break this one in two. At high We number it is possible to observe Regimes
IV or V,depending on B. In these two regimes the coalesced droplet can experi-
ence either disruption, that produces again two droplets,or fragmentation, producing
catastrophic break-up into many small droplets. All the different collision regimes
are represented in Figure 7.2, either as regions in the plane B — We or with pictures

taken by the experiments reported in [7].
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Figure 7.2: Summary of all possible collision outcomes. Pictures of post-collisional outcomes

are taken from [7].

7.2 Review of other numerical studies

Droplet collisions represent a challenging case for numerical simulations, because
of the necessity of following the evolution of variable interfaces. The goal of these
investigations was also to provide to the CFD community a series of images of the
collisional dynamics to use as benchmark for their numerical methods.

Concerning methods that are based on NS equations, one of the first works was
[102] in which the head-on collision of two-dimensional droplets were studied via the
marker-and-cell (MAC) method. Axisymmetric and fully three-dimensional front-
tracking methods were employed in [103] and [104] to study respectively head-on and

off-centre collisions; altough many interesting results are reported the authors note
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that bouncing and coalescence regimes were obtained by artificially prescribing the
rupture of a thin gaseous film. Volume of fluid (VOF) was instead used in [105] and
[106]; this last work studies again head-on collision in an axisymmetric reference: two
VOF indicator functions are used, one for each droplet, to track the interfaces, while
a local grid refinement strategy is adopted in order to increase resolution around
droplet interfaces. Regimes I-IV were observed in this way and compared with [7].
In [8] regime I was studied using the Galerkin finite-element method in conjunction
with the spine-flux method for interface tracking. The Level-set method is instead
used in [107], providing remarkable agreement either with the experiments of [7] or
[99] except for regime I which was not possible to observe. All these methods require
some artificial technique for interface tracking.

Droplet collision has also been simulated with LB; in [108] the original SC model
was applied at a density ratio of &~ 30; more important are the results reported
in [109] and [110], relative respectively to collisions between equal- and unequal-
size droplets at Re = 2000: the free energy method was applied in these two works,
coupled with a projection method necessary to enforce a zero-divergent velocity field.
The density ratio reported was 50 in both cases but the authors claim higher values
can be reached, with an increase of computational cost due to the projection step.
[111] coupled the MRT scheme with the HSD multiphase model to simulate head-on
collisions in an axisymmetric implementation of the LB. Some fully 3D simulations
where also reported. The density ratio was 4. Finally in [112] simulations of some
cases from [7] were reported at density ratios varying from 50 to 70 using the SC-
MRT LB.

7.3 Results

In this study, the LB method is adopted to simulate three-dimensional binary droplet
with equal size colliding at different values of We , Re and B. The lattice structure
L used is the D3Q19 model. The goal is to explore all the regions of B — We plane
in order to verify the ability of the LB in reproducing the five different collision
regimes previously described. To do that, the single-component two phase SC model
is adopted. The EOS used to compute ¢ in equation (4.1) is the Carnahan-Starling

(equation (6.16)) with the same parameters seen in the previous chapter. The sign-
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saving strategy is adopted to numerically implement the SC model via equation
(6.5). Finally, in (6.5), the discrete gradient operator has sixth order isotropy (all
the corresponding vectors and weights are listed in Table 6.3). For each case the
known quantities in lattice units are the density ratio and the corresponding surface
tension obtained with the static droplet case. Once chosen the initial radii what
remain to determine are the initial relative speed and the kinematic viscosity. The
definitions of We and Re provide the necessary equations to calculate them. As
seen in the last chapter if 7 < 0.75 the SRT formulation is usually unstable and the
MRT-LB coupled with EDM is adopted (6.20). In this case the relaxation times are
equal to 1 except sg = s11 = s13 — s16 = 1/7 [83] (see Appendix B). The first tests
conducted reproduce the cases reported in the first part of [8] where pure coalescence
was studied for equally sized droplets colliding at B = 0 in vacuum. The We is fixed
to 1, while Re ranges from 5 to 60. Considering a cylindrical coordinate system z,r
with origin fixed at the collision point and z directed along the symmetry axis,
this kind of collision is characterized by essentially four steps: initial deformation,
during which a radially expanding disc, called a lamella, is produced; the lamella
expands radially since the fluid inside moves towards the extremes; depending on
the amount of inertia a rim bounding the lamella can be formed. Subsequently the
lamella collapses in a jet that expands along z until the deformation is a maximum;
finally the extremes move back towards the origin and a new oscillation takes place
till the coalesced drop reaches a spherical shape. The same kind of test was repeated
here, at four Reynolds numbers: 5, 10, 30 and 60. LB would be unstable without
any fluid outside the droplets, so a density ratio of 400 was chosen. The droplets are
resolved with R, = Ry = 32 lattice nodes. For Re = 5 and Re = 10 the relaxation
time was close to 1 and SRT was used; that was not the case for the last two Re,
in particular for Re = 60 where 7 = 0.54. The maximum deformation on both axes
as well as the period of the first oscillation are reported for each Re in Figure 7.3
(a) and (b). Viscous effects act on both axes, but since they are proportional to
velocity gradients it is expected a major dissipation along radial direction; that is
confirmed by Figure 7.3, from which a similar elongation along the radial direction
can be observed for Re > 10. The comparison with the corresponding results from
[8] shows quite good agreement.

After this first test the collision reported in [7] are considered. It is important

to underline that the experiments are characterized by a density ratio of ~ 600 and
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Figure 7.3: Evaluation of coalesced droplet deformation at different Re: (a) Variation of mini-
mum thickness along z, zm, and maximum radius r.,q, (b) Variation of first period of oscillation.
In both pictures the results are compared with the corresponding cases reported in [8].

the viscosity ratio is ~12, while here LB simulations run with a single-component
model at lower density ratio, therefore the characteristic time of each simulation
cannot match the value relative to the corresponding experimental case. Regime I
is observed in Figure 7.4(b), corresponding to case“a” in [7], (Re = 14.8, We = 0.2
and B = 0.2). The grid is 201 x 181 x 181 and the droplet radii are 40Ax. At
this regime, viscous and surface effects dominate over inertial ones and the droplets
approach each other quite slowly. That holds of course also in lattice units, allowing
only for this case to run the simulation at T = 0.58, corresponding to a density
ratio of 1000. The coalesced drop takes a cylindrical shape, than tends to reach a
spherical configuration in order to minimize surface energy, reproducing the trend
observed in the experiments which is reported in Figure 7.4 (a). The following
cases are always characterized by a density ratio of 150. Regime III is illustrated in
Figure 7.5 and 7.6, corresponding respectively to cases “f” (Re = 210.8, We = 32.8
and B = 0.08) and “k” (Re = 327.7, We = 70.8 and B = 0.25) from [7]. The
expected different behaviour under different B is clearly reproduced. In the first

case, the tangential component of the impact inertia is almost zero, and a thin disk
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is initially formed, that later contracts and forms a cylinder and then a dumbbell,
without any rupture of the film. In the second case, the higher tangential component
of the impact inertia is expected to cause an extensive rotational motion, and that
is precisely what the simulation shows. In both cases the grid is 251 x 141 x 141
and the droplet radii are 30Az.

(a) |
. ‘ ‘ ‘ =00 =012 0,132 0,156
179 1.92

:":‘;.'," X X K 4

#=0.192 40204 =024 =029

2.05 2.1 238

o o o “‘

245 2.57 3.09

*=0336 %0372 =0.432

(a) (b)

Figure 7.4: Comparison between experiments from [7] (a) and LB simulation (b) for Re = 14.8,
We=0.2 and B = 0.2 (t*=tU/2R).

Figure 7.7 is related to case“g” (Regime IV) (Re = 228, We = 37.2 and B =
0.01): the evolution is similar to case “f” and previously seen, but this time initial
kinetic energy is enough to overtake the surface tension force and split the coalesced
drop. Again, good agreement is found with the experiments.

A further increase of B causes a reduction of the contact region: if We is high
enough, like in case “ m” (Re = 302.8,We = 60.1 and B = 0.55), Regime V is
observed: the LB simulation in Figure 7.8 clearly reproduces the formation of a
thin neck linking two main globules and its subsequent rupture by means of the so-
called end-pinching mechanism, producing three droplets. Because of the off-centre
collision a consistent rotation of the globules as well as the ligament connecting them
can be observed.
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1%=0.0 t*=0.18 t+=0.72 e

t*=18 =32 1#=3.95 th=4.67
t=6.115 t5=6.65 =72
t+=8.63 9.2 t+=9.53

(a) (b)

Figure 7.5: Comparison between experiments from [7] (a) and LB simulation (b) for Re =
210.8, We = 32.8 and B = 0.08 (t*=tU/2R).

=275 =301 =323

(a) (b)

Figure 7.6: Comparison between experiments from [7] (a) and LB simulation (b) for Re =
327.7, We = 70.8 and B = 0.25 (t*=tU/2R).
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t+=14.75 t4=15.25

Figure 7.7: Comparison between experiments from [7] (a) and LB simulation (b) for Re = 228,
We =372 and B = 0.01 (t*=tU/2R).

e® ¢ \

. t*=11.62

(a) (b)

Figure 7.8: Comparison between experiments from [7] (a) and LB simulation (b) for Re =
302.8, We = 60.1 and B = 0.55 (t*=tU/2R).

Considering the same geometry of the previous case but increasing the We the

inertial effects are increased and the result is a further fragmentation of the first
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7.3. RESULTS

child droplet, which splits into other 3 smaller drops with the same mechanism.
Figure 7.9 summarizes this case.

Finally, case “0” from [7] is simulated. Here the impact factor reaches 0.71, so
there is no rotation of the ligament, but just of the globules. That produces one
elongated child droplet, which is driven by the surface tension to the minimization
of its surface energy corresponding to a spherical-shaped final configuration, without
any further rupture. The last row of Figure 7.10 illustrates in detail the final part
of the collision process concerning the child droplet formed because of the double
pinch-off at its extremes. This droplet undergoes a process similar to the last part of
case “f” previously seen: the two globules formed as a consequence of the pinch-off
merge in a lamella that later takes on a spherical shape. This demonstrates the

ability of the model to catch complex dymanics at different scales.

&\
N ==
0#00«:5‘0

Figure 7.9: Off-centre collision at We = 138, Re = 302.8 and B = 0.55.

The formulation previously discussed allowed us to have stable simulations of
all the cases reported in [7]. Figure 7.11 summarizes all the tests conducted. The
regions of the We — B plane corresponding to the expected regimes are separated
by experimentally obtained curves. The different symbols represent the outcomes

obtained by the LB simulations: spheres are associated to Regime I, squares to
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Regime III, triangles and diamonds respectively to regimes IV and V. As can be seen
in Figure 7.11 the simulations correcty predict the post-collisional regime in most
of the cases. All the regimes were observed, except bouncing. The bouncing cases
had always a pure coalescence outcome. In the author’s opinion that may depend
on insufficient resolution in the collision region, but most of all on an insufficient

repulsion among the phases due to the single component scheme adopted.

P8
C—rYp —9©
©o—0 6 — 9O

= =9 ¢ @ © 0

Figure 7.10: Off-centre collision at We = 64.9, Re = 312.8 and B = 0.71.

7.4 Discussion and Conclusions

The highest density ratio was 1000 for regime I at Re = 14. The low inertial regimes
are the most stable at high density ratios. The next step might be to verify the LB
reproduces the scaling law for the evolution of length and diameter of the bridge
forming between the droplets (Figure 7.4b) proposed in [113]. Unfortunately when
coming to collisions in regimes III, IV and V (high We-high Re cases) things are
complicated by the overlapping of extremely high spurious currents with the imposed
flow field, and it was not possible to mantain an experiment-like density ratio. For

these regimes in fact it had to be decreased to 150. Investigation on how to further

120



7.4. DISCUSSION AND CONCLUSIONS

'] —
0.8 -
0.5 1= (I
om
04 - .
m
0.2 H@
® @
. ] |
0

Figure 7.11: Summary of tests conducted and comparison with expected prediction by [7].

reduce the spurious currents is thus necessary. Nevertheless even at not too small
reduced temperatures these regimes may prove impossible to reach, because of the
low-Ma constraint of LB that might be violated by the initial relative speed Uj. In
fact, as discussed before, once chosen the initial droplet diameter D;, the definitions
of We and Reynolds numbers are used as equations to determine the v and Uj.
If for instance the case with the highest We number reached (We =407, Re=134)
is considered, each droplet was initialized with Uy/2 = 0.22, which is already well
above a safe level (Uy < 0.1). Since computational cost limits the freedom to
increase the droplet diameter, a more convenient inital speed could be found if o
could be reduced. Unfortunately the impossibility of tuning the surface tension o
once fixed the density ratio is another defect of the SC model as stated in chapter 4,
while this feature is instead offered by the free energy model as well as by the HSD
model. Anyway the density ratios reached in this study are significantly higher than
what reported in similar works by other authors [109] [110] [111]. Besides, the SC
model does not require two different sets of PDFs like the models employed in the

aforementioned works.
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Conclusions

The simulation of complex gas-liquid flows with the lattice Boltzmann (LB) method
has been the objective of this research work. During its first twenty years the LB
has evolved from a simple real-value therapy to the statistical noise of the lattice
gas cellular automata (LGCA) into a numerical scheme able to simulate realistic
fluid dynamics. The thesis summarizes this process throughout its different chap-
ters: what was emphasized is the different nature of LB when compared to classical
Navier-Stokes based solvers. The fact that kinetic theory includes the continuum
description justified the search for a numerical scheme which could not be affected
by non-linearities coming from macroscopic description (chapter 2). Chapters 3 and
4 present the most simple formulations for both single- and multi-phase LB, namely
the SRT-LB and the SC model. These chapters summarize, with some exceptions,
the state of the method in 1994, when [52] appeared. Altough this 1994-LB was
already capable to simulate flows like the deformation and breakup of a droplet
under shear flow or the T-micromixer, it still was limited to highly viscous flows
with low density ratios. Fifteen years are quite a long period, and many of the
improvements proposed in these years for the SC model were reported in chapter
5 and in the first part of chapter 6. The last section of this chapter shows how all
these new developements can be combined into a SC-type scheme possessing the

following features:

e Different EOS incorporated with respect to that proposed in [52], which allow
to reach high density ratios.

e Exact difference method (EDM) for a better inclusion of body force effect

especially at low v.

e Gradient operator with higher degree of isotropy to reduce spurious currents
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at interfaces.

e Multiple-relaxation-time (MRT) formulation to improve the stability at high
Reynolds.

This new extended SC model represents the main contribution of this research
project, and has been succesfully applied in Chapter 7 to the simulation of binary
droplet collision at density ratios higher than reported in other works. The quali-
tative and quantitative agreement respectively with the experiments reported in [7]
and the with the results presented in [8] confirmed the validity of this new approach.
The results related to this case, as well as those reported in chapters 4 and 6 open
the possibilities for further studies. There is room for further improvement of the

model too, as will be explained in the next section.

Future work

The binary droplet collision demonstrated that including EOS like the CS or PR
may allow to reach realistic liquid-gas density ratios for the static droplet or flat
interface cases, but it is not sufficient for rapidly moving interfaces. As seen in the
previous chapter tuning the surface tension o at a fixed density ratio may help, but
this limitation has not been addressed in this study: ideally it would be preferable
to mantain the SC model basic features (force term derived by a scalar potential,
natural phase separation, one only set of f;) and inserting some form of control of
o into this framework. A strategy for controlling the surface tension in a SC-like
scheme was proposed for instance in [114], based on the incorporation into (4.1) of
a further term —kVV?p. Another solution was proposed in [73] and consisted in
the introduction of another coupling constant for this purpose. In the same paper
it is shown how to significantly reduce the spurious currents by simply rescaling the
effective mass. All these strategies were developed for the basic SC model with EOS
given by (4.2). Their performance with different EOS like those tested in chapter 6
is unknown. As stated in chapter 6 discretizing the square of a scalar potential can
be convenient, but a further term is requested at high density ratios. A solution
could be given by the stress form of the forcing term given in [57] (Equation (12)),

where this form is claimed to produce a smoother pressure profile across the interface
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than the potential form (6.19). This work is based on the HSD model but this idea
could be implemented into the SC model as well. Either the potential or the stress
form are compatible with the EDM scheme. Finally further work is needed on
the multicomponent SC model in terms of density ratio, which remains at best of
O(10). Each of the applications presented in this thesis can be further extended.
The T-micromixer for instance can be used as the starting point for examining many
different problems: first of all the layouts could consist in circular obstacles with
different radius, or in obstacles with totally different geometries (rectangular for
example). Of course extension to three-dimensional flow should also be considered.
This geometry is not limited to mixing problems, has a huge number of applications
in microfluidics: for instance it is used to produce droplets in [115] a numerical
investigation of the breakup dynamics of streams of immiscible fluids is conducted
by using a phase-field model; another application is the Membraneless Laminar
Flow Fuel Cell (LFFC) [116]-[117] where this geometry sees the parallel flow of
fuel (hydrogen, methanol or formic acid) and oxidant streams not separated by a
porous membrane as happens in conventional fuel cells. Getting rid of the membrane
means not facing dryout at high temperatures (the membrane has constantly to be
hydrated to work efficiently) as well as fuel crossover. Examples of LB applied to
electrochemical and reactive flow problems are for instance [118] and [119], where
suitable boundary conditions for modeling electrodes were defined, or [35] where the
SC coupled with the EDM scheme was used to model the hydrodynamic flow, while
the transport equations for charged species are solved by considering additional LB

equations relative to zero-mass components (passive scalars).
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Appendix A

Elements of tensor symmetry

A.1 General form of isotropic tensors

The set of orthogonal transformations O includes rotations and reflections. A ten-
SOr T, as...a, 18 Of m-th rank is defined isotropic if is invariant with respect to any

ortogonal transformation:

Ta1a2~~-an - Tﬂlﬁznﬂn Oalﬂl OO&252 "'Oanﬂn . (A 1)

The following theorem [120] defines the forms of isotropic tensors up to 4-th

rank:

There are no isotropic tensors of rank 1 (vectors)

Any isotropic tensor of rank 2 is proportional to d,g

Any isotropic tensor of rank 3 is proportional to €qg, !

There are 3 linear indipendent tensors of rank 4:

50015, OarOps;  OasOpy- (A2)

1Levy—Cz’vita symbol €afBy ¢ €123 = €312 = €231 = ]., €132 = €321 — €213 — —1 and 0 otherwise.
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A.2. ISOTROPY OF LATTICE TENSORS

It follows that the most general form for any rank 4 tensor is given by a linear

combination of these 3 elementary tensors:

Tagfy(; = Adagdy(; + Béa,y(Sg(; + Cda(;ém, <A3)
where A, B and C are arbitrary constants.

In three dimensions, equation (A.2) leads to the following constraints to be
fulfilled by constants A, B and C"

Tin = Togoe =T33 = A+ B+ C
Th122 = Tiizz = Toonn = T311 = Toozs = Ti300 = A
Ti212 = Tozo3 = Ti313 = Tn1 = ... = B
Tho21 = Tozze = Tizz1 = Tone = ... = C

(A.4)

\

A.2 Isotropy of lattice tensors

Given a k-dimensional space and a lattice model defined by a set of b speeds, the
most general form of the n-th rank tensor Lffd%l"._an that can be built on that lattice

(referred to as lattice tensor) is given by:

b—1
LOR = Z Ciny Ciny --Cicry - (A.5)

i=0
As stated in Chapter 3, in order to get the correct macroscopic description of
the fluid state from the LB equation it is necessary choose a lattice that allows
the construction of isotropic tensors of rank 2 and 4. In what follows the isotropy
of these tensors for some of the most popular lattice models is checked by using
the previosly reported theorem. Either single-speed (HPP and FHP-I/FHP-II) or
multi-speed (D2Q9 and D3Q19)lattice models are considered. The speeds defining

all these models are reported in Chapter 3.

126



A.2.1. D2Q4 (HPP)

A.2.1 D2Q4 (HPP)

The rank 2 and 4 tensors have respectively the forms:

(A.6)

Log = 20ap
Logys = 20a8+s-

Log is thus isotropic, while L,g,s not. That explains why this lattice is not
suitable for getting the NS equations.

A.2.2 D2Q6/D2Q7 models (FHP-I / FHP-II)

For both these lattice models the rank 2 and 4 tensors have respectively the forms:

Lag = 30ag o

3
7 (00055 + 0ar0ps + 0aslpy)

Laﬁ'y& = 4

therefore both tensors are isotropic.

A.2.3 D2Q9 and D3Q19 models

The rank 2 lattice tensor built on D2Q9 and D3Q19 lattices are respectively given
by:

L% = 66,
{ of ’ (A.8)

D3Q19
L23%" =106,

therefore both of them are isotropic. To obtain rank 4 tensors the constants A,
B and C'in (A.2) have to be determined according to the constraints given by (A.4).

For the 2 lattice models considered, that system can be respectively written as:
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A.3. GETTING ISOTROPIC TENSORS FOR MSL MODELS

A+B+C=6
(A.9)
A=4 B=4, (C=4
for the D2()9 and as
A+B+C=10
(A.10)
A=4, B=4, (=4

for the D3(Q19 lattice. In both cases rank 4 tensors are therefore not isotropic.

A.3 Getting isotropic tensors for MSL models

In order to recover rank 4 isotropic tensors for MSL models, weighting factors have

to be introduced for the different speeds, obtaining the general form:

a1Qag...0n

b—1
DEQb—MSL E
L Q = W;i€ia; Ciag - Ciap, - (All)
=0

In what follows the suffix “MSL”is omitted for the sake of simplicity.

A.3.1 D2Q9 model

In this case, choosing w; = 1 for speed 1 and w; = 1/4 for speed V2 leads to isotropic

tensors for either rank 2 or rank 4, having the following forms:

L0290 _ 35
{ of ’ (A.12)

L3S = 6ap0ys + Gar0s + Gasdp.
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A.3.2. D3Q19 MODEL

A.3.2 D3Q19 model

By choosing w; = 2 for speed 1 and w; = 1 for speed /2 isotropic tensors for either

rank 2 or rank 4 are obtained:

LP3QY _ 195
{ . of ’ (A.13)

i = 4 (Gapds + Gars + 0as03,)
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Appendix B

MRT D3Q19 model

This appendix presents the implementation of the MRT scheme relative to the
D3Q19 model. The vectors defining this £ structure are given by (3.23). The

components of the basis of orthogonal vectors are:

Vo; = Hei
vy; = 19]|e;||* — 30 (B.1)
vo; = (21|e;||* — 53|le;||” + 24) /2

V3; = €ix
Usi = €y (B.2)
U7 = €z

Vg4 = (5”91H2 — 9) Cix
vei = (5leill* = 9) ey (B.3)
Vg; = (5”81H2 — 9) €iz
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2 2
V114 = 6iy — €

{’U9i = 3622:0 - Hei”2

%1

V13; = €izCiy
{ ®5

V14i = €iyCiz

{ = (Bl = 5) (s fol) 56)
vizi = (3|leil|* = 5) (ef, — €.)
)
V15i = €izCiz
e (e’z” B ezZ) o (B7)
V17 = (eiz - eiz) Ciy
| V18i = (G?m - egy) Ciz

where i € {0,1,..18}. The corresponding 19 moments are given by:

. . . T
0= (p7 €,8 )z Qzy Jyr Qys 2 4z 3pxx> 37rxa:7pwwa Twws Pays Pyzs Przs M5 Ty, mz) .
(B.8)

while the matrix M driving the transformation between the two spaces is defined

as follows:
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—30

—_
N}

O O O O O O O O o o o o o o o o

B. MRT D3Q19 MODEL

1 1 1 1 1

-1 -11 -11 —-11 -—-11
-4 -4 -4 -4 -4
1 0 0o -1 0
-4 0 0 4 0
0 1 0 0 -1
0o -4 0 0 4
0 0 1 0 0
0 0o -4 0 0
2 -1 -1 2 -1
-4 2 2 -4 2
0 1 -1 0 1
0o -2 2 0 -2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

As for the D2@Q9 case it is possible to recognize the density and the components
of momentum and heat flux along the cartesian axes, together with the energy and
energy square terms. The moments referred to the diagonal terms of symmetric
traceless viscous stress tensor are 3p,, and py.,
terms are given by psy, py. and p,.. Finally there are two quadratic order terms,
374, and 7, which possess the same simmetry of the diagonal part of the traceless

tensor p,s and three cubic-order moments m,, m, and m, which are part of third

rank tensor.

_ O O = = = == O O = = === 00

|
—_

[
—_ =

—_ == = OO =

The diagonal collision matrix in M, is:

|
—

[
[ —

OO R R Rk o

— = = R O O = 00 =

_ = O O = o

— = R R O O~ = = 00

o o |
"

S = diag (0, 51,82,0,84,0, 84,0, 84, Sg, 510, S9, 510, 513, 513, 513, 5165 5165 316) )
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= Pyy — D2z, While the off-diagonal
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B. MRT D3Q19 MODEL

The description of this implementation is complete once the equilibrium values
for the non-conserved moments are defined; like for the D2Q9 case the elements of
0% are functions of the conserved moments and are invariant under the symmetry

group of L:

19
e =—llp+—j-j (B.10a)
Po
e = wep+ 2 (B.10b)
Po
eq 2 .
qac,y,z - _gjm,y,z (B].OC)
eq 1 .9 . . eq 1 .9 .9
Pl =— (352 —3-3). P, =— (i —72) (B.10d)
Po Po
T(;?C = Wxxpi;%, 7T1e1)qw = wxxpiz?w (BlOe)
1 1 1
Pay = —Jalys Pyi = —Jyzs P = —JaJ: B.10f
Y pO 4 Y po Y pO ( )
mt =myt =mt =0 (B.10g)

where w,, w.; and w,, are free parameters of the model. In order to recover the

corresponding SRT-LBM these values are set respectively to w. = 3, w.; = —5.5 and
Wy, = —0.5. The bulk ¢ and the kinematic v viscosities are respectively obtained
as:

<S—11 - %) (B.11)

1,1 1 171 1
pe (=)= _2). (B.12)
3 Sg 2 3 S13 2

In order to reduce the density fluctuations that afflict LBM simulations of in-
compressible flows a different formulation of the fi? was proposed in [45] for the
SRT-LBM. The MRT-counterpart of these scheme requires a different formulation

of the @®! vector:
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19
ev=—-110p+ —j-j (B.13a)
Po
£ — . dp+ 25 (B.13b)
Po
eq 2 .
qm,y,z = _g.]:c,y,z (BlSC)
e I e .. . 1. ,
pet =—(34: —3i-3), v, =— 0y —3) (B.13d)
Po Po
Tog = WoePlgn, Moty = WaaPlyy, (B.13¢)
1 1 1
Do = —Judys Pyl = —JyJe Pil = —Juj: B.13f
Y Po Y 4 £0 Y Po ( )
mg! =my! =mZ =0 (B.13g)

where pg is the average density, usually set to unity in LU, and dp is the density
fluctuation. The stability of the MRT scheme can be furtherly improved via an
optimal choice of the adjustable parameters appearing in (B.10a) and (B.13a); in
[82] a local stability analysis for a system with fully periodical boundaries gave the
following set of values:

475
ze = 0 5:0 e — T oo B.14
w w Wej =3 ( a)
S1 = 1.19 S9 = S10 = 14 S4 = 1.2 S16 = 1.98 (B14b>
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Appendix C

The Chapman-Enskog expansion

In this section the complete derivation of the NS equations via a multiscale expansion
will be given. For the sake of simplicity the starting equation will be the BGK model
with SRT, (3.4). Besides the lattice model is D2Q9. Analogous procedures can be
followed for MRT model ([] or []), as well as SC models for both single and multi-
component cases ([63]).

The starting point will be equation (3.4), here rewritten as:

filx+eAtt+ At) = (1 —w)fi (x,t) + wf” (x,1). (B.1)

where w = 77 and f(© = f°¢. The first step is to introduce two time and one

spactial scale as follows:
0,5 = Eatl + 528152 (BQ&)
On = €04, (B.2b)

Once introduced these scales, the generic distribution function around can be

expnded around its equilibrium value:

fi = fi(O) + Efi(l) + 52fi(2) 4 0(83), (B.3)

As seen in chapter 3, the first and second moment of equilibrium PDF have to
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correspond to local density and momentum: therefore, the following constraints on

equilibrium and non-equilibrium parts of distribution functions hold:

S V=0 (B.4a)

> ;‘fo)em = pua (B.4b)
Zf;’“) =0 k=12 (B.4c)
i fPe,=0 k=1,2,... (B.4d)

The left hand side of (B.1) can be Taylor-expanded up to second order terms
(AXl = eZAt)

fz‘ (X + ez‘At, t+ At) = fz (X, t) + At@tfz + Ateioﬁafi

At)?
+ O 1004+ 2000000 + cunesdudaf] + O (1) . (BS)

Substituing these expansion into (B.1) leads to:

0 = fz (X, t) + Atatfz + Ateiq,&,fi
(A1)?
2
+O(0*) — filx,t) +w (fi(x,t) = £ (x.1)

= eAt [atl fz‘(O) + eirOy, fi(O)]

+ 20 [0 [ + 01 + €00, £

(AL)?
2

+ (010 fi + 2€i00100 fi + €ia€i0a03 fi]

[atlatl fi(O) + 2€;,0, 0, fi(O) + €ipeinDp, Oy fi(O):|
+ €wfi(1) + 52wfi(2) + (9(53) (B.6)

+ &2
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C.1. FIRST ORDER TERMS IN ¢

Rearraging (B.6) in terms of orders of ¢ yields:

0=eE" +2EY + 0, (B.7)
where
w
Ez'(O) = atlfi(O) + €iyOyy fz‘(O) + Efi(l) (B.8a)
1 1 w
Ei(l) = atlfi(l) + &fgfi(o) + emamfz'(l) + At 5@1&&1 fz'(O) + €4y 01, 0y, fz'(O) + §€lﬂ€i’7651671 fz‘(O) + Efi@)
(B.8b)

The next step consists in calculating the zero-th and first lattice moments of the

terms Ei(O) and Efo) in order to get Euler and NS equations.

C.1 First order terms in ¢

From (B.8a) and using the relation Y, e;n€;53 = 6¢*04g, togheter with (B.4a)-(B.4d)

we have:

Z Ei(O) = 0up+ 03,y (B.9a)

ST B¢ = 0o + 95,115, (B.9b)

The inviscid momentum flux tensor is given by:

C.2 Second order terms
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List of contributions

The research carried out during this PhD project generated one published paper in
a peer-reviewed journal and two published conference proceedings. These contribu-

tions are listed here in chronological order:

e E. Monaco, K. H. Luo and R. S. Qin, “Lattice Boltzmann simulations for
microfluidic and mesoscale phenomena”. New trends in fluid mechanics re-
search: Proceedings of the Fifth International Conference in Fluid Mechanics,

Shanghai, August 2007. Tsinghua University and Springer.

e K. H. Luo, J. Xia and E. Monaco, “Multiscale modeling of multiphase flows
with complex interactions”. Journal of Multiscale Modeling 1 (1), 2009.

e E. Monaco, K. H. Luo and G. Brenner, “Lattice Boltzmann simulations of
binary droplet collisions by a multiphase multiple relaxation time model”.

Proceedings of Parallel CFD conference 2008 (in press).

The results described in this thesis have been also presented in several meetings
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