Nanotopographical control of stem cell differentiation

McNamara, Laura E., McMurray, Rebecca J., Biggs, Manus J., Kantawong, Fahsai, Oreffo, Richard O. and Dalby, Matthew J. (2010) Nanotopographical control of stem cell differentiation Journal of Tissue Engineering, 2010, (120623), 120623-[13pp]. (doi:10.4061/2010/120623). (PMID:21350640).


Full text not available from this repository.


Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal) stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated) and direct (force-mediated) mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.

Item Type: Article
Digital Object Identifier (DOI): doi:10.4061/2010/120623
ISSNs: 2041-7314 (print)

ePrint ID: 181637
Date :
Date Event
18 August 2010Published
Date Deposited: 18 Apr 2011 15:13
Last Modified: 18 Apr 2017 02:27
Further Information:Google Scholar

Actions (login required)

View Item View Item