Propensity score matching with missing covariates
via iterated, sequential multiple imputation
Propensity score matching with missing covariates
via iterated, sequential multiple imputation
In many observational studies, analysts estimate causal effects using propensity score matching. Estimation of propensity scores is complicated when covariate values intended for collection are in fact missing. To handle the missing data, one approach is to use multiple imputation to create completed datasets, and compute propensity scores from these datasets. However, inaccurate imputation models can result in ineffective matching, thereby limiting reductions in bias. We propose a multiple imputation approach based on chained equations in which the researcher gradually reduces the set of control units used to estimate the imputation models. This approach can reduce the influence of control records far from the treated units’ region of the covariate space on the estimation of parameters in the imputation model, which can result in more plausible imputations and better balance in the true covariate distributions. This approach can be conveniently implemented with standard multiple imputation software for missing data. Using simulations, we find that the approach can improve estimation when imputation models are mis-specified; however, it can be ineffective when imputation models are correctly specified. This suggests using the approach as part of sensitivity analysis in causal inference. We apply the approach to an observational study of the effect of breast-feeding on the child’s educational outcomes later in life.
missing data, multiple imputation, observational studies, propensity scores
Southampton Statistical Sciences Research Institute, University of Southampton
Mitra, Robin
2b944cd7-5be8-4dd1-ab44-f8ada9a33405
Reiter, Jerome P.
b70b3bb7-ac77-4dd1-860a-4daa92e02fc2
14 April 2011
Mitra, Robin
2b944cd7-5be8-4dd1-ab44-f8ada9a33405
Reiter, Jerome P.
b70b3bb7-ac77-4dd1-860a-4daa92e02fc2
Mitra, Robin and Reiter, Jerome P.
(2011)
Propensity score matching with missing covariates
via iterated, sequential multiple imputation
(Southampton Statistical Sciences Research Institute Working Paper, M11/06)
Southampton, GB.
Southampton Statistical Sciences Research Institute, University of Southampton
27pp.
Record type:
Monograph
(Working Paper)
Abstract
In many observational studies, analysts estimate causal effects using propensity score matching. Estimation of propensity scores is complicated when covariate values intended for collection are in fact missing. To handle the missing data, one approach is to use multiple imputation to create completed datasets, and compute propensity scores from these datasets. However, inaccurate imputation models can result in ineffective matching, thereby limiting reductions in bias. We propose a multiple imputation approach based on chained equations in which the researcher gradually reduces the set of control units used to estimate the imputation models. This approach can reduce the influence of control records far from the treated units’ region of the covariate space on the estimation of parameters in the imputation model, which can result in more plausible imputations and better balance in the true covariate distributions. This approach can be conveniently implemented with standard multiple imputation software for missing data. Using simulations, we find that the approach can improve estimation when imputation models are mis-specified; however, it can be ineffective when imputation models are correctly specified. This suggests using the approach as part of sensitivity analysis in causal inference. We apply the approach to an observational study of the effect of breast-feeding on the child’s educational outcomes later in life.
Text
s3ri-workingpaper-M11-06.pdf
- Other
More information
Published date: 14 April 2011
Keywords:
missing data, multiple imputation, observational studies, propensity scores
Identifiers
Local EPrints ID: 181681
URI: http://eprints.soton.ac.uk/id/eprint/181681
PURE UUID: 5e115ebb-cfab-4da2-a5ac-b3bc635ac158
Catalogue record
Date deposited: 19 Apr 2011 12:59
Last modified: 14 Mar 2024 02:57
Export record
Contributors
Author:
Jerome P. Reiter
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics