The University of Southampton
University of Southampton Institutional Repository

M-quantile models with application to poverty mapping

Record type: Article

Over the last decade there has been growing demand for estimates of population characteristics at small area level. Unfortunately, cost constraints in the design of sample surveys lead to small sample sizes within these areas and as a result direct estimation, using only the survey data, is inappropriate since it yields estimates with unacceptable levels of precision. Small area models are designed to tackle the small sample size problem. The most popular class of models for small area estimation is random effects models that include random area effects to account for between area variations. However, such models also depend on strong distributional assumptions, require a formal specification of the random part of the model and do not easily allow for outlier robust inference. An alternative approach to small area estimation that is based on the use of M-quantile models was recently proposed by Chambers and Tzavidis (Biometrika 93(2):255–268, 2006) and Tzavidis and Chambers (Robust prediction of small area means and distributions. Working paper, 2007). Unlike traditional random effects models, M-quantile models do not depend on strong distributional assumption and automatically provide outlier robust inference. In this paper we illustrate for the first time how M-quantile models can be practically employed for deriving small area estimates of poverty and inequality. The methodology we propose improves the traditional poverty mapping methods in the following ways: (a) it enables the estimation of the distribution function of the study variable within the small area of interest both under an M-quantile and a random effects model, (b) it provides analytical, instead of empirical, estimation of the mean squared error of the M-quantile small area mean estimates and (c) it employs a robust to outliers estimation method. The methodology is applied to data from the 2002 Living Standards Measurement Survey (LSMS) in Albania for estimating (a) district level estimates of the incidence of poverty in Albania, (b) district level inequality measures and (c) the distribution function of household per-capita consumption expenditure in each district. Small area estimates of poverty and inequality show that the poorest Albanian districts are in the mountainous regions (north and north east) with the wealthiest districts, which are also linked with high levels of inequality, in the coastal (south west) and southern part of country. We discuss the practical advantages of our methodology and note the consistency of our results with results from previous studies. We further demonstrate the usefulness of the M-quantile estimation framework through design-based simulations based on two realistic survey data sets containing small area information and show that the M-quantile approach may be preferable when the aim is to estimate the small area distribution function.

Full text not available from this repository.

Citation

Tzavidis, Nikos, Salvati, Nicola, Pratesi, Monica and Chambers, Ray (2008) M-quantile models with application to poverty mapping Statistical Methods and Applications, 17, (3), pp. 393-411. (doi:10.1007/s10260-007-0070-8).

More information

Published date: July 2008
Keywords: distribution function, quantile regression, inequality measure, poverty assessment, robust inference

Identifiers

Local EPrints ID: 181899
URI: http://eprints.soton.ac.uk/id/eprint/181899
ISSN: 1618-2510
PURE UUID: 55d0f877-cfe8-4948-b1f6-f30bc2d7c639

Catalogue record

Date deposited: 26 Apr 2011 08:35
Last modified: 18 Jul 2017 11:58

Export record

Altmetrics

Contributors

Author: Nikos Tzavidis
Author: Nicola Salvati
Author: Monica Pratesi
Author: Ray Chambers

University divisions


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×