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Abstract. The metastability associated with the first-order transition from the
normal to the superfluid phase is investigated in the phase diagram of two-
component polarized Fermi gases. We begin by detailing the dominant decay
processes of single quasiparticles, determining the momentum thresholds of
each process and calculating their rates. This understanding is then applied to
a Fermi sea of polarons, and we predict a region of metastability for the normal
partially polarized phase. We propose experiments to observe the threshold of
the metastable region, the interaction strength at which the quasiparticle ground
state changes character, and the decay rate of polarons.
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1. Introduction

The experimental realization of spin-polarized ultracold Fermi gases has initiated a variety of
new physics. Of particular interest is the understanding of strongly interacting two-component
Fermi gases at zero temperature. Recent experiments have observed a rich phase diagram and
located a first-order transition from the normal to the superfluid phase. Phase separation has been
observed by the authors of [1–6], who showed that the trapped Fermi gas arranges itself in a shell
structure. A precise determination of the equation of state was made by the authors of [7–9].
Furthermore, direct observations of the quasiparticle parameters are presented in [6, 9, 10]. Two
theoretical approaches have been used to throw light on this intriguing problem: the study of
a single atom immersed in an ideal Fermi gas of atoms in a different spin state, and a Monte
Carlo calculation at finite polarization. The Monte Carlo approach revealed the theoretical phase
diagram of a homogeneous Fermi gas, as a function of polarization P = (N↑ − N↓)/(N↑ + N↓)

and interaction strength [11], mapping out a phase separation of the superfluid and normal
phases8. The single impurity approach examines quasiparticles used as building blocks to
describe these phases. In the strongly imbalanced limit, a single ↓ fermion immersed in a Fermi
sea of ↑ fermions, the spin impurity atom becomes either a fermionic (polaron) or a bosonic
(molecule) quasiparticle. Complementary wave functions for each quasiparticle ([14, 15]
and [16–18], respectively) provide ground state energies and effective masses. Previous studies
showed that the critical interaction strength at which the ground state of a single impurity at zero
momentum switches from the fermionic to the bosonic branch [19] occurs at 1/kF↑ac ∼ 0.88,
with kF↑ = (6π 2n↑)

1/3 the Fermi momentum of a non-interacting Fermi sea of ↑ atoms with
density n↑, and a the scattering length parametrizing the interaction strength between ↑ and ↓

atoms. This value is higher than the interaction strength 1/kF↑a ∼ 0.73 at which a superfluid
phase was found to emerge in the limit of full polarization [11]. In this paper, we will assume

8 There is also the possibility, discussed by Kohn and Luttinger, that the zero-temperature ground state of the
partially polarized Fermi gas is unstable to superfluid pairing in higher-angular-momentum channels, which would
lead to new regions of superfluidity, as discussed recently in [12, 13]. The inclusion of such a scenario is, anyway,
beyond the scope of this paper.
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that this is indeed the case, i.e. that the normal–superfluid transition appears at a lower value
of 1/kF↑a than does the crossing of the single polaron and molecule branches. The interaction
strength at which the normal–superfluid transition occurs is derived from a thermodynamic
calculation, in which the energies of a normal partially polarized phase and a phase-separated
state of a polarized superfluid and a fully polarized normal gas are compared. Hence, the value
1/kF↑a ∼ 0.73 includes the effects of molecule–molecule interactions as well as the energy
cost of phase separation. Since phase separation occurs before a single quasiparticle changes
from fermionic to bosonic character, no measurements made in the ground state will allow us
to study the transition from the polaron to the molecule in the homogeneous phase. As we
will show later, the use of metastable and out of equilibrium processes helps overcome this
problem.

Firstly, we determine the momentum thresholds for the decay of single impurities with
finite momentum. We then consider the metastability associated with the normal to superfluid
first-order phase transition in the thermodynamic phase diagram. Indeed, by applying our
understanding of single quasiparticle decay, we predict that there is a region where a finite
concentration of quasiparticles is metastable. We denote such a phase as a Fermi sea of polarons.
Experimentally, this corresponds to a spin-imbalanced configuration with a finite number of
impurities. We propose the use of a Fermi sea of polarons as an experimental probe for
determining the momentum threshold of the quasiparticle decay. As this threshold goes to zero
at 1/kF↑ac, we can observe this point for the first time. Beyond this threshold the decay of
polarons into molecules may lead to a mixture of molecules and polarons, which suggests a
possible way of measuring the molecule–polaron scattering length. In this way, we hope to open
up a new regime of metastable physics in Fermi gases for experimental exploration. Finally, we
calculate the decay rates for each process, within the key regions of interaction strength and
momenta, to determine the fate of the quasiparticles. The presence of a Fermi sea of polarons
would again be instrumental in measuring the various decay rates.

2. Background

Our starting point is an understanding of the single quasiparticle ground state as a function
of 1/kF↑a going from unitarity (1/kF↑a → 0) to the ‘Bose–Einstein condensate (BEC)’ limit
(1/kF↑a → +∞) (see figure 1). At the critical value 1/kF↑(a)c ∼ 0.88, the zero-momentum
energies of the polaron and the molecule cross. For smaller values of 1/kF↑a the polaron
is the ground state of the system, and for larger values the molecule is the ground state.
In figure 1 and throughout this paper, we use the polaron energy calculated using the wave
function proposed by Chevy [14]. The energy in the Bardeen–Cooper–Schrieffer (BCS) limit
tends to EPol = 4πan↑/m, the mean-field interaction energy, and that in the BEC limit tends
to EPol = −

1
ma2 −

εF↑

2 . Here and in the following, we take h̄ = 1. The effective mass m∗

Pol
of a polaron obtained from [18] becomes the bare mass in the BCS limit and diverges at
1/kF↑a ∼ 1.17. For the molecule, the energies and effective masses are obtained from [16–18].
In the BEC limit the energy tends to EMol = −

1
ma2 − εF↑. The effective mass equals the bare

molecule mass m∗

Mol = 2m in that limit; while approaching unitarity it grows; it diverges at
1/kF↑a ∼ 0.55. These masses and energies for both polarons and molecules have been found to
be very accurate in comparison with quantum Monte Carlo calculations [11, 19].

New Journal of Physics 13 (2011) 055011 (http://www.njp.org/)

http://www.njp.org/


4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1/kF↑ a

-4

-3

-2

-1
E B

/E
F↑

Molecule
Polaron

Figure 1. Molecule and polaron zero momentum energies as a function of
interaction strength on the ‘BEC’ side. Red line: molecule. Blue dashed line:
polaron. The dot-dashed line marks the critical interaction strength 1/(kF↑a)c ∼

0.88. To the left of it, the polaron energy is lower, and to the right it is the
molecule that becomes the ground state.

3. Decay processes and thresholds

We begin by considering the decay that the polarons and molecules can undergo when they
have a non-zero momentum. The decay process of a quasiparticle has to satisfy energy
and momentum conservation. This is generally possible only when the initial quasiparticle
momentum p is above a threshold momentum PTh.

3.1. Polaron decay

For the polaron at zero temperature, the decay processes we consider are

A. polaron → molecule + hole,

B. polaron → molecule + particle + 2 holes.

A finite momentum polaron also has a finite relaxation time as described in [20], which
schematically reads

C. polaron(p) → polaron(p′ < p) + particle + hole

The three-body decay of a polaron into a molecule, two holes and a particle has
been considered in [21] in the special case p = 0. Generalizing this calculation to non-zero
momentum, we find that process B can occur at any momentum when 1E = EPol − EMol > 0,
as expected, and only for

p > PB
Th =

√
−2m∗

Pol1E, (1)

when 1E < 0. Here, EPol and EMol are the energies of a zero-momentum polaron and molecule
at the given value of interaction strength.
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Figure 2. Momentum thresholds for various decay processes for both
polarons and molecules about the critical point. Blue solid line: process B,
polaron → molecule + 2 holes + particle; blue dashed line: process A,
polaron → molecule + hole; red solid line: process B̃, molecule → polaron +
2 particles + hole; red dashed line: process Ã, molecule → polaron +
particle. The ground state of the system changes from being a polaron to a
molecule at 1/kF↑a ∼ 0.88, beyond which even a polaron at p = 0 can decay via
process B; otherwise, only polarons at p > 0 are unstable in this way. Process A
is relevant at higher polaron momentum and generally results in a finite-
momentum molecule even on the threshold. The process A and B thresholds
meet when the molecule’s (polaron’s) effective mass diverges at 1/kF↑a ∼ 0.55
(1.17). Note that for polarons at large p ∼ pF↑, momentum relaxation processes
(process C) are very strong, so that such a polaron is no longer a well-defined
quasiparticle.

For process A, the two-body decay of a polaron with momentum p into a molecule and a
hole, the conservation of energy and momentum requires the following equality to be verified,

EPol +
p2

2m∗
+ ξq = EMol +

(p + q)2

2M∗
, (2)

where ξq =
q2

2m − εF↑ is the kinetic energy of a majority particle measured with respect to the
Fermi surface. The minimum momentum PA

Th at which process A is allowed is found by setting
the hole at the Fermi surface, and by taking its momentum to be anti-parallel to the one of the
polaron,

PA
Th

2

2m∗

Pol

+ EPol =
(PA

Th − pF)
2

2m∗

Mol

+ EMol. (3)

Processes including more particle–hole pairs (e.g. molecule + 3 holes + 2 particles) have the
same energy threshold as process B, but lower rates, so we do not consider them here.

Figure 2 shows our results for the polaron decay thresholds, as given by (1) and (3). In the
region below 1/kF↑ac, where the zero-momentum polaron is the ground state of the system, a
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polaron at finite momentum can nevertheless be unstable to decay processes A, B and C. The
solid blue line gives the momentum threshold PB

Th for the polaron to decay via process B. On
this line, decay results in a zero-momentum molecule for 1/kF↑a < 1/kF↑ac. Finite momentum
molecules also result from process B above the solid blue line. The blue dashed line gives the
momentum threshold PA

Th for process A, which generally creates a molecule at finite momentum
even on the threshold. Decay processes including more particle–hole pairs all set in at momenta
above the solid blue line, i.e. for p > PB

Th. For 1/kF↑a > 1/kF↑ac, a polaron at zero momentum
that is unstable to process B decays into a molecule at finite momentum, whereas process
A continues to affect only higher-momentum polarons. Polarons with any finite momentum
are unstable to momentum relaxation (process C) on both sides of 1/kF↑ac. The momentum
thresholds for processes A and B become equal where the molecule’s effective mass diverges
(1/kF↑a ∼ 0.55).

3.2. Molecule decay

The stability of a molecule is calculated in a similar way. The decay channels we consider
are:

Ã. molecule → polaron + particle

B̃. molecule → polaron + 2 particles + hole

C̃ . molecule(p) → molecule (p′ < p) + hole + particle

For 1/kFa < 1/kF↑ac, a zero-momentum molecule decays via process B̃ into a polaron with
finite momentum, and via process Ã at higher momentum. For 1/kFa > 1/kF↑ac, process
B̃ precedes process Ã with increasing momentum until where the polaron’s effective mass
diverges. In analogy to the polaron decay considered above, the momentum thresholds for the
molecule are determined by energy and momentum conservation. They are

P Ã
Th

2

2m∗

Mol

+ EMol =
(P Ã

Th − pF)
2

2m∗

Pol

+ EPol, (4)

P B̃
Th =

√
2m∗

Mol1E for
1

kF↑a
>

1

kF↑ac
, (5)

where P B̃
Th = 0 for 1/kF↑a 6 1/kF↑ac. Again, the threshold momentum for process Ã is found

when the majority particle is on the Fermi surface.
Our results for the threshold momenta for polaron and molecule decay, as given by (1), (3),

(4) and (5), are shown in figure 2.

4. Metastability of polaron gas

So far, we have analysed the decay processes of single quasiparticles. The single quasiparticle
problem is a limiting case of the spin imbalanced Fermi gas. The ground state phase diagram of
a spin imbalanced Fermi gas, with polarization versus interaction strength, has been calculated
in [11] using a Monte Carlo approach. In this calculation, the ↓ atom concentration is kept finite
for a macroscopic system even in the P → 1 limit. We now examine how the stability analysis
above is connected to this equilibrium phase diagram.
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Figure 3. The stability of a Fermi sea of polarons: the dashed green line shows
the first-order transition from normal to phases including a superfluid (figure 4
of [11]). The solid blue line is the Fermi momentum of a Fermi sea of polarons
equal to the momentum threshold for process B (pPol

F = PB
Th). The dot-dashed

blue lines show how the solid blue line might be shifted due to molecule–polaron
interactions.

Our particular consideration is the normal to superfluid first-order phase transition
predicted by the Monte Carlo calculations [11]. This transition from a partially polarized normal
phase to a state with separated superfluid and normal phases is represented by the dashed
green line in figure 3. To make this line in figure 3, we have assumed that the polarons form
a weakly interacting Fermi sea, so that we can convert the critical density at which phase
separation occurs, into a critical Fermi momentum pPol

F (1/kF↑a) for the polarons. In the phase-
separated state, the Monte Carlo calculation includes the interactions between molecules in the
condensate. In contrast, in the single ↓ atom calculation, there is at most one molecule and
therefore no condensate.

If we assume that the relevant processes in which the polarons can be converted into
molecules, within experimentally realistic timescales, are only the ones considered in section 3.1
and that these single impurity processes can be used to analyse the stability of the Fermi sea
of polarons (neglecting for instance multiple polaron decay), this gives rise to a region of
metastability in the phase diagram. If a Fermi sea of polarons prepared in the ground state
(below the green dashed line) is adiabatically taken above the dashed green line by increasing
1/kFa, we expect it to persist as a metastable state. Even though the density of the ↓ atoms
is so high that the true ground state is a phase-separated state, the state is stable since there
are no polarons with a large enough momentum to decay to a molecule via process B. The
decay of polarons to molecules sets in only when 1/kFa is increased further so that the Fermi
momentum of the polarons is larger than the momentum threshold for process B (pPol

F = PB
Th);

we ignore here molecule–polaron interactions (see below). This momentum is given by the
solid blue line in figure 3. At this point, the highest-momentum polarons will decay into
molecules.
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This motivates the following proposal to use a Fermi sea of polarons as an experimental
probe for exploring the metastable region and observe molecule formation through process B.
Due to the Pauli exclusion principle, the momentum relaxation process (C) is suppressed,
allowing for an analysis of the other decay processes. Let us suppose for the moment that the
molecules into which polarons can decay do not interact with the polarons. Then, to determine
the shape of PB

Th, we can prepare a polaron Fermi sea with a Fermi momentum smaller than the
dashed green line in figure 3 at unitarity, for example. Then we increase 1/kF↑a adiabatically.
The system will cross the first-order phase transition line, but since it is metastable (as discussed
above), it will remain a Fermi sea of polarons rather than form a condensate of molecules.
As we continue beyond the phase transition, the Fermi momentum will become equal to the
momentum threshold for process B (pPol

F = PB
Th). Increasing 1/kF↑a beyond this point will now

lead to the decay of polarons at pPol
F . The polarons on the Fermi surface decay into molecules.

The appearance of these molecules can then be detected experimentally as the tell-tale sign of
the solid blue line PB

Th. The experiment can be repeated using an appropriate pPol
F to find PB

Th at
different interaction strengths, making sure that only a small number of molecules are created
each time (so as to be able to ignore effects beyond the threshold, e.g. molecule–molecule
interactions) but a large enough number are observable. The size of the polaron Fermi sea
needed will decrease as PB

Th decreases, so that the value 1/kF↑ac can be found in the limit of a
single polaron.

If we now take into account molecule–polaron interactions, the value of pPol
F at which

molecules are first formed will change. If we consider one molecule in the final state, the
(unknown) molecule–polaron interaction changes the energy by 1E = gPMnPol (assuming a
mean-field approximation). This will lead to a positive or negative shift in the threshold curve
of the production of molecules (see dot-dashed blue lines in figure 3). This shift tends to zero at
1/kF↑ac where nPol → 0 and where the threshold curve meets PB

Th. One could in principle use the
difference between the experimentally observed curve and PB

Th (which is known theoretically)
to determine this shift and so the molecule–polaron scattering length. Note that we have ignored
the effects of the polaron–polaron interaction, which are known to be small.

We have therefore established that the region between the dashed green and dot-dashed
blue lines in figure 3 represents a metastable phase consisting of a Fermi sea of polarons. Such a
metastable phase is characteristic of a first-order phase transition. It is important to note that the
state may well be metastable beyond the dot-dashed blue line since an analysis of its stability in
that region would require us to take into account the presence of a finite quantity of molecules.
We also raise the intriguing possibility of a final state containing the remaining Fermi sea of
polarons coexisting with a condensate of molecules, within a background of ↑ particles.

5. Single quasiparticle decay rates and experimental observability

5.1. Decay rate calculation

The phase diagram is animated by considering the rates of each decay process. The decay rates
of zero-momentum polarons and molecules via process B are presented in [21]. The decay rate
of a polaron with momentum p through process A is given in terms of the imaginary part of the
on-shell polaron self-energy 6A

Pol shown in figure 4(a), i.e. 0A
Pol(p) = −ZPol Im 6A

Pol(p, EPol +
p2

2m∗

Pol
), where the quasiparticle residue ZP has been explicitly included in the decay rate [22]
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Figure 4. Diagrams showing the decay processes A and B for (a) polarons and
(b) molecules. The thin lines represent majority atoms, wavy lines a molecule
and thick lines a polaron. The polaron–molecule matrix element g is represented
by a thick dot and the square represents off-resonant scattering between a polaron
and the majority atoms.

since it is of the order of 1/2 in the interesting region. At zero temperature, one obtains

0
(A)

Pol (p) = π ZPol ZMolg
2

∫
q<kF↑

δ

(
4E +

p2

2m∗

Pol

+ ξq −
(p + q)2

2m∗

Mol

)
, (6)

which is a simple Golden rule expression. Here, g = −
√

2π/m2
r a is the atom–molecule

coupling in vacuum [21], and mr is the atom–molecule reduced mass. To derive this equation,
we have used a pole expansion of the molecule propagator with quasiparticle residue ZMol. The
decay rate may be calculated analytically. Assuming for simplicity m∗

Mol = 2m↑ and m∗

Pol = m↑,
we obtain

0A
Pol (p) = ZPol ZMolεF↑

4

kF↑a

(p − PA
Th)(PA

Th + 2kF↑ − p)

pkF↑

, (7)

for PA
Th < p < PA

Th + 2kF↑ and zero otherwise. The momentum threshold for this process is PA
Th =

kF↑(
√

2 − 24E/εF↑ − 1). Note that PA
Th > 0 even when M E > 0 and that one has 4E

εF↑

< 0.5 for
all scattering lengths [16, 19].

The decay rate of a molecule with momentum p via process A, the creation of a polaron
and a majority particle, is given in terms of the imaginary part of the molecule self-energy
6A

Mol depicted in figure 4(b). A calculation analogous to the polaron case considered above
yields

0A
Mol (p) = ZMol ZPolεF↑

2

kF↑a

(p − P Ã
Th)(p − P Ã

Th + 4kF↑)

pkF↑

. (8)

The threshold momentum for this process is P Ã
Th = kF↑(2 −

√
2 − 24E/εF↑) with 0A

Mol = 0 for

p < P Ã
Th. Note that in this case, as opposed to the polaron case, there is no maximum momentum

for the molecule above which there is no decay via process A. This is because for large
momentum, the molecule can always dispose its energy and momentum to a majority particle,
whereas the polaron has to dispose it into a majority hole within the Fermi sea.
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The corresponding self-energy for process B, 6B
Pol, is shown in figure 4(a). Generalizing

the calculations in [21] to non-zero momentum p yields

0B
Pol (p) ∝ ZPol ZMolεF↑

[
(1E + (p2/2m∗

Pol))

εF↑

]9/2

. (9)

The analysis in [21] has shown that the proportionality constant in this expression is of the order
of unity.

Likewise, the decay rate of a molecule via process B can be obtained by generalizing the
calculations in [21] to a finite momentum p. We obtain

0B
Mol (p) ∝ ZMol ZPolεF↑

[
(−1E + (p2/2m∗

Mol))

εF↑

]9/2

, (10)

where the constant of proportionality is, again, of the order of unity. PB
Th (P B̃

Th) is the point at
which 0B

Pol (0B
Mol) is equal to zero.

For a finite momentum, the polaron can scatter off the majority particles, giving rise to
momentum relaxation with a rate 1/τPol (process C). The high velocity regime kF↓ � m∗

↓
v � kF↑

analysed in [20] determines the rate of relaxation of a single impurity. If we consider only
a single impurity, spin statistics become redundant, allowing the same calculation to be used
for the molecule. The momentum relaxation rate, at T = 0 for the molecule or polaron,
is then

1

τMol/Pol
=

2π

35
|γ |

2
m∗3

Mol/Polv
4

k2
F↑

, (11)

where γ is determined by the scattering amplitude U =
∂µMol/Pol

∂n↑

=
2π2

m↑kF↑

γ . At unitarity, we

have µPol = −αεF↑ with α ' 0.6 [19]. One can also use µMol = −
1

ma2 + 3π ã
m n↑, valid for

1
kF↑a & 0.7 [19] (where ã ' 1.18a), to find the molecule momentum relaxation rate in terms
of the interaction strength,

1

τMol
=

9

70π
(kF↑ã)2 m∗3

Molv
4

k2
F↑

. (12)

The high power of the velocity v and the effective mass m∗ indicates that impurities at large
momenta p ∼ pF↑ are no longer well-defined quasiparticles.

In figure 5, we plot the decay rate of polarons and molecules via processes A and B as a
function of momentum p for various M E . We see that once p > PA

Th and process A sets in, it
quickly dominates B. In fact, once active, process A dominates process B by several orders of

magnitude since the ratio is, to lowest order, 0A
0B
∝ (

p−pA
Th

pF↑

)(
pF↑

pA
Th

)10. This is expected since process
A is a two-body process, whereas process B is a three-body process. On the other hand, for
p < PA

Th process B of course dominates, as process A is not allowed. However, since the typical
timescale for process B is very long, of the order of 10–100 ms, the momentum relaxation of
the polaron via process C is in general much faster. This justifies our proposed experiment to
determine PB

Th using a Fermi sea of polarons in equilibrium, in order to suppress process C.

5.2. Decay rate experiment

The polaron Fermi sea can also be used to measure the rate of process B. The initial state is a
polaron Fermi sea prepared in the ground state (i.e. below the dashed green line in figure 3). We
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Figure 5. Decay rates of finite momentum polarons (top) and molecules (bottom)
for processes A (continuous line) and B (dashed line). From left to right, we have
1E/εF↑ = −0.2, 0 and 0.2. Decay rates are in units of (ZPol ZmolεF↑). The thick
dot indicates the threshold momentum for process B, PB

Th. Generally, process B
dominates over A for p & kF↑.

then instantaneously increase the interaction strength so that some fraction of the polarons have
a momentum p > PB

Th and hence are then susceptible to decay via process B. Alternatively, by
increasing the interaction strength to above 1/kF↑ac, every polaron has a momentum p > PB

Th,
and so the whole Fermi sea is susceptible to decay via process B. The molecules resulting from
this decay are unable to decay via process Ã or B̃; however, they lose momentum via process C̃.
The resultant state is therefore expected to be a condensate of molecules. A measurement of the
initial growth rate of the number of molecules or the loss rate of polarons determines the rate of
process B for polarons, averaged over the momenta of the polarons decaying, at a given 1/kF↑a.

Similarly, the rate of process A can be measured, with some fraction of the polarons having
a momentum p > PA

Th. In this case, the Fermi sea of polarons will decay via both processes A
and B. The two processes can be distinguished, since process A has a significantly higher rate
and typically results in molecules at finite momentum.

6. Conclusions

In this paper, we have shown how quasiparticles in a two-component Fermi gas behave at finite
momenta in the limit of extreme imbalance. By considering energy and momentum conservation
of single impurities, we determined the momentum thresholds beyond which quasiparticles are
susceptible to the most significant decay processes, and we calculated the rates of each.

We have identified a region of metastability for the partially polarized normal phase about
the normal to superfluid first-order transition, and we have shown how a Fermi sea of polarons
can be used as an experimental probe to observe the boundary of this region. Moreover, we
suggested an experiment able to determine the location of the polaron–molecule transition and
to measure the decay rate of processes involving one and two particle–hole pairs.

The experiments we propose would yield the observation of a novel state, a mixture
of molecules and polarons, and a measure of the unknown molecule–polaron interaction
strength.
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