Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry
Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry
Cinematographic stereoscopic particle image velocimetry measurements were performed to resolve small and intermediate scales in the far field of an axisymmetric co-flowing jet. Measurements were performed in a plane normal to the axis of the jet and the time-resolved measurement was converted to quasi-instantaneous three-dimensional data by using Taylor's hypothesis. The quasi-instantaneous three-dimensional data enabled computation of all nine components of the velocity gradient tensor over a volume. The results based on statistical analysis of the data, including computation of joint p.d.f.s and conditional p.d.f.s of the principal strain rates, vorticity and dissipation, are all in agreement with previous numerical and experimental studies, which validates the quality of the quasi-instantaneous data. Instantaneous iso-surfaces of the principal intermediate strain rate (beta) show that sheet-forming strain fields (i.e. beta > 0) are themselves organized in the form of sheets, whereas line-forming strain fields (beta < 0) are organized into smaller spotty structures (not lines). Iso-surfaces of swirling strength (a vortex identification parameter) in the volume reveal that, in agreement with direct numerical simulation results, the intense vortex structures are in the form of elongated 'worms' with characteristic diameter of approximately 10 eta and characteristic length of 60-100 eta. Iso-surfaces of intense dissipation show that the most dissipative structures are in the form of sheets and are associated with clusters of vortex tubes. Approximately half of the total dissipation occurs in structures that are generally sheet-like, whereas the other half occurs in broad indistinct structures. The largest length scale of dissipation sheets is of order 60 eta and the characteristic thickness (in a plane normal to the axis of the sheet) is about 10 eta. The range of scales between 10 eta (thickness of dissipation sheets, diameter of vortex tubes) to 60 eta (size of dissipation sheet or length of vortex tubes) is consistent with the bounds for the dissipation range in the energy and dissipation spectrum as inferred from the three-dimensional model energy spectrum.
141-175
Ganapathisubramani, B.
5e69099f-2f39-4fdd-8a85-3ac906827052
Lakshimnarasimhan, K.
22c01824-292a-44f1-b234-78d63bc6b580
Clemens, N.T.
9c4dd6c5-fdb8-4f5f-bf41-3b3643ed67ec
10 March 2008
Ganapathisubramani, B.
5e69099f-2f39-4fdd-8a85-3ac906827052
Lakshimnarasimhan, K.
22c01824-292a-44f1-b234-78d63bc6b580
Clemens, N.T.
9c4dd6c5-fdb8-4f5f-bf41-3b3643ed67ec
Ganapathisubramani, B., Lakshimnarasimhan, K. and Clemens, N.T.
(2008)
Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry.
Journal of Fluid Mechanics, 598, .
(doi:10.1017/S0022112007009706).
Abstract
Cinematographic stereoscopic particle image velocimetry measurements were performed to resolve small and intermediate scales in the far field of an axisymmetric co-flowing jet. Measurements were performed in a plane normal to the axis of the jet and the time-resolved measurement was converted to quasi-instantaneous three-dimensional data by using Taylor's hypothesis. The quasi-instantaneous three-dimensional data enabled computation of all nine components of the velocity gradient tensor over a volume. The results based on statistical analysis of the data, including computation of joint p.d.f.s and conditional p.d.f.s of the principal strain rates, vorticity and dissipation, are all in agreement with previous numerical and experimental studies, which validates the quality of the quasi-instantaneous data. Instantaneous iso-surfaces of the principal intermediate strain rate (beta) show that sheet-forming strain fields (i.e. beta > 0) are themselves organized in the form of sheets, whereas line-forming strain fields (beta < 0) are organized into smaller spotty structures (not lines). Iso-surfaces of swirling strength (a vortex identification parameter) in the volume reveal that, in agreement with direct numerical simulation results, the intense vortex structures are in the form of elongated 'worms' with characteristic diameter of approximately 10 eta and characteristic length of 60-100 eta. Iso-surfaces of intense dissipation show that the most dissipative structures are in the form of sheets and are associated with clusters of vortex tubes. Approximately half of the total dissipation occurs in structures that are generally sheet-like, whereas the other half occurs in broad indistinct structures. The largest length scale of dissipation sheets is of order 60 eta and the characteristic thickness (in a plane normal to the axis of the sheet) is about 10 eta. The range of scales between 10 eta (thickness of dissipation sheets, diameter of vortex tubes) to 60 eta (size of dissipation sheet or length of vortex tubes) is consistent with the bounds for the dissipation range in the energy and dissipation spectrum as inferred from the three-dimensional model energy spectrum.
Text
GANAPATHISUBRAMANI2008.pdf
- Version of Record
Restricted to Repository staff only
Request a copy
More information
e-pub ahead of print date: 25 February 2008
Published date: 10 March 2008
Organisations:
Aerodynamics & Flight Mechanics
Identifiers
Local EPrints ID: 182501
URI: http://eprints.soton.ac.uk/id/eprint/182501
ISSN: 0022-1120
PURE UUID: 3275c123-7bf3-43d7-9251-af785a7b2d12
Catalogue record
Date deposited: 27 Apr 2011 10:40
Last modified: 15 Mar 2024 03:37
Export record
Altmetrics
Contributors
Author:
K. Lakshimnarasimhan
Author:
N.T. Clemens
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics