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ABSTRACT:   This paper investigates the design and performance of inflatable boats where the structural 
stiffness is supplied by the inflatable tubes and jointed composite sandwich panels which allow large 
deformations in the hull form. Anecdotal evidence has shown that this flexibility or hydroelasticity of an 
inflatable boat (IB) improves its performance, especially in waves. It is hoped that this hydroelasticity can be 
optimised to improve aspects of the performance, including reductions to the boat motion therefore 
minimising the human exposure to vibrations and added resistance in waves. 
   This paper discusses each area of hydroelasticity found in an inflatable boat, it defines each problem, shows 
the current literature and possible methods of investigation. The areas of hydroelasticity include; global 
hydroelasticity, hydroelastic planing surfaces and hydroelastic slamming. This paper also discusses the wave 
and spray generation of a vessel with sponsons and relates it to the effect on boat motion and resistance. 
Finally this paper discusses the air and water borne noise produced by these types of vessels. 
 
 
1   INTRODUCTION 

This project is supported and partially funded by 
the Royal National Lifeboat Institution (RNLI). 
The RNLI is a charity that aims to “save lives at 
sea” all around the coasts of the UK and Ireland. 
They design, build, maintain and operate a range 
of vessels for almost any situation and they own 
the largest fleet of inflatable boats (IBs) and rigid 
inflatable boats (RIBs) in the UK. This paper will 
focus on the vessels used in littoral waters, 
primarily the D class inshore inflatable lifeboat 
known as the Inshore Boat 1 (IB1).  
   Compared with larger boats and ships, there is 
relatively little scientific understanding about the 
performance of RIBs and considerably less 
understanding of the performance of IBs. Their 
design is usually based on the experience of the 
designer or trial and error. Experiments into the 
performance of RIBs include; Haiping et al. 
(2005); Townsend et al. (2008a); Townsend et al. 
(2008b) and for IBs includes; Dand et al. (2008); 
Austen and Fogarty (2004). A computational 
model of a RIB has been constructed by Lewis et 
al. (2006).  
   High speed marine vehicles, such as the IB1, 
experience non-linear boat motion which results in 

high and low frequency vibrations with large 
accelerations. In 2002 a European Directive 
(2002/44/EC) was proposed on the minimum 
health and safety requirements regarding the 
exposure of workers to physical vibrations. The 
exposure action value for whole-body vibration is 
0.5 ms-2 r.m.s (or 9.1 ms-1.75 VDV) and the 
exposure limit value is 1.15 ms-2 r.m.s (or 21 ms-

1.75 VDV). Boat motions and vibrations have been 
well reviewed with relation to high speed craft by 
Townsend (2010). Vibrations can not only cause 
long term injuries to the crew but it can reduce the 
crew's ability to perform tasks (during and after 
transit). Possible strategies to reduce the human 
exposure to boat motion have included; suspension 
seats, suspended decks, active and passive fins, 
trim tabs, interceptors, gyrostabilisers, flexible 
hulls and elastomer coated hulls. Townsend et al. 
(2008b) showed that the RNLI RIBs exceed the 
exposure limit value (1/3 average significant wave 
height = 0.4m and average wave period = 10.6s) 
and Dand (2004) showed that the rigid scale model 
of the IB1 in regular waves, with a full scale wave 
height of 0.55m, could be exposed to accelerations 
of up to 4g in the crew's position. The RNLI are 
currently applying for an exemption certificate, 
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whole and studying the longitudinal bending and 
torsional twisting vibrations that exist. It has been 
observed that as the IB1 passes over an oblique 
wave that the deck bends and twists which 
provides a smoother ride.  This could be regarded 
as the conventional hydroelastic response and 
theories such as the ones described in Bishop and 
Price (1979). The flexibility of the boat will affect 
the wave induced dynamic response of the vessel 
which in turn affects the boat motion.  
   An inflatable boat has many inter-connected 
parameters that will affect the global vibrations 
which include; deck properties (material properties 
and thickness), deck joints (number, position and 
stiffness), sponson and keel properties (material 
properties and internal pressures), fabric hull 
properties (material properties and pre-tensioned 
stresses), mass (LCG and inertia) and construction 
technique. A static deflection experiment was 
performed by the authors and it was found that the 
dominant parameters to the deflection of the boat 
are the number, position and stiffness of the deck 
joints. 
 
4.2   Literature Review 

There are numerical models capable of predicting 
the vertical motions and wave loads on a high 
speed craft, such as Chiu and Fujino (1988) and 
Santos et al. (2009), but, to our knowledge, no 
numerical model has yet been validated for a 
hydroelastic planing vessel. Plus the structural 
properties of inflatable fabric tubes have not been 
included. Santos et al. (2009) modelled a fast 
patrol boat which had a planing hull form but it is 
noted that the approach used was not suitable for 
planing vessels. They found large differences 
between the full scale measurements and the 
numerical model results. 
   Early work in the deformation of inflatable 
cylindrical beams started with Comer and Levy 
(1963) by comparing them to an Euler-Bernoulli 
beam. The most recent and relevant work was 
performed by Wielgosz et al. (2008) by using 
Timoshenko beam theory to account for the shear 
deformation. A finite element model was made 
using a stiffness matrix to include internal 
pressure. Veldman et al. (2005) highlighted the 
importance of using the correct modelling theory; 
membrane or thin-shell theory. They found better 
correlation using thin-shell theory even though the 
fabric was 60nm thick. It has not been established 
which theory should be used for Hypalon® coated 
polyester. 
 

4.3   Methods of Investigation  

4.3.1   Experimental Methods 

The conventional model scale experimental 
approach to this problem involves using 
segmented models. However, this is not applicable 
to the IB1 because the structure is unconventional 
and the deck joints allow specific flexibility.  
   If this problem is studied using scale models 
then certain scaling laws need considering. The 
first is the scaling of internal pressure because 
atmospheric pressure is the same at full and model 
scale. Scaling can be achieved using a 
combination of bellows and springs which was 
suggested by Stevens (1981). Scaling fabric 
material properties will involve altering the 
Poisson's ratio and the Young's modulus.  
   Full scale experiments on the IB1 could be 
performed. The main disadvantage is the 
uncontrollable environment. It may be possible to 
construct an IB with different deck properties and 
deck joints to study the effect of hydroelasticity on 
the boat motion. Another possible method is to 
study the effects using a spring system on each 
deck joint to alter its stiffness therefore allowing 
the parameters to be changed.  
 
4.3.2   Computational Methods 

Thus we can conclude that at the present time it is 
not possible to accurately predict the dynamic 
hydroelastic motion of a planing vessel. If a 
method for modelling the fabric inflatable 
sponsons is developed, then, when a hydroelastic 
planing model is available the structural domain 
can easily be adapted for the IB1. This could be 
performed using a stiffness matrix similar to 
Wielgosz et al. (2008).  
 
5   HYDROELASTIC PLANING SURFACE 

5.1   Problem Definition 

The planing surface of an IB is normally 
constructed from fabric which has significantly 
less out-of-plane bending stiffness than 
conventional metal or composite hulls. This will 
allow the planing surface to deform considerably 
under different loading conditions, see figure 2. 
The problem is to find the shape of the fabric 
when it is in steady-state planing and the effect of 
this deformation on the planing performance. 
   The aim is to optimise the parameters of the 
fabric hull to find the limitations and the effects of 
flexible planing surfaces. The parameters of a 
fabric hull are material properties and the pre-
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   Lu et al., (2000) used boundary element methods 
(BEM) for the fluid and finite element method 
(FEM) for the structure. The non-linear free 
surface boundary condition is satisfied and the jet 
is properly treated. Good agreement was found 
with the results of Zhao and Faltinsen (1993).  
   Bereznitski (2001) published an important paper 
on the role of hydroelasticity in the 2D slamming 
problem and uses four methods for solving the 
problem. The first is a Wagner's solution where the 
body is rigid and this can be compared to the work 
of Faltinsen (1997) where the body is elastic. 
Bereznitski also used a self developed code plus 
two commercial codes called MSC Dytran and LS-
DYNA. Bereznitski commented that the most 
suitable methods were either MSC Dytran or LS-
DYNA because they can both deal with the 
coupled hydroelastic interaction and include 
modelling of air cushions. It is worth noting MSC 
Dytran and LS-DYNA are quite similar and the 
equations for the state of water and air are the 
same, see Bereznitski (2001). LS-DYNA has been 
used to study this problem by Bereznitski (2001), 
Le Sourne et al. (2003), Stenius (2006) and 
Stenius et al. (2007). Stenius et al. (2007) used 
finite element analysis based on multi-material 
arbitrary Lagrangian-Eulerian formulation and a 
penalty contact algorithm and the hydrodynamic 
loads correlated well with experimental results. 
 
6.4   Methods of Investigation 

6.4.1   Experimental Methods 

This problem could be investigated using 
experimental scale drop tests, however, the scaling 
laws need to be carefully considered. The scaling 
of internal pressure will involve the use of a 
bellow and spring combination, see Stevens 
(1981). Scaling fabric material properties will 
involve altering the Poisson's ratio and the 
Young's modulus. The scaling of jet and spray 
formation is not clear because of the effect of 
surface tension influencing the jet break down into 
spray droplets. This involves changing the Webber 
number of the fluid, see Savitsky et al. 2010. 
Another scaling issue is the air cushion and the 
Euler number needs to be the same for model and 
full scale tests, see Faltinsen et al. (2004). 
   The scaling laws show that it would be 
advantageous to perform this experiment at full 
scale. However, scale models could have the 
advantage that a smaller test model could be 
forced into the water at a constant velocity and 
kept vertical.  

   This project intends to use full scale drop test to 
study this problem. Full scale models can be 
constructed which will allow the various 
parameters (material properties, pre-tensioned 
stresses and internal pressure) and variables 
(deadrise and impact velocity) to be altered. The 
accelerations could be measured using a number of 
devices including; accelerometers, laser or optical 
devices, sonic transducers and inertia 
measurement units (IMU). The measurement 
device will require a sampling frequency of at 
least 500 Hz, see Faltinsen et al. (1997). The shape 
of the elastic component also needs to be 
measured and this presents a few issues. It would 
be undesirable to use a contact measurement 
device as this will affect the response of the elastic 
component. Therefore laser or optical devices 
would be ideal.  
   
6.4.2   Computational Methods 

The first computational method that could be used 
to model this problem is using membrane theory 
coupled with Wagner theory in a similar manner to 
Kvalsvold and Faltinsen (1995); Korobkin et al. 
(2006). BEM and FEM could be coupled to solve 
this problem such as Lu et al. (2000) and ANSYS. 
The best method would probably involve using 
LS-DYNA to explicitly couple the problem. LS-
DYNA has been used and validated in the past 
plus most of the considerations can be included. 
 
7   WAVE WASH AND SPRAY GENERATION 

7.1   Problem Definition 

As a vessel increases in speed, beyond the hump 
speed, the main resistance component changes 
from wave resistance to spray resistance, see 
Payne (1988). The mechanisms for wave and 
spray generation are understood for planing 
vessels with hard chines, see Savitsky and 
Morabito (2010). However, the IB1 and most IBs 
do not have chines and the mechanisms for 
generation are not well understood. Therefore the 
problem is to study the wave and spray generation 
around a vessel with interacting sponsons with 
speeds from zero to planing and above.  
   This work aims to minimise the wave and spray 
generation of a craft with interacting sponsons. 
This has the potential to improve top speed and 
acceleration of the craft. Plus it has the capability 
to reduce the environmental damage from wave 
wash, however, this may have an adverse effect on 
the boat motion. The problem can be viewed in 2D 
transverse slices which allow the effect of the 
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predicting the noises produced by various types of 
craft.  
 
9   CONCLUSIONS 

This paper initially showed the construction of an 
IB and this indicated the areas of flexibility within 
the design of the IB1. These areas of flexibility 
show where hydroelasticity should be considered 
during the design of IBs. The optimisation of 
hydroelasticity could lead to improvements in boat 
motion (reduced human exposure to vibrations), 
boat forward speed/acceleration and added 
resistance in waves.  
   This paper discussed the global hydroelasticity 
within an IB and showed that it may be possible to 
alter current theories to include inflatable tubes 
and deck joints. These theories can then be used to 
optimise the global hydroelasticity.  
   Then the paper considers the complex problem 
of hydroelastic planing surfaces. It appears that at 
the current time computational models are not 
accurate enough to indicate the differences 
between rigid and hydroelastic planing surfaces. 
This paper outlines possible methods for 
experimentally investigating this problem.  
   Hydroelastic slamming was reviewed in this 
paper showing the different modes of flexibility. 
Each mode could be studied computationally or 
experimentally to find its effect on vertical 
accelerations. One mode will validate whether 
sponsons absorb impact energy during a slamming 
motion and to quantify the effect.  
   Wave and spray generation of a vessel with 
interacting sponsons was explored and this could 
be investigated as part of the hydroelastic 
slamming experiments. Finally the air borne noise 
regulations and standards that apply to crafts of 
this size and type are discussed. Also the novel 
area of water borne noise is discussed.  
 
10   ACKNOWLEDGMENTS 

This project is jointly supported and funded by the 
RNLI and EPSRC (Engineering and Physical 
Sciences Research Council). 
 
11   REFERENCES 
 
Arbos-Torrent, S., Pang, Z. Y., Ganapathisubramani, B., 
Palacios, R., (2011) Leading and trailing edge effects on the 
aerodynamic performance of compliant aerofoils. In: 49th 
AIAA, No.1118, pp.1-16. 
 
Austen, S., Fogarty, H. F. J., (2004) Design and 
development of a new inflatable lifeboat. SURV VI, RINA,  
March 2004. 

 
Bereznitski, A., (2001) Slamming: The role of 
hydroelasticity. Int. shipbuilding progress 4, (48), pp. 333-
351.  
 
Bishop, R. E. D., Price, W. G., (1979) Hydroelasticity 
of ships. Cambridge University Press. 
 
Chiu, F-C., Fujino, M., (1988) Nonlinear prediction of 
vertical motions and wave loads of high-speed crafts in head 
sea. Int. Shipbuilding Progress 36, (406), pp. 193-232. 
 
Comer, R. L., Levy, S., (1963) Deflection of an 
inflatable cylindrical cantilever beam. AIAA Journals 1, (7), 
pp. 1652-1655. 
 
Dand, I. W., (2002) Resistance measurements with an RNLI 
D-class Lifeboat. Report by BMT SeaTech; Doc No.  
3356.02. 
 
Dand, I. W., (2003) Resistance experiments with an RNLI 
D-class Model. Report by BMT SeaTech; Doc No. 
C3356.04. 
 
Dand, I. W., (2004) RNLI D-class model: Seakeeping 
measurements in head seas. Report by BMT SeaTech; Doc 
No. C3356.06. 
  
Dand, I. W., Austen, S., Barnes, (2008) The speed of fast 
Inflatable Lifeboats. Int. Journal of Small Craft Technology 
Vol. 150 Part B2, pp. 23-32.  
 
Faltinsen, O. M., (1997) The effect of hydroelasticity on 
ship slamming. Phil. Trans. of the Royal Soc. A: 
Mathematical, Physical and Engineering Sciences 355, 
(1724), pp. 575-591. 
 
Faltinsen, O. M., (1999) Water entry of a wedge by 
hydroelastic orthotropic plate theory. Journal of Ship 
Research 43, (3), pp. 180-193. 
 
Faltinsen, O. M., (2005) Hydrodynamics of high-speed 
marine vehicles. Cambridge University Press, ISBN; 0-521-
84568-8. 
 
Faltinsen, O. M., Kvålsvold, J., Aarsnes, J. V., (1997) 
Wave impact on a horizontal elastic plate. Journal of Marine 
Science and Technology 2, (2), pp. 87-100. 
 
Faltinsen, O. M., Landrini, M., Greco, M., (2004) 
Slamming in marine applications. Journal of Engineering 
Mathematics 48, (3/4), pp. 187-217. 
 
Gordnier, R., (2009) High fidelity computational simulation 
of a membrane wing airfoil. Journal of Fluids and Structures 
25, (5), pp. 897-917. 
 
Haiping, H. E., Bretl, J. P. E., VanSumeren, H., 
Savander, B., Troesch, A. W., (2005) Model tests of a 
typical rib in waves. Private Communication. 
 
Hirdaris, S. E., Temarel, P., (2009) Hydroelasticity 
of ships: recent advances and future trends. Proceedings of 
the Institution of Mechanical Engineers, Part M: Journal of 



 
Engineering for the Maritime Environment 223, (3), pp. 305-
330. 
 
Jenkins, C., Korde, U., (2006) Membrane vibration 
experiments: An historical review and recent results. Journal 
of Sound and Vibration 295, (3-5), pp. 602-613.  
 
Korobkin, A., Guéret, R., Malenica, S., (2006) 
Hydroelastic coupling of beam finite element model with 
Wagner theory of water impact. Journal of Fluids and 
Structures 22, (4), pp. 493-504. 
 
Korobkin, A., Parau, E., Vanden-Broeck, J., (2010) 
Mathematical challenges and modelling of hydroelasticity. 
Report on the Workshop, Int. Centre for Mathematical 
Sciences, 21-24 June, Edinburgh. 
 
Kvalsvold, J., Faltinsen, O. M., (1995) Hydroelastic 
modelling of wet deck slamming on multihull vessels. Journal 
of ship research 39, (3), pp. 225-239. 
 
Le Sourne, H., County, N., Besnier, F., Kammerer, 
C., Legavre, H., (2003) LS-DYNA Applications in 
Shipbuilding. In: 4th European LS-DYNA Users Conference 
pp. 1-16. 
 
Lewis, S. G., Hudson, D. A., Turnock, S. R., 
Blake, J. I. R., Shenoi, R. A., (2006) Predicting motions of 
high speed RIBs: A Comparison of non-linear strip theory 
with experiments. Proceedings of the 5th Int. Conference on 
High Performance Marine Vehicles (HIPER'06) pp. 210-224. 
 
Lewis, W. J., (2003) Tension Structures: Form 
and Behaviour. Thomas Telford, ISBN: 0-7277-3236--6.  
 
Lu, C., He, Y., Wu, G., (2000) Coupled analysis of 
nonlinear interaction between fluid and structure during 
impact. Journal of Fluids and Structures 14, (1), pp. 127-146. 
 
Natzijl, P. W., (1998) Bringing a 1.0 metre buoyancy tube to 
sea on a 18.0 metre rigid hull. Int. conference on rigid 
inflatables; 14-15 May, Weymouth, UK, Paper No. 7. 
 
Newman, B., (1987) Aerodynamic theory for membranes 
and sails. Progress in Aerospace Sciences 24, (1) pp. 1-27. 
 
Payne, P. R., (1988) Design of High-Speed Boats - Planing. 
Fishergate Inc, ISBN: 0-942720-06-07. 
 
Pike, D., (2003) Inflatable tubes offer advantages for small 
craft. Ship and Boat Int., November, pp. 78-82. 
 
Price, W., Salas Inzunza, M., Temarel, P., (2002) The 
dynamic behaviour of a mono-hull in oblique waves using 
two-and three-dimensional fluid structure interaction 
models. Trans. Royal Institution of Naval Architects 144, pp. 
1-26. 
 
Rojratsirikul, P., Wang, Z., Gursul, I., (2009) Unsteady 
fluid-structure interactions of membrane airfoils at low 
Reynolds numbers. Experiments in Fluids 46, (5), pp. 859-
872. 
 
Santos, F. M., Temarel, P., Soares, C. G., (2009) On the 
limitations of two- and three-dimensional linear 

hydroelasticity analyses applied to a fast patrol boat. 
Proceedings of the Institution of Mechanical Engineers, 
Part M: Journal of Engineering for the Maritime 
Environment 223 (3) pp. 457-478  
 
Savitsky, D., Morabito, M., (2010) Origin and 
characteristics of the spray patterns generated by planing 
hulls. Davidson Laboratory, Stevens institute of technology, 
Report No. 2882. 
 
Senjanovic, I., Malenica, S., Tomasevic, S., (2008) 
Investigation of ship hydroelasticity. Ocean Engineering 35, 
(5-6), pp. 523-535.  
 
Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., 
Swartz, S., Breuer, K., (2008) Aeromechanics of membrane 
wings with implications for animal flight. AIAA Journal 46, 
(8), pp. 2096-2106. 
 
Stenius, I., (2006) Finite element modelling of 
hydroelasticity hull-water impacts. Ph.D. thesis, Royal 
Institute of Technology, KTH, Stockholm, Sweden. 
 
Stenius, I., Rosén, A., Kuttenkeuler, J., (2007) Explicit 
FE-modelling of hydroelasticity in panel-water impacts. Int. 
Shipbuilding Progress 54, pp. 111-127. 
 
Stevens, M. J., (1981) The model testing of inflatable craft. 
Int. conference on rigid bottom inflatable craft, RINA, Paper 
2. 
 
Townsend, N. C., (2008) Influencing and influences of 
marine vessel motions. Ph.D. thesis, University of 
Southampton, UK. 
 
Townsend, N. C., Coe, T. E., Wilson, P. A., Shenoi, R. A., 
(2010) On the mitigation of human motion exposure on 
board high speed craft. Strategies and methods, including 
flexible hull design. Private Communication. 
 
Townsend, N. C., Wilson, P. A., Austen, S., (2008a) 
Seakeeping characteristics of a model RIB in head seas. Int. 
Journal of Maritime Engineering 151, (A1), pp. 5-44. 
 
Townsend, N. C., Wilson, P. A., Austen, S., (2008b) What 
influences rigid inflatable boat motions? Proceedings of the 
Institution of Mechanical Engineers, Part M: Journal of 
Engineering for the Maritime Environment 222, (4), pp. 207-
217. 
 
Veldman, S., Bergsma, O., Beukers, a., (2005) Bending of 
anisotropic inflated cylindrical beams. Thin-Walled 
Structures 43, (3), pp. 461-475.  
 
Wielgosz, C., Thomas, J. C., Le Van, A., (2008) Mechanics 
of inflatable fabric beams. ICCES 5, (2), pp. 93-98. 
 
Zhao, R., Faltinsen, O. M., (1993) Water entry of two-
dimensional bodies. Journal of Fluid Mechanics 246, pp. 
593-612. 


