The University of Southampton
University of Southampton Institutional Repository

Integration of electrodeposited PdNi alloys with silicon and carbon nanotube electronics

Usgaocar, Ashwin R. (2011) Integration of electrodeposited PdNi alloys with silicon and carbon nanotube electronics University of Southampton, School of Electronics and Computer Science, Doctoral Thesis , 144pp.

Record type: Thesis (Doctoral)

Abstract

This thesis investigates the electrodeposition of PdNi films with controllable composition
and their suitability as electrical contacts in electronic and spintronic devices based on
Silicon and Carbon nanotubes (CNTs). The electrodeposition process and characterisation
of the electrical and magnetic properties of the deposited PdNi films are described. PdNi
films with a wide composition range can be deposited from the same bath by changing
the deposition potential. Electrical characterisation shows the formation of high quality
PdNi-Si Schottky barriers while magnetic measurements prove the ferromagnetic nature of
the PdNi films. Electrodeposited PdNi films are thus shown to be suitable contacts for
electronic and spintronic devices.

Hydrogen sensors comprising back to back electrodeposited PdNi-Si Schottky barriers
are fabricated and characterised. The back to back architecture ensures low current operation
at all biases. Palladium causes the Hydrogen molecules to dissociate and be absorbed
by the film, while Nickel makes the sensor resistant to repeated cycling in the Hydrogen
environment. The sensors exhibit extremely low idle currents, large percentage current increases
on Hydrogen exposure and high selectivity for Hydrogen. These factors, in addition
to the simplicity of fabrication and easy integration with conventional electronics show that
electrodeposited PdNi-Si Schottky barriers are well suited for use as Hydrogen sensors.

The workfunction change in PdNi films exposed to Hydrogen is used to characterise
CNTs contacted by electrodeposited PdNi. The PdNi contacted CNTs exhibit ohmic characteristics,
which change on exposure to Hydrogen. Examining this change allows differentiation
between semiconducting and metallic CNTs. Raman spectroscopy is used to
characterise the same CNTs and the results are compared with the electrical characterisation
in Hydrogen. The electrical and Raman analysis experimentally verify the theoretically
assigned CNT Raman features.

The fabrication and electrical characterisation of CNT transistors incorporating electrodeposited
PdNi contacts are presented. The CNTs are spin coated from a 1,2-dichlorobenzene
dispersion and contacted with electrodeposited PdNi. The PdNi-Si Schottky barrier is used
to suppress the current through the Silicon substrate during electrical characterisation. The
operating restrictions imposed by the direct PdNi-Si contact and methods to overcome the
same are discussed. The characteristics of the CNT transistor in a changing magnetic field
at room temperature are presented.

PDF Ashwin_Usgaocar_Thesis.pdf - Other
Download (7MB)

More information

Published date: April 2011
Organisations: University of Southampton

Identifiers

Local EPrints ID: 183127
URI: http://eprints.soton.ac.uk/id/eprint/183127
PURE UUID: fc8ab0ac-1e05-4c14-943f-52c3919aec41
ORCID for Cornelis De Groot: ORCID iD orcid.org/0000-0002-3850-7101

Catalogue record

Date deposited: 23 May 2011 12:16
Last modified: 18 Jul 2017 11:56

Export record

Contributors

Author: Ashwin R. Usgaocar
Thesis advisor: Cornelis De Groot ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×