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A thesis submitted for the degree of Doctor of Philosophy

Low Cost Si Nanowire Biosensors by Recrystallisation Technologies

by Kai Sun

Recently, silicon nanowires are gaining much attention for applications in biosensing
for medical diagnosis, drug discovery and national security. Silicon nanowires offer the
prospect of real-time, label-free, high selectivity and high sensitivity sensing. Currently
silicon nanowires are generally fabricated using CMOS technology and require the use
of expensive SOI substrates and electron beam lithography, which seriously limit their
uses in low cost applications. In this work, polysilicon nanowire biosensors are fabri-
cated using thin film transistor technology. This approach offers the prospect of much
lower fabrication costs and hence is suitable for products such as disposable diagnostic
kits. The polysilicon nanowires are fabricated by crystallising amorphous silicon and
techniques are investigated for producing polysilicon at temperatures below 450°C for

compatibility with cheap glass substrates.

Metal-induced lateral crystallisation is achieved for the first time at temperatures down
to 428°C and a crystallisation length of 1.2 um is measured after a MILC anneal at
428°C for 20 hours. The effect of fluorine on metal-induced lateral crystallisation is
investigated at different temperatures. At temperatures in the range 525°C to 550°C,
an optimum fluorine implantation dose of 2.5x10* ¢cm~2 is found at which signifi-
cantly increased crystallisation lengths are achieved. Raman spectroscopy is used to
analyse the Si film crystallinity and the results show that fluorine suppresses random
crystallisation up to a dose of 2.5x10' ¢m™2, but that damage from the fluorine im-
plant (amorphisation) counteracts this effect at a higher dose. At temperatures below
500°C, a fluorine implant reduces the crystallisation length and hence no benefit is ob-

tained from the fluorine implant.

Then metal-induced lateral crystallisation of amorphous silicon («-Si) ribbons and nano-
wires is also investigated. The crystallisation decreases with decreasing ribbon width

and the crystallisation lengths for nanowires lie below the trend line for ribbons. Metal



il

induced lateral crystallisation is therefore more difficult in nanowires than ribbons,
which is tentatively explained by surface roughness. The metal-induced lateral crys-
tallisation of a-Si ribbons deposited by PECVD and LPCVD on different substrate ma-
terials is also investigated. The crystallinity of the as deposited a-Si is shown to have a
big effect on the crystallisation length. LPCVD «-Si ribbons on oxide give significantly
longer lateral crystallisation lengths than PECVD «-Si ribbons on oxide and slightly
longer lateral crystallisation lengths than LPCVD «-Si ribbons on nitride. Raman spec-
troscopy reveals that amorphous silicon deposited by PECVD is more amorphous than

by LPCVD, because of the lower deposition temperature.

A top-down nanowire fabrication process has been developed using a Bosch etch pro-
cess, which is shown to provide rectangular nanowires with a well-controlled width of
about 100 nm. Electrical measurements show that the resistance can be varied by the
application of a back-gate bias. The fabricated nanowires have reproducible character-
istics in about 10% variation in resistance at the central part of the wafer. Nanowires
with and without a thermal oxide layer are studied and oxidised nanowires give less
conductance variation and less dependence on back-gate bias. Polysilicon nanowire
biosensors have been successfully fabricated using this technology and experiments in

liquid show that the nanowire biosensor can be used to detect changes in pH.
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Chapter 1

Introduction

The detection of a small amount of ions, molecules, proteins, antigens and DNA is of
great importance for clinical diagnosis, drug discovery and screening and for applica-
tions in security and defence against terrorism [1]. The critical part of the detection,
referred as a biosensor, is the transduction of signals associated with the recognition
of the species of interest. Many approaches have been researched for biosensors, in-
cluding surface plasmon resonance [2], nanoparticles [3] and chemically sensitive field
effect transistors [4][5]. However, none of the above approaches provides the combina-
tion of features required for rapid and highly sensitive detection. Recently, a series of
Si nanowire biosensors have been reported for sensing pH [6], ions [7] and DNA [8][9].
Promising results have been obtained, for example real-time, high selectivity, label-free
sensing with a high sensitivity up to 10 femtomolar (fmtomol/L or fM) [10]. The high
sensitivity is attributed to the nanoscale diameter of nanowires, which gives a high ratio
of surface area to volume and hence a high sensitivity to surface charge [11]. Addi-
tionally, biosensors with Si nanoribbons were found to give 10 nanomolar sensitivity
[12]. Therefore, Si biosensors using nanowires or nanoribbons are very promising for

Point-of-Care diagnosis, particularly when used with ‘Lab-on-a-Chip’ technology.

Si nanowire biosensors have been fabricated by both ‘bottom up’ (about 10 %) and
‘top down’ (about 90 %) methods (Table 2.2). The ‘bottom up’ method mainly uses
vapour-liquid-solid chemical vapour deposition to grow self-assembled single crystal
Si nanowires on insulator substrate [13]. Although the grown Si nanowires are excel-
lent in electrical characteristics for biosensor applications [14], the poor location con-
trollability and incompatibility with current CMOS technology make the ‘bottom up’
method undesirable for industry. For the ‘top down’ method, which is compatible with

CMOS technology, silicon nanowires have generally been fabricated using expensive

1



2 Chapter 1 Introduction

silicon-on-insulator (SOI) substrates [8][15], high-cost ion implantation and advanced
lithography, such as electron-beam lithography [15][16] or deep ultraviolet lithography
[71[17]. However, these fabrication methods are high-cost and cannot satisfy the re-
quirements for low cost disposable biosensors for point of care applications. For these

reasons, new low-cost fabrication processes need to be investigated.

In the past decades, Si thin film transistors (TFTs) have been well researched and widely
applied in Liquid Crystal Displays (LCDs). Compared with the complex and high-tech
fabrication processes used in CMOS technology, the relative simple and low-tech fab-
rication processes used in TFT technology [18] should lead to a significant cost reduc-
tion. Therefore, TFT technology could be a good candidate for low-cost Si nanowire
biosensor fabrication. Compared with the single crystal Si used in CMOS technology,
amorphous silicon («-Si) and polysilicon (poly-Si) used in TFT technology have in-
ferior electrical properties. For example, state-of-the-art single-crystal Si MOSFETs
have an electron mobility of about 650 cm?/V.s compared with 1 cm?/V.s for o-Si tran-
sistors [19] and 580 cm?/V.s for state of the art poly-Si transistors [20]. From point
of view of series resistance, poly-Si would be preferred to «-Si for nanowire biosen-
sor fabrication because of its dramatically higher mobility. In the TFT industry, high
mobility polysilicon is produced by recrystallising a-Si deposited on a low-cost glass
substrate. However, a glass substrate limits the process temperature to temperatures be-
low 450°C to avoid glass substrate shrinkage and warpage (Corning Eagle 2000 glass)
[21][22][23]. For biosensor applications, it is unclear whether low cost crystallisation
techniques can be developed consistent with this process temperature constraint. Fur-
thermore, poly-Si nanowire biosensors patterned by e-beam lithography were recently
reported and showed a good performance with detection limit of about 30 nM [16][24].
Thus these issues provide a suitable subject for further study with the aim of producing
a Si nanowire biosensor using a simple, low cost, low temperature process, but with a

reasonable performance.

The simplest recrystallisation technique, solid-phase crystallisation (SPC) [25][26], re-
quires a high temperature anneal for a long duration, typically above 600°C for 24
hours. However, this high process temperature limits the use of low-cost glass sub-
strates and hence several advanced crystallisation technologies have been proposed and
researched to reduce the crystallisation temperature, such as laser-based crystallisation
(ELC) [27][28] and metal-induced lateral crystallisation (MILC) [29][30]. Although
ELC technologies have been widely used in LCD displays for high-end applications,
e.g. mobile phones and digital cameras, the high cost of laser equipment and the non-

uniformity in device performance make it unsuitable for low cost Si nanowire biosensor
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fabrication. Compared with ELC, MILC provides «-Si recrystallisation at a lower tem-
perature, typically about 550°C, without using high cost equipment. MILC could be
suitable for low cost glass substrates if the process temperature could be further re-
duced, for example, by using fluorine implantation [31]. Recently, single crystal Si
nanowires were produced using metal induced lateral crystallisation [32][33] and this
makes MILC a very promising technique for the fabrication of low cost Si nanowire
biosenors. Therefore, an intensive study of a-Si MILC is needed for biosensor ap-
plications. Additionally, Si nanowires have been fabricated using a ‘spacer’ method
[29][30][34], which eliminates the need for high cost advanced lithography. As Si rib-
bons can be used as an alternative to nanowires for biosensor applications, it is also of
interest to study the crystallisation of Si ribbons. The primary goal of this PhD project

is to develop a low-cost fabrication process for Si nanowire biosensors.

The structure of this thesis is organised as follows. Chapter 2 gives an extensive lit-
erature review of research done on amorphous silicon crystallisation and Si nanowire
biosensors. Then, chapter 3 introduces conduction models of MOSFETSs and poly-Si
TFTs and a model for Si crystallinity analysis using Raman spectroscopy. In chapter
4, metal-induced lateral crystallisation at lower temperatures below 550°C is investi-
gated and the effect of various fluorine doses on MILC growth is presented for different
anneal temperatures with aim of identifying the optimum fluorine dose. In chapter 5,
results are presented on the metal-induced lateral crystallisation of amorphous silicon
ribbons and nanowires deposited by LPCVD and PECVD on different substrate mate-
rials. In addition, the effect of Si ribbon width on MILC growth is also presented and
compared with the preliminary MILC results of MILC on «-Si nanowires. In chapter 6,
results are presented on Si nanowire biosensors using TFT technology. The nanowires
are fabricated by depositing a-Si over a sharp step and then etching using a Bosch pro-
cess. The electrical characteristics of the fabricated devices in dry ambient and liquid

environments are also presented. Conclusions and Future Work are given in Chapter 7.






Chapter 2

Literature Review

2.1 Crystallisation Technologies

Silicon thin film transistors (TFTs), made from amorphous silicon and polysilicon, are
commonly used as channel materials for display applications. Amorphous silicon has a
low mobility around 1 cm?/V.s [19], whilst polysilicon has a higher mobility around 580
cm?/V.s [20] and thus polysilicon offers an improved device performance. For TFTs,
poly-Si is normally obtained by recrystallising the a-Si layer on a glass substrate and
its carrier mobility strongly depends on the crystallisation technology and the crystalli-
sation conditions. Therefore, crystallisation technologies need to be optimised to give
a high quality polysilicon layer at a low process temperature. In this section, the a-
Si recrystallisation technologies of solid phase crystallisation and metal-induced lateral

crystallisation are reviewed to inform the further investigations in this thesis.

2.1.1 Solid phase crystallisation

Solid phase crystallisation (SPC) is the conversion of amorphous silicon into polycrys-
talline silicon by annealing for a long time at a temperature, typically 600°C for 24
hours [35]. The SPC process consists of two stages: (1) nucleation and (2) crystallisa-
tion. Initially, the atoms are rearranged due to surface energy lowering and then form
a nucleation site for cluster growth. Then the nucleated clusters subsequently enlarge
to grow into grains and the amorphous silicon becomes polysilicon. During crystallisa-
tion, grains grow from random locations and compete with each other. Therefore, the

grains can be enlarged by an increase of nucleation/grain growth ratio by suppressing

5
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grain nucleation sites. In the classical nucleation theory, grain growth at sizes below the
critical size, Ry, is very slow, but grain growth increases by orders due to a twin-defect
assisted crystal growth mechanism [35]. The growth of grains by SPC is strongly de-
pendent on anneal temperature [35] and follows an Arrhenius-like behaviour, as shown
in Fig. 2.1.
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FIGURE 2.1: Grain growth velocities, v, and vg, for grain sizes R<Rt and R> Ry,

respectively, as a function of reciprocal temperature. The parameter v is the ratio

between v and vy and is equal to 200-300 and Ry is about 1 nm. After Spinella ez al
[35], copyright AIP.

Usually, the «-Si film is deposited on silicon dioxide (referred as the underlying oxide)
[36] and nucleation starts preferentially at the interface between the a-Si and the under-
lying oxide [37]. This preferred nucleation location is attributed to the strain influence
in the Si film. Tensile stress increases the crystallisation rate, whilst compressive stress
decreases the crystallisation rate [38]. Due to the different thermal expansion coeffi-
cients of «-Si and the underlying oxide [39], the tensile stress is located at the Si/Si0O4
interface and thus the interface becomes a preferential site for nucleation. A secondary
nucleation location has been identified at the top Si surface and the surface nucleation

rate was measured to be much slower than that at the Si/SiO4 interface [40].

Several approaches have been studied to suppress grain nucleation at the interface by

giving a treatment to the interface. In Chang’s work [26], an argon implantation was
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found to give an improved poly-Si film quality and grain size by suppressing interfacial
grain nucleation. By removing the underlying oxide before the crystallisation, a Si-
on-Air structure was fabricated and investigated in [40] and [41]. For the Si-on-Air
samples, shown in Fig. 2.2(a), the grain size was increased to 3.0 ym from 0.6 ym and
intragranular defects decreased by one order of magnitude after a 600°C anneal for 24
hours, compared with control Si-on-Oxide samples, as shown in Fig. 2.2(b) [40]. The
increase in grain size and decrease in defects for Si-on-Air samples were explained by:
(a) reduced grain nucleation due to the elimination of preferred grain nucleation sites
at the Si/Si0, interface and (b) the free volume contraction for the Si-on-Air structure.
Strong bonds exist at the Si/Si0O,, interface for the Si-on-Oxide structure and hence free
volume contraction is constrained. SPC is advantageous as a simple process, with no
requirement for complicated equipment, like laser annealing equipment. However, the
annealing temperature for SPC (typically 600°C) is not compatible with low-cost glass
substrates. For example, Corning glass requires the process temperature to be below
450°C [21][22][23].

(@ (b)

FIGURE 2.2: Planar TEM micrographs of polysilicon films after a 24 hour 600°C

anneal for (a) a sample with an underlying oxide layer (grain size ~ 0.6 ym) and (b)

a sample without an underlying oxide layer (grain size ~ 3 um). After Bo et al [40],
copyright AIP.

2.1.2 Metal-induced lateral crystallisation

Compared with SPC normally requiring an anneal at 600°C, crystallisation temperatures
were found to be lowered when certain metals were deposited on top of the amorphous

silicon, for example, Ni [42], Pd [43] and Au [44]. This phenomenon is known as
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metal-induced crystallisation (MIC) and can be used for a-Si crystallisation on glass
substrates, providing a cheaper method for poly-Si TFT fabrication. However, consid-
erable metal contamination is also introduced into the polysilicon, which significantly
affects the device performance and in particular gives high values of leakage current
[45]. For this reason, polysilicon by MIC is unsuitable for high performance poly-Si
TFTs and likely to be unsuitable for biosensors as well though this has not been well
studied.

The MIC metals, Ni and Pd, which are silicide forming metals, can also crystallise a-Si
in the adjacent region unexposed to metals [46]. This is called metal-induced lateral
crystallisation (MILC). A lateral distance of 100 ;m can be obtained by Pd MILC with
a poly-Si grain size between 10 pm and 20 pm after a 10 hour 500°C anneal [43]. This
crystallisation rate is much higher than that achieved in SPC. However, Pd-MILC is not
applicable for transistor fabrication because the crystallised silicon contains large num-
bers of microtwin defects [47]. For the above reasons, Ni [46], as the most promising

candidate for MILC technology, is chosen for study in this project.

2.1.2.1 MILC mechanism

Hayzelden et al [46][48] proposed the mechanism of metal-induced lateral crystalli-
sation for Ni. As illustrated in Fig. 2.3, the Ni-MILC process has three stages [48].
First, Ni forms crystalline NiSi, with a-Si after an anneal above a threshold tempera-
ture (found to be 450°C [49]) and this is called NiSi, nucleation. After the formation
of NiSi,, the Ni diffuses into the a-Si region to form new NiSi,. Because the lattice
mismatch between NiSi, and crystalline Si (c-Si) is only about 0.4% [50], an epitaxial
crystalline Si layer is formed. The diffusion driving force is widely believed to be that
Ni atoms have a lower chemical potential at the NiSis/a-Si interface than at the NiSiy/c-
Si. Then the crystallisation process repeats again and again, leaving a long trail of c-Si.
In the MILC region, the Ni concentration is much lower than that in the MIC region as
shown in Fig. 2.4. Similar results were also reported in [51] using micro-Auger electron
spectroscopy. This leads to a lower leakage current in devices fabricated using MILC
than MIC. It should also be noted that there is another high nickel concentration region
at the crystallisation front. In the MILC region, the grains are mainly (110)-oriented
[51] and grow along the {111} plane for its lowest surface energy [52].
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FIGURE 2.3: Schematic diagram of Ni-MILC process including (a) NiSis nucleation,
(b) Ni diffusion towards a-Si/NiSiy interface and (3) growth of epitaxial c-Si. After
Hayzelden et al [46], copyright AIP.

2.1.2.2 Process parameters and structures for MILC improvements

Many issues including process parameters and structures have been investigated for
Ni-MILC growth and a summary of these results is given in Table 2.1. The MILC
rate was found to decrease with a decrease of o-Si film thickness [56]. Moreover, the
crystallinity was found to be influenced by the a-Si film thickness. For the 40 nm thick
Si film in Fig. 2.5(a), a single grain layer was formed, whilst a double grain layer
structure was observed for a 100 nm film in Fig. 2.5(b) [62]. As the Si thickness is
reduced to 16 nm, the lateral crystallisation is suppressed and replaced by MIC and the
orientation was found to change from (110) to (100) [66]. Thus, an «-Si thickness of >
16 nm is needed for MILC.
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FIGURE 2.4: (a) Scanning SIMS analysis of Ni distribution in a crystallised «-Si film
in the MIC, MILC and «-Si regions and (b) Ni distribution cutline in the Si film by

SIMS. After Hayzelden et al [46], copyright AIP.

TABLE 2.1: Survey of parameter influence on MILC

Experiment Results a-Si deposition | Ref.
Ni threshold Ni threshold concentration for MILC is SE18 cm 3 - [42]
Ni shape Device performance: Oval-shaped Ni > Line-shaped Ni LPCVD [53]
Annealing Film quality: MILC by FA® > MILC by RTA? LPCVD [54]
Preannealing MILC rate is reduced in preannealed silicon film LPCVD [55]
MILC rate: P and As implanted < undoped LPCVD [56]

MILC rate: B implanted > undoped LPCVD [57]

Dopants MILC rate: B-doped > undoped > P-doped (in situ) LPCVD [58]
MILC rate: B-doped > undoped > P-, As-doped (in situ) LPCVD [59]

MILC rate: undoped > P-doped or B-doped (in sifu) PECVD [60]

MILC rate: Tensile stress > unstressed > compressive stress LPCVD [47]

Stress MILC rate: Tensile stress > unstressed LPCVD [61]
Fluorine MILC rate and quality is improved for F-implanted Si film LPCVD [31]
Poly-Si crystallinity: 30 nm > 100 nm LPCVD [62]

a-Si thickness Device performance: 30 nm > 100 nm LPCVD [55]
MILC length, device performance: 100 nm > 300 nm LPCVD [63]

Ni thickness Thin Ni film leads to improved poly-Si quality PECVD [64]
Grain filter Poly-Si quality: MILC is improved through a grain filter PECVD [65]

a: FA-furnace annealing b: RTA-rapid thermal annealing
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(a) (b)

FIGURE 2.5: Cross-section TEM images of Ni-MILC poly-Si films of (a) 40 nm and
(b) 100 nm. Both samples were annealed for 20 hours at 500°C. After Chang et al [62],
copyright ECS.

Dopants in a-Si also have an influence on Ni-MILC. Phosphorus and arsenic implanted
into a-Si reduce the MILC rate and degrade the film morphology [56], whilst boron
implanted into «-Si gives an improved MILC rate [67]. Similar doping influences were
also found for in situ doped a-Si [58], with the MILC rate of n-type <undoped <p-type.
As illustrated in Fig. 2.6, the needle-like grains in n-type doped samples are randomly-
oriented, whilst the needle-like grains in p-type samples are parallel and narrower than
those in undoped samples. Therefore, Si nanowires doped by n- or p-type may be

preferred from nanowire MILC considerations for Si nanowire biosensor fabrication.

The influence of fluorine in MILC was investigated in [31]. In this work, fluorine was
implanted into either the amorphous silicon or the underlying buffer oxide layer before
the a-Si deposition. In both cases, the Ni-MILC rate increased by 65% compared with
that of samples without a fluorine implantation after a 500°C 20 hour anneal (Fig. 2.7).
This improvement was explained by F chemical effects that suppressed random crys-
tallisation at the Si/Si0O, interface [31]. For higher temperatures, e.g. 550°C and 600°C,
however, the MILC growth rate and length were degraded compared with samples with-

out fluorine.
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(b) p-type

FIGURE 2.6: Plan SEM micrographs after a MILC annealing of 5 hours at 550°C for
(a) undoped (b) boron in situ doped and (c) phosphorus in situ doped samples. After
Ahn et al [58], copyright Elsevier.

2.1.3 Single-crystal Si nanowires and pillars by MILC

In this section, some advanced crystallisation technologies are briefly reviewed, which
aims to achieve single crystalline silicon nanowires at low temperature. These same

technologies could be used for Si nanowire biosensor fabrication.

2.1.3.1 Single-crystal Si nanowires

As discussed above, a single grain layer of polysilicon can be obtained when the thick-
ness of the a-Si is decreased [62]. Single crystal nanowires 2.2 um in length were
obtained using Ni-induced lateral crystallisation of sub 100 nm «-Si nanowires [32].
TEM images for the crystallised nanowires after annealing at 500°C for 20 hours are

shown in Fig. 2.8. In this work, the width of the nanowires was found to be critical for
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FIGURE 2.7: Plan SEM micrographs of laterally crystallised samples (a) with a fluo-
rine implant and (b) without a fluorine implant after an anneal at 500°C for 20 hours.
After Hakim and Ashburn [31], copyright ECS.

the crystalline quality. Fig. 2.8(a) shows that NiSi, precipitates were found after the
anneal for 20 nm wide a-Si nanowires but no obvious lateral crystallisation was found.
This suggests that there is a minimum width for MILC and hence the crystallinity can-
not be continuously improved by reducing the «-Si nanowire width. Fig. 2.8(b) shows
the MILC region for 70 nm Si nanowires after the anneal. Clear evidence of crystallisa-
tion is seen, with a crystallisation length of 2.2 um and a single grain in the crystallised
region. For 450 nm Si nanowires after the anneal, multi-grains can be clearly identified
in Fig. 2.8(c), which indicates that competitive grains occur in Si nanowires beyond
a given width. By taking «-Si thickness and width influences into consideration, the
dimension of Si nanowires needs to be carefully optimised if single crystal nanowires
are to be produced by MILC.

2.1.3.2 Single crystal Si pillars

Single crystal Si pillars were reported using a two-step MILC anneal [33]. After a Ni
layer was deposited on the top of the «-Si pillars in Fig. 2.9(a), the samples were an-
nealed at 400°C for 15 hours, during which NiSi, precipitates were nucleated. It should
be noted that this anneal temperature for NiSis is slightly lower than the threshold tem-
perature reported in [49]. After a second annealing step at 550°C for 2 hours, pillars
with widths of 180 nm were found to be single crystal, as shown in Fig. 2.9(b). The

percentage of single-crystal pillars achieved using the two-step anneal was also found to
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(a) 20 nm wide (b) 70 nm wide (c) 450 nm wide

FIGURE 2.8: TEM micrographs of crystallised Si nanowires achieved after a 10 hour
crystallisation anneal at 500°C: (a) 20 nm wide, (b) 70 nm wide and (c) 450 nm wide.
After Gu et al [32], copyright AIP

be much higher than that using a one-step anneal at 550°C for 6 hours, as shown in Fig.
2.9(c). This phenomenon can be explained by the suppression of random crystallisation
by the low temperature anneal in the first step. The width influence was also investi-
gated and the percentage of single crystal pillars decreased from 95% to around 50% as
the width increased from 180 nm to 400 nm [33]. This work gives a promising method
to get high quality Si nano pillars by suppressing random crystallisations during MILC
and also indicates that the crystallinity of the crystallised Si nanowires can be improved

by suppressing random crystallisation during MILC.

100 nm

(2) (b) (©

FIGURE 2.9: Cross-section TEM micrographs of pillar samples (a) before anneal

(bright-field image), (b) after a 400°C 15 hour anneal followed by a 550°C 2 hour

anneal (dark-field image) and (c) after a 550°C 6 hour anneal (dark-field image). After
Liu et al [33], copyright AIP
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2.2 Nanowire Biosensors

The structure of a typical Si nanowire biosensor is illustrated in Fig. 2.10. A sin-
gle nanowire or an array of nanowires is laid on an insulator between a highly doped
source and drain. Below the insulator, the doped Si substrate works as a back gate. The
source and drain electrodes are isolated from the sensing liquids by a protection layer,
e.g. silicon nitride. The nanowire surface is exposed and target receptors with specific

functional groups are attached to the Si nanowire surface by molecular linkers.

receptor electrode

linker
p assivation

o e

51 dioxdde

FIGURE 2.10: Schematic diagram of the structure of a Si nanowire biosensor.

2.2.1 The mechanism of Si nanowire biosensing

The sensing mechanism of a Si nanowire biosensor is described as follows and shown
in Fig. 2.11. When the nanowire surface is exposed to the sensing targets, receptors on
the nanowire surface have the capability of immobilising the targets, e.g. ions, DNA, or
proteins. For DNA biosensors, only single-stranded(ss) DNA, which is complementary
to receptors carrying negatively charges, is immobilised on the nanowire surface by a
hybridisation with receptors. The accumulated charges carried by the captured DNA
chain give an electrostatic gating effect to the nanowire channel, which in turn depletes
or accumulates for n-type and p-type, respectively. Therefore, the capture of the target

molecule is seen as a change in channel conductance.
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FIGURE 2.11: Schematic diagrams showing the sensing principle of a Si nanowire
biosensor (a) without a complementary DNA and (b) with a complementary DNA

2.2.2 Literature review of Si nanowire biosensors

Silicon nanowire biosensors can provide a real-time, high selectivity, label-free sensing
tool for sensing pH [6], ions [7] and DNA [8][9]. A number of papers have been pub-
lished on Si nanowire biosensors and a summary of the main results is provided in Table
2.2. A paper has also been published on a Si nanoribbon biosensor, which uses a wider
Si ribbon defined by photolithography to achieve biosensing. The electrical detection
of DNA has been achieved at concentrations as low as 10 fM (femtomolar) [11]. This
high sensitivity was attributed to the nanoscale dimension of the nanowires, which is
comparable to the size of the proteins and DNA. The high sensitivity was achieved as a
result of the high surface-to-volume ratio of the nanowires [9]. It was found that the sen-
sitivity increases linearly with reducing nanowire diameter from 800 nm to 100 nm. An
even stronger enhancement of sensitivity was found on reducing the nanowire diameter
from 100 nm to 50 nm. Since the diameter of single crystal Si nanowires achieved by
MILC is also of the order of several deca-nanometers [32], crystallised a-Si nanowires
are likely to be quite suitable for nanowire biosensor fabrication. As Si nanoribbons
were also reported to achieve good performance [12], this gives the potential that a

reasonable performance can be achieved on larger geometry wires or ribbons.

The sensitivity of biosensors is affected by several factors, especially, the ion strength of
the buffer solution. This influence is expressed in terms of the Debye length, \;, which
is defined as the typical distance required to screen the surplus charge by the mobile
charges present in the solution [77]. In other words, the negative charges on proteins
and DNA show no net charge on the nanowire as the negative charges are surrounded
by positive charges in the solution [71]. Several experimental works [17][71][73][74]

have shown the effect of the buffer ion concentration on the sensitivity. In Chua’s work
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TABLE 2.2: Survey of Si nanowire/nanoribbon biosensors

Year Nanowires Lithography* Linkers Receptors Detection limit | Ref.
2001 VLS?, p-type - APTES® biotin 10 pM [6]
2004 | gold-catalyzed CVD? - avidin ssPNA® 10 ftM [10]
2005 SOI7, p-type e-beam? MPTMS” | ssDNA, ssPNA 10 pM [53]
2005 | gold-catalyzed CVD e-beam APTMS! abl tyrosire 100 pM [13]
2006 SOI, n-&p-type, e-beam APDMES’ - 1 nM [8]
pass®: SisNy - tert-BAC - 10 pM
2007 SOI, n-&p-type DUV AEAPS™ biotin 10 pM [68]
2007 SOI, pass: SigNy self-oxidation APTMS PNA 10 ftM [69]
2007 SOI, n-type e-beam APTES anti-PSA 30 nM [70]
2007 SOI, n-&p-type e-beam APTES biotin - [71]
2008 SOI, nanoribbons optical lith. APTES biotin 1 nM [12]
2008 SOI, p-type e-beam HUPA" PNA 1 uM [72]
2008 Si, p-type wet etch APTES anti-CRP 10 nM [73]
2008 poly-Si, n-type self-oxidation | ¢-BOC® PNA 1 nM [74]
2009 SOI n-type DUV APTES anti-cTnT 1 fg/mL [17]
2009 poly-Si spacer etch APTES anti-IgG 17 pM [24]
2009 poly-Si, n-type e-beam APTES GOD? 10 nM [75]
2009 poly-Si, n-type spacer etch APTES PNA 1 fM [76]
2010 poly-Si, n-type e-beam APTES PNA 30 nM [16]

a: lithography only refers to the lithography techniques for nanowires patterning, whilst optical
photolithography might be used throughout other processes.
b: VLS - vapor-liquid-solid growth, bottom-up technology

c: APTES - 3-aminopropyltriethoxysilane

d: CVD - chemical vapor deposition

e: ssPNA - single-stranded Peptide nucleic acid
f: SOI - silicon-on-insulator
g: e-beam - electron-beam lithography

h: MPTMS - 3-mercaptopropyltrimethoxysilane

i APTMS - 3-(trimethoxysilyl)propyl aldehyde

J: passivation layer to isolate device from analyte
k: APDMES - 3-aminopropyldimethylethoxysilane
I: DUV - deep-ultraviolet lithography

m: AEAPS - N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane
n: HUPA - 11-hydroxyundecylphosphonate
o0: t-BOC - 10-N-Boc-Amino-dec-1-ene

p: GOD - glucose oxidase
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[17], the Debye length was found to increase with the decrease of solution ionic strength
and hence the sensitivity increases with the increase of the Debye length. Therefore, a
diluted buffer with low ion concentration is preferred for a longer Debye length, how-
ever, this concentration is normally limited by the biological activity of proteins [17]. In
Zhang’s work [74], the effect of the charge layer on sensitivity was studied and the sen-
sitivity was found to reduce with the increasing charge layer distance from the nanowire
surface. Thus, a shorter linker chain is preferred but this is also limited by the function-
alisation chemistry. Finally, biosensor sensitivity is also affected by nanowire carrier
concentration and a lower carrier concentration gives a larger conductance change and

hence an improved sensitivity [78].

To date nanowires have been fabricated by both ‘top-down’ [8][53][68] and ‘bottom-up’
[6][10][53] methods. The ‘top-down’ method, which is compatible with CMOS tech-
nology, has generally used advanced lithography technologies, such as e-beam lithog-
raphy [53] or deep ultra-violet lithography [68] to pattern nanowires on SOI wafers.
E-beam lithography, which uses direct pattern-writing with an electron beam, can de-
fine patterns with widths down to 10 nm. However, it has a slow writing speed, which
makes it impractical for large-scale manufacturing. Deep ultra-violet lithography is also
an expensive process because it requires advanced photoresists and an advanced light
source. In addition, other reported Si nanowire biosensors using feature reduction pro-
cesses, such wet etch [73] and self-oxidation [74] also suffer from poor device repeata-
bility and uniformity issues for large substrate fabrication. The ‘bottom-up’ method
fabricates nanowires uses a self-assembly process, e.g. metal-catalyst CVD [10][13] or
vapor-liquid-solid (VLS) growth [6]. The main advantage of a self-assembly process is
its low-cost. However, self-assembly provides little control over nanowire location and
hence is difficult to integrate with CMOS technology for signal processing. Therefore,
current technologies do not provide a viable route to the manufacture of low-cost Si
nanowire biosensors, which is essential if disposable biosensor systems are to be pro-
duced for point of care healthcare applications. Hence new approaches to Si nanowire
fabrication are required which use the top-down approach, but do not use expensive

advanced lithography technologies or expensive SOI substrates.

Recently, some polycrystalline silicon nanowire biosensors have been reported using e-
beam lithography [16][75] and spacer etch [24][76][79]. These research demonstrates
that polysilicon nanowires using TFT technology are a promising solution for the fabri-
cation of nanowires, but the reported spacer nanowires are triangular in shape and this
makes it difficult to control the width and height. Therefore, a method for producing

nanowires with better control of width and height is needed.
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2.2.3 Si surface functionalisation for Si nanowire biosensors

After Si nanowires are fabricated, the nanowire surface needs to be functionalised with
receptors that act as sensing probes. Fig. 2.12 shows the functionallisation process
of Si nanowires including surface silanisation and surface modification with recep-
tors. The Si nanowires are treated in an oxygen plasma [6] or water-vapor plasma
[53] with the purpose of cleaning contaminants and generating hydroxyl (OH) groups
on the nanowire surface. Then the Si nanowires are exposed to a linker solvent, shown
in Fig. 2.13(a). The most commonly used linker (Table 2.2) is , (3-aminopropyl)-
triethoxysilane (APTES), which leaves amino (NH;) groups on the nanowire surface.
After a rinse in an organic solvent and a blow dry with nitrogen gas, the surface is mod-
ified with chemicals containing aldehyde groups, like the very popular Glutaraldehyde
[70], as shown in Fig. 2.13(b). Then the modified surface has a capability of immobil-
ising biomolecules, like antibodies, PNA or DNA, as shown in Fig. 2.11.

Fig. 2.13 shows schematics of an example of DNA captures by peptide nucleic acid
(PNA) receptors [69]. After PNA strands are immobilised on the surface of the nanowires
(Fig. 2.12(a)), the PNA strands can hybridise fully complementary DNA strands and
hence DNA strands with negative charges are captured on the nanowire surface, as
shown in Fig. 2.12(b).
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FIGURE 2.12: Schematics of Si nanowire functionallisation. (a) a nanowire after an

oxygen plasma or water vapor plasma cleaning, (b) a nanowire after a nanowire sur-

face silanisation process using APTES and (c) a nanowire after a surface modification
process with receptors (sensing probes).
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FIGURE 2.13: Schematics of DNA capture on a Si nanowire surface; (a) a Si nanowire

with PNA strands immobilised on the surface, (b) the Si nanowire after hybridisation of

PNA strands with fully complementary DNA strands. After Gao et al [69], copyright
ACS






Chapter 3

Theory

In this chapter, the theory of MOSFETSs and poly-Si TFTs is reviewed to give the neces-
sary background knowledge for the fabricated Si nanowire biosensors. Initially, MOS-
FET theory is discussed to give definitions and expressions of electrical parameters,
e.g. threshold voltage, drain current and subthreshold slope. Then, Seto’s model for
the effects of grain boundaries is studied. Finally, analysing techniques for the Raman

spectra of amorphous and polycrystalline silicon are also presented.

3.1 Bulk MOSFETSs

The basic structure of an n-channel bulk MOS transistor is illustrated in cross section
view in Fig. 3.1. It is usually a four terminal device with Gate (subscript g), Source
(subscript s), Drain (subscript d) and Substrate (subscript b). The n-channel MOSFET
consists of two highly doped n-type (n+) regions, source and drain, connected by a lower
doped p-type region. The three doped regions are normally formed by ion implantation.
Above the p-type region (channel region), there is an n+ polysilicon or metal gate,
which is isolated from the channel region by a thin insulator, called as the gate insulator.
When the Gate is grounded, Source and Drain act as two back-back diodes and thus only
negligible leakage current flows when a bias is applied between the source and the drain.
However, for positive gate biases, carriers in the channel are controlled and hence the

transistor can work in different operation modes.

23
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Gate
Source

gate oxide

p-type substrate

Back contact

FIGURE 3.1: The cross section structure of an n-channel bulk MOSFET.

3.1.1 MOS capacitor

For simplicity, the effect of gate bias is studied based on the following assumptions:
(1) the channel is uniformly doped, (2) the silicon dioxide gate insulator is ideal and
there are no trapped charges or interface charges, and (3) the work function difference
between the gate and the silicon is negligible. Assumption (1) is dependent on the
fabrication process. For assumptions (2) and (3), the influence of interface and trapped
charges and work function difference are discussed later. Under these assumptions, the

transistor behaves as an ideal MOS capacitor.

3.1.1.1 Surface potential

When the gate is unbiased, the Fermi level should be continuous and thus all energy
bands are flat, as shown in Fig. 3.2(a) and this is called the flat band condition. When
a negative bias is applied to the gate, the Fermi level in the gate is raised with respect
to that of the channel, as shown in Fig. 3.2(b). This leads to an electric field attracting
holes from the bulk region. Therefore, extra holes are attracted and accumulated in the
surface region, called accumulation. As the Fermi level along the channel is still flat,
there is no net current. When a positive voltage is applied to the gate, the Fermi level
in the gate moves downward with respect to the silicon channel. The energy bands in
the silicon channel also bend downward and this creates an electric field repelling holes
and attracting electrons. As shown in the Fig. 3.2(c), the Fermi level moves towards the
intrinsic Fermi level in the surface region and this indicates that the hole concentration

near the surface is lower than that in the bulk region, referred as the depletion condition.
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As the positive bias to the gate further increases, more electrons are attracted to the
surface region. As shown in Fig. 3.2(d), the energy bands (including the intrinsic
Fermi level) in the silicon channel bend further downwards. Finally, at the surface, the
intrinsic Fermi level is bent below the Fermi level and this means that electrons become
the majority carriers near the surface. In other words, the surface doping is inverted
from p-type to n-type and thus the n+ Source and Drain are connected by a thin n-type
channel. This is referred to as the inversion condition. When the electron concentration
at the surface is equal to the hole concentration in the body, which is 1, = 21/, this
is defined as the strong inversion condition. Here, 1, could be calculated using the
substrate doping, N4 for p-type, and the intrinsic carrier concentration, n;, as:
KT Ny

Yy = —In
q n;

(3.1

3.1.1.2 Work function difference

In practice, assumption (2) in Section 3.1.1 for an ideal MOS capacitor is not true. The
energy band diagram including the vacuum level for a p-type MOS capacitor with an
metal gate is shown in Fig. 3.3(a), which is in the flat band condition. The work function
difference is defined as the potential difference between the vacuum level and the Fermi
level. In the energy diagram, the work functions of the metal and the Si channel are
normally different. Taking into consideration that both the vacuum level and the Fermi
levels on both sides of the oxide layer should be continuous under zero gate bias, the
energy levels in the surface region of the silicon channel have to be bent downwards as
shown in Fig. 3.3(b). Therefore, it can be seen from the energy band diagram that the
surface region is depleted under zero gate bias. We can also conclude that the flat band
condition, shown in Fig. 3.3(a), can be achieved by applying a gate bias, named the flat
band voltage V7, which is the work function difference between the metal gate and the

silicon channel as:

Vfb = Z/}ms = wm - wsi (3.2)

where 1, is the work function difference between the gate and the channel, and v,

and v, are the work functions for the gate and the Si channel, repectively.



26

Chapter 3 Theory

Gate

Gate

SiO, Si channel
A A
x = _ - _
Ec
777777777777777777777777 E]
I G
———————————— - — Er
Ev
A + + +
(a) flat band condition
Si0;
Sichannel
A A
T = - - -
Ec
Bt S E,
I Gy
__________________________ - EF'
Ev
+ + +
A oA
-~ —~

(c) depletion condition

Gate

Gate

12

2}
€

2}
€

L4 4

€
n
3

Si0,
Sichannel

(b) accumulation condition

Si0; Si channel

R
€

(d) inversion condition

E,
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3.1.1.3 Interface charges in the gate oxide

In the above discussion, the gate oxide was assumed to be an ideal insulator for simplic-
ity. However, this is not the case and hence gate oxide charges and their influence are
briefly discussed here. In Deal’s work [80], the charges in the gate oxide are illustrated
in Fig. 3.4. The four types are modelled [80] as: (1) fixed oxide charges, ()¢, (2) mobile
ionic charge, (),,, (3) oxide trapped charge, ();, and (4) interface trapped charge, );;.

102
@ 53]
Mobile iomic charge
® @ ® 41
+ * i+ £ + + —— Cnide trapped charge
B _:__;._-——-FixedOX1de charge
R e e
21

FIGURE 3.4: The modelled charges in gate oxide.

Fixed oxide charges are positive charges in the oxide less than 24 A from the Si/SiO,
interface [81] and are mainly caused in the thermal oxidation and subsequent annealing
process [81]. The charge density depends on the oxidation process, cooling conditions
and the silicon orientation. Mobile ionic charges are mainly due to sodium or potassium
contamination during the fabrication process. These mobile ionic charges are positive
ions, which can move in the oxide layer. The oxide trapped charges, either electrons
or holes, are introduced by bombardment with high energy particles in the fabrication
process, such as ion implantation, plasma or reactive etching and electron-beam lithog-
raphy [82]. Most charges can generally be eliminated by a low temperature anneal
around 500°C [82]. The interface charges are located at the Si/Si0O, interface and are
caused by broken bonds at the surface [80]. These charges have also been called surface
states, fast states and interface states, respectively. Most interface states can be annealed
out by low temperature (450°C) annealing [82].

Since all four modelled charges are defined as an effective net charge at the Si/SiO-
interface, their effects can be simplified using an effective net interface charge, Q7.

For a p-type channel, positive oxide charges attract electrons and repel holes, helping
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the formation of the channel. This in turn reduces the gate bias required for the same
carrier concentration. Negative charges play an opposite role in the channel. Therefore,

the influence of oxide charges can be modelled together with flat band voltage as:

Vfb ~ 77Z)ms - QIT/Oox (33)

where ();r is the effective net interface charge and C,, per unit area is the gate oxide
capacitance, C,,, = $°¢. Here, €,, and t,, are the gate oxide permittivity and the gate

oxide thickness, respectively.

3.1.1.4 Electric potential and charge distribution in the silicon channel

To quantitatively study the gate control of the channel, the surface potential and charge
can be derived using Poisson’s equation. For a MOS capacitor or MOSFET with the
Source/Drain grounded, the problem can be solved by a 1-dimensional equation:

d*ep q N _

a7 - [p(y) = n(y) + Nj(y) — N (y)] (3.4)
where N} and N are the concentrations of ionised donors and acceptors, respectively.
Here, eg; is the permittivity of silicon and v is defined as band bending in the silicon.
At y position from the Si interface, ¥ (y) is ¥;(y) — ¥;(00) and ¢ (y) is positive when

the band bends downward.

The threshold voltage V; is commonly defined as the gate bias when the strong inversion,

s = 2y, is achieved. Thus, V; is written from the Eq. (3.3) in expression of:

Qs
OO$

Vi = Vi + 200y — (3.5)

At the onset of the strong inversion, the surface charge is mainly the depletion charge
and @), which is solved from Eq. (3.4) (detailed in Appendix A), can be written as:

Qs ~ Qa = \/2c5:qNa(2¢) (3.6)

where N4 is the acceptor concentration in the channel and g; is the silicon permittivity.

The expression for V; can be obtained by substituting into Eq. (3.5) the expressions of
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Vi and @), given in Eq. (3.3), Eq. (3.6), respectively:

ViaesiqN.
‘/t:wms_%“‘Q@Db‘i‘_gSC,q Awb (3.7

where 5 is given in Eq. (3.1). The Eq. (3.7) shows that varying the substrate doping
can change the threshold voltage. The threshold voltage can also be changed by varying

gate oxide thickness and a thinner gate oxide leads to a lower voltage.

Using the expression for ()4 in Eq. (3.6), the depletion width W, and the depletion

capacitance Cj can be solved as:

—Qa | 2es:0s

W, = = (3.8

TN\ s )
Esi €5iqN 4

C;= = 3.9

7 20, (3.9)

3.1.2 MOSFET I-V characteristics

3.1.2.1 MOSFET I-V model

In the former section, the MOSFET channel formation under a gate bias was detailed
using a 1-dimensional model. For the current model, however, the drain bias influence
should be taken into consideration in the 1-D MOSFET model, using the gradual chan-
nel approximation (GCA). In the GCA, it is assumed that the variation of the electrical
field in the channel is mainly determined by the variation in the direction perpendic-
ular to the channel [83]. In other words, the electric field variation in the channel is
dominated by the gate bias and this assumption becomes not valid when the drain bias
is beyond saturation (pinch-off) and in short channel transistors. In the following dis-
cussion, Source and Substrate contact are grounded and a long N-channel MOSFET is
discussed. Under a positive drain bias, the channel is in a nonequilibrium condition, in
which the electron quasi-Fermi level Ep,, is lowered from the equilibrium Fermi level
and the hole quasi-Fermi level Ef, remains at the bulk Fermi level in the bulk p-type

silicon [84]. Therefore, the electron concentration under a nonequilibrium condition in
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the channel is modified as:

_oni (W) —V(x)
’Il(ili', y) - N_A exXp T

(3.10)

where V' is the bias in the channel due to drain bias, which is in the direction of along the
channel. At the Source end and Drain end of the channel, V" is 0 and Vj, respectively.
Substituting Eq. (3.10) into the Poisson equation, the surface charge distribution can be
solved as function of =, which is the distance along the channel from the Source end (z
= 0) to Drain end (z = the channel length). From Eq. (3.10), the electron concentration

near the drain side is lower than that near the source side.

To simplify the problem, the hole current and the generation and recombination current
are ignored. Thus, the current is continuous along the x-direction. The electron current

density including both drift and diffusion currents [82] is given by:

dV(x)

JIn = _qun<y>n($ay)7 (3.11)

By integrating .J,, over the inversion depth, IV, and along the channel, the drain current

1, can be obtained as:

W [Vas Wi W [ Vs
[ds = ,un,efff o /0 qn(x,y)dde = Hn,efff/o Qz(v)dv (312)

where W and L are the width and length of the channel, respectively. Here, i, cf¢ is
the effective electron mobility, defined as:

I3 pn(y)n(y)dy
o n(y)dy

Due to scattering at the surface of the channel, the effective mobility is lower than

Mneff = (3.13)

the bulk mobility. For this reason, Si/SiO, interface quality and surface roughness are

critical for transistor performance.

The general drain current is analytically solved using the charge-sheet approximation
[85]; that is, all the inversion charges are located at the silicon surface like a sheet of
charge and there is no potential drop or band bending across the inversion layer. After
the onset of the strong inversion, the surface charge can also be written using Eq. (3.5)

as:

Qs = _Coaz (‘/g - Vfb - ws) (314)
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where the surface potential, v, is s = 210, + V. The inversion charge can be calcu-
lated from Q; = Qs — Q4 using Eqs. (3.14) and (3.6). Substituting Eqs. (3.14) and
(A.6) into Eq. (3.12), the drain current is:

W Vds
[ds = Nn,efff . (Qs - Qd)
W 1 2+/2e5iq N 3 3
= ,umefff{ (V;; — Vi — 29 — §Vds) Vs — % [(2% + Vas)2 — (2u)2 | }
(3.15)

This equation describes the I-V characteristic of a MOSFET. It can be concluded that the
current is proportional to the channel width, whilst the current is inversely proportional

to the channel length.

3.1.2.2 Linear operation

When V, is small (V,<V,<V}), gate voltage is not sufficient to create an inversion layer
and there is only a depletion layer formed underneath the gate oxide (Fig. 3.5(a)). As
no inversion layer is formed, there is no conduction channel between source and drain.
Without taking the leakage current into account, the drain current, /4, is supposed to
be zero. This operation is called the cut-off operation. When V/ is larger than V;, an
inversion layer is formed and thus the Source and Drain are connected by a conduction
channel (Figs. 3.5(b) and (c)). When V; is small (Fig. 3.5(b)), the conduction the final
term in Eq. (3.15) can be approximated as:

3
2

(20)? Vo (3.16)

N W

(24 + Vgs)2 — (2%)% ~

Using Eq. (3.16), drain current expression of Eq. (3.12) can then be simplified into:

|44
Ids = Mn,effcoxf (317)

2e5iqNA(2 1
<Vg_Vfb—2@/}b— esiqNa(2¢) >Vds

Cox - 5 Vds

By putting the expression of Eqs. (3.7) and (3.3) into Eq. (3.17), the drain current

expression can be rewritten as:

w 1
]ds = ,un,effcocﬂf (‘/g - V;S - 5Vd8> Vds (318)

This indicates that the drain current is proportional to the drain bias, as shown in Fig.

3.6, when the drain bias is small and this operation is referred to as linear operation.
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FIGURE 3.5: Schematics of MOSFET operated (a) in the cut-off region and (b) in the
linear region and (c) at the onset of the saturation.
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The channel acts like a resistor with the resistance modulated by the gate bias.
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FIGURE 3.6: Idealised output characteristic of an n-type MOSFET with 10 gm channel
length, 1 um channel width and gate oxide thickness of 50 nm.

3.1.2.3 Saturation operation

When the drain bias increases and Vy, = V,; — V, the channel is pinched off, as shown
in Fig. 3.5(c), and the drain current saturates. By putting the drain voltage at the onset

of saturation, Vs ot = V,; — V; into Eq. (3.18), the drain current at saturation operation
can be written as:

Vv, vy (3.19)

Issa: n,e Cox_
dssat = Mn.eff oL

The drain current reaches the maximum value, /g, ¢o, and stays constant as drain bias

increases further as shown in Fig. 3.6.
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3.1.2.4 Subthreshold operation

Besides the linear and saturation regions, another operation region is also discussed in
this section. When the gate bias is slightly lower than V;, that is, ¥, <ty <2y, the
channel is weakly inverted and hence the inversion charge density does not drop to zero
abruptly. Therefore, the drain current in this region, named the subthreshold current, is
non-negligible and is a critical characteristic for transistors operated at low-voltage for

low power applications.

In the linear and saturation regions, the drift current, controlled by the drain source
electric field, is the dominant part of the drain current. In the subthreshold region, the
current is mainly due to diffusion. In the subthreshold region, the inversion charge is
expressed as Eq. (A.9) and the subthreshold current is solved by putting the inversion

charge expression into Eq. (3.12) as a function of surface potential, 1, as:

I W JaNagsi (KTN® (ni\* (qva (| (Ve
ds Hneff I 277Z)5 NA p LT p LT

(3.20)

When V; is larger than L the last term containing V4 can be ignored. The relation of

s and gate bias, V, is glven by considering only depletion charge:

V 2€SinAws

th:vfb"i_ws"i_ Co:]c

(3.21)
This is a similar form of expression as the threshold voltage. Here we consider 1) is

only slightly deviated from 2, and thus assume |¢); — 24| < 21),. Using a Taylor
series, 1/1s and 15 in Eq. (3.21) can be expanded into:

Vs = /20, + = 2%)*%(% — 24) (3.22)

Vs = 2y + (Vs — 2uy) (3.23)

Substituting these two expressions into Eq. (3.21):

2e5;gN 4 (2 qN 4/ (4
V) = Vi + 20+ €5iq A(¢b)+<1+ £5iqNa/ (4p)

Cox Cox > (@Ds - 2¢b)
Vi (s — 24 (3.24
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where m is defined as the body-effect coefficient, given as:

V/25:qNa /4, C Bton
esiaNa/4p _ Ca | Blow (3.25)

=1
m + CO$ Cox Wd

By putting Eq. (3.25) into Eq. (3.20), the subthreshold current can be easily solved as:

2
W [aNass: (kT) exp 7(Vs — Vi) (3.26)

Is: neff 7 -
ds = Hnel I a0, \ g mkT

This expression indicates that the subthreshold current varies exponentially with gate
bias. Thus, a graph of log(/,,) against V} is linear in the subthreshold region, as shown
in Fig. 3.7. Itis noted that a steeper subthreshold slope (SS) means that the transistor can
be turned on using a lower voltage and the leakage current is lower when the transistor
is switched off. The threshold voltage can be extracted from the subthreshold plot curve

as shown in Fig. 3.7. The subthreshold slope value is defined as:
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FIGURE 3.7: The I45-Vy, curve plotted on linear and logarithmic scales of 1,5 [86].

~1
5g = (d(loglo Id5)> mkT kT (Cox + C’d) (3.27)

=Inl0—— =2.3—
dVs N q q Cox

where the expression for m is given in Eq. (3.25). When Cy; <« C,,, SS reaches a

theoretical limit, which is 60 mV/decade. Since C; depends on the channel doping,
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N4, SS is degraded when the channel doping increases. Taking into consideration of
the influence of charges in the oxide and at the Si/SiOs interface (in Fig. 3.4), SS can

be written as:

(3.28)

SS — 23k_T <Cox + Od + Czt)
q Cox

where Cj; is the capacitance due to charges in the oxide and at the Si/SiO, interface.
Thus, the SS is degraded by the charges in the oxide and at the Si/SiO, interface.

3.2 Polysilicon Thin Film Transistors (Seto’s Model)

For a polycrystalline silicon channel, the poly-Si can be considered as crystalline grains
with random orientations connected by grain boundaries. Inside each grain, the atoms
are arranged in a periodic manner and thus can be considered as single crystal. The
grain boundaries have a strong effect on the electrical properties of polysilicon thin film

transistors.

To explain the role of grain boundaries, Seto [87] modelled grain boundaries using a
trapping model and the proposed model is used to study the carrier mobility and conduc-
tion in polysilicon films. In the grain boundary region, it is believed that the disordered
atoms result in a large number of defects due to incomplete atomic bonding, which
leads to the formation of trapping states [88]. The trapping states have the capability
to trap and immobilise the carriers and thus reduce the number of carriers available for
conduction. The trapped carriers accumulated at the grain boundaries create an electro-
static potential and this potential works as an energy barrier to impede the movement of

carriers.

In Seto’s model, only majority carriers are considered and dopant atoms are assumed
to be fully ionised and uniformly distributed at a concentration of N. Furthermore, the
grain boundary is assumed to be negligibly thin, which is consistent with the measured
value of 1 nm obtained from TEM. In addition, the trapping states are assumed to be
mono-energetic with a concentration of N; cm~2. The modelled grain boundary for an
n-type channel is illustrated in Fig. 3.8(a). The trapped charges bend the energy bands
and deplete the grain near the grain boundary (Fig. 3.8(b)), so that there is an energy
band peak at the grain boundary (Fig. 3.8(c)), working as an electron barrier for the
conduction. Using Poisson’s equation, the potential height can be solved for two cases
[87]: (a) Ny >LyN and (b) N, <L,N.
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FIGURE 3.8: Seto’s model of a polysilicon channel (a) the polysilicon film, (b) the
charge distribution in the grain and at the grain boundaries and (c) the energy band
structure for the poly-Si film in (a).

For the case of N; >L,N, the grain is fully depleted and the traps are partially filled.
The barrier height, V}, can be solved as [87][89]:

2N
V, = L8

3.29
Ses (3.29)
For the case of Ny <L,N, the grain is partially depleted and the traps are fully filled.
The potential barrier height then becomes [87][89]:

N2
Vb_Qt

= 3.30
8N€Si ( )
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Using Eq. (3.29) and Eq. (3.30), the potential barrier height against dopant concen-

tration is plotted in Fig. 3.9 As the dopant concentration increases, the energy barrier

B

Potential barrier height Vg

|
| o
N, [Ly

Doping concentration

L]

FIGURE 3.9: The relation of the potential and dopant concentration by Seto’s model.

height firstly increases linearly, reaching a maximum at N = N¢/;_, and then decreases
rapidly as 1/N. The dopant concentration of N = Nt/;,_is defined to be the critical

concentration.

The effect of the grain boundaries can be taken into account by defining an effective
electron mobility [87] [90]:

Vi
Hpsm.ef f = Hn,eff €XP (—k—T) (3.31)

where (1, .y ¢ s the effective electron mobility inside the grain and V}, can be calculated
from Eq. (3.29) or Eq. (3.30) depending on that the grains are fully depleted and par-
tially depleted. For a highly doped junctionless transistor, the carrier concentration is
mainly depended on the channel doping. The Eq. (3.31) shows the mobility is decreased
due to grain boundary and thus lower than the mobility for single-crystal silicon. The
mobility due to grain boundary at different dopant concentration is illustrated in Fig.
3.10. As the dopant concentration increases up to 1x10*® cm~3, the mobility decreases
significantly. Above 1x10'® ¢m~3, the mobility increases with the dopant concentra-
tion. Comparing Fig. 3.10 with Fig. 3.9, the valley trend of the mobility curve is

correlated with the grain boundary height due to dopant concentration.

The drain current of a long-channel thin film transistor at the linear operation is then
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FIGURE 3.10: The hole mobility as a function of dopant concentration from experi-
mental and theoretical results. After Seto [87], copyright AIP.

given by [91]:

Vi %4 1
Lis A [in.efs €XD (—%) Cory- (Vg - des) Vis (3.32)

The effective mobility in Eq. (3.32) is from p,, in Eq. (3.31). To add the effect of the
trap states in polysilicon, SS is expressed by modifying Eq. (3.28) with an extra term
as [92]:

kT (Cm; +Cy+Cy + qNT) (333)

SS=23—
q Cog
where Ny is effective trap state density per unit area per eV. Eq. (3.33) shows that S5

for polysilicon thin film transistor is higher than for single-crystal silicon MOSFET.

3.3 Raman Analysis of Si Crystallinity

Raman spectroscopy is a common tool used in chemistry to investigate vibrational infor-
mation about the symmetry of molecules [93]. When monochromic light, hvg, normally
a laser beam, interacts with the electron cloud of a sample, scattering processes occur
and can be classified by the emitted light, as shown in Fig. 3.11. When the emitted light

has the same frequency as the incident light, it is an elastic scattering process, i.e., a
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Rayleigh process, which has the highest probability [93]. When the emitted light has a
lower frequency (v<wy), it is an inelastic scattering process and is called Stokes Raman
scattering. If the emitted light has a higher frequency (v>wvy), the scattering process is
again inelastic, and is called anti-Stokes Raman scattering. Due to a higher intensity
of Stokes Raman lines than anti-Stokes Raman lines, only Stokes Raman lines are nor-
mally recorded in Raman spectra [93]. The emitted light frequency shift (Raman shift)
is typically expressed in wavenumbers, which is in units of inverse length (cm™!). The
Raman spectrum is then formed by plotting the measured intensity as a function of the

Raman shift. The resulting Raman results can be used to interpret the structure of the

material.
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FIGURE 3.11: Schematic diagram of different scattering mechanisms observed when
an incident light interacts with a sample.

Raman spectroscopy is an effective tool for Si crystallinity analysis [94][95]. Fig. 3.12
shows the Raman spectra for large-grain polycrystalline silicon (a), small-grain poly-
crystalline silicon (b) and amorphous silicon (c). For (b) in Fig. 3.12, two peaks can
be identified at ~480 cm~! and ~520 cm~!, whereas, for (a) and (c), only one main

peak is identified at ~520 cm~! and ~480 cm™!

, respectively. The Raman shift peak at
about 520 cm™! is due to crystalline Si, whilst the Raman shift at about 480 cm™* is due
to amorphous Si [96]. Thus, the silicon crystallinity can be identified from the Raman

peaks at 480 cm~! and 520 cm L.

To compare the crystallinities of polysilicon films, Raman spectra are normally plotted
in normalised intensity [97][98][99], which is the Raman intensity at a given Raman
shift divided by the Raman intensity at around 520 cm~! peak. Fig. 3.13 shows nor-
malised Raman spectra for two poly-Si films. The Si crystallinity can be qualitatively

assessed from the sharpness of 520 cm~! peak, which can be quantified by measuring
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FIGURE 3.12: Raman spectra of large grain polysilicon (a), small grain polysilicon (b)
and amorphous silicon (c). After Kitahara et al [96], copyright JJAP

the full-width at half-maximum (FWHM) [100]. A smaller value of FWHM shows a
higher Si crystallinity, so poly-Si (b) is more crystalline than poly-Si (a).

To further analyse the Si crystallinity, a peak-fitting technique is used to study amor-
phous and crystalline fractions of the Raman spectra, as shown in Fig. 3.14. The contri-
butions of amorphous (/) and crystalline silicon (/,,) are expressed in the areas of the
fitted Gaussian curves and thus the crystalline fraction can be defined as [38]:

I

a (3.34)

Nl

where I, and I, are the areas of the fitted Gaussian curves of crystalline silicon and
amorphous silicon, respectively, and y is the ratio of the scattering cross sections. Here,

y has been reported to vary with grain size and is 0.88 for small grain size [94].
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Chapter 4

Effect of Fluorine Dose on Amorphous
Silicon Metal-induced Lateral

Crystallisation

4.1 Introduction

In Chapter 2, it was shown that most Si nanowire biosensors are fabricated by top-
down e-beam lithography on Silicon-on-Insulator (SOI) wafers [8][15]. However, cur-
rent top-down fabrication techniques are high cost and cannot satisfy the requirement
for low-cost disposable biosensors. Recrystallised polysilicon by thin-film technology
is proposed as an alternative solution for biosensor fabrication, which could lead to
a significant cost reduction, particularly if glass substrates are used. However, glass
substrates require a process temperature below 450°C to avoid substrate shrinkage and
warpage [21][22][23]. Therefore, this requires a lower anneal temperature for metal-
induced lateral crystallisation (MILC), which is typically at 550°C [29][53]. However,
no work has been reported on MILC at temperatures below 500°C.

Fluorine has been reported to give an increase in MILC length [31] and to improve poly-
Si thin film transistor performance by passivation effects from fluorine implantation [26]
[101] and CF, plasma treatment [102]. Therefore, these earlier researches provide a
motivation for studying the influence of the fluorine implantation dose on MILC growth
at different temperatures. MILC growth at temperatures below 550°C is of particular

interest for nanowire biosensor applications.

43
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4.2 Experimental Procedure

4.2.1 Sample preparation

The process flow for the fluorine implanted samples in this work is shown in Fig. 4.1.

The sample fabrication up to and including Ni deposition was done in the KTH clean-

(a) Grow 400 nm wet SiO; at 1100°C
Si

Deposit 100 nm a-5i at 560°C

F implantation with dozes of SE14,
1E15, 2.5E15 and 5E15 cmr? at 35
keV / no F implantation

300 nm LTO deposition at 400°C
using SiHAN,O

(©)

Photolithography and wet etch

LTO
S

N

s | Renovemtiveosia

50 nm Ni evaporation

(d)

Si

LT{O: Low temperature 5i dioxide

FIGURE 4.1: Process flow for the fabrication of the fluorine implanted samples.

room in Sweden by M. M. A. Hakim, as the Southampton cleanroom was not fully op-
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erational after the fire. The furnace anneal and lateral crystallisation experiments were
done by the author in the new Southampton Nanofabrication Centre cleanroom. Five
p-type <100> oriented Si wafers were cleaned and a 400 nm thermal silicon dioxide
was grown by a wet oxidation at 1100°C (Fig. 4.1(a)). Subsequently, a 100 nm undoped
amorphous silicon («-Si) layer was deposited by low pressure chemical vapor deposi-
tion (LPCVD) at 560°C. Then, a fluorine implantation was performed at 35 keV with
various doses of 5x10™ cm™2, 1x10™® cm~2, 2.5x10" cm~2 and 5x 10" ¢cm~2 into
four wafers (Fig. 4.1(b)). No fluorine implantation was given to the last wafer, which is
the control. After a 300 nm low temperature oxide (LTO) was deposited at 400°C using
SiH, and N,O, windows were opened in the LTO using photolithography and a wet etch
was performed (Fig. 4.1(c)). Immediately after removing the native oxide on top of the
«-S1 surface by buffered hydrofluoric acid (HF), a 50 nm nickel layer was evaporated
(Fig. 4.1(d)). The samples were then cleaved and all samples were furnace annealed
at different temperatures between 428°C and 575°C for 3-40 hours in nitrogen. The
samples were loaded into the furnace at 400°C and the temperature was then ramped up
at 2°C/min. A cross-section view of a typical fabricated sample is shown in Fig. 4.2.
The thickness values shown in Fig. 4.2 are mean values of at least 5 measurements on

each of the five wafers.

L
24546 nm

i
},111i9 nm

Buried

Oxide 376+18 nm

| =

S1 substrate

10.0kV X50,000 100nm

FIGURE 4.2: Cross-section SEM micrograph of a sample fabricated for the fluorine
effect experiment. The process flow is shown in Fig. 4.1
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4.2.2 SIMS characterisation

In this work, fluorine profiles in the implanted Si samples were studied using Secondary
Ion Mass Spectrometry (SIMS), which was carried out by Loughborough Surface Anal-
ysis, Ltd. The measured raw data were calibrated and analysed by the author. Fig. 4.3
shows a graph of the measured fluorine intensity in counts as a function of the sputter
time for samples with: (a) fluorine implanted into SiO; and (b) fluorine implanted into
a-Si on top of SiO,. For F into «-Si, there are two measured curves from two sput-
tering runs stopped at different times. For both samples, fluorine was implanted at a
dose of 2.5x10' cm~2, an energy of 35 keV and a tilt angle of 7° and no anneal was
performed. For the F implanted into SiO9, a main peak can be identified at a sputter
time of 170 seconds. However, for the F implanted into «-Si on the SiO,, two peaks
are seen at sputter times of 450 seconds and 605 seconds. The depths of the sputtered
craters for F into SiO, and «a-Si were measured to be 420 nm (shorter time) and 107
nm (one aqua colour), respectively, using a profiler by Dave Sykes at Loughborough

Surface Analysis, Ltd. Thus, the SIMS curve in aqua colour stops in the a-Si film. The

14000 ————T——————— T T T I
L | F as implanted, no anneal| | |
190001 | F dose: 2.5x10"%cm? || Fluorine into ce-Si g
— | '

. 375”;/ on top of SHCJ2 :

— | - . . .

= o000 E - “ Fluoring into o-i
5 S ‘?'{‘ 3 2% & ontop of SIO, i
o s00 Lt '~f *{ PEER |
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7 Ry } v 107Tnm . | |
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_.E | # f X : + 410 nm : :
L 4000} N | K | 5

I g’ ‘ | % I
Y | crater depth ! ]
L 4 SN
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FIGURE 4.3: SIMS raw data for a F implant into SiO2 and «-Si on SiO9 with dose of
2.5x10' cm™3, an energy of 35 keV and a tilt angle of 7°. No anneal was given to
both samples after the F implantation.

sputter rate of the SiO, can be extracted to be 4.2 A/second from the sputter time and
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the crater depth. Using the same method, the sputter rate of the a-Si film is extracted
to be 2.1 A/second from the sputter time of 504 seconds and the measured crater depth
of 107 nm. Using these two extracted rates, the total crater depth for the SIMS curve
in red colour is calculated to be 330.5 nm for a sputter time of 1124 seconds and this
well matches the measured value of 320 nm obtained from the profiler. Using the calcu-
lated sputter rates, the depth of the peak at 605 seconds for F implant into a-Si on SiOy
is calculated to be about 122 nm and this roughly matches the 113 nm «-Si thickness
measured by SEM.

For F implanted into SiO,, the fluorine concentration, F,,,, is written as:

Rnt = Soa:Ent (41)

- fdepth Ent(x>dx

where F);,,. is the fluorine implant dose, which is measured by the ion implanter, depth
is the crater depth of the SIMS measurement, which includes most fluorine, £, is the
measured fluorine intensity by SIMS and S, is defined as the conversion rate for SiOs.
S, is a constant and was calculated to be 1.99x 106 cm~2 per count. For F implanted

into «-Si on SiOs, the fluorine concentration in the «-Si film, F,.,,, is written as:

Fdose - Sox tiipth Ent (.Z‘)dl‘
Feon = tor Fine = SSiEnt (42)
fo ' Ent(y>dy

where tg; is the «-Si thickness and Sg; is the conversion rate for a-Si. For the extraction
of Sg;, data points at depths less than 20 nm are neglected as SIMS results are not valid

near the surface [103]. Then, Sg; is calculated to be 2.09x 10'6 cm~3 per count.

Using the calculated S§; and S, and the extracted sputter rates above, fluorine concen-
tration profiles can be calculated as a function of depth, as shown in Fig. 4.4. The F
profiles from a simulator are also presented for comparison. For the F implant into SiO,
(Fig. 4.4(a)), a discrepancy can be seen between the simulated profile and the calibrated

profile. The measured peak fluorine concentration is about 1.9x 10* ¢m~3

, compared
with a simulated value of 3.5x10%° cm~3. For the F implant into o-Si on SiO, (Fig.
4.4(b)), a similar discrepancy can be seen between the simulation and the calibrated
SIMS results. The peak fluorine concentration in the a-Si is measured to be 2.3 x 10%
cm 3, compared with 3.1x10%° cm™ for the simulation. Both of these discrepancies
could be explained if there was some movement of the fluorine during the implantation
due to wafer heating. There was some variation in the sputter rates for SIMS runs done

on different days. The above procedure was therefore used for sputter rates measured
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on the day of the SIMS measurement.

4.2.3 MILC characterisation

In this work, several techniques were used for MILC length measurements, including
Raman spectroscopy, Nomarski optical microscope and field emission scanning elec-
tron microscope (FE-SEM). The Raman spectroscopy was performed using a Renishaw
inVia laser Raman spectrometer, which is configured with three laser lines of 532 nm,
633 nm and 785 nm. In this work, a green 532 nm laser was initially used and later a
633 nm laser was used instead for measurements in which the laser spot was focused
onto the region of interest. To eliminate the influence of the coated Ni layer and the ox-
ide cap, samples were first rinsed in 20:1 buffered hydrofluoric acid (HF) for 6 minutes
prior to the Raman measurements to remove the two capping layers on the silicon. By
using an optical microscope integrated in the Raman system, the laser spot can be well
controlled to focus on a specific location on the sample and hence spot measurements
could be performed. By defining a square region on the sample in the Raman opera-
tional software, mapping Raman measurements can be performed by serially scanning
the selected region spot by spot as pixels the resulting measurement results were then

plotted in a two dimensional plot.

The MILC measurements by Nomarski optical microscope were performed with a Nikon
Ellipse camera with a 5 megapixel resolution. Photographs can be captured using the
Nikon software, Element, during the measurement. The MILC length was measured
using the Nikon software. For Nomarski microscope measurements, samples were pre-
pared either with or without a delineation etch in 7:1 buffered HF for 20 minutes. The
etchant delineates the lateral crystallisation region by selectively etching the amorphous
silicon and nickel disilicide (NiSis) in the MILC region [31].

SEM observations were made on a JEOL 6500F FE-SEM. For plan view SEM mi-
crographs, an electron acceleration energy of 5 keV was used as a trade-off between
resolution and surface charging. The working distance was set to about 10 mm, which
gave an enough space to avoid a collision between the mounted sample and the electron
tube. In SEM measurements of the MILC length, samples were first delineated in 7:1

buffered HF for 20 minutes [31] to improve the contrast.
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FIGURE 4.4: Calibrated fluorine concentration profiles for (a) a F implant into SiO5
and (b) a F implant into a-Si on SiOy. The fluorine concentration and depth were
calculated from the SIMS results shown in Fig. 4.3
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4.2.4 Validation of MILC characterisation techniques

In this work, the different techniques for lateral crystallisation measurement length are
presented and validated. Fig. 4.5(a) shows Raman spectroscopy results measured on
an annealed unimplanted (no F implant) sample. The spectra were measured in the
following regions: (a) the MIC region below the Ni, (b) the MILC region and (c) the
amorphous silicon (a-Si) region. In the «-Si region, a small broad peak is obtained at
a Raman shift of 479 cm™!, in the MILC region, a large and sharp peak is seen at a
Raman shift of 521 cm™2, and in the MIC region a small sharp peak is seen at a Raman
shift of 521 cm~!. As discussed in Chapter 2, these results can be explained by different
silicon crystal structures in the three regions. A broad peak at a Raman shift around 480
cm~? is indicative of the presence of amorphous Si, whereas a sharp peak at a Raman

shift around 520 cm~! is indicative of crystalline or polycrystalline Si [104].

Raman
mapping

'—/_A_’th MIC

MILC
] Ni/MIC

J ]
o-Si

Relative Intensity (arb. unit)

S

100 200 300 400 500 600 700 800 900 1000 1100 1200
Raman shift (cm™)

(a) (b)

FIGURE 4.5: (a) Raman spectra measured at three different regions for an annealed
unimplanted sample after removing the nickel and LTO and (b) Plan-view map of Ra-
man shift at 520 cm~! for an annealed unimplanted sample.

The MILC region can be identified by mapping the Raman shift at 520 cm~!, as shown
in Fig. 4.5(b). The relative intensity is indicated by rainbow colours and the bright
green region at the centre of Fig. 4.5(b) represents the higher intensities. The length of
the MILC region can be measured as 12.3 ym. The MILC region can also be identified
from the optical image as a slightly different shade of green. A MILC length of 11.1
pm can be measured from this image, which is in reasonable agreement with the value

from the Raman map, given the Raman laser spot size of 1 pm.

Fig. 4.6(a) shows an optical Nomarski micrograph of the same annealed unimplanted
MILC sample. The MILC region can be much more clearly identified than in the optical
image in Fig. 4.5(b) and the measured MILC length is 11.7 ym. For comparison, Fig.
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4.6(b) shows an optical Nomarski image of the same sample after a 20 minute delin-
eation etch in 7:1 buffered HF. The lateral crystallisation region can again be clearly
identified by a strong colour change and the MILC length can be measured as 12.2 pym.
The black line located at the interface between the MILC region and the amorphous Si
is formed from etched holes of nickel disilicide precipitates. Finally, Fig. 4.6(c) shows
plan-view FE-SEM micrograph of the sample after a delineation etch. The MILC region
can again be clearly identified and the MILC length measured as 11.8 pm.

(@ (b)

(©)

FIGURE 4.6: Micrographs of unimplanted samples after a lateral crystallisation anneal

(a) Nomarski image and (b) Nomarski image after a delineation etch in 7:1 buffered

HF for 20 minutes and (c) Plan-view field-emission SEM micrograph of the sample
after a delineation etch in 7:1 buffered HF for 20 minutes.

Table 4.1 compares the values of lateral crystallisation lengths obtained from measure-
ments using the techniques discussed above. A total of 20 measurements were made on
the sample for each technique and means and standard deviations were calculated. The
MILC lengths measured by all four methods match very well and all agree within the
values of standard deviation. It should be noted that Raman spectroscopy tends to give

slightly larger values as the measurement resolution depends on spot size, which is 1
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pm. Therefore, it can be concluded that all four measurement techniques are valid for
lateral crystallisation measurement, though the Nomarski microscope is the preferred

method because it is simple, fast and non-destructive.

TABLE 4.1: Comparison of lateral crystallisation lengths measured using different
techniques. Some samples were given a delineation etch and others not.

Raman spectroscopy | Optical microscope | Optical microscope SEM
with with with with
an etch no etch an etch an etch
MILC length (pzm) 12.3 11.7+0.7 12.24+0.3 11.84+0.3

4.3 Results

4.3.1 Fluorine profiles before and after anneal

Fig. 4.7 shows measured fluorine profiles for unannealed samples with fluorine implant
doses of 5x10 cm™2, 1x10'® cm™2, 2.5x10% cm~2 and 5x 10'® cm~2, respectively.
Fluorine peaks can be identified at depths of 108 nm, 106 nm, 108 nm and 101 nm,
respectively. These depths agree with a measured «-Si thickness of 111 nm obtained
from cross-section SEM micrographs. This good agreement indicates that the second
fluorine peak in located at the «-Si/Si0Os interface. The variations in the peak positions
between the four samples are due to variations in the «-Si thickness and to inaccura-
cies in the SIMS depth scale. The fluorine concentration at the «-Si/SiOs interface was
extracted and the values are summarised in Table 4.2. The F concentrations were ex-
tracted to be 7.0x10™ cm™3, 1.3x 10" cm™3, 3.1x10%° cm~2 and 7.9x10%° cm~2 for
F implant doses from 5x 10 cm™2 to 5x10' cm™2, respectively. Thus, the fluorine
concentration at the «-Si/SiOs interface is approximately proportional to the implanted

fluorine dose.

TABLE 4.2: F concentrations at the a-Si/SiO» interface measured by SIMS for samples
with different fluorine implant doses
F implant dose | F concentration at a-Si/SiOs interface
5x 101 cm—2 7.0x10Y cm™3
1x10% cm~2 1.3x10% cm™3
2.5x10'° cm~2 3.0x10%° cm =3
5x10'° cm—2 7.9%10%0 cm~3
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FIGURE 4.7: Fluorine SIMS profiles for samples given a 35 keV fluorine implant at
dose in the range 5x10' cm™2 to 5x10'5 cm™2. The samples were measured after
oxide and Ni depositions and before a MILC anneal.

SIMS measurements were performed on 550°C 10 hour annealed samples in regions
far from the MILC front to study the fluorine profiles of these samples after the MILC
anneal. Fig. 4.8(a) shows the F profiles for the 5x 10** cm ™2 sample before and after the
MILC anneal. It can be seen that a significant amount of fluorine has migrated towards
and accumulated at the Si/SiO, interface; 1.1x10?° cm~3. Similar F migrations and
accumulations are seen on samples implanted with higher fluorine doses in Fig. 4.8(b),
(b) and (c). The fluorine concentrations at the interface are extracted to be 2.3x10%°
cm ™3 for 1 x10 cm™2 F, 6.2%x10%° cm™ for 2.5x 10" cm™2 F and 15x10%° cm ™2 for

5x10 cm—2 F.

4.3.2 Effect of F dose on MILC at 550°C

As the motivation for this work is to find the optimum fluorine dose for MILC, the effect
of fluorine dose on MILC was investigated after an anneal of 10 hours at 550°C, which
is a typical anneal used for MILC. Fig. 4.9 shows optical Nomarski micrographs for
annealed samples without a fluorine implant (Fig. 4.9(a)), and with fluorine implants
at doses of 5x10' cm~2 (Fig. 4.9(b)), 1x10* cm~2 (Fig. 4.9(c)), 2.5x10' cm—2
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FIGURE 4.8: Fluorine SIMS profiles for samples given a 550°C MILC anneal for 10

hours after a fluorine implant at a dose of (a) 5x10'* cm™2, (b) 1x10'® cm™2, (¢)

2.5x10% cm™2 and (d) 5x10'® cm™2. The implantation was performed at implant
energy of 35 keV.

(Fig. 4.9(d)) and 5x10'° cm~2 (Fig. 4.9(e)). The MILC region can be identified as
the green region between the nickel (in blue) and the a-Si (in brown). The measured
MILC lengths shown in Fig. 4.9 are the mean values of 20 measurements from different
regions of each sample. The MILC lengths were measured to be 44.9 pm for the unim-
planted sample, 42.4 um for a fluorine dose of 5x10* cm~2, 51.0 um for a fluorine
dose of 1x10* cm~2, 57.4 um for a fluorine dose of 2.5x 10 cm~2 and 52.8 ym for a

fluorine dose of 5x 10 cm—2.

Fig. 4.10 shows a graph of the lateral crystallisation length as a function of fluorine
dose for samples given a 10 hour 550°C anneal. The MILC length increases from 42.4
pm to 57.4 pm on increasing the fluorine dose from 5x 10 cm™2 to 2.5x 101 cm—2.
As the fluorine dose increases above 2.5x 10 cm™2 the MILC length decreases down
to 52.8 um, indicating that the optimum fluorine dose is 2.5x10'® cm~2, with a MILC
length improvement of 28%. In contrast, the lowest fluorine dose of 5x 10 cm™2 gives

a suppression of the MILC length compared with the unimplanted sample.
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FIGURE 4.9: Nomarski micrographs of lateral crystallisations of samples annealed at

550°C for 10 hours with (a) no F implant, (b) F implant, 5x 104 cm~2, (c) F implant,

1x10* cm™2, (d) F implant, 2.5x10* ¢m™?2 and (e) F implant, 5x10'® cm~2. No
delineation etch was given to the annealed samples.
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FIGURE 4.10: Lateral crystallisation length as a function of implanted fluorine dose
for samples annealed at 550°C for 10 hours. All data are based on measurements by
Nomarski microscope.

To investigate the effect of the MILC anneal on random crystallisation of the amorphous
silicon, Raman spectroscopy was also performed on the amorphous silicon far from the
MILC region and the Raman spectra is normalised by the peak intensity around 520
cm™ !, which is detailed in Chapter 3, and then plotted in Fig. 4.11. A sharp peak is seen
at a Raman shift of around 520 cm™! for the single-crystal Si sample and the annealed
a-Si samples. A high and broad peak is seen at a Raman shift of around 480 cm~! for
the sample with a fluorine implant at a dose of 5x10'* cm™2. As discussed in Chapter
3, these two peaks, 520 cm ™! and 480 cm ™!, indicate the presence of crystalline silicon
and amorphous silicon, respectively. It can be seen that the Raman peak at around 480
cm~! is significantly larger in the fluorine implanted samples than in the unimplanted
sample, which indicates that the fluorine implanted samples are more amorphous. The
Si crystalline fractions for all these samples have been calculated using a peak-fitting
method [38], which is detailed in Chapter 3. Table 4.3 summarises the calculated Si
crystallinities and extracted FWHMs for the samples. These results confirm that the
unimplanted sample is more crystalline than the fluorine implanted samples. This result
suggests that implantation damage from the fluorine implant has a significant influence
on the crystallinity of the «-Si after the MILC anneal. This effect is particularly evident

for a F dose of 5x 10 cm~2, where the crystalline Si fraction is only 14.2% after the
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FIGURE 4.11: Normalised Raman spectra measured in the «-Si far from the MILC
front for annealed samples without a F implant and with F implants at different doses.
All samples were annealed at 550°C for 10 hours. For comparison, a Raman spectrum
for single-crystal silicon is shown.
TABLE 4.3: Calculated Si crystalline fractions obtained using a peak-fitting technique
and full-width at half maximum (FWHM) of the 520 cm~' peak based on Raman
spectra in Fig. 4.11. The samples were annealed at 550°C for 10 hours
F dose (cm™?) unimplanted | 5x10' 1x10° | 25%x105 | 5x10 sc-Si
crystal fraction 46.5% 14.2% 35.2% 34.1% 33.3% 100%
FWHM (520cm™ %) | 88cm™! [ 129cm™! [ 9.0cm™' | 89cm™! [ 89cm™! | 8.0cm™!

To investigate the Si crystalline quality in the MILC region after a 10 hour anneal,

Raman spectroscopy was also performed in the middle of the MILC region and the

normalised Raman spectra are as shown in Fig. 4.12. The Raman spectrum for a single-

crystalline silicon wafer is also plotted in Fig. 4.12 as a reference. The crystalline

Si peak around 520 cm™

1

can be clearly identified, whereas the 480 cm™! peak for

amorphous Si cannot be discerned, which indicates the MILC region has crystallised.
The values of FWHM for the 520 cm™! peak are 8.6 cm~!, 9.9 cm~!, 8.8 cm™!, 8.7

cm ™! and 8.8 cm™! for F implant doses of zero, 5x 10'* cm=2, 1 x 10'° cm™2, 2.5x10%

cm~2 and 5% 10'° cm™2, respectively. These compares with a FWHM for single-crystal
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silicon of 8.0 cm™. These results indicate that high quality polysilicon is obtained for
fluorine doses above 5x10'* cm~2, but that a fluorine implant of 5x10'* cm~2 gives

interior Si crystallinity.
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FIGURE 4.12: Normalised Raman spectra measured in the MILC regions of annealed

«-Si samples without a F implant and with F implants at different doses. All samples

were annealed at 550°C for 10 hours. For comparison, a Raman spectrum for single-
crystal silicon is shown.

4.3.3 Effect of anneal time on MILC at 550°C

To investigate the effect of anneal time on MILC, Fig. 4.13 shows Nomarski micro-
graphs for 2.5x10' ¢cm~? fluorine implanted samples annealed at 550°C for 10 hours,
20 hours and 40 hours. The MILC length increases from 57.4 um for a 10 hour anneal
to 100.6 pm for a 20 hour anneal and 172.1 um for a 40 hour anneal. This behaviour
is as expected and follows the general trend reported in [31] for samples annealed at
500°C. For samples with a lower fluorine implant dose of 1x10'® cm™2, as shown in
Fig. 4.14, the MILC length increases from 51 pm after a 10 hour anneal to 84 ym after a
20 hour anneal. However, after a 40 hour anneal, a clearly defined MILC region cannot

be discerned, as there is little or no colour change between the MILC region and the
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adjacent silicon region. As the colour change is due to the different silicon structures
in the two regions, this result suggests that the amorphous silicon region has been crys-
tallised into polysilicon as indicated by the poly-Si label in Fig. 4.14(c). A similar trend
is seen in Fig. 4.15(b) to (c) for samples without a fluorine implant. In this case, the
MILC region cannot be clearly identified after anneals of 20 and 40 hours. This result
indicates that the amorphous Si film is fully crystallised after an anneal of 20 hours.
A comparison of Nomarski images in Figs. 4.13 and 4.15 for fluorine implanted and
unimplanted samples clearly shows that the fluorine implant has suppressed crystallisa-
tion in the amorphous silicon away from the MILC region. Furthermore, it is also clear
that this suppression is stronger for a 2.5x 10 cm~2 F implant than a 1x10 cm™2 F

implant.

For those samples with poor MILC contrast in Fig. 4.14(c) and Fig. 4.15(b) and (c), a
delineation etch in 7:1 buffered HF for 20 minutes was given in an attempt to identify
the MILC regions. Fig. 4.16 shows optical Nomarski micrographs after the delineation
etch. Comparing the results in Fig. 4.16(a) and Fig. 4.15(b), it can be seen that even af-
ter the delineation etch, the colour of the MILC region is almost indistinguishable from
that of the adjacent region. This result provides further evidence that the amorphous
silicon has been completely recrystallised in this sample. A similar conclusion can be
drawn by comparing Fig. 4.16(b) with Fig. 4.15(c) and Fig. 4.16(c) with Figs. 4.14(c).
While there is little colour change in these samples, the delineation etch has success-
fully delineated etch pits at the MILC front, as can be clearly seen in Fig. 4.16(c) and
to a lesser extent in Fig. 4.16(b). MILC lengths can therefore be measured in these

samples of 55.2 ym and 108.4 pm, respectively.

Fig. 4.17 shows the lateral crystallisation length as a function of anneal time for sam-
ples annealed at 550°C. The MILC length was measured using an optical Nomarski
microscope and the inset is used to clarify the measurements for shorter anneals. For
the two highest fluorine doses of 2.5x 10> cm~2 and 5x 10 ¢m~2, the MILC length
increases linearly with anneal time at short anneals and then increases more slowly at
longer anneals. In contrast, for the unimplanted samples, the MILC length initially in-
creases with anneal time from 3 hours to about 10 hours and then saturates completely
after a 15 hour anneal. For fluorine doses of 5x10'* cm™2 and 1x10* cm™2, an in-
termediate trend is seen, with partial saturation of the MILC length at longer anneals.
The inset of Fig. 4.17 shows that there is some cross-over of the curves for the shorter
anneals. Samples with a fluorine implant dose above 1x 10> cm~2 have a significantly
longer MILC length than samples without a fluorine implant, whereas a fluorine dose

of 5x10'® cm™2 gives a suppression of the MILC length.
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MMIT.C=574 pm

(a) 10 hours

MILC=97.5 pym

(b) 20 hours

MILC=172.1 pm

(c) 40 hours

FIGURE 4.13: Nomarski micrographs of 550°C annealed samples with F implant dose
of 2.5%x 10" cm~2 after (a) 10 hour anneal, (b) 20 hour anneal and (c) 40 hour anneal.
No delineation etch was given to the annealed samples.
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MILC=51.0 pm

(a) 10 hours

RIT.C=84.0 pm

(b) 20 hours

MILC=110.2 pm

(c) 40 hours

FIGURE 4.14: Nomarski micrographs of 550°C annealed samples with F implant dose
of 1x10 cm~2 after (a) 10 hour anneal, (b) 20 hour anneal and (c) 40 hour anneal.
No delineation etch was given to the annealed samples.
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MIL C=44 9 pm

(a) 10 hours

poly-Si

MILC NA

(b) 20 hours

MILC NA

(c) 40 hours

FIGURE 4.15: Nomarski micrographs of 550°C annealed samples with no F implant
after (a) 10 hour anneal, (b) 20 hour anneal and (c) 40 hour anneal. No delineation etch
was given to the annealed samples.
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MILC=1084 pm

(a) No F, 20 hours

MIL C=55.4 pm

(b) No F, 40 hours

MILC=1084 pm

(c) F1x10% ¢cm~2, 40 hours

FIGURE 4.16: Nomarski micrographs of 550°C annealed samples with a 20 minute

delineation etch in 7:1 buffered HF with (a) no F implant after 20 hour anneal, (b) no

F implant after 40 hour anneal and (c) F implant dose of 1x10'5 cm~2 after 40 hour
anneal.
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FIGURE 4.17: Lateral crystallisation length as a function of anneal time for unim-
planted and fluorine implanted samples annealed at 550°C. All data are based on mea-
surements using Nomarski microscope.

To further investigate the MILC saturation, Raman spectroscopy was used to analyse
the silicon crystallinity in regions far from the MILC front. Fig. 4.18(a) shows nor-
malised Raman spectra for unimplanted samples after an anneal at 550°C for different
times. A Raman peak at 520 cm™* can be clearly identified for all samples and this peak

I which indicates

indicates the presence of crystalline silicon. Another peak at 480 cm™
that presence of amorphous silicon, can also be identified for unannealed, 3 hour, 5 hour
and 10 hour annealed samples and the peak height at 480 cm~! decreases as the anneal
time increases. A decreasing peak height for the 480 cm~! peak indicates an increasing
degree of crystallinity. As the anneal time increases to 15 hours, the 480 cm™! peak
cannot be discerned and becomes similar to that of single-crystal silicon, which indi-
cates that the region far from the MILC front has been recrystallised into polysilicon
after a MILC anneal for 15 hours. The normalised Raman spectra for 2.5x10 cm 2 F
implanted samples annealed under the identical conditions are shown in Fig. 4.18(b).
For all F implanted samples, both 480 cm~! and 520 cm™* can be identified and this
indicates the samples are not fully crystallised. There is no significant difference in the

480 cm~2 peak height among the fluorine implanted samples after anneals from 3 hours
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to 15 hours, which indicates a similar amorphous condition for these samples. Thus
fluorine implantation has suppressed crystallisation in the a-Si away from the MILC

region and this has suppressed the MILC saturation.

Fig. 4.19 summarises the calculated Si crystalline fractions using the peak-fitting tech-
nique based on the Raman spectra in Fig. 4.18. Results show that the Si crystalline
fraction increases from 34.8% for the unannealed sample to 58.8% for the 15 hour an-
nealed sample. For the fluorine implanted samples, a different trend is seen in which the
Si crystalline fraction is roughly unchanged as the anneal time increases from 3 hours to
15 hours. It can be concluded that fluorine suppresses random crystallisation. It is also
seen that the Si crystalline fraction for the unannealed F implanted sample is 23.7%
compared with 34.8% for the unimplanted, unannealed sample. This indicates that a

fluorine implant further amorphises the silicon during the implantation process.

4.3.4 Effect of F dose on MILC at 575°C

In this section, the effect of fluorine dose on MILC is investigated at a higher anneal
temperature of 575°C. Fig. 4.20 shows optical Nomarski micrographs of samples im-
planted with fluorine at different doses and then annealed for 20 hours at 575°C. For
the unimplanted sample in Fig. 4.20(a), no colour change can be identified between
the MILC region and the adjacent region. Similar behaviour can also be identified in
Figs. 4.20(b) and (c) for samples with fluorine doses of 5x10* ¢cm~2 and 1x10%
cm ™2, These results indicate that MILC growth on these samples has saturated due to
the complete crystallisation of the amorphous silicon. In contrast, MILC regions can
be clearly seen in Figs. 4.20(d) and (e) for samples implanted with fluorine doses of
2.5% 10 cm™2 and 5x10' cm™2, respectively. MILC lengths of 201 ym and 203 zm,
respectively, can be measured for these samples. It can therefore be concluded that a
higher fluorine dose is needed to effectively suppress MILC saturation at the higher

anneal temperature of 575°C.

Fig. 4.21 shows the lateral crystallisation length as a function of fluorine dose for sam-
ples after a lateral crystallisation anneal at 575°C for 20 hours. For those samples with
no clearly defined MILC region, a delineation etch in buffered HF was performed and
the MILC length measured from the position of the etch pits at the MILC front. The
MILC length increases as the fluorine dose increases from 5x 10 cm=2 to 2.5x 10%?
cm~2 and then increases only slightly as the fluorine dose is further increased to 5x 101°

cm™2,



Chapter 4 Effect of Fluorine Dose on Amorphous Silicon Metal-induced Lateral
66 Crystallisation

_as0cem’! 520cm”

1 T ] T T T T T T T T T T T T
]
|
|
08t 1
z |
U’ |
S |
[
e 067 i' 1
E Unannealed :
9 3 hours |
E 04 5hours I 1
|
5 10 hours |
= 1% hours |
02+ Single crystal 5
.T_u'“r'u—u'ru—r--—u-—r-

N P il P o P
800 450 500 N
Raman shift (cm ')

(a) unimplanted

550 500

’ 480 cm' 520 ¢!
T i T |‘I1I| T
|
|
08} |
= |
“ |
S |
£ 06}
= Unannealed I
=
bt |
?E 04 |
o
=
02
Single crystal 51 |
Y 550 T B00

200 -1
Raman shift {(cm ')
(b) F,2.5x101% cm—2
FIGURE 4.18: Normalised Raman spectra measured in the «-Si far from the MILC

regions for samples annealed at 550°C for different durations. (a) no F implant and (b)
F implant at a dose of 2.5x10'% cm™2.
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FIGURE 4.19: Si crystalline fraction measured at the a-Si far from MILC for unim-
planted and F (2.5x 10 cm~2) implanted samples after anneals at 550°C for different
durations.

4.3.5 MILC at lower anneal temperatures

MILC at lower temperatures is investigated to determine the temperature limit for lateral
crystallisation. A temperature below 450°C is needed for device fabrication on cheap
glass substrates. Fig. 4.22 shows optical Nomarski micrographs of unimplanted sam-
ples after a 20 hour anneal at a temperature in the range 525°C to 428°C. Clear colour
changes can be seen on all samples, indicating that the MILC growth has not occurred

in any of these anneal temperatures.

Fig. 4.23 shows a graph of lateral crystallisation length as a function of anneal temper-
ature for samples annealed for 20 hours at temperatures from 525°C down to 428°C.
It can be seen that the MILC length decreases from 37.6 ym to 1.2 yum as the anneal
temperature decreases from 525°C to 428°C. Nevertheless, a MILC length of about 3.2
pm can be achieved using an anneal temperature as low as 450°C and a MILC length of
about 1.2 pm can be achieved when the anneal temperature was further reduced to 428
°C. The slow rate of MILC rate decrease at low temperatures in Fig. 4.23 suggests that
the MILC anneal temperature might be further decreased.

To further investigate MILC at low temperature anneals, Raman spectroscopy was used
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poly-Si poly-Si

MILC NA MILC NA

(a) unimplanted (b) F,5x10 cm—2

MILC NA MIT. C=200.9 pm

(c) F, 1x10 cm—2 (d) F,2.5x101% cm—2

MIT.C=203.1 pm

(e) E 5x105 cm—2

FIGURE 4.20: Nomarski micrographs of samples annealed for 20 hour at 575°C with

(a) no F implant, (b) a F implant dose of 5 x 10" cm™2, (c)aF implant dose of 1 x 1015

cm~2, (d) a F implant dose of 2.5x10' cm~2 and (e) a F implant dose of 5x10'?
cm™2. No delineation etch was given to the samples.
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FIGURE 4.21: Lateral crystallisation length as a function of implanted fluorine dose
for samples annealed at 575°C for 20 hours. All data are based on measurements by
Nomarski microscope.

to analyse the silicon crystallinity in the MILC regions on unimplanted samples after a
20 hour anneals at 450°C and 428°C and the normalised Raman spectra are shown in
Fig. 4.24. For both samples, a Raman peak at 520 cm ™! can be clearly identified whilst
no 480 cm™! peak can be identified. This further confirms that the amorphous silicon

was recrystallised by MILC at temperatures down to 428°C.

4.3.6 Effect of F dose on MILC at lower temperatures

The effect of fluorine dose on MILC is investigated at lower temperatures from 525°C
down to 428°C. Fig. 4.25 shows optical Nomarski micrographs of samples implanted
with different doses of fluorine and then annealed for 20 hours at 525°C. The MILC
regions of all samples can be clearly identified, indicating that MILC saturation has
not occurred in any of these samples. MILC lengths of 37.6 ym, 34.5 yum, 41.1 pm,
43.9 um and 40.6 um, can be measured for doses of zero, 5x10* cm™2, 1x 10 cm™2,

2.5%10' cm™2 and 5x 10'° cm™2, respectively.

Fig. 4.26 shows the lateral crystallisation length as a function of fluorine dose for sam-
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MILC=37.6 LI MILC=15.6 i

(a) 525°C (b) 500°C

MILC=7.2 um MIL C=5.0 pm

(c) 475°C (d) 465°C

MIT.C=3.2 ym MIT.C=1.2 ym

(e) 450°C (f) 428°C

FIGURE 4.22: Nomarski micrographs of unimplanted samples after a 20 hour anneal
at (a) 525°C, (b) 500°C, (c) 475°C, (d) 465°C, (e) 450°C and (f) 428°C. No delineation
etch was given to the samples.
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FIGURE 4.23: Lateral crystallisation length as a function of anneal temperature for
unimplanted samples annealed for 20 hours at temperatures from 525°C down to
428°C. All data are based on measurements by Nomarski microscope.
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FIGURE 4.24: Normalised Raman spectra measured in the «-Si in the MILC regions
for samples annealed at 450°C and 428°C for 20 hours.
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MIT.C=37.6 pm MILC=34.5 pm

(a) unimplanted (b) F, 5x10%4 cm—2

MIL C=d43.9 pm

MILC=41.1 pm

(c) F, 1x10 cm—2 (d) F,2.5x101% cm—2

MIT. C=40.6 pm

(e) E 5x105 cm—2

FIGURE 4.25: Nomarski micrographs of 20 hour 525°C annealed samples with (a) no

F implant, (b) F implant of 5x 10 cm~2, (c) F implant of 1 x10'® cm~2, (d) F implant

of 2.5%10'5 cm~2 and (e) F implant of 5x 10> cm~2. No delineation etch was given
to the annealed samples.
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ples annealed for 20 hours at 525°C. The results show a similar trend as Fig. 4.10 for
the 550°C anneal. A fluorine dose above 1x 10'° cm™ gives a significant improvement
in MILC length, whilst a fluorine dose of 5x 10 cm~2 gives a suppression of MILC

length. The optimum fluorine dose for maximum MILC length is 2.5x 10'® cm™2.
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FIGURE 4.26: Lateral crystallisation length as a function of implanted fluorine dose
for samples annealed at 525°C for 20 hours. All data are based on measurements by
Nomarski microscope.

Fig. 4.27 shows the crystallisation length as a function of fluorine dose for samples after
a 20 hour anneal at different temperatures below 525°C. For all of these temperatures,
fluorine does not improve the MILC length at any dose. In fact, for an anneal at 465°C
and below, fluorine suppresses MILC and the suppression becomes more significant as

the fluorine dose increases.

4.4 Discussion

Metal-induced lateral crystallisation by nickel is a nickel disilicide-mediated solid-
phase transformation process. The mechanism of MILC for Ni was proposed by Hayzelden
et al [46][48] to be nickel diffusion from the NiSis/crystalline Si interface to the NiSis/a-
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FIGURE 4.27: Lateral crystallisation length as a function of implanted fluorine dose
for samples annealed at different temperatures for 20 hours. All data are based on
measurements by Nomarski microscope.

Si interface due to a chemical potential difference between the two interfaces. As the lat-
tice mismatch between crystalline NiSi; and crystalline Si is about 0.4%, nickel atoms
diffuse into a-Si region and leave a polycrystalline Si trail behind. Thus, the Si crystalli-
sation anneal temperature for MILC is about 550°C [105] and significantly lower than
that of Si solid-phase crystallisation (SPC), typically at 600°C [35]. During the MILC
anneal, random crystallisation also occurs in the «-Si region with preferred locations
at the a-S1/S105 interface due to tensile stress [39]. Some small grains of polysilicon
may also be present after the a-Si deposition [35]. As the Ni diffusion is driven by the
chemical potential difference, the polysilicon grains generated by random crystallisa-
tion can reduce the chemical potential due to the crystalline contrast and this can retard
the MILC process [106]. As random grains grow larger, by the same mechanism, the
crystalline fraction of a-Si increases and this leads to a reduction of the MILC rate.
Finally, nickel atoms can be fully stopped and trapped in the MILC front region of the
Si film, leading to the saturation of MILC growth [107].

In the work, it was found that lateral crystallisation can occur at a temperature as low
as 428 °C (Fig. 4.23). To the best knowledge of the author, this is the lowest reported
temperature for MILC growth. This MILC growth temperature agrees with the nucle-
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ation temperature of NiSi, reported in Cammarata’s work [52] which showed that NiSi,
nucleation was found at temperatures down to 400°C. It was also found that a MILC
length of 3.2 ym can be obtained using an anneal at 450°C for 20 hours. These MILC
anneals are consistent with the maximum temperature of 450°C, needed for the used of
Corning 2000 glass. Thus these results demonstrate the possibility of using low-cost

glass substrates for biosensor fabrication.

In this work, a fluorine implant dose of 2.5x10' ¢cm~2 was found to give the maxi-
mum MILC length for anneals at 525°C and 550°C, as shown in Fig. 4.26 and Fig.
4.10, respectively. The effect of fluorine on the MILC length was studied by Hakim
and Ashburn [31] and they found that a F implant at a dose of 5x 10'® cm~? either into
«-S1 or the underlying SiO, (before the a-Si deposition) gave a significant increase in
MILC length for samples annealed at 500°C. Hakim proposed that fluorine significantly
suppresses random crystallisation at the a-Si/SiO- interface, and this explanation was
supported by cross-section SEM views [31]. This explanation can also be used to ex-
plain the increase in MILC length observed in our work for a F dose of 2.5x10' cm 2

and a MILC anneal at 525°C or 550°C.

It is now to explain the fluorine dose influence and why a fluorine implant dose of
2.5%10'® cm~2 is the optimum value at 525°C (in Fig. 4.26) and 550°C (in Fig. 4.10).
It can be seen from the SIMS results in Fig. 4.8 that a higher fluorine concentration
accumulates at the a-Si/Si0O- interface for higher fluorine implant doses. In Hakim’s
model, fluorine at the «-Si/SiO, interface influences MILC by suppressing random
grain growth at the a-Si/SiO; interface. Thus a higher fluorine implant dose is ex-
pected to give a more effective suppression. Hakim [31] provided no direct evidence of
the presence of fluorine at the «-Si/SiOy interface, but the results in Fig. 4.8 show the
presence of a large concentration of fluorine at this interface. This result therefore con-
firms Hakim’s mechanism and explains the rise in MILC length on increasing the F dose
from 5x 10" cm~2 to 2.5x 10 cm™2. The results in Fig. 4.26 and Fig. 4.10 also show
a decrease in MILC length for fluorine doses above 2.5x 10 cm~2 and a lower MILC
length for a 5x10'* cm~2 F implant than for no implant. These results can be explained
by the damage introduced into the a-Si by the F implant. Tsai ef al [108] showed that a
F dose of 1x10' cm~2 is above the amorphisation threshold for a 130 keV fluorine im-
plant. In this work, it would therefore be expected that the 5x 10** cm™—2 F implant to be
below the amorphisation threshold. As implantation damage is more difficult to anneal
below the amorphisation threshold [109], we would expect that the samples implanted
with 5x 10 ¢cm~2 would be less crystalline than the unimplanted samples. The Raman
results in Fig. 4.11 confirm that this is the case in the a-Si far from the MILC front.
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TABLE 4.4: Si disorder created by F implantation at different doses calculated using
the SUSPRE simulator

F implant dose (cm~?) 5x10M 1x10% 2.5x101° 5x101
Max. disorder/depth (nm) 52%/24 nm | 77%/30 nm | 97%/40 nm | 100%/66 nm
Disorder at aeSi/SiOs interface 10% 19% 44% 65%

A similar argument could be applied in the MILC region, which would then explain
why the MILC length is lower for a 5x10'* cm~2 F implant than for no F implant (e.g.
in Fig. 4.10). Amorphisation might also explain the decrease in MILC length for a F
dose of 5x 10 ¢m~2 (in Figs. 4.10 and 4.26). Amorphisation occurs initially around
the peak of the F implant and then broadens at as the F dose increases. For a 5x10'?
cm~2 F implant the amorphous layer may be thick enough to reach the -Si/SiO; inter-
face. If this was the case, both the F concentration at the «-Si/SiO, interface and the
random grain nucleation could be affected. Some support for this explanation comes
from SUSPRE simulations, as shown in Table 4.4. An implant energy of 35 keV and an
a-Si thickness of 110 nm were used in the simulations. For a F dose of 5x 10 cm™2,
the simulated results show around the implant peak a maximum disorder of 100% and
a disorder of 65% at the «-Si/SiO, interface. These simulations are able to explain
the results in Figs. 4.10 and 4.26 if the amorphisation threshold occurs at a percentage
disorder between 52% and 65%.

For unimplanted samples, MILC growth saturates after 15 hour anneal as shown in Fig.
4.17. This is explained by the complete crystallisation of the amorphous silicon film,
which finally stops the Ni migration and thus the MILC growth. This behavior is con-
firmed by the Raman result in Fig. 4.18 that the 480 cm™~! peak becomes present then
absent for unimplanted samples after a 15 hour anneal at 550°C. This can also be con-
firmed by a calculation using the model in [35]. For unimplanted samples, the random
grain growth rate by SPC follows on Arrhenius behavior as shown in Fig. 2.1. Growth
rates at 575°C and 550°C can be calculated from the Arrhenius plot to be about 0.01
nm/sec and 0.002 nm/sec, respectively. Assuming that MILC saturation occurs when
random grain size reaches 100 nm, the anneal times needed for anneals at 575°C and
550°C are calculated to be about 2.8 hours and 14 hours, respectively. The calculated
time of 14 hours is in good agreement with the value of between 10 hours and 15 hours
from Fig. 4.17. For samples with a fluorine implant dose above 1x10 cm™2 , MILC
growth does not saturate even after a 40 hour anneal at 550°C. Raman analysis of F
implanted samples (2.5x10'® cm~2) shows that the 480 cm™! peak is still discernible
after a 15 hour anneal and this indicates the presence of amorphous silicon. The fluo-

rine suppression of MILC growth saturation is attributed to the suppression of random
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crystallisation in the a-Si.

In this work, at MILC temperatures < 500°C a fluorine implant was found to suppress
MILC (Fig. 4.27). This result can be partly explained by the lack of fluorine migra-
tion at low temperature. Tsai ef al [108] showed that no F migration occurs at 500°C
and this result was confirmed by Jeng et al [110]. If there is no migration of fluorine
towards the a-Si/SiO; interface at 500°C then fluorine cannot suppress random grain
nucleation at the interface. A further contribution to the suppression of MILC at low
temperatures might arise from the difficulty in annealing the implant damage from the

fluorine implant.

4.5 Conclusions

In this work, metal-induced lateral crystallisation of «-Si has been achieved at tem-
peratures down to 428°C. A crystallisation length of 1.2 ym has been achieved for a
MILC anneal at 428°C, which is the lowest temperature reported for MILC. This MILC
temperature satisfies the process temperature constraint of 450°C, which is imposed by
the use of low-cost glass. These results therefore demonstrate the feasibility of using

low-cost glass as a substrate for Si nanowire biosensor fabrication.

The effect of fluorine dose on Si MILC has been investigated and an optimum fluorine
dose of 2.5x10'® cm~2 has been identified for MILC at 525°C and 550°C. The use of
an optimum fluorine dose of 2.5x 10 cm~2 gives an increase in MILC length by 29%
for a 10 hour MILC anneal at 550°C and by 17% for a 20 hour MILC anneal at 525°C.
The action of the F is explained by the suppression of random grain nucleation at the
a-S1/S104 interface [31]. The MILC length decreases for a higher F dose, which has
been explained by the effect of amorphisation at the «-Si/SiOs interface arising from

the F implant.

At temperatures < 500°C, fluorine was found to give a suppression of the MILC length.
This result can be partially explained by the lack of F migration at these low temper-
atures. Another contributing factor may be difficulties in annealing the implantation

damage from the F implant at such low temperatures.






Chapter 5

Metal-induced Lateral Crystallisation
of Si Ribbons and Nanowires for

Biosensor Applications

5.1 Introduction

In Chapter 2, it was shown that most Si nanowire biosensors are fabricated by top-
down e-beam lithography on Silicon-on-Insulator (SOI) wafers. The Si nanowire sur-
face is then functionallised by a silanisation process on its oxide surface [111]. From
the point of view of surface chemistry, the functionalisation needs to be selective so that
biomolecules attach to the nanowire, but not to the silicon dioxide substrate (the buried
oxide layer). Unlike SOI, thin film technology gives various options for the insulator
material on which the nanowires are fabricated. Thus, silicon nitride might be adopted
as the insulator material for an improved selectivity compared with silicon dioxide dur-
ing the silanisation process [112]. In addition, suspended nanowires would be of interest
because they would provide a larger sensing surface area and hence a higher sensitivity.
Thus, in this chapter, a study is undertaken of the metal-induced lateral crystallisation
(MILC) of amorphous silicon ribbons, nanowires and sheets on different substrates,

Si-on-Nitride, Si-on-Oxide and Si-on-Air.

In TFT technology, the amorphous silicon can be deposited by low pressure chemical
vapour deposition (LPCVD) or plasma enhanced chemical vapour deposition (PECVD).
This work also investigates and compares MILC of amorphous Si films deposited by

these two techniques. In addition, a comparison is made of the crystallisation of amor-
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phous Si sheets and ribbons, which are of interest as an alternative to Si nanowires for
biosensing [12]. The effect of the ribbon width is studied and compared with MILC

results of nanowires.

5.2 Amorphous Silicon Ribbon Design

In this section, the ribbon designs for the crystallisation studies are introduced as shown
schematically in Fig. 5.1. Two different crystallisation strategies for amorphous silicon
ribbons are investigated. Fig. 5.1(a) shows a mask layout in which the nickel bar is
located on top of the ribbon. In this case the crystallisation occurs in two directions
along the amorphous silicon ribbon. For comparison, Fig. 5.1(b) shows a mask layout
in which the nickel bar is placed on the source pad, so that the crystallisation occurs from
the source pad onto the ribbon. These two different ribbon crystallisation strategies are

compared with crystallisation on a sheet structure, as shown in Fig. 5.1(c).

5.3 Experimental Procedure

5.3.1 Sample preparation

The process flow for the MILC experiments is shown in Fig. 5.2. The LPCVD «-Si
sample fabrication up to and including the amorphous silicon deposition was done in
the KTH cleanroom in Sweden by M. M. A. Hakim, as the Southampton cleanroom
was not fully operational after the fire. The silicon patterning, dry etch and other fol-
lowing processes were done by the author in the new Southampton Nanofabrication
Centre cleanroom. For the PECVD «-Si samples, only the PECVD «-Si deposition
was carried out by Oxford Instrument Plasma Technology, Ltd and all other processes
were done by the author. Four p-type <100> oriented Si wafers were cleaned and a
100 nm silicon nitride (SiN,) layer was grown on the Si-on-Nitride wafer (Fig. 5.2(a)).
Then, a 500 nm silicon dioxide (SiOs) layer was deposited on the Si-on-Oxide and the
Si-on-Air wafers (Fig. 5.2(b)). Then a 100 nm undoped amorphous silicon layer was
deposited on three wafers by LPCVD at 560°C and on one wafer by PECVD at 250°C
(Fig. 5.2(c)). Subsequently, all wafers were patterned by photolithography (mask DP)
and then dry etched in OIPT RIE 80 plus etcher using SFg (20 sccm) and O, (10 sccm)
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FIGURE 5.1: Schematic layouts for metal-induced lateral crystallisation experiments
on amorphous silicon ribbons and sheets; (a) Si ribbons with a Ni bar on the ribbons,
(b) Si ribbons with a Ni bar on the source pad and (c) a Ni bar on a Si sheet.
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at 20°C (pressure 15 mTorr and 13.5 MHz RF power 20 W) (Fig. 5.2(d)). For the Si-
on-Air wafer, «-Si ribbons were freed from the underlying oxide using a 7:1 buffered
hydrofluoric acid (HF) etch (Fig. 5.2(e)). Then, all the wafers were patterned using
photolithography (mask Ni). Immediately after a buffered HF dip to remove any native
oxide, a 20 nm nickel (Ni) layer was evaporated on all wafers. Then, the Ni was lifted
off by dipping the wafers in acetone for 10 minutes at room temperature (Fig. 5.2(f)).
Finally, wafers were cleaved into chips and metal-induced lateral crystallisation anneal
was carried out in nitrogen for time of 3-20 hours and at temperatures of 428-550°C.

The «-Si nanowires used in the crystallisation studies were fabricated using the process

LPCVD a-S1 Batch PECVD «-S1 Batch

Si-on-Oxide Si-on-Air Si-on-Nitride Si-on-Oxide
RCA cleanming
Bil{x (a) 100 nm Si nitride deposition
Si substrate by LPCVD
8i0; 8i0; 8D, {b) 500 nm Si dioxzide deposition
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FIGURE 5.2: Process flow for the experiments on the metal-induced lateral crystalli-
sation of amorphous silicon ribbons.

described in Chapter 6. Crystallisation experiments were also performed on a-Si sheets
with an oxide cap deposited by chemical vapour deposition. These samples were fab-
ricated using the process in Chapter 4. As the a-Si for the samples in this chapter and
the Chapter 4 were deposited in the same run and only Ni was deposited with different

evaporators, a comparison between the two sets of samples is valid.
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5.3.2 Calibration of SiO, wet etch

In this work, the SiO, wet etch rate was characterised to give a controlled wet etch for
forming the Si-on-Air structures. The samples used in these experiments are shown in
Fig. 5.3(a). The samples were dipped in 7:1 buffered HF for durations from 8 minutes to
40 minutes. HF rapidly removes Ni and NiSi; [31] and then undercuts the polysilicon,
as shown in Fig. 5.3(b). The lateral etch of the silicon dioxide was measured using a

Nomarski microscope.

50 nm
300 nm
100 nm
400 nm

=1 substrate

(@)

HF HF lateral undercut

31 substrate

(d)

FIGURE 5.3: Schematics of samples for wet etch calibration (a) before wet etch and
(b) after buffered HF etch.

5.3.3 Raman spectroscopy

To investigate the crystallinity of the annealed samples, Raman spectroscopy measure-
ments were performed on both MILC and «-Si regions, as shown in Fig. 5.4. In this
work, 633 nm laser was used and the scanning range of Raman shift was from 400 cm ™!
to 600 cm™—!, which includes the crystalline Si peak at 520 cm ™! and the amorphous Si
peak at 480 cm™! [104]. As for the Raman analysis in Chapter 4, the Raman spec-
tra in this chapter are presented as normalised intensity, which is obtained by dividing
the measured intensity with the peak intensity at 520 cm~'. In the normalised Raman

spectra, the 480 cm™! peaks for different Si films can be compared.
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FIGURE 5.4: Schematic diagram showing the locations used for the Raman measure-

ments.

5.4 Results

5.4.1 Etch calibration for Si-on-Air structures

Fig. 5.5(a) shows an optical micrograph of samples etched in 7:1 buffered HF for 30
minutes. The oxide etch undercut can be clearly identified as a yellow-green colour
between the etched Si window (in dark green) and the poly-Si (in brown) and can be
measured to be about 4.8 ym. A similar result for 40 minute HF etch is shown in Fig.

5.5(b). The undercut was measured to be about 6.7 um.

mdow

window

(a) (b)

FIGURE 5.5: Nomarski microscope images of samples used for HF etch calibration
(a) after a 20 min. HF etch and (b) after a 40 min. HF etch.

Fig. 5.6 shows the lateral undercut as a function of wet etch time in 7:1 buffered HF.
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For each etch condition, five measurements were performed and the mean and standard
deviation are calculated. The undercut shows a linear characteristic behaviour with etch
time and the etch rate is extracted to be 174 nm/min using a linear fitting method. The
offset on the x-axis is due to the time taken for the HF to etch through the Ni/NiSi, and
to etch vertically through the SiO, layer. We can conclude that the wet etch of SiO» can
be well controlled by setting the etch time.
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FIGURE 5.6: Calibration of the silicon dioxide etch in 7:1 buffered HF.

The Si-on-Air ribbons were wet etched and characterised by optical microscopy after
fabrication. In all cases it was found that the ribbons had sagged in the middle and rested
on the underlying silicon surface. Nevertheless, in most cases there was no evidence of
breaks in the ribbons, as shown in Fig. 5.7, and hence meaningful MILC experiments

could be performed.

5.4.2 [Initial amorphous silicon structure before MILC anneal

The deposited amorphous silicon thicknesses were measured to be 100 nm and 60 nm
for LPCVD «-Si and PECVD «-Si, respectively, using cross-section SEM. The sili-

con structure before MILC anneal was investigated using Raman spectroscopy. Fig.
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FIGURE 5.7: Nomarski micrograph of Si-on-Air LPCVD «-Si ribbons after a removal
of the underlying oxide using 7:1 buffered HF.

5.8 shows normalised Raman spectra for as-deposited LPCVD «-Si deposited on ox-
ide, LPCVD «-Si deposited on nitride and PECVD «-Si deposited on oxide. For the
PECVD a-Si deposited on oxide, the 480 cm™! peak is larger in area than the 520 cm™*
peak, indicating a mainly amorphous structure. The Si crystalline fraction is calculated
using a peak-fitting technique [38][94] to be 1% and this confirms that it is almost fully
amorphous. For the LPCVD «-Si deposited on oxide and nitride, the 480 cm™! peak is
significantly smaller in area than for the PECVD sample and it is also smaller in area
than the 520 cm™! peak. These results indicate the amorphous Si deposited by PECVD
is more amorphous than that deposited by LPCVD, which is not superising given the
lower deposition temperature for PECVD than LPCVD. The Si crystalline fractions for
«-Si deposited on nitride and oxide were calculated to be 17% and 36%, respectively.
This difference could be due to the different stresses in amorphous silicon deposition

deposited on silicon nitride and silicon dioxide.

5.4.3 Effect of o-Si deposition method on metal-induced lateral crys-

tallisation

Fig. 5.9 compares the results of MILC experiments on amorphous silicon films de-
posited by PECVD and LPCVD. Fig. 5.9(a) shows results for 4 ym PECVD ribbons
after a 550°C MILC anneal for 10 hours and a delineation etch of 20 minutes in 7:1
buffered HF to improve the contrast of the MILC region. The Ni was removed by the

delineation etch, leaving a break in the ribbons. The MILC region can be identified as
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FIGURE 5.8: Raman spectra of as-deposited a-Si deposited by LPCVD and PECVD
on SiOs and SiN,.

the dark grey region and MILC length was measured to be 15£1 pym. The measured
values are based on 20 measurements on different ribbons. Fig. 5.9(b) shows similar
results for 4 pym «-Si ribbons deposited by LPCVD. No delineation etch was necessary
in this case because the MILC region can be clearly identified as pale green region be-
tween the Ni (dark red) and a-Si regions (brown). The MILC length was measured to
be 56+£1 pm. It is clear therefore that LPCVD «-Si ribbons give a significantly longer
MILC length than PECVD «-Si ribbons.

Fig. 5.10 shows the lateral crystallisation length as a function of anneal time for a-Si
ribbons deposited by PECVD and LPCVD after anneals at 550°C. Measurements of
MILC length were made in 20 locations using an optical Nomarski microscope. It can
be seen that the MILC length varies linearly with anneal time for «-Si deposited by
both LPCVD and PECVD. LPCVD deposited a-Si gives a significantly longer MILC
length than PECVD deposited a-Si. The MILC rates extracted from the slopes are 5.1
pm/hour for LPCVD and 1.3 pm/hour for PECVD.

Fig. 5.11(a) shows Raman spectra measured in the «-Si region of sheet structures af-
ter a 550°C 15 hour MILC anneal. Results are shown for samples in which the a-Si
was deposited by PECVD and LPCVD. It can be seen that the peak at 480 cm™! is
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FIGURE 5.9: Nomarski micrographs of a-Si ribbons on oxide after a 10 hour MILC

anneal at 550°C. (a) amorphous silicon deposited by PECVD and (b) amorphous sili-

con deposited by LPCVD. A delineation etch of 7:1 buffered HF for 20 minutes was
given to the PECVD «-Si sample but no etch was given to the LPCVD «-Si sample.
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FIGURE 5.10: Lateral crystallisation length as a function of anneal time at 550°C for
4 pm «-Si ribbons on oxide deposited by PECVD and LPCVD. The data is based on
measurements using a Nomarski microscope.
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clearly visible in the PECVD sample, but cannot be clearly discerned in the LPCVD
sample. The values of FWHMs for the 520 cm™! peak are 8.3 cm™! and 9.5 cm™!
for the LPCVD and PECVD samples, which indicates that the LPCVD sample is more
crystalline. Using the peak-fitting technique, the crystalline fractions can be calculated
to be 53% for the LPCVD sample and 30% for the PECVD sample. This result shows
that the LPCVD «-Si film is significantly more crystalline than the PECVD «-Si film.

Fig. 5.11(b) shows Raman spectra measured in the MILC region for annealed PECVD
and LPCVD samples. In both cases, the 480 cm™~! peak is barely discernable and the
520 cm ™! peak is sharper for the LPCVD sample (FWHM = 8.3 cm™!) than the PECVD
sample (FWHM = 9.4 cm™'). Both of these trends indicate a higher crystallisation
fraction. The crystalline fractions for the annealed PECVD and LPCVD samples in the
MILC region have been calculated to be 48% and 100%, respectively.

As a dehydrogenation anneal was given to the PECVD sample before the MILC anneal,
its effect on MILC was also investigated. Two PECVD «-Si samples with and without
a 430°C 30 minute dehydrogenation anneal were given a MILC anneal at 550 °C for
10 hours and their Nomarski micrographs are shown in Fig. 5.12. The MILC anneal
was performed in a tube furnace in the temporary cleanroom in which the temperature
accuracy was poor, so this result should not be compared with other results in this the-
sis. The MILC lengths for the samples without and with a dehydrogenation anneal are
11+0.5 pm and 10+£0.6 pm, respectively. As these values of MILC length fall within
the standard deviations (20 measurements), it can be concluded that a dehydrogenation

anneal has not had a significant effect on the MILC length.

5.4.4 Effect of ribbon width on metal-induced lateral crystallisation

Fig. 5.13 shows an optical micrograph of Si ribbons of different widths for LPCVD
a-Si deposited on oxide and annealed at 550°C for 10 hours. No delineation etch was
given to the sample. The ribbon widths for mask layouts of 10 ym, 6 ym, 4 pm and
2 pum were measured to be 9.8 pym, 5.7 pm, 3.7 pm and 2.1 pm, respectively. These
dimensions are in good agreements with the designed dimensions and thus ribbons are
referred to by their mask layout widths. MILC lengths in Fig. 5.13 were measured to be
56.8 um, 56.5 pm, 52.9 pum and 47.4 pm for ribbon widths of 10 ym, 6 gum, 4 ym and 2
pm, respectively. It can be clearly seen that the MILC length decreases with decreasing
ribbon width.

Fig. 5.14 summarises the lateral crystallisation length as a function of ribbon width and
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(a) with 430°C anneal (b) without 430°C anneal
FIGURE 5.12: Nomarski micrographs of PECVD «-Si sheet samples after a 10 hour

550°C MILC anneal with (a) and without (b) a dehydrogenation anneal of 30 minutes
at 430°C. No delineation etch was given to either samples.

9.8 nm

FIGURE 5.13: Nomarski micrograph of lateral crystallisation on LPCVD «-Si ribbons
of different widths on oxide after a 550°C anneal for 10 hours. No delineation etch
was given to the sample.

makes a comparison with the MILC length on sheet samples. It can be seen that the
MILC length decreases from 57 pum to 47 pm as the ribbon width reduces from about
10 pm to 2 pm and the MILC length for the ribbons is slightly less than that for the
Si sheet. The rate of decrease of MILC length increases as the ribbon width becomes

smaller.

The results in Fig. 5.15 investigate the effect of the Ni location on the MILC length and

shows results for Ni placed on the «-Si source pad. Results are shown for LPCVD «-Si
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FIGURE 5.14: Lateral crystallisation length as a function of ribbon width for Ni on
LPCVD «-Si ribbons on oxide after a 550°C anneal for 10 hours.

deposited on oxide after a 550°C anneal for 10 hours. The widths of these ribbons are
the same as those in Fig. 5.13. MILC lengths of 58.7 ym, 57.8 pum, 56.5 pm and 51.8

pm were measured for ribbon widths of 10 pm, 6 pm, 4 pm and 2 pum, respectively.

The measured MILC lengths are summarised in Fig. 5.16 as a function of ribbon width
and are compared with results from Fig. 5.14. It can be seen that the MILC lengths
are longer when the Ni is placed on the source pad than when it is placed on the ribbon
itself. For 10 ym wide ribbons, the MILC length is the same as that measured for the Si

sheet.

Fig. 5.17 shows similar results after a MILC anneal at 550°C for 15 hours. This figure
shows the same trends as Fig. 5.16, except that MILC lengths are generally longer. For
wider ribbons, the MILC lengths are the same as that obtained for an a-Si sheet.

Fig. 5.18 shows results for Ni on the ribbons and compares results for tapers from a
wide ribbon to a narrow ribbon (ribbons 1) with results for a taper from a narrow ribbon
to a wide ribbon (ribbons 3-5). Ribbon 1 gives a longer MILC length of 52.5 pm than
Ribbon 2 with a MILC length of 47.9 pum, which indicating taping to narrow width
structure gives a longer MILC length than taping to wide width structure. In addition,
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FIGURE 5.15: Nomarski micrograph of lateral crystallisation on Si ribbons of different
widths on oxide with Ni on the source pad 550°C anneal for 10 hours. No delineation
etch was given.
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FIGURE 5.16: Lateral crystallisation length as a function of ribbon width for LPCVD
«-Si ribbons on oxide after a 550°C anneal for 10 hours. Results are shown for Ni
placed on the source pad and the ribbon.
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FIGURE 5.17: Comparison of lateral crystallisation length as a function of ribbon
width for LPCVD a-Si ribbons on oxide after 550°C anneal for 15 hours. Results are
shown for Ni placed on the source pad and the ribbon.

ribbon 4 gives a shorter MILC length of 34.5 um than Ribbon 3 with a MILC length of
38.1 pm. This shows MILC length decreases when the ribbon taping to a wider width.

Table 5.1 compares lateral crystallisation lengths of ribbons tapering to a wide width and
tapering to a narrow width. The MILC lengths for 4 ym and 2 pm ribbons from Fig.
5.16 are also presented in Table 5.1 for a comparison. For Ni on ribbons, MILC length
of ribbons tapering from 4 pym to 2 pm is shorter than the MILC length of 4 ym but
larger than MILC length of 2 ;sm ribbons. Thus ribbons tapering to a narrow width give
no MILC length increase compared with ribbons without taper. Compared the ribbons
without tapers, ribbons tapering from 4 pm to 8 pm give a shorter MILC length. Similar
decrease for ribbons tapering to a wide width are seen for ribbons tapering from 2 pm
to 6 um and from 2 pum to 8 um. For Ni on the source pad, a similar trend is seen that

MILC length decreases for ribbons tapering to a wider width.
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FIGURE 5.18: Nomarski micrographs of LPCVD «-Si ribbons of various widths with
Ni on ribbons. The samples were annealed at 550°C for 10 hours and given no delin-
eation etch.

TABLE 5.1: MILC length comparison of ribbons of various widths after a 550°C an-
neal for 10 hours

ribbon width (um) 2/2 472 474 4/6 4/8
Ni on ribbons
MILC (pm) 47.1£1.1 | 51.2£1.0 | 53.6£0.9 - 47.9+0.8
Ni on source pad
MILC (pm) 50.1£1.1 - 56.0£1.1 | 54.5+£1.4 | 51.1%x1.1
ribbon width (pm) 2/2 2/6 2/8

Ni on ribbons
MILC (pm) 47.1£1.1 | 38.1£0.5 | 33.5£0.9
Ni on source pad
MILC (pm) 50.1+£1.1 | 42.8+0.7 | 39.1£0.7
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5.4.5 Comparison of metal-induced lateral crystallisation on SiN,
and SiO,

For biosensors, SiN, may be a better choice of substrate than SiO, because it is easier
to selectively functionalise nanowires on SiNs than SiO,. In this section, we therefore
compare the lateral crystallisation of LPCVD «-Si on SiN, (Nitride) and SiO, (Oxide).
Fig. 5.19(a) shows an optical Nomarski micrograph of Si-on-Nitride ribbons after a
550°C MILC anneal for 10 hours. The widths of the Si ribbons were measured to be
3.5 pm. The MILC length is measured to be 5442 pm. Results for equivalent Si-
on-Oxide samples are shown in Fig. 5.19(b) and the measured MILC length is 5641
pm. The MILC length of the Si-on-Nitride is therefore slightly shorter than that of the
Si-on-Oxide samples by less than 10%.

MILC =556 pmn

(a) Si-on-Nitride (b) Si-on-Oxide

FIGURE 5.19: Nomarski micrographs of LPCVD «-Si samples given a 550°C 10 hour
anneal (a) Si-on-Nitride sample and (b) Si-on-Oxide sample. No delineation etch was
given to samples.

Fig. 5.20 shows the lateral crystallisation length as a function of anneal time for Si-on-
Nitride and Si-on-Oxide LPCVD «-Si ribbons annealed at 550°C. This result confirms
that the MILC length for Si-on-Oxide samples is slightly longer than that for Si-on-
Nitride samples. For the Si-on-Nitride sample, the MILC length has a linear character-
istic with anneal time up to an anneal time of 10 hours and then starts to saturate. Using
a linear fit, the MILC rate for shorter anneal times (< 10 hours) is 5.0 um/hour. For the
Si-on-Oxide sample, the characteristic is not linear even at low anneal times. However,
it is nevertheless clear that the MILC rate for both Si-on-Nitride and Si-on-Oxide sam-
ples decreases with anneal time. It can also be seen that the MILC lengths for the two

types of samples are roughly the same at a given anneal time.
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FIGURE 5.20: Lateral crystallisation length as a function of anneal time for Si-on-
Nitride and Si-on-Oxide LPCVD «-Si ribbons (width = 4 pm) annealed at 550°C. All
data are based on measurements using a Nomarski microscope.

Fig. 5.21 shows the lateral crystallisation length as a function of anneal time for Si-
on-Nitride and Si-on-Oxide ribbons annealed at the lower temperature of 500°C. The
results show similar trends to those in Fig. 5.20 and in particular the MILC length
of Si-on-Nitride samples is slightly shorter than that of Si-on-Oxide samples at this

temperature for a given anneal time.

To investigate whether lateral crystallisation can be achieved at temperatures below
500°C, Fig. 5.22 shows the lateral crystallisation as a function of anneal temperature
between 428°C and 525°C for 4 pum Si ribbons on Nitride and Oxide substrates after a
20 hour anneal. As found in Chapter 4, MILC for Si-on-Oxide occurs at a temperature
as low as 428°C. A similar result is seen for Si-on-Nitride samples. A MILC length of
1 um can be achieved at an anneal temperature of 428°C. As expected, the MILC rate
decreases with decreasing temperature, though it is interesting to note that the rate of
decrease reduces as the temperature decreases. This result suggests that lateral crystalli-
sation could be achieved at even lower temperatures. For the same anneal temperature,
the MILC length for the Si-on-Oxide samples is about 10% higher than that for the

Si-on-Nitride samples.
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FIGURE 5.21: Lateral crystallisation length as a function of anneal time for Si-on-
Nitride and Si-on-Oxide LPCVD «-Si ribbons (width = 4 pm) annealed at 500°C. All
data are based on measurements using a Nomarski microscope.

To investigate the crystallinity of Si-on-Nitride and Si-on-Oxide samples, Fig. 5.23
shows Raman spectra in different regions of the sample. Fig. 5.23(a) shows results
from the «-Si region well away from the MILC region. The «a-Si was deposited by
LPCVD and the sample was given a MILC anneal at 550°C for 15 hours. It can be
seen that the 480 cm™! peak is significantly bigger for the Si-on-Nitride sample than
the Si-on-Oxide sample. Furthermore, the 520 cm~! peak for the Si-on-Oxide sample
(FWHM = 8.3 cm™1) is slightly sharper than for the Si-on-Nitride sample (FWHM = 9.4
cm™ 1), which indicates that the Si-on-Oxide sample is more crystalline. The crystalline
fractions calculated to be 32% for the Si-on-Nitride sample and 53% for the Si-on-Oxide
sample using the peak division technique. This shows that the Si-on-Nitride sample is

more amorphous than the Si-on-Oxide sample.

Fig. 5.23(b) shows Raman spectra measured in the MILC region. The 520 cm™! peak
can be identified for both Si-on-Nitride and Si-on-Oxide samples, indicating that MILC
regions on both samples are crystalline. No significant difference in the peak sharpness
can be identified between the Si-on-Nitride and Si-on-Oxide samples, indicating that

the crystallised Si films for the two types of samples have a similar crystalline quality.
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FIGURE 5.22: Lateral crystallisation length as a function of anneal temperature for

LPCVD «-Si, 4 um wide ribbons on nitride (Si-on-Nitride) and oxide (Si-on-Oxide)

after 20 hour anneal. All data are based on measurements using a Nomarski micro-
scope.

5.4.6 Metal-induced lateral crystallisation of nanowires

Amorphous silicon nanowires fabricated on oxide using the process described in Chap-
ter 6 were also given a MILC anneal at 550°C for 10 hours. Results are shown in Fig.
5.24 and the MILC region can be identified from the white contrast adjacent to the Ni
region. The MILC length is variable from nanowire to nanowire and in Fig. 5.24 varies
from 10 pm to 14 ym. Measurements on 20 different nanowires give a MILC length of
12.64+4.4 pm.

A comparison of MILC on nanowires and ribbons after a 550°C MILC anneal for 10
hours as shown in Fig. 5.25, where the MILC length is plotted as a function of ribbon or
nanowire width. The MILC length for the nanowire is below the trend for the ribbons,
indicating that lateral crystallisation is more difficult in nanowires than ribbons. Itis also
seen that the MILC length variation for nanowires is significantly larger than ribbons.
Nevertheless, these results do show that polysilicon nanowires can be fabricated by
MILC at a temperature that is significantly lower than the typical polysilicon deposition

temperature of around 625°C.
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FIGURE 5.23: Raman spectra of LPCVD deposited «-Si on nitride (Si-on-Nitride) and
oxide (Si-on-Oxide) after a 15 hour anneal at 550°C at (a) signal measured in the Si
region far from MILC front and (b) signal measured in the MILC region.
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FIGURE 5.24: Plan view SEM micrograph of crystallised LPCVD «-Si nanowires on
oxide after a 550°C anneal for 10 hours. No delineation etch was given.
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FIGURE 5.25: Lateral crystallisation length as a function of ribbon width for LPCVD
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5.4.7 Metal-induced lateral crystallisation of Si-on-Air ribbons

As discussed above, suspended nanowires or ribbons should provide increased sensi-
tivity for biosensing because functionalisation could be performed on all sides of the
nanowire or ribbon. In addition, the work in Chapter 4 shows the Si/SiOs interface is
the preferred location for random crystallisation, which suppresses MILC growth. In
this section, the results of MILC experiments on Si-on-Air structures are presented and
compared with the results of Si-on-Oxide structures without and with an oxide cap.
These samples can be considered as a-Si sheets with oxide on one side and oxide on

both sides, respectively.

Fig. 5.26 compares the results of MILC experiments on Si-on-Air and Si-on-Oxide
ribbons and on Si-on-Oxide sheets with and without an oxide cap after a 550°C anneal
for 10 hours. The lateral crystallisation length for Si-on-Air ribbons is measured to be
72+3 pm from the colour change in Fig. 5.26(a). For comparison, the MILC length
of the Si-on-Oxide ribbons (in Fig. 5.26(b)) is measured to be 5641 pym. Thus, Si-
on-Air samples show a significant improvement in MILC length of 32%. For Si sheet
samples, the MILC lengths for Si-on-Oxide «-Si sheets with and without an oxide cap
are measured to be 57+1 pum and 45+1 pm, respectively. Thus the samples without
an oxide cap show a significant improvement in MILC length of 27%. These results
indicate that the MILC length can be increased by removing the Si/SiO; interface at

either side of the «-Si sheet.

Fig. 5.27 shows the lateral crystallisation length as a function of anneal time at 550°C
for 4 ym Si-on-Air and Si-on-Oxide ribbons and Si-on-Oxide sheets with and without
an oxide cap. The Si-on-Air samples show a significantly improved MILC length for all
anneal times. Compared with the Si-on-Oxide sheet with an oxide cap, the Si-on-Oxide
sheet without an oxide cap gives a significant increase in MILC length. Therefore,
these results further confirm that the Si-on-Air structure gives an increase in MILC
length compared with the Si-on-Oxide structure and that an oxide cap degrades the
MILC length. The slightly higher MILC length for the Si-on-Oxide sheet than the Si-

on-Oxide ribbons has been seen before in Fig. 5.16.

5.5 Discussion

Much work has been done on the lateral crystallisation of amorphous silicon deposited
by LPCVD, covering anneals ranging from 500°C to 565°C [31][32][47] [53][54][57]
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MILC = 44.9 pm

ML C=44.9 pm

(c) (d)

FIGURE 5.26: Nomarski micrographs of LPCVD «-Si samples annealed at 550°C for

10 hours (a) 4 ym wide a-Si ribbons on air (Si-on-Air), (b) 4 ym wide «-Si ribbons on

oxide (Si-on-Oxide), (c) a-Si sheets without an oxide cap and (d) a-Si sheets with an
oxide cap.

[61]1[63][65][70][113][114][115]. There are also some published results on poly-Si thin
film transistors fabricated using PECVD «-Si [32][57], but only a few results have been
reported on MILC rates in PECVD «-Si [60][116]. So far, no work has been published
that compares MILC in PECVD and LPCVD under the same anneal conditions. A
comparison of the MILC rates obtained at 550°C in this work with those reported in
literature is shown in Table 5.2. The MILC rate for Si-on-Oxide samples in this work
of 5.1 pm/hour is slightly higher than the reported MILC rate of 3.6-4.0 ym/hour, but is
nevertheless reasonably consistent with the literature values. For the PECVD «-Si film,
the MILC rate in this work is very similar to that in [60], which was deposited under
similar conditions. The «-Si deposition temperature was not given in [116] and hence

it is not possible to draw any conclusions on why their MILC rate was higher.

The Raman results in Fig. 5.11 show that the PECVD samples are less crystalline than
the LPCVD samples after a MILC anneal of 550°C for 15 hours. It is also found in
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FIGURE 5.27: Lateral crystallisation length as a function of anneal time for Si-on-Air

and Si-on-Oxide 4 pm wide ribbons and Si-on-Oxide sheets without and with an oxide

cap after a 550°C anneal. On all samples, the «-Si was deposited by LPCVD. All data
are based on measurements using a Nomarski microscope.

TABLE 5.2: Comparison of MILC rates obtained on Si-on-Oxide samples after a

550°C MILC anneal in this work and in the literature

Substrate | MILC rate | a-Si deposition | Deposit. Temp. | a-Si thickness
this work Si0, 1.3 pm/h PECVD 250°C 60 nm
this work Si0, 5.1 ym/h LPCVD 560°C 110 nm
this work SiN,, 5.0 pm/h LPCVD 560°C 100 nm

[57] Si0, 3.6 yum/h LPCVD 550°C 50 nm
[65] Si0, 4.0 pm/h LPCVD 500°C 60 nm
[61] Si0, 3.8 um/h LPCVD 550°C 100 nm
[70] Si0, 3.6 pm/h LPCVD 450°C 50 nm
[116] Si0, 3.5 pm/h PECVD unknown 50-100 nm
[60] Si0, 1.4 pm/h PECVD 250°C 100 nm
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Fig. 5.8 that the PECVD «-Si was significantly more amorphous than the LPCVD
a-S1 immediately after deposition. This result is consistent with the lower deposition
temperature used for the PECVD films, as shown in Table 5.2. The dramatically lower
MILC rate for the PECVD a-Si samples therefore indicates that the presence of some

small grains of polysilicon in the -Si aids lateral crystallisation.

Si-on-Nitride samples were found to give a slightly shorter MILC length than equivalent
Si-on-Oxide samples (Fig. 5.22). The Raman results (in Fig. 5.23) show that the Si-
on-Nitride samples are more amorphous than the Si-on-Oxide samples after the MILC
anneal. The Raman results in Fig. 5.8 also show that the Si-on-Nitride samples are more
amorphous than the Si-on-Oxide samples after deposition. Thus the crystallinity of the
as-deposited a-Si layer has a strong influence on the MILC length, as was observed
for the samples deposited by PECVD and LPCVD (in Fig. 5.10). For Si-on-Oxide
structures, Hakim et al [31] showed that the MILC rate is limited by random grain
nucleation at the bottom of the «-Si layer, which is due to a tensile stress induced by
the SiO, layer [38]. The difference in crystallinity for the Si-on-Oxide and the Si-
on-Nitride could therefore be attributed to a different stress in the Si-on-Oxide and
Si-on-Nitride samples. Kimura et al [38] reported that a SiN, cap suppressed solid-
phase crystallisation due to the suppression of random crystallisation, as a result of the
compressive stress introduced by the silicon nitride layer. Therefore, the shorter MILC
length for PECVD «-Si samples and the shorter MILC length for Si-on-Nitride samples

could both be explained by a more amorphous layer after the deposition.

As Ni transport in silicon contributes to the MILC growth, the MILC rate can be mod-
elled using a similar expression to that used to model Ni diffusion [107]:

vmre = Ao eXp(_k_T) (5.1)

where vy;r7.c is the MILC growth rate and Ay and E, are the MILC growth coefficient
and activation energy, respectively. To extract Ay and E,, the expression of Eq. (5.1)

can be rewritten as:

B,
IHUM]LC = _ﬁ + IDA() (52)

Here, E, and A, can be calculated from the slope and offset of a graph of In vy ;¢
against F,. At lower temperatures (< 525°C), spontaneous crystallisation is assumed
to be insignificant and thus the MILC length is assumed to vary linearly with anneal
time, as shown in Fig. 5.20. Neglecting the nucleation time, the MILC rates at different
temperatures can be calculated from the MILC length divided by 20 hours. Fig. 5.28
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presents a plot of MILC rate against 1/k7" for Si-on-Oxide and Si-on-Nitride samples.
The trend line from data in [106] is also plotted for comparison. It can be seen that the
two plotted curves are parallel and linear, indicating that Eq. (5.1) is valid at tempera-
tures from 525°C down to 428°C. A similar trend was seen in Cheng’s work [106] but
at temperatures above 550°C. The activation energies, F,, for Si-on-Nitride and Si-on-
Oxide, can therefore be extracted to be 1.86 eV and 1.82 eV, respectively, whilst the
MILC growth coefficients, Ay, for Si-on-Nitride and Si-on-Oxide, can be extracted to
be 9.9x 10" pm/hour and 6.2 x 10* ym/hour, respectively. The activation energies are
similar for Si-on-Oxide and Si-on-Nitride samples, indicating a similar growth mecha-
nism for both types of sample. An activation energy of 2.08 eV was reported in Cheng’s
work [106], which is higher but reasonably consistent, given difference in amorphous

silicon deposition conditions.
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FIGURE 5.28: MILC rate as a function of 1/kT for Si-on-Oxide and Si-on-Nitride
samples. The data from [106] is also presented for comparison.

The results in Fig. 5.27 show that Si-on-Air structures have significantly increased
MILC lengths compared with the Si-on-Oxide structures and that Si-on-Oxide struc-
tures without an oxide cap have significantly longer MILC lengths than Si-on-Oxide
sample with an oxide cap. As discussed in Chapter 4, MILC length is increased by

suppressing random crystallisation, which occurs preferentially near the a-Si/SiOs in-
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terface [31]. The Si-on-Oxide structure with no oxide cap can be considered as one
surface ‘on air’ and the other surface ‘on oxide’, whilst the Si-on-Oxide structure with
an oxide cap can be considered as both surfaces ‘on oxide’. When the «-Si/SiO, inter-
face is removed, it would be expected that random crystallisation would be significantly
suppressed [41]. Therefore, the MILC improvements for the Si-on-Air structure over
the Si-on-Oxide structure and the Si-on-Oxide structure without an oxide cap over the
Si-on-Oxide structure with an oxide cap could be explained by the suppression of ran-

dom crystallisation due to the removal of the a-Si/Si0; interface.

To further investigate the effect of an oxide cap, fluorine has been implanted into sam-
ples with and without an oxide cap. A comparison of MILC lengths is presented in
Fig. 5.29. An oxide cap gives an apparent suppression of the MILC length and this
suppression can be counteracted by a F implant. This is explained by the suppression of
random crystallisation at the a-Si/SiO; interface by the fluorine. Results also show that
a fluorine implant gives a more significant improvement of the MILC length for samples
with an oxide cap than samples without an oxide cap and this is expected as samples

with an oxide cap have two «a-Si/Si0O, interfaces that cause random crystallisation.

The metal-induced lateral crystallisation length was found to decrease with decreasing
ribbon width (Fig. 5.16) in Si-on-Oxide samples. Grain growth during MILC tends to
occur in two main directions, with needle-like grains lying along 70° and 110° directions
[58]. When MILC occurs in sheet samples, the grain growth can occur without any
geometrical constraints and in this case the MILC length is limited by random grain
nucleation at the bottom of the a-Si film, as discussed above. In a-Si ribbons, grain
growth during MILC is likely to be inhibited when the growing grains intersect the
edge of the ribbon as nickel can become trapped. This mechanism would be expected
to reduce the MILC rate and would explain the decreasing MILC length with decreasing
ribbon width in Fig. 5.16. The slightly longer MILC length for the structure with the
Ni bar on the source pad (Fig. 5.16) could be explained by the same model, as MILC
growth is faster in the sheet region than ribbons. The results in Fig. 5.18 for tapered
ribbons could also be explained by a similar mechanism. The lower MILC length for
«-Si ribbons that taper from a narrow width to a wide width could be explained by the
effect of the narrow ribbon in limiting the supply of Ni to the wide ribbon due to Ni

trapping at the ribbon edges.

As far as the author is aware, no results have been reported on metal-induced lateral
crystallisation in a-Si nanowires. The results in Fig. 5.25 show that the MILC length

for the «-Si1 nanowires lies below the trend line for the «-Si ribbons. Additional factors
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FIGURE 5.29: Lateral crystallisation length as a function of anneal time at 550°C for

Si-on-Oxide sheets with and without an oxide cap and with and without a fluorine

implant. On all samples, the a-Si was deposited by LPCVD. F was implanted into

a-Si at a dose of 2.5x10' cm™2 and an energy of 35 keV. All data are based on
measurements using a Nomarski microscope.

in nanowires therefore appear to reduce the MILC rate in nanowires. The results in
Chapter 6 show that the nanowires have a rather rough surface, which might be expected
to reduce the MILC rate. Furthermore, nanowires may have higher dry etch damage
than ribbons due to the larger surface area and this too might be expected to reduce the

MILC rate. Further work is needed to clarify these issues.

In this work, polysilicon nanowires were achieved using metal-induced lateral crystalli-
sation at 550°C. Compared with process temperatures needed to produce polysilicon by
solid-phase crystallisation or direct polysilicon deposition, which are typically 600°C
[105] and 625°C [117], respectively, metal-induced lateral crystallisation reduces the
process temperatures by 50°C and 65°C, respectively. Therefore, MILC in nanowires is
advantageous. There is some potential to lower the MILC temperature for nanowires,
as MILC at 428°C has been demonstrated for ribbons. However, further work is needed

to investigate how much lower the MILC temperature could be reduced.
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5.6 Conclusions

In this chapter, results on the lateral crystallisation of a-Si nanowires have been reported
for the first time and a crystallisation length of 13 xm has been achieved for a MILC
anneal at 550°C. This crystallisation length is ample for nanowire biosensors and has
been achieved at a temperature that is 75°C lower than the typical polysilicon deposition
temperature of 625°C [117]. The MILC length in «-Si ribbons has also been studied
and decreases with decreasing ribbon width. The MILC length in nanowires lies below
the trend line for the ribbons, indicating that lateral crystallisation is more difficult in
nanowires than ribbons. This result has been tentatively explained by a combination
of surface roughness and dry etch damage. Longer MILC lengths have been obtained
on LPCVD «-Si than on PECVD «-Si and on Si-on-Air structures than Si-on-Oxide
structures. Si-on-Nitride structures give only slightly shorter MILC lengths than Si-on-
Oxide structures. Lateral crystallisation of Si-on-Nitride structures can be achieved at
a temperature as low as 428°C, which is compatible with the process temperature of

450°C imposed by glass substrates.






Chapter 6

Poly-Si Nanowire Biosensor

Fabrication and Characterisation

6.1 Introduction

Silicon nanowire biosensors, as discussed in Chapter 2, have been gaining much at-
tention for applications such as biosensing for medical diagnosis, drug discovery and
national security. In a Si nanowire biosensor (Fig. 6.1(a)), the nanowire is function-
alised using protein receptors that are able to immobilise target biomarkers in the blood
or sputum sample. As the biomarkers are selectively captured on the Si nanowire sur-
face, bio-information can be read from the change of nanowire conductivity. The large
surface to volume ratio of silicon nanowires makes them ideal for real-time, high sensi-

tivity biosensing.

receptors receptors

\
o |11 |

Si nanowires recrystallised Si nanowires

(a) (b)

FIGURE 6.1: Schematic diagrams of Si nanowire biosensors using (a) an SOI substrate
and (b) TFT technology.

Most Si nanowire research has used Silicon-on-Insulator (SOI) substrates (Fig. 6.1(a))

111
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[8][15] and e-beam lithography for the nanowire fabrication [16][75]. However, this ap-
proach is very high cost and unsuitable for disposable diagnostic kits for point-of-care
diagnosis. In this work, a cheaper approach is investigated based on thin film transistor
(TFT) technology, as shown in Fig. 6.1(b). The use of metal-induced lateral crystallisa-
tion offers the additional possibility of a low temperature processing and hence the use

of low cost glass substrates.

6.2 Biosensor Design

In the Si nanowire biosensor fabrication, a Si spacer etch technique is used as a low-cost
alternative to electron beam lithography for nanowire fabrication. The concept of the

Si nanowire formation is illustrated in Fig. 6.2. An «a-Si layer is deposited on a SiO,

Frord

a=Si

a-Si

(@ (b)

FIGURE 6.2: Cross-section schematics of nanowire formation (a) after a-Si deposition
and (b) after «-Si anistropic dry etch.

layer in which a sharp step has been etched using an anisotropic SiO, etch (Fig. 6.2(a))
The thickness of the a-Si over the step is the sum of the «-Si thickness and the SiO,
step height. After an anisotropic Si dry etch (Fig. 6.2(b)), an «-Si nanowire (spacer)
is left on the side of the oxide step. The dimensions of the nanowire are independent
of the photolithography used to define the step, but instead are determined by the step
height and a-Si thickness. Therefore, spacer nanowires can be defined by choosing a
nanoscale SiO. step height and a nanoscale «-Si thickness. In this process, the etch

anisotropy is very critical for the nanowire formation.

The biosensor design is shown in a mask layout and schematic cross-sections in Fig. 6.3.
Detailed information on the different types of biosensor on the mask design are listed in

Appendix F. The biosensors are designed to include 20, 50 and 100 parallel nanowires
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of 10, 15 and 20 pm in length, respectively. The biosensor fabrication process is very
simple and uses just four masks. Mask NW is used to define the nanowire locations
by patterning the steps in SiO, layer, mask DP is used to define heavily doped Si pads
(Source/Drain) to make low resistance contacts to the nanowires, mask MT defines Al
electrodes and mask SU is used to open sensing windows in a passivation layer. An
SUS8-2 passivation layer is used to isolate the Source and Drain and metallisation from
a direct electrical contact with the liquid. Thus, the SU8-2 sensing window gives the

nanowires access to the liquid.

nanowires
¥ ¥

S1 substrate

() (b)

31 substrate

(©)

FIGURE 6.3: Schematic illustration of designed Si nanowire biosensor (a) mask layout,
(b) cross-section view at cutline b and (c) cross-section view at cutline c.

6.3 Experimental Procedure

In this section, the overall fabrication process for the Si nanowire biosensor is intro-
duced. Subsequently, the critical process steps in the fabrication are discussed in de-
tail. First, the development of the photolithography processes for photoresists, S1813,
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AZ2070 and SU8-2, are discussed, where the aim is to optimise exposure times for di-
mension control. Second, the Si nanowire etch process using the STS Pegasus deep Si

etcher is discussed. Finally, the Al lift-off process for electrode formation is discussed.

6.3.1 Overall process flow

Fig. 6.4 shows a schematic illustration of the Si nanowire biosensor fabrication. A ther-
mal silicon dioxide of about 700 nm was grown on 4-inch <100> phosphorus doped Si
wafers (Fig. 6.4(a)). Then, the Si0, layer was patterned using an EVG620TB aligner
using photoresist S1813. Subsequently, a dry etch of 120 nm was performed to form
SiO, steps (Fig. 6.4(b)). The SiO, etch recipe was Ar 32 sccm, CHF3 18 sccm, RF
Power 200 W and pressure 30 mTorr for 190 seconds. Samples were then sent to
Philips Research MiPlaza at Eindhoven for 100 nm «-Si deposition (Fig. 6.4(c)) us-
ing low pressure chemical vapour deposition (LPCVD) at 560°C with a deposition rate
of 1.7 nm/min. After the deposition, the wafers were patterned by photolithography
using a positive resist to cover the Source/Drain regions. The wafers were then given
an anisotropic Si dry etch using an STS Pegasus deep Si etcher to form the Si spacer
nanowires (Fig. 6.4(d)) and the Source and Drain pads. The Si etch process develop-

ment is described in more detail in Section 6.3.3.

After the formation of the Si nanowires, the wafers were sent to the Surrey Ion Beam
Centre for ion implantation. Two phosphorus implantations were performed at a dose
of either 1x10™ cm™2 or 2x10'® ¢cm™2, an energy of 10 keV and at a tilt angle of
+45°. These implants were used to dope the nanowires and the two doses were chosen
to give dopant concentrations of approximately 1x10'® cm=3 and 2x 10'® cm™3 for a
good sensitivity [78]. At this point, the Source/Drain mask was used for a second time,
but this time a negative photoresist was used to open windows over the Source/Drain re-
gions. The wafers were then given a high dose phosphorus implantation at dose 1x10'
cm~2, an energy of 35 keV and a tilt angle of 7°. This implant is used to heavily dope
the two ends of the nanowire (source and drain) so that a low resistance ohmic contact
can be made to the metal. A tube furnace anneal of 24 hours at 600°C in nitrogen was
given to crystallise the a-Si nanowires into poly-Si nanowires and activate the implanted
dopants. Subsequently, 10 nm oxide was grown on some wafers using a dry oxidation
at 900°C for 20 minutes, 17 seconds, whereas no thermal oxidation was given on the
other wafer. The aim of this batch split was to investigate the effect of the nanowire sur-
face on conduction. Then wafers were patterned by photolithography using photoresist
AZ2070. Immediately after a HF dip in 20:1 buffered HF to remove any oxide on the
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FIGURE 6.4: Overall Si nanowire biosensor process flow.
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Si surface, 500 nm Al was evaporated in a BAK 600 e-gun evaporator at a rate of 0.5
nm/min. Al lift-off (Fig. 6.4(e)) was subsequently performed using either an OPTI Wet
ST 30 lift-off tool or manually in a beaker. The wafers were then annealed in nitrogen
at 400°C for 30 minutes to improve the Al contact with the Si. It should be noted that
a forming gas (a hydrogen and nitrogen mixture) anneal would have been preferred but
was not available in the cleanroom at the time of processing. Finally, wafers were coated
with SU8-2 photoresist and then patterned using photolithography to open the sensing
windows and probing windows over the bond pads. Finally, the wafers were diced into
chips for functionalisation experiments and electrical measurements. Etched nanowires
were inspected by Scanning Electron Microscope (SEM) and Helium Ion Microscope
for its longer focus depth. The operation of Helium Ion Microscope was operated by
Stuart Boden.

6.3.2 Photolithography process development

In this work, several kinds of photoresists were used for different process uses, such as
dry etch, lift-off and passivation layer formation. For each photoresist, the procedures
of exposure and development are described in different sections. The mask alignment

procedure in photolithography is also introduced.

6.3.2.1 Photolithography with S1813

The positive photoresist S1813 was used for the dry etch processes in this work. To get
a good control of feature size, the exposure dose of S1813 was intensively investigated

to determine the optimum dose.

The experimental procedure is given as follows. The Si wafers were baked overnight in
an oven at 210°C to remove moisture and photoresist S1813 was spun onto the wafers
at 5000 RPM for 30 seconds. Then the wafers were given a soft-bake on a hot-plate at
95°C for 1 minute to evaporate the solvent in the photoresist. After the soft-bake, the
wafers were cooled down to room temperature (=5 minutes). The wafers were subse-
quently loaded into an EVG 620T aligner and exposed at various doses from 30 mJ/cm?
to 90 mJ/cm? without an i-line filter. To reduce the development time, an opaque cover
was used to expose only part of the wafer for each dose so that all the different exposures
were performed on two wafers. The exposure times were calculated from the lamp in-

tensity, which was measured to be 18 mJ/cm? per second. Then the exposed wafers were
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manually developed in developer MIF 319. Development times of 25 seconds and 30
seconds were used for dark field (removes a small fraction of the photoresist) and light
field (removes most of the photoresist), respectively. After photoresist development, the

wafers were inspected using an optical Nomarski microscope.

6.3.2.2 Photolithography with AZ2070

The negative photoresist AZ2070 was used for Al lift-off for its higher thickness and
negative sidewall slope. To get a good control of feature size, the exposure dose of

AZ2070 was investigated to determine the optimum dose.

The experimental procedure is given as follows. The Si wafers were baked overnight in
an oven at 210°C to remove moisture and photoresist AZ2070 was spun onto the wafers
at 6000 RPM for 40 seconds. Then the wafers were given a soft-bake at 110°C for 1
minute on a hot plate. After the wafers had cooled down for ~5 minutes, they were
subsequently loaded into an EVG 620TB aligner and exposed at various doses from
45 mJ/cm? to 115 mJ/cm? with an i-line filter (365 nm ). The use of the i-line filter
is because AZ2070 has a narrow absorption spectrum and is mainly sensitive to i-line
[118]. Multiple exposures were again performed on each wafer using the opaque cover.
The lamp intensity with the i-line filter was measured to be 9.5 mJ/cm? per second.
The exposed wafers were post-baked on the hot plate at 110°C for 1 minute to further
cross-link the exposed photoresist and manually developed in AZ726 MIF developer
for 75 seconds. After photoresist development, features on wafers were inspected using
an optical Nomarski microscope. Prior to Al evaporation, any remaining photoresist in
the open windows was removed by an oxygen descum using an OIPT RIE 80 plus. The
recipe used a pressure of 50 mTorr, a forward power of 100 W and O, flow of 50 sccm
for 1 minute at 20 °C.

6.3.2.3 Photolithography with SUS-2

The negative photoresist SU8-2 was used as a passivation layer on top of the device to
isolate Source/Drain and metal from direct contact with the liquid during sensing. We
developed the exposure dose for SU8-2 by modifying a recipe from its technical data
sheet [119].

The experimental procedure was as follows. The photoresist SU8-2 was kept at room

temperature overnight to eliminate bubbles and the Si wafers were baked overnight in
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the oven at 210°C. The photoresist SUS-2 was spun onto the wafer at 500 RPM for
12 seconds and then at 2000 RPM for 40 seconds. The wafers were soft-baked on a
hot plate at 65°C for 1 minute and then heated up to 95°C for 3 minutes. After the
wafers had cooled down for about 5 minutes, they were subsequently loaded into EVG
620T/620TB aligner and exposed at various doses from 36 mJ/cm? to 104 mJ/cm? with
a 365 nm i-line filter. Multiple exposures on a single wafer were again performed.
The exposed wafers were post-baked on the hot plate at 65°C for 1 minute and then
heated up to 95°C for 3 minutes. Subsequently, the wafer was manually developed in
SU8 developer for 45 seconds and cleaned in isopropanol (IPA), followed by a nitrogen
blow dry. An optical Nomarski microscope and SEM was used to inspect developed

photoresist features.

6.3.2.4 Alignment in photolithography

In this work, the pattern alignments in the EVG620T and EVG620TB aligners were
both handled manually. The procedure for the alignment was as follows. Firstly, the
mask was loaded into the aligner and the two lenses were moved to search for the align-
ment marks. The locations can be saved and loaded for further use. After manually
reducing the rotation of the mask, the wafer was loaded into the aligner and patterns
on both the mask and wafer can be identified by adjusting the focus of the microscope
lens. For the loaded wafer, the wafer rotation mismatch was reduced first. It should
be noted that the wafer rotation mismatch is the mismatch between mask and substrate
features on each microscope view and the view mismatch between the two microscopes
does not affect the alignment. The mask and wafer were then aligned by moving the
wafer to put the main alignment mark on the mask at the centre of the alignment mark
on the wafer, illustrated in Fig. 6.5(a). Subsequently, the alignment was checked using
the fine alignment features (in Fig. 6.5(a)) after bringing the mask and substrate into
contact. Then the mask and substrate were separated and moved based on the mismatch
inspection results. These contact and separation steps were then repeated until a good
alignment was achieved between the fine alignment features on the mask and wafer un-
der contact conditions. Here, digital magnifications of X2 and x4 were used to help
the alignment check. After the alignment and a photoresist development, the misalign-
ment can be read from designed misalignment measurement features (in Fig. 6.5(b)) by
identifying which two bars are most aligned in x and y directions. From the central bar,

misalignment can be measured in an accuracy of 100 nm.
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FIGURE 6.5: Mask layouts of features for (a) alignment and (b) misalignment mea-
surement.

6.3.3 Nanowire etch process development

The nanowire etch process was developed on a test wafer that was cleaved into chips
of 2.26 cm x 1.13 cm. The cleaved chips were etched using a Bosch process on a
STS Pegasus ICP etcher. The Si etch process is performed in two steps, namely a
silicon plasma etch and a protection layer deposition to protect the sidewall against the
silicon etch. Thus, the etch time is counted by the number of these ‘cycles’. The wafer
was maintained at 10°C during the etching by using liquid nitrogen cooling. For the
deposition step, C4Fs was supplied for 3 seconds with a gas flow of 80 sccm. For the
etch step, a mixture of SFg (50 sccm) and O, (5 sccm) was supplied for 2 seconds with a
13.56 MHz ICP power of 250 W and a 380 kHz RF power of 11 W. Then Si chips were
etched for different numbers of cycles and the Si thickness was calibrated by cross-

section inspection using a JEOL 6500F SEM, and by Elliposometer measurements.

6.3.4 Metallisation process development

The Al lift-off process needs to be very well controlled to avoid damaging the spacer
nanowires. In the initial experiments, the lift-off process was performed manually in a
beaker, but in later experiments performed in an OPTI Wet ST 30 lift-off machine. For
the manual lift-off process, the wafer with patterned photoresist and evaporated 500 nm
Al on the top was rinsed for 4 hours in a big beaker filled with N-Methyl-2-pyrrolidine
(NMP) at room temperature. The Al was then lifted-off by shaking the beaker and
then blowing NMP through a pipette. Finally, the wafer was cleaned in acetone and

isopropanol, followed by a DI water clean. For the lift-off process using the lift-off
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machine, 60°C heated NMP was first sprayed onto the wafer and then rinsed in cycles.
Each cycle included a spray of NMP on the wafer rotated at 500 RPM and then a rinse
in NMP for 2 minutes. This cycle was repeated five times, giving a total rinse time of
about 10 minutes. Subsequently, high pressure heated NMP (2 ATM) was blown over
the wafer with the nozzle moving from one side to the other and the wafer rotating at
1000 RPM. Finally, the wafer was cleaned with high pressure (2 ATM) DI water and
then dried by spinning and nitrogen blowing. Then the wafers were inspected by SEM

and Nomarski microscope.

6.3.5 Electrical measurements

The fabricated biosensor devices were calibrated using a 4-probe station and an Agilent
B1500A semiconductor device analyser. Fig. 6.6 shows a schematic of the probe setup
used for device measurements in a dry environment. Three probes were used with two
probes connected to Source and Drain through Al electrodes and the third connected
to the substrate by a connection through the chuck of the probe station. The resistance
was extracted by [, - Vs measurement. The Source was grounded by applying 0 V,
and a variable bias (0 - 5 V) was applied to the Drain. The substrate, referred to as the
back-gate, was connected to a constant bias in the range 0 to 15 V. The measurement
sequence was performed in order of 5V, 10 V and 15 V on each device. For I;,-Vy,
measurements, the current /;; was measured by sweeping V3, from 0 to 15 V and 0 to
-15 V under V,, = 1V.
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FIGURE 6.6: Schematic of probe connections for electrical measurements in a dry
environment.
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For the pH measurements, the work was carried out in collaboration with Marta Lom-
bardini. Using a pipette, 5 pl. droplet of a certain pH solution was put on top of
nanowires. Then the drain current was measured by sweeping V3, from 0 V to 5 V
at a fixed V; of 10 V. Then 5 measurements were performed continuously and then the
droplet was removed by a pipette. Before putting a different pH solution, the nanowires
were cleaned with deionised water to avoid deposition of salt. The used solutions
were at pH values of 4, 7 and 10, which are solutions of potassium hydrogen phthalate
(KHP) and potassium dihydrogen phosphate (KH;PO,)/disodium hydrogen phosphate
(Nay;HPOQOy) in DI water for pH = 4, potassium hydrogen phthalate (KHP) and potas-
sium dihydrogen phosphate (KH;PO,)/disodium hydrogen phosphate (Na,HPO,) in DI
water for pH = 7, and disodium hydrogen phosphate (Na,HPO,) in DI water for pH =
14.

6.4 Results

In this section, only results of spacer etch development are presented and the results of
photolithography development and metallisation development are presented in detail in
Appendix C and D, respectively. Then, the final fabricated devices are presented and

characterised by electrical measurements.

6.4.1 Nanowire etch development

Fig. 6.7(a) shows a cross-section SEM image of a sample after a-Si film deposition
over a SiO step. The «-Si layer can be identified on top of the thermal oxide layer and
measured to be about 110 nm in thickness. Figs. 6.7(b), (c) and (d) show cross-section
SEM images of the samples, after etches with 16, 20 and 25 cycles, respectively. In Fig.
6.7(b), the a-Si layer has not been completely etched and a thin layer of about 20 nm
remains on the SiO,. When an extra four etch cycles were given, the a-Si layer was
fully removed (Fig. 6.7(c)). The nanowire width and height were measured to be 111
nm and 100 nm, respectively. When a further five etch cycles were given, the nanowire

height reduced to 67 nm but the nanowire width remained 111 nm (Fig. 6.7(d)).

The nanowire height and width are plotted against the number of etch cycles in Fig. 6.8.
The SiO, step height is also plotted in red dot line in Fig. 6.8. It can be seen that the Si

height decreases with etch time from 210 nm to 37 nm but the Si width remains almost
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FIGURE 6.7: Cross-section SEM micrographs of samples (a) before a-Si spacer etch,
(b) after a 16 cycle etch, (c) after a 20 cycle etch and (d) after a 25 cycle etch.

the same up to 25 etch cycles. Compared with the deposited a-Si thickness of about 110
nm and the step height of 120 nm, it can be concluded that the nanowire dimensions can
be well defined by choosing the a-Si thickness for width control and the step height and
etch time for height control. In addition, the «-Si layer is removed after about 19 etch
cycles. It can be concluded that an overetch of 10% (20 cycles) is quite safe to ensure

that the a-Si nanowires are reliably formed.

Fig. 6.9 shows how the wafer size influences the nanowire etching. Results are shown
for etches performed on 4-inch wafers and on 22.6 mm x 11.3 mm chips. This figure
shows that more etch cycles are required for the 4-inch wafers than the chips. This

result is due to a reduction of the etchant density as the sample surface area increases.

To investigate the continuity of the nanowires, Fig. 6.10(a) shows a plan-view Nomarski
optical image of the nanowires after a delineation etch in 20:1 buffered HF for 2 min-
utes. The nanowires appear to be continuous and there is no evidence of breaks on any
of the nanowires. Further electrical measurements of nanowire continuity will be made
later in the chapter. With a longer buffered HF etch of 5 minutes (Fig. 6.10(b)), the

nanowires can be freed from the underlying SiO, layer.
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FIGURE 6.8: Nanowire width and height dimensions, measured by cross-section SEM,
as a function of etch time in cycles.

6.4.2 Completed biosensor characterisation

A typical fabricated biosensor is shown in the optical Nomarski micrograph in Fig. 6.11.
An SU8-2 window has been opened to expose the nanowires to the solution. In the SUS8-
2 photoresist window, 20 spacer nanowires can be seen, indicating that the nanowires
have survived the Al lift-off process. The nanowire length is about 14 pm, which is
in good agreement with the designed length of 15 ym. The measured offsets, which
are the distances between the SU8-2 window edges and the nearest Source/Drain, are
2.1 pm and 2.3 pm, respectively, indicating excellent alignment control. These offsets
ensure that there is no connection between Source and Drain through the liquid when

the sensor is exposed to liquid.

Fig. 6.12(a) shows a plan-view SEM micrograph of the nanowires in a completed
biosensor. The nanowires can be seen on the side of the oxide step and a good con-
tact to the poly-Si source/drain pad can also be seen. From Fig. 6.12(a), the nanowire
width was measured to be 120+13.5 nm, which is obtained from 10 different posi-
tions along the nanowire. The white features on the nanowire surface may be polymer
formed during the dry etch process. This polymer could be removed by cleaning in an

O9 plasma. Fig. 6.12(b) shows a high magnification cross-section SEM micrograph of
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FIGURE 6.10: Plan-view optical Nomarski micrographs after a etch in 20:1 buffered
HF for (a) 2 minutes to reduce the thickness of the underlying oxide and (b) 5 minutes
to completely free nanowires from the underlying oxide.
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FIGURE 6.11: Nomarski micrograph of a completed nanowire biosensor.

a nanowire in a complete biosensor. The nanowire width was measured to be 101 nm
at the bottom of the pillar and the height to be 80 nm. It should be noted that this width
of 101 nm is not in very good agreement with the width of 120 nm measured from Fig.
6.12(a). The discrepancy can be accounted for by noting that the oxide sidewall is not
perfectly vertical. If the nanowire width is measured from the top of the pillar, a value
of 121 nm is obtained, which is in an excellent agreement with the value obtained from
Fig. 6.12(a). The shape of the nanowire in Fig. 6.12(b) is triangular, whereas rectangu-
lar nanowires were obtained during process development, as shown previously in Fig.
6.7(c). The nanowire roughness can also be identified in the micrograph (Fig. 6.12(c))
by Helium Ion Microscope. This result will be discussed in more detail later in this

chapter.

6.4.3 Effect of back-gate bias for 100 nm oxidised nanowire biosen-

SOors

Fig. 6.13 shows [;,-V;s characteristics of a typical fabricated nanowire biosensor under
different gate biases. The plotted biosensor comprises 100 nanowires in parallel, each
of which is 10 pm in length. The characteristics show a slow turn-on for values of
Vs below about 2 'V, which is typical of contact resistance problems arising from the
formation of Schottky barriers at the source and/or drain. However, for values of Vj;

above 2 'V, the characteristics vary linearly with drain bias for all back-gate biases. The
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FIGURE 6.12: Micrographs of a nanowire in a completed biosensor; (a) plan SEM
view and (b) cross-section SEM view after a delineation etch and (c) cross-section
Helium Ion Microscope view after a delineation etch.

drain current at a given drain bias increases with an increase in back-gate bias. This
shows that the conductance of the nanowire biosensor can be tuned by applying a back-
gate bias. This behaviour is as expected, because increasing positive back-gate bias
would accumulate electrons in the n-type nanowire and hence would increase the drain

current.

6.4.4 Repeatability

To investigate the repeatability of the nanowire /-V characteristics, 12 identical nanowire

biosensors were measured on four chips at the centre of the wafer. Fig. 6.14(a) shows
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FIGURE 6.13: 1;45-V 45 characteristics of an oxidised biosensor. The biosensor com-
prises 100 nanowires in parallel, each of which is 10 um long. The oxide thickness on
the nanowire was 10 nm and the back-gate bias, V4, was varied from 0 V to 25 V.

145-Vas curves for a back-gate bias of 5 V with devices on the same chip being plotted
in the same colour. For values of V;, above 2 V, the device resistance can be calculated
from the slope using a linear fit method and is found to be 871469 k(2. This represents
an 8% variation in device resistance. Similar trends were found for back-gate biases of
10 V and 15 V, as shown in Figs. 6.14(b) and (c), respectively. The resistances under
10 V and 15 V back-gate biases are calculated to be 253+25 k) and 141416 k{2, re-
spectively. These results represent percentage variations of 10% and 11%, respectively.
Thus, it can be concluded that the fabricated nanowire biosensors have repeatable /-1

characteristics at least in the central portion of the wafer.

6.4.5 Effect of nanowire length on resistance

The resistances of nanowires of different lengths were investigated by measuring /,-
Vs characteristics on 12 nanowire biosensors with lengths of 15 ym and 20 pym at a
back-gate bias of 10 V as shown in Fig. 6.15. Resistances of 320+37 k(2 and 410+36
k(2 were extracted for the 100 parallel nanowires of 15 ym and 20 xm in length, respec-

tively, using a linear fit.
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FIGURE 6.14: [;,-V,;, characteristics of 12 100 x 10 um oxidised, nanowire biosen-
sors at various values of back-gate bias, Vj,4 (a) 5V, (b) 10 V and (c) 15 V.
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FIGURE 6.15: I4,-Vys characteristics of twelve oxidised biosensors comprising 100
parallel nanowires of lengths (a) 15 ym and (b) 20 um. The devices were measured at

a back-gate bias, Vpg4, of 10 V.

Fig. 6.16(a) shows resistance as a function of nanowire length for devices with 100

parallel nanowires measured at back-gate bias of 5 V. The resistance is not exactly

linear with nanowire length; the curve slope is higher between nanowire lengths of 15

and 20 than between 10 and 15. Similar trends are seen for back-gate biases of 10

V and 15 V, as shown in Fig. 6.16(b) and Fig. 6.16(c), respectively. This non-linear

relationship between resistance and nanowire length might be explained by the presence

of source/drain contact resistance, as has already been seen in the output characteristic

in Fig. 6.13.

6.4.6 Effect of the number of parallel nanowires on conductance

Conductances of devices with different numbers of parallel nanowires have also been

investigated by making /;,-V;s measurements on 11 or 12 devices on the four chips in
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FIGURE 6.16: Resistance as a function of nanowire length for oxidised nanowire
biosensors comprising 100 parallel nanowires measured at a back-gate bias of (a) 5
V, (b) 10 Vand (c) 15 V.
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the middle of the wafer. Fig. 6.17 shows the [;,-V;s characteristics of devices with 20
(a) and 50 (b) parallel 10 xm long nanowires, measured at a back-gate bias of 10 V. As
these characteristics are not completely linear at small biases, the slopes are calculated
at Vs > 3 V. The values of resistance were extracted using a linear fit and found to be
1.4£0.2 M for 20 parallel nanowires and 50655 k(2 for 50 parallel nanowires.

-6
10
5%

Nanowire 10 um X20
4l ng =10V

by

(b)

FIGURE 6.17: I;5-Vys characteristics of 12 oxidised nanowire biosensors comprised
of (a) 20 and (b) 50 nanowires connected in parallel.

Resistances of the same devices at back-gate biases of 5 V and 15 V can be extracted
from [,4,-Vys characteristics using the same procedure above. Table 6.1 shows measured
resistances of 10 um long nanowires with 20, 50 and 100 nanowires connected in paral-
lel. Results are shown for back-gate biases, Vj,4, of 5V, 10 V and 15 V. The percentage
resistance spreads are presented in brackets. Interestingly, Table 6.1 shows that the stan-
dard deviation decreases significantly from 20% to 8% when the number of nanowires
increases from 20 to 100 at a back-gate bias of 5 V. A similar, though less pronounced,
trend can be seen at back-gate biases of 10 V and 15 V. This result will be discussed in

more detail later in this chapter.
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TABLE 6.1: Comparison of extracted resistances for biosensors comprising of 10 um
long oxidised nanowires connected in parallel at different back-gate biases
Num. in parallel
of nanowires %20 x50 x 100
R (MQ), at Vg =5V | 4.95+0.98 (20%) 1.66+0.15 (9%) 0.87+0.07 (8%)
R (MQ), at Vi, =10V | 1.3640.21 (15%) | 0.5064-0.055 (11%) | 0.2534-0.025 (10%)
R (M), at Vg =15V | 0.7540.12 (15%) | 0.28440.033 (12%) | 0.1414-0.016 (11%)

Fig. 6.18 shows a graph of conductance as a function of the number of nanowires

connected in parallel for different values of back-gate bias. For a back-gate bias of
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FIGURE 6.18: Conductance as a function of the number of 10 ;zm nanowires connected
in parallel under back-gate biases of 5V, 10 V and 15 V.

15V, a linear relation is obtained and a conductance of 11.7 nS can be extracted for a
single nanowire from the slope. This can be converted into a resistance of 85.5 M for
a single 10 ym long nanowire. Conductances of 40.4 nS per nanowire and 72.4 nS per
nanowire can also be extracted for V,; = 10 V and 15 V, respectively. The corresponding
resistances are 24.8 M(2 and 13.8 M(). The measured conductances in Fig. 6.18 scale
approximately as expected. For example, the conductance of 20 parallel nanowires at
Vig = 15 V is 1.36 uS. The expected value for 100 parallel nanowires should therefore
be 6.80 1S, which compares with the measured value of 7.16 pS. This result implies
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that few of the nanowires are broken.

6.4.7 Subthreshold characteristics

Fig. 6.19 shows sub-threshold characteristics for a 100 x 10 pm device plotted on both
linear and logarithmic scales. For the linear characteristic, the transistor drain current
is negligible for V;,< 2 V and increases with the back-gate bias for V3, > 2 V. Thus,
the I 5-V}4 curve unambiguously shows n-channel enhancement mode characteristics.
The threshold voltage can be extracted to be about 3 V from the gate bias when the
subthreshold slope starts to saturate. These results indicate that the nanowire is nearly
fully depleted at zero back-gate bias. The application of back-gate biases above ~ 3 V
then creates an n-type accumulation layer in the n-type nanowire, leading to an increase
in drain current. From the logarithmic characteristic, the device has a subthreshold slope
(SS) of 1.05 V/decade and an I,,,/1,¢ ratio of about 10°.
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FIGURE 6.19: Subthreshold characteristic of a typical nanowire biosensor with 100
parallel nanowires of 10 pm length. The measurement was made at a drain bias of 1 V.
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6.4.8 Wafer map

Device uniformity is further investigated by measuring an identical device (10 pm x
100) on each chip across the whole wafer under the same back-gate bias of 10 V, as
shown in Fig. 6.20. The device resistances in the majority of the wafer are generally
between 0.21 M2 and 0.33 M2, whereas the resistances at the far right of the wafer
are significantly lower, around 0.15 MS). These results are very promising, particu-
larly when it is considered that significant resistance variations might be expected from

variations of amorphous silicon deposition and the etching across the wafer.

Fesistance (M)
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FIGURE 6.20: Wafer map of oxidised nanowire biosensor resistance measured at V3,
=10 V for a device with 100 parallel 10 m nanowires.

6.4.9 Unoxidised 100 nm nanowire biosensors

To provide some insight into the effect of the surface on the performance of the nanowire
biosensor, measurements have been made on nanowire biosensors that did not have a
thermal oxide layer grown on the nanowire. As discussed in section 6.3.1, these de-
vices have been processed at a lower temperature (600°C compared with 900°C) and

would be expected to have a native oxide layer on the surface of the nanowire. Fig.
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6.21(a) shows [;-Vys characteristics for 11 devices with 100 parallel, 10 gm unoxi-
dised nanowires. Measurements were made at a back-gate bias of 10 V. Above a bias of
about 2 V, the drain currents show approximately linear characteristics. The resistance
has been extracted using linear fits (Vs > 2 V) to be 825+151 k2 (18 %). A compar-
ison of this value with that for oxidised nanowires with the same dimension, (253+25
k(2, in Fig. 6.14), shows that oxidised nanowires have a clearly significantly lower re-
sistance and smaller spreads than unoxidised nanowires. This result is confirmed for
devices with 50 and 20 parallel unoxidised nanowires, as shown in Fig. 6.21(b) and
(c), respectively. The extracted resistances for 50 and 20 parallel unoxidised nanowire
biosensors are 1.72+0.30 M(2 and 4.88+1.42 MY, respectively.

Fig. 6.22 summarises extracted values of conductance as a function of the number
of unoxidised nanowires connected in parallel for different back-gate biases. Linear
characteristics are obtained for all three back-gate biases of 5V, 10 V and 15 V. The
conductances for a single nanowire can be extracted from the slopes, giving 1.4 nS,
12.7 nS and 36.9 nS for back-gate biases of 5 V, 10 V and 15 V, respectively. The
corresponding resistances for of a single nanowire are 713.8 M(2, 78.8 M(2 and 27.1
MQ for Vi, =5V, 10 V and 15 V, respectively. The measured conductances in Fig. 6.22
scale approximately as expected, as was also observed for the oxidised nanowires in
Fig. 6.18. For example, the conductance of 20 parallel nanowires at V;, = 15 V is 0.68
1S. The expected nanowire conductance for 100 parallel nanowires should therefore be
3.40 uS, which compares with the measured value of 3.63 pm. This result again implies

that few of nanowires are broken.

Fig. 6.23 compares the values of conductance for devices with oxidised and unoxi-
dised nanowires. The conductances of devices with the thermal oxide layer are sig-
nificantly larger than those without the thermal oxide layer under the same back-gate
bias. This result could be explained by the higher temperature used in the fabrication
of the oxidised nanowires (maximum temperature of 900°C) compared with the unoxi-
dised nanowires (maximum temperature of 600°C). Higher temperature process would
be expected to increase a-Si crystallisation, decrease trap densities at grain boundaries
and increase dopant activation in the nanowires [120]. It can also be seen that the con-
ductance changes due to back-gate bias are more significant for devices with oxidised
nanowires. This might be due to the bigger role played by surface charges in unoxi-
dised nanowires than in oxidised nanowires, which could weaken the influence of the

back-gate bias.

The conductance variations of the measured devices have been analysed by defining a
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FIGURE 6.21: [;,-V4s characteristics of 11 or 12 unoxidised nanowire biosensors
comprising (a) 100 parallel nanowires, (b) 50 parallel nanowires and (c) 20 parallel
nanowires. All devices were measured at a back-gate bias of 10 V.
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normalised conductance variation, given by the standard deviation of the conductance
divided by the mean conductance, as shown in Fig. 6.24. The conductance varia-
tions for the unoxidised nanowire biosensors are larger than for the oxidised nanowire
biosensors at all values of back-gate bias. A second interesting trend can be seen in
Fig. 6.24, namely that the conductance variations decrease for both types of biosensor
as the number of parallel nanowires increases. This indicates that multiple nanowires in
parallel are preferred for reducing the conductance variations of fabricated biosensors.
A third trend is that, for the unoxidised nanowire biosensors, the conductance variation

decreases significantly with increasing of back-gate bias.
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FIGURE 6.24: Normalised conductance variation (conductance standard deviation di-

vided by conductance mean) as a function of the number of nanowires connected in

parallel for oxidised and unoxidised nanowire biosensors. The nanowires were 10 um
long and measurements were made at back-gate biases of 5V, 10 V and 15 V.

6.4.10 pH detection using fabricated Si nanowire biosensors

Fig. 6.25 shows the /4,-V}, characteristics of a typical fabricated nanowire biosensor
under a drain bias of 10 V for different pH solutions. These nanowires (detailed in
Appendix E) are different than those discussed previously and were doped using two
1x10* cm~2 implants. The sensor consists of 100 parallel 20 ym nanowires. The re-

sults show that the drain current decreases with decreasing pH. This can be explained by
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the sensing mechanism of an ion-sensitive field-effect transistor [5]. Hydroxyl groups
(-OH) on the nanowire surface (SiO,) can be protonated (OH,™) or deprotonated (O™)
[4], hereby changing the charge on the nanowire surface [121]. In solutions with low
values of pH, the hydroxyl groups are mainly protonated, whereas in solutions with high
values of pH, the hydroxyl groups are mainly deprotonated. The negative charge from
the deprotonated hydroxyl groups decreases the conductance of the n-type nanowires.
Therefore, the fabricated biosensor can be used for pH sensing and this demonstrates

their potential for biosensing when the nanowire surface is given appropriate function-

alisation.
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FIGURE 6.25: 144-V 4, characteristics of a biosensor of 20 ym x 100 nanowires mea-
sured in solutions with values of pH of 4, 7 or 10. The drain bias was set to 10 V.

6.5 Discussion

6.5.1 Shape variability of etched nanowires

As shown in Fig. 6.7(c) and Fig. 6.12(b), different nanowire shapes were found on
wafers that were fabricated using the same etching recipes. In this work, a ‘Bosch’ pro-

cess was used for the Si nanowire etch, which uses a fluorine based plasma chemistry
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for Si etch and a fluorocarbon plasma process for forming a sidewall passivation layer.
The Si etch was done using sulphurhexafluoride (SFg), which provides the necessary
fluorine for silicon etching. The sidewall passivation was achieved using octofluorocy-
clobutane (C4Fg), which produces CF, and longer chain radicals [122]. These can then
form a fluorocarbon polymer layer on the etched sample. By fast plasma switching be-
tween etch and passivation formation cycles, an anisotropic Si etch can be achieved. In
the literature, reported spacer nanowires [29] are triangular in shape when conventional

reactive ion etch (RIE) processes are used.

To investigate the inconsistency of nanowire shapes, plan SEM inspections have been
performed on wafers with ‘rectangular’ spacers and ‘triangular’ spacers. Both chips
were etched in the same run and thus the etch conditions were identical. Fig. 6.26(a)
shows a high magnification plan-view SEM micrograph of a ‘rectangular’ nanowire.
The nanowire is continuous and a continuous white line can be seen on the side of the
nanowire due to the deposited polymer. Fig. 6.26(b) shows an SEM micrograph of a
triangular nanowire is also continuous but the polymer layer is discontinuous. Thus,
polymer on square nanowires is much more uniform than that on triangular nanowires.

As both samples were etched at the same time in the same run at the chamber centre,

&

(a) rectangular nanowire (b) triangle nanowire

FIGURE 6.26: High magnification plan SEM micrographs of etched nanowires from
(a) wafer giving ‘square’ nanowires and (b) wafer giving ‘triangle’ nanowires. Both
chips were etched in the same run of 20 cycles.

the polymer non-uniformity is unlikely to be caused by machine non-uniformity. There-
fore, the most likely explanation is that the variability in nanowire shape is due to the

photolithography for the oxide step definition.
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6.5.2 Mobility and trap state density extraction

The electrical characteristics of the nanowire biosensors in this work showed field ef-
fect transistor characteristics, as shown in Figs. 6.13 and 6.19. The effective electron
mobility can be extracted using MOSFET model in Chapter 3. The threshold voltage
can be extracted to be 3 V from the subthreshold slope in Fig. 6.19 of a device with
100 parallel nanowires in length of 10 um. The resistances at gate biases from 8 V to
25 V can be extracted from Fig. 6.13 using a slope fitting technique to be 338 k{2, 237
k€2, 184 k€2, 138 k€2, 114 k2 and 102 k2. When V}, is much larger than %‘/;ls, equation
(3.32) can be simplified by neglecting the second order V,; term:

Iys = B(Vy— Vi) Vs (6.1)
where 0 = Coufipsnerr (W/L). Thus, the nanowire channel resistance, R, is ex-

pressed as:

Vs 1
R, = = — (6.2)
"I B8V, — V)

As Source/Drain and contact resistance cannot be neglected, the total resistance of the

device is written as;

Rtotal = Rch + Rds = + Rds (63)

B(Vy—=Wi)
where R, is the resistance contributed by contact, source and drain and Ry, is the
total measured resistance, which is the extracted resistance from the I-V curves in Fig.
6.13. By plotting Ry, against 1/ (V, — V}), Rys and (3 can be extracted to be 20 k(2 and
6.46x 107" F.m?/V.s from the offset and slope, respectively. Using the expression of 3
above, the (poly-Si) effective mobility, £i,s ne, rf could be calculated. The value of C,, is
calculated from C,, = €,,/t,, using the buried oxide thickness, t,,, of 580 nm, whilst
W and L are 100 nm and 80 nm, respectively, from cross-section SEM measurement in
Fig. 6.12. Thus, the (i), c¢7 18 calculated to be 66 cm?/V.s.

The trap state density can be extracted using the method reported in works [26] [29]
[101]. In these publications, the channels were undoped and thus the channel carrier
concentration is mainly modulated by the applied gate bias. Therefore, the trap state
density was extracted using a modified Seto model with gate-effect [123]. However,
a doped channel is used in this work and thus the gate effect is assumed to be less

significant. As given in Chapter 3, a simplified model is used to extract trap state density.
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Using equation (3.31) (Seto model), potential barrier height, V}, can be calculated when
tn.cry 18 available. The effective electron mobility (1, ¢ ¢) in (111) single crystal silicon
[124] is 180 cm?/V.s. As polysilicon from solid-phase crystallisation is mainly in (111)
orientation [125], the barrier height can be extracted to be 28 mV using Eq. (3.31).
Assuming poly-Si grains are partially depleted, trap state density, NV;, can be extracted
using Eq. (3.30). The channel doping concentration, IV, is estimated to be 2x 10'® cm—3
from a Silvaco Athena simulator using the implant conditions. Then the grain boundary

trap state density can be calculated to be 1.7x10'? cm™2

. For typical poly-Si grains
crystallised at the same condition of a 600°C anneal for 20 hours, the poly-Si grain size,
L,, is about 0.1 pum from [126] and NN, is calculated to be smaller than L, N of 2.0x 10"

2

cm™“, which confirms the assumption that poly-Si grains are partially depleted.

These extracted parameters of mobility and trap state density are compared with nanowire
and sheet transistors from the literature, in Table 6.2. The mobility in this work well
matches those of the reported nanowire transistors but is higher than those of the sheet
transistors. However, more data are needed to confirm whether this trend is universal or
just due to different conditions of the deposited amorphous silicon films. The slightly
higher mobility in this work than other nanowire transistors could be due to high tem-
perature thermal oxidation at 900°C. The extracted trap state density is similar to that
in [29] but significantly lower than those in Chang’s works [26] [127]. The lower trap
state density for devices in this work could again be due to the high temperature ther-
mal oxidation process at 900°C. The low trap state density in Chang’s work [29] could
be due to the NH3 plasma treatment, which passivates trap states at grain boundary as
reported in Sheu’s work [128]. For the other works, no plasma treatment or hydrogen

anneal was given to the fabricated devices and the grain trap states were not passivated.

TABLE 6.2: Comparison of the fabricated poly-Si nanowire transistor with poly-Si
sheet and nanowire transistors reported in the literature

this work Chang et al [26] | Chang et al [29] | Lin et al [25] | Chang et al [127]
Channel 100 nanowires sheet sheet 2 nanowires 2 nanowires
Width/length 180 nm/10 pm 10 pm/10 pm 1 pm/10 pm 21 nm/2 pm 100 nm/1 pm
Si thickness (nm) 80 nm 100 nm 50 nm 23 nm 50 nm
Heff (cm?/V.s) 66 26 22 55 42
N; (/lem?) 1.7x10" 6.5x 1012 1.4x1012 NA 5.7x1012
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6.5.3 Comparison with the literature values of nanowire resistance

From the measured /-V curves, e.g. Fig. 6.14, it is clear that 100 nm polysilicon
nanowires have been successfully fabricated using a spacer etch technology using a
Bosch process. The fabricated nanowires show reasonably linear characteristics and
are reasonably reproducible with uniform values of conductance. A comparison be-
tween the nanowire resistances obtained in this work and those reported in the literature
[24][129][130] is given in Table 6.3. In Chen’s work [129], single-crystal triangular
nanowires were fabricated using SOI wafers and a Si wet etch. The extracted resis-
tance for a single nanowire was about 63.6 k{)/um for a -5 V back-gate bias with a 150
nm buried oxide insulator. In Hsiao’s work [24], undoped polysilicon nanowires were
formed using a spacer etch technology and an RIE etch. These nanowires had width x
height dimensions of 110 nm x 100 nm and were fabricated on a 50 nm silicon nitride
layer. A nanowire resistance of about 1.1 M€)/um was reported for a 5 V back-gate bias.
In Park’s work [130], single-crystal nanowires were fabricated using SOI wafers by e-
beam lithography and RIE etching and the extracted resistance for a single nanowire

was about 0.2 M()/pm at an unspecified back-gate bias.

The nanowire resistance obtained in this work is a factor of 8 larger than that in Hsiao’s
work, a factor of 130 larger than that in Chen’s work and a factor of 42 larger than
that in Park’s work. Chen’s nanowires were fabricated in single-crystal silicon and
hence a significantly lower sheet resistance would be expected for the same doping
due to the effect of grain boundaries [87]. Furthermore, as nanowire conductance can
be tuned by the back-gate bias, the thick gate oxide of 580 nm in this work would be
much less effective than the 150 nm gate oxide in Chen’s work [129]. The significantly
higher resistance in this work than in Chen’s work could therefore be explained by a

combination of these two mechanisms.

The lower value of nanowire resistance seen in Hsiao’s work [24] is very surprising,
given that their nanowires were said to be undoped. There are a number of possible
explanations for this surprising result. First, the thinner gate oxide in their devices
would be more effective in reducing the nanowire resistance, as was the case in the
work of Chen ef al [129]. Second, the possibility of unintentional doping in Hsiao’s
nanowires cannot be discounted as no measurement of nanowire doping was reported
in their paper. Finally, as discussed earlier that the combination of grain boundaries
(trapped charges) and low doping in the nanowires has given these nanowires that are
nearly fully depleted at zero bias. If this was the case, the values of resistance in these

nanowires would be expected to be slightly lower than those of Hsiao et al. As the
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resistance of these nanowires is 8 times that of Hsiao’s, it casts some doubt on their

claim that the nanowires are undoped.

The nanowires in Park’s work [130] also gave a lower value of resistance. This can be
attributed to two possible reasons. First, a higher implant dose than that in this work was
used and this can significantly reduce the nanowire resistivity. Secondly, as for Chen’s
work, the single-crystal silicon would be expected to give a lower sheet resistance. It
should be mentioned that the values of back-gate bias and buried insulator thickness
were not specified in the paper by Park et al [130]. However, the estimated dopant
concentration for their nanowires is as high as 5x 10 ¢cm™3 [130] and this high dopant
concentration would strongly limit the influence of the back-gate bias. Therefore, the
influence of unspecified back-gate bias and buried insulator thickness on the nanowire
resistance can be discounted. In this work, the conductance of the nanowire biosensor
was found to be tuned by the back-gate substrate (Fig. 6.13). Similar results were also
reported in the literature [24][79][129].

TABLE 6.3: Comparison of fabricated nanowires with nanowires reported in the liter-

ature
this work Chen et al [129] Hsiao et al [24] Park et al [130]
Material polycrystalline | single-crystalline polycrystalline single-crystalline
Nanowire (width/height) | 100 nm/80 nm 50 nm/30 nm 110 nm/100 nm 130 nm/50 nm
Nanowire (length) 10 pm 10 pm 10 pm 40 pm
Channel doping implant | P, 4x10 cm=2 | B, 2x10'% cm~? undoped B, 1.2x10™ cm™2
Buried insulator (nm) Si0,, 700 Si0,, 150 Si0,,100+SiN,,,50 Unspecified
Resist. of Single NW 8.5 MQ/um 63.6 kQ2/pm 1.1 MQ/pm 0.2 MY/ pm
Back-gate bias 5V 5V 5V Unspecified
I3s(Vgs=5V) 0.06 nA 2.5 pA NA 0.6 nA

6.6 Conclusions

In this work, a fabrication process has been successfully demonstrated for low-cost
Si nanowire biosensors using thin film technology. A spacer nanowire etch technology
using a Bosch process provides a highly anisotropic etch. This process gives rectangular

nanowires when the lithography is properly optimised.

Electrical measurements show that linear I/V characteristics are generally obtained for
source/drain biases greater than about 2 V. Furthermore, the nanowire conductance can
be tuned by varying the back-gate bias as the applied bias. The fabricated nanowire

biosensors with 50 and 100 parallel oxidised nanowires showed repeatable electrical
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characteristics with about 10% variation in resistance for a back-gate bias of 10 V or
15 V. Resistances were extracted for a single nanowire and values of 8.5 M€)/pum, 2.5
MQ/um and 1.4 MQ/um for back-gate biases of 5 V, 10 V and 15 V, respectively.
Nanowires with and without a thermal oxide layer were also studied and the oxidised
nanowires were found to give a superior uniformity of 10% compared with 18% for
unoxidised nanowires. Conductance variations were lower in both oxidised and un-
oxidised nanowires when a large number of nanowires were connected in parallel. In
summary, oxidised 10 gm nanowire biosensors with around 100 nanowires connected

in parallel are preferred for biosensor applications.






Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, a novel technology has been reported for the fabrication of silicon nanowires
for application in nanowire biosensors. The approach is based on thin film transistor
(TFT) technology, which is commonly used in TVs and computer displays. Polycrys-
talline Si nanowires have been successfully fabricated using a mature 1 pm, top-down,
microelectronic technology that is low cost and suitable for multiplexed immunoassay.
The polycrystalline Si has been produced using the metal-induced lateral crystallisa-
tion, with the aim of achieving process temperatures that are low enough to satisfy the
constraint of 450°C, which is imposed by the use of low-cost glass substrates. Material
studies have been undertaken on the metal-induced lateral crystallisation of a-Si at low
temperatures using fluorine to suppress random grain nucleation and using different de-
position procedures and substrate types to increase the crystallisation length at a given
temperature. It has been demonstrated that metal-induced lateral crystallisation can be
achieved at anneal temperatures down to 428°C. A crystallisation length of 1.2 ;sm has
been achieved for a lateral crystallisation anneal at 428°C, which is the lowest temper-
ature reported for MILC. These results therefore demonstrate the feasibility of using
low-cost glass as a substrate for Si nanowire biosensor fabrication. The effect of fluo-
rine implantation dose on «a-Si lateral crystallisation has been studied and an optimum
dose of 2.5x 10 cm™2 has been identified. This implantation dose gives an increase
in MILC length by 29% for a 10 hour MILC anneal at 550°C and by 17% for a 20
hour MILC anneal at 525°C. The action of the F is explained by the suppression of ran-

dom grain nucleation at the «-S1/S10;, interface with higher fluorine doses giving higher
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fluorine concentration at the «-Si/SiOs interface and hence more effective suppression
of random grain nucleation. The lateral crystallisation length decreases for a higher F
dose, 5% 10 cm™2, which has been explained by the effect of implant damage (amor-
phisation) intersecting the a-Si/Si0s interface. At temperatures < 500°C, fluorine gives
a suppression in the MILC length. This result can be partially explained by the lack of
F migration at these low temperatures. Another contributing factor may be difficulties

in annealing the implantation damage from the F implant at such low temperatures.

Results on the lateral crystallisation of a-Si nanowires have been reported for the first
time. A crystallisation length of 13 pum has been achieved in nanowires for a lateral
crystallisation anneal at 550°C. This demonstrates that metal-induced lateral crystallisa-
tion can be used for polysilicon nanowire formation at a temperature that is 75°C lower
than the typical polysilicon deposition temperature of 625°C . Results have also been
reported on the metal-induced lateral crystallisation of micro-wide a-Si ribbons and a
crystallisation length of 56 um has been achieved in 4 ym wide «-Si ribbons. The MILC
length in -Si ribbons decreases with decreasing ribbon width and the MILC length in
nanowires lies below the trend line for the ribbons, indicating that lateral crystallisation
is more difficult in nanowires than ribbons. Longer MILC lengths have been obtained
using LPCVD «-Si than PECVD «-Si, which has been explained by the lower deposi-
tion temperature for PECVD «-Si and hence the lower degree of crystallinity. Si-on-Air
structures also give significantly longer MILC lengths than Si-on-Oxide structures due
to the removal of sites for random grain nucleation at the a-Si/oxide interface. Si-on-
Nitride structures, which are better than Si-on-Oxide structures for functionalisation,
gives only slightly shorter MILC lengths than Si-on-Oxide structures.

A top-down nanowire fabrication process has been developed using a Bosch etch pro-
cess. This process gives rectangular nanowires with a well-controlled width of about
100 nm when the lithography is properly optimised. Electrical measurements show
that linear I/V characteristics are generally obtained for source/drain biases greater than
about 5 V. Furthermore, the nanowire conductance can be tuned by varying the back-
gate bias. The fabricated nanowire biosensors showed repeatable electrical character-
istics with about 10% variation in resistance for 50 or 100 parallel nanowires and a
back-gate bias of 10 V or 15 V. Resistances were extracted for a single nanowire in val-
ues of 8.5 MQ/um, 2.5 M()/pym and 1.4 M€)/pm for back-gate biases of 5V, 10 V and
15 V, respectively. A comparison of nanowires with and without a thermal oxide layer
has shown that oxidised nanowires has a uniformity of 10% compared with 18% for
unoxidised nanowires. In addition, conductance variations were lower at high values of

back-gate bias and decreased significantly as more nanowires were connected in paral-
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lel. Therefore, biosensors comprising 100 parallel, oxidised nanowires are preferred. A
comparison of measured and calculated values of nanowire current has shown that the
measured currents are lower than expected. It has been tentatively proposed that this

discrepancy is due to surface roughness on the etched nanowire surface.

7.2 Future Works

e Nanowire lateral crystallisation at low temperatures
In this work lateral crystallisation of «-Si ribbons and sheets has been found to
occur at anneal temperatures down to 428°C. In addition, lateral crystallisation
in nanowires has been studied at an anneal temperature of 550°C. Further work
is needed to investigate lateral crystallisation in nanowires at lower temperatures.
This would give further insight into the suitability of metal-induced lateral crys-

tallisation for the fabrication of polysilicon nanowires for biosensor applications.

e Lateral crystallisation of suspended «-Si ribbons and nanowires
In this work Si-on-Air «-Si ribbons were found to give a significantly longer
lateral crystallisation length than Si-on-Oxide ribbons. However, the Si-on-Air
ribbons were not fully suspended and thus further work needs to be carried out to
investigate the lateral crystallisation of fully suspended «a-Si ribbons. HF vapour
etch could be used to free ribbons from the substrates, thereby avoiding the sur-

face tension associated with wet HF etch.

¢ Poly-Si nanowire biosensor fabrication using lateral crystallisation
In this work a fabrication process has been developed for poly-Si nanowire biosen-
sors made using solid-phase crystallisation. As poly-Si nanowires could also be
crystallised by metal-induced lateral crystallisation, it would be sensible to inves-
tigate polysilicon nanowire biosensor fabrication using this method. A compari-
son of the electrical performance could then be made between biosensors fabri-

cated by lateral crystallisation and by solid-phase crystallisation.

e Lateral crystallisation of Ge nanowires for biosensor applications
In recent years, germanium has also been studied for biosensor applications [114].
As the melting point of amorphous germanium («-Ge) is less than that of «-Si,
it should be possible to achieve metal-induced lateral crystallisation at a lower
temperature. Kanno et al [131] and Park ef al [132] have shown that metal-

induced lateral crystallisation can be used to crystallise a-Ge at a temperature



150

Chapter 7 Conclusions and Future Work

of 400°C , which is already compatible with glass substrates. As an alternative
of -Si, it would therefore be interesting to develop a top-down process for the

fabrication of Ge nanowire biosensors.

Effect of fluorine on Ge nanowire lateral crystallisation

In Hakim et al work [31], fluorine was found to improve «-Si lateral crystallisa-
tion by suppressing random grain nucleation at the a-Si/Si05, interface. Park et al
[133] have reported that random crystallisation also limits metal-induced lateral
crystallisation in a-Ge. It would therefore be interesting to investigate effect of

fluorine on metal-induced lateral crystallisation in a-Ge.



Appendix A

Suface Charge Derivation for an
n-channel MOS device

For a MOS capacitor or MOSFET with the Source/Drain grounded, the problem can be
solved by a 1-dimensional equation:

Y 2 [uy) — ny) + N3(s) — N3 () A

dy? €S b A '
where N} and N are the concentrations of ionized donors and accepters, respectively.
Here, cg; is the permittivity of silicon. In bulk region, the charge neutrality condition
gives the sum of all the right terms to zero. In the surface region, the hole and electron
concentrations are given in terms of v, defined as ¥ (y) = 1; — ¥;(+00). The Poisson

equation can be rewritten as:

&y g qy n; qy
22 tnlol() - o(E) )]

This equation cannot be solved directly. However, the electric field, &/ = —% can be

solved by integrating Eq.(A.2). At the surface, y = 0, the surface charge, 1;, in the

silicon can be obtained using Gauss’s law.

Qs = —€5iEy = —/2kT N e {exp (—q%) + s 1+ g [exp (qws) _ s 1] }2

KT ) " kT N? KT )~ kT
(A3)

The negative sign means that the charge in the channel is negative whilst the charges
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induced in on the gate is positive. To show the behaviour of Eq.(A.3),the surface charge
against surface potential is plotted in Fig. A.1. From the plot, the surface charge in
1

the depletion region is dominated by depleted charge, the term of (%) 2, whilst the

qs

inversion charge, mainly the exp 5=

term, plays a dominate role in the surface charge.

Using the surface charge equation Eq.(A.3), strong inversion can also be defined as:

n? qs
i =1 A4
N22 eXP ( kT> (A4)

The surface potential can be solved in the same form given in Section3.1.1.1:

KT . N2
s = " In n—;‘ = g (A.5)
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FIGURE A.1: The surface charge density in silicon as a function of surface potential,
1), for a p-type MOS capacitor. After Sze and Kwok [84], copyright John Wiley&Sons.

In the depletion mode (% <ws <21p), the inversion charge is negligible and the surface
charge is approximately as the depletion charge. The surface charge can therefore be

obtained from Eq.(A.3) by keeping the dominant depleted charge term and using the
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condition in Eq.(A.4).

Qs ~ Qd Y QQNA&%% (A6)

In the subthreshold mode, the inversion charge cannot be neglected and can be written

by keeping the inversion and depletion terms in Eq.(A.3) as:

2

Qs = —\/2kTeg; N4 (ﬂ L %> ’ (A.7)

kT NP ET

Using Taylor series, the surface charge could be simplified into:

1 _1
qs\* L (ads) ny o 49
KT o \k7 ) NPT

As the first term in the square bracket is the depletion charge as in Eq.(A.3), the inver-

Qs = —\/2kTeg; N4y

(A.8)

sion charge can there be expressed as:

iNa (KT (i \” s
Qi=Qs —Qa=— qusw 4 (7) (]T\;A) exp (%1 (A9)







Appendix B

Double-Gate and Surround-Gate
MOSFETSs

To control short channel effects, some advanced MOSFET structures have been pro-
posed, such as Silicon-on-Insulator (SOI) [134], Silicon-on-Nothing (SON) [135], Double-
gate (DG) [136], Gate-all-around (GAA)/Surround-gate (SRG) [137] and stacked /
Multi-bridge [138][139]. Compared with the structure of a bulk MOSFET, these ad-
vanced structures have better gate control of the channel and thus short channel effects
are suppressed and the current drive is increased [140]. This also releases the require-
ment for a high channel doping and thus leads to a higher carrier mobility due to the
reduction of carrier scatterings in the low-doped channel. In our work, however, short
channel effect suppression is not a big concern but we still need to take account of the

improved channel control.

Among the above multi-gate transistors, DG and SRG transistors are the two most com-
mon types and their structures are shown in the schematic views in Fig. B.1(a) and (b),
respectively. For the DG structure, there are two gates on the top and on the bottom of
the channel. Here, the two gates are chosen set to be symmetrical with the same gate
insulators for simplicity. For the SRG structure, the gate and gate insulator surround the
Si channel. The conduction mechanism of DG transistors can be clarified by the band
diagram in Fig. B.2, which is for an n-channel DG MOSFET with positive bias applied
to both gates. As the gate bias increases, depletion and inversion regions are formed at
both surfaces. Depending on the channel thickness, these transistors are distinguished
as partially depleted (PD) or fully depleted (FD).

For partially depleted transistors, the channel thickness is larger than the sum of the
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2R

FIGURE B.1: Schematic diagrams of (a) a double-gate MOSFET and (b) a surround-

gate MOSFET.
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FIGURE B.2: The schematic diagram of a DG MOSFET under positive bias in volume
inversion mode.

two depletion regions formed by the two gate biases and there is an undepleted region
between two independent regions. The DG transistor operates as a transistor with two
independent channels and thus the ON current is twice that of a single-gate transistor.
A continuous analytical drain-current model for partially depleted DG SOI MOSFETs
with a lightly doped channel was proposed by Taur et al [141]. In Taur’s model, the
drain-current of a DG transistor can be obtained by solving Poisson’s equation without

the charge sheet approximation and the drain current can be approximated as:

w
Ids = 2/LeffCoxf (V ‘/t _‘/ds) ‘/ds (Bl)
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For a SRG MOSFET, the drain current can be approximated by [142]:

TR 1
[ds = QﬂeffTCoz (‘/g - V;f - 5‘/618) ‘/ds (B2)

For a fully depleted transistor, the channel thickness is equal to or less than the sum of
the two depletion regions and the whole channel is depleted. In the central region of the
channel, the depletion can be considered to be formed by the overlap of two depletion
regions. Thus, this gate coupling reduces the bias, that is required to form the depletion
regions, compared with the partially depleted case. This in turn reduces the threshold
voltage of the transistor and thus the drain current of a fully depleted transistor is larger
than twice that of a single-gate transistor under the same gate bias. This explanation
also applies to SRG MOSFETs. It should be noted that Eq.(B.1) and Eq.(B.2) are still

valid if the expressions for V; take the gate coupling into consideration [141][142].

When the channel is further thinned (e.g. 50 nm in simulation [143]) and the two inver-
sion layers merge into one inversion layer, the transistor operates in volume inversion
[143]. Balestra et al [144] studied volume inversion by both simulation and experiment
and found that transistors in volume inversion have excellent values of subthreshold
slope, drain current and transconductance. As the double gates confine more carriers to
flow in the central region of the channel, the carrier mobility is remarkably increased
due to less interface scattering [143]. Therefore, the ON current of a double-gate tran-

sistor is therefore higher than twice that of a single-gate transistor at the same gate bias.






Appendix C

Results of Photolithography

Development

C.1 Photolithography with S1813

The exposure of S1813 was investigated and calibrated using optical Nomarski micro-
scope. Fig. C.1 shows optical Nomarski micrographs of developed photoresist features
exposed at various doses ranging from 23 mJ/cm? to 90 mJ/cm?. In Fig. C.1(a), pho-
toresist given a 23 mJ/cm? exposure is seen as a brown colour with quite blurred edges
and the background is a non-uniform colour. This non-uniform colour indicates that the
photoresist was under-exposured and hence was not fully removed from the exposed
area. As exposure dose is increased to 30 mJ/cm? in Fig. C.1(b), features become
very sharp and the background is a uniform colour. As the dose increases, the smallest
features (2 pm X 2 pm) change from a square to a round shape. This indicates that
photoresist exposures at doses above 50 mJ/cm? is over exposed. Fig. C.2 shows mea-
sured photoresist ribbon widths as a function of exposure dose. These results show that
the optimum dose is around 40 mJ/cm2 and 36 mJ/cm2 was used in this work to give a

good uniformity over whole wafer.

C.2 Photolithography with AZ2070

The exposure of AZ2070 was similarly investigated and calibrated using optical No-

marski microscope after development. Fig. C.3 shows optical Nomarski micrographs
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(a) 23 mJ/cm? (b) 30 mJ/cm? (c) 36 mJ/cm?
(d) 40 mJ/cm? (e) 50 mJ/cm? (f) 60 mJ/cm?

(2) 70 mJ/cm? (h) 80 mJ/cm? (i) 90 mJ/cm?

FIGURE C.1: Nomarski micrographs of developed S1813 photoresist features using
different exposure doses.

of developed photoresist features exposed in various doses ranging from 45 mJ/cm? to
115 mJ/cm?. In comparison with the S1813 results in Fig. C.1, the features are less
clearly defined. This is because the negative resist, AZ2070, has a higher thickness of
about 4 ym (by SEM) than S1813, which is in thickness of about 1 ym. It might also
be attributed to the negative sidewall slope and window features for negative photoresis.
Fig. C.4 shows measured photoresist window widths as a function of exposure dose.
As this photoresist is used for metal lift-off, the tolerance on feature dimensions is not

critical and thus an exposure dose of 75 mJ/cm2 was used in this work.
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FIGURE C.2: Measured photoresist (S1813) ribbon width as a function of exposure
dose for features with designed widths of 2 pym, 4 pm, 6 ym and 10 pm.

C.3 Photolithography with SUS8-2

100

The exposure of SU8-2 was investigated and calibrated using optical Nomarski micro-

scope. Fig. C.5 shows optical Nomarski micrographs of developed SUS-2 features

exposed at various doses ranging from 42 mJ/cm? to 102 mJ/cm?. These features are

again less clearly defined than those in Fig. C.1 for S1813. This is also explained by the

higher SUS8-2 thickness of about 1.8 ;sm and the characteristics of negative photoresist.

Fig. C.6 shows measured photoresist ribbon window width as a function of exposure

dose. As SUS-2 is used to define sensing windows, window sizes need to be very well

defined to assure no direct conducting path is formed between Source and Drain region

in the liquid, which can shorten nanowires. The exposure dose of 80 mJ/cm? was used

in the device process.
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FIGURE C.3: Nomarski micrographs of developed AZ2070 photoresist features using
different exposure doses.

C4 Alignment

Fig. C.7(a) shows an optical micrograph of alignment mark on an arbitrary chip near
the centre of a 4-inch wafer. Compared with the mask layout in Fig. 6.5(a), an excel-
lent alignment has been achieved that the main and fine alignment marks are all well
matched. The misalignment can be read from the misalignment measurement features
from Fig. C.7(b) and found to be about 200 nm in the x-direction and <100 nm in the
y-dimensions. This is an excellent alignment compared with the specified 0.5 ¢m min-
imum alignment tolerance in the technical manualf for the EVG 620T/620TB aligner.
Typical misalignment for a chip is about 0.5 ;zm and thus the designed aligment features

fully satisfy the alignment requirement in this work.
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FIGURE C.5: Nomarski micrographs of developed SU8-2 photoresist features using
different exposure doses.
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FIGURE C.6: Measured photoresist ribbon widths for SUS8 as a function of exposure
doses for features with designed widths of 2 ym, 4 m, 6 pm and 10 pm.
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FIGURE C.7: Optical Nomarski micrographs of (a) alignment marks and (b) a mis-
alignment measurement feature. The pictures were taken at near the wafer centre after
an alignment and a photoresist development.



Appendix D

Results of Metallisation

Fig. D.1(a) shows cross-section SEM micrograph of samples before the aluminium lift-
off process. Photoresist was patterned on the Si substrate and measured to be 3.8 pm
with an undercut slope (photoresist thicker at the top than the bottom). The thickness of
the Al layer was measured to be 530 nm. The thickness of the Al on the sidewall was
measured to be 20 nm (Fig. D.1(b)), which is much thinner than the thickness on top of
the photoresist. This reduction of Al thickness is due to the negative photoresist profile

and is important because it aids the lift-off of the Al film.

Photoresist
Photoresist

Si substrate

JSM 6500F SEI 10.0kV  X14,000 Tum WD 10.2mm DOF SEI 10.0ky X80,000 100nm WD 10.2mm

(@ (b)

FIGURE D.1: Cross-section SEM micrographs of a sample before the Al lift-off pro-
cess (a) at a low magnification and (b) at a high magnification.

Fig. D.2(a) shows a DIC micrograph of a typical biosensor device after manual lift-off.
The Al tracks are about 22 pm wide, which is in reasonable agreement with the as-

drawn width of 20 ym. In addition, nanowires can also be clearly between the Source
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and Drain, indicating that the nanowires are well preserved in the lift-off process. The
automatic lift-off process gives similar results as shown in Fig. D.2(b). The Al tracks
were measured to be 22 ym. The automatic lift-off process has the advantage of fewer

blemishes, as can be seen by comparing Fig. D.2(a) and (b).

(@) (b)

FIGURE D.2: Nomarski micrographs of biosensor samples after Al lift-off by (a) a
manual method in a beaker and (b) an antomatic methods in a lift-off machine.



Appendix E

Batch Listings

E.1 Batch Listing for Fluorine Effect on Lateral Crys-

tallisation

Wafer List

Wafer #1 Control wafer without fluorine

2

Wafer #3  wafer with a F implant, dose: 5x10' cm™

2

Wafer #4  wafer with a F implant, dose: 1x10 cm™

Wafer #5  wafer with a F implant, dose: 2.5x 10'° cm™2

Wafer #6  wafer with a F implant, dose: 5x 10 cm™2

Process List

1. RCA clean for all wafers

2. Load in O5, 400 nm wet oxide at 1100°C for all

3. 100 nm «-Si deposition by LPCVD at 560°C for all
4. Fluorine implant

e Fimplant: 5x 10 cm~2, 35 keV for #3
167
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e Fimplant: 1x10'° cm~2, 35 keV for #4
e Fimplant: 2.5x 10'° cm~2, 35 keV for #5
e Fimplant: 5x10' cm~2, 35 keV for #6

5. 300 nm low temperature oxide deposition at 400°C all

6. Photolithography with stepper
7. Hardbake for wet etch
8. Oxide wet etch by rinsing in 20:1 buffered HF for all
9. Resist strip for all
10. Fuming nitric acid clean for all
11. Native oxide removal using 100:1 HF for 20 seconds

12. Ni seed deposition for all

E.2 Batch Listing for a-Si Ribbons on Different Sub-

strates

Wafer List

o Wafer #1 100 nm LPCVD «-Si on 100 nm Si nitride (Si-on-Nitride)

Wafers #2100 nm LPCVD «-Si on 500 nm Si dioxide (Si-on-Air)

Wafers #3 100 nm LPCVD «-Si on 500 nm Si dioxide (Si-on-Oxide)

Wafers #4 100 nm LPCVD «-Si on 500 nm Si dioxide with a 2.5x10'° ¢cm™2
F implant

Wafer #5 100 nm PECVD «-Si on 500 nm Si dioxide

Process List
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1. RCA cleaning for all (#1-5)
2. Buried layer formation

e 100 nm Si nitride deposition by LPCVD for #1
e 500 nm Si dioxide deposition by LPCVD for #2,3,4
e 500 nm Si dioxide by thermal oxidation at 1050°C for #5

3. «a-Si deposition

e 100 nm «-Si deposition by LPCVD at 560°C for #1-4
e 100 nm «-Si deposition by PECVD at 250 °C for #5

4. photolithography for all (#1-5)

e Fuming nitric acid cleaning for 5 minutes, DI water for 5 minutes and blow

dry

Anneal at 210°C overnight

Spin photoresist, S1813, 5000 rpm for 30 seconds

Soft-bake at 90°C for 1 minute

Exposure using EVG 620TB with mask DP for 8 seconds

Development in MIF 319 for 35 seconds
e Hard-bake at 120°C for 20 minutes

5. «a-Sidry etch using OIPT RIE 80 plus for all (#1-5)
(SFg 20 sccm, Oy 10 sccm, Pressure 15 mTorr, Power 20 W, etch for 180 sec.)

6. Photoresist removal

e Fuming nitric acide cleaning for 5 minutes

e Di wafer for 5 minutes
7. Dehydrogenation anneal at 430°C for 30 minutes for #5
8. Si0, removal using 7:1 buffered HF for 18 minutes for #2
9. Fluorine implantation of 2.5x10' ¢cm~2 at 35 keV for #4

10. photolithography for all (#1-5)
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e Fuming nitric acid cleaning for 5 minutes, DI water for 5 minutes and blow

dry
e Anneal at 210°C overnight
e Spin photoresist, S1813, 5000 rpm for 30 seconds
e Soft-bake at 95°C for 1 minute
e Exposure using EVG 620TB with mask NI for 8 seconds

e Development in MIF 319 for 35 seconds

11. Remove native oxide by rinsing in 20:1 buffered HF for 10 seconds and blow dry
for all (#1-5)

12. E-gun evaporation of 20 nm nickel for all (#1-5)
13. Ni lift-off in acatone for 20 minutes all (#1-5)

14. Cleave into chips for annealing in nitrogen all (#1-5)

E.3 Batch Listing for Si Nanowire Biosensor

Wafer List
e Wafer #1 Oxidised nanowires with two P implants of 2x 10'® cm~2, etched
by STS for 30 cycles

e Wafer#2  Unoxidised nanowires with two P implants of 2x 10" cm™2, etched
by STS for 30 cycles

e Wafer #3 Oxidised nanowires with two P implants of 1x10'® cm~2, etched
by STS for 32 cycles

Process List

1. Grow 700 nm thermal oxide by dry oxidation for all
2. Photolithography for all

e Fuming nitric acid cleaning
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Anneal at 210°C overnight

Spin photoresist, S1813, 5000 rpm for 30 seconds
Soft-bake at 95°C for 1 minute

e Exposure using EVG 620TB with mask NW

Development in MIF 319 for 35 seconds
e Hard-bake at 120°C for 20 minutes

3. Si dioxide step formation for all
(Ar 32 sccm, CHF5 18 sccm, 200 W, 30 mTorr 190s, + O, 100 sccm, 100W, 100

mTorr, 20 sec)
4. Remove photoresist by fuming nitric acid for all
5. 100 nm «-Si deposition by LPCVD at 560°C for all
6. Photolithography for all

e Fuming nitric acid cleaning

e Anneal at 210°C overnight

Spin photoresist, S1813, 5000 rpm for 30 seconds

Soft-bake at 95°C for 1 minute

Exposure using EVG 620T with mask DP

Development in MIF 319 for 30 seconds
e Hard-bake at 120°C for 20 minutes

7. «-Si nanowire formation
(deposition 3 seconds, C4Fg 80 sccm and etch for 2 seconds, SFg 50 sccm, Oy 5
scem, 13.56MHz Coil=350W, 380 kHz platen 11W, T=10°C)

e Etch for 30 cycles for #1,2
e Etch for 32 cycles for #3

8. Photoresist strip by fuming nitric acid for all
9. Phosphors implantation

e Two phosphors implants: 2x 10" cm™2, 10 keV, at +45°C for #1,2
e Two phosphors implants: 1x10'3 cm~2, 10 keV, at +45°C for #3
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10. «-Si crystallsiation and dopant activation anneal at 600°C for 24 hours for all

11. 10 nm thermal oxide growth at 900°C for #1,3

12. Photolithography for all

Fuming nitric acid cleaning

Anneal at 210°C overnight

Spin photoresist, AZ2070, 6000 rpm for 40 seconds

Soft-bake at 110°C for 1 minute

Exposure using EVG 620T using i-line (365 nm) filter with mask DP (75

mJ/cm?)
Development in AZ 726 MIF developer for 75 seconds

Plasma descum using OIPT RIE 80 plus
(pressure 50, forward power 100W, O, 50 sccm for 1 minute at 20°C)

13. Remove native oxide by 20:1 buffered HF for 25 seconds for all

14. 500 nm Al evaporation at 0.5 nm/sec for all

15. Lift-off using OPTI Wet ST 30 for all

16. SUS-2 passivation layer formation for #3

Anneal at 210°C overnight
Spin photoresist, SU8-2, 2000 rpm for 30 seconds
Soft-bake at 65°C for 1 minute and then 95°C for 3 minutes

Exposure using EVG 620T using i-line (365 nm) filter with mask SU (80

mJ/cm?)
Development in SU8 developer for 45 seconds

Rinse in IPA and blow dry



Appendix F

The Detailed Information of the
Designed Masks and Layouts

F.1 List of Designed Marks

Below is a list of the masks used in the process of Si nanowire Biosensors and crystalli-

sation study.

e NW Nanowire trench definition (DF).

e DP n+ in situ doped silicon definition for source and drain (LF).
e NI Ni lift-off definition/Ge pattern definition (DF).

e MT Metal definition (LF).

e SU Electrode window/biosensing window definition (LF).

Note: LF=light field mask, DF=dark field mask
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F.2 The Designed Chips in Mask Layouts
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F.3 The Detailed Floor Plans on the Two Cells

F.3.1 Chip One (Transistors)
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F.3.2 Chip Two (Biosensors and SEM bars)
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F.3.3 The list of nanowire TFTs by MILC

Channel | NWs Ni-OS Ni-M Ni-FO No-Ni Ni-BS
[ ] [ ] [ ] [ ] [ ]
10 um | 1x2
NwO1 NWO02 NWO03 NW04 NWO5
[ ] [ ] [ ] [ ] [
4 pm I1x2
Nwll NW1l2 NW13 Nwl4 NW15
[ ] [ [ ] [ [ ]
20 um | 1x2
Nw21 NW22 NW23 NW24 NW25
[ ] [ J
200 pm | 1x2
NS31.1 NS31.2
[ ] [
10 pm | 2x2
Nw4d1l Nw42
[ ] [ J
10 um | 4x2
NW51 NW52
[ ]
2 1x2
pm Nw6l
[ ] [ J [ ] [ ]
10 pm | 5x%2 , , , _
NW81_i NW82_i | NW83_1 NW85_1
[ ] [ [ ]
4 pm 5%2 , . .
Nw71_i NW72_1 | NW73_1
[ ] [ ]
2 pm S5x2 , .
Nwol_i NWO3_i
10 pm | 1x2 NW71_s1 funnel 4 pm width
10 pm | 1x2 NW71_s2 funnel 3 pm width
10 yum | 1x2 NW71_s3 funnel 2 pm width
10 gm | 1x2 Nw0l2_i 2 pm gap
10 um | 1x2 NW013_1i 3 pm gap
10 gm | 1x2 NWO015_1i 5 pm gap
10 pm | 1x2 NW030_s Normal trench
10 um | 1x2 NW031_s Ni 4 pym away from VIA
10 um | 1x2 NWX1 NWX2 NWX3 with p layers
4 pm 2x2 GLN1ll_s | GLN12_s GLN14_s3 | GLN15.s12
2 pm 2x2 GLN2x_s1 GLN2x_s2 | GLN2x_s3

OS= one side, M= middle, No= without, FO= 10 um from the junction, BS= both side.

The cell without ’i” or ’s” in name means both patterns with/without a high temperature
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annealing, whilst the cell with ’i” and ’s’ in name means pattern with and without a high

temperature annealing, respectively. GLN= TFTs for Ge induced lateral crystallization
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F.3.4 The list of conventional TFTs by MILC

Channel | Width Ni-OS Ni-M Ni-FO | No-Ni | Ni-BS
[ ] [ ] [ [ ] [ ]
10 pm | 10 jum SDO1 | SDO2 | SDO3 | SD04 | SDOS
[ ] [ ] [ ] [ ] [ ]
4 pm 10 pm SD11 SD12 SD13 | sb14 | SD15
[ [ ] [ ] [ ] [ ]
20 | 10 pum sp21 SD22 | SD23 | SD24 | SD25
[ ]
200 pm | 10 pum NS31.3
[ ]
10 pim 2 pm SDh41 SD42
[ [ ]
10 pum 4 pm SD51 SD52
[ ] [ ]
10 pim 8 pm SD61l SD62
[ ]
2pm | 2 pm sD71
10 gm | 10 pm SDO12_1 2 pm gap
10 gm | 10 pm SDO13.1 3 pm gap
10 pm | 10 pm SDO15.1 5 pm gap
10 um | 10 pm SD031_s Ni 4 yum away from VIA
10 gm | 10 pm SDX01 SDX02 with short p layers
4 pm 10 pm GLS1ll_s | GLS12_s Ge-ILC TFTs

OS= one side, M= middle, No= without, FO= 10 um from the junction, BS= both side.
The cell without ’i’ or ’s’ in name means both patterns with/without a high temperature
annealing, whilst the cell with ’i” and ’s’ in name means pattern with and without a high

temperature annealing, respectively.
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F.3.5 The list of resistors by MILC

Channel | Width NWs Ni-OS | Ni-M | Ni-FO | No-Ni | Ni-BS
[ ] [ J [ ] [ J [ J
10 pm 1x2
RNO1 RNO2 | RNO3 | RNO4 | RNOS
[ [ [ ]
2 pm 1x2
RN11 RN13 | RN14
[ [ J [ [ J
20 pm 1x2
RN21 RN22 | RN23 RN24
[ ] [ ] [ ]
10 pm 8x2
RN31 RN32 | RN33
[ ] [ ]
10 pm 8x2x10
RN51 RN52
10 pm Ix2 RNO31 Ni 4 pm away from VIA
[ [ J [ ] [} [ J
10 gm | 10 pm
RS01 | RSO02 | RSO3 | RS04 | RSO05
[ ] [ [ ]
5 10
pm pm RS11 RS13 RS14
[ ] [ J [ ]
20 10
pm pm RS21 | RS22 | RS23
[ ]
10 4
pme| s pm RS31
[ ]
10 2
pm pm RS41
[ [ ] [ ]
1 1 1 for p-
O pum 1 10 pum |10 RS51 |RS52 | RS53 | O PTOPe
10 pm | 10 pum RS031 Ni 4 um away from VIA
5+10 pm 1x2 RT_1
5+10 pym 8x2 RT_1
5+10 gm | 10 um RT_1

OS= one side, M= middle, No= without, FO= 10 um from the junction, BS= both side.

The width column is applied to conventional resistors, whilst the NWs (nanowire number)

column is applied to nanowire resistors.
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F.3.6 The nanowire biosensors by MILC

NWs | Channel length Ni-OS Ni-M Ni-FO
[ ] [ J [
x 100 10 pm
BS010.100 | BSM10.100 | BSF10.-100
[ ] [ ] [ ]
x 100 15 pm
BSO15.100 | BSM15.100 | BSF15.100
[ ] [ J [
x 100 20 um
BS020.100 | BSM20_.100 | BSF20.100
[ ] [ ] [ ]
x50 10 pm
BS010.50 BSM10.50 BSF10.50
[ ] [ J [ ]
x50 15 pm
BS015.50 BSM15.50 BSF15.50
[ ] [ ] [ ]
x50 20 pm
BS020.50 | BSM20.50 | BSF20.50
[ ] [ J [
%20 10 ym
BS010_20 BSM10_20 BSF10.20
[ ] [ ] [ ]
%20 15 pm
BS015.20 BSM15_20 BSF15.20
[ ] [ J [
%20 20 pm
BS020.20 | BSM20-20 | BSF20.20

OS= one side, M= middle, NFO= 10 ym from the junction.
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