The University of Southampton
University of Southampton Institutional Repository

Continuum limit physics from 2+1 flavor domain wall QCD

Continuum limit physics from 2+1 flavor domain wall QCD
Continuum limit physics from 2+1 flavor domain wall QCD
We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, [a-1 = 1.73(3) GeV and a-1 = 2.28(3) GeV]. On the coarser lattice, with 243×64×16 points (where the 16 corresponds to Ls, the extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C. Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D 78 is extended to approximately twice the number of configurations. The ensembles on the finer 323×64×16 lattice are new. We explain in detail how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in the approximate range 290–420 MeV (225–420 MeV for partially quenched pions). We use the masses of the π and K mesons and the Ω baryon to determine the physical quark masses and the values of the lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for fπ, the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic error. Our main results include fπ = 124(2)stat(5)syst MeV, fK/fπ = 1.204(7)(25) where fK is the kaon decay constant, msMS‾ (2  GeV)=(96.2±2.7)  MeV and mudMS‾ (2  GeV) = (3.59±0.21)  MeV (ms/mud = 26.8±1.4) where ms and mud are the mass of the strange quark and the average of the up and down quark masses, respectively, [ΣMS‾(2  GeV)]1/3 = 256(6)  MeV, where Σ is the chiral condensate, the Sommer scale r0 = 0.487(9)  fm and r1 = 0.333(9)  fm.

1550-7998
74508
Aoki, Y.
59681162-da15-44bc-9543-5dabe0b3f9bd
Arthur, R.
ce670138-5f7a-49a6-b33a-a1438e29246f
Blum, T.
29e11a5b-96d3-4b8d-a17c-ec4b836ceead
Boyle, P.
a12661a4-a1da-4fdc-9207-db20087bfaba
Brӧmmel, D.
27f2e3b4-8723-4826-88a4-05d20e247e11
Christ, N.
bafeb9b1-3dd1-4027-8690-1d99257b2c8e
Dawson, C.
7c077019-1ca9-4a54-a33f-68be083477e0
Flynn, J.M.
d8e90963-ba56-415c-bbd4-496b7d91d343
Izubuchi, T.
4ee5b26a-e913-4a6b-8a2f-80159b3219b2
Jin, X-Y.
ceddbbc0-1cf6-4c7a-819b-ec9493371d33
Jung, C.
c6d7a1c1-b894-4c10-b12f-437062bf40bd
Kelly, C.
c4345b06-5900-4597-9dbc-623dc13e6f8e
Li, M.
72430469-7491-49ea-88a0-9f8aed0abcb7
Lichtl, A.
0a856117-ff3e-4ee0-ad46-91057f89dbf4
Lightman, M.
2eb91ad6-e29c-4897-bba2-39663050d0a7
Lin, M.
2d48deac-a681-436c-9333-4a7ac6f09632
Mawhinney, R.
871ec3e5-7501-4c79-a815-95b147eb1907
Maynard, C.
9501fd2d-e787-4902-b0f7-9c2e1bf5c95a
Ohta, S.
d73d48f2-bf7d-4fbc-bdde-cd819fedaf19
Pendleton, B.
a997bc1f-9ae9-4b7e-8460-fd1ae54d5f20
Sachrajda, C.T.
0ed6568b-f52f-4314-8677-4aeeb925d6f7
Scholz, E.
98f9291f-10d7-4c9f-97ca-ee9ce5e27b2c
Soni, A.
7a4196ff-0f6b-429e-af54-d1036e9c433b
Wennekers, J.
301214ab-4958-40c3-a6a3-6daa8066d466
Zanotti, J.
8f900edf-9a53-4b91-8813-a0ef4230149d
Zhou, R.
fbf82787-d075-4c24-96ac-633e045534f2
Aoki, Y.
59681162-da15-44bc-9543-5dabe0b3f9bd
Arthur, R.
ce670138-5f7a-49a6-b33a-a1438e29246f
Blum, T.
29e11a5b-96d3-4b8d-a17c-ec4b836ceead
Boyle, P.
a12661a4-a1da-4fdc-9207-db20087bfaba
Brӧmmel, D.
27f2e3b4-8723-4826-88a4-05d20e247e11
Christ, N.
bafeb9b1-3dd1-4027-8690-1d99257b2c8e
Dawson, C.
7c077019-1ca9-4a54-a33f-68be083477e0
Flynn, J.M.
d8e90963-ba56-415c-bbd4-496b7d91d343
Izubuchi, T.
4ee5b26a-e913-4a6b-8a2f-80159b3219b2
Jin, X-Y.
ceddbbc0-1cf6-4c7a-819b-ec9493371d33
Jung, C.
c6d7a1c1-b894-4c10-b12f-437062bf40bd
Kelly, C.
c4345b06-5900-4597-9dbc-623dc13e6f8e
Li, M.
72430469-7491-49ea-88a0-9f8aed0abcb7
Lichtl, A.
0a856117-ff3e-4ee0-ad46-91057f89dbf4
Lightman, M.
2eb91ad6-e29c-4897-bba2-39663050d0a7
Lin, M.
2d48deac-a681-436c-9333-4a7ac6f09632
Mawhinney, R.
871ec3e5-7501-4c79-a815-95b147eb1907
Maynard, C.
9501fd2d-e787-4902-b0f7-9c2e1bf5c95a
Ohta, S.
d73d48f2-bf7d-4fbc-bdde-cd819fedaf19
Pendleton, B.
a997bc1f-9ae9-4b7e-8460-fd1ae54d5f20
Sachrajda, C.T.
0ed6568b-f52f-4314-8677-4aeeb925d6f7
Scholz, E.
98f9291f-10d7-4c9f-97ca-ee9ce5e27b2c
Soni, A.
7a4196ff-0f6b-429e-af54-d1036e9c433b
Wennekers, J.
301214ab-4958-40c3-a6a3-6daa8066d466
Zanotti, J.
8f900edf-9a53-4b91-8813-a0ef4230149d
Zhou, R.
fbf82787-d075-4c24-96ac-633e045534f2

Aoki, Y., Arthur, R., Blum, T., Boyle, P., Brӧmmel, D., Christ, N., Dawson, C., Flynn, J.M., Izubuchi, T., Jin, X-Y., Jung, C., Kelly, C., Li, M., Lichtl, A., Lightman, M., Lin, M., Mawhinney, R., Maynard, C., Ohta, S., Pendleton, B., Sachrajda, C.T., Scholz, E., Soni, A., Wennekers, J., Zanotti, J. and Zhou, R. (2011) Continuum limit physics from 2+1 flavor domain wall QCD. Physical Review D, 83 (7), 74508. (doi:10.1103/PhysRevD.83.074508).

Record type: Article

Abstract

We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, [a-1 = 1.73(3) GeV and a-1 = 2.28(3) GeV]. On the coarser lattice, with 243×64×16 points (where the 16 corresponds to Ls, the extent of the 5th dimension inherent in the domain wall fermion formulation of QCD), the analysis of C. Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D 78 is extended to approximately twice the number of configurations. The ensembles on the finer 323×64×16 lattice are new. We explain in detail how we use lattice data obtained at several values of the lattice spacing and for a range of quark masses in combined continuum-chiral fits in order to obtain results in the continuum limit and at physical quark masses. We implement this procedure for our data at two lattice spacings and with unitary pion masses in the approximate range 290–420 MeV (225–420 MeV for partially quenched pions). We use the masses of the π and K mesons and the Ω baryon to determine the physical quark masses and the values of the lattice spacing. While our data in the mass ranges above are consistent with the predictions of next-to-leading order SU(2) chiral perturbation theory, they are also consistent with a simple analytic ansatz leading to an inherent uncertainty in how best to perform the chiral extrapolation that we are reluctant to reduce with model-dependent assumptions about higher order corrections. In some cases, particularly for fπ, the pion leptonic decay constant, the uncertainty in the chiral extrapolation dominates the systematic error. Our main results include fπ = 124(2)stat(5)syst MeV, fK/fπ = 1.204(7)(25) where fK is the kaon decay constant, msMS‾ (2  GeV)=(96.2±2.7)  MeV and mudMS‾ (2  GeV) = (3.59±0.21)  MeV (ms/mud = 26.8±1.4) where ms and mud are the mass of the strange quark and the average of the up and down quark masses, respectively, [ΣMS‾(2  GeV)]1/3 = 256(6)  MeV, where Σ is the chiral condensate, the Sommer scale r0 = 0.487(9)  fm and r1 = 0.333(9)  fm.

Full text not available from this repository.

More information

Published date: 22 April 2011
Organisations: High Energy Physics

Identifiers

Local EPrints ID: 184565
URI: https://eprints.soton.ac.uk/id/eprint/184565
ISSN: 1550-7998
PURE UUID: 994c29db-ba13-4417-8848-4f68d80b4f74
ORCID for J.M. Flynn: ORCID iD orcid.org/0000-0002-6280-1677

Catalogue record

Date deposited: 06 May 2011 08:25
Last modified: 19 Nov 2019 02:00

Export record

Altmetrics

Contributors

Author: Y. Aoki
Author: R. Arthur
Author: T. Blum
Author: P. Boyle
Author: D. Brӧmmel
Author: N. Christ
Author: C. Dawson
Author: J.M. Flynn ORCID iD
Author: T. Izubuchi
Author: X-Y. Jin
Author: C. Jung
Author: C. Kelly
Author: M. Li
Author: A. Lichtl
Author: M. Lightman
Author: M. Lin
Author: R. Mawhinney
Author: C. Maynard
Author: S. Ohta
Author: B. Pendleton
Author: C.T. Sachrajda
Author: E. Scholz
Author: A. Soni
Author: J. Wennekers
Author: J. Zanotti
Author: R. Zhou

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×