Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design
Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design
Arbuscular mycorrhizas, associations between plant roots and soil fungi, are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal filaments extending from the root surface into the soil, increase the volume of soil accessible for plant nutrient uptake. However, no models so far specifically consider individual hyphae. We developed a mathematical model for nutrient uptake by individual fungal hyphae in order to assess suitable temporal and spatial scales for a new experimental design where fungal uptake parameters are measured on the single hyphal scale. The model was developed based on the conservation of nutrients in an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed based on parameter estimation and non-dimensionalisation. An approximate analytical solution was derived using matched asymptotic expansion. Results show that nutrient influx into a hypha from a small capillary tube is characterized by three phases: Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the depletion zone reaches the capillary wall and thus uptake is sustained by desorption of nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held on the capillary wall have been completely depleted. Simulating different parameter regimes resulted in recommending the use of capillaries filled with hydrogel instead of water in order to design an experiment operating over measurable time scales.
experimental design, fungal nutrient uptake, mineral weathering, mycorhizosphere, phosphorus cycling, simulation model
Schnepf, Andrea
b0b2f3f8-50ad-45b6-87b9-2a7ad4e5eca5
Jones, Davey
4bcbe1d2-b439-4386-b114-b7115b0e6d0b
Roose, Tiina
3581ab5b-71e1-4897-8d88-59f13f3bccfe
12 January 2011
Schnepf, Andrea
b0b2f3f8-50ad-45b6-87b9-2a7ad4e5eca5
Jones, Davey
4bcbe1d2-b439-4386-b114-b7115b0e6d0b
Roose, Tiina
3581ab5b-71e1-4897-8d88-59f13f3bccfe
Schnepf, Andrea, Jones, Davey and Roose, Tiina
(2011)
Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design.
Bulletin of Mathematical Biology.
(doi:10.1007/s11538-010-9617-1).
(PMID:21225357)
Abstract
Arbuscular mycorrhizas, associations between plant roots and soil fungi, are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal filaments extending from the root surface into the soil, increase the volume of soil accessible for plant nutrient uptake. However, no models so far specifically consider individual hyphae. We developed a mathematical model for nutrient uptake by individual fungal hyphae in order to assess suitable temporal and spatial scales for a new experimental design where fungal uptake parameters are measured on the single hyphal scale. The model was developed based on the conservation of nutrients in an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed based on parameter estimation and non-dimensionalisation. An approximate analytical solution was derived using matched asymptotic expansion. Results show that nutrient influx into a hypha from a small capillary tube is characterized by three phases: Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the depletion zone reaches the capillary wall and thus uptake is sustained by desorption of nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held on the capillary wall have been completely depleted. Simulating different parameter regimes resulted in recommending the use of capillaries filled with hydrogel instead of water in order to design an experiment operating over measurable time scales.
Text
fulltext.pdf
- Version of Record
Restricted to Repository staff only
Request a copy
More information
Published date: 12 January 2011
Keywords:
experimental design, fungal nutrient uptake, mineral weathering, mycorhizosphere, phosphorus cycling, simulation model
Identifiers
Local EPrints ID: 184659
URI: http://eprints.soton.ac.uk/id/eprint/184659
ISSN: 0092-8240
PURE UUID: dfc4dc49-7cbe-4ad8-8528-e2cd134337f0
Catalogue record
Date deposited: 09 May 2011 08:45
Last modified: 15 Mar 2024 03:31
Export record
Altmetrics
Contributors
Author:
Andrea Schnepf
Author:
Davey Jones
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics