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The vast majority of orthopaedic computational studies only use a single bone model
and attempt to extrapolate results to the population as a whole. This overlooks
the large interpatient variability in bone geometry and quality which is inherently
present and could explain the differing outcomes seen with otherwise comparable
scenarios. A major barrier to correcting this is the substantial challenge involved
in sourcing and generating large numbers of bone models. In order to address this
situation a statistical model of the femur was developed which incorporated both
geometry and material properties. The model generated 3D finite element models
of the whole femur using principal component analysis. An elastic surface matching
registration scheme and a mesh morphing algorithm were developed and applied to
a training set of 46 femurs. Reconstruction tests showed that accurate reproduction
of both geometry and material characteristics could be achieved with the first 35
modes. Sampling the statistical model was able to produce unique, anatomically
realistic femur models with a high quality mesh. This led to a potential tool for the
generation of femur models incorporating material properties and geometry for large
scale multi femur finite element studies.

To test the ability of the model to generate realistic, unique, finite element femurs
it was used as a source of bone models to drive a study on femoral neck fracture risk.
Comparison to previous computational, clinical and experimental work investigating
fracture risk factors revealed that the generated models showed similar characteristics
in fracture location and type. Some geometric and bone quality traits suggested to
increase risk were also supported. This case study developed a fully automated
methodology for running an analysis, from model generation to FE post processing,
on multiple bones with widely varying geometries and material properties.

The potential of the technique was further tested by using it in a study incorpo-
rating a femoral resurfacing implant, requiring the solution of a range of problems
to enable correctly sized femoral components to be positioned appropriately in any
given femur geometry. A fully automated methodology was established to implant
any generated femurs and run an FE analysis. Comparison of the resulting strain
changes through the bone to a previous study where implantation was manual showed
similar trends.

The work described in this thesis shows how statistical modelling has been used
to capture the variation in shape and material present within a set of femurs and
use this to generate a large number of unique, realistic models. The case studies
have described how large scale, fully automated analyses are possible using these
techniques. A method has also been demonstrated to show how orthopaedic implant
testing can be run with these generated bone models, opening up the prospect of far
more extensive computational analyses than have been feasible in the past.



Contents

1 Introduction 1
1.1 Introduction . . . . . . . . ... 1

1.2 Objectives . . . . . . . L 3
1.3 Publications . . . . . .. ..o )

2 Orthopaedic Biomechanics Literature Review 6
2.1 AnatomyoftheHip. . . . . . . ... ... ... ... ... ..., 6
2.2 Anatomy of the Femur . . . . . ... ... ... ... ... ... ... 7
2.2.1 Form of the Femur . . . . . ... ... ... ... ....... 8

2.2.2 Structureof Bone . . . . .. ..o 10

2.2.3 Structure of the Femur . . . . . . ... ... .. ... ... 11

2.3 Hip Contact and Muscle Forces . . . . . .. .. ... ... ...... 13
2.4 Finite Element Modelling . . . . . . ... .. ... ... ... 15

11



3 Generation of a Statistical Model of the Whole Femur 19

3.1 Statistical Modelling (SM) . . . . . .. .. ... ... . ... 19
3.1.1 Development of Statistical Models . . . . . . .. .. ... ... 19
3.1.2 Existing Statistical Modelling Techniques . . . . . . . . . . .. 20
3.1.3  Process for the Construction of a Statistical Model . . . . . . 26

3.2 Data Registration . . . . .. .. ... oo 27
3.2.1 Introduction to Registration - Why is it Needed? . . . . . .. 27
3.2.2 C(lassifications of Registration . . . . . ... .. ... ... .. 27
3.2.3 Rigid Registration Techniques . . . . . .. . .. .. ... ... 28
3.2.4 Non Rigid Registration Techniques . . . . . .. .. ... ... 29

3.3 Generation of Training Data . . . . . . .. .. ... ... ... .... 30
3.3.1 Sourcesof Data . . . . . .. ... ... 30
3.3.2 Methodology for Creation of 3D Models from CT scans . . . . 32
3.3.3 Methodology for Extraction of Material Property Data . . . . 33

3.4 Methodolgy Developed and Applied for Construction of SM of the Femur 35

3.4.1 Overview of Methodology for SM Construction. . . . . . . .. 35
3.4.2 Baseline Femur Model . . . . . . . ... ... ... ...... 37
3.4.3 Registration Strategy . . . . . .. ... 38
3.4.4 Mesh Quality Checks . . . . . .. ... ... 40
3.4.5 Principal Component Analysis - Covariance and Correlation
Approaches . . . . . ... 42
3.5 Results of SM Construction . . . . .. ... ... ... ... ..... 44
3.5.1 Training Data . . . . . . . ... ... oo 44
3.5.2  Assesment of Registration Strategy . . . . ... ... .. ... 45
3.5.3 Interpretation of Eigenmodes . . . . . ... ... ... .... 49

3.6 Construction of New Femur Models and Assessing Model Robustness 51

3.6.1 Methodology for Creation of New Femur Models . . . . . . .. 51
3.6.2 Reconstruction Error . . . . . . ... o000 52
3.6.3 Sampling the Model . . . . ... ... ... ... .. ..... 56
3.6.4 Characteristics of Generated, 'Synthetic’ Femurs . . . . . . . . 59
3.7 Discussion . . . . .. ... 66

3.8 Conclusions . . . . . . . 69

111



4 Femoral Neck Fracture Risk Study 70

4.1 Femoral Neck Fracture Risk . . . . ... ... ... ... ... .... 70
4.1.1  Aim of Femoral Neck Fracture Risk Study . . . . .. ... .. 71
4.1.2  Description of Statistical Model Used in Study . . . . . . . .. 71
4.1.3 Description of Hip Fracture . . . . .. ... ... ... .... 71
4.1.4 Risk Factors for Hip Fracture . . . . . ... .. .. ... ... 73
4.1.5 Outcomes of Hip Fracture . . . . .. ... ... ... ... ... 74
4.1.6 Occurrence Rate, Cost and Projections . . . . . . . ... ... 75
4.1.7 In Vivo Studies of Hip Fracture Risk . . . ... ... ... .. 7
4.1.8 Computational Studies of Hip Fracture Risk . . . . . . . . .. 80

4.2 Methodology . . . . . . . ... 84
4.2.1 Generation of Large Set of Femur Models From Statistical Model 85
4.2.2  Subject Specific Fall Loading Conditions . . . . . . . .. ... 86
4.2.3 Subject Specific Loading . . . . . .. ... 87
4.2.4  Finite Element Simulations . . . .. .. ... ... ... ... 88
4.2.5 Metrics Extracted from Statistical Model . . . . . . . . . . .. 89

4.3 Results. . . . . .. 90
4.3.1 Overview of Results. . . . . . .. ... ... .. ... ..... 90
4.3.2 Range of Femurs Generated . . . . . . ... .. .. ... ... 91
4.3.3 Predicted Risk Factors . . . . . ... ..o 97
4.3.4 Predicted Fracture Locations . . . . . ... ... ... .... 97

4.4 Discussion . . . . ... 98

4.5 Conclusions . . . . . . . .. 102

v



5 Automated Methoodology for Virtual Femoral Resurfacing 103

5.1 Computational Analysis of Femoral Resurfacing Implants . . . . . . . 103
5.2 Resurfacing Arthroplasty . . . . . . . . . .. ... L. 105
5.2.1 Brief History of Joint Replacements . . . . . . . .. ... ... 105
5.2.2 Reasons for Joint Replacement and Procedure Rates . . . . . 107
5.2.3 Failure of Femoral Resurfacings . . . ... ... .. ... ... 108

5.2.4 Computational Studies of Femoral Resurfacing Arthroplasty . 110

5.3 Methodology . . . . . . . .. 112
5.3.1 Generation of a Set of Femurs for Analysis from a Statistical

Model . . . . . . o 113

5.3.2 Technique for Virtual Implantation . . . . ... ... ... .. 113

5.3.3 Subject Specific Finite Element Analysis . . . . . . ... ... 117

5.3.4 Automated Post Processing . . . .. ... .. ... ... ... 118

54 Results . . . . . . . 119

5.4.1 Assessment of Implantation Methodology . . . . . . .. .. .. 119

5.4.2 Predicted Trends in Strain Alteration Through Proximal Femur 121
5.4.3 Analysis of Outlying Strain Results . . . . .. ... ... ... 123

5.4.4 Influence of Implant Size on Load Transfer Through the Femur 125

5.5 DIsScussion . . . . ..o 127
5.6 Conclusions . . . . . . . 132
6 Conclusions and Future Work 133
6.1 Background to the problems motivating this work . . . . . . .. . .. 133

6.2 Aims of this work and assessment of whether they have been achieved 134
6.3 Limitations . . . . . . . . . . e 137

6.4 Future Work . . . . . . . . 140



A Further Details of the Registration Strategy 142

A.1 Registration Scheme . . . . . . . ... ... ... L. 142
A.1.1 Surface Registration . . . . .. ... ... ... ... ... 143

A.1.2 Volume Mesh Morphing . . . . .. ... ... ... ...... 147

B Characteristics of 21 Femur Statistical Model 149
B.0.3 Interpretation of Eigenmodes . . . . . ... .. .. ... ... 149

B.0.4 Ability to Describe Training Data . . . . . . .. ... .. ... 152

B.0.5 Mesh Quality Checks . . . . . .. ... ... ... 154

C Images of Training and Generated Femurs 155
D Table of Assumptions 156

E European Society of Biomechanics Abstract 2010: Influence of Im-
plant Size 157

vi



List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

29

3.1

3.2

3.3

The Hip Joint [16] . . . . . . . ... . o

Hip motions. a) neutral, b) flexion, ¢) abduction and d) lateral rota-
tion [17] .« . . . .

[lustration of anatomical planes of motion and terms indicating anatom-
ical location [18] . . . . . . . . ..

Anterior view of the superficial (left) and deep (right) muscles of the
D [19] . o o oo o

Photographs of the human femur in different orientations (Sawchuck
and Padiack 2003) . . . .. ... Lo

Diagrams of the femur illustrating (a) neck shaft angle [21] and (b)
anteversion angle [22] . . . . . . ..

Section through cortical bone 23] . . . . . . .. ... 0L
Frontal longitudinal midsection of the femur [21] . . . . . . . . .. ..

Diagram of the gait cycle [26] . . . . . ... ... ... ...

[lustration of iterative fitting of a snake contour onto an image of
a heart ventricle. (a) intensity CT image, (b) Edges detected, (c-f)
iterations of contour from initial shape guess [64]. . . . . . ... ...

Example of ASM of a hand. (a) training set of example shapes, (b)
landmarking of examples and (c) illustration of the effect of the first
three principal modes of variation [8]. . . . . . . . ... ... ...

[lustration of the method defined by Couteau et al. [14]. Showing
superimposition of a grey 3D reference mesh with a new target femur
defined by a cloud of points (left), and the final mesh generated for
the target femur from the reference (right). . . . . . . . .. ... ...

Vil



3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

[lustrations of the work of Kaus et al. [73], showing the proximal
femur surface model (left) and the identification of an 'unseen’ femur
instance from a CT image using the model (right). . . . . . . . .. ..

[lustration of the work of Rajamani et al. [75], showing two attempts
to match their proximal femur model to real femurs described by points
gathered from ultrasound data. Where the predicted shape (red) were
compared to registered surface models, segmented from CT scans of
the femur (gold). . . . . . . . ... o

Results of the FE simulation run by Querol et al. [15] on a femur
generated from their statistical model by varying, from left to right -2
s.d. to +2 s.d. from the average. The figure shows the relative bone
density (top) and the von misses stress (MPa) produced by a 1600N
vertical load (bottom). . . . .. ... Lo

[lustration of the stages required to segment a femur from CT scans

using Avizo™ . . ..

Graph showing a range of calculated calibration lines for different CT
files. . . . .

[lustration of the target mesh (black) with morphed baseline mesh
(grey) superimposed, showing the accuracy achievable by the registra-
tion scheme. . . . . . ... Lo

The baseline meshed geometry. Shows a section of mesh through the
femoral head and the transition in mesh size between the proximal
femur and femoral shaft. . . . . .. .. ... ...

Evidence of mesh folding and degredation. . . . . . .. . . ... ...

[lustrations of the registered mesh quality achieved with the original
algorithm (left) and the improved algorithm (center). The surface
mesh quality distribution of the two schemes is plotted on the right,
as measured by triangle aspect ratio. . . . . ... ...

Graphs showing the variation in femur geometries present in the train-
ing data set as a percentage difference to the baseline femur of four
geometry metrics; Neck Axis Length (NAL), Femoral Head Diameter
(FHD), Neck Shaft Angle (NSA) and Femur Length. . . .. ... ..

Boxplot of final surface registration errors over all training set mem-
bers, calculated as the shortest euclidean distance between each regis-
tered surface node and the target surface. . . . . . . .. ... ... ..

Plot of the surface element aspect ratio score of the baseline mesh com-

pared to the mean, minimum and maximum scores of the registered
training geometry surface meshes. . . . . . ... ...

viil



3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

Plot of the solid element aspect ratio score of the baseline mesh com-
pared to the mean, minimum and maximum scores of the morphed
training geometry meshes. . . . . . .. ...

Loading condition applied simulating stance. . . . . . . . ... .. ..

Plot of morphed and manually meshed instances of the same geometry;,
comparing material modulus representation and strain distribution re-
sulting from a 1x body weight load applied vertically to femoral head,
simulating one-legged stance. . . . . . ... ... L0

Geometry and material property changes with first 3 modes, varied
between + 3 standard deviations, acting in isolation. . . . . . . . ..

Figure shows the proximal portion of three generated femurs. A good
quality mesh (left) is produced when the model bounds are set cor-
rectly, however mesh degeneration can occur (right) if this does not
happen. . . . . ..

Reconstruction error of geometry (left) and elemental modulus (right)
with increasing eigenmodes. . . . . . .. ... L.

Plot of modulus (top) and strain (middle) distribution in a section
through the proximal femur with 20, 30, 33 and 35 modes included
and in the original femur being reconstructed (far right), following a
stance loading FE simulation. All plots were made on a generic femur
model so the geometric changes with modes were not included. Plots
of percentage bone strain volume distribution through the whole femur
are also shown (bottom). . . . . .. ... ...

Figure showing the eigenvalue weightings of the training set (blue dots)
superimposed onto the sampling space created by a +3s.d. range (grey

Boxplots of the NSR and SDR scores for reconstructed training set
femurs with increasing numbers of eigenmodes, using a set of shape
parameters ‘cropped’ at £3s.d. . . .. ...

Histogram illustration of shape of the distributions of the first six
eigenmodes, which together account for over 70% of the training set
variation. . ... Lo

[lustration of the key proximal geometric measurements extracted

from each model and the three proximal volumes examined for ma-
terial property characteristics. . . . . . . . ... ... ... ...

1X

61



3.27

3.28

3.29

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Plots comparing statistics taken from the statistical model and train-
ing set to data from the National Health and Nutrition Examina-
tion Survey (NHANES) findings 13,615 subjects [107]. Plots com-
pare an age matched subgroup of the NHANES population contain-
ing 5803 subjects and a generated femur population of 1000 models
.Top: scatter of femoral shaft diameter against intertrochantic width.
Center: scatter of femoral shaft diameter against femoral neck diam-
eter. Lower: Plot of standing height cumulative distribution between
(heights in mm). . . . . . .. ... 63

Scatter graphs comparing the ranges of various geometric and material
metrics seen in the 1000 Gaussian generated data set (black dots) in
relation to the original 46 training femurs (red squares). . . . . . . . . 64

Scatter graphs comparing the ranges of various geometric and material
metrics seen in the 1000 Gaussian generated data set (black dots) in
relation to the original 46 training femurs (red squares), examining the
changes in NAL, ITW and mean head modulus with changes in FHD. 65

[lustration of hip joint capsule (left) [16], major blood supply paths
in the proximal femur (center) and the main fracture types seen in the
proximal femur (right). . . . .. ... .. o000 oo 72

Graph illustrating the difference in both overall bone mass and rate
of bone mass loss in men and women. The data is taken from a study
of 3062 men and 4558 women, measuring BMD in the distal forearm
using x-rays [130]. . . . . . . .. 74

(a) Graph of the mortality rate for different age groups following hip
fracture of 1000 patients admitted to hospital. (b) Figures illustrating
the residency of patients who suffered from intracapsular (top) and
extracapsular fracture (bottom) in the year following fracture [132]. . 75

[Mlustrations of the geometric measurements taken by various clinical
studies;(a) Theobald et al. [103],(b) Peacock et al. [143], (c) Bergot et
al. [144] and (d) Michelotti et al. [106]. . . . . . . ... ... .. ... 7

FE model loading conditions defined by Lotz et al. [46] for (a) stance
and (b) fall, alongside images of corresponding experimental setup
used by Keyak et al [51] for (c) stance and (d) fall. . . . . ... ... 80

Keyak et al. [150]:(a) Example of FE models used, 8447 cubic elements
and 10652 nodes. Fracture locations predicted by FE model for (b)
stance and (c) fall loading, and radiographs of fractures produced in
testing by (d) stance and (e) fall loading. . . . . . .. ... ... ... 81

[lustrations of the models and simulations run by Majumder et al. [50].(a)
FE pelvis-femurs complex, (b) pelvis-femur complex with surrounding
soft tissue and (c) fall configuration showing body impact with the floor. 82



4.8 Tllustration of the loading conditions applied to each femur to simulate
afall . . . ..

4.9 BMI distribution curve for the adult US population, estimated from a
national survey in 2002 [153]. . . . . . ... ...

4.10 Illustration of assignment of BMI and weight to individual femurs,
based on their length and related predicted subject height . . . . ..

4.11 Ilustration of metrics taken from femur models. Main areas of interest:
A - lower femoral head, B - femoral neck, C - intertrochantic. Measures
include: head and neck diameters, neck axis length, neck shaft angle,
intertrochantic width, shaft width and anteversion angle. . . . . . . .

4.12 Plot of the volume of bone exceeding yield strain in each of the three
defined regions for all 28 failed femurs. Shown as (a) the percentage

volume of bone and (b) the actual volume of bone in cm®. . . . . ..

4.13 Box plots illustrating the strain in the head region by percentage vol-
ume. The top plot shows the 28 fracture risk group, the middle plot
the 972 not at risk group and the lower plot the training set results.
The box shows the median (red), upper and lower quartile (blue) and
the whiskers extend to 1.5x the interquartile range, with values be-
yond this shown by crosses (red). . . . ... .. ... ... ... ...

4.14 Box plots illustrating the strain in the neck region by percentage vol-
ume. The top plot shows the 28 fracture risk group, the middle plot
the 972 not at risk group and the lower plot the training set results.
The box shows the median (red), upper and lower quartile (blue) and
the whiskers extend to 1.5x the interquartile range, with values be-
yond this shown by crosses (red). . . . . . ... .. ... ... ...,

4.15 Box plots illustrating the strain in the head region by percentage vol-
ume. The top plot shows the 28 fracture risk group, the middle plot
the 972 not at risk group and the lower plot the training set results.
The box shows the median (red), upper and lower quartile (blue) and
the whiskers extend to 1.5x the interquartile range, with values be-
yond this shown by crosses (red). . . . ... .. ... ... ... ...

4.16 Illustration of the areas suffering highest strain following fall loading.
(a) Intertrochantic, (b) anterior subcapital and (c¢) multiple regions.
Areas highlighted exceed 1.5% strain . . . . . ... ... ... ....

5.1 Ilustration of resurfacing hip replacement (top) and total hip replace-
ment (bottom), showing required surgical cuts (left) and representa-
tion of successful implantation (right). Adapted from images available
at www.mayoclinic.com and www.portlandhipresurfacing.com.

x1

105



5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

[ustration of how the progression of osteoarthritis affects a joint, from
healthy (A) through mildly affected (B) to severely osteoarthritic (C),
images adapted from Campaign [161]. . . . . . . ... ... ... ... 107

Radiographs of femoral resurfacing components showing: left - neck
fracture with underlying aseptic loosening [163], center - degeneration
of bone stock in femoral head beneath resurfacing component [164] and
right - notched femoral neck (superiorly) with fracture propagating
from the superior head-neck junction [162]. . . . . . . . . ... .. .. 108

Radiograph of femoral neck fracture following resurfacing procedure [165]109

[ustration of methodology used to identify implant alignment by fit-
ting spheres to the proximal femur. (a) sphere fitted to the femoral
head - indicating femoral head diameter and natural head center, (b)
two spheres fitted to the upper and lower parts of the femoral neck,
(c) the centres of the two spheres are found and (d) indicate the neck
axis line. . . . . . . L 114

Images of implantation process. From left to right: Converting femur
to a solid geometry and splitting the femur into proximal and dis-
tal sections, cutting femoral head external profile, generating cement
layer, cutting the guide stem hole, position femoral implant and finally
meshing components. . . . . . . .. ..o 115

Cross section through a generated, automatically implanted femur af-
ter remeshing, illustrating the changes in mesh resolution from implant
to cement to bone. . . .. ..o 116

lustration of the loading condition defines by Heller et al. [33] . . . . 117

[ustration of the sections defined in each femur to allow the changes
in strain through the proximal femur to be analysed. . . . .. .. .. 118

[lustration of a sample of generated femur instances of varying mor-
phology with automatically sized, aligned and implanted femoral resur-
facing components. Top: external view of each model. Bottom: sec-
tion views through femoral head showing modulus distribution, im-
plant and cement layer. . . . . . ... ..o 120

Graph illustrating the percentage distribution of implant sizes assigned
by the automated methodology described to the femur population de-
veloped in this study (left), and the percentage of implant sizes used
clinically (right). Clinical data is taken from global sales figures (ex-
cluding data from the US). . . . . . . . ... ... .. ... 121

xii



5.12

5.13

5.14

5.15

Al

A2

B.1

B.2

B.3

B.4

Boxplot of the average change in strain seen by Radcliffe et al. [176]
across 18 proximal sections for 16 manually implanted femurs (top)
and across 16 sections of the proximal femur illustrated for 400 auto-
matically implanted, generated femur models (lower). Positive values
indicate an increase in strain, negative values a decrease. . . . . . . .

Images of highest strain regions following resurfacing, showing elevated
strains through the femoral neck at the proximal implant rim and on
either side of the implant stem. . . . . . . .. ... ... ... ....

[ustration of both implant size 5 and 11 implanted into correctly
sized femurs, showing external view and a cross section through the
proximal femur. . . . .. . ...

Boxplots of mean percentage change in strain results by section for the
implant 5 and implant 11 groups of femurs, for those sections where
statistical significant differences were seen. . . . . . . . .. ... ...

Figure A1:The baseline meshed geometry. Shows a section of mesh
through the femoral head and the transition in mesh size between the
proximal femur and femoral shaft . . . . . . ... ... ... .. ...

Target mesh (dark) with morphed baseline mesh (light) superimposed,
showing the accuracy achievable by the registration scheme . . . . . .

Plots of eigenvalue percentage. Shows percentage for each mode (left)
and cumulative percentage variation explained (right) for the covari-
ance and correlation methods. . . . . . ... ..o

Geometry and material property changes with first 3 modes of varia-
tion acting in isolation, produced using the correlation method.

Boxplot of mean Euclidean distance and mean modulus error between
corresponding points when reconstructing a known instance with an
increasing number of eigenmodes for both the covariance (left) and
correlation methods (right). . . . .. ... ... ...

Graphs of the percentage cumulative element mesh quality for (a)
distortion metric and (b) normalised shape ration. Solid lines shows
mean value, dashed lines indicate min and max bounds and dotted
line shows original baseline mesh quality. . . . . . . .. .. ... ...

xlil

150

154



List of Tables

2.1

2.2

2.3

2.4

3.1

3.2

3.3

4.1

4.2

4.3

Table of primary and secondary muscles responsible for different hip
motions [20] . . . . ... 8

Table of human cortical bone elastic modulus [24]. Tllustrating the
transversely isotropic nature of cortical bone. . . . . . . . .. ... .. 11

Table of cancellous bone modulus, measured in different locations in
the body [25]. . . . . .. 11

Hip joint reaction force and torsional moment for different activities,
showing the range in peak forces between subject [31], jogging(1 sub-
ject) [30], single limb stance [34, 35]. . . . .. ... ... ... ... 15

Table defining mesh quality criteria and related level for warning and
failure as defined by ANSYS©. . . . . .. ... ... ... ..., . 41

Percentage variation captured by first 10 eigenmodes computed using
the covariance and correlation methods. . . . . . . . . . ... ... .. 49

Table of geometric and material metrics for 1000 femurs generated by
Gaussian sampling, 1000 by uniform sampling and for the original 46
training femurs. Both sampling methods used the first 35 modes and
a range of +£3 standard deviations of the mean. The table shows the
mean and spread (max-min) results for each of these groups. . . . . . 62

Table illustrating the clinically seen proportion of fracture locations [115]. 72

Table showing projected numbers of hip fractures globally (000) per
year. A - Assumes unchanging age and sex specific incidence B -
Assumes a 1% increase in age and sex specific incidence worldwide,
C - Assumes no secular change in the US and N. Europe but a 2%
increase in age and sex specific incidence elsewhere and D - Assumes
no secular changes in US and N. Europe but 3% increase in age and
sex specific incidence elsewhere [137]. . . . . .. .. ... ... ... 76

Table describing hip fracture observations in different countries. . . . 77

Xiv



4.4

4.5
4.6

4.7
4.8

4.9

4.10

5.1

5.2

5.3

B.1

B.2

B.3

Table showing the effect of anteversion on BMD and geometrical mea-
surements of the proximal femur assessed by DXA [147]. . . . . . .. 78

Table describing several clinical studies investigating femoral fracture. 79

Table describing several experimental and computational studies in-
vestigating femoral fracture. . . . . . .. ..o 83

Table listing the metrics extracted from all femurs. . . . . . . . . .. 95

Minimum, mean, maximum and standard deviation of the geometric
metrics, calculated across all 1000 generated femurs. . . . . . . . .. 96

Results of the most significant material property and geometric metrics
found when comparing the failed and not failed model groups. The
minimum, maximum and mean of each group is shown. A, B and C
indicate the section of the femur. . . . . .. ... ... ... 97

Table showing the percentage of femurs identified with various fracture
location origins. Comparing the results seen by Keyak et al [150] for
the 15 femurs where experimentally identifiable failure locations were
compared to FE predictions, with the failure locations predicted by
this study using femur models generated from a statistical model. . . 99

Table of the mean results for the most significant metrics compared
between the group of femurs with outlying results in the femoral head
compared to the rest of of the femurs analysed, showing the results for
two outlier groups, those with the most strain shielding in the head
(maximum) and those with the least (minimum). . . ... ... ... 124

Table of the mean results for the most significant metrics compared
between the group of femurs with outlying results in the femoral neck
compared to the rest of the femurs analysed, showing the results for
two outlier groups, those with the most reduced neck strain (maximum
1) and those with the most increased (maximum 1). . . . . . ... .. 125

Table containing the mean and extreme results for the changes in
strain in the femoral head and neck sections which were found to show
significantly different results between the large and small implant sizes. 128

Percentage variation captured by first 10 eigenmodes computed using
the covariance and correlation methods. . . . . . . . . ... ... ... 149

Table showing the mean value of various geometric measurements
taken from 100 femurs generated with bounds of 1 and 1.5 standard
deviations, at 7, 8, 9 and 10 included modes, alongside the mean values
of the statistical model training data. . . . . . . .. .. ... ... .. 152

Table showing the spread in values of various geometric measurements
taken from 100 femurs generated with bounds of 1 and 1.5 standard
deviations, at 7, 8, 9 and 10 included modes,alongside the mean values
of the statistical model training data. . . . . . . . ... .. ... ... 153

XV



DECLARATION OF AUTHORSHIP

I, Rebecca Bryan, declare that the thesis entitled 'Large Scale, Multi Femur Com-
putational Stress Analysis Using a Statistical Shape and Intensity Model” and the
work presented in the thesis are both my own, and have been generated by me as
the result of my own original research. I confirm that:

e this work was done wholly or mainly while in candidature for a research degree
at this University;

e where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated;

e where I have consulted the published work of others, this is always clearly
attributed;

e where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

e [ have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

e parts of this work have been published as:
Bryan, R., Mohan, S., Hopkins, A., Galloway, F., Taylor, M. and Nair,P.B.

Statistical modelling of the whole human femur incorporating geometric and
material properties, Medical Engineering and Physics 32(1), 57-65

Bryan, R., Nair, P.B., Taylor, M., 2009. Use of a statistical model of the whole
femur in a large scale, multi-model study of femoral neck fracture. Journal of
Biomechanics 42(13), 2171-2176

xXvi



Acknowledgements

I owe a great deal of thanks to my supervisors Professor Mark Taylor and Doc-
tor Prasanth Nair for their seemingly endless patience and enthusiasm towards this
project over the last three years. Despite coming across some significant hurdles they
were both always keen to listen and advise, never failing to encourage me to achieve

as much as was possible at every stage.

I am extremely grateful to my colleagues who have given up their time to con-
tribute to my thesis. Without the inputs made by Surya Mohan, Andrew Hopkins
and Francis Galloway I would not have been able to reach the difficult goals of the
project. By tapping into their skills, outside my areas of training, I was able to
progress far more quickly than if T had been left to work alone. I also acknowledge
the funding I have received from the Technology Strategy Board UK and DePuy Ltd,
which have ultimately allowed me to complete this work but have also given me the

opportunities to travel to conferences around the world.

My final thanks go to my family and friends, you have kept me sane and not
allowed me to give up at any point. Whether colleagues who followed my PhD based
rantings or those who politely nodded and sympathised, you have all had to put up

with far too many conversations about femurs in the last three years - I apologise.

Xvil



Chapter 1

Introduction

1.1 Introduction

The vast majority of orthopaedic computational studies are performed using a single
bone model and then attempt to extrapolate their results to the population as a
whole. This overlooks the large interpatient variability in bone geometry and bone
quality which is inherently present between people, and could explain the differing
outcomes seen with otherwise comparable scenarios. For example, why when two
people have a comparable fall, one may suffer a bone fracture and the other not
or why a joint replacement can be markedly more successful in one patient than
another. For both cases, bone structure and quality have been shown to be highly
significant in determining success or failure [1, 2, 3|, along with surgical skill in the
later case [4]. Currently there are no commonly used methods for running an analysis
which incorporates naturally occurring variations without large computational cost
and significant manual input, despite it having been recognised that by omission

quantitative accuracy is sacrificed [5].

Of the few papers which have looked at intersubject variability two have incor-
porated this in attempts to predict implant stability. Pancanti et al [6] used data
recorded by instrumented femoral prostheses to apply individualised loading condi-
tions to a cemented hip model. Simulations of various activities, such as walking,
fast walking, stair climbing/descent and bending, were then carried out. The model
investigated the micro-motions produced at the bone-implant interface, an early in-
dicator of failure if too great, and showed that inter patient variability was a more
significant factor than the type of activity. However the study still assumed an opti-

mal surgical outcome, resulting in a perfectly fitted implant, and used a generic bone
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model with no incorporation of differences in bone quality between subjects. Wong et
al [3] deterministically varied bone density within a femur model to simulate different
grades of bone quality, then analysed the resulting micro-motion and strain produced
at the bone-implant interface under normal walking loads. The study showed that
these factors are greatly influenced by the overall stiffness of the femur and concluded
that in order for FE testing to be any more than comparative, a wide range of patient

models must be used.

The need for multiple models in computational testing has also recently been
supported by Radcliffe et al [7], whose work investigated the number of femur mod-
els required to represent the variation present within a set of patient data. This
study concluded that the time consuming and laborious task of creating multiple
models from sources such as Computer Tomography (CT) scans was a significant
limitation, making multi subject based finite element (FE) studies rare. It has been
estimated that an optimal time scale for producing and solving a single proximal
femur FE model from the original CT scan is ~8 hours [7]. Without robust and
reliable automated model generation techniques the time consuming and laborious
task of creating multiple models from sources such as Computer Tomography (CT)
scans is a significant limitation preventing multi subject based Finite Element (FE)
studies becoming commonplace. In addition there is often a limited availability of
CT data as they are not routinely taken before or after joint replacement operations.

When carried out they are localised to reduce the radiation exposure to the patient.

This work investigates the potential of developing a statistical model to use as a
source of FE bone models as a possible solution to the problem of model generation
and limited data availability. The basis of the technique lies in statistical deformation
models which have been widely used and developed in computer vision to capture
the variations possible within a class of shapes. Commonly methods are based on
Principal Component Analysis (PCA). These include active shape models (ASM) [§],
where the shape is represented by manually or semi-automatically placing landmark
points along boundaries, and active appearance models (AAM) [9] which incorporate
the texture of the whole image into the model. The resulting statistical model can
then be used to identify the shape in a new image or to generate a unique instance of
the shape. However, because of the field in which these and other similar techniques
have been developed they are often only suited to two dimensional images. Extend-
ing them to three dimensional shapes creates a real challenge in establishing accurate
correspondence between any landmarked points and in the case of AAM leads to a
dramatic increase in complexity. Registration of each of the training images must
therefore be carried out in order for the model to be built. For many applications

rigid registration techniques have proved sufficient, such as the Iterative Closest Point
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(ICP) algorithm [10], used by Vos et al [11] to create a statistical model of bones in
the hand, which has the advantage of not requiring a predefined relationship between
points on the objects being registered. This is not true for more complex biologi-
cal applications such as comparing breast and brain MRI images [12, 13] where the
shapes are highly deformable. In these cases non-rigid registration techniques have
been required based on computationally demanding free-form deformation models.
An alternative mesh matching approach was developed by Couteau et al [14] to auto-
matically generate 3D, patient specific, Finite Element (FE) meshes of the proximal

femur.

The majority of statistical models focus on shape. An exception is Querol et al.
[15], where non-rigid registration in the image space was employed in conjunction with
principal component analysis to construct a statistical shape and intensity model of
the proximal femur based on only 11 subjects. In theory image space registration
schemes which make use of intensity based similarity metrics can lead to a more
realistic statistical shape and intensity model. However, this approach is computa-
tionally expensive for high resolution images (such as good quality CT scans) and
the statistical model output is not directly usable in FE, each instance would require

meshing after generation.

1.2 Objectives

The broad aims of this project are to produce a three dimensional statistical model of
the human femur, incorporating both geometry and material property distribution,
and go on to use this in large scale computational studies. The model will be created
from real patient data and hopes to capture as wide a range of inter subject variability
as available data will allow, thus it will be able to reproduce the variation seen in a
patient population and allow the affect of natural variability to be incorporated into

computational analysis.

The model generation stage will require the creation of a whole process to turn
CT data sets into a statistical representation which can then be sampled to output
realistic femurs. Once constructed it will be used to generate large numbers of models
by sampling through the variability it captures. It is hoped that this will allow many
times more femur models to be produced than was needed to create it, each of which
will be unique. In order to make these models as useful as possible the model will
ideally produce FEA ready meshes. This will require the mesh structure to be fine

enough to accurately capture changes in geometry and material property, and for the
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mesh quality to be sufficiently robust to not require remeshing before analysis can be
done. It is critical that the model only produces femurs which have plausible shape
and bone density distributions, and that it has the ability to generate models which

represent the whole range of variables present in the real femurs used to train it.

To test how successful the statistical model managed to be, it was used to drive
a study on femoral neck fracture. Hip fracture is a potentially devastating injury
to suffer, particularly for the elderly, leading many people to have investigated the
problem, often trying to identify risk factors related to femoral bone quality and
geometry [1]. By performing a multi femur study using the statistical model as a
source of bones it was possible to compare any risk factors this identifies to the wealth
of clinical and computational data available. It was important that it was possible
to set up a high level of automation in performing this study, if manual intervention
was needed then the methodology would have become impractical to use when large

numbers of femurs were tested.

The ultimate aim of this work is to be able to use a statistical model of the in-
tact femur to test orthopaedic implants by developing an automated methodology
for implanting components into any given model. The main additional challenge of
this target, as compared to the previous study, is to be able to align and fit a cor-
rectly sized component accurately into each bone, as poor positioning will bias any
findings. As with the simulations on the intact femurs it will be critical that the
processes of model generation and FE simulation are fully automated. By replicat-
ing the loading and analyses of a previous study, where implantation was manually
performed, it is hoped that the process developed in this work will be shown to pro-
duce realistic results and so open up the prospect of population based analysis to
wider orthopaedic testing. Further to this, the techniques potential to analyse large
numbers of models will enable meaningful statistical analysis to be carried out to
gain a better understanding of the complex, multifactorial influences behind implant

performance.
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1.3 Publications

The work described in this thesis has led to the following publications:

e Chapter 3: Generation of a Statistical Model of the Whole Femur

Bryan, R., Mohan, S., Hopkins, A., Galloway, F., Taylor, M. and Nair,P.B.,
2010. Statistical modelling of the whole human femur incorporating geometric

and material properties, Medical Engineering and Physics 32(1), 57-65

Bryan, R., Mohan, S., Taylor, M., Nair, P.B., 2008. Generation of a Statis-
tical Model of the Whole Femur Incorporating Shape and Material Property
Distribution. 54th Orthopaedic Research Society, San Francisco.

e Chapter 4: Femoral Neck Fracture Risk Study

Bryan, R., Nair, P.B., Taylor, M., 2009. Use of a statistical model of the whole
femur in a large scale, multi-model study of femoral neck fracture. Journal of
Biomechanics 42(13), 2171-2176

Bryan, R., Nair, P.B., Taylor, M., 2009. Use of a Statistical Model of Geometry
and Material Properties in a 1000 Femur Study of Femoral Neck Fracture Risk.
55th Orthopaedic Research Society, Las Vegas.

e Chapter 5: Automated Implantation of Femoral Resurfacing Implant

Bryan, R., Nair, P.B., Taylor, M. An Automated, Large Scale Finite Element
Study into the Influence of Femoral Head Resurfacing on Load Transfer in the

Proximal Femur, submitted to Journal of Biomechanics

Bryan, R., Nair, P.B., Taylor, M., 2010. Influence of Femoral Head Resurfac-
ing on Load Transfer in the Proximal Femur - An Automated FE Study of 260
Femurs. 56th Orthopaedic Research Society, New Orleans.

Bryan, R., Nair, P.B., Taylor, M., 2010. Influence of Head Diameter on Load
Transfer in the Resurfaced Femoral Head - A Finite Element Study. 56th
Orthopaedic Research Society, New Orleans
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Orthopaedic Biomechanics

Literature Review

2.1 Anatomy of the Hip

Figure 2.1: The Hip Joint [16]

The hip is a ball and socket joint, where the femoral head, the ’'ball’; rotates
within the acetabulum, the ’socket’ (Fig. 2.1). The joint is inherently stable due to
this design and its reinforcement by the strong ligaments and muscles which surround
it. The most significant ligament structures in maintaining joint stability are the
ligamentum teres and the transverse acetabular ligaments which hold the femoral
head in the socket.

The hip is a highly versatile joint, capable of a wide range of motions. The
maximum range of passive motions, measured with the knee extended to 120°, are
120° flexion mirrored by 10-30° extension (Fig. 2.2b) and 45-50° abduction mirrored
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Figure 2.2: Hip motions. a) neutral, b)  Figure 2.3: Illustration of anatomical
flexion, ¢) abduction and d) lateral rota-  planes of motion and terms indicating
tion [17] anatomical location [18]

by 20-30° adduction (Fig. 2.2c). Medial-lateral rotation (Fig. 2.2d) ranges from 42-

50°, measured with the knee at 90° of flexion.

The muscles responsible for active control of hip motions are illustrated below
(Fig. 2.4). There are a large number of muscles which act on the hip, each of whom
are often primarily associated with one motion but may have a secondary role in
another. In addition, no single muscle is responsible for any movement. Table 2.1
reflects this by grouping muscles by the movement they influence and indicating

whether this is their primary or secondary function.

2.2 Anatomy of the Femur

The femur is the longest bone in the human body. The morphology of the femur
has developed in response to the demands placed upon it by its function. Primarily
the femur must transmit load from the acetabulum to the tibia but it also provides
insertions points for the major muscles which control and stabilise the motions of
the hip and knee joints. These requirements result in forces begin unevenly applied
through the femur, which is reflected in both the internal microstructure and external

geometry of the bone.
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Figure 2.4: Anterior view of the superficial (left) and deep (right) muscles of the
hip [19]

‘ Function ‘ Primary Muscles ‘ Secondary Muscles ‘
Ilipsous Pectineus
_ Rectus Femoris Adductor Longis
Flexion Tensor Fascia Lata Adductor Magnus
Sartoris Gracilis
Gluteus Maximus Gluteus Medius
' Biceps Femoris Adductor Magnus
Extension Semitendinosus Piriformis
Semimembranosus
Pectineus
Adductor Brevis
. Adductor longus
Adduction Adductor Magnus
Gracilis
Gluteus Medius Gluteus Maximus
Abduction Gluteus Minimus Satorius
Tensor Fascia
Oburator Internus + Externus Gluteus Medius
. Gemellus Superior + Inferior | Gluteus Minimus
Lateral Rotation Quadratus Femoris Gluteus Maximus
Piniformis
. . Gluteus Medius
Medial Rotation Tensor Fascia Lata

Table 2.1: Table of primary and secondary muscles responsible for different hip mo-
tions [20]

2.2.1 Form of the Femur

The femur can be described in three sections; the proximal femur, the femoral shaft

and the distal femur. The femur is bowed in the sagittal plane and, when standing,
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Figure 2.5: Photographs of the human femur in different orientations (Sawchuck and
Padiack 2003)

inclined laterally in the coronal plane (Fig. 2.5). This results in the shaft of the
femur being inclined by approximately 5-7° from the vertical. The femoral neck axis
is rotated in relation to both the coronal plane, indicated by the anteversion angle,

and the shaft axis, indicated by the neck shaft angle (Fig. 2.6).
a) b)

) Cervical Plane

True Angle of
Anteversion

Neck-Shaft
Angle

T

Diacondylar Plane

Figure 2.6: Diagrams of the femur illustrating (a) neck shaft angle [21] and (b)
anteversion angle [22]

The prominent features of the proximal femur are the femoral head, femoral
neck, greater and lesser trochanters (Fig. 2.5). The head is two thirds of a sphere
with an indent, the fovea capitis femoris, just below and behind its center where

the ligamentum teres attaches. It is covered with smooth articular cartilage which
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provides the femoral side of the bearing surface of the hip joint. The neck joins
the head to the body of the femur, merging with the lesser trochanter at its inferior
limit and with the base of the greater trochanter at its lateral limit. The trochanters
are growths which support the muscles controlling rotation of the thigh, they are
irregularly shaped with rough surfaces where muscles attach to the bone and vary
greatly in form from person to person. The greater trochanter is located laterally
and backward of the head and, in an adult, approximately 1cm lower at its superior
point. The lesser trochanter is located at the lower and posterior part of the base of
the neck [16].

The shaft of the femur is close to cylindrical, marginally broader at the top than
the center and with a subtly arched external profile on the posterior side. The
deviation from cylindrical is caused by a ridge called the linea aspera, which runs

longitudinally down the middle third of the posterior surface of the femur [16].

At the distal end the femur diverges into the medial and lateral condyles which
form the superior portion of the knee joint. Anteriorly the condyles protrude slightly
and are separated by a shallow depression called the patella surface, which is the
articulating surface between the femur and patella. Posteriorly the condyles protrude
significantly and are separated by the intercondyloid fossa which is a deep, rough
surface notch providing attachment points for the cruciate ligaments. The lower and
posterior surfaces of the condyles articulate as part of the knee joint and thus are

covered with articular cartilage [16].

2.2.2 Structure of Bone

The femur is constructed primarily of a tube
of cortical bone with the epiphyses being a
shell of cortical bone filled with cancellous
bone. The macrostructure of these two ma-
terials is very different. Cortical bone is
transversely isotropic in nature, with greater
strength in compression than tension (Ta-

ble 2.2). It is a compact structure form-

ing a hard casing which protects the interior

and provides rigidity and strength against
Figure 2.7: Section through cortical

bone [23]

applied stresses. The exterior surface is made

up of highly organised rings of lamellar bone.

10
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The bulk of it is made of compact osteons with the spaces between them filled by in-
terstitial lamellae. Osteons contain nerve fibres and blood supply for the surrounding

tissue, they are aligned along lines of high stress in the bone (Fig. 2.7).

\ Direction \ Young’s Modulus (GPa) \
Longitudinal 17.4
Transverse 9.6
Bending 14.8
Shear 3.51

Table 2.2: Table of human cortical bone elastic modulus [24]. Illustrating the trans-
versely isotropic nature of cortical bone.

Cancellous bone is an irregular lattice construction of trabeculae which is nour-
ished by the red bone marrow which fills the cavities within it, making it far less
dense than cortical bone. It is generally found in the epiphyseal regions of long
bones, where load is transferred across a joint from one bone to another. Mechanical
testing of cancellous bone has produced a wide range of results, illustrating that the
properties of the bone are most dependant on its density, which varies with location
in the body. The stiffest trabecular structures being in the highly loaded, densest
packed sections of cancellous bone which are found in the femoral head and neck [25]

(Table 2.3).

Site Loading Direction | Young’s Modulus | Yield Strain | Yield Stress

(MPa) (MPa)
Vertebra Compression 344 £+ 148 0.0077 & 0.06 | 2.02 £ 0.92
Tension 349 £+ 133 0.0070 £ 0.05 | 1.72 £ 0.64
Prox. Tibia Compression 1091 + 634 0.0073 £ 0.06 | 5.83 + 3.42
Tension 1068 + 840 0.0065 £+ 0.05 | 4.50 £ 3.14
Greater Trochanter Compression 622 £ 302 0.0070 £ 0.05 | 3.21 £ 1.83
Tension 597 + 330 0.0061 £+ 0.05 | 2.44 £+ 1.26
Formnoral Neck Compression 3220 £ 936 0.0085 £+ 0.10 | 17.45 £+ 6.15
Tension 2700 £ 772 0.0061 + 0.03 | 10.93 £ 3.08

Table 2.3: Table of cancellous bone modulus, measured in different locations in the
body [25].

2.2.3 Structure of the Femur

The internal structure of the femur is efficiently designed to transfer load through

the bone with the minimum of material. The orientation, position and size of the

11
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Figure 2.8: Frontal longitudinal midsection of the femur [21]

trabeculae relate to the paths and magnitude of principal stresses caused by load

transfer through the hip and knee joints.

From the level of the head to the lesser trochanter, the femoral structure is pre-
dominantly a thin layer of cortical or compact bone, encasing cancellous or spongy
bone. The cancellous structure consists of two distinct groups of trabeculae which in-
tersect perpendicularly. The medial-lateral system fans outwards and upwards from
the medial side and resists compressive stresses induced by loads on the femoral head.
The lateral-medial system runs inwards and upwards from the lateral aspect and re-
sists tensile stresses. The absolute tensile stress seen in the proximal femur is less
than the absolute compressive stress therefore the trabeculae of the lateral-medial

system are thinner than their opposing group (Fig. 2.8).

The architecture of the shaft or diaphysis of the femur exhibits maximum resis-
tance to bending, shear, torsional and axial stresses. The section consists of a roughly
cylindrical, hollow tube of thick cortical bone. The central area is the intermedullary
canal, filled with bone marrow which serves no significant structural function but has

an important metabolic role in the body.

The distal femur is structured similarly to the proximal end with a core of can-
cellous bone covered in a thin layer of cortical bone, except for the intercondyloid
fossa where the cortical bone is notably thicker. The cancellous bone in this sec-

tion is constructed of two main groups. The longitudinal system runs parallel to

12
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the shaft and curves slightly through the condyles to meet the articulating surfaces

perpendicularly. The transverse system braces the longitudinal system.

2.3 Hip Contact and Muscle Forces

The contact forces seen at the hip joint vary with the type of activity which the
person is doing. It is logical that running will put higher loads through the joints
than walking, however the pattern of loading will also change depending on the type
of movement being made. Typically most analyses use the gait cycle as a standard
loading condition, whether the dynamic cycle is being considered or simply the peak
force seen which can be used in static FE simulations. The normal gait cycle consists
of two main parts; the stance phase, where the leg is question is in contact with the
ground, and the swing phase (Fig. 2.9). The peak forces seen at the hip occur just
after "heal strike’ and are followed by a secondary peak coinciding with ‘toe oft’. The
magnitude and direction of these forces has been investigated by both indirect and

direct techniques.

NEW
A GAIT Initial Loading Mid- Terminal Initial Mid-  Terminal
TERMS Contact Response stance Stance Preswing Swing Swing  Swing

CLASSIC  Heel Foot Midstance Heel Toe Midswing Heel
GAIT Strike  Flat Off Off Strike
TERMS Acceleration Deceleration
STANCE PHASE =‘1 SWING PHASE
c 0 10 20 30 40 50 60 70 80 90 100

% of GAIT CYCLE

Figure 2.9: Diagram of the gait cycle [26]

Indirect prediction of joint, and muscle forces, have been carried out using a com-
bination of mathematics and experimental data [27]. Data is captured by recording
the motion of a subject walking; the limb displacement recorded and the reaction
force on the ground measured using a force plate. This information is used to feed
mathematical models which calculate lower limb kinetics from these given kinemat-
ics, providing information about the ankle and knee as well as the hip. These models
are necessarily simplified representations as the number of unknown terms, multiple
and complex muscle contributions as well as joint forces, vastly exceeds the number
of known inputs. Some studies have indicated which muscles or groups of muscles

are active at various stages of gait, however the direction and magnitude of their

13
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individual contributions has not been established in vivo. The models use optimisa-
tion techniques to predict muscle forces, with results varying from model to model

depending on initial conditions and muscle groupings [27, 28, 29].

Direct measurement of hip contact force magnitude and direction has been carried
out using specialised femoral implants, instrumented with stain gauges, and inverse
dynamic calculations. The forces going through these prostheses have been recorded
while the patients performed different activities. The loads were presented in terms
of percentage body weight, as the patient’s weight clearly has a direct relationship
to the magnitude of the forces going through the joint. Studies by Bergmann et
al [30, 31] recorded the peak forces associated with walking, jogging and climbing.
A patient was accidentally recorded stumbling, with surprisingly high forces being
generated (Table 2.4).

Unlike the resultant contact force on the femoral head, muscle forces can not be
directly measured using the techniques previously described. Instead they must be
estimated using a mathematical model of the joint. The inverse dynamic approaches
do this by assuming that at any point the system is in equilibrium and solving it
through optimisation [27, 32, 28]. This has led to an understanding of muscle forces
accross the gait cycle [28]. Heller et al. [33] generated patient specific models using
CT scans and combined this with data from an instrumented prosthesis. Tasks were
performed by the patients and the kinematic and kinetic results recorded and then

applied to the model.

Once again it is worth noting that the use of data from an instrumented prosthesis
introduces possible abnormalities as the subject’s natural anatomy has been altered
and soft tissues potentially weakened by being cut during surgery. All musculoskeletal
models are necessarily simplified. This includes grouping sets of muscles together into
one force vector, splitting large muscles with large attachment sites into several lines
of action which together represent its effect and modelling lines of action as being
straight, simplifying the true three dimensional volumetric structure with associate

curved pathway.

These results give an indication of the magnitude of the forces seen regularly by
the hip and such findings are the basis of the loadings applied to finite element models.
It must be remembered that this data comes from patients with hip prostheses, not
natural joints, with the added complication of the unknown effect that such traumatic

and invasive surgery may have had on the surrounding soft tissue. However the

14



Chapter 2. Orthopaedic Biomechanics Literature Review

’ Activity \ Peak Joint Contact Force (% BW) \ Torsional Moment (%BWm) ‘
1 Legged Stance 250-359 -
Walking 211-285 1.2-1.9
Jogging 550 5.3
Stair Climbing 227-314 1.8-3.0
Stumbling 870 5.4

Table 2.4: Hip joint reaction force and torsional moment for different activities,
showing the range in peak forces between subject [31], jogging(1 subject) [30], single
limb stance [34, 35].

findings are significant and as close as it is possible to get to directly measuring
internal forces. They have shown that the peak force seen in-vivo may well be
much higher than that predicted by normal gait, for example jogging doubles the
magnitude. This may not be a concern for elderly patients but it is a consideration
for younger, more active patients. The unpredictable event of stumbling showed a
force around four times greater than walking, it is therefore the type of event which
is most likely to result in a failure and could be a concern to any patient. The study
also showed a large intersubject variability for each activity, and even intrasubject

variability between left and right hips.

2.4 Finite Element Modelling

Finite Element Modelling was reportedly first used in orthopaedics in 1972, al-
though had been commonly used across the wider engineering community before
being adopted by biomedical engineers [36]. Since then rapid improvements in com-
putational technology and processing power have allowed FE to become common-
place, capable of solving complex three dimensional, multi-body problems. FE in
orthopaedics has been applied to problems of varying complexity, giving information
on the stress and strain resulting from load cases for models representing individual
bones up to the whole musculoskeletal system, with dynamic and adaptive FE also

used to assess the affect of kinematics and bone adaption [5].

Extensive use of FE is evident in implant design and testing. Preclinical testing
of orthopaedic implants aims to be as comprehensive as possible, with every effort
made to avoid joint replacement failure. Failure being a highly traumatic experi-
ence resulting in revision surgery, a major operation, which is unpleasant for the
patient and expensive for the health authority. FE allows designers to investigate

ways of improving implants in three main areas; improving joint function, improving

15



Chapter 2. Orthopaedic Biomechanics Literature Review

implant fixation and improving wear characteristics. The latter two directly relating

to avoiding and delaying revision surgery where possible.

FE in orthopaedics has commonly been carried out on single bone or small sets
of bone models, taking a single available data set or a generic/average geometry and
performing computational analyses. The lack of incorporation of interpatient vari-
ability is dangerous, as natural differences in bone geometry and quality has been
shown to produce different stress/strain results for identical computational restraints
and loads [37]. This has led to recent work in developing patient specific finite element
models, where individuals exact bone geometry and bone material properties are re-
produced as accurately as possible [38, 39, 40, 41]. Such models are usually generated
from CT scans through manual segmentation, which is time consuming and suscep-
tible to human error in identifying structures. Material property information can
also be extracted from CT scans, see Section 3.3.3. Semi-automated and automated
segmentation techniques have begun to be developed, but are not currently widely
available as tools to apply to the problem and are often based on statistical models,

which require their training data to be segmented in the first place [42, 43, 44].

Orthopaedic implant testing, of any form, does not tend to be performed on a
patient by patient basis. Experimental and computational analyses are run to assess
designs using available subject data, be that a number of cadaveric or synthetic bones
or CT/MRI data sets. In either case the subjects used for testing are rarely chosen
to represent the entire range of people who may later have the implant, yet that is
exactly what the results they yield are expected to do [45, 46, 47, 48, 49, 50].

Attempts have been made to try to address this problem by incorporating in-
tersubject variability in analysis, however often only taking one factor into account
at a time. Good examples of this are studies which have used a generic model of
bone geometry and superimposed other parameters onto it to investigate implant
stability. Pancanti et al. [6] applied subject specific joint loads to such a model,
reflecting four patients performing simple motor tasks (walking, sit to stand, climb-
ing/descending stairs and so forth) recorded using instrumented prostheses. Wong
et al. [3] created a single femur model from an available CT data set and system-
atically varied the material properties of the bone in proportion to the apparent
bone density interpreted from the images, reducing modulus from its true healthy
value down to 60% of its peak to represent the changes expected with age or disease.
Both studies saw intersubject variability having a dramatic effect on the predicted
results and concluded that it was important to incorporate this if any more than a

comparative result was to be gained.
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Truly patient specific, multi model studies are rare. There are many reasons for
this but the most notable are; the scarce availability of high quality image data (suit-
able to produce accurate models with material properties) and the time investment
required to generate models. Model generation not only includes the segmentation
stages previously mentioned, but also meshing and application of model specific load-
ing/boundary conditions, as well as actually running an analysis and processing the
results. The time estimated by Radcliffe to complete this for each model was around
8 hours [7], even once the methodology was perfected and ran smoothly. Keyak et al.
[51] experimentally and computationally analysed fracture load in a set of eighteen
cadaveric femurs, Lengsfeld et al. [52] computationally assessed femoral strain change
in eleven femurs twelve year post hip replacement surgery and Radcliffe and Taylor
[7, 37] modelled femoral resurfacing in sixteen subjects, predicting the strain changes
produced in the proximal femur. All of these studies generated individual FE models
from subject CT data sets and applied subject specific loads (proportional to body
weight). Their results showed that very different results were produced with different
models, again emphasising the need for more comprehensive testing methods if pop-
ulation wide assessment is to be achieved. The limitations discussed have restricted
those who have attempted this type of analysis to quite small data sets, not yielding

sufficient results to perform meaningful statistical analysis.

More recent approaches have tried to avoid the 'brute force’ method of manually
generating a large number of models by incorporating statistical and probabilistic
techniques. The majority still only use a very small initial set of models but their
strength is in intelligently varying parameters known to affect the analysis, generat-
ing vast numbers of runs to examine their interactions in multi factorial problems.
In biomechanics these techniques have been used to identify the parameters to which
a scenario is most sensitive and examine the extent of their potential effect [53].
Studies have incorporated uncertainty in material properties [54] and geometry [55]
through to more complete systems such as a hip implant [56, 57]. Viceconti et al.
[58] simulated more than 1000 scenarios to investigate primary total cementless hip
implant stability using a parametric analysis, four key features were identified as key
to the problem (bone material properties, presence/extent of gaps at bone-implant
interface, patient body weight and scaled femur size), these were varied between de-
fined limits while assuming perfect implant alignment. Dopico-Gonzélez et al. [57]
also modelled a cementless hip prosthesis examining the influence of surgical position-
ing variation on strain within the bone. Both of these examples show the potential
of examining combinations of variables together in a large, Monte Carlo simulation
making it possible to observe interactions between them. However both made major

simplifications to the system to allow this and preselected the variables which were
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to be examined. Bone geometry variation was either ignored by using a single bone
model [57] or dramatically reduced by using a parametrically scaled femur model [58].
Similarly, despite bone modulus being a variable factor in both studies, its descrip-
tion was made homogeneous across the entire bone or homogeneous for cortical and

cancellous regions respectively.

Despite the extensive use and development of computational analysis, as well as
experimental assessment, to test orthopaedic implants over the last few decades it
has still not proved possible to eliminate failure. Current estimates show that the 10
year survivorship rates for hip replacements, the most successful of joint replacement
designs, lies at 90-95% [59, 60, 61]. With ~40,000 patients undergoing such an
operation in the UK each year [62], and rising, this percentage represents a significant
number of people and a large financial burden to the health service. The figure may
even be suggesting better results than exist as it reflects only those implants which
have required revision, it does not include those patients who are unhappy due to
pain or poor mobility. It is therefore hypothesised that current assessment techniques
may be missing these 5-10% of failures due to the lack of incorporation of interpatient
and surgical variability, both of which have been shown to have significant influence
on implant performance. The work discussed has demonstrated that techniques exist
for incorporating surgical variation and subject specific modelling, however they have
severe limitations and extending the techniques to population based approaches has

not been established.
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Chapter 3

Generation of a Statistical Model
of the Whole Femur !

3.1 Statistical Modelling (SM)

3.1.1 Development of Statistical Models

Deformable shape models were first used in the fields of computer vision and computer
graphics in the mid 1980’s, using splines to describe malleable curves, surfaces and
solid shapes [63]. Deformable models maintain the characteristics of the shape, or
class of object, they represent while also being able to generate or deform to fit
any other example of that shape which is legal or realistic [9]. This is achieved as
the model is constructed from a training set of images, thus incorporating a priori
knowledge of the form, while also being able to extract information from a new image

being examined.

The potential of these models has since been seen by researchers in medical imag-
ing to solve the challenges which have arisen from the rapid developments in medical
imaging technology. As high-level imaging modalities such at CT, Magnetic Reso-
nance Imaging (MRI) and Positron Emission Tomography (PET) scans have become
widely available, these non-invasive techniques are increasingly being used for a va-

riety of tasks from preoperative planning and intraoperative navigation to disease

!Bryan, Mohan, Hopkins, Galloway, Taylor and Nair, 2010. Statistical modelling of the whole
human femur incorporating geometric and material properties. Medical Engineering and Physics
32(1), 57-65 - based on the work in this chapter
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tracking and radiotherapy planning [64]. Effective clinical use of these images requires
computational analysis in order to accurately extract and quantify the useful data.
Models have achieved this by developing automated and semiautomated processes
for segmentation of anatomical structures from images [65], patient specific model
representations [66], tracking anatomical movements such as cardiac function [67]

and matching intrapatient images to monitor disease progression [13].

A deformable model aims to conform to the following objectives; generality, speci-
ficity and compactness. General meaning the model is able to represent any instance
within the class of shape and specific meaning that only legal or realistic instances can
be produced by the model. The system aims to achieve this with as few parameters

as possible, so being compact [68].

3.1.2 Existing Statistical Modelling Techniques

These techniques have mainly evolved within the two dimensional world of computer
vision, and so the longest standing medical applications involve extracting shapes
from 2D images. The most widely used examples are deformable contour models or
'snakes’ [69]. These are malleable curves defined by control points which are attracted
to features, such as lines and edges, within an image. Thus, the position and shape
of an object can be identified by iteratively aligning the curves with the boundary
(Fig. 3.1).

Figure 3.1: Illustration of iterative fitting of a snake contour onto an image of a heart
ventricle. (a) intensity CT image, (b) Edges detected, (c-f) iterations of contour from
initial shape guess [64].

A more advanced method, although still two dimensional, was developed for the
creation of a statistical model of shape by Cootes et al [8], Active Shape Modelling
(ASM) which is based around a training set of images. The idea is to capture the
variation possible in an object using a range of examples collected in a training set
(Fig. 3.2a). Each example used to train the model is described as a set of points,
called landmarks, which are manually placed at the same relative locations, allowing

direct comparison between them. For example, if landmarking a hand the first point
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may always be placed at the tip of the first finger, the second at the tip of the second
finger and so on (Fig. 3.2b). Once aligned to the same set of axes, the variations
between each example at each point are used to create a Point Distribution Model
(PDM). This model is then subjected to Principal Component Analysis (PCA) in
order to reduce the large volume of information into its ‘principal‘ parts, identifying
the main modes of variation seen in the training data (Fig. 3.2c). Once the model
has been created it can be used in two ways; firstly to identify new instances of the
shape in an image and secondly to generate unique but legal instances of the shape.

It is this later application which is of most interest to this project.
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Figure 3.2: Example of ASM of a hand. (a) training set of example shapes, (b)
landmarking of examples and (c) illustration of the effect of the first three principal
modes of variation [8].

Cootes and Taylor [9] went on to further develop the ASM to create the Active
Appearance Model (AAM). AAMs are constructed in the same way as ASMs but
represent the whole image rather than just the shape boundary by incorporating
texture into the model. They require the whole image to be sampled rather than just
landmarked points. This extra information makes the AAM more computationally
demanding but it has been shown that they are able to converge to match model-to-
image with fewer landmark points and are more robust than ASMs. As landmarks are
manually placed, the reduction in number of these required is an advantage in terms
of time and reducing potential error in misplacement on complex shapes. In theory it
is possible to extend these methods to three dimensional models, although in practice
it is challenging. ASMs are relatively straightforward to compute but providing a
suitable set of consistently placed, densely packed landmarks can be hard to achieve.
Conventional approaches to AAM construction are impractical in three dimensions
as the amount of data involved is just too large. Developments are being made to
solve this problem, Babalola et al. [70] recently proposed a method to achieve 3D
segmentation of the brain using AAM based on further work by the Cootes and
Taylor group. Levels of AAMs are used, first identify large, global features before

AAMs of small individual structures are used to segment areas of the brain.
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Ballester et al. [71] proposed a statistical modelling technique which incorporated
positional and intensity information across a three dimensional shape called a Gener-
alised Image Model (GIM). Similarly to the work of Cootes et al., GIM requires the
construction of a training set of examples, incorporating the variation seen between
them in terms of position and intensity. As these factors are modelled together their
relationship can also be described. This study created a registration technique for
aligning the model to an image using an Iterative Closest Point (ICP) algorithm. This
removed the requirement for explicit correspondence between points in the model and
image. The method aims to be used for segmentation and detection of abnormalities,

not for generating viable instances of the model.

The ICP method was used by Vos et al. [11] to map sets of point clouds, repre-
senting the carpal bones of the hand to each other, without landmarks. With cor-
respondence established, a statistical model describing the carpal bones’ combined
shape as a surface mesh was created using PCA. The model was able to illustrate
the ways in which these bones vary between the left and right hand and between the
subjects used to build the model. PCA analysis was also used by Yang et al. [72]
to investigate the variations in shape characteristics of long bones in primates, and
was able to use the results to discriminate directly between great apes and monkeys.
Again, a triangulated surface mesh was generated for each example bone but the
registration technique was a little more complex to allow for the increased variability
in shape (although any size differences were removed by scaling). ICP was used to
allow the initial rigid alignment of bones to be automated, but free-form deforma-
tion using B-splines was used to establish shape correspondence [13], deforming a

reference mesh onto each other example.

Figure 3.3: Tllustration of the method defined by Couteau et al. [14]. Showing super-
imposition of a grey 3D reference mesh with a new target femur defined by a cloud
of points (left), and the final mesh generated for the target femur from the reference
(right).
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A further methodology to allow a baseline or reference mesh to be morphed to
fit another instance of that shape is the elastic based registration scheme. As with
many ideas in this field, the principles originated in computer vision and graph-
ics [63]. Couteau et al. [14] applied and developed these ideas into a 'mesh-matching’
algorithm which deformed a reference proximal femur surface mesh onto a new femur
shape, described by a cloud of points (Fig. 3.3). The method used a relatively course
mesh but was able to retain mesh quality and to match the shapes of a large range
of femur geometries. The work’s aim was to allow 3D surface meshes to be generated
automatically from segmented volumetric structures. This was also the aim of Kaus
et al. [73], who again developed a unique elastic based registration scheme which ini-
tially aligned the baseline mesh to a new instance described as a triangulated mesh,
before applying localised adaptations to the mesh to match the shapes precisely. A
statistical model was then built using PCA, allowing the robustness of the model
to be interrogated with leave-one-out testing. The model was used to achieve au-
tomated segmentation, by identifying the model shape within an image (Fig. 3.4).
Statistical Shape Models (SSM) were successfully built for both the proximal femur

and vertebra, again at quite a coarse mesh density.

Figure 3.4: Illustrations of the work of Kaus et al. [73], showing the proximal femur
surface model (left) and the identification of an 'unseen’ femur instance from a CT
image using the model (right).
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Rajamani et al. [74, 75] also developed a statistical model of the proximal femur,
however their intended application was quite different to the previously discussed
papers. The statistical model was developed to generate patient specific models from
sparse data, with the idea that a few key landmark points could be quickly taken
from sources such as ultrasound, and the model used to generate a femur which fits
these measurements (Fig. 3.5). The application was specifically aimed at inter and
intra operative visualisation, where 3D scanning techniques would be impractical or

undesirable to apply.

Predicted Shape
Gold Reference

Figure 3.5: Illustration of the work of Rajamani et al. [75], showing two attempts
to match their proximal femur model to real femurs described by points gathered
from ultrasound data. Where the predicted shape (red) were compared to registered
surface models, segmented from CT scans of the femur (gold).

All the three dimensional studies discussed thus far have involved surface shape
models. A key aim of this work is to create a model which incorporates material
properties as well as geometric information, therefore not only will this information
need to be incorporated but a solid model will be required. A statistical tetrahedral
model of the proximal femur has been developed by Querol et al. [15] which incorpo-
rates elemental material modulus values. The aim here was to develop a model which
could be used in finite element analysis studies and so a very simple static FE analy-
sis was run using the model to investigate the different stress distributions produced
in femurs generated to be at the extremes of the variation seen in the model. These
were created by taking just the first eigenmode produced by PCA and exaggerating
the influence of this by +/-2 standard deviations from the mean geometry (Fig. 3.6).
The statistical model itself was relatively simple, built from only 11 femur CT scans
and containing approximately 3500 elements. A reason for the coarse mesh may
have been the FFD registration scheme applied, which is computationally demand-

ing and may have restricted the model resolution. This study provides a proof of
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concept, showing that generating a statistical model of shape and material property
0.0

is achievable and this model can then be used for FEA.
Relative
density
1.0
0.8
von Mises
stress (MPa) ’ !
Figure 3.6: Results of the FE simulation run by Querol et al. [15] on a femur generated

0.6
from their statistical model by varying, from left to right -2 s.d. to 42 s.d. from the

04
0.2

average. The figure shows the relative bone density (top) and the von misses stress

(MPa) produced by a 1600N vertical load (bottom).
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3.1.3 Process for the Construction of a Statistical Model

There are several key stages involved in the creation and use of a statistical model.
A clear way to describe these is in the flow diagram below, which breaks down these

steps into the main sections of work required.

Generate example models of object/shape, e.g. from

patient CT scans, to form members of a training set.

Register all members of the training set so they are in

the same coordinate axes and described in a consistent

way. 1.e. equal number of points which each relate to the

equivalent area of the model.

l

Combine all the examples in the training set to quantify

the variance at each point and so the model shape.

|

Perform PCA to reduce the size of the data set into its

most significant or principal modes of variation.

- N

Use model to create Use the model to match
new instances of the to/segment/locate new instances
shape/object. of the shape or /object.
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3.2 Data Registration

3.2.1 Introduction to Registration - Why is it Needed?

Registration is required to accurately relate one image to another. Medical image
registration is a huge field which is developing rapidly because the ability to compare
images between subjects or to compare images from the same patient, has useful ap-
plications for diagnostics, operative planning and radiotherapy treatment planning.
Registration techniques range in complexity and flexibility, the most simple account
for only translational differences while the complex can correct global and local de-
formations. However, the fundamental aim of them all is to establish correspondence

between two shapes and determine the transformation required to achieved this.

The field has applied techniques to solve the relatively straightforward problem of
intrasubject registration of rigid structures, such as bones, most commonly required
for monitoring disease progression [76]. There has also been work to try to register
such rigid objects from different subjects, intersubject variability requiring a greater
level of deformation [72, 15]. More complicated still is the problem of registering
deformable anatomical structures such as comparing breast MRI [13], or using regis-
tration to compensate for motions such as breathing to allow cardiac function to be
tracked [77]. Registration is vital in creating statistical models from medical images
in order to find correspondence between members of a training set [9, 71, 72]. If
an accurate correspondence between shapes is not found then illegal shapes can be
generated by the model [63].

3.2.2 Classifications of Registration

Registration techniques can fundamentally be classed in one of two categories; rigid
or non-rigid. These terms describing the types of transformation which that method
allows. Rigid registration relies on the principle that the objects being matched
are rigid. Therefore, at its most basic it only allows them to be translated and
rotated, giving 6 degrees of freedom. An extension of the rigid technique is affine
transformation, where anisotropic scaling and skews are allowed, giving the shape
up to twelve degrees of freedom in which to deform and align to match the other
shape [78]. Non rigid registration is a more complex process which allows for global
changes explained by rigid transformations but also allows localised deformations to

occur [10].
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Medical image registration can be approached in two ways; by geometry based
similarity metrics and by intensity matching. Geometric approaches build explicit
models of anatomy by elements such as points, curves and surfaces, while intensity
based methods match patterns over the images without incorporating anatomical
knowledge. Hybrid methods using both geometric and intensity information to es-
tablish correspondence also exist and have been applied to more complex problems
like brain images [12]. The other important feature which separates registration
schemes from one another is the amount of user intervention required. Some demand

significant manual input [8] while others aim for an automated approach [71].

3.2.3 Rigid Registration Techniques

A good example of a manual rigid registration technique is the commonly used land-
marking approach employed by Cootes et al [8, 9] in building their statistical shape
models. Landmarks were placed manually at key points on each example in the train-
ing set, most densely over the more complex details. The hand model, see Fig. 3.2,
was represented by 72 points around the boundary, more densely packed at the ends
of the fingers and in the joints. Although this is only required for the construction
of the model and is not needed for later image interpretation, so only done once per
training example, landmarking is still an arduous task. There is also room for error
arising from personal judgement as to the exact position of a feature which may not
always be clear. The biggest restriction to using landmarking, or any other manual
technique, in this study is the complexity of the three dimensional problem. It is rel-
atively simple to place points at equivalent positions on a 2D image but much harder
to reliably identify points on a three dimensional feature between objects, especially

when surfaces are smooth.

One of the most commonly used automatic methods is the Iterative Closest Point
(ICP) algorithm [10], an optimisation technique which fits a cloud of points to a
model with the advantage of not requiring a predefined relationship between points.
Proposed by Besl and McKay in the early 90’s as a simple and computationally
efficient method for matching surfaces [79], it has become widely used in medical
imaging. The technique is guaranteed to converge to a minimum, is fast to compute
and relatively simple to implement. Its main flaw is that it can find a local rather
than the global minimum, this being highly dependant on the initial alignment of
the shapes being matched. The robustness of the technique is therefore poor where

large changes in scale, rotation or position are not pre-corrected.
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The popularity of ICP has led to the development of many improved algorithms
such as that described by Chui et al [79]. This involves a system for the automatic re-
moval of outliers, which can otherwise affect the effectiveness of the method, making
convergence to a local minimum more likely. The method becomes a hybrid rigid /non
rigid approach using thin plate splines. Initially transformation of the points are uni-
form, then as the points come closer to correspondence the algorithm allows localised

deformations.

3.2.4 Non Rigid Registration Techniques

Spline based techniques are popular in non rigid registration; these are built on con-
trol points with a known, defined relationship. Thin plate splines (TPS) are widely
used [80]. They were developed for computer vision applications in order to interpo-
late a surface over a fixed number of nodes. TPS relate two sets of landmark points,
modelling a global affine transformation and then superimposing ’principal warps’
which incorporate local deformation patterns over the shape. The potential for de-
scribing local deformations has long been seen as capable of modelling the complex
deformation possible in biological image analysis. The method requires correspond-
ing landmarks on both images which, as previously explained, is not ideal. The
spline warp approach is computationally expensive, limiting the number of degrees
of freedom which can be incorporated into the model [13]. B-Splines have been used
to reduce this computational cost, achieved thanks to the local relationship between
control points. This means that moving a control point in a spline only has a localised

affect, whereas TPS require global recalculation [10].

B-Splines have been used as part of the Free Form Deformation (FFD) models
developed by Rueckert et al. for modelling anatomical structures [13]. FFD mod-
els are an advanced, automated method for modelling object deformation in three
dimensions. The object is placed in an underlying mesh of control points and is
deformed indirectly through manipulation of this mesh, producing a smooth and
continuous transformation. This again is a computationally demanding and complex
technique which has been used to model high level deformation required for registra-
tion of breast MRI (correcting for motion) and brain images [12, 13]. These schemes
assume that everything within the image is equally nonrigidly deformable, in reality
the the human body is composed of many different structures with different rigidi-
ties. Staring et al. [81] incorporated filtering into a nonrigid registration scheme to
allow different tissues to deform differently, in relation to their stiffness, an approach
which would be important for modelling systems and tracking disease progressions

such as tumours.
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Yao and Taylor [82] utilise a range of techniques including snakes, b-splines and
analysis of image intensity changes to automatically mesh CT images and identify
bone contours. The bones are represented as solid tetrahedral meshes where the
intensity-density information is known on an element by element basis. This density
atlas has potential application for radiograph reproduction (2D from 3D) and for
automated 3D intensity based registration. Davies et al. [83] offer an alternative ap-
proach, parametrising the training models and finding an optimal set of variables by
which to deform this model to define new instances. Described as the Minimum De-
scription Length (MDL) optimisation has the potential to offer a much more compact
set of model parameters than landmarking approaches. However it requires a known
shape function similar to the target (such as a sphere) to fit to a model, which is
not appropriate for all applications and in its current form is computationally slower

than alternative methods.

3.3 (Generation of Training Data

3.3.1 Sources of Data

The creation of a representative three dimensional model required accurate three
dimensional data to be recorded. One of the most commonly used and available
sources of three dimensional information for orthopaedic data for human subjects
is Computer Tomography scans. CT scans produce multiple X-Ray slices through
the subject which can then be reconstructed digitally into a volume. The output is
divided up into small volumes called voxels, each containing a grey level value which
is derived from X-ray attenuation at that point and so relates directly to the density
of the material. In medical images, voxels are typically 0.5-1mm square in slice with a
slice distance anywhere between 1-10mm, depending on the resolution required over
that area. A lower resolution will be used where possible to reduce the radiation dose
to the patient. Minimising the exposure, cost and imaging time are key reasons why

planar X-rays are routinely used in preference to CT.

The raw voxalised output from CT would clearly produce a jagged, blocky image
so a variety of computational software is available to extract the voxels of interest
from the scans and produce smooth, realistic looking models. This is known as
segmentation. Studies routinely use a CT generated model as the base bone model

for FE experiments [84]. Patient specific models, for example of the femur [38], have
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been created for finite element studies, capable of predicting individualised stress
fields.

Other medical imaging modalities have been investigated to produce 3D models,
these include Magnetic Resonance Imaging (MRI), Positron Emission Tomography
(PET), Single Photon Emission Tomography (SPECT), Ultrasound and X-rays [78].
MRI, PET and SPECT scans are not regularly used for orthopaedic applications,
they are more commonly used for imaging soft tissue or dynamic systems such as
the brain [12], or the heart [85]. Ultrasound has been proposed as an attractive
alternative to the radiation based modalities, as there is no radiation dose associated
with it and it is cheap. A tracked ultrasound, allowing the positions of the slices of
data to be recorded, can be reconstructed into a 3D model incorporating geometry
and density information [78, 86]. Although the resolution produced is not as good
as CT, X-ray data, despite being two dimensional in nature, has been used to create

three dimensional models by combining them with statistical shape models [87, 66].
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3.3.2 Methodology for Creation of 3D Models from CT scans

This study requires the generation of
three dimensional femur models from
CT data. The created representations
should accurately reproduce each sub-
ject’s femur, requiring the extraction
of geometric data and grey level val-
ues from the scans. Many software

packages are available, fundamentally

achieving this through the same pro-
cess. The package chosen for use in
this project is Avizo® (Visualization Sci-
ences Group,USA /France formerly VSG
of Mercury Computer Systems, USA).

The package reads in the CT slices
in order and stacks them as shown
(Fig. 3.7). A segmentation algorithm
was then implemented to highlight the

areas of interest on each slice, discrimi-
nating by voxel greylevel value. Defining
a high value will mean only dense mate-
rial, bone, will be selected. The algo-
rithm is not intelligent to shape so often
areas which are not required are selected,
for example the pelvis along with the fe-

mur. These features were removed man-

ually or by other selection tools within
the program. The selected areas were
then used to create a model of the sur-
Figure 3.7: Illustration of the stages re- face of the segmented shape from which
quired to segment a femur from CT scans surface and volumetric meshes could be

using Avizo?™ produced.
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3.3.3 Methodology for Extraction of Material Property Data

A significant feature of the model developed in this study is the incorporation of ma-
terial property variation within the femur as well as external differences in geometry.
This information therefore also needs to be extracted from CT scan data along with
geometry. This is possible because, as previously discussed, the grey level of each

voxel within a CT scan directly relates to the density of the material it represents.

To assign material properties to a solid finite element mesh this study used a
program called BioMesh (A. Hopkins, Imperial College London), which was designed
to work specifically with Avizo generated geometries and further developed to meet
the requirements of this work. A commonly used alternative, which works in a similar
way, is the free software BoneMat (Rizzoli Institute, Bologna) [88]. Both programs
define a number of 'sampling points’ within each element and interpolate the greylevel
relating to their coordinates from the original CT. The element greylevel is assigned
from the sampling point values. BioMesh has the added advantage to this study
of also assigning greylevel values to each node, which is particularly useful when
building the data into a matrix for PCA. This allows the defining data for each

training member to be significantly shorter than if elemental values were extracted.
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Figure 3.8: Graph showing a range of calculated calibration lines for different CT
files

Greylevel is proportional to apparent bone density, however to accurately convert

between the two the CT scans must be calibrated to correct for any slight offset due to
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machine set up. Ideally this is calculated using calibration phantoms within the CT
scan, usually blocks of materials included in the image which have a known density.
Unfortunately, calibration phantoms are not routinely used in clinical CT scans and
were not present in many of the data sets available in this study. The proportional
relationship was therefore defined by identifying the specific greylevels in each CT
set for two materials with ’known’ density values. Bone marrow, the lowest modulus
readings found in the medullary canal, was taken as having a density equivalent to
water, Og/cm?, and the highest value cortical bone identifiable was considered to
be 1.73g/cm? [89] (These density values relate to the density of mineralised tissue).
Although this could be a source of error in the final model as it assumes that every
subject has this maximum density of bone. The relationships for a range of the
data sets used are shown above and define the calibration values used by BioMesh

(Fig. 3.8).

Young’s Modulus is one of the properties required by finite element analysis to
define a material. Schileo et al [41] investigated mathematical relationships between
apparent bone density, p, and Young’s Modulus, E, through experimental testing of
bone. The equation found to best correlate with the experimental findings was that
established by Morgan et al. [90], despite all their test specimens lying in the lower
density band of bone ( < 0.8g/cm?).

E = 6850p"% (3.1)

This relationship was therefore the one used to convert nodal greylevel into nodal
modulus, which could then be incorporated into the PCA model at a later stage.
FE usually requires element modulus, which could be recalculated by averaging the

modulus values of the four nodes making up each element.

As previously mentioned, the lack of calibration phantoms is not ideal and the
methodology described was established to try to calibrate the data as well as possi-
ble. The extracted material properties generated for the training set femurs were all
examined and found to lie within realistic bounds and have realistic distributions.
For the approach required in this study these results were suitable, however if more
precise correction was required further investigation of density-modulus relationships
should be pursued. In particular, different relationships can be used to assign ma-
terial properties to cancellous and cortical bone, however the initial definition of a

divide between cortical and cancellous in uncalibrated CT scans would be difficult.
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3.4 Methodolgy Developed and Applied for Con-

struction of SM of the Femur

3.4.1 Overview of Methodology for SM Construction

This section aims to provide a step by step overview of the stages used in this study to
construct a statistical model of the femur from real subject CT scans. The significant
challenge in doing this is establishing correspondence between each training example
in such a way that the location and material properties at any given point in one
model can be directly related to an equivalent point in another model. Although the
previous sections have described how this has been achieved by previous work, the
novel difficulties in this case lie in achieving high accuracy in registration, at a fine
mesh quality suitable for FE studies, over the complex morphology and relatively

large volume of the whole femur.

1. Segment out the region of interest, i.e. the femur, from each CT data file and

describe its shape as a dense cloud of surface points.

2. Select one femur instance as the baseline or reference to which each other model
will be matched and convert this model into a high quality solid tetrahedral

mesh.

3. Register the baseline femur to each training example using a scheme based on

an elastic matching algorithm? and volume mesh deformation strategy®.

4. Assign every point in the morphed meshes a grey level value from their original

CT scan files using a material property extraction program BioMesh.

5. Construct a Point Distribution Model using the mesh based femur representa-
tion complete with material properties, and create the statistical model using
principal component analysis. The statistical model produces a volume mesh
along with spatially varying material properties that can be directly used by a

finite element solver.

2Software developed by Dr Prasanth Nair, Computational Engineering Design Center, University
of Southampton

3Software based on open source MatLab FEA code developed by Surya Mohan, Computational
Engineering Design Center, University of Southampton
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Figure 3.9: Illustration of the target
mesh (black) with morphed baseline mesh
(grey) superimposed, showing the accu-

racy achievable by the registration scheme.

The registration stages of this pro-
cess are the most complex and the most
crucial to the success of the final model.
The two stages, surface registration and
volumetric morphing, result in three
dimensional correspondence between a
baseline tetrahedral mesh and each tar-
get surface mesh in the training set.
The surface matching step iteratively de-
forms the baseline surface vertices to
match the given target surface and is
able to achieve a smooth, accurate final
mesh through user defined inputs con-
trolling the magnitude and speed of the
deformation and a two stage smoothing
process. These parameters specify the
area affected by moving a single vertex
and the size of each iterative step, both
decreasing over a specified number of it-
erations, and prevent mesh distortion.
The registration scheme initially allows
almost global deformations to act which
roughly align the surfaces before narrow-
ing the regions of influence to produce
fine, local manipulations of the mesh un-
til a stopping criteria is reached. The ac-
curacy of the surface registration achiev-
able using this algorithm is illustrated
in Fig. 3.9, showing the morphed and
target surfaces superimposed. The vol-
umetric registration step used the regis-
tered surface points as a scaffold and po-
sitioned the internal mesh points based

on the surface node displacement vectors

by solving decoupled Laplacian equations with appropriate essential boundary con-

ditions.
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3.4.2 Baseline Femur Model

Establishing correspondence between each member of the training set depends upon
the the accurate registration of a common baseline mesh to each femur surface model.
Significant efforts were made in developing the baseline mesh as any femur representa-
tion produced by the statistical model would be described in this form. The baseline
mesh quality therefore had to be as high as possible to allow generated models to be
used in finite element studies, however the number of elements had to be constrained

to reduce computational cost.

To maintain mesh quality over all ex-
amples, the median length femur was
chosen to be the reference, with the ra-
tionale that this would lead to the min-
imum element distortion when stretch-
ing or compressing the mesh to fit an-
other instance. The chosen femur sur-
face mesh was imported into meshing
software, ANSYS® ICEM CFDr» (AN-
SYS. Inc, Canonsbury PA), and con-
verted into a high quality, 4-noded solid

tetrahedral element mesh with a global

Figure 3.10: The baseline meshed geom- size of mm. To achieve a balance be-

etry. Shows a section of mesh through tween model definition and computa-

the femoral head and the transition in tional cost the model was then split into

mesh size between the proximal femur and three regions, with the upper and lower

thirds’ mesh size refined to 1-1.5mm at
the surface (Fig. 3.10).

femoral shaft.

This was justified for three reasons; 1) these areas are of more clinical interest
so a fine mesh will be important for future use of the model, 2) these areas contain
the most rapidly changing geometry and material properties, hence require a higher
density of surface points to achieve accurate registration and 3) Perillo-Marcone et
al. (2003) recommended choosing a element size equivalent to the CT slice distance
in order to achieve convergence of material property distribution. The baseline tetra-
hedral mesh, and therefore any subsequent mesh produced by the model, consisted
of 615,523 elements and 117,225 nodes, of which 27,171 were on the surface.
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3.4.3 Registration Strategy

The aim of the registration scheme was to manipulate the baseline tetrahedral mesh
to achieve three dimensional correspondence to the geometry of each of the other
femurs, where each target femur is represented as a surface mesh. The developed

process had two stages; 1) surface registration and 2) volumetric morphing,.

Surface Registration*

A surface registration scheme was originally developed based on an algorithm pro-
posed by Moshfeghi et al. [91]. Two key modifications were made to allow registration
of the high density meshes in this work. Firstly k-d trees [92] were used for nearest
neighbour searching, this is a computationally efficient method of accelerating near-
est neighbour searching in a large data set. Secondly Laplacian smoothing [93] was
incorporated at each iteration to try to prevent any significant degradation of mesh

quality through element distortion.

The addition of k-d trees was to
speed up computation, without this
modification the registration scheme
would take many, many hours to solve.
The final code was able to register the
>27,000 surface point meshes in approx-
imately 40 minutes. This time could

have been less but a conservative set

of parameters where chosen to control

the registration speed, ensuring the fi-
Figure 3.11: Evidence of mesh folding and 4 accuracy and mesh quality. The need
degredation. for additional smoothing became evident

from initial studies where there was evi-
dence of element bunching, element distortion and mesh folding (Fig. 3.11), mainly
observed in areas of concavity on the target surface. This was a known issue with the
algorithm of Moshfeghi et al. The Gaussian smoothing term present in the scheme
was deemed unable to maintain mesh quality alone, so a Laplacian smoothing step
was added at each registration step. This two stage smoothing approach did not
add significant computational time but showed a marked improvement in the mesh

quality of the registered models (Fig. 3.12).

4Software developed by Dr Prasanth Nair, Computational Engineering Design Center, University
of Southampton
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Figure 3.12: Illustrations of the registered mesh quality achieved with the original
algorithm (left) and the improved algorithm (center). The surface mesh quality
distribution of the two schemes is plotted on the right, as measured by triangle
aspect ratio.

The algorithm required user defined inputs specifying the magnitude and speed
of surface matching and parameters of the smoothing to be applied. This ensured
the baseline surface vertices were iteratively deformed onto a given target surface
smoothly and accurately. Once defined, these were applied to all registration op-
erations for this statistical model. The parameters controlled the area affected by
moving a single vertex and the magnitude of each iterative step, both decreasing over
the specified number of iterations. This initially allowed almost global deformations
to act which roughly aligned the surfaces before narrowing the regions of influence to
produce fine, local manipulations of the mesh until the required number of iterations

were completed.

Volume Morphing®

The problem of deforming a volume mesh to track moving/perturbed surfaces has
been extensively studied in several areas including computational geometry, moving
surface fluid flow simulation and engineering design optimisation [94, 95, 96]. The
central idea underpinning many existing approaches is to solve partial differential
equations (for example the elasticity or diffusion equations), for the coordinates of the
deformed mesh with the known surface displacements imposed as essential boundary

conditions.

Software based on open source MatLab FEA code developed by Surya Mohan, Computational
Engineering Design Center, University of Southampton
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The diffusion based mesh deformation strategy was adopted for this work. It
is computationally efficient and has been shown to work well for a variety of ap-
plications [97, 94]. This approach solved the following decoupled three-dimensional

Laplace equations to deform the baseline volume mesh
Vi =0, V?0y =0, V?0z =0, (3.2)

where dz, 0y and 0z were the displacement fields applied to the baseline mesh co-
ordinates in the —, y— and z— directions, respectively, and V? was the standard

Laplacian operator defined on the baseline volume mesh.

The x,y, z components of the surface registration deformations vectors were used
to specify appropriate Dirichlet boundary conditions for equation 3.2. The result
was a morphing of the internal points of the baseline volume mesh onto the target
volume. Once the whole registration process was applied to all members of the train-
ing set, each was described by a solid tetrahedral mesh, with direct correspondence

established between each point and element.

An issue with this approach is that it can allow element reversal, which is pos-
sible if the magnitude of the surface point displacement vectors become large. Two
strategies were considered to address this; firstly by integrating volume morphing
into the registration strategy, making the volume morphing process incremental and
secondly by repairing the mesh. The incremental morphing strategy did not suffer
element reversal issues and also provided high quality meshes, agreeing with obser-
vations made by Shontz and Vavasis [96], but this was at the expense of a dramatic
increase in computational cost. Therefore, due to computational constraints the sec-
ond approach was adopted. Fully automated, efficient mesh checking and repair was

coded into the registration strategy following the completion of volumetric meshing.

At this stage each of the training set geometries is represented by a comparable
solid, tetrahedral mesh with nodal and elemental correspondence. Using the method-
ology described in Section 3.3.3 each registered mesh was assigned nodal Young’s
Modulus from their original CT scans. The training set now contains model specific

geometric and material variation for each example femur.

3.4.4 Mesh Quality Checks

Mesh quality is a key concern when automating the generation of finite element

models. As the statistical model is created by stretching and morphing a baseline
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mesh some level of mesh distortion is inevitable. It is crucial that despite this,
mesh quality is maintained such that meshes can be used in finite element simulation
without causing errors or producing inaccurate results. Initially the mesh needed to
be scrutinised to ensure the methodology was sound, but in the longer term mesh

checks are also necessary as an automated step in creating large numbers of models.

As mentioned in section 3.4.3, some mesh repair is required to fix element rever-
sal in this method. The problem is possible to solve within the morphing process,
but would be highly computationally expensive whereas a simple code to check and

reverse any 'inside-out’ elements is quick and simple to apply.

Metric ‘ Warning | Error
Maximum Angle (°) 165 179.9
Aspect Ratio 20 100 000

Table 3.1: Table defining mesh quality criteria and related level for warning and
failure as defined by ANSYS®©.

Specific mesh quality limits are difficult to define. The approach taken in this
work was to look at the levels of element distortion which would result in a warning
or failure within ANSYS®, Table 3.1. The tetrahedral elements produced as a result
of a maximum face angle or aspect ratio defined by these rules were then graded by
two mesh quality metrics which could be coded into model generation. Both metrics
interrogate a mesh on an element by element basis, giving a score between 0 and 1,
where 1 indicates a perfectly regular tetrahedron. The score produced by the warning
and error shaped elements were then used to define a pass-fail criteria so that if a
mesh was generated with poor mesh quality then it would be automatically discarded

(in practice this did not occur).

The normalised shape ratio (NSR) [98] is used as an indicator of aspect ratio and
is calculated as
NSR= (3.3)
- _

where r is the radius of the element insphere and R is the radius of the elements

circumsphere. The second metric used is a shape distortion ration (SDR) [99]

12(3V)?3
Y

where V is the element volume and [ the element edge length.

SDR = (3.4)
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3.4.5 Principal Component Analysis - Covariance and Cor-

relation Approaches

Principal component analysis is a statistical technique which allows high dimensional
data sets to be decomposed into their significant components, creating an accurate,
reduced order model of the original data. PCA calculates the eigenvectors and eigen-
values of a data set which represent the principal modes of variation, with the later
indicating their relative significance in capturing the variation between members of
the training data set matrix, X. Following surface registration and volumetric mesh
morphing all femur models were described in the same coordinate system by the same
number of corresponding nodes and elements. Each femur, x;, defined by a single
vector containing nodal coordinates, x,y, z, and modulus values at each node, E, can

be compactly written as;

T .
T = [T1i, Y1is 210y Bris ooy Tiy Ynis Znis Bng], 1 <0 <N (3.5)

Where N is the number of geometries in the training set and n is number of nodes
in each mesh. Each training geometry could then be combined to create the training

matrix X, as shown below.
X = [x1,Xy,...,xy|" € RV*4" (3.6)

As each node in the femur was described by 4 components, x,y, z, F/, each training
vector was 4n in length, making the overall training matrix extremely large. The scale
of the data set made explicit calculation of the covariance matrix and eigenvectors
impossible (the matrix is simply too large, 486,900 x 486,900), so Singular Value

Decomposition (SVD) was used as a more suitable method for this application.

Two methods of PCA were investigated to establish which best decomposed the
training data to produce as rapid a decay of eigenvalues as possible. The data was
analysed using the commonly used covariance method and then using the correlation
method, which is more suitable for data sets containing mixed units [100], in this
case position and modulus. The differences between the methods behind the two

approaches follow.

In order to calculate the basis vectors, or eigenvectors, both schemes required
modifications to the training matrix. The covariance approach removed the training

data mean from each data set member
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where & is the mean of the training geometries contained in X. The modified training
matrix was defined as A, where A = [Z, Zs,...Zy]7 and the SVD of the data set

written in the conventional form was
A =UxV" (3.8)

where U € RV* ¥ and V € R** 4 are orthogonal matrices, or left and right singular
vectors. ¥ € RV*4" i5 a diagonal matrix with diagonal elements X; consisting of
g = min(N,n) nonnegative numbers o;, arranged in decreasing order. V is the
eigenvector matrix, the columns contain the proper orthonormal modes of the system,

so the basis vectors ¥, = V(:,7) can be used in equation 3.9 to approximate .

The covariance approach approximated each femur vector as follows

i=1

where 1, € R*, ¢ = 1,2, ...,m define the set of m basis vectors and b;, i = 1,2,....,m
are a set of coefficients controlling the relative influence of each basis vector on the
final output . b can be described as a shape parameter, in this application it
describes the shape and modulus of the femur model when combined with . It
is unique for each training set member and is the key to generating new instances,

possible by altering the value of this vector.

The modifications to the training data for the correlation method consisted of
two steps. Firstly each member was divided by the standard deviation of the data
set a € R*", where a; is the standard deviation across every i term in the training
matrix. Secondly, the mean of the newly calculated data set was removed from
each set member. Equation 3.8 was then applied with the modified training matrix
A constructed from the normalised set members, as with the covariance approach.
The output of the statistical model generated through this approach will generate
normalised femur vectors. Equation 3.9 is still applicable to approximate each femur

geometry but only after the standard deviations, «, are multiplied back in.

Calculation of the dominant modes was illustrated by the ability of each method
to capture the variation in the data set, showing how great a percentage can be
described by any number of included modes. Interpretation of this result allowed the
appropriate number of dominant basis vectors, m, to be established where m < N.

The energy within the first m modes was found from

m 2

E(m) _ Zz’:l g;

==t 3.10
Zi]\il ‘7@'2 ( )
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3.5 Results of SM Construction

3.5.1 Training Data

This study used 46 subjects, with CT voxel resolutions ranging from 0.488x0.488x 1.5mm
to 0.781x0.781 x2mm. The subjects were aged between 43 and 91, 15 female and 31
male. Semi-automated segmentation of bone from surrounding tissue was achieved
with grey level thresholding tools and manual slice by slice corrections using Avizo
(Visualization Sciences Group, USA /France) formerly VSG of Mercury Computer
Systems, USA. By preference the left femur was segmented from each patient but
in eleven cases this was not possible so the right femur was modelled instead and
subsequently mirrored through the mid sagittal plane. This resulted in a training
set of 46 left femurs, each represented by a triangulated finite element surface mesh

with a resolution of a similar order to the baseline surface.

Femoral Head Diameter Femur Length

NeckShaft Angle Neck Axis Length

Figure 3.13: Graphs showing the variation in femur geometries present in the training
data set as a percentage difference to the baseline femur of four geometry metrics;
Neck Axis Length (NAL), Femoral Head Diameter (FHD), Neck Shaft Angle (NSA)

and Femur Length.

The degree of variation present within the training set was relatively large. To
illustrate this some key anatomical measurements relating to the major dimensions
of the femur were taken from each of the training femur models. These included
femur length, femoral head diameters, neck shaft angle and neck axis length. The

measurements were then described as a percentage difference from the reference femur
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geometry (Fig. 3.5.1). The figure shows the dramatic range of geometric variations
present, also highlighting the fact that the training set contains more than simple
scaling as an increase in one measurement does not always coincide with an increase

in another.

3.5.2 Assesment of Registration Strategy

Assessment of Surface Registration Scheme

The success of the first stage of the registration scheme, surface matching, was ex-
amined from two perspectives; 1) how closely the registered surface fitted the target
surface and 2) the quality of the registered surface mesh. Registration accuracy was
assessed by calculating the shortest distance between each registered node and the
target surface. This found the mean surface registration error over all 45 femurs to
be 0.598mm (45 as the 46th femur was the baseline model). On visual inspection the
meshes appear smoothly matched (Fig. 3.9), so it is likely that if the registered nodes
are offset from their target then they will still be on the target surface. A boxplot
illustrating the distribution of error across the training set is shown in figure 3.14.
This plot contains a wealth of information about the registration error. The vast

majority of nodes are within 1mm of their target with no error greater than 3mm.
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Figure 3.14: Boxplot of final surface registration errors over all training set members,
calculated as the shortest euclidean distance between each registered surface node and
the target surface.
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The surface mesh quality was calculated for each registered femur as well as for
the initial baseline mesh using a Normalised Shape Ratio metric (NSR) [98] which
indicated element aspect ratio. This gave a score between 0 and 1 for each element,
where 1 indicated perfect regularity. The mean, minimum and maximum distribution
of element scores for the registered data set, alongside the initial baseline quality are
shown in Figure 3.15. In addition to the distribution of mesh quality an overall
quality score was assigned to each mesh by binning the elements by NSR score and
multiplying the value of the bin by the percentage of elements it contained. Therefore,
a perfect mesh would have 100% of elements in the top bin and so score 100 and vice
versa if all elements were in the lowest bin the mesh would score 1. This provided
a measure of mesh degradation due to the registration process. The mean score of
the registered femurs was 93.0 with the minimum seen being 89.0 and the maximum

95.6, as compared to the baseline mesh score of 98.2.
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Figure 3.15: Plot of the surface element aspect ratio score of the baseline mesh
compared to the mean, minimum and maximum scores of the registered training
geometry surface meshes.

Assessment of Volume Morphing

To assess the success of the volume morphing step of the registration scheme it was
again appropriate to examine the mesh quality produced. This was done using the
same method as for the surface mesh, analysing the NSR quality distribution of the
morphed meshes in comparison to the original baseline. The calculated mesh scores
showed that the morphed meshes had a mean quality of 78.9, a minimum of 77.49
and a maximum of 81.13, as compared to the baseline score of 79.53. As with the
surface mesh there was a slight decrease in mesh quality but no significant increase

in low quality elements (Fig. 3.16).
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Figure 3.16: Plot of the solid element aspect ratio score of the baseline mesh com-
pared to the mean, minimum and maximum scores of the morphed training geometry

meshes.
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simulating stance.

However, mesh quality alone was only an indicator of how
successful volume morphing had been. As the intention was
to use the model for FE analysis it seemed appropriate to
investigate how a model meshed through the morphing ap-
proach compared to a model of the same instance meshed
manually. To test this a simple static, linear elastic FE sim-
ulation was run to look at predicted strain distribution. A
stance loading condition was chosen, involving a vertical force
equivalent to 1x body weight being applied vertically over a
~ ¢lcm area of the femoral head, and fixing of the distal
portion of the femur (Fig. 3.17). If the registration scheme
was robust then each automatically generated mesh should
produce the same strain field as its counterpart meshed from
scratch to the same element criteria as the baseline mesh us-
ing ANSYS ICEM CFDT(ANSYS. Inc., Canonsburg PA).

Figure 3.18 shows plots for three instances, each meshed by

both methods, illustrating modulus and strain through a cross section and showing

comparative strain distribution within the proximal femur. These plots showed that

the models generated through registration and morphing produce almost identical

results to those of their uniquely meshed counterparts.
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Figure 3.18: Plot of morphed and manually meshed instances of the same geometry,

comparing material modulus representation and strain distribution resulting from a
1x body weight load applied vertically to femoral head, simulating one-legged stance.
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Covariance Method Correlation Method
Mode | Variance Captured | Total Variance | Variance Captured | Total Variance
1 20.74 20.74 45.59 45.59
2 11.01 31.75 7.74 53.32
3 6.85 38.59 6.25 59.56
4 5.59 44.19 4.80 64.37
5 4.33 48.52 3.50 67.86
6 4.18 52.70 2.56 71.30
7 2.96 55.65 2.29 73.56
8 2.73 58.39 2.00 76.15
9 2.40 60.79 1.62 78.15
10 2.28 63.07 1.55 81.72

Table 3.2: Percentage variation captured by first 10 eigenmodes computed using the
covariance and correlation methods.

3.5.3 Interpretation of Eigenmodes

Comparing the eigenvalues produced from PCA of the data set using the covari-
ance and correlation approaches can not be done directly as the correlation method
works on a normalised version of the data whereas the covariance method does not.
Table 3.2 details the eigenmode decay by each technique, suggesting that the corre-
lation approach’s decay is more rapid. Reconstruction error gives a better indication
of this decay than the raw numbers, and thus the success of the method (Fig. 3.21).
Investigations using a smaller training set used reconstruction error to compare the
covariance and correlation approaches, examining geometry and modulus separately
(Fig. B.3). The geometry showed a markedly improved result with the correlation
approach, this was not matched in the modulus reconstruction but the results were
no worse than the covariance alternative. The analyses indicated that the correlation
method was better suited to the analysis of data with mixed units and that although

there is some correlation among the training set it is not strong.

The physical effect on shape and material characteristics of each eigenmode was
investigated by manipulating each mode in isolation and visualising the femur pro-
duced (Fig. 3.19). The first mode was dominated by scaling effects alongside an
increase in anteversion angle due to rotation of the femoral head. The modulus val-
ues of the shaft cortex were seen to increase significantly as the femur size decreased.
By the second mode little change in femoral length was seen, however a thickening of
the bone was observed alongside a reduction of the highest modulus (cortical) bone
and an increase in medulary cavity volume. These characteristics are very similar to

those reported by Ruff and Hayes [101] when describing the effects of ageing on the
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Figure 3.19: Geometry and material property changes with first 3 modes, varied
between 4 3 standard deviations, acting in isolation.

femur. There was a slight decrease in neck-shaft angle and a noticeable change in
anteversion angle. Mode three again showed an alteration in anteversion, this time
decreasing through the mode. It mainly indicated an increase in average bone mod-

ulus with some further subtle geometric traits such as an increase in femoral head
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diameter, condylar size, lateral inclination of the femoral shaft and a reduction of

bowing in the shaft in the sagittal plane.

The nature of the changes observed are interesting since measures based on
metrics such as cortical thickness, average bone density and neck-shaft angle have
been shown to be risk factors for clinical problems such as proximal femoral frac-
ture [102, 103, 104]. The influence of the modes provides an insight into the sig-
nificant ways in which this set of femurs vary, however it must be noted that these
modes will never occur in isolation. In reality any femur will be the product of the
combined effect of a number of modes, which may result in the features observed

being cancelled out or exaggerated.

3.6 Construction of New Femur Models and As-

sessing Model Robustness

3.6.1 Methodology for Creation of New Femur Models

A key aim of this study is to use the statistical model to generate new femur instances.
To become a truly useful tool in the future, the created models must be realistic
femurs and ideally be able to be used directly in FE so must have good mesh quality

and require no manual correction or remeshing.

The equations defining the statistical model for both the covariance and corre-
lation approaches are described in detail in section 3.4.5. Equation 3.9 describes
how a femur instance can be constructed by the covariance approach, from the mean
femur geometry plus the sum of a number of eigenvectors whose specific influence is
controlled by a shape and intensity parameter vector b. The correlation approach
reconstructs a geometry in a similar way although the standard deviations of the
training set must by multiplied back in as an additional, final step. New, unique
femurs can be generated from the model through the control of the two following
factors; firstly by randomly varying the shape parameter, which is assumed to be
randomly distributed, between upper and lower bounds b, and b; and secondly by
including the m dominant eigenmodes. The value of b,, b; and m must be set specif-
ically to the optimum values for the model. Investigations were required to find the
number of modes needed, m, and the extent of the bound over which the model is
sampled Y, such that the limits become £Y oy, ,, where 03, is the standard deviation

of the individual shape parameters across the training set. If possible the model
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should be sampled through +3 standard deviations (as common in the literature and
describing 99.7% of the distribution assuming it is Gaussian), unless the resulting
shapes become unrealistic or element quality degrades. This would be a risk if the

training set was not large enough to describe the variation satisfactorily.

Figure 3.20: Figure shows the proximal portion of three generated femurs. A good
quality mesh (left) is produced when the model bounds are set correctly, however
mesh degeneration can occur (right) if this does not happen.

The importance of finding suitable bounds within which to sample the statistical
model relates to the potential quality of the femur models it produces. The shape
parameter bounds define how far from the mean the generated femurs will be, if
stretched too far this could result in very unlikely configurations. Establishing the
optimum number of modes is a balance of including all relevant information from the
model without taking too much low level fluctuation, which will act as noise. The

main result of this will be local distortions and poor mesh quality (Fig. 3.20).

Two approaches were taken to assess the requirements of the model; firstly by
calculating the error in reconstructing the training examples with different numbers
of eigenmodes and secondly looking at the variation seen in the models produced by

changing the number of modes and sampling bounds.

3.6.2 Reconstruction Error

Reconstruction tests were performed to interrogate the model, where each of the
training examples was generated from an increasing number of included eigenmodes
by applying its known shape parameter weightings (Eq. 3.9). The tests investigated
the robustness of the model in capturing the variability within the training set and
provided a way of assessing the number of modes required to describe the majority
of it. When sufficient modes are used the error in reproducing a given instance

will fall to a low (or in this case where a small training set is used, acceptable)
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Figure 3.21: Reconstruction error of geometry (left) and elemental modulus (right)
with increasing eigenmodes.

level. With this method of analysis the use of all modes will result in the target
model being replicated exactly, however the highest modes are only contributing
minor perturbations. For further applications of the model, such as reconstructing
an unseen instance or generating new models, these higher order, low energy modes
will simply add noise and distortion to the shape. The aim of the test is therefore
to identify the least number of modes required to describe the highest proportion of

variation, resulting in the lowest reconstruction error.

To fairly examine the results of the tests the geometric and modulus reconstruc-
tion data were analysed separately as they relate to different units of measurement.
When purely geometric error was considered by comparing corresponding nodal posi-
tions throughout the volume of the mesh, a mean Euclidian distance error of < 1mm
was possible for geometry using the first 7 modes, which fell to < 0.5mm by 26
modes. This was 50% of the total eigenmodes (Fig. 3.21). When elemental modulus
reconstruction error was calculated using the same method the error decay was not as
rapid as geometry. When 50% of the eigenmodes were incorporated the mean error
fell below 500MPa (Fig. 3.21), yet when femur instances were visualised the material
distribution and modulus values looked realistic. Therefore a further investigation
was carried out to see whether the reconstruction error suggested was present or this

method of calculation was unfairly harsh.
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An analysis akin to that used to asses the volume morphing accuracy was run,
examining the effect of an increasing number of included modes on the model’s ability
to predict strain distributions as compared to its original instance (i.e. the training
set member being reconstructed). The modulus and strain distribution through the
proximal femur were compared to the target femur being rebuilt to assess the ability
of the model to capture the material variation with increasing modes. The results
for a typical femur tested are shown in figure 3.22. The analysis concluded that if
less than 35 modes were used then some features were lost, however the material

property distribution remained realistic at all levels.
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Figure 3.22: Plot of modulus (top) and strain (middle) distribution in a section
through the proximal femur with 20, 30, 33 and 35 modes included and in the original
femur being reconstructed (far right), following a stance loading FE simulation. All
plots were made on a generic femur model so the geometric changes with modes were
not included. Plots of percentage bone strain volume distribution through the whole
femur are also shown (bottom).
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3.6.3 Sampling the Model

The previous section has established an optimal number of modes to be included for
this study (based on a 45 model training set). The remaining parameter to define is
the sampling range along with the sampling technique. As previously discussed the
sampling range is £Y o, . If this is chosen correctly then the generated models will
exhibit a wide range of variation spanning that seen in the training set and possibly
beyond. If too large a range is chosen then the new models could exhibit unreal-
istic/distorted features (a greater risk with a small training set) and mesh quality
degradation, whereas too conservative an option will clip the variations possible. The
standard sampling range used is £3 standard deviations of the training set mean,
with the theory that if the data distribution is Gaussian then this will cover 99.7% of
the variation in the data. This is an assumption, so to ensure that the majority of the
data is represented a plot of the shape parameter values for each mode was created
with the bounds of +3s.d. (Fig. 3.23). The figure shows that almost all the training
data lies within this boundary so the sampling limit is not artificially cropping the

information.
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Figure 3.23: Figure showing the eigenvalue weightings of the training set (blue dots)
superimposed onto the sampling space created by a +3s.d. range (grey area).
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The next concern with the sampling limit is that the mesh quality does not be-
come degraded. As discussed in a previous section it should be remembered that
mesh degradation will also be affected by the number of included modes. To ex-
amine the influence of this, NSR and SDR scores of femurs reconstructed using an
increasing number of modes with shape parameters cropped’ to 4+3s.d. were cal-
culated (Fig. 3.24). The previous figure illustrates that few points fall outside this
range, but those that do will be pulled back to the +3 s.d limits. The results show
that at the highest modes the mesh quality of the outlying results decreases pro-

gressively, however the mean qualities at the selected 35 modes are high for both

SCores.
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Figure 3.24: Boxplots of the NSR and SDR scores for reconstructed training set
femurs with increasing numbers of eigenmodes, using a set of shape parameters
‘cropped’ at +3s.d.

The choice of sampling distribution is key to the range of models which are gener-
ated. A starting point is examining the distributions existing in the training data set,

namely the distributions of the shape parameters or eigenvalue weightings, b. The
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first five, which have the most significant influence and together account for nearly
70% of the variation in the model, are plotted in figure 3.25. These show that the
distributions are all different. Modes 1 and 2 (blue and red) appear to be bimodal
but are relatively flat, whereas modes 3 and 5 show singular peaks but these are offset
(as an aside, the bimodal peaks in mode 1, which represents scaling, could relate to

gender differences).

In order to truly represent the training data each of these distributions would need
to be modelled and sampled according to their own pattern, advanced techniques are
available to do this if it is desired [105]. However in this work the aim is not to
reproduce a specific data set but to generate a wide range of varied femur examples,
ensuring that they remain realistic. Therefore two simple sampling distributions
approaches were explored, firstly a Gaussian distribution, which is a reasonably ap-
proximation of many modes, and secondly a uniform distribution, which best matches
the first, most dominant mode. The most appropriate way to examine the suitability
of these approaches was to look at anatomically meaningful measurements, this is

the focus of the next section.
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Figure 3.25: Histogram illustration of shape of the distributions of the first six eigen-
modes, which together account for over 70% of the training set variation.

3.6.4 Characteristics of Generated, ’Synthetic’ Femurs

Reconstruction tests are an excellent mathematical test of a statistical model, pro-
viding details of how accurate the model is in reproducing a specific instance. The
prospective application of the model in this project is not, however, to regenerate
specific geometries but to generate new instances with realistic characteristics. Fu-
ture studies will aim to exploit the ability of the statistical model to generate new
femur instances. This will only be a useful tool if the femurs produced are unique and

realistic. Whether these criteria are met is dependent on the method by which the
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model is sampled. If these criteria are wrongly set then the generated femurs could
end up stretched too far and become unrealistic. Alternatively the created mod-
els could vary very little from instance to instance therefore only represent a small
subset of a population. In view of this, it seems logical to investigate anatomically
meaningful characteristics of the models which can be generated and compare these

to both the training set data and the wider population.

The statistical model contains both geometric and material information therefore
it was important to examine both of these forms of variation. This was performed
using semi-automated and automated checks to ensure the validity of the models.
The semi-automated assessments involved the generation of screen shots of all the
generated models, followed by manual inspection of the images. These showed that
non anomalous instances were produced. The registration method allowed a for
an automated method of comparing models as each node and element lie in the
same relative position in the bone in every instance - whether from a generated or
training set. A range of geometric and material metrics were defined on the baseline
model by identifying key nodes and element volumes which related to standard femur

measurements and areas of clinical interest [103, 106].
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The following geometric measure-
ments were automatically extracted and
calculated, based on known node po-
sitions: neck axis length (NAL), neck
shaft angle (NSA), femoral head diam-
eter (FHD), femoral neck diameter (in
both anterior-posterior, FND-AP, and
proximal-distal, FND-PD, directions),
anteversion angle (AA), femoral shaft
width (FSW, measured ~3cm below the
lesser trochanter), intertrochantic width
(ITW) and femur length (FL). To ex-

amine bone quality three key proximal

I
I
I

sections were defined: lower femoral

Figure 3.26: Illustration of the key prox- head (A), femoral neck (B) and in-
imal geometric measurements extracted tertrochanteric area (C) (Fig. 4.11).
from each model and the three proximal Comparative bone quality was assessed

volumes examined for material property by the cortical element percentage

characteristics. (where cortical bone was defined as
bone >3000MPa) and by average ele-

ment modulus in each section.

To compare the alternative sampling techniques both the Gaussian and uniform
distributions were used to generate 1000 femur instances, the results of which are
shown in Table 3.3 alongside the data for the original training set. Both methods
match the mean geometric parameters very well, but there is an underestimation
in material modulus by the uniform approach. The range or spread of outputs,
calculated as the maximum measurement minus the minimum, was less well matched
to the training data. The Gaussian method consistently extends beyond the original
data however the uniform method consistently underestimates the variation. The
range in shapes present in the base 46 models is not completely reflected in the 1000
models generated by the uniform approach, for this reason the Gaussian approach

seems better suited to this particular set of shape parameters in this model.

A key observation of the models generated is that they all appear realistic on visual
inspection and none failed the automated pass-fail element quality checks, therefore
all are potentially able to be used directly in FE. However, limited observations can
be made by comparing generated examples to the original set when, as discussed, the
distribution of each shape parameter would need to be modelled to reproduce the set

closely. A more suitable examination was to compare the data to a true population,
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Metric Training Data | Gaussian Sampling | Uniform Sampling
mean ‘ spread | mean ‘ spread mean ‘ spread
Neck Axis Length (mm) 101.3 35.7 101.3 43.2 100.6 11.2
Neck Shaft Angle (deg) 127.0 10.4 127.2 13.3 127.5 3.8
Femoral Head Dia. (mm) 48.0 16.5 48.0 24.9 46.9 6.8
Femoral Neck Dia. A-P (mm) | 34.7 17.2 34.7 24.4 35.2 6.9
Femoral Neck Dia. P-D (mm) | 33.8 16.5 33.8 26.6 34.1 6.8
Anteversion Angle (deg) 18.7 37.7 18.4 38.4 20.2 10.0
Femoral Shaft Width (mm) 16.4 6.0 16.3 8.9 16.4 2.1
Intertrochantic Width (mm) 56.0 18.7 56.0 28.7 56.3 7.9
Femur Length (mm) 436.3 | 115.3 | 462.9 211.9 452.6 38.4
Stature (mm) 1630.9 | 431.0 | 1730.3 792.0 1691.9 143.5
Fem. Head Cort Element (%) | 3.2 30.2 1.8 23.5 0.1 1.2
Fem. Head Mean Mod (MPa) | 1317.5 | 2005.8 | 1318.5 2142.8 1295.0 649.5
Fem. Neck Cort Element (%) | 28.7 59.3 29.7 62.1 19.1 21.5
Fem. Neck Mean Mod (MPa) | 2566.6 | 3230.7 | 2579.6 3932.7 2108.7 1232.9
Intertroc. Cort Element (%) 33.2 49.0 34.7 53.7 28.2 17.4
Intertroc. Mean Mod (MPa) | 2877.9 | 3276.4 | 2879.6 | 3889.6 | 2439.8 | 1045.7

Table 3.3: Table of geometric and material metrics for 1000 femurs generated by
Gaussian sampling, 1000 by uniform sampling and for the original 46 training femurs.
Both sampling methods used the first 35 modes and a range of +3 standard deviations
of the mean. The table shows the mean and spread (max-min) results for each of
these groups.

the U.S. National Health and Nutrition Examination Survey (NHANES) was used
to do this [107]. The survey published hip geometry and anthropometric data for
13,615 subject X-Rays, covering a population of 6942 women and 6673 men ranging
from 20 to 90 years old. Several reported parameters were directly comparable to
the measurements extracted from the generated models, namely FND-PD, ITW and
FSW. These were suitable as they have only a limited three dimensional component
unlike neck shaft angle, for example. As the training data was in the older half of
the age group an age-matched subset of the data was used, scatter plots of these
variables from with the Gaussian models superimposed are shown in figure 3.27. The
figure also shows a comparison of standing height in the NHANES population and
the generated set. The generated data can be seen to sit over the majority of the
survey data, although it does appear slightly larger in general. This size difference
is evidence by the slight mismatch in the the neck v’s shaft diameter and the the
height distribution plots. This is likely related to the ethnic discrepancies between
the training and NHANES data sets.
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Figure 3.27: Plots comparing statistics taken from the statistical model and training
set to data from the National Health and Nutrition Examination Survey (NHANES)
findings 13,615 subjects [107]. Plots compare an age matched subgroup of the
NHANES population containing 5803 subjects and a generated femur population
of 1000 models .Top: scatter of femoral shaft diameter against intertrochantic width.
Center: scatter of femoral shaft diameter against femoral neck diameter. Lower: Plot
of standing height cumulative distribution between (heights in mm).
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Another important question which can be answered by comparing the generated
models to the original training set is whether the statistical modelling approach is
generating new, unique instances. i.e. providing combinations of geometric and/or
material properties which are not present in the training set but are still realistic.
Figure 3.28 shows scatter plots of some of the exacted metrics, the combinations of
plots were chosen specifically to interrogate the performance of the statistical model in
capturing and reproducing the femur. The top row contains plots where the metrics
should logically have some correlation to each other, the first concerns geometric
features and the second material metrics. The geometric features of neck diameter
and head diameter should be related, i.e. one should not change dramatically without
the other also being similarly affected. The same logic applies to the material modulus
in the neck and intertrochantic regions. The lower row of plots again contain both
geometric and material data, however metrics which are not directly related to each

other were chosen.
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Figure 3.28: Scatter graphs comparing the ranges of various geometric and material
metrics seen in the 1000 Gaussian generated data set (black dots) in relation to the
original 46 training femurs (red squares).

The plots show that the model generation approach adopted samples the range of
parameters in the training set and interpolates between them, allowing combinations
of geometries/material qualities which are not seen in the original data. There is
also evidence that the methods allows some extrapolation beyond the original data
limits, which is controlled by the sampling parameters chosen. Reassuringly, the
interpolation /extrapolation retains the relationships defined within the training set,

e.g. measurements which should be proportional remain related (Figure 3.28 top),
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whereas when such a relationship is not present the entire space is sampled (Fig-

ure 3.28 lower).

In 2D plots it is easy to consider the observed metrics in isolation or in pairs.
It may be logical to think that a parametric model could be used to produce the
same sort of relational changes in shape or material, for example changing femoral
head diameter size in isolation to examine the effect this has. However, the femur is
a complex geometry and the addition of material information adds to the problem,
therefore what is not well expressed by the previous plots is that changing one pa-
rameter will have a knock on effect to several others. Using changes in FHD as an
illustration, figure 3.28 shows that for a given head diameter there is a band of allow-
able neck diameters. Extending this to other parameters, figure 3.29 shows that with
increasing FHD there are related allowable ranges of NAL and ITW which would also
have to be adjusted to make the generated geometries realistic. Plausible material
properties, on the other hand, are not so narrowly correlated and so a more random
method of parametrically altering these between limits would need to be devised.
The problem of representing a realistic femur is therefore not straightforward, incor-
porating many different changes which need to be considered together. From the
distributions of data shown in these scatter plots it can be seen that the statistical
modelling approach used is able to account for this and allow for both correlated and

uncorrelated variations.
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metrics seen in the 1000 Gaussian generated data set (black dots) in relation to the
original 46 training femurs (red squares), examining the changes in NAL, ITW and
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3.7 Discussion

The target future use of this technique was to be able to generate large numbers of new
and unique femur models in an FE analysis ready format. This would enable larger
combinations of realistic variations in femoral anatomy and material characteristics
to be used in computational studies than is currently feasible. To examine this
possibility a statistical model, trained on 46 subjects, was generated using PCA and
sampled to generate synthetic femurs. The first 35 eigenvectors were used for this
with random, Gaussian perturbations between +3 standard deviations of the mean
eigenvalue weightings indicated by the training set. To test whether the generated
femurs related to a real population, thus could be useful in a later large scale analysis,
comparisons were made between several metrics taken from the NHANES survey of
13,615 Americans and 1000 generated models. This indicated that the generated
population did show similar trends and limits. Cumulative distribution of standing
heights indicated that the generated set was slightly taller than the U.S. population.
Some differences were to be expected and reflect the range of femurs in the training
data and the sampling method. Plots of the distribution of the eigen weightings
in the training data indicate that the trend is not Gaussian at 46 examples, this is
particularly true of the first mode which is the most significant and seems to have
the most influence on femoral length. The correlation between the generated and
real populations could be made closer if each weighting distribution were modelled
individually and these used to sample the model. Such techniques are available and

should be considered for future studies if deemed necessary[105].

A main feature of the statistical model discussed in this chapter when compared
to existing methods is its use of a fine mesh density to allow capture of geometric and
material property distributions, and produce an ’analysis ready’ FE mesh [15]. The
subsequent increase in model complexity led to two major developments being made
to the elastic surface matching registration scheme of Moshfeghi et al. [91], the incor-
poration of k-d trees and Laplacian smoothing. The use of k-d trees [92] accelerated
nearest neighbour searches during each iteration of the elastic surface matching algo-
rithm. This reduced the complexity of the original elastic surface registration scheme
significantly at each iteration, resulting in calculation speed increasing by orders of
magnitude. It was verified that this improvement was achieved without any adverse
impact on the accuracy of the registration algorithm. Laplacian smoothing was also
introduced at each iteration to try to prevent mesh quality degradation through the
matching process and reduce the risk of mesh folding and bunching which is known

to potentially occur in areas of concavity [91]. This dense mesh could be considered
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a limitation for some future applications, however for this work it was easily manage-
able and a future detailed study of mesh density could be done to investigate whether

the mesh could be coarsened.

Surface registration was performed within 40 minutes on an Intel Xeon X5365
processor. By the scoring system defined in Section 3.5.2, the mean surface mesh
quality score of the registered models dropped by 5% from the baseline, however the
quality remained over 89/100 in all cases with a mean of just <0.2% of elements in
the lowest quality quartile. The inclusion of Laplacian smoothing had the potential
to reduce registration accuracy, so an investigation of the mean distance between
each registered point and target surface was run. This showed a mean error of
<0.6mm, with >99% of nodes under 1.5mm from the target. This level of error was
within the resolution of the CT’s used, 0.488x0.488x1.5mm to 0.781x0.781x2mm, and

comparable to the 1-2 voxel error associated with manual segmentation [73].

Volume morphing was assessed by comparing registered-morphed meshes to in-
dividually meshed instances of the same initial geometries, with comparable element
sizes. Both the morphed and ideally meshed instances were then identically loaded to
simulate single legged stance and the material and strain field distributions through
them compared. Figure 3.18 shows very little difference between the two examples.
This, together with the morphed model quality metrics remaining high, added con-
fidence in the combined success of the surface registration and volume morphing
methods as well as the final ability of the statistical model to generate meshes of

sufficient mesh quality to allow direct use in FEA.

The training data was dominated by men and the older population, with a mean
age of 70 years. A large degree of variation was present within the training set. No
pre-selection was applied as whole femur CT data was hard to source. Ideally, in
future, sufficient scans would be available so that subdivision could be applied on
the basis of age, sex and ethnicity, which all have affects on femur geometry and
material properties. As the femur has a complex form and distribution of material
variation, the training set size will always be a limitation. This is emphasised by the
relatively large proportion of eigenmodes required to reproduce shape and modulus
(Figure 3.22), showing meaningful variations are contained in up to 35 of the 46
modes. At 35 modes >95% of the variation in the training set is captured, the
remaining 5% therefore likely contains noise and minor fluctuations. These could
have been introduced due to segmentation errors or low level mesh degradation which,

by using only 35 modes, has been filtered out.

Reconstruction tests are a conventional method for assessing a statistical model by

examining its ability to reproduce each member of the training set, the fewer modes
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required to do so accurately the more correlated the data. As two different qualities
were being captured by the model, geometry and modulus, their reconstruction errors
were calculated independently (Figure 3.21). This revealed a much higher correlation
within geometry where mean error falls below 1mm after just 7 modes, and becomes
equivalent to registration error at 20 modes. Modulus error was reported to be poor
by this test, with errors >500MPa at 20 modes. However from the plots of the
influence of the first 3 eigenmodes on shape and modulus, figure 3.19, the overall
distribution of material property seemed realistic. This theory was supported by
comparing the strain results, following loading, of original femurs to instances of that
femur constructed with increasing numbers of modes (Figure 3.22). At 35 modes the
strain fields produced were comparable, whereas reconstruction error alone indicated
an error between 37-464 MPa.

The reasons for noise in the modulus data which resulted in high reconstruction
error and the need for a large proportion of modes are likely due to the nature of
the data and the methods used to extract it. CT data is inherently noisy, with vox-
alisation causing partial volume effects where materials with dissimilar densities are
close together. This would occur on the femur surface between cortical bone and soft
tissue and within the bone where there are areas of rapid transition between cortical
and cancellous bone. The CT data used in this study were from clinical sources
and without calibration phantoms. Calibrations for the proportional relationship be-
tween greylevel and apparent bone density was defined individually for each set by
identifying the greylevel of marrow in the medullary canal and the highest greylevel
visible in the femur itself. Marrow was considered to be equivalent to water and given
a density of Og/cm? and the maximum greylevel was assumed to be compact cortical
bone at 1.73g/cm?® (these values relate the the density of mineralised tissue) [108].
This calibration technique is a potential source of error in modulus data although
every effort was made to reduce possible human error. The use of quantitative-CT

data in future would be a solution if it were available.
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3.8 Conclusions

This chapter has discussed a technique for the construction of a highly detailed sta-
tistical model, which captures geometry and material property variations within a
training set of data. The elastic registration and mesh morphing schemes developed
enabled a solid tetrahedral model to be constructed from a large number of points,
resulting in highly accurate registration of the training data and the direct production
of a mesh suitable for finite element analysis. A larger number of training examples
would help to improve the model’s ability to describe a wider range of the population
and perform patient specific reconstruction, although this is not what the model is
intended to be used for and alternative approaches such as intensity based registra-
tion may prove more appropriate [12, 109]. The results presented indicate that the
model is capable of capturing key anatomical features, with distributions of results
comparable to the training data and a true population set even with simplified sam-
pling methods. The significance of this is that it provides a method of generating a
large number of femurs for analysis, allowing the identification and investigation of
the ways in which they vary, making running large scale, multi model FE analyses
feasible. This may prove that more comprehensive preclinical computational testing
is possible and could, in the long term, lead to the generation of a tool for clinical

assessment with patient specific potential applications [66, 52, 110].
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Chapter 4

Femoral Neck Fracture Risk
Study !

4.1 Femoral Neck Fracture Risk

Hip fracture is one of the major health problems facing our increasingly ageing popu-
lation at the current time. This is not only due to the traumatic and acutely painful
nature of the injury but also its related effects of reduced mobility, long term disabil-
ity, reduced capacity to live independently and morbidity [1]. From a socio-economic
perspective, hip fracture has a substantial final cost thanks to the common require-
ment for long term care, continuing treatment and rehabilitation [111]. Evidence
suggests that the number of age-specific fractures is increasing [112], combining this
with globally increasing life expectancy and associated ageing populations [113], it
is clear that hip fracture has the potential to provide a huge social and economic

burden.

!Bryan, Nair and Taylor, 2009. Use of a statistical model of the whole femur in a large scale,
multi-model study of femoral neck fracture. Journal of Biomechanics 42(13), 2171-2176 - based on
the work in this chapter
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4.1.1 Aim of Femoral Neck Fracture Risk Study

The aim of the study described in this section is to apply the statistical model of the
femur developed in Chapter 3 to the problem of proximal femoral fracture. Due to
the limitations of the model it will not necessarily be possible to draw conclusions
which relate to the entire population. However, it is hoped that by following the
examples of previous analyses done in this area, the model will be able to produce
meaningful results. Meaningful, being that the results will show comparable trends to
previous studies, particularly when suggesting characteristics of femoral geometry or
bone quality which may indicate an increased risk of suffering femoral fracture. The
study described in this chapter hopes to illustrate the potential of using statistical

modelling techniques in analysis and to demonstrate how this could be achieved.

4.1.2 Description of Statistical Model Used in Study

The study described in this chapter was performed using a statistical model of the
whole femur built using the methodology described in the previous chapter. However,
the work was done before the final iteration of the model was complete therefore it
was built from a training set of 21 subjects (as opposed to the final 46). As a result
of this the characteristics of the model differ from those previously described, as do
the sampling methods and parameters applied. Characteristics of the model used in

the femoral neck fracture risk study are available in Appendix B.

4.1.3 Description of Hip Fracture

Proximal femoral fractures are most basically described as either intra- or extra- cap-
sular, referring to whether the fracture occurs within or outside the hip’s joint capsule.
This capsule is a synovial membrane which encases the articulating joint, constructed
from two sets of fibres arranged in circular and longitudinal directions, it connects
to the acetabulum and to the proximal femur just above the intertrochanteric line
(Fig. 4.1) [16].

Intracapsular fractures are defined as either femoral neck or femoral head frac-
tures. Femoral neck fractures are further subcategorised as subcapital, cervical or
basicervical (Fig. 4.1). Femoral head fractures are rare and usually only the result of

high energy trauma. Extracapsular fractures are broadly defined as subtrochantic or
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Ligamentum Teres
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Figure 4.1: Tlustration of hip joint capsule (left) [16], major blood supply paths in
the proximal femur (center) and the main fracture types seen in the proximal femur

(right).

Location Percentage
Intertrochantic 49
Intracapsular 37
Subtrochanctic 14

Table 4.1: Table illustrating the clinically seen proportion of fracture locations [115].

intertrochanteric, the later being the most commonly seen location, accounting for
about half of the fractures seen (Table 4.1) [114, 115].

Fracture location is significant as it defines the treatment course taken and se-
riously influences the chances of recovery. Figure 4.1 illustrates the major blood
supply paths to the proximal femur, if the blood supply is disrupted of cut off as a
result of fracture then areas of bone can suffer avascular necrosis and die. A good
blood supply is also essential for bone to heal. The diagram shows how intracapsular
fractures, particularly subcapital, can be highly disruptive to blood supply to the
femoral head, if the fracture is severe and displaced then there is a low chance of
successful healing. This scenario is likely to result in a hemiarthroplasty or full joint
replacement. Intertrochanteric fractures are less disruptive to blood supply so there
is more chance of natural healing and typical treatment would be internal fixation
with screws [1]. However, patients suffering intertrochantic fractures have been re-
ported to have a poorer short term outlook, having a higher rate of mortality at
2-6 months and are slower to regain pre-fracture activity levels than patients with
femoral neck fractures [116]. This may be partly explained by the demographic who

seem more prone to intertrochantic fracture, being older and in poorer health.
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4.1.4 Risk Factors for Hip Fracture

Hip fractures most frequently occur in the elderly, and it is reported that 90% of
the time they follow a fall [46, 117, 118]. The most dangerous type of fall has been
one which results in an impact to the lateral aspect of the proximal femur, i.e. the
greater trochanter, or the side of the leg [119, 120, 121]. Logically the velocity of the
fall and the amount of 'cushioning’, either by soft tissue, the surface landed on or by
protective measures such as hip protectors, will affect the impact energy and therefore
the likelihood of bone fracture [122]. There is some evidence to suggest that fracture
may result from sudden, powerful muscle contraction immediately before impact or
even as a reaction to beginning to fall [123]. However Hayes et al. [119] saw that
even falls from a standing height or less are no minor trauma to elderly patients.
Through cadaveric testing, it was shown that the impact energy relating to a fall was
more than an order of magnitude greater than that required to fracture elderly bone.
Worryingly, it is estimated that up to 80% of all elderly people over the age of 80
suffer at least one fall per year [124].

Muscle strength and body size have been suggested as possible indicators of frac-
ture risk. Their effect seems, however, to most likely be significant only in their
interaction with the risk of falling. The energy of a fall will be greater for a taller
and/or heavier person, simply because there is further to fall and a greater mass [125].
In relation to body mass, both high and low body masses can be problematic. A
high body mass may be a problem as reduced mobility, proportionally low muscle
mass and strength and the significant load applied by their size may be sufficient to
exceed the femur’s fracture load, despite the positive effects of body fat dissipating
the impact force [1]. In contrast, underweight elderly people may have insufficient
soft tissue to absorb the energy of a fall, and associated muscle mass loss may make
falling more likely [125]. Similarly, other related factors which have the affect of
either making a fall more likely or heavier are: decreased muscle strength, inactivity
( affecting muscle strength and coordination), environmental hazards ( such as ice
or slippery floors), impaired cognition or perception, poor vision and neurological

disorders [1].

With time, bone mass is lost and the collagen within bone degrades, reducing the
bones elasticity, and increasing bone brittleness. Low bone mineral density and bone
mass, often the result of osteoporosis and natural age related bone loss, have long
been logically related to increased fracture risk as bone mass and mineral content
is directly related to bone modulus [108]. However in hip fracture, despite sufferers

having below average bone mass for middle aged subjects, control studies have shown
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that there is significant overlap between non-fractured and fractured subjects of the
same age and gender groups [126]. Due the greater natural rate of bone mass loss
and increased propensity to osteoporosis, women are at significantly higher risk of hip
fracture (Fig. 4.2). It has been estimated that women over the age of 50 are 2-4 times
more likely to suffer hip fracture than men [111, 127, 128, 129]. The risk continues
to increase with age; at 50 the percentage of women at risk is 17.5% compared to
6% for men [129], by the age of 90 this has increased to 25% for women and 16% for
men [124].
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Figure 4.2: Graph illustrating the difference in both overall bone mass and rate of
bone mass loss in men and women. The data is taken from a study of 3062 men and
4558 women, measuring BMD in the distal forearm using x-rays [130].

4.1.5 Outcomes of Hip Fracture

The immediate reaction to hip fracture is extreme pain, leaving the victim unable to
walk or stand. As discussed above, depending on the fracture, the blood supply to
areas of bone can be cut off which will lead to avascular necrosis if left untreated. Hip
fracture will require hospital attention for surgical treatment ranging from reduction
and internal fixation through to hemiarthroplasty and full joint replacement, although
for non-elderly, non-displaced intracapsular fracture a long period of bed rest may
be sufficient [1, 131, 132].

The immediate outlook for a hip fracture patient over 50 is uncertain (Fig. 4.3a).
Statistics range between 15-25% mortality within the first six months after the injury,
rising to as high as 30-40% after 1 year, depending on the location and severity of
the fracture and the age and pre-fracture health of the patient [111, 124, 132, 133].
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Figure 4.3: (a) Graph of the mortality rate for different age groups following hip
fracture of 1000 patients admitted to hospital. (b) Figures illustrating the residency
of patients who suffered from intracapsular (top) and extracapsular fracture (bottom)
in the year following fracture [132].

The patient’s risk of dying within the first 6 months is seen to increase significantly if
they are male and/or over 75 [134, 135]. Having survived the first year, a significant
number of patients, 20-30%, will have been moved to long term care facilities for the
first time and only around 45% are expected to be discharged home from hospital [132,
111, 135](Fig. 4.3b). Recovery rates are also reported to be far from ideal. After 1
year, Cooper et al. [135] describe 80% of patients as unable to perform activities that
were previously possible, with 60% finding at least one essential daily task difficult
unaided. Most worryingly, they claim that 40% are still incapable of walking unaided,
a figure supported by Keene et al. [132]. Not only can recovery prospects be poor
and slow, the effect of this vastly raises the likelihood of a second or even third hip
fracture [1]. At 1 year, Karlsson et al. [136] showed patients to have a 7% reduction
in BMD in the fractured hip, 5% reduction in lean body mass and an 11% increase

in body fat, all undoubtedly not helped by enforced inactivity.

4.1.6 Occurrence Rate, Cost and Projections

It was estimated that the number of hip fractures happening globally per year was
around 1.7 million in the mid 1990’s, with around 250-300,000 per year in the U.S. and
over 50,000 per year in the UK [1, 111, 127]. As previously discussed, hip fractures are
most likely in the elderly who have weakened bone strength and increased propensity
to fall. These numbers are projected to rise substantially. The injury is only really
seen in younger patients following serious trauma, such as a car crash [134]. A major
factor behind this is that the proportion of old and elderly in the population is

increasing, particularly in the developing world. Globally the percentage of people
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over 60 has increased from 8% in 1950 to 10% in 2000, and is predicted to hit 21% by
2050, with the fastest growing age group being the 'oldest old’, over 80 years, who will
be majority female and are set to make up 1/5th of the over 60’s by 2050 [113]. The
increasing elderly population, with the ’oldest old’ making up a significant proportion,
and the growing number of very elderly women is very worrying as these are the

highest risk groups for suffering hip fracture.

Year A B C D

Men | Women | Men | Women | Men | Women | Men | Women
1990 | 338 917 338 917 338 917 338 917
2000 | 417 1086 460 1200 483 1242 520 1332
2010 | 553 1321 615 1611 727 1760 854 2049
2025 | 783 1821 1109 | 2580 | 1386 | 3102 | 1976 | 4145
2050 | 1381 | 3112 | 2509 | 5653 | 3905 | 8430 | 6794 | 14516

Table 4.2: Table showing projected numbers of hip fractures globally (000) per year.
A - Assumes unchanging age and sex specific incidence B - Assumes a 1% increase in
age and sex specific incidence worldwide, C - Assumes no secular change in the US
and N. Europe but a 2% increase in age and sex specific incidence elsewhere and D
- Assumes no secular changes in US and N. Europe but 3% increase in age and sex
specific incidence elsewhere [137].

Gullenburg et al. [137] investigated the incidence of hip fracture in each region
of the world and combined this with global population increase projections. Several
calculations were performed; firstly simply scaling by predicted population growth
and then by several other approaches where the increasing proportion of elderly and
females was included by varying amounts (Table 4.2). The results showed that by
2050 the number of hip fractures will reach 4.5 million purely by population growth
and there could be many as 21.3 million globally, if only a conservative 3% increase in
age and gender specific rates is seen. There have been many more localised estimates

and observations for how hip fracture incidence will and has risen in different countries
(Table 4.3).

Beyond the individual suffering caused by hip fracture there is also a large eco-
nomic cost. In 1998 Dolan et al. [111] estimated the costs of osteoporotic fractures in
the UK and found that hip fracture was not only the most common fracture in the
over 50’s, accounting for 87%, but also the most expensive to treat. The conservative
estimate of the cost of a typical hip fracture was £4808 of acute care, directly received
hospital treatment and surgery, along with £7152 of non-acute care, including social
care, rehabilitation and long stay hospital costs. The total estimated cost to the UK
was £942 million per year, which when inflation is corrected for is just over £1,100
million in 2008. This bill seems only set to rise in light of the global trends for an

increasing elderly population.
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Country

Comments

Source

U.S.A

512,000 fractures per year by 2040
(current estimates 250-300,000 [1])

Cummings et al. [138]

U.K. 60-117,000 fractures per year by 2015 Gullberg et al. [137]
(current estimates 50,000 [111])

China Study in Beijing showed 33% increase in women | Ling et al. [139]
and 33% increase in men between 1988-92.

Finland | 3x increase between 1997-2030 based on trends | Kannus et al. [140]
observed between 1970 and 1997.

Belgium | 7x increase between 2003-2050 based on trends | Reginster et al. [141]
observed between 1984-1996.

Greece | 81% increase in recorded hip fracture between | Paspati et al. [142]

1978 and 1992.

Table 4.3: Table describing hip fracture observations in different countries.

4.1.7 In Vivo Studies of Hip Fracture Risk

As established, hip fracture has serious implications and therefore many studies have

been undertaken to see if it is possible to predict whether a patient is at high risk

of suffering the injury. In vivo or clinical studies, tend to use non-invasive imaging

techniques to compare groups of patients who have suffered a fracture with control

subjects. Age, gender, ethnicity and body size have an effect on bone geometry and

quality, these factors are generally corrected for in final results and control groups are

matched to the fracture group, as appropriate for the particular study. Almost all

use Duel Energy X-Ray Absorptiometry (DXA) to examine femoral geometry and/or

bone density as this is commonly used in medical practice, making large volumes of

information available. In addition, if any useful metrics can be found within simple

2D scans then they will be easily implementable.

Femur X ray
Dimensions

Figure 4.4: Illustrations of the geometric measurements taken by various clinical
studies;(a) Theobald et al. [103],(b) Peacock et al. [143], (c) Bergot et al. [144] and
(d) Michelotti et al. [106].
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Several studies have investigated the influence of femoral geometry on fracture
risk [145, 103, 106], whereas others have tried to gauge the influence of BMD in
conjunction with geometry [143, 104, 146, 144]. There is some agreement in results
but also a fair amount of contradiction. The studies which investigated bone den-
sity all agree that lower bone density is a significant differentiator between fracture
and control groups in elevating fracture risk, and suggest that the incorporation of
geometric indicators can increase predictive accuracy. However the choice of geo-
metric parameter is not clear. Cortical thickness in the proximal femoral shaft was
deemed the only significant geometric parameter by two studies [106, 143]. A long
hip axis length (HAL), the length between the greater trochanter and pelvic brim,
has been highlighted in several cases [145, 103, 104, 146], yet totally rejected by
the others as insignificant. Bergot et al. [144] found HAL to be a reasonable in-
dicator between healthy and fractured groups but unable to differentiate between
non-fractured patients with low BMD, and so devised an alternative measurement
between the femoral head center and intertrochanteric line. Other geometric param-
eters suggested by some papers, and often rejected by others, are; larger neck-shaft
angle, greater femoral neck width and larger intertrochanteric width. Table 4.5 de-

scribes the aims, methods and findings of several related studies.

Inconsistencies in geometric results may be because these studies are attempting
to measure a three dimensional object from a two dimensional image. The femur is
‘twisted’ in several planes, as explained in Section 2.2.1, therefore the perspective of
an image taken of the femur can affect its appearance. Cheng et al. [147] compared
DXA images of cadaveric femurs in both neutral and anteverted (mean 19.3°) posi-
tions and showed significant differences in both BMD and geometric measurements
taken (Table 4.4). This shows the influence of patient morphology and particularly
the large affect of intersubject variability. It is logical to also see how these findings
relate to patient positioning during scanning, which currently is not standardised and

has been shown to influence measurements [106, 104].

Measurement Neutral | Anteverted | Difference Range
(mean) (mean) (%)

Neck BMD (g/cm?) 0.705 0.723 +2.8 -5.3 - +9.8

Trochantic BMD (g/cm?®) | 0.673 0.675 +0.2 -5.0-+5.9

Neck Axis Length (cm) 9.97 9.73 -2.4 -7.6 - +4.3

Neck Width (cm) 3.36 3.36 0.0 -5.3 - +6.7

Table 4.4: Table showing the effect of anteversion on BMD and geometrical measure-
ments of the proximal femur assessed by DXA [147].
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Chapter 4. Femoral Neck Fracture Risk Study

4.1.8 Computational Studies of Hip Fracture Risk

Hip fractures have been known to be a serious problem for a long time, therefore
many studies have attempted to apply computational and experimental techniques
to try to model and understand its mechanisms. The aims of this work have generally
been to try to identify metrics by which fracture risk could be gauged by non-invasive

techniques, several pieces of work are summarised in Table 4.6.

Early work was done by Lotz et al. [46] who understood that femoral neck fracture
was most commonly the result of a fall and so investigated the effects of typical
loading conditions seen during a fall as well as the more conventionally modelled
stance loading, which is representative of spontaneous fracture during walking or
possibly climbing steps. As with many computational studies which followed, finite
element models were built from CT scans of a pair of cadaveric femurs which were
subsequently subjected to mechanical testing to validate the FEA results. One femur
was stance loaded and the other subjected to a fall impact, the load conditions
created by Lotz are shown in Figure 4.5a-b. Remembering that this study only
looked at one femur per load type, it suggested that stance or spontaneous fracture
would result in a subcapital fracture location and a fall would lead to intertrochantic
fracture. It was also seen that the load required to cause fracture was much lower for
the fall configuration and therefore Lotz suggested that examining intertrochanteric
bone quality may be the most useful fracture risk indicator. These findings have
since been collaborated by several other studies who have tested a larger number of
femurs [149, 102, 51, 150, 121, 151].

Figure 4.5: FE model loading conditions defined by Lotz et al. [46] for (a) stance
and (b) fall, alongside images of corresponding experimental setup used by Keyak et
al [51] for (c) stance and (d) fall.
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Chapter 4. Femoral Neck Fracture Risk Study

Keyak et al. followed on from the work of Lotz, using their own automated fi-
nite element modelling techniques [38] to investigate femoral fracture and the stance
and fall loading conditions previously developed. Using 18 pairs of cadaveric fe-
murs the ability of the FE method to accurately predict fracture load was proved
for both scenarios, also supporting the higher load requirement for stance fracture
(Figure 4.5¢-d) [51]. The same set up and methodology was later used to investigate
fracture type and location, with strong agreement between the computational pre-
diction and experimental result. The trend of stance loading resulting in cervical and
subcapital fractures and falls leading to intertrochanteric fractures was again shown

(Figure 4.6) [150].

(a) (b) (c) (d) (e)

Figure 4.6: Keyak et al. [150]:(a) Example of FE models used, 8447 cubic elements
and 10652 nodes. Fracture locations predicted by FE model for (b) stance and (c)
fall loading, and radiographs of fractures produced in testing by (d) stance and (e)
fall loading.

A further study by Keyak et al. [121] looked at the effect of force direction on
fracture load, proving that the most dangerous configuration is an impact on the
posterolateral aspect of the greater trochanter. While the most dangerous stance
configuration exists where postero and lateral components act in a similar way to
standing on one leg or walking up stairs. Bessho et al. [151] ran simulations at the
most severe fall condition and in stance loading, modelling the healthy hip of 10
female patients who suffered cervical fractures. This study created FE models of the
whole femur which were able to show the lower fracture load of the fall scenario and

replicate similar fracture locations to those seen in reality.

A significant weakness of all of the studies discussed so far and the vast majority
of all the fracture risk work is the fact that only the femur is considered. It is clear
that in vivo there are many more factors involved, most significantly the interaction
with the pelvis, damping affects of surrounding soft tissues (and impact surface for
a fall) and inertia effects due to the subjects body weight. A single subject model
of the pelvis and surrounding soft tissue has been created by Mujumder et al. [50]

which attempts to incorporate all these factors and simulate an oblique fall to the
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Chapter 4. Femoral Neck Fracture Risk Study

side. The model is complex due to its representation of the whole pelvis-femur-soft
tissue structure, but a reasonably coarse mesh size of 4-7mm was used (Figure 4.7).

Reassuringly, the result of the model supports the femur only models in suggesting
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Figure 4.7: Tllustrations of the models and simulations run by Majumder et al. [50].(a)
FE pelvis-femurs complex, (b) pelvis-femur complex with surrounding soft tissue and

(c) fall configuration showing body impact with the floor.
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4.2 Methodology

The generation of a large number of femur models had several challenges which
required solutions before it was possible to run a large scale, multi bone simulation.
The study performed in this section aimed to generate 1000 unique femurs from the
previously created statistical model of the femur and then run FE simulation on
each of them to investigate femoral neck fracture. The stages required to do this
are explained below. It is also important to comment at this stage that a major
consideration of this work was the ability to automate the entire process from start
to finish. If this was not achieved, and manual intervention was required then the

usefulness of this tool would be lost.

1. Sample the statistical shape and intensity model to generate 1000 femur in-
stances. This required the boundaries within which the statistical model was
to be sampled to be set, and a method of ensuring that the probability space

it described was appropriately sampled.

2. Check generated mesh quality to prevent later simulation failure or anomalous

results.

3. Define loading conditions to each femur with individualised forces relating to

predicted weight.

4. Produce an input file suitable for a finite element solver. This had to contain all
nodal positions, elemental connectivity, material property information, applied

loads and boundary conditions.

5. Automating the simulation of each file in a finite element solver and recording

the results.

6. Automated post processing of the FEA results.
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4.2.1 Generation of Large Set of Femur Models From Sta-
tistical Model

The first step of this study was to formulate a methodology for using the statistical
model created in Chapter 3 to automatically generate large numbers of realistic femur
models. Section 3.6 and Appendix B explain how the boundaries within which the
model could be best sampled were found, concluding that the optimal choice for this
model was the inclusion of 8 modes and stretching the data to +/ — 1.5, where oy,
is the standard deviation of the individual shape parameters, b;, across the training

set.

A Sobol sequence [152] was used to generate a set of vectors, S;, with a value
between 0 and 1. These vectors were then used to perturb the statistical model shape
parameter, b;, thus generating completely new and unique instances, as follows. The
length of each Sobol generated vector was equal to the number of modes being used,
8, and the number of different vectors needed was equal to the number of femurs
required, 1000 for this study. By setting the lower parameter limit, b}, to —1.50
and the upper parameter limit to, b, to +1.50, the specific shape and modulus

parameter vector for each generated femur, B;, could be set by:
B; =t + (b¥ —b))S; where j = 1000,i = 8. (4.1)

By using each of the generated shape vectors B; it was possible to generate 1000
unique output vectors from the statistical model, each of which contained corre-
sponding nodal coordinates and nodal modulus values that described a femur as a

solid tetrahedral mesh with associated material properties (see Section 3.4.5).

Before the meshes could be fed into a solver, mesh quality had to be interrogated
to ensure that there were no inside-out elements or elements so distorted as a result
of the mesh morphing process that they could cause the later simulation to fail.
Section B.0.5 discusses the mesh quality checks adopted for this model during the
developments stage. It also explains that inside-out elements are a side effect of the
mesh morphing process adopted, however node order is easy and quick to correct
and so this simple check and repair step was written into the generation code. To
prevent excessive element distortion a normalised shape ratio, Equation 3.3, and a
shape distortion ratio, Equation 3.4, were calculated for each generated element, and
compared to the warning and error limits defined by ANSYS®. If more than 1%
recorded a warning, or any element showed an error, then the geometry failed and
was regenerated. The process of generating and checking 1000 femurs took less than

5 minutes.
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4.2.2 Subject Specific Fall Loading Conditions

The study aimed to investigate the strain resulting in the proximal femur following
a fall. The FE loading conditions for this were created to emulate the experimental
work of Keyak et al. [150], see figure 4.5d. To be able to set up this loading condition
automatically for each femur model the correspondence between model elements and
nodes was exploited. This allowed the conditions to be manually defined on the base-
line femur mesh and the relevant nodes and elements fixed or loaded, as appropriate,

in all subsequent generated models.

(a) (b)

LOADl
LOADl

/S /

Figure 4.8: Illustration of the loading conditions applied to each femur to simulate a
fall

The baseline femur was therefore manually rotated such that its shaft axis lay
at 30° to the horizontal plane (Fig. 4.8a) and the neck axis in the transverse plane
at 20° to the horizontal (Fig. 4.8b). The femur was fully restrained in two places; a
short depth of the lowest part of the greater trochanter, replicating the polymethyl-
methacrylate(PMMA) cup holding the femur in the experimental test, and from the
mid shaft of the femur down. A force was equally distributed over a ¢ 3cm area of
the proximal, anterior femoral head. This area would vary slightly between models
as it was translated into a loaded selection of surface nodes, however this area would
be proportional in each generated model thanks to the surface registration technique

applied (see section 3.5.2).
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4.2.3 Subject Specific Loading
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Figure 4.9: BMI distribution curve for the adult US population, estimated from a
national survey in 2002 [153].

The value of the applied force was set at one times body weight, due to the
linearity of the model any strain results produced could be scaled so the choice
of load magnitude was arbitrary. As all 1000 femurs were created statistically, no
subject weight was known so this data was generated as follows. Femur length, taken
as the distance from the most distal point of the lateral condyle to the most proximal
point of the greater trochanter, was assumed to be 26.75% of subject height [154].
This was a generic relationship, ignoring gender and race with a subsequent possible
error in predicted height reported at <0.6cm. A Body Mass Index (BMI) distribution
curve was generated from data available from the National Health and Nutritional
Examination Survey 1999-2002 (Fig. 4.9), conducted on all age groups within the
U.S. population [153]. By randomly sampling a BMI value from the distribution,
it was possible to calculate a subject weight in kilograms as BMI multiplied by the
square of the predicted height in meters. The process is illustrated in Figure 4.10 for

21 femurs.

190 Height s  Weight 70
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Figure 4.10: Mlustration of assignment of BMI and weight to individual femurs, based
on their length and related predicted subject height
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4.2.4 Finite Element Simulations

At this point all the information needed by the finite element solver had been
calculated. A simple script was created to write an input file for the FEA code
MARCO(MSC, Santa Ana USA) , for each generated femur. After a few generic
header lines defining element type and the size of the model the first data required
was the geometry structure, consisting of the element connectivity which was con-
sistent for each model, and the unique nodal coordinates. As each model contained
over 600 000 elements it was not efficient to define material properties for each el-
ement individually. Therefore elements were grouped into 10MPa bands and given
a modulus at the top end of this band, resulting in over 30 000 property bands per
model. The lists of fixed and loaded node numbers were then defined, along with the
instruction to run one loading cycle and then write out the result. Each input text
file contained over 64Mb of data.

It was possible to batch the simulation runs such that they were controlled through
MatLab® but operated through an MS-Dos shell. This enabled a simple fortran script
to start the MARC simulations and then save out selected parameters. The extracted
results were post loading element volumes and element strains. This data was then
read back into the controlling program, Matlab, where it could be postprocessed.
Due to the size of the models the time taken to load and write files was quite large,
on average it took ~3 minutes to write each input file and ~9 minutes to load, run

and save the results of each FE simulation.
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4.2.5 Metrics Extracted from Statistical Model

Various metrics were devised to aid inter-
rogation of the FE results, Fig. 4.11. A
range of geometric parameters were auto-
matically taken from each generated femur
in an automated postprocessing stage, again
it was possible to achieve this because of
the elemental and nodal correspondence be-
tween models. The metrics were defined

on the baseline femur model, with either

measurements being found by lines between
! specific nodes (or the angles between these
lines) and volumes being defined by groups
of elements. The measurements were iden-
tified by a mixture of methods, but most
are based around the femoral head center,
, _ ) found by fitting a sphere to the head, and
Figure 4.11: [Illustration of metrics ] _ ]
i the neck axis vector, found by fitting a cylin-
taken from femur models. Main areas
] der to the femoral neck. From these measure-
of interest: A - lower femoral head, , ) ]
, . ments head diameter, neck diameter (both in
B - femoral neck, C - intertrochantic. ] _ } ) )
) . anterior-posterior and proximal-distal direc-
Measures include: head and neck di- ]
) tions), and neck axis length could be found.
ameters, neck axis length, neck shaft i .
, , , The neck shaft angle requires the prior calcu-
angle, intertrochantic width, shaft ) ] ]
. ; lation of the shaft axis, by finding the center
width and anteversion angle.
of mass for several bands of the femoral shaft

and fitting a line between them.

All the metrics used were based on parameters which have previously been used
to analyse femoral shape, see Figure 4.4 [103, 106]. These were; Neck Axis Length
(NAL), Neck-Shaft Angle (NSA), Femoral Head and Neck Diameters (FHD and
FND), Intertrochantic Width (ITW), Femoral Shaft Width (FSW, measured ~3cm
below the lesser trochanter) and Anteversion Angle (AA). In addition, three key vol-
umes were identified within the proximal femur to gauge bone quality and judge fail-
ure risk, these were; lower femoral head (A), femoral neck (B) and the intertrochantic
region (C). They roughly relate to subcaptial, cervical and trochantic fracture regions.
To highlight those femurs which were at highest risk of failure a conservative criterion
was created identifying models where any of the three proximal sections experienced

>10% volume exceeding yield strain, 0.7%. This criterion was developed only as a

89



Chapter 4. Femoral Neck Fracture Risk Study

way of isolating the worst performing femurs to examine their differences, as it was

not felt that a precise failure limit could be verified.

4.3 Results

4.3.1 Overview of Results
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Figure 4.12: Plot of the volume of bone exceeding yield strain in each of the three

defined regions for all 28 failed femurs. Shown as (a) the percentage volume of bone

and (b) the actual volume of bone in cm?.

The failure criteria established in this study, based on the previously defined
criteria, found 28 of the 1000 generated femurs tested to be at risk of failure. This
means that 28 femurs showed >10% bone volume in one or more of the three examined
regions to exceed the yield strain of bone. Under closer examination, the trochantic
and neck regions appeared to breach this criteria far more frequently than the lower
head region. Figure 4.12 shows the percentage (a) and actual (b) bone volume
exceeding this failure criteria in each of the three regions for all 28 femurs. As the
intertrochantic area is much larger than the other two, it unsurprisingly dominates
in terms of actual volume, but when the regional percentages are calculated it is still
significantly higher in most cases. However there are clear differences between the
strain distributions in each femur, some showing noticeably higher neck strains, for
example femurs 5 and 10, and some showing higher strains in the lower head, femurs
6 and 10.

Having established which femurs performed worst in the fall load test and seen
indications that the failure patterns produced in these femurs differ from each other, a
further analysis was performed to visualise the volumetric strain distributions. The

failed and non failed groups were separated and their volumetric elemental strain
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results for regions A, B and C (head, neck and intertrochantic), were grouped into
0.02% strain sized bins (Figs. 4.13,4.14 and 4.15), clear differences were seen in the
results. For the low risk group (center row) the mean volume strain above 0.3%
is almost zero in all regions, with the majority of the bone volume below 0.1%.
However the at risk group (top row) distribution is different. The >1% strain bin
contains the largest volume of bone, although this is unsurprising due to the criteria
used to separate this group from the larger data set. The key difference is how
the strain distribution has flattened and been spread out, so there are notable bone
volumes in all the strain bins up to 0.5% in the head, 0.6% in the neck and 1% in the
intertrochantic region. The results for the training set femurs are shown alongside
(lowest row), they match most closely to the non-risk group, with typically low strain
results. These graphs show that the failed group have a shifted volumetric strain
distribution throughout the strain range, indicating that the failure criteria is not
being reached due to a pocket of high strain which could be caused by a boundary

or loading condition.

Two main routes of investigation were performed on the data produced from the
FE simulations. Firstly the fracture prone group of femurs was compared to the
unfractured group to try to find any statistically significant difference between them
using the geometric and material metrics previously defined. The second line of
analysis was focused on the failed group, attempting to identify the likely origin site
of any fractures. Both of these areas yielded results which could be compared to the

existing literature from experimental and computational based studies.

4.3.2 Range of Femurs Generated

To analyse the results of the study a range of metrics were extracted, these enabled
the characteristics of each femur to be identified. The metrics, which can be placed
into three classes, are described in Table 4.7. Cortical bone was defined as bone with
a modulus exceeding 3000 MPa, and so it follows that cancellous bone was classified
as bone below 3000 MPa. Where appropriate, material property characteristics were

calculated both in terms of regional percentage volumes and absolute volumes.

The immediate use of these results was to view the range of femurs generated. By
compiling the statistics of all 1000 generated models it was quick and easy to ensure
that the data being tested was realistic, i.e. no exceptionally over/under sized femurs.
This was an important analysis, allowing the model set to be interrogated without

manually visualising and checking each instance and showing that the training set
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Figure 4.13: Box plots illustrating the strain in the head region by percentage volume.
The top plot shows the 28 fracture risk group, the middle plot the 972 not at risk
group and the lower plot the training set results. The box shows the median (red),
upper and lower quartile (blue) and the whiskers extend to 1.5x the interquartile
range, with values beyond this shown by crosses (red).
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Figure 4.14: Box plots illustrating the strain in the neck region by percentage volume.
The top plot shows the 28 fracture risk group, the middle plot the 972 not at risk
group and the lower plot the training set results. The box shows the median (red),
upper and lower quartile (blue) and the whiskers extend to 1.5x the interquartile

range, with values beyond this shown by crosses (red).
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Figure 4.15: Box plots illustrating the strain in the head region by percentage volume.
The top plot shows the 28 fracture risk group, the middle plot the 972 not at risk
group and the lower plot the training set results. The box shows the median (red),
upper and lower quartile (blue) and the whiskers extend to 1.5x the interquartile
range, with values beyond this shown by crosses (red).
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Subject Femoral Geometry Material Property
Characteristics Characteristics Characteristics
Subject Height (mm) Neck Axis Length (mm) Lower Head Volume
Subject BMI Neck Shaft Angle (mm) Lower Head Cortical Volume
Subject Weight (kg) Femoral Head Diameter (mm) Lower Head Mean Cortical Modulus (MPa)
Load Applied (N) | Femoral Neck Diameter P-D (mm) | Lower Head Mean Cancellous Modulus (MPa)
Femoral Neck Diameter A-P (mm) Head Bone Volume + 0.4% Strain
Neck-Head Diameter ratio Head Bone Volume + 0.7% Strain
Coronal-Sagital Neck dia. ratio Lower Head Cortical Bone Volume %
Anteversion (°) Neck Volume
Femoral Shaft Radius (mm) Neck Cortical Volume
Intertrochantic Width (mm) Neck Mean Cortical Modulus
Femoral Length (mm) Neck Mean Cancellous Modulus

Neck Bone Volume + 0.4% Strain
Neck Bone Volume + 0.7% Strain
Neck Percentage Cortical Bone Volume
Intertrochanteric Volume
Intertrochanteric Cortical Volume
Intertrochanteric Mean Cortical Modulus
Intertrochanteric Mean Cancellous Modulus
Inter. Bone Volume + 0.4% Strain
Inter. Bone Volume + 0.7% Strain

Table 4.7: Table listing the metrics extracted from all femurs.
was being fairly represented. The minimum, mean, maximum and standard deviation

of this data is shown in Table 4.8. The geometric measurements can be seen to be

very similar to the data previously reported for the training set in Tables B.2 and B.3.
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Metric ‘ Min ‘ Mean ‘ Max Std
Neck Axis Length (mm) 83.212 100.214 118.881 6.508
Neck Shaft Angle (mm) 120.803 126.461 133.609 4.237
Femoral Head Diameter (mm) 36.887 47.446 58.682 3.914
Femoral Neck Diameter P-D (mm) 27.668 33.843 40.658 2.465
Femoral Neck Diameter A-P (mm) 24911 33.189 44.052 3.432
Neck-Head Diameter Ratio 1.256 1.402 1.557 0.053
Neck Diameter Ratio 0.863 1.024 1.261 0.062
Anteversion (°) 15.052 22.010 28.752 2.273
Femoral Shaft Radius (mm) 12.987 16.136 19.455 1.220
Intertrochantic Width (mm) 44.585 55.551 66.958 4.040
Femoral Length (mm) 415.267 457.789 505.034 23.116
Subject Height (mm) 1449.804 | 1611.581 1791.211 79.481
Subject BMI 18.686 27.522 39.912 4.680
Subject Weight (Kg) 43.035 71.654 122.364 14.134
Load Applied (N) 422.027 702.688 1199.984 138.610
Lower Head Vol. (mm?) 7680.431 | 15394.054 | 26563.900 | 3340.005
Lower Head Cortical Vol. (mm?) 0.000 363.013 3431.368 547.201
Lower Head Mean Cort. Mod (MPa) | 3002.252 | 3035.903 | 3864.665 865.972
Lower Head Mean Canc. Mod (MPa) | 438.830 | 1320.628 | 1965.974 293.297
Vol. over 0.4 % Strain (mm?) 0.000 57.538 3129.182 293.672
Vol. over 0.7 % Strain (mm?) 0.000 14.656 1385.147 105.784
Lower Head Cortical Vol % 0.000 2.415 21.969 3.510
Per Vol. over0.4 % Strain 0.000 0.434 26.726 2.272
Per Vol. over 0.7 % Strain 0.000 0.113 13.024 0.850
Neck Vol. (mm?) 11508.614 | 20310.235 | 32797.790 | 4199.371
Neck Cortical Vol. (mm?) 1275.813 | 4505.211 | 12281.619 | 2025.212
Neck Mean Cort. Mod (MPa) 4197.257 | 5300.621 | 6640.665 367.375
Neck Mean Canc. Mod (MPa) 411.856 1346.733 2205.860 409.059
Vol. over 0.4 % Strain (mm?) 0.000 415.461 | 15327.315 | 1599.733
Vol. over 0.7 % Strain (mm?) 0.000 89.312 6531.974 497.330
Neck Per Cortical Vol. % 6.168 22.494 50.358 9.391
Per Vol. over 0.4 % Strain 0.000 2.075 64.675 7.918
Per Vol. over 0.7 % Strain 0.000 0.448 27.345 2473
Introchantic Vol. (mm?) 48139.601 | 83338.961 | 134340.522 | 16813.927
Intertroc. Cortical Vol. (mm?) 6023.532 | 20565.793 | 46379.455 | 7030.814
Inter Mean Cort. Mod (MPa) 4915.590 | 5877.860 | 6973.287 355.784
Inter Mean Canc. Mod (MPa) 359.975 | 1098.351 | 1764.837 307.916
Vol. over 0.4 % Strain (mm?) 0.000 3110.698 | 55034.264 | 6494.316
Vol. over 0.7 % Strain (mm?) 0.000 946.778 | 33145.241 | 3037.308
Intertroc. Cortical Vol. % 8.494 24.938 46.012 7.596
Per Vol. over 0.4 % Strain 0.000 3.725 56.350 7.709
Per Vol. over 0.7 % Strain 0.000 1.139 35.257 3.653

Table 4.8: Minimum, mean, maximum and standard deviation of the geometric met-
rics, calculated across all 1000 generated femurs.
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4.3.3 Predicted Risk Factors

As previously explained the results of the FE analysis were separated into failed and
non failed groups on the basis of the strain produced in three areas of the proximal
femur. This allowed the results for each metric extracted from the femur models
to be compared between these two groups. This revealed seven metrics to be highly
significant, as indicated by an F-Test analysis (Table 4.9). The most important of the
parameters was the percentage of cortical bone in each section, especially significant
in the lower femoral head where the mean cortical modulus was also highlighted.
Three geometric parameters appeared to be important, neck shaft angle and to a
lesser extent anteversion angle and femoral neck diameter ratio (the neck diameter
ratio indicated the ovality of the neck, calculated as a ratio between neck diameters

measured in the superior-inferior and anterior-posterior directions).

Not At Risk At Risk

‘ F-Test | Min ‘ Mean ‘ Max | Min ‘ Mean ‘ Max
(A) Cortical Volume (%) 0.01 0.00 | 2.48 |21.97| 0.00 | 0.05 | 0.51
(B) Cortical Volume (%) 0.01 | 6.61 | 22.86 | 50.36 | 6.17 | 9.79 | 15.78
(C) Cortical Volume (%) 0.01 9.38 | 25.34 | 46.01 | 8.49 | 11.10 | 23.98
Neck-Shaft Angle(°) 0.025 | 120.8 | 128.7 | 133.6 | 121.3 | 124.4 | 127.8
(A) Mean Cort. Modulus (MPa) | 0.025 | 3002 | 3274 | 3865 | 3016 | 3300 | 3675
Anteversion(°) 0.1 15.05 | 22.06 | 28.75 | 16.91 | 20.45 | 23.98
Neck Diameter Ratio 0.1 0.86 1.02 1.26 | 0.94 | 1.02 1.13

Table 4.9: Results of the most significant material property and geometric metrics
found when comparing the failed and not failed model groups. The minimum, max-
imum and mean of each group is shown. A, B and C indicate the section of the
femur.

4.3.4 Predicted Fracture Locations

The likely origin of any fracture was identified by interrogating the areas of high-
est strain in the 28 femurs which failed the fall simulation. The failed femurs were
visualised and the areas experiencing high strain were highlighted. By gradually in-
creasing the strain threshold, below which elements were not selected, it was possible
to identify the probable origins of any fracture. The majority, 15 of 28, indicated
failure in the trochantic region with 8 of these showing highest strain along the in-
tertrochantic ridge (Fig. 4.16a). 4 femurs highlighted the anterior subcapital region
and the remaining 9 had multiple regions of high strain making a specific location
hard to identify (Fig. 4.16b+c). Most femurs showed some localised high strain
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around the greater trochanter restraint, but no model showed this to be the only

high strain location or any potential fracture lines stemming from this area.

(a) (b) (c)

Figure 4.16: Illustration of the areas suffering highest strain following fall loading. (a)
Intertrochantic, (b) anterior subcapital and (c¢) multiple regions. Areas highlighted
exceed 1.5% strain

4.4 Discussion

This study was able to run a large scale, multi-bone, finite element analysis for the
first time. In addition the process was made completely automated, needing only the
number of femurs required as an input and subsequently using the existing statistical
model to generate models with material properties, check their mesh quality, define
a patient specific load, set up individual loading and boundary conditions, submit
this to an FE solver and finally extract and analyse the elemental strains produced.

In total this entire process took approximately 12 minutes per femur.

The FEA results were investigated to see if any geometric or material property
metrics could be found to be significantly different between the group of femurs
which were classed as failing under a fall load and those which were not. The model
identified the overall percentage volume of cortical bone through the proximal femur,
and the mean modulus of cortical bone in the lower femoral head as significant bone
quality metrics. In terms of geometry; neck shaft angle, anteversion and the ovality

of the femoral neck were seen to be important.

As discussed throughout Section 4.1, many previous studies have suggested femoral
geometric and material features which may result in a predisposition towards femoral
fracture with the exact features frequently contradicted between studies. The main
feature which is agreed on is that a low BMD is a high indicating factor of risk [149,
104, 144, 146, 46], and also low cortical thickness (although usually defined in the
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proximal femoral shaft) [149, 103, 106]. This was very clearly supported by the
results of the model, with cortical bone percentage by far the most significant differ-
ence between the failed and non failed groups. There was no evidence that neck axis
length was an indicator of risk, agreeing with some work [106, 146] but contradicting
others [144, 103, 104, 145].

An interesting geometric parameter which was shown as significant was neck-
shaft angle. Again this parameter had been shown to have little or no influence on
fracture risk by some [144, 145] and yet important by others [104, 106, 146]. The
studies which did indicate this measurement suggest that a larger angle increases the
risk, however this study’s results show a smaller angle in the failed group. Miche-
lotti et al. [106] observed that this trend was seen in studies which took dimensions
from three dimensional images as opposed to the common two dimensional X-Ray.
Suggesting that subject positioning during imaging, particularly external femoral ro-
tation, can result in apparent changes to neck axis length and neck shaft angle, a
finding supported by work on the affect of anteversion by Cheng et al. [147]. This
parameter may well be affected by the limited training set as it is known to be gener-
ally larger in women than men [146], however with only 21 femurs it was not possible

to separate male and female subjects to generate gender specific models.

The present study corroborates previous findings that the majority of failures
under fall loading occur in the intertrochantic region [149, 102, 51, 150, 121, 151].
Keyak et al. [150] published some details of the failure locations of femurs under a
fall load which were tested experimentally as well as modelled computationally. The
experimental tests done in Keyak’s work were those replicated in the current study.
The fracture site was identifiable for 15 tested femurs. Although the descriptions of
fracture initiation sites are a little vague, it can be seen that a similar distribution
of results has been found in both Keyak’s work and this study (Table 4.10).

Keyak - FE (%) ‘ Keyak - Exp. (%) ‘ Statistical Model (%) ‘

Trochantic 29
Intertrochantic 60 A7 25
Cervical 13 40 14
Multiple - - 32
Subtrochantic 0 13 0

Table 4.10: Table showing the percentage of femurs identified with various fracture
location origins. Comparing the results seen by Keyak et al [150] for the 15 femurs
where experimentally identifiable failure locations were compared to FE predictions,
with the failure locations predicted by this study using femur models generated from
a statistical model.

99



Chapter 4. Femoral Neck Fracture Risk Study

There are limitations to this work. The model may suffer from the relatively
small size of the training data set, as discussed in the previous chapter. The data
set is taken from quite a general population group and so does not incorporate fac-
tors such as ostoeporosis, tumours or other pathologies which would weaken bone.
Investigations performed on the model and on the generated femur geometries and
material properties used in the current study do, however, show that realistic data
was produced which was a fair representation of the training set. Ideally separate
models would be generated for different genders, ages, ethnicities and pathologies, as
these are known to affect femoral geometry and bone density [103, 143]. Therefore
biases in the training set could, in theory, influence the statistical result of some

geometric parameters.

The finite element analysis performed on the data was relatively simple, mod-
elling bone - a material with anisotropic, non linear mechanical behaviour - as an
isotropic, linear material and calculating the effect of static load. This simplification
follows that of the study being replicated and greatly reduces the complexity and
computational cost of the simulations. A later study by Keyak [155] repeated the
computational simulations incorporating non linear behaviour, although still using
isotropic material properties, stance loading the model over a number of displacement
steps until a failure criteria was reached. A significant but small increase between
predicted and actual fracture load correlation was seen. Since the aims of this study
were to look for failure trends and not accurate fracture load prediction, the gains
of this technique were outweighed by the additional computational complexity. In
addition, the linear method and the fact that an impact rather than progressive load
was being modelled, meant that the precise value of load applied was not crucial to
the result. The load chosen, 1x bodyweight, was a realistic value for a fall and proved
sufficient to highlight an ’at risk’ group from the data set. A further simplification to
this FE analysis was the lack of inclusion of muscle forces, surrounding tissues and
impact surface. Again this was possible as the work was aiming to replicate Keyak’s
previous work in order to validate the results produced, so showing that the model

would replicate the same trends and not to accurately simulate real world scenarios.

This case study has shown the potential of this methodology to generate large
numbers of models which describe the variations present in the data used to create
it. The ability to characterise the population wide variability potentially has use-
ful applications in both computational-experimental analysis and clinical settings.
Keyak et al. [150] is a good example of the type of experimental-computational work
which could be enhanced by incorporating this statistical modelling technique, where
relatively small number of cadaveric femurs were tested, 18, and compared to com-

putational models. If the statistical model was used to replicate the experimental
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test results accurately, the model could then be extended to a wider population of
femur models with some confidence. Another possible use of being able to run such
large scale simulations is the ability to gain an understanding of how factors affect a
population, such that parameters taken from any patient can be compared to these
to see how they fit. This could give a more sophisticated indicator of risk factors
than current methods such as the World Health Organisation’s arbitrary cut off, set
at 2.5 standard deviation from the mean, to quantify predictions for osteoporotic hip

fracture.
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4.5 Conclusions

This study of femoral fracture has shown that the previously generated statistical
femoral model is capable of being used to drive a large scale, multi femur analysis.
The process was fully automated and completed within ~12 minutes per femur. The
results extracted from this 1000 femur analysis are meaningful, in that they agree
with trends highlighted in existing clinical and computational studies. However, due
to the limitations of the model’s training set, it would be unwise to try to draw
population wide conclusions at this stage. There is clear potential for this to be
possible in the future, suggesting statistical models could be used as the means of

incorporating interpatient variability into computational analysis.
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Chapter 5

Automated Implantation of

Femoral Resurfacing Implant !

5.1 Computational Analysis of Femoral Resurfac-

ing Implants

Computational analysis of orthopaedic implants has become commonplace in biomed-
ical research and preclinical implant testing. A severe limitation of the vast majority
of studies is the use of a single, often generic, bone model - failing to acknowledge
the differences in bone geometry and quality seen between people. This interpatient
variability has been recognised as having a significant influence on results in all areas
of assessment from clinical data to experimental and computational analysis, and in
a range of studies whether investigating implant performance [31, 52, 6, 3, 7, 37] or

natural occurrences such as falls [51, 150, 156].

The previous two chapters have shown how the statistical model of the femur
developed in this work has been able to produce a wide variety of bone models,
representing interpatient differences in morphology and bone quality. In addition it
has been shown how this statistical model can be used to drive a large scale analysis of
fracture risk in the intact femur. This was possible due to the computational analysis
being fully automated. Femoral implant assessment would benefit from the ability

to incorporate intersubject variation to better establish performance in the patient

!Bryan, R., Nair, P.B., and Taylor, M. An Automated, Large Scale Finite Element Study into
the Influence of Femoral Head Resurfacing on Load Transfer in the Proximal Femur, submitted to
Journal of Biomechanics: October 2009 - based on the work in this chapter
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population. In particular femoral head resurfacing success is known to be sensitive
to patient selection. The procedure is regarded as an attractive option over total hip
replacement for younger, active patients as it offers greater bone conservation and
more natural joint kinematics [157]. It has proved markedly less successful in older,

female patients.

In vivo, femoral neck fracture is known to be a common reason for revision fol-
lowing Resurfacing Arthroplasty (RA), often occurring in the first few months after
surgery. Computational studies have highlighted two possible issues following resur-
facing which could act as failure modes; namely bone resorption due to stress shielding
and increased strain in the neck around the proximal implant rim. However there
is debate as to the extent to which these mechanisms influence failure, with some
believing factors relating to surgical errors, such as notching, disrupted blood supply
or poor positioning, are the major cause of early failure. With evidence showing that
load transfer is altered by the insertion of a resurfacing component the ability to
model a wide variety of femur representations could help to indicate whether there
are patient traits which make failure more likely or whether it is more probable that
surgical influences are the key culprit. The statistical modelling approach allows suf-
ficient numbers of analyses to be run for meaningful statistical interrogation to be

performed, which is not feasible in traditional computational studies.

Aim of Automated Implantation Study

The aim of the work described in this chapter is to establish a robust methodology
for allowing fully automated computational testing of orthopaedic implants over a
large number of models. In addition, it is hoped that this will demonstrate a feasible
approach to using statistical modelling techniques in implant analysis. The adopted
study will carry out a multi femur FE study into the influence of femoral head
resurfacing on load transfer through the proximal femur. To achieve this, a system
for correctly sizing and positioning the implants into any given femur geometry will
need to be established which does not require any manual intervention, as well as
a method of correctly performing the Boolean operations on the femurs to simulate

surgical 'cuts’ and generate a cement layer between the bone and implant.

In order to evaluate the success of the developed automated implantation method-
ology the study will emulate the analysis performed on 16 femurs by Radcliffe and
Taylor [7]. In this previous work each example femur was analysed in both a resur-
faced and intact configuration, relying heavily on manual model generation and im-

plantation. The trends in strain change seen following femoral resurfacing were then
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investigated using FEA. If similar trends are observed in the current work using a
generated, automatically implanted set of femurs then this would help to suggest that
the methodology is sound. In addition, it is hoped that testing a large number of
models will allow statistically meaningful interrogation of femurs with outlying strain
results. Therefore it will be possible to identify any geometric or material character-
istics which are related to unusual strain patterns, particularly those in areas which

have been related to failure such as the femoral neck and head.

5.2 Resurfacing Arthroplasty

5.2.1 Brief History of Joint Replacements

Joint replacements are primarily regarded as a final treatment option for degenerative
diseases such as arthritis and osteoporosis. These diseases are often age related,
therefore it is unsurprising that with the increasing number of people over the age of
60 in the population these types of procedures are becoming more and more common.
Joint replacements may also be considered for the treatment of other conditions, as

discussed in Section 5.2.2.

The most prevalent, long standing
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between the implant and bone. Cementing has the advantage of making the joint
weight bearing almost immediately, avoiding a period of immobility while the bone
"heals’ to stabilise the components. This is particularly useful in elderly patients who
may never rebuild the muscle strength and mobility lost if subjected to prolonged
inactivity. However problems can arise due the use of cement. In the short term
thermal damage can occur in the surrounding bone during the exothermic cement
curing process and in the longer term the cement mantle can suffer brittle failure.

This is more common in active patients and can result in implant loosening.

In the 1980’s cases of osteolysis were seen to be rising, this is where pockets of
bone are resorbed by the body leading to a loss of bone stock around components.
The condition was blamed on bone cement and thus developments were made towards
uncemented implant designs, relying on bone in-growth into the prosthesis surface to
provide stability [158]. This was encouraged by the inclusion of textured surfaces and
the use of hydroxyapitite coatings. Bone cement was not abandoned as its omission
did not reduce osteolysis rates and cementless designs had several drawbacks. Firstly
they were bulkier, requiring greater initial loss of bone stock, and secondly in order
to stabilise the joint it must be unloaded for a period of time so bone in-growth can
occur. These issues make them unsuitable for some patients, specifically those who
are older with poor bone quality where the likelihood of cement failure is low. A
further alternative aiming to optimise the benefits of cement is the hybrid configu-
ration, where the acetabular side is cemented but the femoral side is not (a reverse

hybrid being the opposite way around).

It is now understood that osteolysis is due to the body’s reaction to wear debris,
namely particles of UHMWPE. In light of this it follows that bearing surfaces have
been a focus of development in order to reduce the wear debris produced by the
conventional metal ball on polyethylene socket. Improvements in wear properties
were made by using either a ceramic ball, a metal on metal bearing surface or, with
the lowest wear rate, ceramic on ceramic. The advances in metal on metal bearing
surfaces allowed resurfacing designs, originally trialled unsuccessfully in the 1960’s,
to be implemented (fig. 5.1). These showed reliably good results in the patient
group least satisfied by conventional THR, the young and active. The minimal bone
resection and large bearing diameter allow more normal movement and load transfer
through the femur and relatively straight forward revision options for conversion to
a THR when required [157].
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5.2.2 Reasons for Joint Replacement and Procedure Rates

Several national joint registries exist around the world, each collecting valuable pa-

tient data relating to a range of aspects surrounding joint replacement. The data

stated in the following section have been taken from the 2008 Australian Orthopaedic

Association National Joint Replacement Registry [61], the 2008 National Joint Reg-
istry for England and Wales [159] and the 2007 Swedish Hip Arthroplasty Register

[160).
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Figure 5.2: Ilustration of how
the progression of osteoarthritis
affects a joint, from healthy (A)
through mildly affected (B) to
severely osteoarthritic (C), im-

ages adapted from Campaign
[161].

Joint replacement is an irreversible procedure
involving traumatic and highly invasive surgery. As
a result it is only performed as a last resort when a
patient’s pain and/or mobility reaches such a point
as to be seriously detrimental to quality of life. If
it is possible alternative treatments are adopted in
preference to surgery, these include; physiotherapy,
to improve strength and mobility, and pharmacolog-
ical treatments to control inflammation and pain.
However it is usually when such treatments are no
longer able to manage pain that joint replacement

is considered.

By far the most common reason for hip replace-
ment is the treatment of osteoarthritis, reportedly
lying behind 78-95% of primary THR and 94-95% of
hip resurfacings. Additional reasons include avas-
cular necrosis of the femoral head (2-4%), femoral
neck fracture (2-11%-typically unsuitable for treat-
ment with RA), dysplasia (1-3%) and rheumatoid
arthritis (1-2%). Osteoarthritis is a degenerative
disease which leads to the damage of joint surfaces
and changes in the underlying bone, currently caus-
ing approximately 2 million people a year to seek
medical attention in the UK alone [161]. The dis-
ease is characterised by roughening and thinning of
the articular cartilage which facilitates smooth joint
motion and osteophyte formation, boney growths
at the joint edges. Externally the effects of this no-

ticeably alter the joints appearance as the synovium
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swells while the capsule and surrounding ligaments thicken and change shape. The
effect of osteoarthritis is depicted pictorially in a generic joint in figure 5.2. In severe
cases of the disease the cartilage will often be worn away completely, leaving bone
rubbing against bone which causes extreme pain, while the soft tissue changes and
swelling drastically limit mobility. The disease is commonly associated with age, as
joints become worn, healing processes slow and muscle strength decreases. However,
there are other factors which can increase the risk of its development. After age the
next most notable indicator is gender, women are more likely to suffer than men, as
well as underlying hereditary factors, obesity and previous joint injury in decreasing

order of importance [161].

5.2.3 Failure of Femoral Resurfacings

Despite extensive testing and development of prosthesis design, material and im-
plantation methods, there are still a notable percentage of hip replacement failures.
Failure does not only relate to catastrophic breaking of the implant or bone surround-
ing it, but also covers those cases where function is so poor or pain so severe that
reoperation is required. Revision rates vary depending on a combination of factors
including implant type, age and gender, with surgical error also having an influence.
Revision rates for resurfacings are a little higher than those seen in THR (reported
rates for resurfacing are stated to be 2.8% in UK [159]). This is indicative of the

younger more active age group involved. However, with suitable patient selection

alongside appropriate and skilful surgical technique, survivorship is comparable to
conventional THR [162].

Figure 5.3: Radiographs of femoral resurfacing components showing: left - neck
fracture with underlying aseptic loosening [163], center - degeneration of bone stock
in femoral head beneath resurfacing component [164] and right - notched femoral neck
(superiorly) with fracture propagating from the superior head-neck junction [162].

The most common reason for RA, and THR, revision is aseptic loosening, 45-

68%. This is an umbrella term which describes loss of fixation leading to implant
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instability when no signs of infection are evident (fig. 5.3-left and center). There are

several main failure mechanisms which are recorded in this bracket;

e Osteolysis is a biological response to wear debris. Wear particles originating
from sources such as a UHMWPE cup, worn cement mantle or metallic debris,
infiltrate the bone-implant interface they can be attacked by the bodies natural
immune system response. This engulfs the particles at the expense of the bone
at the boundary, which is transformed into a far less stiff and less supportive

soft tissue, reducing implant fixation in these areas.

e Failed bonding can occur if sufficient integration at the bone-implant (if un-
cemented) or bone-cement interface is not achieved. The result is excessive
micro-motion of the implant which can, if exceeding 150um, lead to bone re-
sorption and damage accumulation at the interface. In addition cracks can then
provide a path for wear debris to reach the bone interface and accelerate the

process through osteolysis.

e Stress shielding occurs as a result of load paths through bone being altered by
the implantation of a prosthesis. Due to the relative stiffnesses of the metal
implant and bone a greater proportion of joint load is transmitted through the
implant, thus unloading the bone which can lead to resorption. Stress bypass is
similar although is often associated with poor proximal and good distal fixation,
thus unloading the proximal bone which is resorbed. Both scenarios can lead

to weakening of the bone, reduced implant fixation and a risk of fracture.

e Remaining notable failure mechanisms are dislocation, deep infection, fracture

(of the bone or implant), pain and component wear.

According to the 2008 National Joint
Registry for England and Wales [159] revi-
sion rates for resurfacing show there was a
notable rate of fracture (25%), pain (23%)
and a relatively low occurrence of disloca-
tion (5%). Femoral neck fracture is a con-

cerning complication which, due to the na-

ture of THR, is a unique risk to resurfac-
Figure 5.4: Radiograph of femoral ing arthroplasty (fig. 5.4). The prevalence of
neck fracture following resurfacing eck fracture is indicated to be even greater

procedure [165] by the Australian Orthopaedic Association

National Joint Replacement Registry [61] which states that neck fracture accounts
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for over 40% of resurfacing revisions, while Shimmin and Back [166] quote the inci-
dence of fracture at ~2%. Clinically, neck fractures are often seen within the first

few months of surgery [165, 167].

There is debate as to the dominant reason behind fracture risk, as ever it is
likely to be a multi-factorial problem where combinations of observed influences con-
tribute [45, 168, 4, 169, 170, 166, 162, 165, 171]. Often damage done during surgery
or poor surgical technique are blamed for weakening the femoral neck. While prepar-
ing the femoral head there is potential to cut/disrupt blood supply which would lead
to necrosis (death of the blood starved bone), this would then be resorbed and ef-
fectively disappear as a load bearing entity or surface for fixation. Notching of the
neck, occurring proximally through inaccurate cutting of the femoral head, is also
blamed for establishing a stress concentration liable to be the source of fracture (Fig-
ure 5.3). Amstutz et al. [172] describes the link between poor implant seating and
neck fracture, where any exposed reamed bone would act as a stress riser which could
lead to fracture. Damage to the underlying bone has also been observed to occur
through trauma during impaction and thermal damage from cement curing. Surgical
variability is recognised as influencing fracture and potential range of motion. The
related surgical factors include; implant malalignment (varus) which is seen to lead to
less natural load transmission through the proximal femur, incorrect implant sizing
and poor cementing - where uneven, insufficient or too generous cement layers can

accelerate failure [172, 4].

Strain shielding following resurfacing has been linked to bone resorption in the
femoral head, and potential failure through head collapse and loosening. Evidence of
resorption has been observed in clinical retrievals [45, 168, 173]. However, this failure
mechanism has been widely accepted as not being the main reason for loosening or
fracture. Yet it is logical that pockets of resorbed bone will weaken the underlying
bone structure which could lead to elevated stresses and so fracture (Figure 5.3).
This process would take time to evolve, so it is unlikely that it would lead to the
short term failures observed in many resurfacing neck fractures. If a patient already
has poor bone quality or cysts then the chances of successful resurfacing are reduced

- thus appropriate patient selection is very important.

5.2.4 Computational Studies of Femoral Resurfacing Arthro-
plasty

Resurfacing hip replacements have not escaped the computational interrogations

which have become widely used through bioengineering research and development.
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There have been a range of finite element studies since the mid 1980’s to analyse
the strengths and weaknesses of the design concept [174]. In 1985 Huiskes et al.
[45] found that their FE model of a resurfaced proximal femur did not predict the
physiological strain patterns which were expected to result from this implant design.
Their model showed a significant proportion of joint load being transmitted through
the implant to the bone at its superior rim, as opposed to directly through the head
to the medial cortex. It suggested that this change in load path would inevitably lead
to stress shielding in the head and resorption, particularly at the bone-implant inter-
face, thus providing a possible mechanism explaining the observed early RA failure
through loosening. Watanabe et al. [175] generated a three dimensional finite element
femur model in an intact and an implanted form, allowing comparison of the stress
and strain patterns of both when subjected to identical loading conditions relating
to ambulation with crutches. This study again showed high stress at the implant rim
and stress shielding in the antero-superior region beneath the implant, which could

lead to long term loosening.

These early studies were simplified, using generic or single bone representations
and describing bone material as either cancellous or cortical with a single modulus
value assigned to each. Later work has increased in complexity, using patient specific
models with geometry and material properties infered from CT, although on the
whole still only using a single model. An example is Taylor [84], where the changes
in load transfer through the proximal femur after RA were examined - in particular
the influence of the metaphyseal stem (diameter and degree of contact) and cement
mantle thickness. Rather than investigating the femur in isolation, Ong et al. [49]
developed a patient specific model incorporating the pelvis and sacrum as well as
the femur. This model was then used to investigate the influence of fixation and
interface conditions on stress and strain alteration through the femur. Radcliffe and
Taylor [37, 7] applied a multi model analysis to two aspects of resurfacing surgical
variability: cementing technique and varus-valgus alignment. Their analyses each
used 16 manually generated and implanted patient specific models, incorporating

the influence of different geometries and material properties.

The results of the majority of recent computational studies agree on the main
features of load alteration following RA, namely strain shielding in the superior head
and elevated strain in the femoral neck with peak strain at the implant rim. There
is also agreement that excessive, insufficient or uneven cement mantles are detri-
mental to survivorship as is a varus implant alignment [174]. However, as with the
clinical data, there is no clear consensus as to whether these changes are sufficient
on their own to initiate a failure mechanism or whether an additional influence is

required. These could include poor patient selection, where low bone quality leads to
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poor results, or an accidentally introduced notch in the neck. Although Long et al.
[167] argue that short term neck fracture is not always accompanied by evidence of
notching, suggesting that high strain concentrations at the implant rim may cause
damage accumulation leading to fatigue failure. The influence of interpatient and
surgical variation has rarely, if at all, been incorporated into these analyses yet it
is widely felt that differences in bone quality, geometry and implant positioning will

affect implant performance.

5.3 Methodology

Establishing a methodology for the automated generation, implantation and analysis
of a large number of different femur geometries required the solution of a range of
problems which will be discussed as the stages of the process are explained. The study
aimed to use the statistical model developed in Chapter 3 to generate a population
of 400 unique, realistic FE ready femur models to examine the change in strain in
the proximal femur following resurfacing (this number was chosen to satisfy the time
restrictions the study was subject to). In order to achieve this the entire process had
to be robust, reliable and fully automated from initial model generation through to
post processing. The stages necessary to achieve this are as follows, all of which were

controlled using Matlab:
1. Sample the statistical shape and intensity model to generate 400 FE femur
models using the sampling boundaries described in Chapter 3.

2. Analyse each femur to calculate geometric measures and landmark points, in-

dicating model specific implant size and position.

3. Perform Boolean operations to simulate the cuts made to the femur during
surgery and to create a cement layer between the bone and implant, and finally

position the implant.
4. Remesh the newly cut femur and reallocate elemental material properties.
5. Apply model specific loads to simulate level gait.

6. Run each model through an FE solver and extract resulting elemental volume

and strain results in both their implanted and natural state.

7. Post process the strain results to calculate the strain changes between the intact
and implanted instances, as well as the geometric and material characteristics

of the femurs.
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5.3.1 Generation of a Set of Femurs for Analysis from a Sta-
tistical Model

A statistical model of the whole femur was generated using principal component anal-
ysis from a training set of 46 available CT scans. The set consisted of 15 females and
31 males aged between 43 and 91, describing a wide range of femoral morphologies
(as described in detail in Section 3.5.1). The statistical model was able to generate
synthetic femur models as high quality FE-ready, tetrahedral meshes with element
specific material properties. As detailed in Section 3.6, the statistical model was
used to produce a population of femurs by creating new PCA weightings based on

the training data. This was done by varying the weightings between +30;_, where

op,, was the standard deviation of the individual shape parameters across the training
set, using statistically independent random numbers drawn from truncated Gaussian
distributions. The created models reproduced the variability in the set whilst main-
taining realistic bone geometries and material property distributions. Automatic
mesh quality checking was incorporated into the model generation process to ensure

high mesh quality was maintained.

5.3.2 Technique for Virtual Implantation

Model Specific Alignment and Sizing

In order to create a totally automated process for modelling femoral resurfacing it
was key to establish a system for identifying anatomical landmarks by which a set of
reference points could be constructed to position an implant. It was also essential to
be able to measure the femur to choose the correct prosthesis size to fit. The starting
point for characterising each femur was therefore made by specifying groups of nodes
and elements marking areas of the proximal femur, i.e. the femoral neck and head,
on the baseline geometry. This was possible despite each generated femur having a
unique geometry because they were all described by an identical mesh with nodal
and elemental correspondence. Using the sets of elements defining the femoral head
and neck, model specific positioning points were established by fitting three spheres

using a least squares method.

The first sphere was fitted to the femoral head, the center of this sphere indicated
the natural head center and its diameter was used to make an initial guess at the

correct implant size (Fig. 5.5a). The second and third spheres were fitted within
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(a) (b) (c) (d)

Figure 5.5: Illustration of methodology used to identify implant alignment by fitting
spheres to the proximal femur. (a) sphere fitted to the femoral head - indicating
femoral head diameter and natural head center, (b) two spheres fitted to the upper
and lower parts of the femoral neck, (c) the centres of the two spheres are found and
(d) indicate the neck axis line.

the femoral neck, one to the proximal side and one to the distal. The centres of the
spheres were joined to indicate the femoral neck axis (Fig. 5.5b-d), this axis was used
as the neutral axis for the femoral implant thus fixing its alignment. By translating
the natural head center onto the neck axis to give the implant head center the final

position of the implant was set.

A concern with the technique was that it would result in notching of the femoral
neck, as a result of poor alignment or incorrect implant sizing. Therefore once the
implant size was selected and its position fixed the configuration was checked to
ensure that notching did not occur. This was done by calculating the neck diameter
at the proposed location of the implant rim and comparing this to the implant rim
inner diameter. As the study did not intend to incorporate implant positioning as a
variable, instead maintaining alignment along the neutral axis for all implants, this
problem was solved by altering the size of the component. If the difference between
the neck and implant rim diameters was too great then a step up or step down in

size was made and the measurement repeated.

Boolean Operations- Simulating Surgery

Hypermesh? (Altair Engineering Inc, USA) was used to perform the Boolean oper-
ations required to carry out virtual implantation. This process was automated using
a command script written for each femur individually, containing the implant align-
ment coordinates found in the previous step and the details of which implant size
to import. In addition to a geometric model of the implant, a cutter geometry was
also imported which was matched to the relevant implant size. Each cutter consisted

of two parts: an outer profile and a stem guide, which produced the external head
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profile needed for resurfacing. The final geometry imported was a cement layer blank
which would be cut to match the femur at a later stage, resulting in a 3mm thick
layer between the implant and bone with no cement present around the implant stem

which remained out of contact with the surrounding bone.

The statistical model generated femur representations as solid, tetrahedral meshes
which could be imported directly into Hypermesh. However, Boolean operations on
meshes were not possible so the models were converted into solid geometries. In order
to ensure this process was robust it was done in three steps; shrink fitting a surface
mesh to the femur, then fitting a series of geometric surface patches to the surface
mesh before finally converting the surface patches into a solid geometry. To reduce
computational complexity the femur was partitioned one third of the way down its
length. This allowed a higher mesh density to be specified in the proximal femur (the
region of most interest) and a lower mesh density in the distal femur, thus reducing
the overall size of the model for later FEA.

Figure 5.6: Images of implantation process. From left to right: Converting femur to
a solid geometry and splitting the femur into proximal and distal sections, cutting
femoral head external profile, generating cement layer, cutting the guide stem hole,
position femoral implant and finally meshing components.

Figure 5.6 shows the stages of Boolean operations carried out after aligning the
implant and cutters over the femur. From left to right: the external profile of the
femoral head was cut using the first part of the implant specific cutter, the cement
blank was then aligned and its internal surface cut using the cut femoral head (the
external profile matches the implant) and finally the stem guide was cut into the fe-
mur. By performing the steps in this order it made certain that the three components

fitted together and cement filled any defects in the femoral head even if they were
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deeper than the 3mm target thickness. At this stage the implant was positioned,
leaving the implant, cement mantle and bone as solid geometries. Each of the four
parts of the model were then converted into surface meshes so that they could be
exported to dedicated meshing software and converted into the final solid, four-noded

tetrahedral meshes needed for analysis.

The Boolean stage was the most vulnerable to failure due to the complexity of the
operations being performed on the intersecting shapes, especially as the femoral head
was far from a regular geometry. It was found that these errors preventing Boolean
cuts could often be solved by applying minor transformations to the cutter/implant
geometries’ positioning. A fail safe loop was therefore coded into the process to
shift the imported geometries 0.00lmm in the z,y and z directions if an intersection
error caused the code to crash. This could be performed up to five times before the
geometry was abandoned and the next model was attempted. The stage of converting
an intact model to a set of surface meshes representing an implanted configuration
was processed in between 6 to 10 minutes, depending on the model in question and

if any implant shifts were required.

Remeshing and Reassignment of Material Properties

The four surface meshes representing the
implanted model as proximal femur, dis-
tal femur, cement mantle and implant were
imported into Ansys ICEM CFD?™ (Ansys
Inc., Cannonsburg, PA). This software was
scriptable and allowed the components to be

meshed with different element densities while

retaining rigidly bonded interfaces. This re-

Figure 5.7: Cross section through
1Bt ' [ TRTous duced computational cost in later FEA by

a generated, automatically implanted
& Y Hmp limiting the ultimate number of elements in

femur after remeshing, illustrating the
) & . 8 ) the model and by avoiding the need for con-
changes in mesh resolution from im- ) )
tact analysis, thus reducing later computa-

lant to cement to bone.
P tional complexity which would be introduced
by having to model contact in order to join the components together. The distal fe-
mur was meshed with 2-4mm elements, the proximal femur with 0.5-1.5mm and the

implant and cement layer with 0.75-1.5mm elements (Figure 5.7).

As the femur had been cut and completely remeshed from the original instance

generated by the statistical model it was necessary to reassign material properties
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to the new elements. This was done by interpolating the original model’s modu-
lus at its nodes onto the new bone nodal positions, from which elemental modulus
could be determined by averaging over the four nodes making up each element. The
interpolation used an in-built Matlab three dimensional data gridding function -
griddata3d. The implant was given a modulus of 200,000 MPa and the cement man-
tle 2,800 MPa [37]. The Ansys remeshing process and material reassignment was

completed in ~1-2 minutes per model.

5.3.3 Subject Specific Finite Element Analysis

104% BW
238% BW \ Abductor Force
Contact Force

A static, linear elastic FEA was performed

on each synthetic femur in both implanted
and intact forms. Identical, subject specific
loading conditions were applied to simulate
level gate following the patterns described
by Heller et al. [33] (figure 5.8). These
loads are prescribed in terms of body weight,
which was unknown for the synthetic femurs
and therefore had to be estimated. This
was done by predicting stature, using the
0.2675:1 ratio of femur length to height de-
fined by Feldesman and Fountain [154], then
randomly assigning a BMI from a distribu-

tion curve generated from data from the Na-

Forces(%BW)

Contact Abductor tional Health and Nutritional Examination
X 54.0 -58.0
Y 328 43 Survey (NHANES) 1999-2002 [153]. Subject
Z 229.2 -86.5

weight, in kilograms, could then be calcu-

Figure 5.8: Illustration of the loading lated by multiplying this assigned BMI by
condition defines by Heller et al. [33]  the square of the predicted height in meters
(a similar approach to applying subject spe-

cific loads was used in the femoral neck fracture study, Section 4.2.3).

As shown in Figure 5.8 each femur was constrained distally and subjected to
two loads proximally, which applied a hip contact force to the femoral head and an
abductor force to the greater trochanter [33]. The distal boundary condition was
set by fixing the lowest 30mm of nodes on the femur surface. The contact force was
centred on the highest point of the femoral head and evenly distributed over a 20mm
diameter area, the abductor force was also evenly distributed over an equivalent area

centred on the most lateral node of the greater trochanter.
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The models were now fully defined and ready for analysis. The model geometry,

described by nodal coordinates and element connectivity, with associated elemental

modulus and boundary conditions were written out as an input file for Marc®®. The

processes of writing this file, performing the FE and saving the results were completed

in ~10 minutes.

5.3.4 Automated Post Processing

Anterior
Sections

Posterior
Sections

Figure 5.9: Illustration of the sec-
tions defined in each femur to al-
low the changes in strain through
the proximal femur to be anal-

ysed.

Post processing extracted the elemental strains
and elemental volumes recorded for each anal-
ysed model from both the intact and implanted
configurations. The change in load transfer
through the femur which occurred as a result
of resurfacing was assessed by comparing these
results, however this could not be done directly
as the implanted configuration had been cut and
remeshed. The approach devised was to interpo-
late the strains from the intact femur onto the
implanted femur mesh by nodal position, allow-
ing the same volumes and areas of bone to be

directly and fairly compared.

To obtain a full picture of how strain varied
through the proximal femur, 16 sections were au-
tomatically defined in the implanted model using
the neck axis identified for implant alignment and
planes along and perpendicular to it. This gave
an anterior and a posterior section, each of these
having 4 superior and 4 inferior portions (Fig-
ure 5.9). Planes were defined to cut through at
the following points; the femoral head center, the
base of the implant, base of the femoral neck and
a horizontal cut one third of the way down the

length of the femur. The sections partitioned by

these planes were used to identify groups of elements and so the strain and volume

information for these could be found, allowing the mean change in strain in each

section to be calculated. Examining the data in this way allowed the potential for
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further analysis to be done such as looking at the strain distributions through sec-
tions and volumes of bone exceeding strain thresholds, as well as potential for femur

by femur comparisons for those models with extreme results.

In addition to the strain results a range of geometric and material property met-
rics were extracted to allow the performance of resurfacing to be compared to the
characteristics of the femurs being examined. These were measured using element
volumes and nodal markers identified on the baseline, as in previous work to study
the range of variation in the femurs generated by the statistical model (Section 3.6.4)

and in the femoral neck fracture investigation (Section 4.2.5).

5.4 Results

5.4.1 Assessment of Implantation Methodology

In total 400 models were successfully generated and analysed as both intact femurs
and following a virtual femoral resurfacing procedure. The stages involved in this
were; model specific sizing and alignment of resurfacing implant, Boolean operations
to perform virtual implantation, remeshing and reassignment of material properties,
calculation of model specific loading conditions, finite element analysis of the system
and finally complete post processing of strain results and model characterisation.
Both intact and implanted analyses, as well as post processing comparisons between
the two, were performed at a rate of more than four models per hour (using an Intel
Xeon X5355 2.66GHz processor). The methodology previously described was able to
achieve this as a fully automated process with a success rate of ~85% of generated
femurs completing all stages through to fully processed strain results without error.
Nearly all of the analyses which failed to complete came to a halt during the Boolean
operations, these failures occurred randomly through the generated set. The small
number of further failures were related to model name confusions on importing the

components to Ansys ICEM for volume meshing.

Assessing the success of the implantation methodology was approached in three
ways; firstly by visually inspecting each model to manually check that the sizing
and orientation of the implanted component was acceptable, secondly comparing
the distribution of implant sizes to those used clinically and thirdly by comparing
the change in strain trends with previous work where implantation was performed

manually. The later of these is described in the next section.
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Figure 5.10: Illustration of a sample of generated femur instances of varying mor-
phology with automatically sized, aligned and implanted femoral resurfacing compo-
nents. Top: external view of each model. Bottom: section views through femoral
head showing modulus distribution, implant and cement layer.

Manual inspection was potentially a tedious task, therefore to reduce this an au-
tomated script was run to capture screen shots of each processed model - an external
view and sections showing modulus and strain distribution. Once generated it was
straight forward to assess each model using these images. Figure 5.10 shows a set of
randomly chosen resurfaced models with varying size and geometry as both an ex-
ternal view and as a section view through the proximal femur. The images indicated

that the resurfacing procedure had been carried out appropriately in all cases.

The distribution of assigned implant sizes for this study and the proportion of
global sales accounted for by implant size (excluding the US) are illustrated in Fig-
ure 5.11. The trends displayed in the two graphs relating to implant size popularity
are very similar, although the extremes are different. As discussed previously (Sec-
tion 3.6.4) the generated data set is slightly bigger than the population indicated
by the NHANES survey, which is a reflection of the training data. The sales data,
however, covers a global market and therefore a range of ethnicities. It is likely that
this has resulted in a range of smaller patients, for example from Asia, who are not

currently present in the statistical model.
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Figure 5.11: Graph illustrating the percentage distribution of implant sizes assigned
by the automated methodology described to the femur population developed in this
study (left), and the percentage of implant sizes used clinically (right). Clinical data
is taken from global sales figures (excluding data from the US).

5.4.2 Predicted Trends in Strain Alteration Through Prox-

imal Femur

Strain changes were calculated between the intact and implanted models in the 16
predefined sections making up the proximal portion of each generated femur, thus
enabling the effect of femoral resurfacing on load transfer to be investigated. Fig-
ure 5.12 shows the average percentage strain changes found by Radcliffe et al. [176]
in 16 manually implanted femurs (top) along with the strain changes observed in this
study of 400 automatically implanted, synthetic femurs (bottom). Although Rad-
cliffe sectioned the proximal femur into 20 parts it is still evident that both show a
similar trend in strain change and a similar magnitude of change, in the majority of

sections.
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Figure 5.12: Boxplot of the average change in strain seen by Radcliffe et al. [176]
across 18 proximal sections for 16 manually implanted femurs (top) and across 16
sections of the proximal femur illustrated for 400 automatically implanted, generated
femur models (lower). Positive values indicate an increase in strain, negative values
a decrease.

Figure 5.13: Images of highest strain regions following resurfacing, showing elevated
strains through the femoral neck at the proximal implant rim and on either side of
the implant stem.

The automated study showed that following resurfacing there was clear evidence

of strain shielding within the femoral head in all models, most dramatic in the su-
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perior sections 1 and 7 where average strain reductions of 81% and 59% were seen.
The other main change in strain indicated was an increase in the superior femoral
neck, sections 3 and 9, most notably in the anterior portion. On closer inspection this
trend tended to relate to a high strain concentration at the proximal implant rim and
elevated strains on the anterior and posterior sides of the implant stem within the
femoral neck (Figure 5.13). Although the mean increases seen in the neck sections
of this group were not large (11% in section 3, 1.5% in section 9) the largest strain

increases observed were, at almost 60%.

5.4.3 Analysis of Outlying Strain Results

The greatest strength of the technique described in this chapter was that the large
number of models run allows the possibility of analysing those poorly performing,
vulnerable instances which would appear as outlying or extreme strain results. The
femur areas of most clinical interest in relation to failure mechanisms following resur-
facing are the femoral head and femoral neck, therefore models suggesting excessive
bone remodelling in these sections were interrogated to attempt to find any signif-
icantly different material or geometric characteristics between these and the main
group of femurs. Four outlier groups were identified, containing those femurs ex-
ceeding a two standard deviation increase/decrease from the mean change in strain
in any of the femoral head or neck sections respectively, and comparisons were per-
formed using one-way ANOVA tests. The outlier groups contained between 18 and
59 models, each group was analysed in respect to the extensive list of metrics listed
in Section 4.2.5.

Examination of instances with outlying strain results in the head showed some no-
table differences between those femurs exhibiting greater or less strain shielding than
the majority of the group, the metrics found to be statistically significant are detailed
in Table 5.1. The femurs with the least strain shielding exhibited a higher percent-
age of cortical bone throughout (head p<0.0005, neck p<0.025 and intertrochanter
p<0.005), the findings also indicate that they were bigger than the others (head vol-
ume p<0.025 and neck volume p<0.025). Another key set of results related to the
proportions of the femur, where this outlier group showed a higher head-neck ratio
(bigger head to neck, p<0.00005) and on average a round femoral neck, greater neck
diameter in anterior-posterior dimension as compared to normal (p<0.025). The fe-
murs experiencing the most strain shielding appeared to have lower mean cancellous
modulus than the main group (head and intertrochantic p<0.001, neck p<0.025) and
a lower percentage of cortical bone in the intertrochantic region (p<0.025). The anal-

ysis also suggested that this group were smaller than the rest (shaft radius p<0.025,
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intertrochantic volume p<0.025), with more oval necks (larger in posterior-distal

dimension p<0.01).

Minimum | € in head (n=59) Outliers | Main Group
p-value mean mean
Neck-Head Diameter Ratio <0.00005 1.24 1.18
Lower Head % Volume Cortical <0.0005 5.95 3.27
Intertrochantic % Volume Cortical <0.005 28.36 24.86
Femoral Neck Diameter A-P (mm) <0.025 36.09 33.92
Femoral Neck Diameter Ratio <0.025 1.00 1.03
Lower Head Volume (mm?) <0.025 | 17329.84 15762.39
Neck % Volume Cortical <0.025 27.07 22.98
Neck Volume (mm?) <0.025 | 23940.93 21490.5
Maximum | € in head (n=18) Outliers | Main Group
p-value mean mean
Intertrochantic Mean Cancelous Modulus (MPa) | <0.001 724.22 1158.93
Lower Head Mean Cancelous Modulus (MPa) <0.01 1117.71 1415.10
Femoral Neck Diameter Ratio (mm) <0.01 1.11 1.03
Femoral Shaft Radius (mm) <0.025 14.71 16.39
Intertrochantic % Volume Cortical <0.025 18.26 25.13
Intertrochantic Volume (mm?) <0.025 | 67952.23 | 86588.44
Neck Mean Cancelous Modulus (MPa) <0.025 | 1073.13 1391.49

Table 5.1: Table of the mean results for the most significant metrics compared be-
tween the group of femurs with outlying results in the femoral head compared to the
rest of of the femurs analysed, showing the results for two outlier groups, those with
the most strain shielding in the head (maximum) and those with the least (minimum).

Examination of the outliers in the neck found a clear differences between those
with increased and decreased strain. The main observation was that those showing
an unusually large increase in strain in the neck were smaller in size over a compre-
hensive range of shape metrics; neck axis length (p<0.00025), femoral shaft radius
(p<0.0005), neck diameter anterior-posterior (p<0.001), femoral length (p<0.0025),
intertrochantic width (p<0.0025), head diameter (p<0.005), intertrochantic volume
(p<0.0025), head volume (p<0.005) and neck volume (p<0.025). The most signifi-
cant metric was neck diameter ratio (p<0.00001) indicating a more oval neck with a
smaller diameter in the anterior-posterior direction, as with the group exhibiting the

most strain shielding. No material metrics were found to have statistical significance.

In contrast, for those outliers where strain decreased in the femoral neck material
properties did appear as significant features, showing lower mean cancellous modulus
throughout (head p<0.005, neck p<0.0025, intertrochantic p<0.005) and a lower
percentage of cortical bone in the head (p<0.05) and neck (p<0.025). In addition
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Maximum 1 € in neck (n=37) Outliers | Main Group
p-value mean mean
Femoral Neck Diameter Ratio (mm) <0.00001 1.12 1.03
Neck Axis Length (mm) <0.00025 | 92.04 101.30
Femoral Shaft Radius (mm) <0.0005 14.73 16.41
Femoral Neck Diameter A-P (mm) <0.001 30.15 34.16
Femoral Length (mm) <0.0025 | 404.39 437.31
Intertrochantic Width (mm) <0.0025 51.26 56.25
Intertrochantic Volume (mm?) <0.0025 | 66096.72 | 86719.38
Subject Height (mm) <0.0025 | 1511.73 | 1634.79
Anteversion <0.005 10.31 18.60
Femoral Head Diameter (mm) <0.005 37.70 41.10
Lower Head Volume (mm?) <0.005 | 12080.67 15930.91
Subject BMI <0.01 24.71 28.98
Subject Weight (kg) <0.01 61.56 77.50
Neck Shaft Angle (mm) <0.025 | 13227 128.14
Neck Volume (mm?) <0.025 | 16949.45 | 21729.62
Neck-Head Diameter ratio <0.025 1.231 1.18
Maximum| ¢ in neck (n=20) Outliers | Main Group
p-value mean mean
Neck Shaft Angle (mm) <0.00001 | 135.38 128.08
Neck Mean Cancellous Modulus (MPa) <0.0025 | 1019.63 1393.378
Inter Mean Cancellous Modulus (MPa) <0.005 873.22 1160.30
Lower Head Mean Cancellous Mod (MPa) | <0.005 | 1147.41 1415.25
Femoral Neck Diameter Ratio <0.01 0.96 1.03
Neck % Volume Cortical <0.025 16.06 23.30

Table 5.2: Table of the mean results for the most significant metrics compared be-
tween the group of femurs with outlying results in the femoral neck compared to the
rest of the femurs analysed, showing the results for two outlier groups, those with the
most reduced neck strain (maximum ) and those with the most increased (maximum

.

they showed a reduced neck diameter ratio (p<0.01) with a greater anterior-posterior
neck diameter, again opposing the trend of the previously described neck outlier
group. Neck shaft angle appeared as significant for neck outliers at each end of the

spectrum, being higher than the rest of the group.

5.4.4 Influence of Implant Size on Load Transfer Through

the Femur

Analysis of the change in strain in 400 femurs following femoral resurfacing indicated

that the size of the femur influenced the strain change in the femoral neck, suggesting
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Implant 5 Implant 11

Figure 5.14: lustration of both implant size 5 and 11 implanted into correctly sized
femurs, showing external view and a cross section through the proximal femur.

that larger femurs showed reduced strain in the neck and smaller femurs suffered
an increase. As previously discussed, femoral neck fracture is a significant failure
mechanism following resurfacing so any factor which may increase strain in this
area is of interest. Further to this, there have been clinical observations of poorer
performance with smaller implant sizes as compared to larger [61, 172, 177]. In light
of this two subgroups were extracted from the processed data set. These related
to femurs with implant size 5 and femurs with implant size 11. i.e. two groups
representing a small implant and a very large implant (see Figure 5.14). These two
implant sizes were chosen as they corresponded to a reasonable number of femurs
and accounted for approximately the same number of models, 25 and 20 respectively
(Figure 5.11). Analysis was then carried out to investigate whether there where any
differences in performance between the large and small implant groups, the method

used was again a one way ANOVA test.

Figure 5.15 shows the results of the areas with statistically significant differences
in the change in strain distribution following resurfacing. These plots clearly show
two trends; firstly that the smaller implant size suffers greater strain shielding in the
superior femoral head (anterior: section 1 p<0.00001, section 2 p<0.005 and section
4 p<0.05, posterior: section 7 p<0.0005 and section 8 p<0.01) and secondly that the
smaller implant sizes show a greater increase in strain in the femoral neck (anterior-
superior: section 3 p<0.05, posterior-superior: section 9 p<0.0005 and posterior-
inferior: section 12 p<0.01). The actual value of strain change these relate to (mean
and maximum) are detailed in Table 5.3. As with the outlier analysis a range of

geometric and material metrics were taken from the groups, although due to the
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Figure 5.15: Boxplots of mean percentage change in strain results by section for
the implant 5 and implant 11 groups of femurs, for those sections where statistical
significant differences were seen.

criteria by which the groups were defined the majority of geometric metrics were
ignored as they related to femur size which was inevitably different. Of the remaining
metrics no statistically significant difference was seen between the groups, including
material quality, loading/BMI and femur proportions such as neck diameter ratio or

head-neck ratio, which were highlighted in the previous outlier analysis.

5.5 Discussion

In this study 400 femurs were generated and analysed to see the effect of femoral head
resurfacing on load transfer through the femur. This involved the fully automated
implantation of appropriately sized and orientated femoral components. The success
of this was evident when each case was visually checked. The methodology ran
without error for 85% of the femur geometries attempted. The instances which were
not completed failed at the Boolean operation stage, a complication which was not
unexpected due to the inherent complexity of the shapes being cut and the trouble
this can cause even if being performed manually. The entire process, including FEA

of the related intact instance, was able to run at a rate of 4 models per hour (on
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Femoral Head

Mean % change

Implant 5 ‘ Implant 11

Maximum % change

Implant 5 ‘ Implant 11

Section 1 -82.8 -78.3 -87.4 -83.0
Section 2 -59.7 -53.2 -70.8 -61.4
Section 7 -81.5 -78.6 -86.1 -84.5
Section 8 -57.2 -51.8 -71.8 -61.5

Femoral Neck

Mean % change

Implant 5 ‘ Implant 11

Maximum % change

Implant 5 ‘ Implant 11

Section 3 16.7 9.2 49.1 26.1
Section 9 10.3 -5.5 38.9 4.3
Section 12 -5.8 -10.4 6.2 0.7

Table 5.3: Table containing the mean and extreme results for the changes in strain in
the femoral head and neck sections which were found to show significantly different
results between the large and small implant sizes.

a duel quad core processor). This mainly reflects the time taken in transferring
data between different pieces of software and the intricacy of the models generated,
hindering speed despite the relative simplicity of the final FE analysis. The time
constraints were considered entirely manageable for this scenario of 400 models. In
future it is hoped that it will be possible to perform the majority of these steps within
a single program to improve this, however currently there is no one piece of software

available to the study which is capable of completing all model preparation tasks.

Comparison of the change in strain predicted through the proximal femur to
those published by Radcliffe et al. [176] for identical loading conditions provided a
means of checking the results found in this work. Each of the 16 femurs modelled by
Radcliffe were manually generated and implanted, a painstaking process meaning that
implant positioning was entirely reliable. Therefore the comparable trends in strain
change seen through the proximal femur are a further indication of the success of the
automated implantation technique (Figure 5.12). As hoped the increase in sample
size between the studies, made possible thanks to the use of a statistical model
to generate large numbers of unique femurs, has increased the range of predicted
outcomes in each section of the femur. This shows the potential of the technique in
identifying instances where specific ranges of characteristics lead to unusual outcomes.
The number of models being tested allow trends for these less common cases to be

observed which other approaches may never find.

The main strain alterations observed were severe strain shielding in the femoral
head, particularly in the superior sections, and increased strain in the femoral neck,

again most notable superiorly. These patterns of load transfer change have been
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reported in previous FE and experimental work and have been associated with failure
mechanism theories. Predicted strain shielding in the femoral head was linked to
bone resorption, and potential failure through head collapse which has been observed
in clinical retrievals [45, 168, 178, 84]. However many studies have not indicated
loosening through altered load transfer to be a major cause of revision and have
proposed reasons such as disrupted blood supply, thermal damage during cement
curing, trauma during implantation and underlying poor bone quality to explain the
changes seen [166, 169, 4, 170, 174].

Femoral neck fracture is now regarded as a serious risk following femoral resur-
facing. By exploiting the large number of analyses run in this study it was possible
to interrogate the features of those femurs with increased strain in the femoral neck.
Despite the magnitude of the increases in most cases not seeming large enough to
directly result in fracture there have been a range of reasons proposed for how the
neck may become weakened or subjected to higher loads. Thus the combination of
contributing factors may be sufficient. In addition outlying results were found where
average strain increases approaching 60% were seen (with strain pattern trends shown
in figure 5.13). Damage done during surgery or poor surgical accuracy are often
blamed for weakening the femoral neck; cutting blood supply leading to necrosis,
notching the neck producing a stress concentration, poorly seating an implant leav-
ing uncovered cancellous bone or malalignment of the implant (varus) resulting in
unfavourable loading [4, 168, 166, 165]. Clinically, neck fractures are commonly seen
within the first few months of surgery [165, 167]. Previous FE and experimental
work have shown increased strain in the superior femoral neck although not over a
volume sufficient to cause fracture, but the addition of a notch could be enough to
change this [175, 49, 84, 179]. Although Long et al. [167] argued that short term neck
fracture is not always accompanied by evidence of notching. Long suggesting that in
bones with lower modulus where higher loads were applied, the areas around the im-
plant rim suffer high strain concentrations which may lead to damage accumulation

and fatigue failure before the bone adaption cycle can complete in response.

The average strain changes predicted in the neck by the 400 femur analysis are
of a similar magnitude to earlier studies. Examination of the outliers where strain
increased by more than two standard deviations from the mean indicated that these
femurs were significantly smaller over a range of measurements than the main set
of models, with slightly higher modulus in the femoral neck. The measurements
highlighted included intertrochantic width, femoral shaft diameter, neck axis length,
femoral head diameter and overall proximal volume. Also highlighted were propor-
tional features, suggesting these outliers had more oval necks (larger in superior-

inferior dimension) and a larger difference between head and neck diameters. There
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were several outlying femurs showing a notable decrease in strain in the neck, when
compared to those models with the largest strain increase a statistically significant
difference in size was seen. The femurs with the largest reduction in strain had lower
mean cancellous modulus values than the overall generated population. These sta-
tistically significant geometric and material differences were only identifiable thanks

to the number of models this study was able to run.

An intriguing set of observations relating to RA were made in the Australian
National Joint Replacement Registry [61]. These included an inverse relationship
between implant size and revision rate, with smaller implant sizes (<44mm) suffering
9% revision while the larger sizes (>55bmm) only 1.7%, with no significant gender
difference in failure rate once implant size was accounted for. This was alongside a
clear picture of the typical RA patient demographic, being male (76.4% and rising)
and young (91.9% <65 years), with the revision rate at 5 years for female patients
more than twice that for males (6.5% to 2.6%). Many studies have analysed risk
factors for femoral resurfacing to try to identify reasons why the procedure may be
more or less likely to require revision. Smaller implant sizes and/or female gender
(normally associated with smaller implant sizes) have been flagged as having a higher
revision risk by previous clinical studies [163, 180, 172, 157], with Mai et al. [177]’s 12
year follow up study showing an 82% survivorship rate with the large implant group
compared to 56% with the small. Although some studies have not found implant size
to be significant [166, 165].

Due to the evidence found from examining outliers in the previous analysis linking
femur size to adverse traits such as increased strain in the femoral neck and greater
strain shielding, and the clinical evidence of poorer performance in smaller implant
sizes, an investigation was performed to compare the altered strain patterns produced
by a small and a large implant size. By identifying instances from the 400 generated
model set which had been assigned size 5 or size 11 implants it was possible to gather
two subgroups of 25 and 20 femurs respectively. These groups were analysed using the
same methods as the outliers, allowing direct comparisons to be drawn between them
and any statistically significant differences found. The results of this analysis showed
two potential trends, linked to suggested failure mechanisms, which were exaggerated
in the smaller implant group. These were strain shielding in the femoral head, higher
in the proximal head (sections 1, 2, 7 and 8), and elevated strains in the femoral neck,
again largest proximally (sections 3, 9 and 12). The superior-posterior neck (section
9) showed a mean increase in strain for the small implants while a mean decrease
for the large. Unlike the trends observed in the femoral head where the differences
between the means were a few percent and the extremes of the data were similar, in

the neck these mean changes in strain and extremes were very different (Table 5.3).
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As with the overall results the typical mean changes in strain in the smaller
implant size are not large. However the highest results seen, ~40-50%, may be
enough to lead to damage if a weakness was present such as a notch or cyst and so
these femurs could be at higher risk of neck fracture than the others assessed. The
only metrics, other than those relating to scale, which proved to segregate the implant
size results concerned mean cortical bone modulus in the neck and intertrochantic
regions and the percentage of cortical bone in the neck. All of these were higher in

the smaller femurs.

A potential limitation of the study was the initial training data set. This was
male dominated with a mean age of 70 years, no preselection of the data was done
due to the difficulty in sourcing whole femur CT scans. Ideally the statistical model
would be tailored to model a specific population group by segregation on the grounds
of gender, age, ethnicity and so on, which all affect femur morphology. However,
the range of femurs which can be produced by this model has been demonstrated
previously (Section 3.6.4), and in that study are comparable to the population data
found in the NHANES survey (Figure 3.27). This study’s focus was on generating
a methodology to allow the automated modelling of orthopaedic implants, therefore
the model was run to produce a wide range of femoral morphologies. A further
implication of this was that a simplified implantation strategy was employed which
aimed to prevent neck notching and restore approximately natural biomechanics. A
more rigorous simulation of surgical procedure would be possible in future work,
for example this could incorporate the more complex positioning recommendations
detailed by Shimmin et al. [162]. An extension to the study could also be to introduce
a notch to the neck, similar to one which may be made in error while cutting the
femoral head, to investigate whether this caused sufficiently elevated strains to lead

to fracture.

131



Chapter 5. Automated Methoodology for Virtual Femoral Resurfacing

5.6 Conclusions

The feasibility of using a statistical model to enable large scale multi model testing
of an intact femur was demonstrated in Chapter 4 in a case study of femoral neck
fracture risk. The current work has shown how this concept has been extended to
allow the benefits of analysing a wide range of models to be applied to orthopaedic
implant testing. A fully automated technique performs the complex tasks required
to implant and analyse given geometries with a high success rate. A wide range
of investigations are possible with simple alterations to the method. Modelling a
wide population of bones will allow meaningful statistical analyses to be carried
out, infeasible in conventional studies, and enable more comprehensive testing of

orthopaedic implants in the future.
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Conclusions and Future Work

6.1 Background to the problems motivating this

work

Computational analysis has become an increasingly intrinsic tool in biomechanics,
used as a fundamental part of research and orthopaedic design. In-silico techniques
have evolved as computer technology has developed and allowed the potential ad-
vantages of the methods to be exploited, advantages which most experimental al-
ternatives can not feasibly match. For example the ability to test the same model
multiple times, under different conditions or to compare the performance of a range
of models under identical conditions. The detailed results which computational anal-
yses are capable of producing, allowing interrogation throughout a three dimensional

structure, are also not able to be replicated by in-vitro or in-vivo tests.

However, there are still some significant weaknesses in conventional in-silico exper-
imental design which limit their ability to model biomechanical scenarios completely.
One important weakness is the lack of incorporation of variability - namely differ-
ences in material properties and morphology between subjects. In addition, when
orthopaedic implants are modelled it is rare for surgical variability to be accounted
for in assessment, usually perfect positioning and implantation is assumed despite
this being hard to achieve in reality. When the effect of subject or surgical variations
have been investigated they have been found to dramatically alter the outcomes of
the analysis [3, 6, 52, 37, 7].

In the case of inter-subject variability there are good reasons why computational

testing has not been able to incorporate the differences known to exist in real life.
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These boil down to two key issues; 1) the time consuming, labour intensive and
tedious task of manual model generation and 2) the limited availability of high quality
imaging data (CT or MRI). It is these issues which this work has aimed to address
such that intersubject variability can be incorporated into in-silico analysis without

massive computational or labour costs.

Of previous studies where attempts have been made to better model the true
clinical circumstances around biomedical scenarios, such as joint replacement, by
incorporating variability only a few have developed patient specific models. Some
studies have taken an approach of simplifying the problem and only varying one
parameter, for example artificially varying material properties on an identical ge-
ometry [3] or scaling a single model and related parameters to generate a range of
models [58].

Publications which have generated subject specific models include Radcliffe et
al [176, 7, 37] and Keyak et al [51, 150] where sets of models (16 and 18 respectively)
were manually generated from CT data, extracting geometry and material properties,
and manually put through FE analysis. These produced a wealth of information but
were limited by what was still a statistically small data set, where it was likely that
they related to CT scans which were available rather than representative of patients
suitable for the study. The process of performing the analyses was time consuming
and even if more image data had been available this limitation would have made it

infeasible for a substantially larger group of models to be tested this way.

6.2 Aims of this work and assessment of whether

they have been achieved

The fundamental aim of this project was to investigate the possibility of using sta-
tistical modelling techniques to generate a population of femur models and to show
whether these could be efficiently integrated into a large scale computational stress

analysis.

The initial stage of generating the statistical model, detailed in Chapter 3, de-
manded a range of challenges to be met. The first of these was to acquire a large
enough database of CT data sets with which the statistical model could be trained,
such that the variability in femoral morphology and material distribution could be

captured. In total 46 individual CT scans were collected, segmented and used to
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construct the statistical model. The ultimate number of available scans was to a
large extent beyond the control of the authors, however every whole femur CT set
which could be used in this work was used. Reconstruction errors and eigenvalue
decay were used to indicate how well the femoral variability in this training set was
represented by the model, where rapid decay of either would indicate high correlation
between them (figs. 3.21). These results suggested that the number of femurs used
was effective at capturing geometric variability but insufficient to completely capture
the complex changes in material properties. This would reduce the ability of the
model to generate specific instances accurately, an ambitious ask of just 46 training
examples. However the proposed use in this work was not to do that but to generate
new realistic instances and it was shown that the patterns of material distribution in
generated femurs were realistic and the statistical model (SM) was able to produce

legal instances - provided suitable sampling limits were set.

A necessary aim of the model generation process was to find a method of estab-
lishing accurate, three dimensional correspondence between each training set member
such that they were each described in an identical form suitable for PCA. With the
ultimate aim that instances generated from the SM would be used in FEA it was also
key for mesh quality to be high throughout the construction process. The conven-
tional approach for achieving registration in complex 3D data sets like the femur is
the computationally demanding free form deformation method developed by Rueck-
ert et al. [13]. The technique adopted in the current work was a combination of
surface matching and mesh morphing to allow a baseline tetrahedral mesh to be
morphed onto each other femur instance. The elastic matching strategy adopted for
surface matching required adaption to be able to handle the large number of points
used in this model to represent each femur. The limitations of the conventional

algorithms [91] would have made this process extremely slow.

The developed strategy initially led to reasonable meshes over the majority of the
matched instances but some areas, particularly those with rapidly changing curvature
such as around the greater trochanter, suffered from severe mesh degradation/folding.
The problem was resolved, without significant computational cost, by the introduc-
tion of Laplacian smoothing at each surface registration step. The accuracy of the
matched meshes was high, with a mean error within the voxel resolution of the orig-
inal image (figs. 3.14, 3.9).

The sampling method used to generate new instances from the SM was ultimately
found to be the key factor in deciding whether or not the goal of FE ready, realis-
tic femur models were produced. The parameters concerned were; the number of

eigenmodes to include, the range over which the models should be sampled and the
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sampling technique (see Section 3.6.3). These parameters can not truly be treated
individually as they can work with and against each other, therefore the choice of
these values was challenging and they were found to be fundamental to the quality
and variety of models generated. The potential limitations and problems of this sam-
pling challenge will be discussed later in this chapter. By careful consideration and
analysis of the models produced it was possible to achieve the aim of creating a set
of unique, realistic femurs with a mesh quality of a high enough value to allow direct
use in FE. The values of a range of meaningful morphometric measurements showed
that the synthetic population generated by the sampling process was comparable to

a true human population, as detailed by Centers for Disease Control & Prevention
(CDC) [107].

The femoral neck fracture study, documented in Chapter 4, was performed to in-
vestigate whether the second part of the overall objective could be achieved, namely
using the SM as a source of femur models to drive a large scale FE analysis. The ob-
jectives of this analysis were to show how this could be integrated and run, and to test
that the results generated from these synthetic femurs were realistic. The methodol-
ogy created to perform the study was robust and scripted throughout, requiring only
the number of femurs to be tested to start and finishing with fully post-processed
strain results alongside a full range of metrics characterising each model. This lack
of manual interaction with the analysis, together with automated checks to ensure
the process was running correctly, allowed a large number of models to be tested.
It would not have been feasible to perform a similar analysis on 1000 femurs manu-
ally. Thus the correlation of strain results and geometric/material properties over a
statistically significant number of models achieved by this method would have been

impossible.

A useful outcome of the statistical modelling technique is that all generated femurs
were described by the same number of nodes/elements with each of them being in the
same relative position on every femur. This provided a predetermined landmarking
system upon which it was straight forward to base boundary conditions, loading
conditions and measurement positions. The metrics extracted in post processing were
able to be compared to previous clinical, experimental and computational studies
where similar loading conditions had been observed - i.e. a fall. The agreement
of the distribution of fracture initiation sites over the data set and the agreement of
several known risk characteristics (mainly related to material metrics) help to suggest
that the results of the analysis are realistic. This aids the case for the possibility of
using a SM to generate data sets for use in larger, population based studies as opposed
to the single or small set of bone models which currently is the conventional basis for

analysis.

136



Chapter 6. Conclusions and Future Work

A vast number of orthopaedic computational analyses are carried out to investi-
gate the interaction of an implant on the stress/strain distribution through their host
bone. In order for analyses using large numbers of models to be useful in biomechanics
a methodology to allow automated implantation was needed to be proved possible
(i.e. virtual implantation without manual intervention). Chapter 5 discusses the
development of such a methodology for automatically implanting a femoral resur-
facing component into any femur model generated from the statistical model. This
study required the accurate alignment, sizing and virtual implantation of resurfacing
components, as well as subsequent FE analysis. The implanted model generation
procedure was complex and meant that the entire process was not as robust as the
previous neck fracture study. There was a notable failure rate, ~15%, mainly at the
Boolean stage which was disappointing but not unpredictable due to the complexity
of the shape interactions. The failure of an individual model did not crash the en-
tire simulation, i.e. the script would simply move on to the next instance, thus the
study was able to run without manual intervention in the same way as the previously

described study.

The results of the study were able to replicate the trends of a previous analysis
by Radcliffe and Taylor [37], where resurfacing was manually simulated on 16 femur
models, as well as highlighting models with poorer outcomes and relating these back
to the physical characteristics of those models. This analysis achieved its aim of
allowing accurate, automated implantation over a large number of models and illus-
trated the potential of performing computational analyses of orthopaedic implants

in multiple models.

6.3 Limitations

The quality of any model is always heavily dependent on the quality of data which
is used to create it. The statistical model which forms the basis of this work is no
exception and therefore the information which is used to train it will always be a
fundamental limitation. As previously mentioned the ultimate number of individual
CT scans available to the project was out of the author’s control, however every
usable set was included. The population described by these 46 femurs turned out to
be male biased, with a mean age of ~70 and from a Caucasian population. It was
clear from simply viewing the scans that there were variations in bone quality (with
an age range of 43 to 91 this was inevitable), but none of the subjects were known

to have a pre-existing degenerative joint disease.
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Due to this relatively small training set size, and its potential bias, the range of
femur representations which can be created from it will undeniably reflect this and
thus careful sampling and observation of these femurs needs to be made. It is key to
remember that this study was intended to be a proof of concept rather than aiming
to produce a definitive model which either covers the entire possible population of
human femurs or a particular subgroup. Extending the project along these lines is

discussed further in the context of future work.

The quality of the data fed into the statistical model was vulnerable to the intro-
duction of errors during the process of extracting each femur representation from their
respective image sets. The geometries were generated by semi-automated segmenta-
tion, based on greylevel thresholding, and manual slice-by-slice correction. During
segmentation a certain amount of judgement is required to follow the bone contours,
particularly where bones are close together (e.g. femoral head and acetabulum),
where image resolution is poor or where bone quality is low - making boundaries less
defined. Certain areas of the femur are harder to segment neatly than others due to
this issue, including areas of the femoral head where the cortical shell is thin and the
greater trochanter where very dense soft tissues connect to the femur. It is entirely
possible for low level geometric errors to be introduced to the final statistical model

due to these sorts of issues.

It is evident from the various analyses done to assess reconstruction error in chap-
ter 3 that the statistical model is successful in capturing geometric variations but has
some difficulty with material properties. The culprit behind this could again be the
quality of the initial training data, although the distribution and complexity of ma-
terial distribution undoubtedly varies significantly and is most likely not sufficiently
captured by the 46 base examples. The main challenge with assigning material prop-
erties in this work was that the CT data sets used were clinical and so uncalibrated,
meaning there were no calibration phantoms in the images which could be used to
correct greylevel for the particular machine set up. Instead an alternative calibration
method was devised which relied on picking two materials of known density in the
image and correcting the entire greylevel range based on these (Section 3.3.3). The
assumption required to do this was that there was some area of cortical bone in every
data set which had the textbook maximum cortical bone density of 1.73g/cm3. Tt is
likely that some of the subjects, particularly the most elderly, did not quite achieve
this value even in the densest areas and therefore this assumption may be introducing

eITrors.

The most important factor found to influence the success of the statistical model

in generating a widely varying, unique and yet realistic set of femur models with high
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mesh quality was sampling. The correct choice of sampling parameters and sampling
method must be established for each statistical model and are dependent on the
characteristics of the training data. A simplification made in this work has been that
the probability distributions of each individual coefficient of the PCA model have
not been used as the basis for sampling, instead superimposing a Gaussian sampling
curve (Section 3.6.3). The potential effect of this is the possibility of combinations
of eigenvector weightings producing unrealistic femurs, i.e. over/under sized or with
extreme material properties. The risk was understood in this work and so care
was taken to ensure that models were suitable through a combination of automated
pass/fail filters (e.g. based on femur length), manual interrogation and limiting the
sampling range with appropriate parameters. For future use of the model more
investigation may be needed into the choice and control of sampling methods and
parameters so that it can be relied upon completely without the potential need for
further levels of filtering. An increase in training data could also help to alleviate

this problem.

The FE analyses performed in this work have been simplistic, this was again
because the aim of the work has been to prove that the concept of running a large
number of FE studies on a widely varying set of bone models, generated from a SM,
was feasible. The trends of the results follow those of previous work with similar
investigations which was sufficient for this purpose, however in future it may be

possible to increase the complexity of the model.

Currently the main limiting factor in the automated implantation methodology
is the requirement for a succession of different pieces of software, each of which is
suited to a particular process which the other can not perform as reliably. The result
is a time cost in writing out/reading in at each stage of the process and a potential
for errors as information is translated. The failure rate of Boolean operations is
hard to completely avoid. A series of steps were taken to prevent this occurring
due to any irregular elements (which would prevent surface fitting) or unfavourable
intersections (by shifting the cutter by fractions). Alternative software or further
investigation into the reason for failure at this stage may reduce the failure rate. At
this proof of concept stage these limitations were accepted and are a clear direction

for future work in refining the techniques.

A final notable limitation to the large scale analyses described in this work, but by
no means restricted solely to it, is the issue of establishing a comprehensive interpre-
tation of results. As each of the many models run produces reams of data, relating
to elemental strains and femur characteristics, the true results of the analysis can

quickly become swamped under the weight of numbers. This volume of data is the
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strength of the method, allowing a wide range of post processing to be performed
over numbers sufficient to show statistical significance, yet it has proved all too easy
for important trends to be missed. Amongst the large matrix of data, results will

not be found unless they are looked for.

6.4 Future Work

As this work has not been a continuation of a previous project it has been approached
as a proof of concept study, investigating the potential of applying statistical mod-
elling techniques to generating synthetic bone models for large scale, multi model
FE analyses. This aim has been achieved and thus opens up the possibilities for a
range of future work directions, including both refining the techniques which have

been suggested and extending them to new problems.

There are several clear ways in which the statistical model could be improved
which have been previously mentioned, including; an increase in the size and diver-
sity of the training data, the use of calibrated CTs and the development of more
sophisticated sampling techniques. The creation of more focused statistical models
could prove extremely useful for orthopaedic research where risk factors have already
been identified and a better understanding of their influence required. For example
the development of gender and /or age specific models to match a patient demographic

of interest or a disease specific model such as one built from osteoporotic bones.

There is potential for improvement in the registration scheme. Currently the
surface and volume registration stages are performed separately but in future it may
be possible to integrate these into one piece of code. As discussed, the scheme is
currently less able to capture modulus variability than geometric which could be
directly linked to the approach taken. Investigations into the possible improvements
of registration schemes which use intensity information as well as shape to establish

correspondence could improve this problem [13, 82, 81, 70].

The complexity of the FE analyses in this work was minimised due to the aims
of the study, however in future it may be of interest to look at increasing this to try
to model situations more realistically. This may include investigating more complex
interface conditions between implant-cement-bone, introducing suboptimal implant
alignments, modelling poor fixation or uneven cement coverage. The incorporation
of surgical variations in combination with intersubject variability is an intriguing

possibility which may better emulate clinical conditions and lead to greater insight
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into the affect of joint replacement than current studies. The methodology described
is easily adjustable to incorporate such variability, for example the alteration of a
single line of code can result in an oversized or undersized component being implanted
(details in Appendix E).

The process trialled for resurfacing arthroplasty could be applied to other femoral
implants, at both the proximal and distal ends. The automated implantation of
a total joint replacement component would require a new alignment strategy and
undoubtedly raise new problems, however if achieved it would open up the potential

for comparative assessment of implant designs over a large number of femurs.

This work has focused solely on the femur, but there is no reason why the statis-
tical modelling techniques developed can not be applied to other bones which host
implants, such as; the tibia, acetabulum or vertebra. It is extremely common for
femoral and acetabular components to be analysed separately, yet this is removing
the implant and bone from the surrounding system. Some studies have begun to in-
clude the acetabulum, femur and sometimes surrounding musculature into analyses
of the hip [49, 50]. It would be a logical development to attempt to apply these statis-
tical modelling techniques to multiple bodies, such as the acetabulum and proximal
femur, distal femur and proximal tibia or a set of lumbar vertebra. The challenges
of this progression may exceed the capabilities of the current methodology but this

direction is an ambitious and potentially useful aim for the future.

141



Appendix A

Further Details of the Registration
Strategy

A.1 Registration Scheme

The first stage of establishing correspondence between each member of the training
set was to register a common baseline mesh to each femur model surface. The median
length femur of the set was chosen to be the baseline femur, with the rationale that
this would lead to the minimum element distortion when stretching or compressing
the mesh to fit another instance. It has been shown that the choice of example from
which the template mesh is created has only a minimal effect on the final model

accuracy [73].

The chosen femur surface mesh was imported into meshing software, Ansys ICEM
CFD (Ansys Inc., Canonsburg, PA), and converted into a high quality, solid tetra-
hedral mesh with a global element size of 3mm. In order to balance model definition
and computation cost the model was then split into three regions and the upper and
lower thirds’ mesh size refined to 1-1.5mm at the surface (Fig. A.1). This was jus-
tified for two reasons: 1) these areas are of more clinical interest so a fine mesh will
be important for future use of the model and 2) these areas contain the most rapidly
changing geometry and hence require a higher density of surface points to achieve
accurate registration. The baseline tetrahedral mesh, and therefore any subsequent
mesh produced by the model, consisted of 615,523 elements and 117,225 nodes, of
which 27,171 were on the surface (Fig. A.1).

Every femur in the training set was initially aligned to the same orientation as

the baseline femur using ICP [10].
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Figure A.1: Figure Al:The baseline meshed geometry. Shows a section of mesh
through the femoral head and the transition in mesh size between the proximal femur
and femoral shaft

The registration scheme developed has two steps; 1) surface registration and 2)
volumetric registration via mesh morphing, to achieve three dimensional correspon-
dence between a baseline and a target femur model. Surface matching iteratively
deformed the baseline surface vertices to match a target surface and was able to
achieve a smooth, accurate final mesh through user defined inputs controlling the
magnitude and speed of the deformation. These parameters controlled the area
affected by moving a single vertex and the magnitude of each iterative step, both de-
creasing over the specified number of iterations. This initially allowed almost global
deformations to act which roughly aligned the surfaces before narrowing the regions
of influence to produce fine, local manipulations of the mesh until a stopping criteria
was reached. The accuracy of the surface registration achieved using this algorithm
is illustrated in Figure A.1, showing the morphed and target surfaces superimposed.
The volumetric registration step used the registered surface points as a scaffold and

positioned the internal mesh points based on the surface node displacement vectors.

A.1.1 Surface Registration

The surface registration technique employed in the present study was based on the
three dimensional generalization of Burr’s elastic registration algorithm proposed

by Moshfeghi et al. [91]. The inputs required by the scheme were the ordered vertex
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Figure A.2: Target mesh (dark) with morphed baseline mesh (light) superimposed,
showing the accuracy achievable by the registration scheme

and triangle patch lists of a baseline femur (5;) and a target femur (S) to which the

baseline mesh would be mapped. The baseline femur was represented as follows
Si = Hrwi, yui, 2}, {A}), where 1 <i <N, 1 <e<Th. (A1)

here (14, Y14, 21;) were the coordinates of the ith vertex and A, referred to the triangle
patch c. Here, Ny indicated the total number of vertices and 7 the number of triangle
patches on the baseline surface S;. The target femur was similarly represented, where

N5 and T; were the total number of vertices and triangle patches on Sy respectively
So = {{22j,y2j, 22} , {Aa}}, where 1 < j < No,1 <d < Do (A.2)

The key steps of the registration algorithm to elastically deform the baseline surface

(S1) to match the target surface (S,) are outlined below.

1. Inputs specified: baseline surface S = {15, y15, 211} , {Ac}}, target surface
S, = {{z2), y2j, 22} , {Aq}}, nearest neighbour parameter m, normalization
factor «, smoothing parameters v, ¢ and f, maximum number of iterations
kmaz and stopping criteria €. The required parameters used in this study were;
m=>50, v=2, 0°=10, f=1.0715 and k,,q,=100.

2. Coarse registration performed to align the surfaces S; and Ss.
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. Set k = 1 and defined W*=1 = S before iteratively performing the following
steps WHILE k < k4.

. Constructed k-d tree representations, D7 and KDT,, of the centroids of
surface triangulations of the deforming baseline mesh W*1 and the target

meshgg.
.DOFORi=1,2,...,NV;

(a) For each vertex P (i) in the deforming baseline mesh W1, the m nearest

surface triangles on the target S, were identified using the k-d tree KDT 5.

(b) The closest target surface triangle patch to the considered vertex depends
on the location of the intersection point, é, produced between a perpen-
dicular drawn from the vertex P, () to the target triangle patch Ay. If G
lay inside A, the distance measure, 7, was defined by (i, d) = ]é —Pi(i)],
otherwise by (i, d) = |G — P, (i)| + |P — G|. Here P was the closest trian-
gle vertex on the target surface S, to the intersection point G. Tt should
be noted that only a distance measure is used to determine the nearest
triangle patch. This is different to Moshfeghi et al. [91] who incorporate a
weighted directional incompatibility measure, w, in the similarity measure
0 = v 4+ aw. Using this similarity measure often resulted in mesh folding
after registration, particularly in the case of the fine mesh used for the

femur model.

(c) Having found the location of the nearest surface triangle on the surface
S, to 151(2'), the displacement vectors required to align the surfaces could

be calculated as the deformation field vector Dy(i,d) = G — Py (i) if the
point G was inside or on the Ay, or D; (1,d) = P-P (1) if it was not.

END DO

. Processes (a~c) within the previous step were then repeated with 5'2 in place of
S; and Wh1 replacing S, to find the deformation field Dy (7, ¢) describing the

displacement vectors required to align Sy to WHL.

. The smoothed displacement field was computed as

D—»Sk—l(x yo) = 1 SN G, y, 2) Da (i, dy) B Zjvjl Gaj(x,y, 2)Da(j. c;)
- v 21],\21 Gli(I7y7 2) Z;\Zl G2j(‘r7ya Z)

?

(A.3)
where GG; and Gy could be chosen to be radial basis functions of the form
Ghi(z,y,2) = ¢(r1;) and Gaj(x,y, z) = ¢(re;). r1; was the Euclidean distance

between (x,y, z) and the ith vertex of the baseline surface S, and r9; Was the
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Euclidean distance between (z,y, 2) and (29 + D2,(7, ¢;), y2; + Doy (4, ¢;), 225 +
Dy, (j,c;)). Moshfeghi et al. [91] suggested the use of the following Gaussian

radial basis functions

G = o (_ (01)2 [(z = 21)* + (y —yu)* + (2 — Z”)Q}) (A4)
Gayj = exp (_ (01)2 [(# = @2j — Dau(5,¢;))* + (y — Yo — D2y (Js ¢5))°
+(z = 205 — Da.(5,¢))°]) , (A.5)

* was decreased at each iteration using the

where the smoothing parameter o
update rule 0% = ¢%f~% with 1 < f < 2. The factor v was set to 2 in our
numerical studies and can be interpreted as a damping factor. By increasing f
and ¢ a greater deformation was achieved but mesh quality could be reduced.
A good trade off between achieved deformation and mesh quality was achieved
by using a relatively high value of o with a low value of f, over a large number

of iterations (k ~ 100).

8. Iteratively deformed S to S, using the following update rule

-,

WE(i,e) = Wi ¢) + DS (z,y, 2). (A.6)

9. Apply improved Laplace smoothing [93] to help maintain the mesh integrity. A
set number of iterations of smoothing are applied to W*(i,c) to stop mesh
folding occurring. Observations evidence showed that only using Gaussian
smoothing on the displacement field is not enough to stop distortion of the
mesh (Fig. A3).

10. The iterations were terminated if the following stopping criterion was reached,
if not then set k = k£ + 1 and returned to step 4.

Ny

1 -
N Z | DS (215, Y14, 211) | < €. (A7)
i=1

When registration was completed and convergence achieved, say after k iterations,
the elastic matching algorithm provided the deformed surface mesh (A.8), with the

baseline mesh gl mapped onto the target surface S_‘é.

-

Wk, e) = {(2};, 4, 20), Ac}, where 1 <i < Ny, 1 < e <Th. (A.8)
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The displacement vectors required to register the vertices of S, (1, ¢) with the surface

Sy (7,d) were then given by equation A.9;

t; = {(2); — 215), (Y1 — yui), (21, — 215)}, where 1 <7 < Ny (A.9)

A.1.2 Volume Mesh Morphing

The problem of deforming a volume mesh to track moving/perturbed surfaces has
been extensively studied in several areas including computational geometry, moving
surface fluid flow simulation and engineering design optimisation [94, 95, 96]. The
central idea underpinning many existing approaches is to solve partial differential
equations (for example the elasticity or diffusion equations), for the coordinates of the
deformed mesh with the known surface displacements imposed as essential boundary

conditions.

In the present work the diffusion based mesh deformation strategy was used.
It is computationally efficient and known to work well in a variety of application
domains [97, 94]. This approach solved the following decoupled three-dimensional

Laplace equations to deform the baseline volume mesh
V36x =0, V3y =0, V32 =0, (A.10)

where dz, 0y and dz were the displacement fields applied to the baseline mesh co-
ordinates in the z—, y— and z— directions, respectively, and V? was the standard

Laplacian operator defined on the baseline volume mesh.

The z,y, z components of the surface registration vectors u;, specified by equa-
tion (A.9), were used to specify appropriate Dirichlet boundary conditions for equa-
tion A.10. The result was a morphing of the internal points of the baseline volume
mesh onto the target volume. Once the whole registration process was applied to all
members of the training set, each was described by a solid tetrahedral mesh, with

direct correspondence established between each point and element.

It is important to note that when the magnitudes of «; become large some elements
of the morphed volume may experience reversal, leading to negative signed volumes.
One straightforward way to circumvent this problem is to tightly couple the mesh
morphing strategy with the surface registration algorithm. For example, by carrying
out volume meshing after surface registration step 8 where the Laplace operator is

defined on the volume corresponding to the surface W*~!, with Dirichlet boundary
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conditions imposed accordingly. The surface registration vector at iteration k then
becomes

ar = {(l‘lfl —x1), (YF — yu), (25 — zli)} , where 1 <i < Nj. (A.11)

)

where (2%, yr., 2%, is the ordered vertex list of W*. It was found that this incremental
strategy did not suffer from element reversal issues and also provided high-quality
meshes. Similar observations were previously made by Shontz and Vavasis [96]. How-
ever, this improvement was achieved at the expense of increased computational cost.
In the present study, due to computational constraints, we did not employ the incre-
mental morphing strategy and instead chose to repair the registered volume mesh if
any elements were produced with a negative signed volume. Mesh check and repair

was fully automated and incorporated into the volume meshing procedure.
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Characteristics of 21 Femur
Statistical Model

B.0.3 Interpretation of Eigenmodes

Covariance Method Correlation Method
Mode | Variance Captured | Total Variance | Variance Captured | Total Variance
1 34.85 34.85 31.97 31.97
2 10.13 44.98 25.37 57.33
3 6.16 51.14 17.58 74.92
4 5.76 56.90 4.26 79.18
5 4.64 61.54 2.86 82.04
6 4.28 65.81 2.34 84.42
7 3.77 69.59 1.69 86.53
8 3.26 72.85 1.54 88.21
9 3.17 76.01 1.26 89.76
10 2.88 78.90 1.20 91.02

Table B.1: Percentage variation captured by first 10 eigenmodes computed using the
covariance and correlation methods.

Comparing the eigenvalues produced from PCA of the data set from the covari-

ance and correlation approaches shows significant differences (Table B.1). The first

mode contains a comparable proportion of the variation, ~ 35% with the covariance

based and ~ 32% with the correlation based approach. However, when considering

the first three modes the correlation approach captures close to 75% of the total

variation compared to just 51% described by the more traditional method. This sig-

nificant initial improvement together with a more rapid decay of eigenvalue suggests
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Figure B.1: Plots of eigenvalue percentage. Shows percentage for each mode (left) and
cumulative percentage variation explained (right) for the covariance and correlation

methods.
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Figure B.2: Geometry and material property changes with first 3 modes of variation
acting in isolation, produced using the correlation method.

that the correlation approach is more suited for the analysis of data with mixed units

(Fig. B.1).
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The physical effect on the model shape and material modulus of each eigenmode
was investigated by varying each mode in isolation and visualising the femur produced
(Fig. B.2). The first mode shows a straightening of the femoral axis towards the mid
line in the frontal plane and a reduction in the bowing of the femoral shaft in the
sagittal plane. Another significant geometric feature is a rotation of the femoral
head in relation to the body of the femur, known as anteversion angle. The average
modulus of the bone appears to rise, particularly in the shaft where there is a clear
thickening of the cortex. The second mode was seen to be dominated by scaling affects
and an increase in femoral shaft and neck diameter. Similarly the third mode shows
an increase in shaft and neck thickness along with a large increase in anteversion
angle as opposed to the reduction seen in the first mode. The influence of the modes
is an insight into the significant ways in which this set of femurs vary, however it
must be noted that these modes will never occur in isolation. In reality any femur
will be the product of the combined effect of a number of modes, which may result

in the features observed being cancelled out or exaggerated.
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Figure B.3: Boxplot of mean Euclidean distance and mean modulus error between
corresponding points when reconstructing a known instance with an increasing num-
ber of eigenmodes for both the covariance (left) and correlation methods (right).

Reconstruction error was calculated as a more appropriate test of the statistical
model created in this study due to the small size of the training set. This was done
by taking the known shape parameter of each training example and reconstructing

it with an increasing number of included eigenvectors from the statistical model.
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The mean Euclidian distance error and mean absolute modulus error at each point
in each model were found as the number of included eigenvectors was increased
using both the correlation and covariance methods (Fig. B.3). The tests show a
significant improvement in reconstruction error with the correlation approach, where
a mean error of <2mm is achieved by just 3 modes, corresponding to ~8mm with
the covariance which has a much higher error spread. The modulus error reflects the
noisiness of modulus data being read in from the CT scans, showing little sensitivity
to either method. The test results indicate the optimum number of eigenmodes
required for the generation of new femur models, suggesting 3 modes were sufficient
to construct geometry alone but at least 8 modes would be needed to fairly reproduce

modulus values as well.

B.0.4 Ability to Describe Training Data

Reconstruction error is an excellent mathematical test of a statistical model, pro-
viding details of how accurate the model is in reproducing a specific instance. The
prospective application of the model in this project is not, however, to regenerate
specific geometries but to generate new instances with realistic characteristics. In
view of this, it seems logical to investigate the generated geometries to ensure that
this is what is happening by seeing how well they describe the variation present

within the training data.

1S.D. 1.5 S.D.
Training 7 8 9 10 7 8 9 10
Neck Axis Length 100.19 | 100.05 | 100.09 | 100.07 | 100.08 || 100.12 | 100.18 | 100.17 | 100.20
Neck Shaft Angle 126.50 | 126.73 | 126.70 | 126.70 | 126.70 || 126.66 | 126.64 | 126.56 | 126.11
Femoral Head Dia. 47.43 47.33 | 47.36 | 47.35 | 47.35 || 47.37 | 4741 | 4742 | 4741

Femoral Neck Dia. P-D | 33.88 33.72 | 33.73 | 33.71 | 33.71 33.77 | 33.80 | 33.79 | 33.80
Femoral Neck Dia. A-P | 33.29 33.03 | 33.04 | 33.03 | 33.04 || 33.15 | 33.18 | 33.18 | 33.20

Anteversion 22.03 22.02 | 22.01 | 22.00 | 22.00 || 21.98 | 21.98 | 21.96 | 21.98
Femoral Shaft Radius 16.26 16.05 | 16.06 | 16.06 | 16.07 || 16.11 | 16.12 | 16.13 | 16.15
Femoral Length 457.41 | 457.01 | 457.05 | 457.06 | 457.08 || 457.50 | 457.50 | 457.64 | 457.69

Table B.2: Table showing the mean value of various geometric measurements taken
from 100 femurs generated with bounds of 1 and 1.5 standard deviations, at 7, 8, 9
and 10 included modes, alongside the mean values of the statistical model training
data.

The reconstruction tests indicated that 8 modes would be needed to reproduce
modulus and geometry, and that the correlation method was more suited to this data
set. Therefore the correlation based model was used from this point forward and the
optimum model limits investigated by using it to randomly generate 100 femurs using
7,8, 9 and 10 modes and setting the bounds to +/- 1, 1.5 and 2 03,. Anatomically

meaningful measurements were then extracted from each generated femur and from

152



Chapter B. Characteristics of 21 Femur Statistical Model

1S.D. 1.5 S.D.
Training 7 8 9 10 7 8 9 10
Neck Axis Length 29.51 19.20 | 19.91 | 19.95 | 20.24 || 28.85 | 29.90 | 29.96 | 30.38
Neck Shaft Angle 10.59 6.58 | 6.50 | 6.53 | 8.21 || 10.00 | 10.62 | 10.41 | 56.46
Femoral Head Dia. 16.45 11.64 | 11.91 | 12.04 | 12.17 || 17.44 | 17.86 | 18.03 | 18.26

Femoral Neck Dia. P-D 12.31 837 | 852 | 9.57 | 9.13 || 12,55 | 12.75 | 14.21 | 13.55
Femoral Neck Dia. A-P 15.96 10.68 | 10.82 | 12.39 | 11.93 || 15.93 | 16.16 | 18.49 | 17.79

Anteversion 14.30 6.90 | 825 | 7.95 | 7.92 9.93 | 12.22 | 11.89 | 11.69
Femoral Shaft Radius 6.01 4.01 | 405 | 4.53 | 4.42 594 | 6.06 | 6.74 | 6.58
Femoral Length 89.53 58.13 | 58.48 | 62.14 | 61.67 || 85.34 | 86.21 | 8R8.40 | 89.59

Table B.3: Table showing the spread in values of various geometric measurements
taken from 100 femurs generated with bounds of 1 and 1.5 standard deviations, at
7, 8, 9 and 10 included modes,alongside the mean values of the statistical model
training data.

every training example, these were measurements commonly used to describe femoral
geometry, including femoral neck axis length, femoral head diameter, neck diameter
and neck-shaft angle [103, 143]. As each example was based on the same baseline
mesh there was accurate point to point correspondence between models, making this
process relatively simple, involving only the identification of the key node numbers

and some simple trigonometry.

The mean values and spread of results produced with 7-10 included modes at 1
and 1.5 o, alongside the statistics of the training data the model is attempting to
represent, are shown in Tables B.2 and B.3. Even with a low number of eigenmodes
the mean measurements were consistent with the training set, this remained true as
the number of modes increased. However, by 10 modes some parameters began to
exceed the spread of values seen in the training data and the quality of the meshes
produced began to deteriorate slightly. The spread of geometric values generated
shows a clearer difference between the different boundary limits and to a limited
extent the number of modes. At +/-1 standard deviations the range is significantly
smaller than the training set, whereas at +/-1.5 the range is very similar. Overall
8 modes and a boundary of +/-1.5 03, appears to match the mean and spread of
training data geometry measurements most closely. The results for 2 s.d. are not
shown, although they also showed comparable mean values to the original data, the
spread of the geometries exceeded the training set, at the detriment of the realistic

appearance of some models and mesh quality was seen to suffer.

All femur geometries produced at +/-1.5 s.d. gave realistic anatomical measure-
ments, comparable to the training set. Although generally on the smaller side, the
measurements extracted were within the bounds of data reported from clinical papers
investigating femur geometry [103, 143]. The differences most likely reflect the char-

acteristics of the training data and differences in measuring styles, as most clinical
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studies report measurements from two dimensional imaging techniques such as X-ray

and the current study calculated distances between three dimensional positions.

B.0.5 Mesh Quality Checks

Mesh quality is a key concern when automating the generation of finite element
models. As the statistical model is created by stretching and morphing a baseline
mesh some level of mesh distortion is inevitable. It is crucial that despite this,
mesh quality is maintained such that meshes can be used in finite element simulation

without causing errors or producing inaccurate results.

To investigate the general mesh quality resulting from the statistical model gen-
eration scheme, the distribution of the quality scores produced by both the NSR and
SDR metrics were recorded for 100 generated femurs (see section B.0.5). Figure B.4
shows the mean quality scores (solid lines) with a bounding envelope of the minimum
and maximum scores seen (dashed). In addition, the quality of the baseline mesh
is also shown for comparison (dotted line). Mesh quality is seen to drop from the

baseline, which is expected, but the quality remains high for both metrics.

04 05 06 [ 03 04 05 06
Quality Value - SDR Quality Value Test - NSR

Figure B.4: Graphs of the percentage cumulative element mesh quality for (a) distor-
tion metric and (b) normalised shape ration. Solid lines shows mean value, dashed
lines indicate min and max bounds and dotted line shows original baseline mesh
quality.
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Images of Training and Generated

Femurs

Training Set Femurs
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Appendix D

Table of Assumptions

Stage

Assumptions

Data

No Pathology in the data set. i.e. all healthy subjects 46
subjects are sufficient to represent the variation in geometry
and material distribution in the femur Over representation
of males in training set due to available data Lack of ethnic
diversity in training set due to available data

Segmentation

Possibility of introduction of manual errors due to data in-
terpretation Possible inaccuracy due to smoothing process re-
quired to generate smooth surfaces from voxelised segmenta-
tion

Material  Property
Allocation

Possible smoothing effect due to sampling and averaging
method of elemental greylevel interpretation Possible artifi-
cial partial volume effects on element modulus around mate-
rial boundaries Assumed maximum bone density present in
all bones to allow calibration as no phantoms present in im-
ages Reliant on single density to modulus relationship from
the literature

Registration

Accurate surface and volume representation when morphing
baseline mesh onto each example High mesh quality after mor-
phing Nodal and elemental correspondence between all train-
ing exampled following registration and morphing

PCA Sampling

Appropriate number of modes included to represent data set
without including noise leading to mesh degradation Sam-
pling limits appropriate to represent data set while not ex-
tending too far and generating infeasible/unrealistic models
Normalised sampling technique suitable to represent the train-
ing set distribution
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Appendix E

An Automated, Large Scale Finite Element Study into the Influence of Under and Over
Sizing Femoral Resurfacing on Load Transfer Through the Proximal Femur

Bryan R. "', Nair P. B.2*, Taylor M. ¥

" Bioengineering Sciences Research Group, University of Southampton, UK. RB102@soton.ac.uk
% Computational Engineering and Design Centre, University of Southampton, UK. P.B.Nair@soton.ac.uk
% Bioengineering Sciences Research Group, University of Southampton, UK. M.Taylor@soton.ac.uk

Introduction: Resurfacing arthroplasty (RA) is
regarded as an attractive alternative to full hip
replacement for younger active patients, offering more
natural replication of joint kinematics and greater bone
conservation. However, it is known that the success of
RA is highly influenced by patient selection and
surgical skill, with poorer outcomes seen particularly in
older females with smaller implant sizes .

The focus of this work was the influence of incorrect
implant size selection on load transfer through the
proximal femur. A novel technique involving statistical
modelling of the femur was used to generate large
numbers of synthetic femurs, each with unique
geometries and material propertiesB. All models were
automatically implanted to analyse the effects of under
and over sizing resurfacing components on a wide
variety of femurs.

Materials and methods: 290 FE ready femur models,
with varying and unique geometry and material
properties, were generated by sampling a statistical
model built from 46 Computer Tomography scans®. A
fully automated methodology virtually resurfaced each
femur firstly with a correctly sized implant, then with
implants 1 size too big and 1 size too small. The intact
femur was also analysed as a baseline.

The automated model generation process ran as
follows; Implant sizing and position was calculated on
a model by model basis using Matlab®. HyperMeshTM
(Altair Engineering Inc, USA) was used to perform
Boolean operations, cutting the femur and creating a
3mm thick cement mantle. Ansys ICEM™ (Ansys Inc.,
Cannonsburg, PA) then generated tetrahedral meshes
of the bone (0.5-1.5mm proximal, 2-4mm distal),
cement (0.75-1.5mm) and implant (0.75-1.5mm) with
nodal correspondence across boundaries. Elemental
material properties of the cut bone were reassigned
from the original femur mesh. Identical subject specific
load were applied simulating level gait4. The load was
defined by relating femur length to stature and
assigning a BMI to give a unique subject weight. A
static, linear elastic FE analysis was then run and the
resulting elemental strain extracted.

Results and Discussion: Comparison of strain
change from the intact to implanted configurations, for
all 3 scenarios, were calculated over 16 proximal
sections. These were defined identically on each
femur by dividing the bones along and perpendicular
to the neck axis (Fig.1). One-way ANOVA tests
revealed the main difference was observed in strain
shielding in the head sections. A statistically significant
difference between the groups was seen in all but one
of the head sections (Fig.1).
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o[ p<0.00001

Section 5
o P0.00001

Implant Size

ized Implant
Sized Implant

T o
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Fig. 1:lllustrating proximal femur sections with statistically
significantly different mean strain changes following
resurfacing with under- and over- sized implanted as
comfared to the nominal size. Boxplots contain: median,
25" and 75™ percentiles, notches showing comparison
intervals and whiskers extending to 3s.d.
The undersized group consistently showed the
greatest strain shielding in the head while oversizing
showed the least. Interrogation of the femurs indicated
that in all scenarios smaller implants performed worse
than larger implants, with greater strain shielding in the
anterior head (sec.1&5 p<0.0025) and greater strain
increase in the posterior neck (sec.11&15 p<0.00001).

Conclusion: This study has run a fully automated
comparative analysis of nearly 300 different femurs to
assess one possible source of surgical error,
combining surgical and intersubject variability. The
findings illustrated, with statistical significance in 7/8
head sections, that using an undersized component
was likely to increase strain shielding in the femoral
head.

The technique described offers a method for
population  based analysis in  computational
biomechanics in the future, as opposed to the subject
by subject approach which is currently used. The
method also has the flexibility to be applied to a wide
range of future investigations, such assessing the
impact of incorrect implant positioning or comparing
implant designs.

Acknowledgements: Thank you to Andrew
Hopkins, Surya Mohan, Francis Galloway and
Technology Strategy Board UK.
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