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Large Scale, Multi Femur Computational Stress Analysis Using a Statistical Shape
and Intensity Model
By Rebecca Bryan

The vast majority of orthopaedic computational studies only use a single bone model
and attempt to extrapolate results to the population as a whole. This overlooks
the large interpatient variability in bone geometry and quality which is inherently
present and could explain the differing outcomes seen with otherwise comparable
scenarios. A major barrier to correcting this is the substantial challenge involved
in sourcing and generating large numbers of bone models. In order to address this
situation a statistical model of the femur was developed which incorporated both
geometry and material properties. The model generated 3D finite element models
of the whole femur using principal component analysis. An elastic surface matching
registration scheme and a mesh morphing algorithm were developed and applied to
a training set of 46 femurs. Reconstruction tests showed that accurate reproduction
of both geometry and material characteristics could be achieved with the first 35
modes. Sampling the statistical model was able to produce unique, anatomically
realistic femur models with a high quality mesh. This led to a potential tool for the
generation of femur models incorporating material properties and geometry for large
scale multi femur finite element studies.

To test the ability of the model to generate realistic, unique, finite element femurs
it was used as a source of bone models to drive a study on femoral neck fracture risk.
Comparison to previous computational, clinical and experimental work investigating
fracture risk factors revealed that the generated models showed similar characteristics
in fracture location and type. Some geometric and bone quality traits suggested to
increase risk were also supported. This case study developed a fully automated
methodology for running an analysis, from model generation to FE post processing,
on multiple bones with widely varying geometries and material properties.

The potential of the technique was further tested by using it in a study incorpo-
rating a femoral resurfacing implant, requiring the solution of a range of problems
to enable correctly sized femoral components to be positioned appropriately in any
given femur geometry. A fully automated methodology was established to implant
any generated femurs and run an FE analysis. Comparison of the resulting strain
changes through the bone to a previous study where implantation was manual showed
similar trends.

The work described in this thesis shows how statistical modelling has been used
to capture the variation in shape and material present within a set of femurs and
use this to generate a large number of unique, realistic models. The case studies
have described how large scale, fully automated analyses are possible using these
techniques. A method has also been demonstrated to show how orthopaedic implant
testing can be run with these generated bone models, opening up the prospect of far
more extensive computational analyses than have been feasible in the past.
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Chapter 1

Introduction

1.1 Introduction

The vast majority of orthopaedic computational studies are performed using a single

bone model and then attempt to extrapolate their results to the population as a

whole. This overlooks the large interpatient variability in bone geometry and bone

quality which is inherently present between people, and could explain the differing

outcomes seen with otherwise comparable scenarios. For example, why when two

people have a comparable fall, one may suffer a bone fracture and the other not

or why a joint replacement can be markedly more successful in one patient than

another. For both cases, bone structure and quality have been shown to be highly

significant in determining success or failure [1, 2, 3], along with surgical skill in the

later case [4]. Currently there are no commonly used methods for running an analysis

which incorporates naturally occurring variations without large computational cost

and significant manual input, despite it having been recognised that by omission

quantitative accuracy is sacrificed [5].

Of the few papers which have looked at intersubject variability two have incor-

porated this in attempts to predict implant stability. Pancanti et al [6] used data

recorded by instrumented femoral prostheses to apply individualised loading condi-

tions to a cemented hip model. Simulations of various activities, such as walking,

fast walking, stair climbing/descent and bending, were then carried out. The model

investigated the micro-motions produced at the bone-implant interface, an early in-

dicator of failure if too great, and showed that inter patient variability was a more

significant factor than the type of activity. However the study still assumed an opti-

mal surgical outcome, resulting in a perfectly fitted implant, and used a generic bone
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model with no incorporation of differences in bone quality between subjects. Wong et

al [3] deterministically varied bone density within a femur model to simulate different

grades of bone quality, then analysed the resulting micro-motion and strain produced

at the bone-implant interface under normal walking loads. The study showed that

these factors are greatly influenced by the overall stiffness of the femur and concluded

that in order for FE testing to be any more than comparative, a wide range of patient

models must be used.

The need for multiple models in computational testing has also recently been

supported by Radcliffe et al [7], whose work investigated the number of femur mod-

els required to represent the variation present within a set of patient data. This

study concluded that the time consuming and laborious task of creating multiple

models from sources such as Computer Tomography (CT) scans was a significant

limitation, making multi subject based finite element (FE) studies rare. It has been

estimated that an optimal time scale for producing and solving a single proximal

femur FE model from the original CT scan is ∼8 hours [7]. Without robust and

reliable automated model generation techniques the time consuming and laborious

task of creating multiple models from sources such as Computer Tomography (CT)

scans is a significant limitation preventing multi subject based Finite Element (FE)

studies becoming commonplace. In addition there is often a limited availability of

CT data as they are not routinely taken before or after joint replacement operations.

When carried out they are localised to reduce the radiation exposure to the patient.

This work investigates the potential of developing a statistical model to use as a

source of FE bone models as a possible solution to the problem of model generation

and limited data availability. The basis of the technique lies in statistical deformation

models which have been widely used and developed in computer vision to capture

the variations possible within a class of shapes. Commonly methods are based on

Principal Component Analysis (PCA). These include active shape models (ASM) [8],

where the shape is represented by manually or semi-automatically placing landmark

points along boundaries, and active appearance models (AAM) [9] which incorporate

the texture of the whole image into the model. The resulting statistical model can

then be used to identify the shape in a new image or to generate a unique instance of

the shape. However, because of the field in which these and other similar techniques

have been developed they are often only suited to two dimensional images. Extend-

ing them to three dimensional shapes creates a real challenge in establishing accurate

correspondence between any landmarked points and in the case of AAM leads to a

dramatic increase in complexity. Registration of each of the training images must

therefore be carried out in order for the model to be built. For many applications

rigid registration techniques have proved sufficient, such as the Iterative Closest Point
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(ICP) algorithm [10], used by Vos et al [11] to create a statistical model of bones in

the hand, which has the advantage of not requiring a predefined relationship between

points on the objects being registered. This is not true for more complex biologi-

cal applications such as comparing breast and brain MRI images [12, 13] where the

shapes are highly deformable. In these cases non-rigid registration techniques have

been required based on computationally demanding free-form deformation models.

An alternative mesh matching approach was developed by Couteau et al [14] to auto-

matically generate 3D, patient specific, Finite Element (FE) meshes of the proximal

femur.

The majority of statistical models focus on shape. An exception is Querol et al.

[15], where non-rigid registration in the image space was employed in conjunction with

principal component analysis to construct a statistical shape and intensity model of

the proximal femur based on only 11 subjects. In theory image space registration

schemes which make use of intensity based similarity metrics can lead to a more

realistic statistical shape and intensity model. However, this approach is computa-

tionally expensive for high resolution images (such as good quality CT scans) and

the statistical model output is not directly usable in FE, each instance would require

meshing after generation.

1.2 Objectives

The broad aims of this project are to produce a three dimensional statistical model of

the human femur, incorporating both geometry and material property distribution,

and go on to use this in large scale computational studies. The model will be created

from real patient data and hopes to capture as wide a range of inter subject variability

as available data will allow, thus it will be able to reproduce the variation seen in a

patient population and allow the affect of natural variability to be incorporated into

computational analysis.

The model generation stage will require the creation of a whole process to turn

CT data sets into a statistical representation which can then be sampled to output

realistic femurs. Once constructed it will be used to generate large numbers of models

by sampling through the variability it captures. It is hoped that this will allow many

times more femur models to be produced than was needed to create it, each of which

will be unique. In order to make these models as useful as possible the model will

ideally produce FEA ready meshes. This will require the mesh structure to be fine

enough to accurately capture changes in geometry and material property, and for the
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mesh quality to be sufficiently robust to not require remeshing before analysis can be

done. It is critical that the model only produces femurs which have plausible shape

and bone density distributions, and that it has the ability to generate models which

represent the whole range of variables present in the real femurs used to train it.

To test how successful the statistical model managed to be, it was used to drive

a study on femoral neck fracture. Hip fracture is a potentially devastating injury

to suffer, particularly for the elderly, leading many people to have investigated the

problem, often trying to identify risk factors related to femoral bone quality and

geometry [1]. By performing a multi femur study using the statistical model as a

source of bones it was possible to compare any risk factors this identifies to the wealth

of clinical and computational data available. It was important that it was possible

to set up a high level of automation in performing this study, if manual intervention

was needed then the methodology would have become impractical to use when large

numbers of femurs were tested.

The ultimate aim of this work is to be able to use a statistical model of the in-

tact femur to test orthopaedic implants by developing an automated methodology

for implanting components into any given model. The main additional challenge of

this target, as compared to the previous study, is to be able to align and fit a cor-

rectly sized component accurately into each bone, as poor positioning will bias any

findings. As with the simulations on the intact femurs it will be critical that the

processes of model generation and FE simulation are fully automated. By replicat-

ing the loading and analyses of a previous study, where implantation was manually

performed, it is hoped that the process developed in this work will be shown to pro-

duce realistic results and so open up the prospect of population based analysis to

wider orthopaedic testing. Further to this, the techniques potential to analyse large

numbers of models will enable meaningful statistical analysis to be carried out to

gain a better understanding of the complex, multifactorial influences behind implant

performance.
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1.3 Publications

The work described in this thesis has led to the following publications:

• Chapter 3: Generation of a Statistical Model of the Whole Femur

Bryan, R., Mohan, S., Hopkins, A., Galloway, F., Taylor, M. and Nair,P.B.,

2010. Statistical modelling of the whole human femur incorporating geometric

and material properties, Medical Engineering and Physics 32(1), 57-65

Bryan, R., Mohan, S., Taylor, M., Nair, P.B., 2008. Generation of a Statis-

tical Model of the Whole Femur Incorporating Shape and Material Property

Distribution. 54th Orthopaedic Research Society, San Francisco.

• Chapter 4: Femoral Neck Fracture Risk Study

Bryan, R., Nair, P.B., Taylor, M., 2009. Use of a statistical model of the whole

femur in a large scale, multi-model study of femoral neck fracture. Journal of

Biomechanics 42(13), 2171-2176

Bryan, R., Nair, P.B., Taylor, M., 2009. Use of a Statistical Model of Geometry

and Material Properties in a 1000 Femur Study of Femoral Neck Fracture Risk.

55th Orthopaedic Research Society, Las Vegas.

• Chapter 5: Automated Implantation of Femoral Resurfacing Implant

Bryan, R., Nair, P.B., Taylor, M. An Automated, Large Scale Finite Element

Study into the Influence of Femoral Head Resurfacing on Load Transfer in the

Proximal Femur, submitted to Journal of Biomechanics

Bryan, R., Nair, P.B., Taylor, M., 2010. Influence of Femoral Head Resurfac-

ing on Load Transfer in the Proximal Femur - An Automated FE Study of 260

Femurs. 56th Orthopaedic Research Society, New Orleans.

Bryan, R., Nair, P.B., Taylor, M., 2010. Influence of Head Diameter on Load

Transfer in the Resurfaced Femoral Head - A Finite Element Study. 56th

Orthopaedic Research Society, New Orleans
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Chapter 2

Orthopaedic Biomechanics

Literature Review

2.1 Anatomy of the Hip

Figure 2.1: The Hip Joint [16]

The hip is a ball and socket joint, where the femoral head, the ’ball’, rotates

within the acetabulum, the ’socket’ (Fig. 2.1). The joint is inherently stable due to

this design and its reinforcement by the strong ligaments and muscles which surround

it. The most significant ligament structures in maintaining joint stability are the

ligamentum teres and the transverse acetabular ligaments which hold the femoral

head in the socket.

The hip is a highly versatile joint, capable of a wide range of motions. The

maximum range of passive motions, measured with the knee extended to 120◦, are

120◦ flexion mirrored by 10-30◦ extension (Fig. 2.2b) and 45-50◦ abduction mirrored
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Figure 2.2: Hip motions. a) neutral, b)
flexion, c) abduction and d) lateral rota-
tion [17]

Figure 2.3: Illustration of anatomical
planes of motion and terms indicating
anatomical location [18]

by 20-30◦ adduction (Fig. 2.2c). Medial-lateral rotation (Fig. 2.2d) ranges from 42-

50◦, measured with the knee at 90◦ of flexion.

The muscles responsible for active control of hip motions are illustrated below

(Fig. 2.4). There are a large number of muscles which act on the hip, each of whom

are often primarily associated with one motion but may have a secondary role in

another. In addition, no single muscle is responsible for any movement. Table 2.1

reflects this by grouping muscles by the movement they influence and indicating

whether this is their primary or secondary function.

2.2 Anatomy of the Femur

The femur is the longest bone in the human body. The morphology of the femur

has developed in response to the demands placed upon it by its function. Primarily

the femur must transmit load from the acetabulum to the tibia but it also provides

insertions points for the major muscles which control and stabilise the motions of

the hip and knee joints. These requirements result in forces begin unevenly applied

through the femur, which is reflected in both the internal microstructure and external

geometry of the bone.
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Figure 2.4: Anterior view of the superficial (left) and deep (right) muscles of the
hip [19]

Function Primary Muscles Secondary Muscles

Flexion

Ilipsous Pectineus
Rectus Femoris Adductor Longis

Tensor Fascia Lata Adductor Magnus
Sartoris Gracilis

Extension

Gluteus Maximus Gluteus Medius
Biceps Femoris Adductor Magnus
Semitendinosus Piriformis

Semimembranosus

Adduction

Pectineus
Adductor Brevis
Adductor longus

Adductor Magnus
Gracilis

Abduction
Gluteus Medius Gluteus Maximus

Gluteus Minimus Satorius
Tensor Fascia

Lateral Rotation

Oburator Internus + Externus Gluteus Medius
Gemellus Superior + Inferior Gluteus Minimus

Quadratus Femoris Gluteus Maximus
Piniformis

Medial Rotation
Gluteus Medius

Tensor Fascia Lata

Table 2.1: Table of primary and secondary muscles responsible for different hip mo-
tions [20]

2.2.1 Form of the Femur

The femur can be described in three sections; the proximal femur, the femoral shaft

and the distal femur. The femur is bowed in the sagittal plane and, when standing,
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Figure 2.5: Photographs of the human femur in different orientations (Sawchuck and
Padiack 2003)

inclined laterally in the coronal plane (Fig. 2.5). This results in the shaft of the

femur being inclined by approximately 5-7◦ from the vertical. The femoral neck axis

is rotated in relation to both the coronal plane, indicated by the anteversion angle,

and the shaft axis, indicated by the neck shaft angle (Fig. 2.6).

Figure 2.6: Diagrams of the femur illustrating (a) neck shaft angle [21] and (b)
anteversion angle [22]

The prominent features of the proximal femur are the femoral head, femoral

neck, greater and lesser trochanters (Fig. 2.5). The head is two thirds of a sphere

with an indent, the fovea capitis femoris, just below and behind its center where

the ligamentum teres attaches. It is covered with smooth articular cartilage which
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provides the femoral side of the bearing surface of the hip joint. The neck joins

the head to the body of the femur, merging with the lesser trochanter at its inferior

limit and with the base of the greater trochanter at its lateral limit. The trochanters

are growths which support the muscles controlling rotation of the thigh, they are

irregularly shaped with rough surfaces where muscles attach to the bone and vary

greatly in form from person to person. The greater trochanter is located laterally

and backward of the head and, in an adult, approximately 1cm lower at its superior

point. The lesser trochanter is located at the lower and posterior part of the base of

the neck [16].

The shaft of the femur is close to cylindrical, marginally broader at the top than

the center and with a subtly arched external profile on the posterior side. The

deviation from cylindrical is caused by a ridge called the linea aspera, which runs

longitudinally down the middle third of the posterior surface of the femur [16].

At the distal end the femur diverges into the medial and lateral condyles which

form the superior portion of the knee joint. Anteriorly the condyles protrude slightly

and are separated by a shallow depression called the patella surface, which is the

articulating surface between the femur and patella. Posteriorly the condyles protrude

significantly and are separated by the intercondyloid fossa which is a deep, rough

surface notch providing attachment points for the cruciate ligaments. The lower and

posterior surfaces of the condyles articulate as part of the knee joint and thus are

covered with articular cartilage [16].

2.2.2 Structure of Bone

Figure 2.7: Section through cortical

bone [23]

The femur is constructed primarily of a tube

of cortical bone with the epiphyses being a

shell of cortical bone filled with cancellous

bone. The macrostructure of these two ma-

terials is very different. Cortical bone is

transversely isotropic in nature, with greater

strength in compression than tension (Ta-

ble 2.2). It is a compact structure form-

ing a hard casing which protects the interior

and provides rigidity and strength against

applied stresses. The exterior surface is made

up of highly organised rings of lamellar bone.
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The bulk of it is made of compact osteons with the spaces between them filled by in-

terstitial lamellae. Osteons contain nerve fibres and blood supply for the surrounding

tissue, they are aligned along lines of high stress in the bone (Fig. 2.7).

Direction Young’s Modulus (GPa)

Longitudinal 17.4
Transverse 9.6
Bending 14.8
Shear 3.51

Table 2.2: Table of human cortical bone elastic modulus [24]. Illustrating the trans-
versely isotropic nature of cortical bone.

Cancellous bone is an irregular lattice construction of trabeculae which is nour-

ished by the red bone marrow which fills the cavities within it, making it far less

dense than cortical bone. It is generally found in the epiphyseal regions of long

bones, where load is transferred across a joint from one bone to another. Mechanical

testing of cancellous bone has produced a wide range of results, illustrating that the

properties of the bone are most dependant on its density, which varies with location

in the body. The stiffest trabecular structures being in the highly loaded, densest

packed sections of cancellous bone which are found in the femoral head and neck [25]

(Table 2.3).

Site Loading Direction Young’s Modulus Yield Strain Yield Stress
(MPa) (MPa)

Vertebra
Compression 344 ± 148 0.0077 ± 0.06 2.02 ± 0.92

Tension 349 ± 133 0.0070 ± 0.05 1.72 ± 0.64

Prox. Tibia
Compression 1091 ± 634 0.0073 ± 0.06 5.83 ± 3.42

Tension 1068 ± 840 0.0065 ± 0.05 4.50 ± 3.14

Greater Trochanter
Compression 622 ± 302 0.0070 ± 0.05 3.21 ± 1.83

Tension 597 ± 330 0.0061 ± 0.05 2.44 ± 1.26

Femoral Neck
Compression 3220 ± 936 0.0085 ± 0.10 17.45 ± 6.15

Tension 2700 ± 772 0.0061 ± 0.03 10.93 ± 3.08

Table 2.3: Table of cancellous bone modulus, measured in different locations in the
body [25].

2.2.3 Structure of the Femur

The internal structure of the femur is efficiently designed to transfer load through

the bone with the minimum of material. The orientation, position and size of the
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Figure 2.8: Frontal longitudinal midsection of the femur [21]

trabeculae relate to the paths and magnitude of principal stresses caused by load

transfer through the hip and knee joints.

From the level of the head to the lesser trochanter, the femoral structure is pre-

dominantly a thin layer of cortical or compact bone, encasing cancellous or spongy

bone. The cancellous structure consists of two distinct groups of trabeculae which in-

tersect perpendicularly. The medial-lateral system fans outwards and upwards from

the medial side and resists compressive stresses induced by loads on the femoral head.

The lateral-medial system runs inwards and upwards from the lateral aspect and re-

sists tensile stresses. The absolute tensile stress seen in the proximal femur is less

than the absolute compressive stress therefore the trabeculae of the lateral-medial

system are thinner than their opposing group (Fig. 2.8).

The architecture of the shaft or diaphysis of the femur exhibits maximum resis-

tance to bending, shear, torsional and axial stresses. The section consists of a roughly

cylindrical, hollow tube of thick cortical bone. The central area is the intermedullary

canal, filled with bone marrow which serves no significant structural function but has

an important metabolic role in the body.

The distal femur is structured similarly to the proximal end with a core of can-

cellous bone covered in a thin layer of cortical bone, except for the intercondyloid

fossa where the cortical bone is notably thicker. The cancellous bone in this sec-

tion is constructed of two main groups. The longitudinal system runs parallel to
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the shaft and curves slightly through the condyles to meet the articulating surfaces

perpendicularly. The transverse system braces the longitudinal system.

2.3 Hip Contact and Muscle Forces

The contact forces seen at the hip joint vary with the type of activity which the

person is doing. It is logical that running will put higher loads through the joints

than walking, however the pattern of loading will also change depending on the type

of movement being made. Typically most analyses use the gait cycle as a standard

loading condition, whether the dynamic cycle is being considered or simply the peak

force seen which can be used in static FE simulations. The normal gait cycle consists

of two main parts; the stance phase, where the leg is question is in contact with the

ground, and the swing phase (Fig. 2.9). The peak forces seen at the hip occur just

after ’heal strike’ and are followed by a secondary peak coinciding with ‘toe off’. The

magnitude and direction of these forces has been investigated by both indirect and

direct techniques.

Figure 2.9: Diagram of the gait cycle [26]

Indirect prediction of joint, and muscle forces, have been carried out using a com-

bination of mathematics and experimental data [27]. Data is captured by recording

the motion of a subject walking; the limb displacement recorded and the reaction

force on the ground measured using a force plate. This information is used to feed

mathematical models which calculate lower limb kinetics from these given kinemat-

ics, providing information about the ankle and knee as well as the hip. These models

are necessarily simplified representations as the number of unknown terms, multiple

and complex muscle contributions as well as joint forces, vastly exceeds the number

of known inputs. Some studies have indicated which muscles or groups of muscles

are active at various stages of gait, however the direction and magnitude of their
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individual contributions has not been established in vivo. The models use optimisa-

tion techniques to predict muscle forces, with results varying from model to model

depending on initial conditions and muscle groupings [27, 28, 29].

Direct measurement of hip contact force magnitude and direction has been carried

out using specialised femoral implants, instrumented with stain gauges, and inverse

dynamic calculations. The forces going through these prostheses have been recorded

while the patients performed different activities. The loads were presented in terms

of percentage body weight, as the patient’s weight clearly has a direct relationship

to the magnitude of the forces going through the joint. Studies by Bergmann et

al [30, 31] recorded the peak forces associated with walking, jogging and climbing.

A patient was accidentally recorded stumbling, with surprisingly high forces being

generated (Table 2.4).

Unlike the resultant contact force on the femoral head, muscle forces can not be

directly measured using the techniques previously described. Instead they must be

estimated using a mathematical model of the joint. The inverse dynamic approaches

do this by assuming that at any point the system is in equilibrium and solving it

through optimisation [27, 32, 28]. This has led to an understanding of muscle forces

accross the gait cycle [28]. Heller et al. [33] generated patient specific models using

CT scans and combined this with data from an instrumented prosthesis. Tasks were

performed by the patients and the kinematic and kinetic results recorded and then

applied to the model.

Once again it is worth noting that the use of data from an instrumented prosthesis

introduces possible abnormalities as the subject’s natural anatomy has been altered

and soft tissues potentially weakened by being cut during surgery. All musculoskeletal

models are necessarily simplified. This includes grouping sets of muscles together into

one force vector, splitting large muscles with large attachment sites into several lines

of action which together represent its effect and modelling lines of action as being

straight, simplifying the true three dimensional volumetric structure with associate

curved pathway.

These results give an indication of the magnitude of the forces seen regularly by

the hip and such findings are the basis of the loadings applied to finite element models.

It must be remembered that this data comes from patients with hip prostheses, not

natural joints, with the added complication of the unknown effect that such traumatic

and invasive surgery may have had on the surrounding soft tissue. However the
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Activity Peak Joint Contact Force (% BW) Torsional Moment (%BWm)

1 Legged Stance 250-359 -
Walking 211-285 1.2-1.9
Jogging 550 5.3

Stair Climbing 227-314 1.8-3.0
Stumbling 870 5.4

Table 2.4: Hip joint reaction force and torsional moment for different activities,
showing the range in peak forces between subject [31], jogging(1 subject) [30], single
limb stance [34, 35].

findings are significant and as close as it is possible to get to directly measuring

internal forces. They have shown that the peak force seen in-vivo may well be

much higher than that predicted by normal gait, for example jogging doubles the

magnitude. This may not be a concern for elderly patients but it is a consideration

for younger, more active patients. The unpredictable event of stumbling showed a

force around four times greater than walking, it is therefore the type of event which

is most likely to result in a failure and could be a concern to any patient. The study

also showed a large intersubject variability for each activity, and even intrasubject

variability between left and right hips.

2.4 Finite Element Modelling

Finite Element Modelling was reportedly first used in orthopaedics in 1972, al-

though had been commonly used across the wider engineering community before

being adopted by biomedical engineers [36]. Since then rapid improvements in com-

putational technology and processing power have allowed FE to become common-

place, capable of solving complex three dimensional, multi-body problems. FE in

orthopaedics has been applied to problems of varying complexity, giving information

on the stress and strain resulting from load cases for models representing individual

bones up to the whole musculoskeletal system, with dynamic and adaptive FE also

used to assess the affect of kinematics and bone adaption [5].

Extensive use of FE is evident in implant design and testing. Preclinical testing

of orthopaedic implants aims to be as comprehensive as possible, with every effort

made to avoid joint replacement failure. Failure being a highly traumatic experi-

ence resulting in revision surgery, a major operation, which is unpleasant for the

patient and expensive for the health authority. FE allows designers to investigate

ways of improving implants in three main areas; improving joint function, improving
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implant fixation and improving wear characteristics. The latter two directly relating

to avoiding and delaying revision surgery where possible.

FE in orthopaedics has commonly been carried out on single bone or small sets

of bone models, taking a single available data set or a generic/average geometry and

performing computational analyses. The lack of incorporation of interpatient vari-

ability is dangerous, as natural differences in bone geometry and quality has been

shown to produce different stress/strain results for identical computational restraints

and loads [37]. This has led to recent work in developing patient specific finite element

models, where individuals exact bone geometry and bone material properties are re-

produced as accurately as possible [38, 39, 40, 41]. Such models are usually generated

from CT scans through manual segmentation, which is time consuming and suscep-

tible to human error in identifying structures. Material property information can

also be extracted from CT scans, see Section 3.3.3. Semi-automated and automated

segmentation techniques have begun to be developed, but are not currently widely

available as tools to apply to the problem and are often based on statistical models,

which require their training data to be segmented in the first place [42, 43, 44].

Orthopaedic implant testing, of any form, does not tend to be performed on a

patient by patient basis. Experimental and computational analyses are run to assess

designs using available subject data, be that a number of cadaveric or synthetic bones

or CT/MRI data sets. In either case the subjects used for testing are rarely chosen

to represent the entire range of people who may later have the implant, yet that is

exactly what the results they yield are expected to do [45, 46, 47, 48, 49, 50].

Attempts have been made to try to address this problem by incorporating in-

tersubject variability in analysis, however often only taking one factor into account

at a time. Good examples of this are studies which have used a generic model of

bone geometry and superimposed other parameters onto it to investigate implant

stability. Pancanti et al. [6] applied subject specific joint loads to such a model,

reflecting four patients performing simple motor tasks (walking, sit to stand, climb-

ing/descending stairs and so forth) recorded using instrumented prostheses. Wong

et al. [3] created a single femur model from an available CT data set and system-

atically varied the material properties of the bone in proportion to the apparent

bone density interpreted from the images, reducing modulus from its true healthy

value down to 60% of its peak to represent the changes expected with age or disease.

Both studies saw intersubject variability having a dramatic effect on the predicted

results and concluded that it was important to incorporate this if any more than a

comparative result was to be gained.
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Truly patient specific, multi model studies are rare. There are many reasons for

this but the most notable are; the scarce availability of high quality image data (suit-

able to produce accurate models with material properties) and the time investment

required to generate models. Model generation not only includes the segmentation

stages previously mentioned, but also meshing and application of model specific load-

ing/boundary conditions, as well as actually running an analysis and processing the

results. The time estimated by Radcliffe to complete this for each model was around

8 hours [7], even once the methodology was perfected and ran smoothly. Keyak et al.

[51] experimentally and computationally analysed fracture load in a set of eighteen

cadaveric femurs, Lengsfeld et al. [52] computationally assessed femoral strain change

in eleven femurs twelve year post hip replacement surgery and Radcliffe and Taylor

[7, 37] modelled femoral resurfacing in sixteen subjects, predicting the strain changes

produced in the proximal femur. All of these studies generated individual FE models

from subject CT data sets and applied subject specific loads (proportional to body

weight). Their results showed that very different results were produced with different

models, again emphasising the need for more comprehensive testing methods if pop-

ulation wide assessment is to be achieved. The limitations discussed have restricted

those who have attempted this type of analysis to quite small data sets, not yielding

sufficient results to perform meaningful statistical analysis.

More recent approaches have tried to avoid the ’brute force’ method of manually

generating a large number of models by incorporating statistical and probabilistic

techniques. The majority still only use a very small initial set of models but their

strength is in intelligently varying parameters known to affect the analysis, generat-

ing vast numbers of runs to examine their interactions in multi factorial problems.

In biomechanics these techniques have been used to identify the parameters to which

a scenario is most sensitive and examine the extent of their potential effect [53].

Studies have incorporated uncertainty in material properties [54] and geometry [55]

through to more complete systems such as a hip implant [56, 57]. Viceconti et al.

[58] simulated more than 1000 scenarios to investigate primary total cementless hip

implant stability using a parametric analysis, four key features were identified as key

to the problem (bone material properties, presence/extent of gaps at bone-implant

interface, patient body weight and scaled femur size), these were varied between de-

fined limits while assuming perfect implant alignment. Dopico-González et al. [57]

also modelled a cementless hip prosthesis examining the influence of surgical position-

ing variation on strain within the bone. Both of these examples show the potential

of examining combinations of variables together in a large, Monte Carlo simulation

making it possible to observe interactions between them. However both made major

simplifications to the system to allow this and preselected the variables which were
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to be examined. Bone geometry variation was either ignored by using a single bone

model [57] or dramatically reduced by using a parametrically scaled femur model [58].

Similarly, despite bone modulus being a variable factor in both studies, its descrip-

tion was made homogeneous across the entire bone or homogeneous for cortical and

cancellous regions respectively.

Despite the extensive use and development of computational analysis, as well as

experimental assessment, to test orthopaedic implants over the last few decades it

has still not proved possible to eliminate failure. Current estimates show that the 10

year survivorship rates for hip replacements, the most successful of joint replacement

designs, lies at 90-95% [59, 60, 61]. With ∼40,000 patients undergoing such an

operation in the UK each year [62], and rising, this percentage represents a significant

number of people and a large financial burden to the health service. The figure may

even be suggesting better results than exist as it reflects only those implants which

have required revision, it does not include those patients who are unhappy due to

pain or poor mobility. It is therefore hypothesised that current assessment techniques

may be missing these 5-10% of failures due to the lack of incorporation of interpatient

and surgical variability, both of which have been shown to have significant influence

on implant performance. The work discussed has demonstrated that techniques exist

for incorporating surgical variation and subject specific modelling, however they have

severe limitations and extending the techniques to population based approaches has

not been established.
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Chapter 3

Generation of a Statistical Model

of the Whole Femur 1

3.1 Statistical Modelling (SM)

3.1.1 Development of Statistical Models

Deformable shape models were first used in the fields of computer vision and computer

graphics in the mid 1980’s, using splines to describe malleable curves, surfaces and

solid shapes [63]. Deformable models maintain the characteristics of the shape, or

class of object, they represent while also being able to generate or deform to fit

any other example of that shape which is legal or realistic [9]. This is achieved as

the model is constructed from a training set of images, thus incorporating a priori

knowledge of the form, while also being able to extract information from a new image

being examined.

The potential of these models has since been seen by researchers in medical imag-

ing to solve the challenges which have arisen from the rapid developments in medical

imaging technology. As high-level imaging modalities such at CT, Magnetic Reso-

nance Imaging (MRI) and Positron Emission Tomography (PET) scans have become

widely available, these non-invasive techniques are increasingly being used for a va-

riety of tasks from preoperative planning and intraoperative navigation to disease

1Bryan, Mohan, Hopkins, Galloway, Taylor and Nair, 2010. Statistical modelling of the whole
human femur incorporating geometric and material properties. Medical Engineering and Physics
32(1), 57-65 - based on the work in this chapter
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tracking and radiotherapy planning [64]. Effective clinical use of these images requires

computational analysis in order to accurately extract and quantify the useful data.

Models have achieved this by developing automated and semiautomated processes

for segmentation of anatomical structures from images [65], patient specific model

representations [66], tracking anatomical movements such as cardiac function [67]

and matching intrapatient images to monitor disease progression [13].

A deformable model aims to conform to the following objectives; generality, speci-

ficity and compactness. General meaning the model is able to represent any instance

within the class of shape and specific meaning that only legal or realistic instances can

be produced by the model. The system aims to achieve this with as few parameters

as possible, so being compact [68].

3.1.2 Existing Statistical Modelling Techniques

These techniques have mainly evolved within the two dimensional world of computer

vision, and so the longest standing medical applications involve extracting shapes

from 2D images. The most widely used examples are deformable contour models or

’snakes’ [69]. These are malleable curves defined by control points which are attracted

to features, such as lines and edges, within an image. Thus, the position and shape

of an object can be identified by iteratively aligning the curves with the boundary

(Fig. 3.1).

Figure 3.1: Illustration of iterative fitting of a snake contour onto an image of a heart
ventricle. (a) intensity CT image, (b) Edges detected, (c-f) iterations of contour from
initial shape guess [64].

A more advanced method, although still two dimensional, was developed for the

creation of a statistical model of shape by Cootes et al [8], Active Shape Modelling

(ASM) which is based around a training set of images. The idea is to capture the

variation possible in an object using a range of examples collected in a training set

(Fig. 3.2a). Each example used to train the model is described as a set of points,

called landmarks, which are manually placed at the same relative locations, allowing

direct comparison between them. For example, if landmarking a hand the first point
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may always be placed at the tip of the first finger, the second at the tip of the second

finger and so on (Fig. 3.2b). Once aligned to the same set of axes, the variations

between each example at each point are used to create a Point Distribution Model

(PDM). This model is then subjected to Principal Component Analysis (PCA) in

order to reduce the large volume of information into its ‘principal‘ parts, identifying

the main modes of variation seen in the training data (Fig. 3.2c). Once the model

has been created it can be used in two ways; firstly to identify new instances of the

shape in an image and secondly to generate unique but legal instances of the shape.

It is this later application which is of most interest to this project.

Figure 3.2: Example of ASM of a hand. (a) training set of example shapes, (b)
landmarking of examples and (c) illustration of the effect of the first three principal
modes of variation [8].

Cootes and Taylor [9] went on to further develop the ASM to create the Active

Appearance Model (AAM). AAMs are constructed in the same way as ASMs but

represent the whole image rather than just the shape boundary by incorporating

texture into the model. They require the whole image to be sampled rather than just

landmarked points. This extra information makes the AAM more computationally

demanding but it has been shown that they are able to converge to match model-to-

image with fewer landmark points and are more robust than ASMs. As landmarks are

manually placed, the reduction in number of these required is an advantage in terms

of time and reducing potential error in misplacement on complex shapes. In theory it

is possible to extend these methods to three dimensional models, although in practice

it is challenging. ASMs are relatively straightforward to compute but providing a

suitable set of consistently placed, densely packed landmarks can be hard to achieve.

Conventional approaches to AAM construction are impractical in three dimensions

as the amount of data involved is just too large. Developments are being made to

solve this problem, Babalola et al. [70] recently proposed a method to achieve 3D

segmentation of the brain using AAM based on further work by the Cootes and

Taylor group. Levels of AAMs are used, first identify large, global features before

AAMs of small individual structures are used to segment areas of the brain.
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Ballester et al. [71] proposed a statistical modelling technique which incorporated

positional and intensity information across a three dimensional shape called a Gener-

alised Image Model (GIM). Similarly to the work of Cootes et al., GIM requires the

construction of a training set of examples, incorporating the variation seen between

them in terms of position and intensity. As these factors are modelled together their

relationship can also be described. This study created a registration technique for

aligning the model to an image using an Iterative Closest Point (ICP) algorithm. This

removed the requirement for explicit correspondence between points in the model and

image. The method aims to be used for segmentation and detection of abnormalities,

not for generating viable instances of the model.

The ICP method was used by Vos et al. [11] to map sets of point clouds, repre-

senting the carpal bones of the hand to each other, without landmarks. With cor-

respondence established, a statistical model describing the carpal bones’ combined

shape as a surface mesh was created using PCA. The model was able to illustrate

the ways in which these bones vary between the left and right hand and between the

subjects used to build the model. PCA analysis was also used by Yang et al. [72]

to investigate the variations in shape characteristics of long bones in primates, and

was able to use the results to discriminate directly between great apes and monkeys.

Again, a triangulated surface mesh was generated for each example bone but the

registration technique was a little more complex to allow for the increased variability

in shape (although any size differences were removed by scaling). ICP was used to

allow the initial rigid alignment of bones to be automated, but free-form deforma-

tion using B-splines was used to establish shape correspondence [13], deforming a

reference mesh onto each other example.

Figure 3.3: Illustration of the method defined by Couteau et al. [14]. Showing super-
imposition of a grey 3D reference mesh with a new target femur defined by a cloud
of points (left), and the final mesh generated for the target femur from the reference
(right).
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A further methodology to allow a baseline or reference mesh to be morphed to

fit another instance of that shape is the elastic based registration scheme. As with

many ideas in this field, the principles originated in computer vision and graph-

ics [63]. Couteau et al. [14] applied and developed these ideas into a ’mesh-matching’

algorithm which deformed a reference proximal femur surface mesh onto a new femur

shape, described by a cloud of points (Fig. 3.3). The method used a relatively course

mesh but was able to retain mesh quality and to match the shapes of a large range

of femur geometries. The work’s aim was to allow 3D surface meshes to be generated

automatically from segmented volumetric structures. This was also the aim of Kaus

et al. [73], who again developed a unique elastic based registration scheme which ini-

tially aligned the baseline mesh to a new instance described as a triangulated mesh,

before applying localised adaptations to the mesh to match the shapes precisely. A

statistical model was then built using PCA, allowing the robustness of the model

to be interrogated with leave-one-out testing. The model was used to achieve au-

tomated segmentation, by identifying the model shape within an image (Fig. 3.4).

Statistical Shape Models (SSM) were successfully built for both the proximal femur

and vertebra, again at quite a coarse mesh density.

Figure 3.4: Illustrations of the work of Kaus et al. [73], showing the proximal femur
surface model (left) and the identification of an ’unseen’ femur instance from a CT
image using the model (right).

23



Chapter 3. Generation of a Statistical Model of the Whole Femur

Rajamani et al. [74, 75] also developed a statistical model of the proximal femur,

however their intended application was quite different to the previously discussed

papers. The statistical model was developed to generate patient specific models from

sparse data, with the idea that a few key landmark points could be quickly taken

from sources such as ultrasound, and the model used to generate a femur which fits

these measurements (Fig. 3.5). The application was specifically aimed at inter and

intra operative visualisation, where 3D scanning techniques would be impractical or

undesirable to apply.

Figure 3.5: Illustration of the work of Rajamani et al. [75], showing two attempts
to match their proximal femur model to real femurs described by points gathered
from ultrasound data. Where the predicted shape (red) were compared to registered
surface models, segmented from CT scans of the femur (gold).

All the three dimensional studies discussed thus far have involved surface shape

models. A key aim of this work is to create a model which incorporates material

properties as well as geometric information, therefore not only will this information

need to be incorporated but a solid model will be required. A statistical tetrahedral

model of the proximal femur has been developed by Querol et al. [15] which incorpo-

rates elemental material modulus values. The aim here was to develop a model which

could be used in finite element analysis studies and so a very simple static FE analy-

sis was run using the model to investigate the different stress distributions produced

in femurs generated to be at the extremes of the variation seen in the model. These

were created by taking just the first eigenmode produced by PCA and exaggerating

the influence of this by +/-2 standard deviations from the mean geometry (Fig. 3.6).

The statistical model itself was relatively simple, built from only 11 femur CT scans

and containing approximately 3500 elements. A reason for the coarse mesh may

have been the FFD registration scheme applied, which is computationally demand-

ing and may have restricted the model resolution. This study provides a proof of
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concept, showing that generating a statistical model of shape and material property

is achievable and this model can then be used for FEA.

Figure 3.6: Results of the FE simulation run by Querol et al. [15] on a femur generated
from their statistical model by varying, from left to right -2 s.d. to +2 s.d. from the
average. The figure shows the relative bone density (top) and the von misses stress
(MPa) produced by a 1600N vertical load (bottom).
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3.1.3 Process for the Construction of a Statistical Model

There are several key stages involved in the creation and use of a statistical model.

A clear way to describe these is in the flow diagram below, which breaks down these

steps into the main sections of work required.
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3.2 Data Registration

3.2.1 Introduction to Registration - Why is it Needed?

Registration is required to accurately relate one image to another. Medical image

registration is a huge field which is developing rapidly because the ability to compare

images between subjects or to compare images from the same patient, has useful ap-

plications for diagnostics, operative planning and radiotherapy treatment planning.

Registration techniques range in complexity and flexibility, the most simple account

for only translational differences while the complex can correct global and local de-

formations. However, the fundamental aim of them all is to establish correspondence

between two shapes and determine the transformation required to achieved this.

The field has applied techniques to solve the relatively straightforward problem of

intrasubject registration of rigid structures, such as bones, most commonly required

for monitoring disease progression [76]. There has also been work to try to register

such rigid objects from different subjects, intersubject variability requiring a greater

level of deformation [72, 15]. More complicated still is the problem of registering

deformable anatomical structures such as comparing breast MRI [13], or using regis-

tration to compensate for motions such as breathing to allow cardiac function to be

tracked [77]. Registration is vital in creating statistical models from medical images

in order to find correspondence between members of a training set [9, 71, 72]. If

an accurate correspondence between shapes is not found then illegal shapes can be

generated by the model [63].

3.2.2 Classifications of Registration

Registration techniques can fundamentally be classed in one of two categories; rigid

or non-rigid. These terms describing the types of transformation which that method

allows. Rigid registration relies on the principle that the objects being matched

are rigid. Therefore, at its most basic it only allows them to be translated and

rotated, giving 6 degrees of freedom. An extension of the rigid technique is affine

transformation, where anisotropic scaling and skews are allowed, giving the shape

up to twelve degrees of freedom in which to deform and align to match the other

shape [78]. Non rigid registration is a more complex process which allows for global

changes explained by rigid transformations but also allows localised deformations to

occur [10].
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Medical image registration can be approached in two ways; by geometry based

similarity metrics and by intensity matching. Geometric approaches build explicit

models of anatomy by elements such as points, curves and surfaces, while intensity

based methods match patterns over the images without incorporating anatomical

knowledge. Hybrid methods using both geometric and intensity information to es-

tablish correspondence also exist and have been applied to more complex problems

like brain images [12]. The other important feature which separates registration

schemes from one another is the amount of user intervention required. Some demand

significant manual input [8] while others aim for an automated approach [71].

3.2.3 Rigid Registration Techniques

A good example of a manual rigid registration technique is the commonly used land-

marking approach employed by Cootes et al [8, 9] in building their statistical shape

models. Landmarks were placed manually at key points on each example in the train-

ing set, most densely over the more complex details. The hand model, see Fig. 3.2,

was represented by 72 points around the boundary, more densely packed at the ends

of the fingers and in the joints. Although this is only required for the construction

of the model and is not needed for later image interpretation, so only done once per

training example, landmarking is still an arduous task. There is also room for error

arising from personal judgement as to the exact position of a feature which may not

always be clear. The biggest restriction to using landmarking, or any other manual

technique, in this study is the complexity of the three dimensional problem. It is rel-

atively simple to place points at equivalent positions on a 2D image but much harder

to reliably identify points on a three dimensional feature between objects, especially

when surfaces are smooth.

One of the most commonly used automatic methods is the Iterative Closest Point

(ICP) algorithm [10], an optimisation technique which fits a cloud of points to a

model with the advantage of not requiring a predefined relationship between points.

Proposed by Besl and McKay in the early 90’s as a simple and computationally

efficient method for matching surfaces [79], it has become widely used in medical

imaging. The technique is guaranteed to converge to a minimum, is fast to compute

and relatively simple to implement. Its main flaw is that it can find a local rather

than the global minimum, this being highly dependant on the initial alignment of

the shapes being matched. The robustness of the technique is therefore poor where

large changes in scale, rotation or position are not pre-corrected.

28



Chapter 3. Generation of a Statistical Model of the Whole Femur

The popularity of ICP has led to the development of many improved algorithms

such as that described by Chui et al [79]. This involves a system for the automatic re-

moval of outliers, which can otherwise affect the effectiveness of the method, making

convergence to a local minimum more likely. The method becomes a hybrid rigid/non

rigid approach using thin plate splines. Initially transformation of the points are uni-

form, then as the points come closer to correspondence the algorithm allows localised

deformations.

3.2.4 Non Rigid Registration Techniques

Spline based techniques are popular in non rigid registration; these are built on con-

trol points with a known, defined relationship. Thin plate splines (TPS) are widely

used [80]. They were developed for computer vision applications in order to interpo-

late a surface over a fixed number of nodes. TPS relate two sets of landmark points,

modelling a global affine transformation and then superimposing ’principal warps’

which incorporate local deformation patterns over the shape. The potential for de-

scribing local deformations has long been seen as capable of modelling the complex

deformation possible in biological image analysis. The method requires correspond-

ing landmarks on both images which, as previously explained, is not ideal. The

spline warp approach is computationally expensive, limiting the number of degrees

of freedom which can be incorporated into the model [13]. B-Splines have been used

to reduce this computational cost, achieved thanks to the local relationship between

control points. This means that moving a control point in a spline only has a localised

affect, whereas TPS require global recalculation [10].

B-Splines have been used as part of the Free Form Deformation (FFD) models

developed by Rueckert et al. for modelling anatomical structures [13]. FFD mod-

els are an advanced, automated method for modelling object deformation in three

dimensions. The object is placed in an underlying mesh of control points and is

deformed indirectly through manipulation of this mesh, producing a smooth and

continuous transformation. This again is a computationally demanding and complex

technique which has been used to model high level deformation required for registra-

tion of breast MRI (correcting for motion) and brain images [12, 13]. These schemes

assume that everything within the image is equally nonrigidly deformable, in reality

the the human body is composed of many different structures with different rigidi-

ties. Staring et al. [81] incorporated filtering into a nonrigid registration scheme to

allow different tissues to deform differently, in relation to their stiffness, an approach

which would be important for modelling systems and tracking disease progressions

such as tumours.
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Yao and Taylor [82] utilise a range of techniques including snakes, b-splines and

analysis of image intensity changes to automatically mesh CT images and identify

bone contours. The bones are represented as solid tetrahedral meshes where the

intensity-density information is known on an element by element basis. This density

atlas has potential application for radiograph reproduction (2D from 3D) and for

automated 3D intensity based registration. Davies et al. [83] offer an alternative ap-

proach, parametrising the training models and finding an optimal set of variables by

which to deform this model to define new instances. Described as the Minimum De-

scription Length (MDL) optimisation has the potential to offer a much more compact

set of model parameters than landmarking approaches. However it requires a known

shape function similar to the target (such as a sphere) to fit to a model, which is

not appropriate for all applications and in its current form is computationally slower

than alternative methods.

3.3 Generation of Training Data

3.3.1 Sources of Data

The creation of a representative three dimensional model required accurate three

dimensional data to be recorded. One of the most commonly used and available

sources of three dimensional information for orthopaedic data for human subjects

is Computer Tomography scans. CT scans produce multiple X-Ray slices through

the subject which can then be reconstructed digitally into a volume. The output is

divided up into small volumes called voxels, each containing a grey level value which

is derived from X-ray attenuation at that point and so relates directly to the density

of the material. In medical images, voxels are typically 0.5-1mm square in slice with a

slice distance anywhere between 1-10mm, depending on the resolution required over

that area. A lower resolution will be used where possible to reduce the radiation dose

to the patient. Minimising the exposure, cost and imaging time are key reasons why

planar X-rays are routinely used in preference to CT.

The raw voxalised output from CT would clearly produce a jagged, blocky image

so a variety of computational software is available to extract the voxels of interest

from the scans and produce smooth, realistic looking models. This is known as

segmentation. Studies routinely use a CT generated model as the base bone model

for FE experiments [84]. Patient specific models, for example of the femur [38], have
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been created for finite element studies, capable of predicting individualised stress

fields.

Other medical imaging modalities have been investigated to produce 3D models,

these include Magnetic Resonance Imaging (MRI), Positron Emission Tomography

(PET), Single Photon Emission Tomography (SPECT), Ultrasound and X-rays [78].

MRI, PET and SPECT scans are not regularly used for orthopaedic applications,

they are more commonly used for imaging soft tissue or dynamic systems such as

the brain [12], or the heart [85]. Ultrasound has been proposed as an attractive

alternative to the radiation based modalities, as there is no radiation dose associated

with it and it is cheap. A tracked ultrasound, allowing the positions of the slices of

data to be recorded, can be reconstructed into a 3D model incorporating geometry

and density information [78, 86]. Although the resolution produced is not as good

as CT, X-ray data, despite being two dimensional in nature, has been used to create

three dimensional models by combining them with statistical shape models [87, 66].
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3.3.2 Methodology for Creation of 3D Models from CT scans

Figure 3.7: Illustration of the stages re-

quired to segment a femur from CT scans

using AvizoTM

This study requires the generation of

three dimensional femur models from

CT data. The created representations

should accurately reproduce each sub-

ject’s femur, requiring the extraction

of geometric data and grey level val-

ues from the scans. Many software

packages are available, fundamentally

achieving this through the same pro-

cess. The package chosen for use in

this project is Avizor (Visualization Sci-

ences Group,USA/France formerly VSG

of Mercury Computer Systems, USA).

The package reads in the CT slices

in order and stacks them as shown

(Fig. 3.7). A segmentation algorithm

was then implemented to highlight the

areas of interest on each slice, discrimi-

nating by voxel greylevel value. Defining

a high value will mean only dense mate-

rial, bone, will be selected. The algo-

rithm is not intelligent to shape so often

areas which are not required are selected,

for example the pelvis along with the fe-

mur. These features were removed man-

ually or by other selection tools within

the program. The selected areas were

then used to create a model of the sur-

face of the segmented shape from which

surface and volumetric meshes could be

produced.
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3.3.3 Methodology for Extraction of Material Property Data

A significant feature of the model developed in this study is the incorporation of ma-

terial property variation within the femur as well as external differences in geometry.

This information therefore also needs to be extracted from CT scan data along with

geometry. This is possible because, as previously discussed, the grey level of each

voxel within a CT scan directly relates to the density of the material it represents.

To assign material properties to a solid finite element mesh this study used a

program called BioMesh (A. Hopkins, Imperial College London), which was designed

to work specifically with Avizo generated geometries and further developed to meet

the requirements of this work. A commonly used alternative, which works in a similar

way, is the free software BoneMat (Rizzoli Institute, Bologna) [88]. Both programs

define a number of ’sampling points’ within each element and interpolate the greylevel

relating to their coordinates from the original CT. The element greylevel is assigned

from the sampling point values. BioMesh has the added advantage to this study

of also assigning greylevel values to each node, which is particularly useful when

building the data into a matrix for PCA. This allows the defining data for each

training member to be significantly shorter than if elemental values were extracted.

Figure 3.8: Graph showing a range of calculated calibration lines for different CT
files

Greylevel is proportional to apparent bone density, however to accurately convert

between the two the CT scans must be calibrated to correct for any slight offset due to
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machine set up. Ideally this is calculated using calibration phantoms within the CT

scan, usually blocks of materials included in the image which have a known density.

Unfortunately, calibration phantoms are not routinely used in clinical CT scans and

were not present in many of the data sets available in this study. The proportional

relationship was therefore defined by identifying the specific greylevels in each CT

set for two materials with ’known’ density values. Bone marrow, the lowest modulus

readings found in the medullary canal, was taken as having a density equivalent to

water, 0g/cm3, and the highest value cortical bone identifiable was considered to

be 1.73g/cm3 [89] (These density values relate to the density of mineralised tissue).

Although this could be a source of error in the final model as it assumes that every

subject has this maximum density of bone. The relationships for a range of the

data sets used are shown above and define the calibration values used by BioMesh

(Fig. 3.8).

Young’s Modulus is one of the properties required by finite element analysis to

define a material. Schileo et al [41] investigated mathematical relationships between

apparent bone density, ρ, and Young’s Modulus, E, through experimental testing of

bone. The equation found to best correlate with the experimental findings was that

established by Morgan et al. [90], despite all their test specimens lying in the lower

density band of bone ( < 0.8g/cm3).

E = 6850ρ1.49 (3.1)

This relationship was therefore the one used to convert nodal greylevel into nodal

modulus, which could then be incorporated into the PCA model at a later stage.

FE usually requires element modulus, which could be recalculated by averaging the

modulus values of the four nodes making up each element.

As previously mentioned, the lack of calibration phantoms is not ideal and the

methodology described was established to try to calibrate the data as well as possi-

ble. The extracted material properties generated for the training set femurs were all

examined and found to lie within realistic bounds and have realistic distributions.

For the approach required in this study these results were suitable, however if more

precise correction was required further investigation of density-modulus relationships

should be pursued. In particular, different relationships can be used to assign ma-

terial properties to cancellous and cortical bone, however the initial definition of a

divide between cortical and cancellous in uncalibrated CT scans would be difficult.
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3.4 Methodolgy Developed and Applied for Con-

struction of SM of the Femur

3.4.1 Overview of Methodology for SM Construction

This section aims to provide a step by step overview of the stages used in this study to

construct a statistical model of the femur from real subject CT scans. The significant

challenge in doing this is establishing correspondence between each training example

in such a way that the location and material properties at any given point in one

model can be directly related to an equivalent point in another model. Although the

previous sections have described how this has been achieved by previous work, the

novel difficulties in this case lie in achieving high accuracy in registration, at a fine

mesh quality suitable for FE studies, over the complex morphology and relatively

large volume of the whole femur.

1. Segment out the region of interest, i.e. the femur, from each CT data file and

describe its shape as a dense cloud of surface points.

2. Select one femur instance as the baseline or reference to which each other model

will be matched and convert this model into a high quality solid tetrahedral

mesh.

3. Register the baseline femur to each training example using a scheme based on

an elastic matching algorithm2 and volume mesh deformation strategy3.

4. Assign every point in the morphed meshes a grey level value from their original

CT scan files using a material property extraction program BioMesh.

5. Construct a Point Distribution Model using the mesh based femur representa-

tion complete with material properties, and create the statistical model using

principal component analysis. The statistical model produces a volume mesh

along with spatially varying material properties that can be directly used by a

finite element solver.

2Software developed by Dr Prasanth Nair, Computational Engineering Design Center, University
of Southampton

3Software based on open source MatLab FEA code developed by Surya Mohan, Computational
Engineering Design Center, University of Southampton
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Figure 3.9: Illustration of the target

mesh (black) with morphed baseline mesh

(grey) superimposed, showing the accu-

racy achievable by the registration scheme.

The registration stages of this pro-

cess are the most complex and the most

crucial to the success of the final model.

The two stages, surface registration and

volumetric morphing, result in three

dimensional correspondence between a

baseline tetrahedral mesh and each tar-

get surface mesh in the training set.

The surface matching step iteratively de-

forms the baseline surface vertices to

match the given target surface and is

able to achieve a smooth, accurate final

mesh through user defined inputs con-

trolling the magnitude and speed of the

deformation and a two stage smoothing

process. These parameters specify the

area affected by moving a single vertex

and the size of each iterative step, both

decreasing over a specified number of it-

erations, and prevent mesh distortion.

The registration scheme initially allows

almost global deformations to act which

roughly align the surfaces before narrow-

ing the regions of influence to produce

fine, local manipulations of the mesh un-

til a stopping criteria is reached. The ac-

curacy of the surface registration achiev-

able using this algorithm is illustrated

in Fig. 3.9, showing the morphed and

target surfaces superimposed. The vol-

umetric registration step used the regis-

tered surface points as a scaffold and po-

sitioned the internal mesh points based

on the surface node displacement vectors

by solving decoupled Laplacian equations with appropriate essential boundary con-

ditions.
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3.4.2 Baseline Femur Model

Establishing correspondence between each member of the training set depends upon

the the accurate registration of a common baseline mesh to each femur surface model.

Significant efforts were made in developing the baseline mesh as any femur representa-

tion produced by the statistical model would be described in this form. The baseline

mesh quality therefore had to be as high as possible to allow generated models to be

used in finite element studies, however the number of elements had to be constrained

to reduce computational cost.

Figure 3.10: The baseline meshed geom-

etry. Shows a section of mesh through

the femoral head and the transition in

mesh size between the proximal femur and

femoral shaft.

To maintain mesh quality over all ex-

amples, the median length femur was

chosen to be the reference, with the ra-

tionale that this would lead to the min-

imum element distortion when stretch-

ing or compressing the mesh to fit an-

other instance. The chosen femur sur-

face mesh was imported into meshing

software, ANSYS c© ICEM CFDTM (AN-

SYS. Inc, Canonsbury PA), and con-

verted into a high quality, 4-noded solid

tetrahedral element mesh with a global

size of 3mm. To achieve a balance be-

tween model definition and computa-

tional cost the model was then split into

three regions, with the upper and lower

thirds’ mesh size refined to 1-1.5mm at

the surface (Fig. 3.10).

This was justified for three reasons; 1) these areas are of more clinical interest

so a fine mesh will be important for future use of the model, 2) these areas contain

the most rapidly changing geometry and material properties, hence require a higher

density of surface points to achieve accurate registration and 3) Perillo-Marcone et

al. (2003) recommended choosing a element size equivalent to the CT slice distance

in order to achieve convergence of material property distribution. The baseline tetra-

hedral mesh, and therefore any subsequent mesh produced by the model, consisted

of 615,523 elements and 117,225 nodes, of which 27,171 were on the surface.
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3.4.3 Registration Strategy

The aim of the registration scheme was to manipulate the baseline tetrahedral mesh

to achieve three dimensional correspondence to the geometry of each of the other

femurs, where each target femur is represented as a surface mesh. The developed

process had two stages; 1) surface registration and 2) volumetric morphing.

Surface Registration4

A surface registration scheme was originally developed based on an algorithm pro-

posed by Moshfeghi et al. [91]. Two key modifications were made to allow registration

of the high density meshes in this work. Firstly k-d trees [92] were used for nearest

neighbour searching, this is a computationally efficient method of accelerating near-

est neighbour searching in a large data set. Secondly Laplacian smoothing [93] was

incorporated at each iteration to try to prevent any significant degradation of mesh

quality through element distortion.

Figure 3.11: Evidence of mesh folding and

degredation.

The addition of k-d trees was to

speed up computation, without this

modification the registration scheme

would take many, many hours to solve.

The final code was able to register the

>27,000 surface point meshes in approx-

imately 40 minutes. This time could

have been less but a conservative set

of parameters where chosen to control

the registration speed, ensuring the fi-

nal accuracy and mesh quality. The need

for additional smoothing became evident

from initial studies where there was evi-

dence of element bunching, element distortion and mesh folding (Fig. 3.11), mainly

observed in areas of concavity on the target surface. This was a known issue with the

algorithm of Moshfeghi et al. The Gaussian smoothing term present in the scheme

was deemed unable to maintain mesh quality alone, so a Laplacian smoothing step

was added at each registration step. This two stage smoothing approach did not

add significant computational time but showed a marked improvement in the mesh

quality of the registered models (Fig. 3.12).

4Software developed by Dr Prasanth Nair, Computational Engineering Design Center, University
of Southampton
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Figure 3.12: Illustrations of the registered mesh quality achieved with the original
algorithm (left) and the improved algorithm (center). The surface mesh quality
distribution of the two schemes is plotted on the right, as measured by triangle
aspect ratio.

The algorithm required user defined inputs specifying the magnitude and speed

of surface matching and parameters of the smoothing to be applied. This ensured

the baseline surface vertices were iteratively deformed onto a given target surface

smoothly and accurately. Once defined, these were applied to all registration op-

erations for this statistical model. The parameters controlled the area affected by

moving a single vertex and the magnitude of each iterative step, both decreasing over

the specified number of iterations. This initially allowed almost global deformations

to act which roughly aligned the surfaces before narrowing the regions of influence to

produce fine, local manipulations of the mesh until the required number of iterations

were completed.

Volume Morphing5

The problem of deforming a volume mesh to track moving/perturbed surfaces has

been extensively studied in several areas including computational geometry, moving

surface fluid flow simulation and engineering design optimisation [94, 95, 96]. The

central idea underpinning many existing approaches is to solve partial differential

equations (for example the elasticity or diffusion equations), for the coordinates of the

deformed mesh with the known surface displacements imposed as essential boundary

conditions.

5Software based on open source MatLab FEA code developed by Surya Mohan, Computational
Engineering Design Center, University of Southampton
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The diffusion based mesh deformation strategy was adopted for this work. It

is computationally efficient and has been shown to work well for a variety of ap-

plications [97, 94]. This approach solved the following decoupled three-dimensional

Laplace equations to deform the baseline volume mesh

∇2δx = 0, ∇2δy = 0, ∇2δz = 0, (3.2)

where δx, δy and δz were the displacement fields applied to the baseline mesh co-

ordinates in the x−, y− and z− directions, respectively, and ∇2 was the standard

Laplacian operator defined on the baseline volume mesh.

The x, y, z components of the surface registration deformations vectors were used

to specify appropriate Dirichlet boundary conditions for equation 3.2. The result

was a morphing of the internal points of the baseline volume mesh onto the target

volume. Once the whole registration process was applied to all members of the train-

ing set, each was described by a solid tetrahedral mesh, with direct correspondence

established between each point and element.

An issue with this approach is that it can allow element reversal, which is pos-

sible if the magnitude of the surface point displacement vectors become large. Two

strategies were considered to address this; firstly by integrating volume morphing

into the registration strategy, making the volume morphing process incremental and

secondly by repairing the mesh. The incremental morphing strategy did not suffer

element reversal issues and also provided high quality meshes, agreeing with obser-

vations made by Shontz and Vavasis [96], but this was at the expense of a dramatic

increase in computational cost. Therefore, due to computational constraints the sec-

ond approach was adopted. Fully automated, efficient mesh checking and repair was

coded into the registration strategy following the completion of volumetric meshing.

At this stage each of the training set geometries is represented by a comparable

solid, tetrahedral mesh with nodal and elemental correspondence. Using the method-

ology described in Section 3.3.3 each registered mesh was assigned nodal Young’s

Modulus from their original CT scans. The training set now contains model specific

geometric and material variation for each example femur.

3.4.4 Mesh Quality Checks

Mesh quality is a key concern when automating the generation of finite element

models. As the statistical model is created by stretching and morphing a baseline
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mesh some level of mesh distortion is inevitable. It is crucial that despite this,

mesh quality is maintained such that meshes can be used in finite element simulation

without causing errors or producing inaccurate results. Initially the mesh needed to

be scrutinised to ensure the methodology was sound, but in the longer term mesh

checks are also necessary as an automated step in creating large numbers of models.

As mentioned in section 3.4.3, some mesh repair is required to fix element rever-

sal in this method. The problem is possible to solve within the morphing process,

but would be highly computationally expensive whereas a simple code to check and

reverse any ’inside-out’ elements is quick and simple to apply.

Metric Warning Error

Maximum Angle (◦) 165 179.9

Aspect Ratio 20 100 000

Table 3.1: Table defining mesh quality criteria and related level for warning and
failure as defined by ANSYS c©.

Specific mesh quality limits are difficult to define. The approach taken in this

work was to look at the levels of element distortion which would result in a warning

or failure within ANSYS c©, Table 3.1. The tetrahedral elements produced as a result

of a maximum face angle or aspect ratio defined by these rules were then graded by

two mesh quality metrics which could be coded into model generation. Both metrics

interrogate a mesh on an element by element basis, giving a score between 0 and 1,

where 1 indicates a perfectly regular tetrahedron. The score produced by the warning

and error shaped elements were then used to define a pass-fail criteria so that if a

mesh was generated with poor mesh quality then it would be automatically discarded

(in practice this did not occur).

The normalised shape ratio (NSR) [98] is used as an indicator of aspect ratio and

is calculated as

NSR =
3r

R
(3.3)

where r is the radius of the element insphere and R is the radius of the elements

circumsphere. The second metric used is a shape distortion ration (SDR) [99]

SDR =
12(3V )2/3∑6

i=1 l
2
i

(3.4)

where V is the element volume and l the element edge length.
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3.4.5 Principal Component Analysis - Covariance and Cor-

relation Approaches

Principal component analysis is a statistical technique which allows high dimensional

data sets to be decomposed into their significant components, creating an accurate,

reduced order model of the original data. PCA calculates the eigenvectors and eigen-

values of a data set which represent the principal modes of variation, with the later

indicating their relative significance in capturing the variation between members of

the training data set matrix, X. Following surface registration and volumetric mesh

morphing all femur models were described in the same coordinate system by the same

number of corresponding nodes and elements. Each femur, x i, defined by a single

vector containing nodal coordinates, x, y, z, and modulus values at each node, E, can

be compactly written as;

x i = [x1i, y1i, z1i, E1i, ..., xni, yni, zni, Eni]
T , 1 6 i 6 N. (3.5)

Where N is the number of geometries in the training set and n is number of nodes

in each mesh. Each training geometry could then be combined to create the training

matrix X, as shown below.

X = [x1,x2, . . . ,xN ]T ∈ RN×4n (3.6)

As each node in the femur was described by 4 components, x, y, z, E, each training

vector was 4n in length, making the overall training matrix extremely large. The scale

of the data set made explicit calculation of the covariance matrix and eigenvectors

impossible (the matrix is simply too large, 486, 900 × 486, 900), so Singular Value

Decomposition (SVD) was used as a more suitable method for this application.

Two methods of PCA were investigated to establish which best decomposed the

training data to produce as rapid a decay of eigenvalues as possible. The data was

analysed using the commonly used covariance method and then using the correlation

method, which is more suitable for data sets containing mixed units [100], in this

case position and modulus. The differences between the methods behind the two

approaches follow.

In order to calculate the basis vectors, or eigenvectors, both schemes required

modifications to the training matrix. The covariance approach removed the training

data mean from each data set member

x̃i = x i − x̄, (3.7)
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where x̄ is the mean of the training geometries contained in X. The modified training

matrix was defined as A, where A = [x̃1, x̃2, ...x̃N ]T and the SVD of the data set

written in the conventional form was

A = UΣVT . (3.8)

where U ∈ RN× N and V ∈ R4n× 4n are orthogonal matrices, or left and right singular

vectors. Σ ∈ RN×4n is a diagonal matrix with diagonal elements Σii consisting of

q = min(N, n) nonnegative numbers σi, arranged in decreasing order. V is the

eigenvector matrix, the columns contain the proper orthonormal modes of the system,

so the basis vectors ψi = V(:, i) can be used in equation 3.9 to approximate x .

The covariance approach approximated each femur vector as follows

x = x̄+
m∑
i=1

biψi. (3.9)

where ψi ∈ R4n, i = 1, 2, ...,m define the set of m basis vectors and bi, i = 1, 2, ...,m

are a set of coefficients controlling the relative influence of each basis vector on the

final output x . b can be described as a shape parameter, in this application it

describes the shape and modulus of the femur model when combined with ψ. It

is unique for each training set member and is the key to generating new instances,

possible by altering the value of this vector.

The modifications to the training data for the correlation method consisted of

two steps. Firstly each member was divided by the standard deviation of the data

set α ∈ R4n, where αi is the standard deviation across every ith term in the training

matrix. Secondly, the mean of the newly calculated data set was removed from

each set member. Equation 3.8 was then applied with the modified training matrix

A constructed from the normalised set members, as with the covariance approach.

The output of the statistical model generated through this approach will generate

normalised femur vectors. Equation 3.9 is still applicable to approximate each femur

geometry but only after the standard deviations, α, are multiplied back in.

Calculation of the dominant modes was illustrated by the ability of each method

to capture the variation in the data set, showing how great a percentage can be

described by any number of included modes. Interpretation of this result allowed the

appropriate number of dominant basis vectors, m, to be established where m� N .

The energy within the first m modes was found from

E(m) =

∑m
i=1 σ

2
i∑N

i=1 σ
2
i

. (3.10)
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3.5 Results of SM Construction

3.5.1 Training Data

This study used 46 subjects, with CT voxel resolutions ranging from 0.488×0.488×1.5mm

to 0.781×0.781×2mm. The subjects were aged between 43 and 91, 15 female and 31

male. Semi-automated segmentation of bone from surrounding tissue was achieved

with grey level thresholding tools and manual slice by slice corrections using Avizo

(Visualization Sciences Group, USA/France) formerly VSG of Mercury Computer

Systems, USA. By preference the left femur was segmented from each patient but

in eleven cases this was not possible so the right femur was modelled instead and

subsequently mirrored through the mid sagittal plane. This resulted in a training

set of 46 left femurs, each represented by a triangulated finite element surface mesh

with a resolution of a similar order to the baseline surface.

Figure 3.13: Graphs showing the variation in femur geometries present in the training
data set as a percentage difference to the baseline femur of four geometry metrics;
Neck Axis Length (NAL), Femoral Head Diameter (FHD), Neck Shaft Angle (NSA)
and Femur Length.

The degree of variation present within the training set was relatively large. To

illustrate this some key anatomical measurements relating to the major dimensions

of the femur were taken from each of the training femur models. These included

femur length, femoral head diameters, neck shaft angle and neck axis length. The

measurements were then described as a percentage difference from the reference femur
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geometry (Fig. 3.5.1). The figure shows the dramatic range of geometric variations

present, also highlighting the fact that the training set contains more than simple

scaling as an increase in one measurement does not always coincide with an increase

in another.

3.5.2 Assesment of Registration Strategy

Assessment of Surface Registration Scheme

The success of the first stage of the registration scheme, surface matching, was ex-

amined from two perspectives; 1) how closely the registered surface fitted the target

surface and 2) the quality of the registered surface mesh. Registration accuracy was

assessed by calculating the shortest distance between each registered node and the

target surface. This found the mean surface registration error over all 45 femurs to

be 0.598mm (45 as the 46th femur was the baseline model). On visual inspection the

meshes appear smoothly matched (Fig. 3.9), so it is likely that if the registered nodes

are offset from their target then they will still be on the target surface. A boxplot

illustrating the distribution of error across the training set is shown in figure 3.14.

This plot contains a wealth of information about the registration error. The vast

majority of nodes are within 1mm of their target with no error greater than 3mm.

Figure 3.14: Boxplot of final surface registration errors over all training set members,
calculated as the shortest euclidean distance between each registered surface node and
the target surface.
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The surface mesh quality was calculated for each registered femur as well as for

the initial baseline mesh using a Normalised Shape Ratio metric (NSR) [98] which

indicated element aspect ratio. This gave a score between 0 and 1 for each element,

where 1 indicated perfect regularity. The mean, minimum and maximum distribution

of element scores for the registered data set, alongside the initial baseline quality are

shown in Figure 3.15. In addition to the distribution of mesh quality an overall

quality score was assigned to each mesh by binning the elements by NSR score and

multiplying the value of the bin by the percentage of elements it contained. Therefore,

a perfect mesh would have 100% of elements in the top bin and so score 100 and vice

versa if all elements were in the lowest bin the mesh would score 1. This provided

a measure of mesh degradation due to the registration process. The mean score of

the registered femurs was 93.0 with the minimum seen being 89.0 and the maximum

95.6, as compared to the baseline mesh score of 98.2.

Figure 3.15: Plot of the surface element aspect ratio score of the baseline mesh
compared to the mean, minimum and maximum scores of the registered training
geometry surface meshes.

Assessment of Volume Morphing

To assess the success of the volume morphing step of the registration scheme it was

again appropriate to examine the mesh quality produced. This was done using the

same method as for the surface mesh, analysing the NSR quality distribution of the

morphed meshes in comparison to the original baseline. The calculated mesh scores

showed that the morphed meshes had a mean quality of 78.9, a minimum of 77.49

and a maximum of 81.13, as compared to the baseline score of 79.53. As with the

surface mesh there was a slight decrease in mesh quality but no significant increase

in low quality elements (Fig. 3.16).
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Figure 3.16: Plot of the solid element aspect ratio score of the baseline mesh com-
pared to the mean, minimum and maximum scores of the morphed training geometry
meshes.

Figure 3.17: Load-

ing condition applied

simulating stance.

However, mesh quality alone was only an indicator of how

successful volume morphing had been. As the intention was

to use the model for FE analysis it seemed appropriate to

investigate how a model meshed through the morphing ap-

proach compared to a model of the same instance meshed

manually. To test this a simple static, linear elastic FE sim-

ulation was run to look at predicted strain distribution. A

stance loading condition was chosen, involving a vertical force

equivalent to 1x body weight being applied vertically over a

∼ φ1cm area of the femoral head, and fixing of the distal

portion of the femur (Fig. 3.17). If the registration scheme

was robust then each automatically generated mesh should

produce the same strain field as its counterpart meshed from

scratch to the same element criteria as the baseline mesh us-

ing ANSYS ICEM CFDTM(ANSYS. Inc., Canonsburg PA).

Figure 3.18 shows plots for three instances, each meshed by

both methods, illustrating modulus and strain through a cross section and showing

comparative strain distribution within the proximal femur. These plots showed that

the models generated through registration and morphing produce almost identical

results to those of their uniquely meshed counterparts.
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Figure 3.18: Plot of morphed and manually meshed instances of the same geometry,
comparing material modulus representation and strain distribution resulting from a
1x body weight load applied vertically to femoral head, simulating one-legged stance.
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Covariance Method Correlation Method

Mode Variance Captured Total Variance Variance Captured Total Variance

1 20.74 20.74 45.59 45.59

2 11.01 31.75 7.74 53.32

3 6.85 38.59 6.25 59.56

4 5.59 44.19 4.80 64.37

5 4.33 48.52 3.50 67.86

6 4.18 52.70 2.56 71.30

7 2.96 55.65 2.29 73.56

8 2.73 58.39 2.00 76.15

9 2.40 60.79 1.62 78.15

10 2.28 63.07 1.55 81.72

Table 3.2: Percentage variation captured by first 10 eigenmodes computed using the
covariance and correlation methods.

3.5.3 Interpretation of Eigenmodes

Comparing the eigenvalues produced from PCA of the data set using the covari-

ance and correlation approaches can not be done directly as the correlation method

works on a normalised version of the data whereas the covariance method does not.

Table 3.2 details the eigenmode decay by each technique, suggesting that the corre-

lation approach’s decay is more rapid. Reconstruction error gives a better indication

of this decay than the raw numbers, and thus the success of the method (Fig. 3.21).

Investigations using a smaller training set used reconstruction error to compare the

covariance and correlation approaches, examining geometry and modulus separately

(Fig. B.3). The geometry showed a markedly improved result with the correlation

approach, this was not matched in the modulus reconstruction but the results were

no worse than the covariance alternative. The analyses indicated that the correlation

method was better suited to the analysis of data with mixed units and that although

there is some correlation among the training set it is not strong.

The physical effect on shape and material characteristics of each eigenmode was

investigated by manipulating each mode in isolation and visualising the femur pro-

duced (Fig. 3.19). The first mode was dominated by scaling effects alongside an

increase in anteversion angle due to rotation of the femoral head. The modulus val-

ues of the shaft cortex were seen to increase significantly as the femur size decreased.

By the second mode little change in femoral length was seen, however a thickening of

the bone was observed alongside a reduction of the highest modulus (cortical) bone

and an increase in medulary cavity volume. These characteristics are very similar to

those reported by Ruff and Hayes [101] when describing the effects of ageing on the
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Figure 3.19: Geometry and material property changes with first 3 modes, varied
between ± 3 standard deviations, acting in isolation.

femur. There was a slight decrease in neck-shaft angle and a noticeable change in

anteversion angle. Mode three again showed an alteration in anteversion, this time

decreasing through the mode. It mainly indicated an increase in average bone mod-

ulus with some further subtle geometric traits such as an increase in femoral head
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diameter, condylar size, lateral inclination of the femoral shaft and a reduction of

bowing in the shaft in the sagittal plane.

The nature of the changes observed are interesting since measures based on

metrics such as cortical thickness, average bone density and neck-shaft angle have

been shown to be risk factors for clinical problems such as proximal femoral frac-

ture [102, 103, 104]. The influence of the modes provides an insight into the sig-

nificant ways in which this set of femurs vary, however it must be noted that these

modes will never occur in isolation. In reality any femur will be the product of the

combined effect of a number of modes, which may result in the features observed

being cancelled out or exaggerated.

3.6 Construction of New Femur Models and As-

sessing Model Robustness

3.6.1 Methodology for Creation of New Femur Models

A key aim of this study is to use the statistical model to generate new femur instances.

To become a truly useful tool in the future, the created models must be realistic

femurs and ideally be able to be used directly in FE so must have good mesh quality

and require no manual correction or remeshing.

The equations defining the statistical model for both the covariance and corre-

lation approaches are described in detail in section 3.4.5. Equation 3.9 describes

how a femur instance can be constructed by the covariance approach, from the mean

femur geometry plus the sum of a number of eigenvectors whose specific influence is

controlled by a shape and intensity parameter vector b. The correlation approach

reconstructs a geometry in a similar way although the standard deviations of the

training set must by multiplied back in as an additional, final step. New, unique

femurs can be generated from the model through the control of the two following

factors; firstly by randomly varying the shape parameter, which is assumed to be

randomly distributed, between upper and lower bounds bu and bl and secondly by

including the m dominant eigenmodes. The value of bu, bl and m must be set specif-

ically to the optimum values for the model. Investigations were required to find the

number of modes needed, m, and the extent of the bound over which the model is

sampled Y , such that the limits become ±Y σbm , where σbm is the standard deviation

of the individual shape parameters across the training set. If possible the model
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should be sampled through ±3 standard deviations (as common in the literature and

describing 99.7% of the distribution assuming it is Gaussian), unless the resulting

shapes become unrealistic or element quality degrades. This would be a risk if the

training set was not large enough to describe the variation satisfactorily.

Figure 3.20: Figure shows the proximal portion of three generated femurs. A good
quality mesh (left) is produced when the model bounds are set correctly, however
mesh degeneration can occur (right) if this does not happen.

The importance of finding suitable bounds within which to sample the statistical

model relates to the potential quality of the femur models it produces. The shape

parameter bounds define how far from the mean the generated femurs will be, if

stretched too far this could result in very unlikely configurations. Establishing the

optimum number of modes is a balance of including all relevant information from the

model without taking too much low level fluctuation, which will act as noise. The

main result of this will be local distortions and poor mesh quality (Fig. 3.20).

Two approaches were taken to assess the requirements of the model; firstly by

calculating the error in reconstructing the training examples with different numbers

of eigenmodes and secondly looking at the variation seen in the models produced by

changing the number of modes and sampling bounds.

3.6.2 Reconstruction Error

Reconstruction tests were performed to interrogate the model, where each of the

training examples was generated from an increasing number of included eigenmodes

by applying its known shape parameter weightings (Eq. 3.9). The tests investigated

the robustness of the model in capturing the variability within the training set and

provided a way of assessing the number of modes required to describe the majority

of it. When sufficient modes are used the error in reproducing a given instance

will fall to a low (or in this case where a small training set is used, acceptable)
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Figure 3.21: Reconstruction error of geometry (left) and elemental modulus (right)
with increasing eigenmodes.

level. With this method of analysis the use of all modes will result in the target

model being replicated exactly, however the highest modes are only contributing

minor perturbations. For further applications of the model, such as reconstructing

an unseen instance or generating new models, these higher order, low energy modes

will simply add noise and distortion to the shape. The aim of the test is therefore

to identify the least number of modes required to describe the highest proportion of

variation, resulting in the lowest reconstruction error.

To fairly examine the results of the tests the geometric and modulus reconstruc-

tion data were analysed separately as they relate to different units of measurement.

When purely geometric error was considered by comparing corresponding nodal posi-

tions throughout the volume of the mesh, a mean Euclidian distance error of < 1mm

was possible for geometry using the first 7 modes, which fell to < 0.5mm by 26

modes. This was 50% of the total eigenmodes (Fig. 3.21). When elemental modulus

reconstruction error was calculated using the same method the error decay was not as

rapid as geometry. When 50% of the eigenmodes were incorporated the mean error

fell below 500MPa (Fig. 3.21), yet when femur instances were visualised the material

distribution and modulus values looked realistic. Therefore a further investigation

was carried out to see whether the reconstruction error suggested was present or this

method of calculation was unfairly harsh.
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An analysis akin to that used to asses the volume morphing accuracy was run,

examining the effect of an increasing number of included modes on the model’s ability

to predict strain distributions as compared to its original instance (i.e. the training

set member being reconstructed). The modulus and strain distribution through the

proximal femur were compared to the target femur being rebuilt to assess the ability

of the model to capture the material variation with increasing modes. The results

for a typical femur tested are shown in figure 3.22. The analysis concluded that if

less than 35 modes were used then some features were lost, however the material

property distribution remained realistic at all levels.
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Figure 3.22: Plot of modulus (top) and strain (middle) distribution in a section
through the proximal femur with 20, 30, 33 and 35 modes included and in the original
femur being reconstructed (far right), following a stance loading FE simulation. All
plots were made on a generic femur model so the geometric changes with modes were
not included. Plots of percentage bone strain volume distribution through the whole
femur are also shown (bottom).
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3.6.3 Sampling the Model

The previous section has established an optimal number of modes to be included for

this study (based on a 45 model training set). The remaining parameter to define is

the sampling range along with the sampling technique. As previously discussed the

sampling range is ±Y σbm . If this is chosen correctly then the generated models will

exhibit a wide range of variation spanning that seen in the training set and possibly

beyond. If too large a range is chosen then the new models could exhibit unreal-

istic/distorted features (a greater risk with a small training set) and mesh quality

degradation, whereas too conservative an option will clip the variations possible. The

standard sampling range used is ±3 standard deviations of the training set mean,

with the theory that if the data distribution is Gaussian then this will cover 99.7% of

the variation in the data. This is an assumption, so to ensure that the majority of the

data is represented a plot of the shape parameter values for each mode was created

with the bounds of ±3s.d. (Fig. 3.23). The figure shows that almost all the training

data lies within this boundary so the sampling limit is not artificially cropping the

information.

Figure 3.23: Figure showing the eigenvalue weightings of the training set (blue dots)
superimposed onto the sampling space created by a ±3s.d. range (grey area).
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The next concern with the sampling limit is that the mesh quality does not be-

come degraded. As discussed in a previous section it should be remembered that

mesh degradation will also be affected by the number of included modes. To ex-

amine the influence of this, NSR and SDR scores of femurs reconstructed using an

increasing number of modes with shape parameters ’cropped’ to ±3s.d. were cal-

culated (Fig. 3.24). The previous figure illustrates that few points fall outside this

range, but those that do will be pulled back to the ±3 s.d limits. The results show

that at the highest modes the mesh quality of the outlying results decreases pro-

gressively, however the mean qualities at the selected 35 modes are high for both

scores.

Figure 3.24: Boxplots of the NSR and SDR scores for reconstructed training set
femurs with increasing numbers of eigenmodes, using a set of shape parameters
’cropped’ at ±3s.d.

The choice of sampling distribution is key to the range of models which are gener-

ated. A starting point is examining the distributions existing in the training data set,

namely the distributions of the shape parameters or eigenvalue weightings, b. The
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first five, which have the most significant influence and together account for nearly

70% of the variation in the model, are plotted in figure 3.25. These show that the

distributions are all different. Modes 1 and 2 (blue and red) appear to be bimodal

but are relatively flat, whereas modes 3 and 5 show singular peaks but these are offset

(as an aside, the bimodal peaks in mode 1, which represents scaling, could relate to

gender differences).

In order to truly represent the training data each of these distributions would need

to be modelled and sampled according to their own pattern, advanced techniques are

available to do this if it is desired [105]. However in this work the aim is not to

reproduce a specific data set but to generate a wide range of varied femur examples,

ensuring that they remain realistic. Therefore two simple sampling distributions

approaches were explored, firstly a Gaussian distribution, which is a reasonably ap-

proximation of many modes, and secondly a uniform distribution, which best matches

the first, most dominant mode. The most appropriate way to examine the suitability

of these approaches was to look at anatomically meaningful measurements, this is

the focus of the next section.
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Figure 3.25: Histogram illustration of shape of the distributions of the first six eigen-
modes, which together account for over 70% of the training set variation.

3.6.4 Characteristics of Generated, ’Synthetic’ Femurs

Reconstruction tests are an excellent mathematical test of a statistical model, pro-

viding details of how accurate the model is in reproducing a specific instance. The

prospective application of the model in this project is not, however, to regenerate

specific geometries but to generate new instances with realistic characteristics. Fu-

ture studies will aim to exploit the ability of the statistical model to generate new

femur instances. This will only be a useful tool if the femurs produced are unique and

realistic. Whether these criteria are met is dependent on the method by which the
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model is sampled. If these criteria are wrongly set then the generated femurs could

end up stretched too far and become unrealistic. Alternatively the created mod-

els could vary very little from instance to instance therefore only represent a small

subset of a population. In view of this, it seems logical to investigate anatomically

meaningful characteristics of the models which can be generated and compare these

to both the training set data and the wider population.

The statistical model contains both geometric and material information therefore

it was important to examine both of these forms of variation. This was performed

using semi-automated and automated checks to ensure the validity of the models.

The semi-automated assessments involved the generation of screen shots of all the

generated models, followed by manual inspection of the images. These showed that

non anomalous instances were produced. The registration method allowed a for

an automated method of comparing models as each node and element lie in the

same relative position in the bone in every instance - whether from a generated or

training set. A range of geometric and material metrics were defined on the baseline

model by identifying key nodes and element volumes which related to standard femur

measurements and areas of clinical interest [103, 106].
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Figure 3.26: Illustration of the key prox-

imal geometric measurements extracted

from each model and the three proximal

volumes examined for material property

characteristics.

The following geometric measure-

ments were automatically extracted and

calculated, based on known node po-

sitions: neck axis length (NAL), neck

shaft angle (NSA), femoral head diam-

eter (FHD), femoral neck diameter (in

both anterior-posterior, FND-AP, and

proximal-distal, FND-PD, directions),

anteversion angle (AA), femoral shaft

width (FSW, measured ∼3cm below the

lesser trochanter), intertrochantic width

(ITW) and femur length (FL). To ex-

amine bone quality three key proximal

sections were defined: lower femoral

head (A), femoral neck (B) and in-

tertrochanteric area (C) (Fig. 4.11).

Comparative bone quality was assessed

by the cortical element percentage

(where cortical bone was defined as

bone >3000MPa) and by average ele-

ment modulus in each section.

To compare the alternative sampling techniques both the Gaussian and uniform

distributions were used to generate 1000 femur instances, the results of which are

shown in Table 3.3 alongside the data for the original training set. Both methods

match the mean geometric parameters very well, but there is an underestimation

in material modulus by the uniform approach. The range or spread of outputs,

calculated as the maximum measurement minus the minimum, was less well matched

to the training data. The Gaussian method consistently extends beyond the original

data however the uniform method consistently underestimates the variation. The

range in shapes present in the base 46 models is not completely reflected in the 1000

models generated by the uniform approach, for this reason the Gaussian approach

seems better suited to this particular set of shape parameters in this model.

A key observation of the models generated is that they all appear realistic on visual

inspection and none failed the automated pass-fail element quality checks, therefore

all are potentially able to be used directly in FE. However, limited observations can

be made by comparing generated examples to the original set when, as discussed, the

distribution of each shape parameter would need to be modelled to reproduce the set

closely. A more suitable examination was to compare the data to a true population,
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Metric Training Data Gaussian Sampling Uniform Sampling
mean spread mean spread mean spread

Neck Axis Length (mm) 101.3 35.7 101.3 43.2 100.6 11.2
Neck Shaft Angle (deg) 127.0 10.4 127.2 13.3 127.5 3.8
Femoral Head Dia. (mm) 48.0 16.5 48.0 24.9 46.9 6.8
Femoral Neck Dia. A-P (mm) 34.7 17.2 34.7 24.4 35.2 6.9
Femoral Neck Dia. P-D (mm) 33.8 16.5 33.8 26.6 34.1 6.8
Anteversion Angle (deg) 18.7 37.7 18.4 38.4 20.2 10.0
Femoral Shaft Width (mm) 16.4 6.0 16.3 8.9 16.4 2.1
Intertrochantic Width (mm) 56.0 18.7 56.0 28.7 56.3 7.9
Femur Length (mm) 436.3 115.3 462.9 211.9 452.6 38.4
Stature (mm) 1630.9 431.0 1730.3 792.0 1691.9 143.5
Fem. Head Cort Element (%) 3.2 30.2 1.8 23.5 0.1 1.2
Fem. Head Mean Mod (MPa) 1317.5 2005.8 1318.5 2142.8 1295.0 649.5
Fem. Neck Cort Element (%) 28.7 59.3 29.7 62.1 19.1 21.5
Fem. Neck Mean Mod (MPa) 2566.6 3230.7 2579.6 3932.7 2108.7 1232.9
Intertroc. Cort Element (%) 33.2 49.0 34.7 53.7 28.2 17.4
Intertroc. Mean Mod (MPa) 2877.9 3276.4 2879.6 3889.6 2439.8 1045.7

Table 3.3: Table of geometric and material metrics for 1000 femurs generated by
Gaussian sampling, 1000 by uniform sampling and for the original 46 training femurs.
Both sampling methods used the first 35 modes and a range of±3 standard deviations
of the mean. The table shows the mean and spread (max-min) results for each of
these groups.

the U.S. National Health and Nutrition Examination Survey (NHANES) was used

to do this [107]. The survey published hip geometry and anthropometric data for

13,615 subject X-Rays, covering a population of 6942 women and 6673 men ranging

from 20 to 90 years old. Several reported parameters were directly comparable to

the measurements extracted from the generated models, namely FND-PD, ITW and

FSW. These were suitable as they have only a limited three dimensional component

unlike neck shaft angle, for example. As the training data was in the older half of

the age group an age-matched subset of the data was used, scatter plots of these

variables from with the Gaussian models superimposed are shown in figure 3.27. The

figure also shows a comparison of standing height in the NHANES population and

the generated set. The generated data can be seen to sit over the majority of the

survey data, although it does appear slightly larger in general. This size difference

is evidence by the slight mismatch in the the neck v’s shaft diameter and the the

height distribution plots. This is likely related to the ethnic discrepancies between

the training and NHANES data sets.
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Figure 3.27: Plots comparing statistics taken from the statistical model and training
set to data from the National Health and Nutrition Examination Survey (NHANES)
findings 13,615 subjects [107]. Plots compare an age matched subgroup of the
NHANES population containing 5803 subjects and a generated femur population
of 1000 models .Top: scatter of femoral shaft diameter against intertrochantic width.
Center: scatter of femoral shaft diameter against femoral neck diameter. Lower: Plot
of standing height cumulative distribution between (heights in mm).
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Another important question which can be answered by comparing the generated

models to the original training set is whether the statistical modelling approach is

generating new, unique instances. i.e. providing combinations of geometric and/or

material properties which are not present in the training set but are still realistic.

Figure 3.28 shows scatter plots of some of the exacted metrics, the combinations of

plots were chosen specifically to interrogate the performance of the statistical model in

capturing and reproducing the femur. The top row contains plots where the metrics

should logically have some correlation to each other, the first concerns geometric

features and the second material metrics. The geometric features of neck diameter

and head diameter should be related, i.e. one should not change dramatically without

the other also being similarly affected. The same logic applies to the material modulus

in the neck and intertrochantic regions. The lower row of plots again contain both

geometric and material data, however metrics which are not directly related to each

other were chosen.

Figure 3.28: Scatter graphs comparing the ranges of various geometric and material
metrics seen in the 1000 Gaussian generated data set (black dots) in relation to the
original 46 training femurs (red squares).

The plots show that the model generation approach adopted samples the range of

parameters in the training set and interpolates between them, allowing combinations

of geometries/material qualities which are not seen in the original data. There is

also evidence that the methods allows some extrapolation beyond the original data

limits, which is controlled by the sampling parameters chosen. Reassuringly, the

interpolation/extrapolation retains the relationships defined within the training set,

e.g. measurements which should be proportional remain related (Figure 3.28 top),
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whereas when such a relationship is not present the entire space is sampled (Fig-

ure 3.28 lower).

In 2D plots it is easy to consider the observed metrics in isolation or in pairs.

It may be logical to think that a parametric model could be used to produce the

same sort of relational changes in shape or material, for example changing femoral

head diameter size in isolation to examine the effect this has. However, the femur is

a complex geometry and the addition of material information adds to the problem,

therefore what is not well expressed by the previous plots is that changing one pa-

rameter will have a knock on effect to several others. Using changes in FHD as an

illustration, figure 3.28 shows that for a given head diameter there is a band of allow-

able neck diameters. Extending this to other parameters, figure 3.29 shows that with

increasing FHD there are related allowable ranges of NAL and ITW which would also

have to be adjusted to make the generated geometries realistic. Plausible material

properties, on the other hand, are not so narrowly correlated and so a more random

method of parametrically altering these between limits would need to be devised.

The problem of representing a realistic femur is therefore not straightforward, incor-

porating many different changes which need to be considered together. From the

distributions of data shown in these scatter plots it can be seen that the statistical

modelling approach used is able to account for this and allow for both correlated and

uncorrelated variations.

Figure 3.29: Scatter graphs comparing the ranges of various geometric and material
metrics seen in the 1000 Gaussian generated data set (black dots) in relation to the
original 46 training femurs (red squares), examining the changes in NAL, ITW and
mean head modulus with changes in FHD.
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3.7 Discussion

The target future use of this technique was to be able to generate large numbers of new

and unique femur models in an FE analysis ready format. This would enable larger

combinations of realistic variations in femoral anatomy and material characteristics

to be used in computational studies than is currently feasible. To examine this

possibility a statistical model, trained on 46 subjects, was generated using PCA and

sampled to generate synthetic femurs. The first 35 eigenvectors were used for this

with random, Gaussian perturbations between ±3 standard deviations of the mean

eigenvalue weightings indicated by the training set. To test whether the generated

femurs related to a real population, thus could be useful in a later large scale analysis,

comparisons were made between several metrics taken from the NHANES survey of

13,615 Americans and 1000 generated models. This indicated that the generated

population did show similar trends and limits. Cumulative distribution of standing

heights indicated that the generated set was slightly taller than the U.S. population.

Some differences were to be expected and reflect the range of femurs in the training

data and the sampling method. Plots of the distribution of the eigen weightings

in the training data indicate that the trend is not Gaussian at 46 examples, this is

particularly true of the first mode which is the most significant and seems to have

the most influence on femoral length. The correlation between the generated and

real populations could be made closer if each weighting distribution were modelled

individually and these used to sample the model. Such techniques are available and

should be considered for future studies if deemed necessary[105].

A main feature of the statistical model discussed in this chapter when compared

to existing methods is its use of a fine mesh density to allow capture of geometric and

material property distributions, and produce an ’analysis ready’ FE mesh [15]. The

subsequent increase in model complexity led to two major developments being made

to the elastic surface matching registration scheme of Moshfeghi et al. [91], the incor-

poration of k-d trees and Laplacian smoothing. The use of k-d trees [92] accelerated

nearest neighbour searches during each iteration of the elastic surface matching algo-

rithm. This reduced the complexity of the original elastic surface registration scheme

significantly at each iteration, resulting in calculation speed increasing by orders of

magnitude. It was verified that this improvement was achieved without any adverse

impact on the accuracy of the registration algorithm. Laplacian smoothing was also

introduced at each iteration to try to prevent mesh quality degradation through the

matching process and reduce the risk of mesh folding and bunching which is known

to potentially occur in areas of concavity [91]. This dense mesh could be considered
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a limitation for some future applications, however for this work it was easily manage-

able and a future detailed study of mesh density could be done to investigate whether

the mesh could be coarsened.

Surface registration was performed within 40 minutes on an Intel Xeon X5365

processor. By the scoring system defined in Section 3.5.2, the mean surface mesh

quality score of the registered models dropped by 5% from the baseline, however the

quality remained over 89/100 in all cases with a mean of just <0.2% of elements in

the lowest quality quartile. The inclusion of Laplacian smoothing had the potential

to reduce registration accuracy, so an investigation of the mean distance between

each registered point and target surface was run. This showed a mean error of

<0.6mm, with >99% of nodes under 1.5mm from the target. This level of error was

within the resolution of the CT’s used, 0.488x0.488x1.5mm to 0.781x0.781x2mm, and

comparable to the 1-2 voxel error associated with manual segmentation [73].

Volume morphing was assessed by comparing registered-morphed meshes to in-

dividually meshed instances of the same initial geometries, with comparable element

sizes. Both the morphed and ideally meshed instances were then identically loaded to

simulate single legged stance and the material and strain field distributions through

them compared. Figure 3.18 shows very little difference between the two examples.

This, together with the morphed model quality metrics remaining high, added con-

fidence in the combined success of the surface registration and volume morphing

methods as well as the final ability of the statistical model to generate meshes of

sufficient mesh quality to allow direct use in FEA.

The training data was dominated by men and the older population, with a mean

age of 70 years. A large degree of variation was present within the training set. No

pre-selection was applied as whole femur CT data was hard to source. Ideally, in

future, sufficient scans would be available so that subdivision could be applied on

the basis of age, sex and ethnicity, which all have affects on femur geometry and

material properties. As the femur has a complex form and distribution of material

variation, the training set size will always be a limitation. This is emphasised by the

relatively large proportion of eigenmodes required to reproduce shape and modulus

(Figure 3.22), showing meaningful variations are contained in up to 35 of the 46

modes. At 35 modes >95% of the variation in the training set is captured, the

remaining 5% therefore likely contains noise and minor fluctuations. These could

have been introduced due to segmentation errors or low level mesh degradation which,

by using only 35 modes, has been filtered out.

Reconstruction tests are a conventional method for assessing a statistical model by

examining its ability to reproduce each member of the training set, the fewer modes
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required to do so accurately the more correlated the data. As two different qualities

were being captured by the model, geometry and modulus, their reconstruction errors

were calculated independently (Figure 3.21). This revealed a much higher correlation

within geometry where mean error falls below 1mm after just 7 modes, and becomes

equivalent to registration error at 20 modes. Modulus error was reported to be poor

by this test, with errors >500MPa at 20 modes. However from the plots of the

influence of the first 3 eigenmodes on shape and modulus, figure 3.19, the overall

distribution of material property seemed realistic. This theory was supported by

comparing the strain results, following loading, of original femurs to instances of that

femur constructed with increasing numbers of modes (Figure 3.22). At 35 modes the

strain fields produced were comparable, whereas reconstruction error alone indicated

an error between 37-464 MPa.

The reasons for noise in the modulus data which resulted in high reconstruction

error and the need for a large proportion of modes are likely due to the nature of

the data and the methods used to extract it. CT data is inherently noisy, with vox-

alisation causing partial volume effects where materials with dissimilar densities are

close together. This would occur on the femur surface between cortical bone and soft

tissue and within the bone where there are areas of rapid transition between cortical

and cancellous bone. The CT data used in this study were from clinical sources

and without calibration phantoms. Calibrations for the proportional relationship be-

tween greylevel and apparent bone density was defined individually for each set by

identifying the greylevel of marrow in the medullary canal and the highest greylevel

visible in the femur itself. Marrow was considered to be equivalent to water and given

a density of 0g/cm3 and the maximum greylevel was assumed to be compact cortical

bone at 1.73g/cm3 (these values relate the the density of mineralised tissue) [108].

This calibration technique is a potential source of error in modulus data although

every effort was made to reduce possible human error. The use of quantitative-CT

data in future would be a solution if it were available.
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3.8 Conclusions

This chapter has discussed a technique for the construction of a highly detailed sta-

tistical model, which captures geometry and material property variations within a

training set of data. The elastic registration and mesh morphing schemes developed

enabled a solid tetrahedral model to be constructed from a large number of points,

resulting in highly accurate registration of the training data and the direct production

of a mesh suitable for finite element analysis. A larger number of training examples

would help to improve the model’s ability to describe a wider range of the population

and perform patient specific reconstruction, although this is not what the model is

intended to be used for and alternative approaches such as intensity based registra-

tion may prove more appropriate [12, 109]. The results presented indicate that the

model is capable of capturing key anatomical features, with distributions of results

comparable to the training data and a true population set even with simplified sam-

pling methods. The significance of this is that it provides a method of generating a

large number of femurs for analysis, allowing the identification and investigation of

the ways in which they vary, making running large scale, multi model FE analyses

feasible. This may prove that more comprehensive preclinical computational testing

is possible and could, in the long term, lead to the generation of a tool for clinical

assessment with patient specific potential applications [66, 52, 110].
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Chapter 4

Femoral Neck Fracture Risk

Study 1

4.1 Femoral Neck Fracture Risk

Hip fracture is one of the major health problems facing our increasingly ageing popu-

lation at the current time. This is not only due to the traumatic and acutely painful

nature of the injury but also its related effects of reduced mobility, long term disabil-

ity, reduced capacity to live independently and morbidity [1]. From a socio-economic

perspective, hip fracture has a substantial final cost thanks to the common require-

ment for long term care, continuing treatment and rehabilitation [111]. Evidence

suggests that the number of age-specific fractures is increasing [112], combining this

with globally increasing life expectancy and associated ageing populations [113], it

is clear that hip fracture has the potential to provide a huge social and economic

burden.

1Bryan, Nair and Taylor, 2009. Use of a statistical model of the whole femur in a large scale,
multi-model study of femoral neck fracture. Journal of Biomechanics 42(13), 2171-2176 - based on
the work in this chapter
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4.1.1 Aim of Femoral Neck Fracture Risk Study

The aim of the study described in this section is to apply the statistical model of the

femur developed in Chapter 3 to the problem of proximal femoral fracture. Due to

the limitations of the model it will not necessarily be possible to draw conclusions

which relate to the entire population. However, it is hoped that by following the

examples of previous analyses done in this area, the model will be able to produce

meaningful results. Meaningful, being that the results will show comparable trends to

previous studies, particularly when suggesting characteristics of femoral geometry or

bone quality which may indicate an increased risk of suffering femoral fracture. The

study described in this chapter hopes to illustrate the potential of using statistical

modelling techniques in analysis and to demonstrate how this could be achieved.

4.1.2 Description of Statistical Model Used in Study

The study described in this chapter was performed using a statistical model of the

whole femur built using the methodology described in the previous chapter. However,

the work was done before the final iteration of the model was complete therefore it

was built from a training set of 21 subjects (as opposed to the final 46). As a result

of this the characteristics of the model differ from those previously described, as do

the sampling methods and parameters applied. Characteristics of the model used in

the femoral neck fracture risk study are available in Appendix B.

4.1.3 Description of Hip Fracture

Proximal femoral fractures are most basically described as either intra- or extra- cap-

sular, referring to whether the fracture occurs within or outside the hip’s joint capsule.

This capsule is a synovial membrane which encases the articulating joint, constructed

from two sets of fibres arranged in circular and longitudinal directions, it connects

to the acetabulum and to the proximal femur just above the intertrochanteric line

(Fig. 4.1) [16].

Intracapsular fractures are defined as either femoral neck or femoral head frac-

tures. Femoral neck fractures are further subcategorised as subcapital, cervical or

basicervical (Fig. 4.1). Femoral head fractures are rare and usually only the result of

high energy trauma. Extracapsular fractures are broadly defined as subtrochantic or
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Figure 4.1: Illustration of hip joint capsule (left) [16], major blood supply paths in
the proximal femur (center) and the main fracture types seen in the proximal femur
(right).

Location Percentage

Intertrochantic 49

Intracapsular 37

Subtrochanctic 14

Table 4.1: Table illustrating the clinically seen proportion of fracture locations [115].

intertrochanteric, the later being the most commonly seen location, accounting for

about half of the fractures seen (Table 4.1) [114, 115].

Fracture location is significant as it defines the treatment course taken and se-

riously influences the chances of recovery. Figure 4.1 illustrates the major blood

supply paths to the proximal femur, if the blood supply is disrupted of cut off as a

result of fracture then areas of bone can suffer avascular necrosis and die. A good

blood supply is also essential for bone to heal. The diagram shows how intracapsular

fractures, particularly subcapital, can be highly disruptive to blood supply to the

femoral head, if the fracture is severe and displaced then there is a low chance of

successful healing. This scenario is likely to result in a hemiarthroplasty or full joint

replacement. Intertrochanteric fractures are less disruptive to blood supply so there

is more chance of natural healing and typical treatment would be internal fixation

with screws [1]. However, patients suffering intertrochantic fractures have been re-

ported to have a poorer short term outlook, having a higher rate of mortality at

2-6 months and are slower to regain pre-fracture activity levels than patients with

femoral neck fractures [116]. This may be partly explained by the demographic who

seem more prone to intertrochantic fracture, being older and in poorer health.
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4.1.4 Risk Factors for Hip Fracture

Hip fractures most frequently occur in the elderly, and it is reported that 90% of

the time they follow a fall [46, 117, 118]. The most dangerous type of fall has been

one which results in an impact to the lateral aspect of the proximal femur, i.e. the

greater trochanter, or the side of the leg [119, 120, 121]. Logically the velocity of the

fall and the amount of ’cushioning’, either by soft tissue, the surface landed on or by

protective measures such as hip protectors, will affect the impact energy and therefore

the likelihood of bone fracture [122]. There is some evidence to suggest that fracture

may result from sudden, powerful muscle contraction immediately before impact or

even as a reaction to beginning to fall [123]. However Hayes et al. [119] saw that

even falls from a standing height or less are no minor trauma to elderly patients.

Through cadaveric testing, it was shown that the impact energy relating to a fall was

more than an order of magnitude greater than that required to fracture elderly bone.

Worryingly, it is estimated that up to 80% of all elderly people over the age of 80

suffer at least one fall per year [124].

Muscle strength and body size have been suggested as possible indicators of frac-

ture risk. Their effect seems, however, to most likely be significant only in their

interaction with the risk of falling. The energy of a fall will be greater for a taller

and/or heavier person, simply because there is further to fall and a greater mass [125].

In relation to body mass, both high and low body masses can be problematic. A

high body mass may be a problem as reduced mobility, proportionally low muscle

mass and strength and the significant load applied by their size may be sufficient to

exceed the femur’s fracture load, despite the positive effects of body fat dissipating

the impact force [1]. In contrast, underweight elderly people may have insufficient

soft tissue to absorb the energy of a fall, and associated muscle mass loss may make

falling more likely [125]. Similarly, other related factors which have the affect of

either making a fall more likely or heavier are: decreased muscle strength, inactivity

( affecting muscle strength and coordination), environmental hazards ( such as ice

or slippery floors), impaired cognition or perception, poor vision and neurological

disorders [1].

With time, bone mass is lost and the collagen within bone degrades, reducing the

bones elasticity, and increasing bone brittleness. Low bone mineral density and bone

mass, often the result of osteoporosis and natural age related bone loss, have long

been logically related to increased fracture risk as bone mass and mineral content

is directly related to bone modulus [108]. However in hip fracture, despite sufferers

having below average bone mass for middle aged subjects, control studies have shown
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that there is significant overlap between non-fractured and fractured subjects of the

same age and gender groups [126]. Due the greater natural rate of bone mass loss

and increased propensity to osteoporosis, women are at significantly higher risk of hip

fracture (Fig. 4.2). It has been estimated that women over the age of 50 are 2-4 times

more likely to suffer hip fracture than men [111, 127, 128, 129]. The risk continues

to increase with age; at 50 the percentage of women at risk is 17.5% compared to

6% for men [129], by the age of 90 this has increased to 25% for women and 16% for

men [124].

Figure 4.2: Graph illustrating the difference in both overall bone mass and rate of
bone mass loss in men and women. The data is taken from a study of 3062 men and
4558 women, measuring BMD in the distal forearm using x-rays [130].

4.1.5 Outcomes of Hip Fracture

The immediate reaction to hip fracture is extreme pain, leaving the victim unable to

walk or stand. As discussed above, depending on the fracture, the blood supply to

areas of bone can be cut off which will lead to avascular necrosis if left untreated. Hip

fracture will require hospital attention for surgical treatment ranging from reduction

and internal fixation through to hemiarthroplasty and full joint replacement, although

for non-elderly, non-displaced intracapsular fracture a long period of bed rest may

be sufficient [1, 131, 132].

The immediate outlook for a hip fracture patient over 50 is uncertain (Fig. 4.3a).

Statistics range between 15-25% mortality within the first six months after the injury,

rising to as high as 30-40% after 1 year, depending on the location and severity of

the fracture and the age and pre-fracture health of the patient [111, 124, 132, 133].
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Figure 4.3: (a) Graph of the mortality rate for different age groups following hip
fracture of 1000 patients admitted to hospital. (b) Figures illustrating the residency
of patients who suffered from intracapsular (top) and extracapsular fracture (bottom)
in the year following fracture [132].

The patient’s risk of dying within the first 6 months is seen to increase significantly if

they are male and/or over 75 [134, 135]. Having survived the first year, a significant

number of patients, 20-30%, will have been moved to long term care facilities for the

first time and only around 45% are expected to be discharged home from hospital [132,

111, 135](Fig. 4.3b). Recovery rates are also reported to be far from ideal. After 1

year, Cooper et al. [135] describe 80% of patients as unable to perform activities that

were previously possible, with 60% finding at least one essential daily task difficult

unaided. Most worryingly, they claim that 40% are still incapable of walking unaided,

a figure supported by Keene et al. [132]. Not only can recovery prospects be poor

and slow, the effect of this vastly raises the likelihood of a second or even third hip

fracture [1]. At 1 year, Karlsson et al. [136] showed patients to have a 7% reduction

in BMD in the fractured hip, 5% reduction in lean body mass and an 11% increase

in body fat, all undoubtedly not helped by enforced inactivity.

4.1.6 Occurrence Rate, Cost and Projections

It was estimated that the number of hip fractures happening globally per year was

around 1.7 million in the mid 1990’s, with around 250-300,000 per year in the U.S. and

over 50,000 per year in the UK [1, 111, 127]. As previously discussed, hip fractures are

most likely in the elderly who have weakened bone strength and increased propensity

to fall. These numbers are projected to rise substantially. The injury is only really

seen in younger patients following serious trauma, such as a car crash [134]. A major

factor behind this is that the proportion of old and elderly in the population is

increasing, particularly in the developing world. Globally the percentage of people
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over 60 has increased from 8% in 1950 to 10% in 2000, and is predicted to hit 21% by

2050, with the fastest growing age group being the ’oldest old’, over 80 years, who will

be majority female and are set to make up 1/5th of the over 60’s by 2050 [113]. The

increasing elderly population, with the ’oldest old’ making up a significant proportion,

and the growing number of very elderly women is very worrying as these are the

highest risk groups for suffering hip fracture.

Year A B C D

Men Women Men Women Men Women Men Women

1990 338 917 338 917 338 917 338 917

2000 417 1086 460 1200 483 1242 520 1332

2010 553 1321 615 1611 727 1760 854 2049

2025 783 1821 1109 2580 1386 3102 1976 4145

2050 1381 3112 2509 5653 3905 8430 6794 14516

Table 4.2: Table showing projected numbers of hip fractures globally (000) per year.
A - Assumes unchanging age and sex specific incidence B - Assumes a 1% increase in
age and sex specific incidence worldwide, C - Assumes no secular change in the US
and N. Europe but a 2% increase in age and sex specific incidence elsewhere and D
- Assumes no secular changes in US and N. Europe but 3% increase in age and sex
specific incidence elsewhere [137].

Gullenburg et al. [137] investigated the incidence of hip fracture in each region

of the world and combined this with global population increase projections. Several

calculations were performed; firstly simply scaling by predicted population growth

and then by several other approaches where the increasing proportion of elderly and

females was included by varying amounts (Table 4.2). The results showed that by

2050 the number of hip fractures will reach 4.5 million purely by population growth

and there could be many as 21.3 million globally, if only a conservative 3% increase in

age and gender specific rates is seen. There have been many more localised estimates

and observations for how hip fracture incidence will and has risen in different countries

(Table 4.3).

Beyond the individual suffering caused by hip fracture there is also a large eco-

nomic cost. In 1998 Dolan et al. [111] estimated the costs of osteoporotic fractures in

the UK and found that hip fracture was not only the most common fracture in the

over 50’s, accounting for 87%, but also the most expensive to treat. The conservative

estimate of the cost of a typical hip fracture was £4808 of acute care, directly received

hospital treatment and surgery, along with £7152 of non-acute care, including social

care, rehabilitation and long stay hospital costs. The total estimated cost to the UK

was £942 million per year, which when inflation is corrected for is just over £1,100

million in 2008. This bill seems only set to rise in light of the global trends for an

increasing elderly population.
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Country Comments Source

U.S.A 512,000 fractures per year by 2040 Cummings et al. [138]

(current estimates 250-300,000 [1])

U.K. 60-117,000 fractures per year by 2015 Gullberg et al. [137]

(current estimates 50,000 [111])

China Study in Beijing showed 33% increase in women Ling et al. [139]

and 33% increase in men between 1988-92.

Finland 3x increase between 1997-2030 based on trends Kannus et al. [140]

observed between 1970 and 1997.

Belgium 7x increase between 2003-2050 based on trends Reginster et al. [141]

observed between 1984-1996.

Greece 81% increase in recorded hip fracture between Paspati et al. [142]

1978 and 1992.

Table 4.3: Table describing hip fracture observations in different countries.

4.1.7 In Vivo Studies of Hip Fracture Risk

As established, hip fracture has serious implications and therefore many studies have

been undertaken to see if it is possible to predict whether a patient is at high risk

of suffering the injury. In vivo or clinical studies, tend to use non-invasive imaging

techniques to compare groups of patients who have suffered a fracture with control

subjects. Age, gender, ethnicity and body size have an effect on bone geometry and

quality, these factors are generally corrected for in final results and control groups are

matched to the fracture group, as appropriate for the particular study. Almost all

use Duel Energy X-Ray Absorptiometry (DXA) to examine femoral geometry and/or

bone density as this is commonly used in medical practice, making large volumes of

information available. In addition, if any useful metrics can be found within simple

2D scans then they will be easily implementable.

Figure 4.4: Illustrations of the geometric measurements taken by various clinical
studies;(a) Theobald et al. [103],(b) Peacock et al. [143], (c) Bergot et al. [144] and
(d) Michelotti et al. [106].
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Several studies have investigated the influence of femoral geometry on fracture

risk [145, 103, 106], whereas others have tried to gauge the influence of BMD in

conjunction with geometry [143, 104, 146, 144]. There is some agreement in results

but also a fair amount of contradiction. The studies which investigated bone den-

sity all agree that lower bone density is a significant differentiator between fracture

and control groups in elevating fracture risk, and suggest that the incorporation of

geometric indicators can increase predictive accuracy. However the choice of geo-

metric parameter is not clear. Cortical thickness in the proximal femoral shaft was

deemed the only significant geometric parameter by two studies [106, 143]. A long

hip axis length (HAL), the length between the greater trochanter and pelvic brim,

has been highlighted in several cases [145, 103, 104, 146], yet totally rejected by

the others as insignificant. Bergot et al. [144] found HAL to be a reasonable in-

dicator between healthy and fractured groups but unable to differentiate between

non-fractured patients with low BMD, and so devised an alternative measurement

between the femoral head center and intertrochanteric line. Other geometric param-

eters suggested by some papers, and often rejected by others, are; larger neck-shaft

angle, greater femoral neck width and larger intertrochanteric width. Table 4.5 de-

scribes the aims, methods and findings of several related studies.

Inconsistencies in geometric results may be because these studies are attempting

to measure a three dimensional object from a two dimensional image. The femur is

’twisted’ in several planes, as explained in Section 2.2.1, therefore the perspective of

an image taken of the femur can affect its appearance. Cheng et al. [147] compared

DXA images of cadaveric femurs in both neutral and anteverted (mean 19.3◦) posi-

tions and showed significant differences in both BMD and geometric measurements

taken (Table 4.4). This shows the influence of patient morphology and particularly

the large affect of intersubject variability. It is logical to also see how these findings

relate to patient positioning during scanning, which currently is not standardised and

has been shown to influence measurements [106, 104].

Measurement Neutral Anteverted Difference Range

(mean) (mean) (%)

Neck BMD (g/cm3) 0.705 0.723 +2.8 -5.3 - +9.8

Trochantic BMD (g/cm3) 0.673 0.675 +0.2 -5.0 - +5.9

Neck Axis Length (cm) 9.97 9.73 -2.4 -7.6 - +4.3

Neck Width (cm) 3.36 3.36 0.0 -5.3 - +6.7

Table 4.4: Table showing the effect of anteversion on BMD and geometrical measure-
ments of the proximal femur assessed by DXA [147].
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4.1.8 Computational Studies of Hip Fracture Risk

Hip fractures have been known to be a serious problem for a long time, therefore

many studies have attempted to apply computational and experimental techniques

to try to model and understand its mechanisms. The aims of this work have generally

been to try to identify metrics by which fracture risk could be gauged by non-invasive

techniques, several pieces of work are summarised in Table 4.6.

Early work was done by Lotz et al. [46] who understood that femoral neck fracture

was most commonly the result of a fall and so investigated the effects of typical

loading conditions seen during a fall as well as the more conventionally modelled

stance loading, which is representative of spontaneous fracture during walking or

possibly climbing steps. As with many computational studies which followed, finite

element models were built from CT scans of a pair of cadaveric femurs which were

subsequently subjected to mechanical testing to validate the FEA results. One femur

was stance loaded and the other subjected to a fall impact, the load conditions

created by Lotz are shown in Figure 4.5a-b. Remembering that this study only

looked at one femur per load type, it suggested that stance or spontaneous fracture

would result in a subcapital fracture location and a fall would lead to intertrochantic

fracture. It was also seen that the load required to cause fracture was much lower for

the fall configuration and therefore Lotz suggested that examining intertrochanteric

bone quality may be the most useful fracture risk indicator. These findings have

since been collaborated by several other studies who have tested a larger number of

femurs [149, 102, 51, 150, 121, 151].

Figure 4.5: FE model loading conditions defined by Lotz et al. [46] for (a) stance
and (b) fall, alongside images of corresponding experimental setup used by Keyak et
al [51] for (c) stance and (d) fall.
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Keyak et al. followed on from the work of Lotz, using their own automated fi-

nite element modelling techniques [38] to investigate femoral fracture and the stance

and fall loading conditions previously developed. Using 18 pairs of cadaveric fe-

murs the ability of the FE method to accurately predict fracture load was proved

for both scenarios, also supporting the higher load requirement for stance fracture

(Figure 4.5c-d) [51]. The same set up and methodology was later used to investigate

fracture type and location, with strong agreement between the computational pre-

diction and experimental result. The trend of stance loading resulting in cervical and

subcapital fractures and falls leading to intertrochanteric fractures was again shown

(Figure 4.6) [150].

Figure 4.6: Keyak et al. [150]:(a) Example of FE models used, 8447 cubic elements
and 10652 nodes. Fracture locations predicted by FE model for (b) stance and (c)
fall loading, and radiographs of fractures produced in testing by (d) stance and (e)
fall loading.

A further study by Keyak et al. [121] looked at the effect of force direction on

fracture load, proving that the most dangerous configuration is an impact on the

posterolateral aspect of the greater trochanter. While the most dangerous stance

configuration exists where postero and lateral components act in a similar way to

standing on one leg or walking up stairs. Bessho et al. [151] ran simulations at the

most severe fall condition and in stance loading, modelling the healthy hip of 10

female patients who suffered cervical fractures. This study created FE models of the

whole femur which were able to show the lower fracture load of the fall scenario and

replicate similar fracture locations to those seen in reality.

A significant weakness of all of the studies discussed so far and the vast majority

of all the fracture risk work is the fact that only the femur is considered. It is clear

that in vivo there are many more factors involved, most significantly the interaction

with the pelvis, damping affects of surrounding soft tissues (and impact surface for

a fall) and inertia effects due to the subjects body weight. A single subject model

of the pelvis and surrounding soft tissue has been created by Mujumder et al. [50]

which attempts to incorporate all these factors and simulate an oblique fall to the
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side. The model is complex due to its representation of the whole pelvis-femur-soft

tissue structure, but a reasonably coarse mesh size of 4-7mm was used (Figure 4.7).

Reassuringly, the result of the model supports the femur only models in suggesting

fracture will occur in the trochanteric region.

Figure 4.7: Illustrations of the models and simulations run by Majumder et al. [50].(a)
FE pelvis-femurs complex, (b) pelvis-femur complex with surrounding soft tissue and
(c) fall configuration showing body impact with the floor.
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Chapter 4. Femoral Neck Fracture Risk Study

4.2 Methodology

The generation of a large number of femur models had several challenges which

required solutions before it was possible to run a large scale, multi bone simulation.

The study performed in this section aimed to generate 1000 unique femurs from the

previously created statistical model of the femur and then run FE simulation on

each of them to investigate femoral neck fracture. The stages required to do this

are explained below. It is also important to comment at this stage that a major

consideration of this work was the ability to automate the entire process from start

to finish. If this was not achieved, and manual intervention was required then the

usefulness of this tool would be lost.

1. Sample the statistical shape and intensity model to generate 1000 femur in-

stances. This required the boundaries within which the statistical model was

to be sampled to be set, and a method of ensuring that the probability space

it described was appropriately sampled.

2. Check generated mesh quality to prevent later simulation failure or anomalous

results.

3. Define loading conditions to each femur with individualised forces relating to

predicted weight.

4. Produce an input file suitable for a finite element solver. This had to contain all

nodal positions, elemental connectivity, material property information, applied

loads and boundary conditions.

5. Automating the simulation of each file in a finite element solver and recording

the results.

6. Automated post processing of the FEA results.
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Chapter 4. Femoral Neck Fracture Risk Study

4.2.1 Generation of Large Set of Femur Models From Sta-

tistical Model

The first step of this study was to formulate a methodology for using the statistical

model created in Chapter 3 to automatically generate large numbers of realistic femur

models. Section 3.6 and Appendix B explain how the boundaries within which the

model could be best sampled were found, concluding that the optimal choice for this

model was the inclusion of 8 modes and stretching the data to +/− 1.5σbi where σbi
is the standard deviation of the individual shape parameters, bi, across the training

set.

A Sobol sequence [152] was used to generate a set of vectors, Sj, with a value

between 0 and 1. These vectors were then used to perturb the statistical model shape

parameter, bi, thus generating completely new and unique instances, as follows. The

length of each Sobol generated vector was equal to the number of modes being used,

8, and the number of different vectors needed was equal to the number of femurs

required, 1000 for this study. By setting the lower parameter limit, bli, to −1.5σbi

and the upper parameter limit to, bui , to +1.5σbi the specific shape and modulus

parameter vector for each generated femur, Bj, could be set by:

Bj = bli + (bui − bli)Sj where j = 1000, i = 8. (4.1)

By using each of the generated shape vectors Bj it was possible to generate 1000

unique output vectors from the statistical model, each of which contained corre-

sponding nodal coordinates and nodal modulus values that described a femur as a

solid tetrahedral mesh with associated material properties (see Section 3.4.5).

Before the meshes could be fed into a solver, mesh quality had to be interrogated

to ensure that there were no inside-out elements or elements so distorted as a result

of the mesh morphing process that they could cause the later simulation to fail.

Section B.0.5 discusses the mesh quality checks adopted for this model during the

developments stage. It also explains that inside-out elements are a side effect of the

mesh morphing process adopted, however node order is easy and quick to correct

and so this simple check and repair step was written into the generation code. To

prevent excessive element distortion a normalised shape ratio, Equation 3.3, and a

shape distortion ratio, Equation 3.4, were calculated for each generated element, and

compared to the warning and error limits defined by ANSYS c©. If more than 1%

recorded a warning, or any element showed an error, then the geometry failed and

was regenerated. The process of generating and checking 1000 femurs took less than

5 minutes.
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Chapter 4. Femoral Neck Fracture Risk Study

4.2.2 Subject Specific Fall Loading Conditions

The study aimed to investigate the strain resulting in the proximal femur following

a fall. The FE loading conditions for this were created to emulate the experimental

work of Keyak et al. [150], see figure 4.5d. To be able to set up this loading condition

automatically for each femur model the correspondence between model elements and

nodes was exploited. This allowed the conditions to be manually defined on the base-

line femur mesh and the relevant nodes and elements fixed or loaded, as appropriate,

in all subsequent generated models.

Figure 4.8: Illustration of the loading conditions applied to each femur to simulate a
fall

The baseline femur was therefore manually rotated such that its shaft axis lay

at 30◦ to the horizontal plane (Fig. 4.8a) and the neck axis in the transverse plane

at 20◦ to the horizontal (Fig. 4.8b). The femur was fully restrained in two places; a

short depth of the lowest part of the greater trochanter, replicating the polymethyl-

methacrylate(PMMA) cup holding the femur in the experimental test, and from the

mid shaft of the femur down. A force was equally distributed over a φ 3cm area of

the proximal, anterior femoral head. This area would vary slightly between models

as it was translated into a loaded selection of surface nodes, however this area would

be proportional in each generated model thanks to the surface registration technique

applied (see section 3.5.2).
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Chapter 4. Femoral Neck Fracture Risk Study

4.2.3 Subject Specific Loading

Figure 4.9: BMI distribution curve for the adult US population, estimated from a
national survey in 2002 [153].

The value of the applied force was set at one times body weight, due to the

linearity of the model any strain results produced could be scaled so the choice

of load magnitude was arbitrary. As all 1000 femurs were created statistically, no

subject weight was known so this data was generated as follows. Femur length, taken

as the distance from the most distal point of the lateral condyle to the most proximal

point of the greater trochanter, was assumed to be 26.75% of subject height [154].

This was a generic relationship, ignoring gender and race with a subsequent possible

error in predicted height reported at <0.6cm. A Body Mass Index (BMI) distribution

curve was generated from data available from the National Health and Nutritional

Examination Survey 1999-2002 (Fig. 4.9), conducted on all age groups within the

U.S. population [153]. By randomly sampling a BMI value from the distribution,

it was possible to calculate a subject weight in kilograms as BMI multiplied by the

square of the predicted height in meters. The process is illustrated in Figure 4.10 for

21 femurs.

Figure 4.10: Illustration of assignment of BMI and weight to individual femurs, based
on their length and related predicted subject height
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4.2.4 Finite Element Simulations

At this point all the information needed by the finite element solver had been

calculated. A simple script was created to write an input file for the FEA code

MARC c©(MSC, Santa Ana USA) , for each generated femur. After a few generic

header lines defining element type and the size of the model the first data required

was the geometry structure, consisting of the element connectivity which was con-

sistent for each model, and the unique nodal coordinates. As each model contained

over 600 000 elements it was not efficient to define material properties for each el-

ement individually. Therefore elements were grouped into 10MPa bands and given

a modulus at the top end of this band, resulting in over 30 000 property bands per

model. The lists of fixed and loaded node numbers were then defined, along with the

instruction to run one loading cycle and then write out the result. Each input text

file contained over 64Mb of data.

It was possible to batch the simulation runs such that they were controlled through

MatLab c© but operated through an MS-Dos shell. This enabled a simple fortran script

to start the MARC simulations and then save out selected parameters. The extracted

results were post loading element volumes and element strains. This data was then

read back into the controlling program, Matlab, where it could be postprocessed.

Due to the size of the models the time taken to load and write files was quite large,

on average it took ∼3 minutes to write each input file and ∼9 minutes to load, run

and save the results of each FE simulation.
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4.2.5 Metrics Extracted from Statistical Model

Figure 4.11: Illustration of metrics

taken from femur models. Main areas

of interest: A - lower femoral head,

B - femoral neck, C - intertrochantic.

Measures include: head and neck di-

ameters, neck axis length, neck shaft

angle, intertrochantic width, shaft

width and anteversion angle.

Various metrics were devised to aid inter-

rogation of the FE results, Fig. 4.11. A

range of geometric parameters were auto-

matically taken from each generated femur

in an automated postprocessing stage, again

it was possible to achieve this because of

the elemental and nodal correspondence be-

tween models. The metrics were defined

on the baseline femur model, with either

measurements being found by lines between

specific nodes (or the angles between these

lines) and volumes being defined by groups

of elements. The measurements were iden-

tified by a mixture of methods, but most

are based around the femoral head center,

found by fitting a sphere to the head, and

the neck axis vector, found by fitting a cylin-

der to the femoral neck. From these measure-

ments head diameter, neck diameter (both in

anterior-posterior and proximal-distal direc-

tions), and neck axis length could be found.

The neck shaft angle requires the prior calcu-

lation of the shaft axis, by finding the center

of mass for several bands of the femoral shaft

and fitting a line between them.

All the metrics used were based on parameters which have previously been used

to analyse femoral shape, see Figure 4.4 [103, 106]. These were; Neck Axis Length

(NAL), Neck-Shaft Angle (NSA), Femoral Head and Neck Diameters (FHD and

FND), Intertrochantic Width (ITW), Femoral Shaft Width (FSW, measured ∼3cm

below the lesser trochanter) and Anteversion Angle (AA). In addition, three key vol-

umes were identified within the proximal femur to gauge bone quality and judge fail-

ure risk, these were; lower femoral head (A), femoral neck (B) and the intertrochantic

region (C). They roughly relate to subcaptial, cervical and trochantic fracture regions.

To highlight those femurs which were at highest risk of failure a conservative criterion

was created identifying models where any of the three proximal sections experienced

>10% volume exceeding yield strain, 0.7%. This criterion was developed only as a
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way of isolating the worst performing femurs to examine their differences, as it was

not felt that a precise failure limit could be verified.

4.3 Results

4.3.1 Overview of Results

Figure 4.12: Plot of the volume of bone exceeding yield strain in each of the three
defined regions for all 28 failed femurs. Shown as (a) the percentage volume of bone
and (b) the actual volume of bone in cm3.

The failure criteria established in this study, based on the previously defined

criteria, found 28 of the 1000 generated femurs tested to be at risk of failure. This

means that 28 femurs showed>10% bone volume in one or more of the three examined

regions to exceed the yield strain of bone. Under closer examination, the trochantic

and neck regions appeared to breach this criteria far more frequently than the lower

head region. Figure 4.12 shows the percentage (a) and actual (b) bone volume

exceeding this failure criteria in each of the three regions for all 28 femurs. As the

intertrochantic area is much larger than the other two, it unsurprisingly dominates

in terms of actual volume, but when the regional percentages are calculated it is still

significantly higher in most cases. However there are clear differences between the

strain distributions in each femur, some showing noticeably higher neck strains, for

example femurs 5 and 10, and some showing higher strains in the lower head, femurs

6 and 10.

Having established which femurs performed worst in the fall load test and seen

indications that the failure patterns produced in these femurs differ from each other, a

further analysis was performed to visualise the volumetric strain distributions. The

failed and non failed groups were separated and their volumetric elemental strain
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results for regions A, B and C (head, neck and intertrochantic), were grouped into

0.02% strain sized bins (Figs. 4.13,4.14 and 4.15), clear differences were seen in the

results. For the low risk group (center row) the mean volume strain above 0.3%

is almost zero in all regions, with the majority of the bone volume below 0.1%.

However the at risk group (top row) distribution is different. The >1% strain bin

contains the largest volume of bone, although this is unsurprising due to the criteria

used to separate this group from the larger data set. The key difference is how

the strain distribution has flattened and been spread out, so there are notable bone

volumes in all the strain bins up to 0.5% in the head, 0.6% in the neck and 1% in the

intertrochantic region. The results for the training set femurs are shown alongside

(lowest row), they match most closely to the non-risk group, with typically low strain

results. These graphs show that the failed group have a shifted volumetric strain

distribution throughout the strain range, indicating that the failure criteria is not

being reached due to a pocket of high strain which could be caused by a boundary

or loading condition.

Two main routes of investigation were performed on the data produced from the

FE simulations. Firstly the fracture prone group of femurs was compared to the

unfractured group to try to find any statistically significant difference between them

using the geometric and material metrics previously defined. The second line of

analysis was focused on the failed group, attempting to identify the likely origin site

of any fractures. Both of these areas yielded results which could be compared to the

existing literature from experimental and computational based studies.

4.3.2 Range of Femurs Generated

To analyse the results of the study a range of metrics were extracted, these enabled

the characteristics of each femur to be identified. The metrics, which can be placed

into three classes, are described in Table 4.7. Cortical bone was defined as bone with

a modulus exceeding 3000 MPa, and so it follows that cancellous bone was classified

as bone below 3000 MPa. Where appropriate, material property characteristics were

calculated both in terms of regional percentage volumes and absolute volumes.

The immediate use of these results was to view the range of femurs generated. By

compiling the statistics of all 1000 generated models it was quick and easy to ensure

that the data being tested was realistic, i.e. no exceptionally over/under sized femurs.

This was an important analysis, allowing the model set to be interrogated without

manually visualising and checking each instance and showing that the training set
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Figure 4.13: Box plots illustrating the strain in the head region by percentage volume.
The top plot shows the 28 fracture risk group, the middle plot the 972 not at risk
group and the lower plot the training set results. The box shows the median (red),
upper and lower quartile (blue) and the whiskers extend to 1.5× the interquartile
range, with values beyond this shown by crosses (red).
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Figure 4.14: Box plots illustrating the strain in the neck region by percentage volume.
The top plot shows the 28 fracture risk group, the middle plot the 972 not at risk
group and the lower plot the training set results. The box shows the median (red),
upper and lower quartile (blue) and the whiskers extend to 1.5× the interquartile
range, with values beyond this shown by crosses (red).
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Figure 4.15: Box plots illustrating the strain in the head region by percentage volume.
The top plot shows the 28 fracture risk group, the middle plot the 972 not at risk
group and the lower plot the training set results. The box shows the median (red),
upper and lower quartile (blue) and the whiskers extend to 1.5× the interquartile
range, with values beyond this shown by crosses (red).
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Subject Femoral Geometry Material Property

Characteristics Characteristics Characteristics

Subject Height (mm) Neck Axis Length (mm) Lower Head Volume

Subject BMI Neck Shaft Angle (mm) Lower Head Cortical Volume

Subject Weight (kg) Femoral Head Diameter (mm) Lower Head Mean Cortical Modulus (MPa)

Load Applied (N) Femoral Neck Diameter P-D (mm) Lower Head Mean Cancellous Modulus (MPa)

Femoral Neck Diameter A-P (mm) Head Bone Volume + 0.4% Strain

Neck-Head Diameter ratio Head Bone Volume + 0.7% Strain

Coronal-Sagital Neck dia. ratio Lower Head Cortical Bone Volume %

Anteversion (◦) Neck Volume

Femoral Shaft Radius (mm) Neck Cortical Volume

Intertrochantic Width (mm) Neck Mean Cortical Modulus

Femoral Length (mm) Neck Mean Cancellous Modulus

Neck Bone Volume + 0.4% Strain

Neck Bone Volume + 0.7% Strain

Neck Percentage Cortical Bone Volume

Intertrochanteric Volume

Intertrochanteric Cortical Volume

Intertrochanteric Mean Cortical Modulus

Intertrochanteric Mean Cancellous Modulus

Inter. Bone Volume + 0.4% Strain

Inter. Bone Volume + 0.7% Strain

Table 4.7: Table listing the metrics extracted from all femurs.

was being fairly represented. The minimum, mean, maximum and standard deviation

of this data is shown in Table 4.8. The geometric measurements can be seen to be

very similar to the data previously reported for the training set in Tables B.2 and B.3.
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Metric Min Mean Max Std

Neck Axis Length (mm) 83.212 100.214 118.881 6.508

Neck Shaft Angle (mm) 120.803 126.461 133.609 4.237

Femoral Head Diameter (mm) 36.887 47.446 58.682 3.914

Femoral Neck Diameter P-D (mm) 27.668 33.843 40.658 2.465

Femoral Neck Diameter A-P (mm) 24.911 33.189 44.052 3.432

Neck-Head Diameter Ratio 1.256 1.402 1.557 0.053

Neck Diameter Ratio 0.863 1.024 1.261 0.062

Anteversion (◦) 15.052 22.010 28.752 2.273

Femoral Shaft Radius (mm) 12.987 16.136 19.455 1.220

Intertrochantic Width (mm) 44.585 55.551 66.958 4.040

Femoral Length (mm) 415.267 457.789 505.034 23.116

Subject Height (mm) 1449.804 1611.581 1791.211 79.481

Subject BMI 18.686 27.522 39.912 4.680

Subject Weight (Kg) 43.035 71.654 122.364 14.134

Load Applied (N) 422.027 702.688 1199.984 138.610

Lower Head Vol. (mm3) 7680.431 15394.054 26563.900 3340.005

Lower Head Cortical Vol. (mm3) 0.000 363.013 3431.368 547.201

Lower Head Mean Cort. Mod (MPa) 3002.252 3035.903 3864.665 865.972

Lower Head Mean Canc. Mod (MPa) 438.830 1320.628 1965.974 293.297

Vol. over 0.4 % Strain (mm3) 0.000 57.538 3129.182 293.672

Vol. over 0.7 % Strain (mm3) 0.000 14.656 1385.147 105.784

Lower Head Cortical Vol % 0.000 2.415 21.969 3.510

Per Vol. over0.4 % Strain 0.000 0.434 26.726 2.272

Per Vol. over 0.7 % Strain 0.000 0.113 13.024 0.850

Neck Vol. (mm3) 11508.614 20310.235 32797.790 4199.371

Neck Cortical Vol. (mm3) 1275.813 4505.211 12281.619 2025.212

Neck Mean Cort. Mod (MPa) 4197.257 5300.621 6640.665 367.375

Neck Mean Canc. Mod (MPa) 411.856 1346.733 2205.860 409.059

Vol. over 0.4 % Strain (mm3) 0.000 415.461 15327.315 1599.733

Vol. over 0.7 % Strain (mm3) 0.000 89.312 6531.974 497.330

Neck Per Cortical Vol. % 6.168 22.494 50.358 9.391

Per Vol. over 0.4 % Strain 0.000 2.075 64.675 7.918

Per Vol. over 0.7 % Strain 0.000 0.448 27.345 2.473

Introchantic Vol. (mm3) 48139.601 83338.961 134340.522 16813.927

Intertroc. Cortical Vol. (mm3) 6023.532 20565.793 46379.455 7030.814

Inter Mean Cort. Mod (MPa) 4915.590 5877.860 6973.287 355.784

Inter Mean Canc. Mod (MPa) 359.975 1098.351 1764.837 307.916

Vol. over 0.4 % Strain (mm3) 0.000 3110.698 55034.264 6494.316

Vol. over 0.7 % Strain (mm3) 0.000 946.778 33145.241 3037.308

Intertroc. Cortical Vol. % 8.494 24.938 46.012 7.596

Per Vol. over 0.4 % Strain 0.000 3.725 56.350 7.709

Per Vol. over 0.7 % Strain 0.000 1.139 35.257 3.653

Table 4.8: Minimum, mean, maximum and standard deviation of the geometric met-
rics, calculated across all 1000 generated femurs.
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4.3.3 Predicted Risk Factors

As previously explained the results of the FE analysis were separated into failed and

non failed groups on the basis of the strain produced in three areas of the proximal

femur. This allowed the results for each metric extracted from the femur models

to be compared between these two groups. This revealed seven metrics to be highly

significant, as indicated by an F-Test analysis (Table 4.9). The most important of the

parameters was the percentage of cortical bone in each section, especially significant

in the lower femoral head where the mean cortical modulus was also highlighted.

Three geometric parameters appeared to be important, neck shaft angle and to a

lesser extent anteversion angle and femoral neck diameter ratio (the neck diameter

ratio indicated the ovality of the neck, calculated as a ratio between neck diameters

measured in the superior-inferior and anterior-posterior directions).

Not At Risk At Risk

F-Test Min Mean Max Min Mean Max

(A) Cortical Volume (%) 0.01 0.00 2.48 21.97 0.00 0.05 0.51

(B) Cortical Volume (%) 0.01 6.61 22.86 50.36 6.17 9.79 15.78

(C) Cortical Volume (%) 0.01 9.38 25.34 46.01 8.49 11.10 23.98

Neck-Shaft Angle(◦) 0.025 120.8 128.7 133.6 121.3 124.4 127.8

(A) Mean Cort. Modulus (MPa) 0.025 3002 3274 3865 3016 3300 3675

Anteversion(◦) 0.1 15.05 22.06 28.75 16.91 20.45 23.98

Neck Diameter Ratio 0.1 0.86 1.02 1.26 0.94 1.02 1.13

Table 4.9: Results of the most significant material property and geometric metrics
found when comparing the failed and not failed model groups. The minimum, max-
imum and mean of each group is shown. A, B and C indicate the section of the
femur.

4.3.4 Predicted Fracture Locations

The likely origin of any fracture was identified by interrogating the areas of high-

est strain in the 28 femurs which failed the fall simulation. The failed femurs were

visualised and the areas experiencing high strain were highlighted. By gradually in-

creasing the strain threshold, below which elements were not selected, it was possible

to identify the probable origins of any fracture. The majority, 15 of 28, indicated

failure in the trochantic region with 8 of these showing highest strain along the in-

tertrochantic ridge (Fig. 4.16a). 4 femurs highlighted the anterior subcapital region

and the remaining 9 had multiple regions of high strain making a specific location

hard to identify (Fig. 4.16b+c). Most femurs showed some localised high strain
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around the greater trochanter restraint, but no model showed this to be the only

high strain location or any potential fracture lines stemming from this area.

Figure 4.16: Illustration of the areas suffering highest strain following fall loading. (a)
Intertrochantic, (b) anterior subcapital and (c) multiple regions. Areas highlighted
exceed 1.5% strain

4.4 Discussion

This study was able to run a large scale, multi-bone, finite element analysis for the

first time. In addition the process was made completely automated, needing only the

number of femurs required as an input and subsequently using the existing statistical

model to generate models with material properties, check their mesh quality, define

a patient specific load, set up individual loading and boundary conditions, submit

this to an FE solver and finally extract and analyse the elemental strains produced.

In total this entire process took approximately 12 minutes per femur.

The FEA results were investigated to see if any geometric or material property

metrics could be found to be significantly different between the group of femurs

which were classed as failing under a fall load and those which were not. The model

identified the overall percentage volume of cortical bone through the proximal femur,

and the mean modulus of cortical bone in the lower femoral head as significant bone

quality metrics. In terms of geometry; neck shaft angle, anteversion and the ovality

of the femoral neck were seen to be important.

As discussed throughout Section 4.1, many previous studies have suggested femoral

geometric and material features which may result in a predisposition towards femoral

fracture with the exact features frequently contradicted between studies. The main

feature which is agreed on is that a low BMD is a high indicating factor of risk [149,

104, 144, 146, 46], and also low cortical thickness (although usually defined in the
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proximal femoral shaft) [149, 103, 106]. This was very clearly supported by the

results of the model, with cortical bone percentage by far the most significant differ-

ence between the failed and non failed groups. There was no evidence that neck axis

length was an indicator of risk, agreeing with some work [106, 146] but contradicting

others [144, 103, 104, 145].

An interesting geometric parameter which was shown as significant was neck-

shaft angle. Again this parameter had been shown to have little or no influence on

fracture risk by some [144, 145] and yet important by others [104, 106, 146]. The

studies which did indicate this measurement suggest that a larger angle increases the

risk, however this study’s results show a smaller angle in the failed group. Miche-

lotti et al. [106] observed that this trend was seen in studies which took dimensions

from three dimensional images as opposed to the common two dimensional X-Ray.

Suggesting that subject positioning during imaging, particularly external femoral ro-

tation, can result in apparent changes to neck axis length and neck shaft angle, a

finding supported by work on the affect of anteversion by Cheng et al. [147]. This

parameter may well be affected by the limited training set as it is known to be gener-

ally larger in women than men [146], however with only 21 femurs it was not possible

to separate male and female subjects to generate gender specific models.

The present study corroborates previous findings that the majority of failures

under fall loading occur in the intertrochantic region [149, 102, 51, 150, 121, 151].

Keyak et al. [150] published some details of the failure locations of femurs under a

fall load which were tested experimentally as well as modelled computationally. The

experimental tests done in Keyak’s work were those replicated in the current study.

The fracture site was identifiable for 15 tested femurs. Although the descriptions of

fracture initiation sites are a little vague, it can be seen that a similar distribution

of results has been found in both Keyak’s work and this study (Table 4.10).

Keyak - FE (%) Keyak - Exp. (%) Statistical Model (%)

Trochantic
60 47

29

Intertrochantic 25

Cervical 13 40 14

Multiple - - 32

Subtrochantic 0 13 0

Table 4.10: Table showing the percentage of femurs identified with various fracture
location origins. Comparing the results seen by Keyak et al [150] for the 15 femurs
where experimentally identifiable failure locations were compared to FE predictions,
with the failure locations predicted by this study using femur models generated from
a statistical model.
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There are limitations to this work. The model may suffer from the relatively

small size of the training data set, as discussed in the previous chapter. The data

set is taken from quite a general population group and so does not incorporate fac-

tors such as ostoeporosis, tumours or other pathologies which would weaken bone.

Investigations performed on the model and on the generated femur geometries and

material properties used in the current study do, however, show that realistic data

was produced which was a fair representation of the training set. Ideally separate

models would be generated for different genders, ages, ethnicities and pathologies, as

these are known to affect femoral geometry and bone density [103, 143]. Therefore

biases in the training set could, in theory, influence the statistical result of some

geometric parameters.

The finite element analysis performed on the data was relatively simple, mod-

elling bone - a material with anisotropic, non linear mechanical behaviour - as an

isotropic, linear material and calculating the effect of static load. This simplification

follows that of the study being replicated and greatly reduces the complexity and

computational cost of the simulations. A later study by Keyak [155] repeated the

computational simulations incorporating non linear behaviour, although still using

isotropic material properties, stance loading the model over a number of displacement

steps until a failure criteria was reached. A significant but small increase between

predicted and actual fracture load correlation was seen. Since the aims of this study

were to look for failure trends and not accurate fracture load prediction, the gains

of this technique were outweighed by the additional computational complexity. In

addition, the linear method and the fact that an impact rather than progressive load

was being modelled, meant that the precise value of load applied was not crucial to

the result. The load chosen, 1× bodyweight, was a realistic value for a fall and proved

sufficient to highlight an ’at risk’ group from the data set. A further simplification to

this FE analysis was the lack of inclusion of muscle forces, surrounding tissues and

impact surface. Again this was possible as the work was aiming to replicate Keyak’s

previous work in order to validate the results produced, so showing that the model

would replicate the same trends and not to accurately simulate real world scenarios.

This case study has shown the potential of this methodology to generate large

numbers of models which describe the variations present in the data used to create

it. The ability to characterise the population wide variability potentially has use-

ful applications in both computational-experimental analysis and clinical settings.

Keyak et al. [150] is a good example of the type of experimental-computational work

which could be enhanced by incorporating this statistical modelling technique, where

relatively small number of cadaveric femurs were tested, 18, and compared to com-

putational models. If the statistical model was used to replicate the experimental
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test results accurately, the model could then be extended to a wider population of

femur models with some confidence. Another possible use of being able to run such

large scale simulations is the ability to gain an understanding of how factors affect a

population, such that parameters taken from any patient can be compared to these

to see how they fit. This could give a more sophisticated indicator of risk factors

than current methods such as the World Health Organisation’s arbitrary cut off, set

at 2.5 standard deviation from the mean, to quantify predictions for osteoporotic hip

fracture.
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4.5 Conclusions

This study of femoral fracture has shown that the previously generated statistical

femoral model is capable of being used to drive a large scale, multi femur analysis.

The process was fully automated and completed within ∼12 minutes per femur. The

results extracted from this 1000 femur analysis are meaningful, in that they agree

with trends highlighted in existing clinical and computational studies. However, due

to the limitations of the model’s training set, it would be unwise to try to draw

population wide conclusions at this stage. There is clear potential for this to be

possible in the future, suggesting statistical models could be used as the means of

incorporating interpatient variability into computational analysis.
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Chapter 5

Automated Implantation of

Femoral Resurfacing Implant 1

5.1 Computational Analysis of Femoral Resurfac-

ing Implants

Computational analysis of orthopaedic implants has become commonplace in biomed-

ical research and preclinical implant testing. A severe limitation of the vast majority

of studies is the use of a single, often generic, bone model - failing to acknowledge

the differences in bone geometry and quality seen between people. This interpatient

variability has been recognised as having a significant influence on results in all areas

of assessment from clinical data to experimental and computational analysis, and in

a range of studies whether investigating implant performance [31, 52, 6, 3, 7, 37] or

natural occurrences such as falls [51, 150, 156].

The previous two chapters have shown how the statistical model of the femur

developed in this work has been able to produce a wide variety of bone models,

representing interpatient differences in morphology and bone quality. In addition it

has been shown how this statistical model can be used to drive a large scale analysis of

fracture risk in the intact femur. This was possible due to the computational analysis

being fully automated. Femoral implant assessment would benefit from the ability

to incorporate intersubject variation to better establish performance in the patient

1Bryan, R., Nair, P.B., and Taylor, M. An Automated, Large Scale Finite Element Study into
the Influence of Femoral Head Resurfacing on Load Transfer in the Proximal Femur, submitted to
Journal of Biomechanics: October 2009 - based on the work in this chapter
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population. In particular femoral head resurfacing success is known to be sensitive

to patient selection. The procedure is regarded as an attractive option over total hip

replacement for younger, active patients as it offers greater bone conservation and

more natural joint kinematics [157]. It has proved markedly less successful in older,

female patients.

In vivo, femoral neck fracture is known to be a common reason for revision fol-

lowing Resurfacing Arthroplasty (RA), often occurring in the first few months after

surgery. Computational studies have highlighted two possible issues following resur-

facing which could act as failure modes; namely bone resorption due to stress shielding

and increased strain in the neck around the proximal implant rim. However there

is debate as to the extent to which these mechanisms influence failure, with some

believing factors relating to surgical errors, such as notching, disrupted blood supply

or poor positioning, are the major cause of early failure. With evidence showing that

load transfer is altered by the insertion of a resurfacing component the ability to

model a wide variety of femur representations could help to indicate whether there

are patient traits which make failure more likely or whether it is more probable that

surgical influences are the key culprit. The statistical modelling approach allows suf-

ficient numbers of analyses to be run for meaningful statistical interrogation to be

performed, which is not feasible in traditional computational studies.

Aim of Automated Implantation Study

The aim of the work described in this chapter is to establish a robust methodology

for allowing fully automated computational testing of orthopaedic implants over a

large number of models. In addition, it is hoped that this will demonstrate a feasible

approach to using statistical modelling techniques in implant analysis. The adopted

study will carry out a multi femur FE study into the influence of femoral head

resurfacing on load transfer through the proximal femur. To achieve this, a system

for correctly sizing and positioning the implants into any given femur geometry will

need to be established which does not require any manual intervention, as well as

a method of correctly performing the Boolean operations on the femurs to simulate

surgical ’cuts’ and generate a cement layer between the bone and implant.

In order to evaluate the success of the developed automated implantation method-

ology the study will emulate the analysis performed on 16 femurs by Radcliffe and

Taylor [7]. In this previous work each example femur was analysed in both a resur-

faced and intact configuration, relying heavily on manual model generation and im-

plantation. The trends in strain change seen following femoral resurfacing were then
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investigated using FEA. If similar trends are observed in the current work using a

generated, automatically implanted set of femurs then this would help to suggest that

the methodology is sound. In addition, it is hoped that testing a large number of

models will allow statistically meaningful interrogation of femurs with outlying strain

results. Therefore it will be possible to identify any geometric or material character-

istics which are related to unusual strain patterns, particularly those in areas which

have been related to failure such as the femoral neck and head.

5.2 Resurfacing Arthroplasty

5.2.1 Brief History of Joint Replacements

Joint replacements are primarily regarded as a final treatment option for degenerative

diseases such as arthritis and osteoporosis. These diseases are often age related,

therefore it is unsurprising that with the increasing number of people over the age of

60 in the population these types of procedures are becoming more and more common.

Joint replacements may also be considered for the treatment of other conditions, as

discussed in Section 5.2.2.

Figure 5.1: Illustration of resurfacing hip

replacement (top) and total hip replace-

ment (bottom), showing required surgical

cuts (left) and representation of successful

implantation (right). Adapted from im-

ages available at www.mayoclinic.com and

www.portlandhipresurfacing.com.

The most prevalent, long standing

and successful type of joint replacement

is hip arthroplasty (although in recent

years knee replacement rates have in-

creased to match those for hips and even

exceed them in some countries). Sir

John Charnley is regarded to have pi-

oneered what is recognisable as a mod-

ern Total Hip Replacement (THR) in the

1960’s, developing a prosthesis consist-

ing of a metal stem with a small ball

acting as a femoral head which was fixed

into the femur and an Ultra High Molec-

ular Weight Polyethylene (UHMWPE)

cup, which was fitted into the acetabu-

lum (Figure 5.1). The components were

secured in place using medical bone ce-

ment, made from a polymer called poly-

methyl metharylate (PMMA), which acts as a grout or putty in preventing movement
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between the implant and bone. Cementing has the advantage of making the joint

weight bearing almost immediately, avoiding a period of immobility while the bone

’heals’ to stabilise the components. This is particularly useful in elderly patients who

may never rebuild the muscle strength and mobility lost if subjected to prolonged

inactivity. However problems can arise due the use of cement. In the short term

thermal damage can occur in the surrounding bone during the exothermic cement

curing process and in the longer term the cement mantle can suffer brittle failure.

This is more common in active patients and can result in implant loosening.

In the 1980’s cases of osteolysis were seen to be rising, this is where pockets of

bone are resorbed by the body leading to a loss of bone stock around components.

The condition was blamed on bone cement and thus developments were made towards

uncemented implant designs, relying on bone in-growth into the prosthesis surface to

provide stability [158]. This was encouraged by the inclusion of textured surfaces and

the use of hydroxyapitite coatings. Bone cement was not abandoned as its omission

did not reduce osteolysis rates and cementless designs had several drawbacks. Firstly

they were bulkier, requiring greater initial loss of bone stock, and secondly in order

to stabilise the joint it must be unloaded for a period of time so bone in-growth can

occur. These issues make them unsuitable for some patients, specifically those who

are older with poor bone quality where the likelihood of cement failure is low. A

further alternative aiming to optimise the benefits of cement is the hybrid configu-

ration, where the acetabular side is cemented but the femoral side is not (a reverse

hybrid being the opposite way around).

It is now understood that osteolysis is due to the body’s reaction to wear debris,

namely particles of UHMWPE. In light of this it follows that bearing surfaces have

been a focus of development in order to reduce the wear debris produced by the

conventional metal ball on polyethylene socket. Improvements in wear properties

were made by using either a ceramic ball, a metal on metal bearing surface or, with

the lowest wear rate, ceramic on ceramic. The advances in metal on metal bearing

surfaces allowed resurfacing designs, originally trialled unsuccessfully in the 1960’s,

to be implemented (fig. 5.1). These showed reliably good results in the patient

group least satisfied by conventional THR, the young and active. The minimal bone

resection and large bearing diameter allow more normal movement and load transfer

through the femur and relatively straight forward revision options for conversion to

a THR when required [157].
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5.2.2 Reasons for Joint Replacement and Procedure Rates

Several national joint registries exist around the world, each collecting valuable pa-

tient data relating to a range of aspects surrounding joint replacement. The data

stated in the following section have been taken from the 2008 Australian Orthopaedic

Association National Joint Replacement Registry [61], the 2008 National Joint Reg-

istry for England and Wales [159] and the 2007 Swedish Hip Arthroplasty Register

[160].

Figure 5.2: Illustration of how

the progression of osteoarthritis

affects a joint, from healthy (A)

through mildly affected (B) to

severely osteoarthritic (C), im-

ages adapted from Campaign

[161].

Joint replacement is an irreversible procedure

involving traumatic and highly invasive surgery. As

a result it is only performed as a last resort when a

patient’s pain and/or mobility reaches such a point

as to be seriously detrimental to quality of life. If

it is possible alternative treatments are adopted in

preference to surgery, these include; physiotherapy,

to improve strength and mobility, and pharmacolog-

ical treatments to control inflammation and pain.

However it is usually when such treatments are no

longer able to manage pain that joint replacement

is considered.

By far the most common reason for hip replace-

ment is the treatment of osteoarthritis, reportedly

lying behind 78-95% of primary THR and 94-95% of

hip resurfacings. Additional reasons include avas-

cular necrosis of the femoral head (2-4%), femoral

neck fracture (2-11%-typically unsuitable for treat-

ment with RA), dysplasia (1-3%) and rheumatoid

arthritis (1-2%). Osteoarthritis is a degenerative

disease which leads to the damage of joint surfaces

and changes in the underlying bone, currently caus-

ing approximately 2 million people a year to seek

medical attention in the UK alone [161]. The dis-

ease is characterised by roughening and thinning of

the articular cartilage which facilitates smooth joint

motion and osteophyte formation, boney growths

at the joint edges. Externally the effects of this no-

ticeably alter the joints appearance as the synovium
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swells while the capsule and surrounding ligaments thicken and change shape. The

effect of osteoarthritis is depicted pictorially in a generic joint in figure 5.2. In severe

cases of the disease the cartilage will often be worn away completely, leaving bone

rubbing against bone which causes extreme pain, while the soft tissue changes and

swelling drastically limit mobility. The disease is commonly associated with age, as

joints become worn, healing processes slow and muscle strength decreases. However,

there are other factors which can increase the risk of its development. After age the

next most notable indicator is gender, women are more likely to suffer than men, as

well as underlying hereditary factors, obesity and previous joint injury in decreasing

order of importance [161].

5.2.3 Failure of Femoral Resurfacings

Despite extensive testing and development of prosthesis design, material and im-

plantation methods, there are still a notable percentage of hip replacement failures.

Failure does not only relate to catastrophic breaking of the implant or bone surround-

ing it, but also covers those cases where function is so poor or pain so severe that

reoperation is required. Revision rates vary depending on a combination of factors

including implant type, age and gender, with surgical error also having an influence.

Revision rates for resurfacings are a little higher than those seen in THR (reported

rates for resurfacing are stated to be 2.8% in UK [159]). This is indicative of the

younger more active age group involved. However, with suitable patient selection

alongside appropriate and skilful surgical technique, survivorship is comparable to

conventional THR [162].

Figure 5.3: Radiographs of femoral resurfacing components showing: left - neck
fracture with underlying aseptic loosening [163], center - degeneration of bone stock
in femoral head beneath resurfacing component [164] and right - notched femoral neck
(superiorly) with fracture propagating from the superior head-neck junction [162].

The most common reason for RA, and THR, revision is aseptic loosening, 45-

68%. This is an umbrella term which describes loss of fixation leading to implant
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instability when no signs of infection are evident (fig. 5.3-left and center). There are

several main failure mechanisms which are recorded in this bracket;

• Osteolysis is a biological response to wear debris. Wear particles originating

from sources such as a UHMWPE cup, worn cement mantle or metallic debris,

infiltrate the bone-implant interface they can be attacked by the bodies natural

immune system response. This engulfs the particles at the expense of the bone

at the boundary, which is transformed into a far less stiff and less supportive

soft tissue, reducing implant fixation in these areas.

• Failed bonding can occur if sufficient integration at the bone-implant (if un-

cemented) or bone-cement interface is not achieved. The result is excessive

micro-motion of the implant which can, if exceeding 150µm, lead to bone re-

sorption and damage accumulation at the interface. In addition cracks can then

provide a path for wear debris to reach the bone interface and accelerate the

process through osteolysis.

• Stress shielding occurs as a result of load paths through bone being altered by

the implantation of a prosthesis. Due to the relative stiffnesses of the metal

implant and bone a greater proportion of joint load is transmitted through the

implant, thus unloading the bone which can lead to resorption. Stress bypass is

similar although is often associated with poor proximal and good distal fixation,

thus unloading the proximal bone which is resorbed. Both scenarios can lead

to weakening of the bone, reduced implant fixation and a risk of fracture.

• Remaining notable failure mechanisms are dislocation, deep infection, fracture

(of the bone or implant), pain and component wear.

Figure 5.4: Radiograph of femoral

neck fracture following resurfacing

procedure [165]

According to the 2008 National Joint

Registry for England and Wales [159] revi-

sion rates for resurfacing show there was a

notable rate of fracture (25%), pain (23%)

and a relatively low occurrence of disloca-

tion (5%). Femoral neck fracture is a con-

cerning complication which, due to the na-

ture of THR, is a unique risk to resurfac-

ing arthroplasty (fig. 5.4). The prevalence of

neck fracture is indicated to be even greater

by the Australian Orthopaedic Association

National Joint Replacement Registry [61] which states that neck fracture accounts
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for over 40% of resurfacing revisions, while Shimmin and Back [166] quote the inci-

dence of fracture at ∼2%. Clinically, neck fractures are often seen within the first

few months of surgery [165, 167].

There is debate as to the dominant reason behind fracture risk, as ever it is

likely to be a multi-factorial problem where combinations of observed influences con-

tribute [45, 168, 4, 169, 170, 166, 162, 165, 171]. Often damage done during surgery

or poor surgical technique are blamed for weakening the femoral neck. While prepar-

ing the femoral head there is potential to cut/disrupt blood supply which would lead

to necrosis (death of the blood starved bone), this would then be resorbed and ef-

fectively disappear as a load bearing entity or surface for fixation. Notching of the

neck, occurring proximally through inaccurate cutting of the femoral head, is also

blamed for establishing a stress concentration liable to be the source of fracture (Fig-

ure 5.3). Amstutz et al. [172] describes the link between poor implant seating and

neck fracture, where any exposed reamed bone would act as a stress riser which could

lead to fracture. Damage to the underlying bone has also been observed to occur

through trauma during impaction and thermal damage from cement curing. Surgical

variability is recognised as influencing fracture and potential range of motion. The

related surgical factors include; implant malalignment (varus) which is seen to lead to

less natural load transmission through the proximal femur, incorrect implant sizing

and poor cementing - where uneven, insufficient or too generous cement layers can

accelerate failure [172, 4].

Strain shielding following resurfacing has been linked to bone resorption in the

femoral head, and potential failure through head collapse and loosening. Evidence of

resorption has been observed in clinical retrievals [45, 168, 173]. However, this failure

mechanism has been widely accepted as not being the main reason for loosening or

fracture. Yet it is logical that pockets of resorbed bone will weaken the underlying

bone structure which could lead to elevated stresses and so fracture (Figure 5.3).

This process would take time to evolve, so it is unlikely that it would lead to the

short term failures observed in many resurfacing neck fractures. If a patient already

has poor bone quality or cysts then the chances of successful resurfacing are reduced

- thus appropriate patient selection is very important.

5.2.4 Computational Studies of Femoral Resurfacing Arthro-

plasty

Resurfacing hip replacements have not escaped the computational interrogations

which have become widely used through bioengineering research and development.
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There have been a range of finite element studies since the mid 1980’s to analyse

the strengths and weaknesses of the design concept [174]. In 1985 Huiskes et al.

[45] found that their FE model of a resurfaced proximal femur did not predict the

physiological strain patterns which were expected to result from this implant design.

Their model showed a significant proportion of joint load being transmitted through

the implant to the bone at its superior rim, as opposed to directly through the head

to the medial cortex. It suggested that this change in load path would inevitably lead

to stress shielding in the head and resorption, particularly at the bone-implant inter-

face, thus providing a possible mechanism explaining the observed early RA failure

through loosening. Watanabe et al. [175] generated a three dimensional finite element

femur model in an intact and an implanted form, allowing comparison of the stress

and strain patterns of both when subjected to identical loading conditions relating

to ambulation with crutches. This study again showed high stress at the implant rim

and stress shielding in the antero-superior region beneath the implant, which could

lead to long term loosening.

These early studies were simplified, using generic or single bone representations

and describing bone material as either cancellous or cortical with a single modulus

value assigned to each. Later work has increased in complexity, using patient specific

models with geometry and material properties infered from CT, although on the

whole still only using a single model. An example is Taylor [84], where the changes

in load transfer through the proximal femur after RA were examined - in particular

the influence of the metaphyseal stem (diameter and degree of contact) and cement

mantle thickness. Rather than investigating the femur in isolation, Ong et al. [49]

developed a patient specific model incorporating the pelvis and sacrum as well as

the femur. This model was then used to investigate the influence of fixation and

interface conditions on stress and strain alteration through the femur. Radcliffe and

Taylor [37, 7] applied a multi model analysis to two aspects of resurfacing surgical

variability: cementing technique and varus-valgus alignment. Their analyses each

used 16 manually generated and implanted patient specific models, incorporating

the influence of different geometries and material properties.

The results of the majority of recent computational studies agree on the main

features of load alteration following RA, namely strain shielding in the superior head

and elevated strain in the femoral neck with peak strain at the implant rim. There

is also agreement that excessive, insufficient or uneven cement mantles are detri-

mental to survivorship as is a varus implant alignment [174]. However, as with the

clinical data, there is no clear consensus as to whether these changes are sufficient

on their own to initiate a failure mechanism or whether an additional influence is

required. These could include poor patient selection, where low bone quality leads to
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poor results, or an accidentally introduced notch in the neck. Although Long et al.

[167] argue that short term neck fracture is not always accompanied by evidence of

notching, suggesting that high strain concentrations at the implant rim may cause

damage accumulation leading to fatigue failure. The influence of interpatient and

surgical variation has rarely, if at all, been incorporated into these analyses yet it

is widely felt that differences in bone quality, geometry and implant positioning will

affect implant performance.

5.3 Methodology

Establishing a methodology for the automated generation, implantation and analysis

of a large number of different femur geometries required the solution of a range of

problems which will be discussed as the stages of the process are explained. The study

aimed to use the statistical model developed in Chapter 3 to generate a population

of 400 unique, realistic FE ready femur models to examine the change in strain in

the proximal femur following resurfacing (this number was chosen to satisfy the time

restrictions the study was subject to). In order to achieve this the entire process had

to be robust, reliable and fully automated from initial model generation through to

post processing. The stages necessary to achieve this are as follows, all of which were

controlled using Matlab:

1. Sample the statistical shape and intensity model to generate 400 FE femur

models using the sampling boundaries described in Chapter 3.

2. Analyse each femur to calculate geometric measures and landmark points, in-

dicating model specific implant size and position.

3. Perform Boolean operations to simulate the cuts made to the femur during

surgery and to create a cement layer between the bone and implant, and finally

position the implant.

4. Remesh the newly cut femur and reallocate elemental material properties.

5. Apply model specific loads to simulate level gait.

6. Run each model through an FE solver and extract resulting elemental volume

and strain results in both their implanted and natural state.

7. Post process the strain results to calculate the strain changes between the intact

and implanted instances, as well as the geometric and material characteristics

of the femurs.
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5.3.1 Generation of a Set of Femurs for Analysis from a Sta-

tistical Model

A statistical model of the whole femur was generated using principal component anal-

ysis from a training set of 46 available CT scans. The set consisted of 15 females and

31 males aged between 43 and 91, describing a wide range of femoral morphologies

(as described in detail in Section 3.5.1). The statistical model was able to generate

synthetic femur models as high quality FE-ready, tetrahedral meshes with element

specific material properties. As detailed in Section 3.6, the statistical model was

used to produce a population of femurs by creating new PCA weightings based on

the training data. This was done by varying the weightings between ±3σbm , where

σbm was the standard deviation of the individual shape parameters across the training

set, using statistically independent random numbers drawn from truncated Gaussian

distributions. The created models reproduced the variability in the set whilst main-

taining realistic bone geometries and material property distributions. Automatic

mesh quality checking was incorporated into the model generation process to ensure

high mesh quality was maintained.

5.3.2 Technique for Virtual Implantation

Model Specific Alignment and Sizing

In order to create a totally automated process for modelling femoral resurfacing it

was key to establish a system for identifying anatomical landmarks by which a set of

reference points could be constructed to position an implant. It was also essential to

be able to measure the femur to choose the correct prosthesis size to fit. The starting

point for characterising each femur was therefore made by specifying groups of nodes

and elements marking areas of the proximal femur, i.e. the femoral neck and head,

on the baseline geometry. This was possible despite each generated femur having a

unique geometry because they were all described by an identical mesh with nodal

and elemental correspondence. Using the sets of elements defining the femoral head

and neck, model specific positioning points were established by fitting three spheres

using a least squares method.

The first sphere was fitted to the femoral head, the center of this sphere indicated

the natural head center and its diameter was used to make an initial guess at the

correct implant size (Fig. 5.5a). The second and third spheres were fitted within
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Figure 5.5: Illustration of methodology used to identify implant alignment by fitting
spheres to the proximal femur. (a) sphere fitted to the femoral head - indicating
femoral head diameter and natural head center, (b) two spheres fitted to the upper
and lower parts of the femoral neck, (c) the centres of the two spheres are found and
(d) indicate the neck axis line.

the femoral neck, one to the proximal side and one to the distal. The centres of the

spheres were joined to indicate the femoral neck axis (Fig. 5.5b-d), this axis was used

as the neutral axis for the femoral implant thus fixing its alignment. By translating

the natural head center onto the neck axis to give the implant head center the final

position of the implant was set.

A concern with the technique was that it would result in notching of the femoral

neck, as a result of poor alignment or incorrect implant sizing. Therefore once the

implant size was selected and its position fixed the configuration was checked to

ensure that notching did not occur. This was done by calculating the neck diameter

at the proposed location of the implant rim and comparing this to the implant rim

inner diameter. As the study did not intend to incorporate implant positioning as a

variable, instead maintaining alignment along the neutral axis for all implants, this

problem was solved by altering the size of the component. If the difference between

the neck and implant rim diameters was too great then a step up or step down in

size was made and the measurement repeated.

Boolean Operations- Simulating Surgery

HypermeshTM(Altair Engineering Inc, USA) was used to perform the Boolean oper-

ations required to carry out virtual implantation. This process was automated using

a command script written for each femur individually, containing the implant align-

ment coordinates found in the previous step and the details of which implant size

to import. In addition to a geometric model of the implant, a cutter geometry was

also imported which was matched to the relevant implant size. Each cutter consisted

of two parts: an outer profile and a stem guide, which produced the external head
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profile needed for resurfacing. The final geometry imported was a cement layer blank

which would be cut to match the femur at a later stage, resulting in a 3mm thick

layer between the implant and bone with no cement present around the implant stem

which remained out of contact with the surrounding bone.

The statistical model generated femur representations as solid, tetrahedral meshes

which could be imported directly into Hypermesh. However, Boolean operations on

meshes were not possible so the models were converted into solid geometries. In order

to ensure this process was robust it was done in three steps; shrink fitting a surface

mesh to the femur, then fitting a series of geometric surface patches to the surface

mesh before finally converting the surface patches into a solid geometry. To reduce

computational complexity the femur was partitioned one third of the way down its

length. This allowed a higher mesh density to be specified in the proximal femur (the

region of most interest) and a lower mesh density in the distal femur, thus reducing

the overall size of the model for later FEA.

Figure 5.6: Images of implantation process. From left to right: Converting femur to
a solid geometry and splitting the femur into proximal and distal sections, cutting
femoral head external profile, generating cement layer, cutting the guide stem hole,
position femoral implant and finally meshing components.

Figure 5.6 shows the stages of Boolean operations carried out after aligning the

implant and cutters over the femur. From left to right: the external profile of the

femoral head was cut using the first part of the implant specific cutter, the cement

blank was then aligned and its internal surface cut using the cut femoral head (the

external profile matches the implant) and finally the stem guide was cut into the fe-

mur. By performing the steps in this order it made certain that the three components

fitted together and cement filled any defects in the femoral head even if they were
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deeper than the 3mm target thickness. At this stage the implant was positioned,

leaving the implant, cement mantle and bone as solid geometries. Each of the four

parts of the model were then converted into surface meshes so that they could be

exported to dedicated meshing software and converted into the final solid, four-noded

tetrahedral meshes needed for analysis.

The Boolean stage was the most vulnerable to failure due to the complexity of the

operations being performed on the intersecting shapes, especially as the femoral head

was far from a regular geometry. It was found that these errors preventing Boolean

cuts could often be solved by applying minor transformations to the cutter/implant

geometries’ positioning. A fail safe loop was therefore coded into the process to

shift the imported geometries 0.001mm in the x,y and z directions if an intersection

error caused the code to crash. This could be performed up to five times before the

geometry was abandoned and the next model was attempted. The stage of converting

an intact model to a set of surface meshes representing an implanted configuration

was processed in between 6 to 10 minutes, depending on the model in question and

if any implant shifts were required.

Remeshing and Reassignment of Material Properties

Figure 5.7: Cross section through

a generated, automatically implanted

femur after remeshing, illustrating the

changes in mesh resolution from im-

plant to cement to bone.

The four surface meshes representing the

implanted model as proximal femur, dis-

tal femur, cement mantle and implant were

imported into Ansys ICEM CFDTM(Ansys

Inc., Cannonsburg, PA). This software was

scriptable and allowed the components to be

meshed with different element densities while

retaining rigidly bonded interfaces. This re-

duced computational cost in later FEA by

limiting the ultimate number of elements in

the model and by avoiding the need for con-

tact analysis, thus reducing later computa-

tional complexity which would be introduced

by having to model contact in order to join the components together. The distal fe-

mur was meshed with 2-4mm elements, the proximal femur with 0.5-1.5mm and the

implant and cement layer with 0.75-1.5mm elements (Figure 5.7).

As the femur had been cut and completely remeshed from the original instance

generated by the statistical model it was necessary to reassign material properties
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to the new elements. This was done by interpolating the original model’s modu-

lus at its nodes onto the new bone nodal positions, from which elemental modulus

could be determined by averaging over the four nodes making up each element. The

interpolation used an in-built Matlab three dimensional data gridding function -

griddata3. The implant was given a modulus of 200,000 MPa and the cement man-

tle 2,800 MPa [37]. The Ansys remeshing process and material reassignment was

completed in ∼1-2 minutes per model.

5.3.3 Subject Specific Finite Element Analysis

Figure 5.8: Illustration of the loading

condition defines by Heller et al. [33]

A static, linear elastic FEA was performed

on each synthetic femur in both implanted

and intact forms. Identical, subject specific

loading conditions were applied to simulate

level gate following the patterns described

by Heller et al. [33] (figure 5.8). These

loads are prescribed in terms of body weight,

which was unknown for the synthetic femurs

and therefore had to be estimated. This

was done by predicting stature, using the

0.2675:1 ratio of femur length to height de-

fined by Feldesman and Fountain [154], then

randomly assigning a BMI from a distribu-

tion curve generated from data from the Na-

tional Health and Nutritional Examination

Survey (NHANES) 1999-2002 [153]. Subject

weight, in kilograms, could then be calcu-

lated by multiplying this assigned BMI by

the square of the predicted height in meters

(a similar approach to applying subject spe-

cific loads was used in the femoral neck fracture study, Section 4.2.3).

As shown in Figure 5.8 each femur was constrained distally and subjected to

two loads proximally, which applied a hip contact force to the femoral head and an

abductor force to the greater trochanter [33]. The distal boundary condition was

set by fixing the lowest 30mm of nodes on the femur surface. The contact force was

centred on the highest point of the femoral head and evenly distributed over a 20mm

diameter area, the abductor force was also evenly distributed over an equivalent area

centred on the most lateral node of the greater trochanter.
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The models were now fully defined and ready for analysis. The model geometry,

described by nodal coordinates and element connectivity, with associated elemental

modulus and boundary conditions were written out as an input file for Marc◦c. The

processes of writing this file, performing the FE and saving the results were completed

in ∼10 minutes.

5.3.4 Automated Post Processing

Figure 5.9: Illustration of the sec-

tions defined in each femur to al-

low the changes in strain through

the proximal femur to be anal-

ysed.

Post processing extracted the elemental strains

and elemental volumes recorded for each anal-

ysed model from both the intact and implanted

configurations. The change in load transfer

through the femur which occurred as a result

of resurfacing was assessed by comparing these

results, however this could not be done directly

as the implanted configuration had been cut and

remeshed. The approach devised was to interpo-

late the strains from the intact femur onto the

implanted femur mesh by nodal position, allow-

ing the same volumes and areas of bone to be

directly and fairly compared.

To obtain a full picture of how strain varied

through the proximal femur, 16 sections were au-

tomatically defined in the implanted model using

the neck axis identified for implant alignment and

planes along and perpendicular to it. This gave

an anterior and a posterior section, each of these

having 4 superior and 4 inferior portions (Fig-

ure 5.9). Planes were defined to cut through at

the following points; the femoral head center, the

base of the implant, base of the femoral neck and

a horizontal cut one third of the way down the

length of the femur. The sections partitioned by

these planes were used to identify groups of elements and so the strain and volume

information for these could be found, allowing the mean change in strain in each

section to be calculated. Examining the data in this way allowed the potential for
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further analysis to be done such as looking at the strain distributions through sec-

tions and volumes of bone exceeding strain thresholds, as well as potential for femur

by femur comparisons for those models with extreme results.

In addition to the strain results a range of geometric and material property met-

rics were extracted to allow the performance of resurfacing to be compared to the

characteristics of the femurs being examined. These were measured using element

volumes and nodal markers identified on the baseline, as in previous work to study

the range of variation in the femurs generated by the statistical model (Section 3.6.4)

and in the femoral neck fracture investigation (Section 4.2.5).

5.4 Results

5.4.1 Assessment of Implantation Methodology

In total 400 models were successfully generated and analysed as both intact femurs

and following a virtual femoral resurfacing procedure. The stages involved in this

were; model specific sizing and alignment of resurfacing implant, Boolean operations

to perform virtual implantation, remeshing and reassignment of material properties,

calculation of model specific loading conditions, finite element analysis of the system

and finally complete post processing of strain results and model characterisation.

Both intact and implanted analyses, as well as post processing comparisons between

the two, were performed at a rate of more than four models per hour (using an Intel

Xeon X5355 2.66GHz processor). The methodology previously described was able to

achieve this as a fully automated process with a success rate of ∼85% of generated

femurs completing all stages through to fully processed strain results without error.

Nearly all of the analyses which failed to complete came to a halt during the Boolean

operations, these failures occurred randomly through the generated set. The small

number of further failures were related to model name confusions on importing the

components to Ansys ICEM for volume meshing.

Assessing the success of the implantation methodology was approached in three

ways; firstly by visually inspecting each model to manually check that the sizing

and orientation of the implanted component was acceptable, secondly comparing

the distribution of implant sizes to those used clinically and thirdly by comparing

the change in strain trends with previous work where implantation was performed

manually. The later of these is described in the next section.
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Figure 5.10: Illustration of a sample of generated femur instances of varying mor-
phology with automatically sized, aligned and implanted femoral resurfacing compo-
nents. Top: external view of each model. Bottom: section views through femoral
head showing modulus distribution, implant and cement layer.

Manual inspection was potentially a tedious task, therefore to reduce this an au-

tomated script was run to capture screen shots of each processed model - an external

view and sections showing modulus and strain distribution. Once generated it was

straight forward to assess each model using these images. Figure 5.10 shows a set of

randomly chosen resurfaced models with varying size and geometry as both an ex-

ternal view and as a section view through the proximal femur. The images indicated

that the resurfacing procedure had been carried out appropriately in all cases.

The distribution of assigned implant sizes for this study and the proportion of

global sales accounted for by implant size (excluding the US) are illustrated in Fig-

ure 5.11. The trends displayed in the two graphs relating to implant size popularity

are very similar, although the extremes are different. As discussed previously (Sec-

tion 3.6.4) the generated data set is slightly bigger than the population indicated

by the NHANES survey, which is a reflection of the training data. The sales data,

however, covers a global market and therefore a range of ethnicities. It is likely that

this has resulted in a range of smaller patients, for example from Asia, who are not

currently present in the statistical model.
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Figure 5.11: Graph illustrating the percentage distribution of implant sizes assigned
by the automated methodology described to the femur population developed in this
study (left), and the percentage of implant sizes used clinically (right). Clinical data
is taken from global sales figures (excluding data from the US).

5.4.2 Predicted Trends in Strain Alteration Through Prox-

imal Femur

Strain changes were calculated between the intact and implanted models in the 16

predefined sections making up the proximal portion of each generated femur, thus

enabling the effect of femoral resurfacing on load transfer to be investigated. Fig-

ure 5.12 shows the average percentage strain changes found by Radcliffe et al. [176]

in 16 manually implanted femurs (top) along with the strain changes observed in this

study of 400 automatically implanted, synthetic femurs (bottom). Although Rad-

cliffe sectioned the proximal femur into 20 parts it is still evident that both show a

similar trend in strain change and a similar magnitude of change, in the majority of

sections.
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Figure 5.12: Boxplot of the average change in strain seen by Radcliffe et al. [176]
across 18 proximal sections for 16 manually implanted femurs (top) and across 16
sections of the proximal femur illustrated for 400 automatically implanted, generated
femur models (lower). Positive values indicate an increase in strain, negative values
a decrease.

Figure 5.13: Images of highest strain regions following resurfacing, showing elevated
strains through the femoral neck at the proximal implant rim and on either side of
the implant stem.

The automated study showed that following resurfacing there was clear evidence

of strain shielding within the femoral head in all models, most dramatic in the su-
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perior sections 1 and 7 where average strain reductions of 81% and 59% were seen.

The other main change in strain indicated was an increase in the superior femoral

neck, sections 3 and 9, most notably in the anterior portion. On closer inspection this

trend tended to relate to a high strain concentration at the proximal implant rim and

elevated strains on the anterior and posterior sides of the implant stem within the

femoral neck (Figure 5.13). Although the mean increases seen in the neck sections

of this group were not large (11% in section 3, 1.5% in section 9) the largest strain

increases observed were, at almost 60%.

5.4.3 Analysis of Outlying Strain Results

The greatest strength of the technique described in this chapter was that the large

number of models run allows the possibility of analysing those poorly performing,

vulnerable instances which would appear as outlying or extreme strain results. The

femur areas of most clinical interest in relation to failure mechanisms following resur-

facing are the femoral head and femoral neck, therefore models suggesting excessive

bone remodelling in these sections were interrogated to attempt to find any signif-

icantly different material or geometric characteristics between these and the main

group of femurs. Four outlier groups were identified, containing those femurs ex-

ceeding a two standard deviation increase/decrease from the mean change in strain

in any of the femoral head or neck sections respectively, and comparisons were per-

formed using one-way ANOVA tests. The outlier groups contained between 18 and

59 models, each group was analysed in respect to the extensive list of metrics listed

in Section 4.2.5.

Examination of instances with outlying strain results in the head showed some no-

table differences between those femurs exhibiting greater or less strain shielding than

the majority of the group, the metrics found to be statistically significant are detailed

in Table 5.1. The femurs with the least strain shielding exhibited a higher percent-

age of cortical bone throughout (head p<0.0005, neck p<0.025 and intertrochanter

p<0.005), the findings also indicate that they were bigger than the others (head vol-

ume p<0.025 and neck volume p<0.025). Another key set of results related to the

proportions of the femur, where this outlier group showed a higher head-neck ratio

(bigger head to neck, p<0.00005) and on average a round femoral neck, greater neck

diameter in anterior-posterior dimension as compared to normal (p<0.025). The fe-

murs experiencing the most strain shielding appeared to have lower mean cancellous

modulus than the main group (head and intertrochantic p<0.001, neck p<0.025) and

a lower percentage of cortical bone in the intertrochantic region (p<0.025). The anal-

ysis also suggested that this group were smaller than the rest (shaft radius p<0.025,
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intertrochantic volume p<0.025), with more oval necks (larger in posterior-distal

dimension p<0.01).

Minimum ↓ ε in head (n=59) Outliers Main Group

p-value mean mean

Neck-Head Diameter Ratio <0.00005 1.24 1.18

Lower Head % Volume Cortical <0.0005 5.95 3.27

Intertrochantic % Volume Cortical <0.005 28.36 24.86

Femoral Neck Diameter A-P (mm) <0.025 36.09 33.92

Femoral Neck Diameter Ratio <0.025 1.00 1.03

Lower Head Volume (mm3) <0.025 17329.84 15762.39

Neck % Volume Cortical <0.025 27.07 22.98

Neck Volume (mm3) <0.025 23940.93 21490.5

Maximum ↓ ε in head (n=18) Outliers Main Group

p-value mean mean

Intertrochantic Mean Cancelous Modulus (MPa) <0.001 724.22 1158.93

Lower Head Mean Cancelous Modulus (MPa) <0.01 1117.71 1415.10

Femoral Neck Diameter Ratio (mm) <0.01 1.11 1.03

Femoral Shaft Radius (mm) <0.025 14.71 16.39

Intertrochantic % Volume Cortical <0.025 18.26 25.13

Intertrochantic Volume (mm3) <0.025 67952.23 86588.44

Neck Mean Cancelous Modulus (MPa) <0.025 1073.13 1391.49

Table 5.1: Table of the mean results for the most significant metrics compared be-
tween the group of femurs with outlying results in the femoral head compared to the
rest of of the femurs analysed, showing the results for two outlier groups, those with
the most strain shielding in the head (maximum) and those with the least (minimum).

Examination of the outliers in the neck found a clear differences between those

with increased and decreased strain. The main observation was that those showing

an unusually large increase in strain in the neck were smaller in size over a compre-

hensive range of shape metrics; neck axis length (p<0.00025), femoral shaft radius

(p<0.0005), neck diameter anterior-posterior (p<0.001), femoral length (p<0.0025),

intertrochantic width (p<0.0025), head diameter (p<0.005), intertrochantic volume

(p<0.0025), head volume (p<0.005) and neck volume (p<0.025). The most signifi-

cant metric was neck diameter ratio (p<0.00001) indicating a more oval neck with a

smaller diameter in the anterior-posterior direction, as with the group exhibiting the

most strain shielding. No material metrics were found to have statistical significance.

In contrast, for those outliers where strain decreased in the femoral neck material

properties did appear as significant features, showing lower mean cancellous modulus

throughout (head p<0.005, neck p<0.0025, intertrochantic p<0.005) and a lower

percentage of cortical bone in the head (p<0.05) and neck (p<0.025). In addition
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Maximum ↑ ε in neck (n=37) Outliers Main Group
p-value mean mean

Femoral Neck Diameter Ratio (mm) <0.00001 1.12 1.03
Neck Axis Length (mm) <0.00025 92.04 101.30
Femoral Shaft Radius (mm) <0.0005 14.73 16.41
Femoral Neck Diameter A-P (mm) <0.001 30.15 34.16
Femoral Length (mm) <0.0025 404.39 437.31
Intertrochantic Width (mm) <0.0025 51.26 56.25
Intertrochantic Volume (mm3) <0.0025 66096.72 86719.38
Subject Height (mm) <0.0025 1511.73 1634.79
Anteversion <0.005 10.31 18.60
Femoral Head Diameter (mm) <0.005 37.70 41.10
Lower Head Volume (mm3) <0.005 12080.67 15930.91
Subject BMI <0.01 24.71 28.98
Subject Weight (kg) <0.01 61.56 77.50
Neck Shaft Angle (mm) <0.025 132.27 128.14
Neck Volume (mm3) <0.025 16949.45 21729.62
Neck-Head Diameter ratio <0.025 1.231 1.18

Maximum↓ ε in neck (n=20) Outliers Main Group
p-value mean mean

Neck Shaft Angle (mm) <0.00001 135.38 128.08
Neck Mean Cancellous Modulus (MPa) <0.0025 1019.63 1393.378
Inter Mean Cancellous Modulus (MPa) <0.005 873.22 1160.30
Lower Head Mean Cancellous Mod (MPa) <0.005 1147.41 1415.25
Femoral Neck Diameter Ratio <0.01 0.96 1.03
Neck % Volume Cortical <0.025 16.06 23.30

Table 5.2: Table of the mean results for the most significant metrics compared be-
tween the group of femurs with outlying results in the femoral neck compared to the
rest of the femurs analysed, showing the results for two outlier groups, those with the
most reduced neck strain (maximum ↓) and those with the most increased (maximum
↑).

they showed a reduced neck diameter ratio (p<0.01) with a greater anterior-posterior

neck diameter, again opposing the trend of the previously described neck outlier

group. Neck shaft angle appeared as significant for neck outliers at each end of the

spectrum, being higher than the rest of the group.

5.4.4 Influence of Implant Size on Load Transfer Through

the Femur

Analysis of the change in strain in 400 femurs following femoral resurfacing indicated

that the size of the femur influenced the strain change in the femoral neck, suggesting
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Figure 5.14: Illustration of both implant size 5 and 11 implanted into correctly sized
femurs, showing external view and a cross section through the proximal femur.

that larger femurs showed reduced strain in the neck and smaller femurs suffered

an increase. As previously discussed, femoral neck fracture is a significant failure

mechanism following resurfacing so any factor which may increase strain in this

area is of interest. Further to this, there have been clinical observations of poorer

performance with smaller implant sizes as compared to larger [61, 172, 177]. In light

of this two subgroups were extracted from the processed data set. These related

to femurs with implant size 5 and femurs with implant size 11. i.e. two groups

representing a small implant and a very large implant (see Figure 5.14). These two

implant sizes were chosen as they corresponded to a reasonable number of femurs

and accounted for approximately the same number of models, 25 and 20 respectively

(Figure 5.11). Analysis was then carried out to investigate whether there where any

differences in performance between the large and small implant groups, the method

used was again a one way ANOVA test.

Figure 5.15 shows the results of the areas with statistically significant differences

in the change in strain distribution following resurfacing. These plots clearly show

two trends; firstly that the smaller implant size suffers greater strain shielding in the

superior femoral head (anterior: section 1 p<0.00001, section 2 p<0.005 and section

4 p<0.05, posterior: section 7 p<0.0005 and section 8 p<0.01) and secondly that the

smaller implant sizes show a greater increase in strain in the femoral neck (anterior-

superior: section 3 p<0.05, posterior-superior: section 9 p<0.0005 and posterior-

inferior: section 12 p<0.01). The actual value of strain change these relate to (mean

and maximum) are detailed in Table 5.3. As with the outlier analysis a range of

geometric and material metrics were taken from the groups, although due to the
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Figure 5.15: Boxplots of mean percentage change in strain results by section for
the implant 5 and implant 11 groups of femurs, for those sections where statistical
significant differences were seen.

criteria by which the groups were defined the majority of geometric metrics were

ignored as they related to femur size which was inevitably different. Of the remaining

metrics no statistically significant difference was seen between the groups, including

material quality, loading/BMI and femur proportions such as neck diameter ratio or

head-neck ratio, which were highlighted in the previous outlier analysis.

5.5 Discussion

In this study 400 femurs were generated and analysed to see the effect of femoral head

resurfacing on load transfer through the femur. This involved the fully automated

implantation of appropriately sized and orientated femoral components. The success

of this was evident when each case was visually checked. The methodology ran

without error for 85% of the femur geometries attempted. The instances which were

not completed failed at the Boolean operation stage, a complication which was not

unexpected due to the inherent complexity of the shapes being cut and the trouble

this can cause even if being performed manually. The entire process, including FEA

of the related intact instance, was able to run at a rate of 4 models per hour (on
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Femoral Head Mean % change Maximum % change

Implant 5 Implant 11 Implant 5 Implant 11

Section 1 -82.8 -78.3 -87.4 -83.0

Section 2 -59.7 -53.2 -70.8 -61.4

Section 7 -81.5 -78.6 -86.1 -84.5

Section 8 -57.2 -51.8 -71.8 -61.5

Femoral Neck Mean % change Maximum % change

Implant 5 Implant 11 Implant 5 Implant 11

Section 3 16.7 9.2 49.1 26.1

Section 9 10.3 -5.5 38.9 4.3

Section 12 -5.8 -10.4 6.2 0.7

Table 5.3: Table containing the mean and extreme results for the changes in strain in
the femoral head and neck sections which were found to show significantly different
results between the large and small implant sizes.

a duel quad core processor). This mainly reflects the time taken in transferring

data between different pieces of software and the intricacy of the models generated,

hindering speed despite the relative simplicity of the final FE analysis. The time

constraints were considered entirely manageable for this scenario of 400 models. In

future it is hoped that it will be possible to perform the majority of these steps within

a single program to improve this, however currently there is no one piece of software

available to the study which is capable of completing all model preparation tasks.

Comparison of the change in strain predicted through the proximal femur to

those published by Radcliffe et al. [176] for identical loading conditions provided a

means of checking the results found in this work. Each of the 16 femurs modelled by

Radcliffe were manually generated and implanted, a painstaking process meaning that

implant positioning was entirely reliable. Therefore the comparable trends in strain

change seen through the proximal femur are a further indication of the success of the

automated implantation technique (Figure 5.12). As hoped the increase in sample

size between the studies, made possible thanks to the use of a statistical model

to generate large numbers of unique femurs, has increased the range of predicted

outcomes in each section of the femur. This shows the potential of the technique in

identifying instances where specific ranges of characteristics lead to unusual outcomes.

The number of models being tested allow trends for these less common cases to be

observed which other approaches may never find.

The main strain alterations observed were severe strain shielding in the femoral

head, particularly in the superior sections, and increased strain in the femoral neck,

again most notable superiorly. These patterns of load transfer change have been
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reported in previous FE and experimental work and have been associated with failure

mechanism theories. Predicted strain shielding in the femoral head was linked to

bone resorption, and potential failure through head collapse which has been observed

in clinical retrievals [45, 168, 178, 84]. However many studies have not indicated

loosening through altered load transfer to be a major cause of revision and have

proposed reasons such as disrupted blood supply, thermal damage during cement

curing, trauma during implantation and underlying poor bone quality to explain the

changes seen [166, 169, 4, 170, 174].

Femoral neck fracture is now regarded as a serious risk following femoral resur-

facing. By exploiting the large number of analyses run in this study it was possible

to interrogate the features of those femurs with increased strain in the femoral neck.

Despite the magnitude of the increases in most cases not seeming large enough to

directly result in fracture there have been a range of reasons proposed for how the

neck may become weakened or subjected to higher loads. Thus the combination of

contributing factors may be sufficient. In addition outlying results were found where

average strain increases approaching 60% were seen (with strain pattern trends shown

in figure 5.13). Damage done during surgery or poor surgical accuracy are often

blamed for weakening the femoral neck; cutting blood supply leading to necrosis,

notching the neck producing a stress concentration, poorly seating an implant leav-

ing uncovered cancellous bone or malalignment of the implant (varus) resulting in

unfavourable loading [4, 168, 166, 165]. Clinically, neck fractures are commonly seen

within the first few months of surgery [165, 167]. Previous FE and experimental

work have shown increased strain in the superior femoral neck although not over a

volume sufficient to cause fracture, but the addition of a notch could be enough to

change this [175, 49, 84, 179]. Although Long et al. [167] argued that short term neck

fracture is not always accompanied by evidence of notching. Long suggesting that in

bones with lower modulus where higher loads were applied, the areas around the im-

plant rim suffer high strain concentrations which may lead to damage accumulation

and fatigue failure before the bone adaption cycle can complete in response.

The average strain changes predicted in the neck by the 400 femur analysis are

of a similar magnitude to earlier studies. Examination of the outliers where strain

increased by more than two standard deviations from the mean indicated that these

femurs were significantly smaller over a range of measurements than the main set

of models, with slightly higher modulus in the femoral neck. The measurements

highlighted included intertrochantic width, femoral shaft diameter, neck axis length,

femoral head diameter and overall proximal volume. Also highlighted were propor-

tional features, suggesting these outliers had more oval necks (larger in superior-

inferior dimension) and a larger difference between head and neck diameters. There
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were several outlying femurs showing a notable decrease in strain in the neck, when

compared to those models with the largest strain increase a statistically significant

difference in size was seen. The femurs with the largest reduction in strain had lower

mean cancellous modulus values than the overall generated population. These sta-

tistically significant geometric and material differences were only identifiable thanks

to the number of models this study was able to run.

An intriguing set of observations relating to RA were made in the Australian

National Joint Replacement Registry [61]. These included an inverse relationship

between implant size and revision rate, with smaller implant sizes (<44mm) suffering

9% revision while the larger sizes (>55mm) only 1.7%, with no significant gender

difference in failure rate once implant size was accounted for. This was alongside a

clear picture of the typical RA patient demographic, being male (76.4% and rising)

and young (91.9% <65 years), with the revision rate at 5 years for female patients

more than twice that for males (6.5% to 2.6%). Many studies have analysed risk

factors for femoral resurfacing to try to identify reasons why the procedure may be

more or less likely to require revision. Smaller implant sizes and/or female gender

(normally associated with smaller implant sizes) have been flagged as having a higher

revision risk by previous clinical studies [163, 180, 172, 157], with Mai et al. [177]’s 12

year follow up study showing an 82% survivorship rate with the large implant group

compared to 56% with the small. Although some studies have not found implant size

to be significant [166, 165].

Due to the evidence found from examining outliers in the previous analysis linking

femur size to adverse traits such as increased strain in the femoral neck and greater

strain shielding, and the clinical evidence of poorer performance in smaller implant

sizes, an investigation was performed to compare the altered strain patterns produced

by a small and a large implant size. By identifying instances from the 400 generated

model set which had been assigned size 5 or size 11 implants it was possible to gather

two subgroups of 25 and 20 femurs respectively. These groups were analysed using the

same methods as the outliers, allowing direct comparisons to be drawn between them

and any statistically significant differences found. The results of this analysis showed

two potential trends, linked to suggested failure mechanisms, which were exaggerated

in the smaller implant group. These were strain shielding in the femoral head, higher

in the proximal head (sections 1, 2, 7 and 8), and elevated strains in the femoral neck,

again largest proximally (sections 3, 9 and 12). The superior-posterior neck (section

9) showed a mean increase in strain for the small implants while a mean decrease

for the large. Unlike the trends observed in the femoral head where the differences

between the means were a few percent and the extremes of the data were similar, in

the neck these mean changes in strain and extremes were very different (Table 5.3).
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As with the overall results the typical mean changes in strain in the smaller

implant size are not large. However the highest results seen, ∼40-50%, may be

enough to lead to damage if a weakness was present such as a notch or cyst and so

these femurs could be at higher risk of neck fracture than the others assessed. The

only metrics, other than those relating to scale, which proved to segregate the implant

size results concerned mean cortical bone modulus in the neck and intertrochantic

regions and the percentage of cortical bone in the neck. All of these were higher in

the smaller femurs.

A potential limitation of the study was the initial training data set. This was

male dominated with a mean age of 70 years, no preselection of the data was done

due to the difficulty in sourcing whole femur CT scans. Ideally the statistical model

would be tailored to model a specific population group by segregation on the grounds

of gender, age, ethnicity and so on, which all affect femur morphology. However,

the range of femurs which can be produced by this model has been demonstrated

previously (Section 3.6.4), and in that study are comparable to the population data

found in the NHANES survey (Figure 3.27). This study’s focus was on generating

a methodology to allow the automated modelling of orthopaedic implants, therefore

the model was run to produce a wide range of femoral morphologies. A further

implication of this was that a simplified implantation strategy was employed which

aimed to prevent neck notching and restore approximately natural biomechanics. A

more rigorous simulation of surgical procedure would be possible in future work,

for example this could incorporate the more complex positioning recommendations

detailed by Shimmin et al. [162]. An extension to the study could also be to introduce

a notch to the neck, similar to one which may be made in error while cutting the

femoral head, to investigate whether this caused sufficiently elevated strains to lead

to fracture.
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5.6 Conclusions

The feasibility of using a statistical model to enable large scale multi model testing

of an intact femur was demonstrated in Chapter 4 in a case study of femoral neck

fracture risk. The current work has shown how this concept has been extended to

allow the benefits of analysing a wide range of models to be applied to orthopaedic

implant testing. A fully automated technique performs the complex tasks required

to implant and analyse given geometries with a high success rate. A wide range

of investigations are possible with simple alterations to the method. Modelling a

wide population of bones will allow meaningful statistical analyses to be carried

out, infeasible in conventional studies, and enable more comprehensive testing of

orthopaedic implants in the future.

132



Chapter 6

Conclusions and Future Work

6.1 Background to the problems motivating this

work

Computational analysis has become an increasingly intrinsic tool in biomechanics,

used as a fundamental part of research and orthopaedic design. In-silico techniques

have evolved as computer technology has developed and allowed the potential ad-

vantages of the methods to be exploited, advantages which most experimental al-

ternatives can not feasibly match. For example the ability to test the same model

multiple times, under different conditions or to compare the performance of a range

of models under identical conditions. The detailed results which computational anal-

yses are capable of producing, allowing interrogation throughout a three dimensional

structure, are also not able to be replicated by in-vitro or in-vivo tests.

However, there are still some significant weaknesses in conventional in-silico exper-

imental design which limit their ability to model biomechanical scenarios completely.

One important weakness is the lack of incorporation of variability - namely differ-

ences in material properties and morphology between subjects. In addition, when

orthopaedic implants are modelled it is rare for surgical variability to be accounted

for in assessment, usually perfect positioning and implantation is assumed despite

this being hard to achieve in reality. When the effect of subject or surgical variations

have been investigated they have been found to dramatically alter the outcomes of

the analysis [3, 6, 52, 37, 7].

In the case of inter-subject variability there are good reasons why computational

testing has not been able to incorporate the differences known to exist in real life.
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These boil down to two key issues; 1) the time consuming, labour intensive and

tedious task of manual model generation and 2) the limited availability of high quality

imaging data (CT or MRI). It is these issues which this work has aimed to address

such that intersubject variability can be incorporated into in-silico analysis without

massive computational or labour costs.

Of previous studies where attempts have been made to better model the true

clinical circumstances around biomedical scenarios, such as joint replacement, by

incorporating variability only a few have developed patient specific models. Some

studies have taken an approach of simplifying the problem and only varying one

parameter, for example artificially varying material properties on an identical ge-

ometry [3] or scaling a single model and related parameters to generate a range of

models [58].

Publications which have generated subject specific models include Radcliffe et

al [176, 7, 37] and Keyak et al [51, 150] where sets of models (16 and 18 respectively)

were manually generated from CT data, extracting geometry and material properties,

and manually put through FE analysis. These produced a wealth of information but

were limited by what was still a statistically small data set, where it was likely that

they related to CT scans which were available rather than representative of patients

suitable for the study. The process of performing the analyses was time consuming

and even if more image data had been available this limitation would have made it

infeasible for a substantially larger group of models to be tested this way.

6.2 Aims of this work and assessment of whether

they have been achieved

The fundamental aim of this project was to investigate the possibility of using sta-

tistical modelling techniques to generate a population of femur models and to show

whether these could be efficiently integrated into a large scale computational stress

analysis.

The initial stage of generating the statistical model, detailed in Chapter 3, de-

manded a range of challenges to be met. The first of these was to acquire a large

enough database of CT data sets with which the statistical model could be trained,

such that the variability in femoral morphology and material distribution could be

captured. In total 46 individual CT scans were collected, segmented and used to
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construct the statistical model. The ultimate number of available scans was to a

large extent beyond the control of the authors, however every whole femur CT set

which could be used in this work was used. Reconstruction errors and eigenvalue

decay were used to indicate how well the femoral variability in this training set was

represented by the model, where rapid decay of either would indicate high correlation

between them (figs. 3.21). These results suggested that the number of femurs used

was effective at capturing geometric variability but insufficient to completely capture

the complex changes in material properties. This would reduce the ability of the

model to generate specific instances accurately, an ambitious ask of just 46 training

examples. However the proposed use in this work was not to do that but to generate

new realistic instances and it was shown that the patterns of material distribution in

generated femurs were realistic and the statistical model (SM) was able to produce

legal instances - provided suitable sampling limits were set.

A necessary aim of the model generation process was to find a method of estab-

lishing accurate, three dimensional correspondence between each training set member

such that they were each described in an identical form suitable for PCA. With the

ultimate aim that instances generated from the SM would be used in FEA it was also

key for mesh quality to be high throughout the construction process. The conven-

tional approach for achieving registration in complex 3D data sets like the femur is

the computationally demanding free form deformation method developed by Rueck-

ert et al. [13]. The technique adopted in the current work was a combination of

surface matching and mesh morphing to allow a baseline tetrahedral mesh to be

morphed onto each other femur instance. The elastic matching strategy adopted for

surface matching required adaption to be able to handle the large number of points

used in this model to represent each femur. The limitations of the conventional

algorithms [91] would have made this process extremely slow.

The developed strategy initially led to reasonable meshes over the majority of the

matched instances but some areas, particularly those with rapidly changing curvature

such as around the greater trochanter, suffered from severe mesh degradation/folding.

The problem was resolved, without significant computational cost, by the introduc-

tion of Laplacian smoothing at each surface registration step. The accuracy of the

matched meshes was high, with a mean error within the voxel resolution of the orig-

inal image (figs. 3.14, 3.9).

The sampling method used to generate new instances from the SM was ultimately

found to be the key factor in deciding whether or not the goal of FE ready, realis-

tic femur models were produced. The parameters concerned were; the number of

eigenmodes to include, the range over which the models should be sampled and the
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sampling technique (see Section 3.6.3). These parameters can not truly be treated

individually as they can work with and against each other, therefore the choice of

these values was challenging and they were found to be fundamental to the quality

and variety of models generated. The potential limitations and problems of this sam-

pling challenge will be discussed later in this chapter. By careful consideration and

analysis of the models produced it was possible to achieve the aim of creating a set

of unique, realistic femurs with a mesh quality of a high enough value to allow direct

use in FE. The values of a range of meaningful morphometric measurements showed

that the synthetic population generated by the sampling process was comparable to

a true human population, as detailed by Centers for Disease Control & Prevention

(CDC) [107].

The femoral neck fracture study, documented in Chapter 4, was performed to in-

vestigate whether the second part of the overall objective could be achieved, namely

using the SM as a source of femur models to drive a large scale FE analysis. The ob-

jectives of this analysis were to show how this could be integrated and run, and to test

that the results generated from these synthetic femurs were realistic. The methodol-

ogy created to perform the study was robust and scripted throughout, requiring only

the number of femurs to be tested to start and finishing with fully post-processed

strain results alongside a full range of metrics characterising each model. This lack

of manual interaction with the analysis, together with automated checks to ensure

the process was running correctly, allowed a large number of models to be tested.

It would not have been feasible to perform a similar analysis on 1000 femurs manu-

ally. Thus the correlation of strain results and geometric/material properties over a

statistically significant number of models achieved by this method would have been

impossible.

A useful outcome of the statistical modelling technique is that all generated femurs

were described by the same number of nodes/elements with each of them being in the

same relative position on every femur. This provided a predetermined landmarking

system upon which it was straight forward to base boundary conditions, loading

conditions and measurement positions. The metrics extracted in post processing were

able to be compared to previous clinical, experimental and computational studies

where similar loading conditions had been observed - i.e. a fall. The agreement

of the distribution of fracture initiation sites over the data set and the agreement of

several known risk characteristics (mainly related to material metrics) help to suggest

that the results of the analysis are realistic. This aids the case for the possibility of

using a SM to generate data sets for use in larger, population based studies as opposed

to the single or small set of bone models which currently is the conventional basis for

analysis.
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A vast number of orthopaedic computational analyses are carried out to investi-

gate the interaction of an implant on the stress/strain distribution through their host

bone. In order for analyses using large numbers of models to be useful in biomechanics

a methodology to allow automated implantation was needed to be proved possible

(i.e. virtual implantation without manual intervention). Chapter 5 discusses the

development of such a methodology for automatically implanting a femoral resur-

facing component into any femur model generated from the statistical model. This

study required the accurate alignment, sizing and virtual implantation of resurfacing

components, as well as subsequent FE analysis. The implanted model generation

procedure was complex and meant that the entire process was not as robust as the

previous neck fracture study. There was a notable failure rate, ∼15%, mainly at the

Boolean stage which was disappointing but not unpredictable due to the complexity

of the shape interactions. The failure of an individual model did not crash the en-

tire simulation, i.e. the script would simply move on to the next instance, thus the

study was able to run without manual intervention in the same way as the previously

described study.

The results of the study were able to replicate the trends of a previous analysis

by Radcliffe and Taylor [37], where resurfacing was manually simulated on 16 femur

models, as well as highlighting models with poorer outcomes and relating these back

to the physical characteristics of those models. This analysis achieved its aim of

allowing accurate, automated implantation over a large number of models and illus-

trated the potential of performing computational analyses of orthopaedic implants

in multiple models.

6.3 Limitations

The quality of any model is always heavily dependent on the quality of data which

is used to create it. The statistical model which forms the basis of this work is no

exception and therefore the information which is used to train it will always be a

fundamental limitation. As previously mentioned the ultimate number of individual

CT scans available to the project was out of the author’s control, however every

usable set was included. The population described by these 46 femurs turned out to

be male biased, with a mean age of ∼70 and from a Caucasian population. It was

clear from simply viewing the scans that there were variations in bone quality (with

an age range of 43 to 91 this was inevitable), but none of the subjects were known

to have a pre-existing degenerative joint disease.
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Due to this relatively small training set size, and its potential bias, the range of

femur representations which can be created from it will undeniably reflect this and

thus careful sampling and observation of these femurs needs to be made. It is key to

remember that this study was intended to be a proof of concept rather than aiming

to produce a definitive model which either covers the entire possible population of

human femurs or a particular subgroup. Extending the project along these lines is

discussed further in the context of future work.

The quality of the data fed into the statistical model was vulnerable to the intro-

duction of errors during the process of extracting each femur representation from their

respective image sets. The geometries were generated by semi-automated segmenta-

tion, based on greylevel thresholding, and manual slice-by-slice correction. During

segmentation a certain amount of judgement is required to follow the bone contours,

particularly where bones are close together (e.g. femoral head and acetabulum),

where image resolution is poor or where bone quality is low - making boundaries less

defined. Certain areas of the femur are harder to segment neatly than others due to

this issue, including areas of the femoral head where the cortical shell is thin and the

greater trochanter where very dense soft tissues connect to the femur. It is entirely

possible for low level geometric errors to be introduced to the final statistical model

due to these sorts of issues.

It is evident from the various analyses done to assess reconstruction error in chap-

ter 3 that the statistical model is successful in capturing geometric variations but has

some difficulty with material properties. The culprit behind this could again be the

quality of the initial training data, although the distribution and complexity of ma-

terial distribution undoubtedly varies significantly and is most likely not sufficiently

captured by the 46 base examples. The main challenge with assigning material prop-

erties in this work was that the CT data sets used were clinical and so uncalibrated,

meaning there were no calibration phantoms in the images which could be used to

correct greylevel for the particular machine set up. Instead an alternative calibration

method was devised which relied on picking two materials of known density in the

image and correcting the entire greylevel range based on these (Section 3.3.3). The

assumption required to do this was that there was some area of cortical bone in every

data set which had the textbook maximum cortical bone density of 1.73g/cm3. It is

likely that some of the subjects, particularly the most elderly, did not quite achieve

this value even in the densest areas and therefore this assumption may be introducing

errors.

The most important factor found to influence the success of the statistical model

in generating a widely varying, unique and yet realistic set of femur models with high
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mesh quality was sampling. The correct choice of sampling parameters and sampling

method must be established for each statistical model and are dependent on the

characteristics of the training data. A simplification made in this work has been that

the probability distributions of each individual coefficient of the PCA model have

not been used as the basis for sampling, instead superimposing a Gaussian sampling

curve (Section 3.6.3). The potential effect of this is the possibility of combinations

of eigenvector weightings producing unrealistic femurs, i.e. over/under sized or with

extreme material properties. The risk was understood in this work and so care

was taken to ensure that models were suitable through a combination of automated

pass/fail filters (e.g. based on femur length), manual interrogation and limiting the

sampling range with appropriate parameters. For future use of the model more

investigation may be needed into the choice and control of sampling methods and

parameters so that it can be relied upon completely without the potential need for

further levels of filtering. An increase in training data could also help to alleviate

this problem.

The FE analyses performed in this work have been simplistic, this was again

because the aim of the work has been to prove that the concept of running a large

number of FE studies on a widely varying set of bone models, generated from a SM,

was feasible. The trends of the results follow those of previous work with similar

investigations which was sufficient for this purpose, however in future it may be

possible to increase the complexity of the model.

Currently the main limiting factor in the automated implantation methodology

is the requirement for a succession of different pieces of software, each of which is

suited to a particular process which the other can not perform as reliably. The result

is a time cost in writing out/reading in at each stage of the process and a potential

for errors as information is translated. The failure rate of Boolean operations is

hard to completely avoid. A series of steps were taken to prevent this occurring

due to any irregular elements (which would prevent surface fitting) or unfavourable

intersections (by shifting the cutter by fractions). Alternative software or further

investigation into the reason for failure at this stage may reduce the failure rate. At

this proof of concept stage these limitations were accepted and are a clear direction

for future work in refining the techniques.

A final notable limitation to the large scale analyses described in this work, but by

no means restricted solely to it, is the issue of establishing a comprehensive interpre-

tation of results. As each of the many models run produces reams of data, relating

to elemental strains and femur characteristics, the true results of the analysis can

quickly become swamped under the weight of numbers. This volume of data is the
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strength of the method, allowing a wide range of post processing to be performed

over numbers sufficient to show statistical significance, yet it has proved all too easy

for important trends to be missed. Amongst the large matrix of data, results will

not be found unless they are looked for.

6.4 Future Work

As this work has not been a continuation of a previous project it has been approached

as a proof of concept study, investigating the potential of applying statistical mod-

elling techniques to generating synthetic bone models for large scale, multi model

FE analyses. This aim has been achieved and thus opens up the possibilities for a

range of future work directions, including both refining the techniques which have

been suggested and extending them to new problems.

There are several clear ways in which the statistical model could be improved

which have been previously mentioned, including; an increase in the size and diver-

sity of the training data, the use of calibrated CTs and the development of more

sophisticated sampling techniques. The creation of more focused statistical models

could prove extremely useful for orthopaedic research where risk factors have already

been identified and a better understanding of their influence required. For example

the development of gender and/or age specific models to match a patient demographic

of interest or a disease specific model such as one built from osteoporotic bones.

There is potential for improvement in the registration scheme. Currently the

surface and volume registration stages are performed separately but in future it may

be possible to integrate these into one piece of code. As discussed, the scheme is

currently less able to capture modulus variability than geometric which could be

directly linked to the approach taken. Investigations into the possible improvements

of registration schemes which use intensity information as well as shape to establish

correspondence could improve this problem [13, 82, 81, 70].

The complexity of the FE analyses in this work was minimised due to the aims

of the study, however in future it may be of interest to look at increasing this to try

to model situations more realistically. This may include investigating more complex

interface conditions between implant-cement-bone, introducing suboptimal implant

alignments, modelling poor fixation or uneven cement coverage. The incorporation

of surgical variations in combination with intersubject variability is an intriguing

possibility which may better emulate clinical conditions and lead to greater insight
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into the affect of joint replacement than current studies. The methodology described

is easily adjustable to incorporate such variability, for example the alteration of a

single line of code can result in an oversized or undersized component being implanted

(details in Appendix E).

The process trialled for resurfacing arthroplasty could be applied to other femoral

implants, at both the proximal and distal ends. The automated implantation of

a total joint replacement component would require a new alignment strategy and

undoubtedly raise new problems, however if achieved it would open up the potential

for comparative assessment of implant designs over a large number of femurs.

This work has focused solely on the femur, but there is no reason why the statis-

tical modelling techniques developed can not be applied to other bones which host

implants, such as; the tibia, acetabulum or vertebra. It is extremely common for

femoral and acetabular components to be analysed separately, yet this is removing

the implant and bone from the surrounding system. Some studies have begun to in-

clude the acetabulum, femur and sometimes surrounding musculature into analyses

of the hip [49, 50]. It would be a logical development to attempt to apply these statis-

tical modelling techniques to multiple bodies, such as the acetabulum and proximal

femur, distal femur and proximal tibia or a set of lumbar vertebra. The challenges

of this progression may exceed the capabilities of the current methodology but this

direction is an ambitious and potentially useful aim for the future.
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Further Details of the Registration

Strategy

A.1 Registration Scheme

The first stage of establishing correspondence between each member of the training

set was to register a common baseline mesh to each femur model surface. The median

length femur of the set was chosen to be the baseline femur, with the rationale that

this would lead to the minimum element distortion when stretching or compressing

the mesh to fit another instance. It has been shown that the choice of example from

which the template mesh is created has only a minimal effect on the final model

accuracy [73].

The chosen femur surface mesh was imported into meshing software, Ansys ICEM

CFD (Ansys Inc., Canonsburg, PA), and converted into a high quality, solid tetra-

hedral mesh with a global element size of 3mm. In order to balance model definition

and computation cost the model was then split into three regions and the upper and

lower thirds’ mesh size refined to 1–1.5mm at the surface (Fig. A.1). This was jus-

tified for two reasons: 1) these areas are of more clinical interest so a fine mesh will

be important for future use of the model and 2) these areas contain the most rapidly

changing geometry and hence require a higher density of surface points to achieve

accurate registration. The baseline tetrahedral mesh, and therefore any subsequent

mesh produced by the model, consisted of 615,523 elements and 117,225 nodes, of

which 27,171 were on the surface (Fig. A.1).

Every femur in the training set was initially aligned to the same orientation as

the baseline femur using ICP [10].
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Figure A.1: Figure A1:The baseline meshed geometry. Shows a section of mesh
through the femoral head and the transition in mesh size between the proximal femur
and femoral shaft

The registration scheme developed has two steps; 1) surface registration and 2)

volumetric registration via mesh morphing, to achieve three dimensional correspon-

dence between a baseline and a target femur model. Surface matching iteratively

deformed the baseline surface vertices to match a target surface and was able to

achieve a smooth, accurate final mesh through user defined inputs controlling the

magnitude and speed of the deformation. These parameters controlled the area

affected by moving a single vertex and the magnitude of each iterative step, both de-

creasing over the specified number of iterations. This initially allowed almost global

deformations to act which roughly aligned the surfaces before narrowing the regions

of influence to produce fine, local manipulations of the mesh until a stopping criteria

was reached. The accuracy of the surface registration achieved using this algorithm

is illustrated in Figure A.1, showing the morphed and target surfaces superimposed.

The volumetric registration step used the registered surface points as a scaffold and

positioned the internal mesh points based on the surface node displacement vectors.

A.1.1 Surface Registration

The surface registration technique employed in the present study was based on the

three dimensional generalization of Burr’s elastic registration algorithm proposed

by Moshfeghi et al. [91]. The inputs required by the scheme were the ordered vertex
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Figure A.2: Target mesh (dark) with morphed baseline mesh (light) superimposed,
showing the accuracy achievable by the registration scheme

and triangle patch lists of a baseline femur (~S1) and a target femur (~S2) to which the

baseline mesh would be mapped. The baseline femur was represented as follows

~S1 = {{x1i, y1i, z1i} , {∆c}}, where 1 6 i 6 N1, 1 6 c 6 T1. (A.1)

here (x1i, y1i, z1i) were the coordinates of the ith vertex and ∆c referred to the triangle

patch c. Here, N1 indicated the total number of vertices and T1 the number of triangle

patches on the baseline surface ~S1. The target femur was similarly represented, where

N2 and T2 were the total number of vertices and triangle patches on ~S2 respectively

~S2 = {{x2j, y2j, z2j} , {∆d}}, where 1 6 j 6 N2, 1 6 d 6 T2. (A.2)

The key steps of the registration algorithm to elastically deform the baseline surface

(~S1) to match the target surface (~S2) are outlined below.

1. Inputs specified: baseline surface ~S1 = {{x1i, y1i, z1i} , {∆c}}, target surface
~S2 = {{x2j, y2j, z2j} , {∆d}}, nearest neighbour parameter m, normalization

factor α, smoothing parameters γ, σ0 and f , maximum number of iterations

kmax and stopping criteria ε. The required parameters used in this study were;

m=50, γ=2, σ0=10, f=1.0715 and kmax=100.

2. Coarse registration performed to align the surfaces ~S1 and ~S2.
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3. Set k = 1 and defined ~W k−1 = ~S1 before iteratively performing the following

steps WHILE k ≤ kmax:

4. Constructed k-d tree representations, KDT 1 and KDT 2, of the centroids of

surface triangulations of the deforming baseline mesh ~W k−1 and the target

mesh ~S2.

5. DO FOR i = 1, 2, . . . , N1

(a) For each vertex ~P1(i) in the deforming baseline mesh ~W k−1, the m nearest

surface triangles on the target ~S2 were identified using the k-d tree KDT 2.

(b) The closest target surface triangle patch to the considered vertex depends

on the location of the intersection point, ~G, produced between a perpen-

dicular drawn from the vertex ~P1(i) to the target triangle patch ∆d. If ~G

lay inside ∆d the distance measure, γ, was defined by γ(i, d) = |~G−P1(i)|,
otherwise by γ(i, d) = |~G− ~P1(i)|+ |~P − ~G|. Here ~P was the closest trian-

gle vertex on the target surface ~S2 to the intersection point ~G. It should

be noted that only a distance measure is used to determine the nearest

triangle patch. This is different to Moshfeghi et al. [91] who incorporate a

weighted directional incompatibility measure, ω, in the similarity measure

δ = γ + αω. Using this similarity measure often resulted in mesh folding

after registration, particularly in the case of the fine mesh used for the

femur model.

(c) Having found the location of the nearest surface triangle on the surface
~S2 to ~P1(i), the displacement vectors required to align the surfaces could

be calculated as the deformation field vector ~D1(i, d) = ~G − ~P1(i) if the

point ~G was inside or on the ∆d, or ~D1(i, d) = ~P − ~P1(i) if it was not.

END DO

6. Processes (a-c) within the previous step were then repeated with ~S2 in place of
~S1 and ~W k−1 replacing ~S2 to find the deformation field ~D2(j, c) describing the

displacement vectors required to align ~S2 to ~W k−1.

7. The smoothed displacement field was computed as

~DS
k−1

(x, y, z) =
1

γ

[∑N1

i=1G1i(x, y, z) ~D1(i, di)∑N1

i=1G1i(x, y, z)
−
∑N2

j=1 G2j(x, y, z) ~D2(j, cj)∑N2

j=1 G2j(x, y, z)

]
,

(A.3)

where G1 and G2 could be chosen to be radial basis functions of the form

G1i(x, y, z) = φ(r1i) and G2j(x, y, z) = φ(r2j). r1i was the Euclidean distance

between (x, y, z) and the ith vertex of the baseline surface ~S1 and r2j was the
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Euclidean distance between (x, y, z) and (x2j +D2x(j, cj), y2j +D2y(j, cj), z2j +

D2z(j, cj)). Moshfeghi et al. [91] suggested the use of the following Gaussian

radial basis functions

G1i = exp

(
− 1

(σk)2

[
(x− x1i)

2 + (y − y1i)
2 + (z − z1i)

2
])

(A.4)

G2j = exp

(
− 1

(σk)2

[
(x− x2j −D2x(j, cj))

2 + (y − y2j −D2y(j, cj))
2

+(z − z2j −D2z(j, cj))
2
])
, (A.5)

where the smoothing parameter σk was decreased at each iteration using the

update rule σk = σ0f−k with 1 ≤ f ≤ 2. The factor γ was set to 2 in our

numerical studies and can be interpreted as a damping factor. By increasing f

and σ0 a greater deformation was achieved but mesh quality could be reduced.

A good trade off between achieved deformation and mesh quality was achieved

by using a relatively high value of σ with a low value of f , over a large number

of iterations (k ≈ 100).

8. Iteratively deformed ~S1 to ~S2 using the following update rule

~W k(i, c) = ~W k−1(i, c) + ~DS
k−1

(x, y, z). (A.6)

9. Apply improved Laplace smoothing [93] to help maintain the mesh integrity. A

set number of iterations of smoothing are applied to W k(i, c) to stop mesh

folding occurring. Observations evidence showed that only using Gaussian

smoothing on the displacement field is not enough to stop distortion of the

mesh (Fig. A3).

10. The iterations were terminated if the following stopping criterion was reached,

if not then set k = k + 1 and returned to step 4.

1

N1

N1∑
i=1

| ~DS(x1i, y1i, z1i)| ≤ ε. (A.7)

When registration was completed and convergence achieved, say after k iterations,

the elastic matching algorithm provided the deformed surface mesh (A.8), with the

baseline mesh ~S1 mapped onto the target surface ~S2.

~W k(i, c) = {(x′1i, y′1i, z′1i),∆c}, where 1 6 i 6 N1, 1 6 c 6 T1. (A.8)
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The displacement vectors required to register the vertices of ~S1(i, c) with the surface
~S2(j, d) were then given by equation A.9;

~ui = {(x′1i − x1i), (y
′
1i − y1i), (z

′
1i − z1i)} , where 1 6 i 6 N1. (A.9)

A.1.2 Volume Mesh Morphing

The problem of deforming a volume mesh to track moving/perturbed surfaces has

been extensively studied in several areas including computational geometry, moving

surface fluid flow simulation and engineering design optimisation [94, 95, 96]. The

central idea underpinning many existing approaches is to solve partial differential

equations (for example the elasticity or diffusion equations), for the coordinates of the

deformed mesh with the known surface displacements imposed as essential boundary

conditions.

In the present work the diffusion based mesh deformation strategy was used.

It is computationally efficient and known to work well in a variety of application

domains [97, 94]. This approach solved the following decoupled three-dimensional

Laplace equations to deform the baseline volume mesh

∇2δx = 0, ∇2δy = 0, ∇2δz = 0, (A.10)

where δx, δy and δz were the displacement fields applied to the baseline mesh co-

ordinates in the x−, y− and z− directions, respectively, and ∇2 was the standard

Laplacian operator defined on the baseline volume mesh.

The x, y, z components of the surface registration vectors ~ui, specified by equa-

tion (A.9), were used to specify appropriate Dirichlet boundary conditions for equa-

tion A.10. The result was a morphing of the internal points of the baseline volume

mesh onto the target volume. Once the whole registration process was applied to all

members of the training set, each was described by a solid tetrahedral mesh, with

direct correspondence established between each point and element.

It is important to note that when the magnitudes of ~ui become large some elements

of the morphed volume may experience reversal, leading to negative signed volumes.

One straightforward way to circumvent this problem is to tightly couple the mesh

morphing strategy with the surface registration algorithm. For example, by carrying

out volume meshing after surface registration step 8 where the Laplace operator is

defined on the volume corresponding to the surface W k−1, with Dirichlet boundary
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conditions imposed accordingly. The surface registration vector at iteration k then

becomes

~uki =
{

(xk1i − x1i), (y
k
1i − y1i), (z

k
1i − z1i)

}
, where 1 6 i 6 N1. (A.11)

where (xk1i, y
k
1i, z

k
1i) is the ordered vertex list of ~W k. It was found that this incremental

strategy did not suffer from element reversal issues and also provided high-quality

meshes. Similar observations were previously made by Shontz and Vavasis [96]. How-

ever, this improvement was achieved at the expense of increased computational cost.

In the present study, due to computational constraints, we did not employ the incre-

mental morphing strategy and instead chose to repair the registered volume mesh if

any elements were produced with a negative signed volume. Mesh check and repair

was fully automated and incorporated into the volume meshing procedure.
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Characteristics of 21 Femur

Statistical Model

B.0.3 Interpretation of Eigenmodes

Covariance Method Correlation Method

Mode Variance Captured Total Variance Variance Captured Total Variance

1 34.85 34.85 31.97 31.97

2 10.13 44.98 25.37 57.33

3 6.16 51.14 17.58 74.92

4 5.76 56.90 4.26 79.18

5 4.64 61.54 2.86 82.04

6 4.28 65.81 2.34 84.42

7 3.77 69.59 1.69 86.53

8 3.26 72.85 1.54 88.21

9 3.17 76.01 1.26 89.76

10 2.88 78.90 1.20 91.02

Table B.1: Percentage variation captured by first 10 eigenmodes computed using the
covariance and correlation methods.

Comparing the eigenvalues produced from PCA of the data set from the covari-

ance and correlation approaches shows significant differences (Table B.1). The first

mode contains a comparable proportion of the variation, ∼ 35% with the covariance

based and ∼ 32% with the correlation based approach. However, when considering

the first three modes the correlation approach captures close to 75% of the total

variation compared to just 51% described by the more traditional method. This sig-

nificant initial improvement together with a more rapid decay of eigenvalue suggests
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Figure B.1: Plots of eigenvalue percentage. Shows percentage for each mode (left) and
cumulative percentage variation explained (right) for the covariance and correlation
methods.

Figure B.2: Geometry and material property changes with first 3 modes of variation
acting in isolation, produced using the correlation method.

that the correlation approach is more suited for the analysis of data with mixed units

(Fig. B.1).
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The physical effect on the model shape and material modulus of each eigenmode

was investigated by varying each mode in isolation and visualising the femur produced

(Fig. B.2). The first mode shows a straightening of the femoral axis towards the mid

line in the frontal plane and a reduction in the bowing of the femoral shaft in the

sagittal plane. Another significant geometric feature is a rotation of the femoral

head in relation to the body of the femur, known as anteversion angle. The average

modulus of the bone appears to rise, particularly in the shaft where there is a clear

thickening of the cortex. The second mode was seen to be dominated by scaling affects

and an increase in femoral shaft and neck diameter. Similarly the third mode shows

an increase in shaft and neck thickness along with a large increase in anteversion

angle as opposed to the reduction seen in the first mode. The influence of the modes

is an insight into the significant ways in which this set of femurs vary, however it

must be noted that these modes will never occur in isolation. In reality any femur

will be the product of the combined effect of a number of modes, which may result

in the features observed being cancelled out or exaggerated.

Reconstruction Error

Figure B.3: Boxplot of mean Euclidean distance and mean modulus error between
corresponding points when reconstructing a known instance with an increasing num-
ber of eigenmodes for both the covariance (left) and correlation methods (right).

Reconstruction error was calculated as a more appropriate test of the statistical

model created in this study due to the small size of the training set. This was done

by taking the known shape parameter of each training example and reconstructing

it with an increasing number of included eigenvectors from the statistical model.
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The mean Euclidian distance error and mean absolute modulus error at each point

in each model were found as the number of included eigenvectors was increased

using both the correlation and covariance methods (Fig. B.3). The tests show a

significant improvement in reconstruction error with the correlation approach, where

a mean error of <2mm is achieved by just 3 modes, corresponding to ∼8mm with

the covariance which has a much higher error spread. The modulus error reflects the

noisiness of modulus data being read in from the CT scans, showing little sensitivity

to either method. The test results indicate the optimum number of eigenmodes

required for the generation of new femur models, suggesting 3 modes were sufficient

to construct geometry alone but at least 8 modes would be needed to fairly reproduce

modulus values as well.

B.0.4 Ability to Describe Training Data

Reconstruction error is an excellent mathematical test of a statistical model, pro-

viding details of how accurate the model is in reproducing a specific instance. The

prospective application of the model in this project is not, however, to regenerate

specific geometries but to generate new instances with realistic characteristics. In

view of this, it seems logical to investigate the generated geometries to ensure that

this is what is happening by seeing how well they describe the variation present

within the training data.

1 S.D. 1.5 S.D.
Training 7 8 9 10 7 8 9 10

Neck Axis Length 100.19 100.05 100.09 100.07 100.08 100.12 100.18 100.17 100.20
Neck Shaft Angle 126.50 126.73 126.70 126.70 126.70 126.66 126.64 126.56 126.11
Femoral Head Dia. 47.43 47.33 47.36 47.35 47.35 47.37 47.41 47.42 47.41
Femoral Neck Dia. P-D 33.88 33.72 33.73 33.71 33.71 33.77 33.80 33.79 33.80
Femoral Neck Dia. A-P 33.29 33.03 33.04 33.03 33.04 33.15 33.18 33.18 33.20
Anteversion 22.03 22.02 22.01 22.00 22.00 21.98 21.98 21.96 21.98
Femoral Shaft Radius 16.26 16.05 16.06 16.06 16.07 16.11 16.12 16.13 16.15
Femoral Length 457.41 457.01 457.05 457.06 457.08 457.50 457.50 457.64 457.69

Table B.2: Table showing the mean value of various geometric measurements taken
from 100 femurs generated with bounds of 1 and 1.5 standard deviations, at 7, 8, 9
and 10 included modes, alongside the mean values of the statistical model training
data.

The reconstruction tests indicated that 8 modes would be needed to reproduce

modulus and geometry, and that the correlation method was more suited to this data

set. Therefore the correlation based model was used from this point forward and the

optimum model limits investigated by using it to randomly generate 100 femurs using

7, 8, 9 and 10 modes and setting the bounds to +/- 1, 1.5 and 2 σbi . Anatomically

meaningful measurements were then extracted from each generated femur and from
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1 S.D. 1.5 S.D.
Training 7 8 9 10 7 8 9 10

Neck Axis Length 29.51 19.20 19.91 19.95 20.24 28.85 29.90 29.96 30.38
Neck Shaft Angle 10.59 6.58 6.50 6.53 8.21 10.00 10.62 10.41 56.46
Femoral Head Dia. 16.45 11.64 11.91 12.04 12.17 17.44 17.86 18.03 18.26
Femoral Neck Dia. P-D 12.31 8.37 8.52 9.57 9.13 12.55 12.75 14.21 13.55
Femoral Neck Dia. A-P 15.96 10.68 10.82 12.39 11.93 15.93 16.16 18.49 17.79
Anteversion 14.30 6.90 8.25 7.95 7.92 9.93 12.22 11.89 11.69
Femoral Shaft Radius 6.01 4.01 4.05 4.53 4.42 5.94 6.06 6.74 6.58
Femoral Length 89.53 58.13 58.48 62.14 61.67 85.34 86.21 88.40 89.59

Table B.3: Table showing the spread in values of various geometric measurements
taken from 100 femurs generated with bounds of 1 and 1.5 standard deviations, at
7, 8, 9 and 10 included modes,alongside the mean values of the statistical model
training data.

every training example, these were measurements commonly used to describe femoral

geometry, including femoral neck axis length, femoral head diameter, neck diameter

and neck-shaft angle [103, 143]. As each example was based on the same baseline

mesh there was accurate point to point correspondence between models, making this

process relatively simple, involving only the identification of the key node numbers

and some simple trigonometry.

The mean values and spread of results produced with 7-10 included modes at 1

and 1.5 σbi alongside the statistics of the training data the model is attempting to

represent, are shown in Tables B.2 and B.3. Even with a low number of eigenmodes

the mean measurements were consistent with the training set, this remained true as

the number of modes increased. However, by 10 modes some parameters began to

exceed the spread of values seen in the training data and the quality of the meshes

produced began to deteriorate slightly. The spread of geometric values generated

shows a clearer difference between the different boundary limits and to a limited

extent the number of modes. At +/-1 standard deviations the range is significantly

smaller than the training set, whereas at +/-1.5 the range is very similar. Overall

8 modes and a boundary of +/-1.5 σbi appears to match the mean and spread of

training data geometry measurements most closely. The results for 2 s.d. are not

shown, although they also showed comparable mean values to the original data, the

spread of the geometries exceeded the training set, at the detriment of the realistic

appearance of some models and mesh quality was seen to suffer.

All femur geometries produced at +/-1.5 s.d. gave realistic anatomical measure-

ments, comparable to the training set. Although generally on the smaller side, the

measurements extracted were within the bounds of data reported from clinical papers

investigating femur geometry [103, 143]. The differences most likely reflect the char-

acteristics of the training data and differences in measuring styles, as most clinical
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studies report measurements from two dimensional imaging techniques such as X-ray

and the current study calculated distances between three dimensional positions.

B.0.5 Mesh Quality Checks

Mesh quality is a key concern when automating the generation of finite element

models. As the statistical model is created by stretching and morphing a baseline

mesh some level of mesh distortion is inevitable. It is crucial that despite this,

mesh quality is maintained such that meshes can be used in finite element simulation

without causing errors or producing inaccurate results.

To investigate the general mesh quality resulting from the statistical model gen-

eration scheme, the distribution of the quality scores produced by both the NSR and

SDR metrics were recorded for 100 generated femurs (see section B.0.5). Figure B.4

shows the mean quality scores (solid lines) with a bounding envelope of the minimum

and maximum scores seen (dashed). In addition, the quality of the baseline mesh

is also shown for comparison (dotted line). Mesh quality is seen to drop from the

baseline, which is expected, but the quality remains high for both metrics.

Figure B.4: Graphs of the percentage cumulative element mesh quality for (a) distor-
tion metric and (b) normalised shape ration. Solid lines shows mean value, dashed
lines indicate min and max bounds and dotted line shows original baseline mesh
quality.
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Images of Training and Generated

Femurs
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Table of Assumptions

Stage Assumptions

Data No Pathology in the data set. i.e. all healthy subjects 46
subjects are sufficient to represent the variation in geometry
and material distribution in the femur Over representation
of males in training set due to available data Lack of ethnic
diversity in training set due to available data

Segmentation Possibility of introduction of manual errors due to data in-
terpretation Possible inaccuracy due to smoothing process re-
quired to generate smooth surfaces from voxelised segmenta-
tion

Material Property
Allocation

Possible smoothing effect due to sampling and averaging
method of elemental greylevel interpretation Possible artifi-
cial partial volume effects on element modulus around mate-
rial boundaries Assumed maximum bone density present in
all bones to allow calibration as no phantoms present in im-
ages Reliant on single density to modulus relationship from
the literature

Registration Accurate surface and volume representation when morphing
baseline mesh onto each example High mesh quality after mor-
phing Nodal and elemental correspondence between all train-
ing exampled following registration and morphing

PCA Sampling Appropriate number of modes included to represent data set
without including noise leading to mesh degradation Sam-
pling limits appropriate to represent data set while not ex-
tending too far and generating infeasible/unrealistic models
Normalised sampling technique suitable to represent the train-
ing set distribution
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