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Comparisons of linear regression and survival analysis using single 

and mixture distributions approaches in modelling LGD 

 

Abstract 

Estimating Recovery Rate and Recovery Amount has become important in consumer 

credit because of the new Basel Accord regulation and because of the increase in 

number of defaulters due to the recession. We compare linear regression and survival 

analysis models for modelling Recovery rates and Recovery amounts, so as to predict 

Loss Given Default (LGD) for unsecured consumer loans or credit cards. We also 

look at the advantages and disadvantages of using single distribution models or 

mixture distribution models for estimating these quantities.  
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 1. Introduction 

 

The New Basel Accord allows a bank to calculate credit risk capital requirements 

according to one of two approaches. The first, the standardized approach requires a 

percentage of the risk weighted assets to be set aside where the percentage is given in 

the regulations. The second, the internal ratings based (IRB) approach, allows a bank 

to use internal estimates of components of credit risk to calculate credit risk capital. 

Institutions using IRB need to develop methods to estimate the following components 

for each segment of their loan portfolio: 
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– PD (probability of default in the next 12 months); 

– LGD (loss given default); 

– EAD (expected exposure at default). 

 

Modelling PD, the probability of default has been the objective of credit scoring 

systems for fifty years but modelling LGD is not something that had really been 

addressed in consumer credit until the advent of the Basel regulations. Modelling 

LGD appears to be more difficult than modelling PD, because of two reasons. Firstly, 

much of the data may be censored (debts still being paid) because of the long time 

scale of recovery. Linear regression does not deal that well with censored data and 

even the Buckley-James approach (Buckley and James 1979) does not cope well with 

this form of censoring. Second, debtors have different reasons for defaulting and these 

lead to different repayment patterns. For example, some people do not want to repay; 

some people can not repay because of permanent changes in their situation, while for 

others the reason for non repayment is temporary. One distribution may find it hard to 

model the outcomes of these different reasons. Survival analysis though can handle 

censored data, and segmenting the whole default population is helpful to modelling 

LGD for defaulters with different reasons for defaulting.   

 

Most LGD modelling research has concentrated on corporate lending where LGD (or 

its opposite Recovery Rate RR, where RR=1-LGD), was needed as part of the bond 

pricing formulae. Even in this case, until a decade ago LGD was assumed to be a 

deterministic value obtained from a historical analysis of bond losses or from bank 

work out experience (Altman et al 1977). Only when it was recognised that LGD was 

part of the pricing formula and that one could use the price of non defaulted risky 
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bonds to estimate the market’s view of LGD were models of LGD developed. If 

defaults are rare in a particular bond class then it is likely the LGD got from the bond 

price is essentially a subjective judgment by the market. The market also trades 

defaulted bonds and so one can get directly the market values of defaulted bonds 

(Altman and Eberhart 1994). These values of LGD obtained from defaulted bonds or 

implied in the price of non-defaulted bonds were used to build regression models that 

related LGD to relevant factors, such as the seniority of the debt, country of issue, size 

of issue, size of firm, industrial sector of firm but most of all to economic conditions 

which determined where the economy was in relation to the business cycle. The most 

widely used model is the Moody’s KMV model, LossCalc (Gupton 2005). It 

transforms the target variable into a normal distribution by a Beta transformation, 

regresses the transformed target variable on a few characteristics, and then transforms 

back the predicted values to get the LGD prediction. Another popular model, 

Recovery Ratings, was created by Standard & Poor’s Ratings Services (Chew and 

Kerr 2005); it classifies the loans into 6 classes which cover different recovery ranges. 

Descriptions of the models are given in several books and reviews (Altman, Resti, 

Sironi 2005,  De Servigny and Oliver 2004, Engelmann and Rauhmeier 2006, 

Schuermann 2005). 

 

Such modelling is not appropriate for consumer credit LGD models since there is no 

continuous pricing of the debt as is the case on the bond market. The Basel Accord 

(BCBS 2004 paragraph 465) suggests using implied historic LGD as one approach in 

determining LGD for retail portfolios. This involves identifying the realised losses 

(RL) per unit amount loaned in a segment of the portfolio and then if one can estimate 

the default probability PD for that segment, one can calculate LGD since  
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RL=LGD.PD. One difficulty with this approach is that it is accounting losses that are 

often recorded and not the actual economic losses. Also since LGD must be estimated 

at the segment level of the portfolio, if not at the individual loan level there is often 

insufficient data in some segments to obtain robust estimates.  

 

The alternative method suggested in the Basel Accord is to model the collections or 

work out process. Such data was used by Dermine and Neto de Carvalho (Dermine 

and Neto de Carvalho 2006) for bank loans to small and medium sized firms in 

Portugal. They used a regression approach, albeit a log-log form of the regression to 

estimate LGD.  

 

The idea of using the collection process to model LGD was suggested for mortgages 

by Lucas (2006). The collection process was split into whether the property was 

repossessed and the loss if there was repossession. So a scorecard was built to 

estimate the probability of repossession where Loan to Value was key and then a 

model used to estimate the percentage of the estimated sale value of the house that is 

actually realised at sale time. For mortgage loans, a one-stage model, was build by Qi 

and Yang (2009). They modelled LGD directly, and found LTV (Loan to Value) was 

the key variable in the model and achieved an adjusted R square of 0.610, but only a 

value of 0.15 without including LTV. 

 

For unsecured consumer credit, the only approach is to model the collections process, 

and now there is no security to be repossessed. The difficulty in such modelling is that 

the Loss Given Default, or the equivalent Recovery Rate, depends both on the ability 

and the willingness of the borrower to repay, and on decisions by the lender on how 
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vigorously to pursue the debt. This is identified at a macro level by Matuszyk et al 

(2010), who use a decision tree to model whether the lender will collect in house, use 

an agent on a percentage commission or sell off the debts, - each action putting 

different limits on the possible LGD. If one concentrates only on one mode of 

recovery in house collection for example, it is still very difficult to get good estimates. 

Matuszyk et al (2010) look at various versions of regression, while Bellotti and Crook 

(2009) add economic variables to the regression. Somers and Whittaker (2007) 

suggest using quantile regression, but in all cases the results in terms of R-square are 

poor - between 0.05 and 0.2. Querci (2005) investigated geographic location, loan 

type, workout process length and borrower characteristics for data from an Italian 

bank, but concludes none of them is able to explain LGD though borrower 

characteristics are the most effective.     

 

In this paper, we use linear regression and survival analysis models to build predictive 

models for recovery rate, and hence LGD. Both single distribution and mixture 

distribution models are built to allow a comparison between them. This analysis will 

give an indication of how important it is to use models – survival analysis based ones- 

which cope with censored debts and also whether mixed distribution models give 

better predictions than single distribution model.  

 

The comparison will be made based on a case study involving data from an in house 

collections process for personal loans. This consisted of collections data on 27K 

personal loans over the period from 1989 to 2004. In section two we briefly review 

the theory of linear regression and survival analysis models. In section three we 

explain the idea of mixture distribution models as they are applied in this problem. In 



 6 

section four we build and compare single distribution models using linear regression 

and survival analysis based models, while in section five we create mixture 

distribution models, so that comparisons can be made. In section 6 we summarise the 

conclusion obtained. 

 

2 Single distribution models 

2.1 Linear regression model 

Linear regression is the most obvious predictive model to use for recovery rate (RR) 

modelling, and it is also widely used in other financial area for prediction. Formally, 

linear regression model fits a response variable y to a function of regressor variables 

mxxx ,...,, 21 and parameters. The general linear regression model has the form 

 

  mm xxxy ...22110                                         (2.1) 

Where in this case  

       y  is the recovery rate or recovery amount 

      m ,..., 10  are unknown parameters 

      mxxx ...,, ,21  are independent variables which describe characteristics of the loan or 

                          the borrower  

        is a random error term. 

 

In linear regression, one assumes that the mean of each error component (random 

variable  ) is zero and each error component follows an approximate normal 

distribution. However, the distribution of recovery rate tends to be bathtub shape, so 

the error component of linear regression model for predicting recovery rate does not 

satisfy these assumptions. 
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2.2 Survival analysis models 

Survival analysis concepts 

Normally in survival analysis, one is dealing with the time that an event occurs and in 

some cases the event has not occurred and so the data is censored. In our recovery rate 

approach, the target variable is how much has been recovered before the collection’s 

process stops, where again in some cases, collection is still under way, so the recovery 

rate is censored. The debts which were written off are uncensored events; the debts 

which are still being paid are censored events, because we don’t know how much 

more money will be paid or could be paid. If the whole loan is paid off, we could treat 

this to be a censored observation, as in some cases, the recovery rate (RR) is greater 

than 1. If one assumes recovery rate must never exceed 1, then such observations are 

not censored. Since we redefine the cases where RR>1 so that RR=1, we will consider 

all recovery rates at 1 to be censored. 
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Figure 1: Distribution of writeoff/payoff times 

Since the recovery process takes so long survival analysis has an advantage over the 

regression approaches, in that one can use the data for the cases in the recovery 
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process, and not have to wait until they have either paid off completely or been 

written off. Figure 1 shows the distribution of time between default and being written 

off or paid off in full for the data set of the case study described in section 4. It shows 

the mean write-off/pay off time is 58 month, with a standard deviation of 34 months, 

and a longest time of 173 months. So in the regression approach one is using data on 

cases which on average are at least five years since default. 

 

Suppose T is the random variable of the percentage of the debt recovered (defined as 

RR in this case) which has probability density function f. If an observed outcome, t of 

T, always lies in the interval [0, + ), then T is a survival random variable. The 

cumulative density function F for this random variable is 


t

duuftTPtF
0

)()()(                                        (2.2) 

The survival function is defined as: 





t

duuftFtTPtS )()(1)()(                               (2.3) 

Likewise, given S one can calculate the probability density function, f(u), 

)()( uS
du

d
uf                                                    (2.4) 

The hazard function h(t) is an important concept in survival analysis because it 

models imminent risk. Here the hazard function is defined as the instantaneous rate of 

no further payment of the debt given that t percentage of the debt has been repaid, 

t

tTttTtP
th

t 






)(
lim)(

0
                                    (2.5) 

The hazard function can be expressed in terms of the survival function, 

,
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tS

tf
th      0t                                                (2.6) 
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Rearranging, we can also express the survival function in terms of the hazard, 





t

duuh

etS 0
)(

)(                                                      (2.7) 

Finally, the cumulative hazard function, which relates to the hazard function, )(th , 

)(ln)()(
0

tSduuhtH
t

                                             (2.8) 

is widely used. 

 

It should be noted that f, F, S, h and H are related, and only one of the function is 

needed to be able to calculate the other four. 

 

There are two types of survival analysis models which connect the characteristics of 

the loan to the amount recovered – accelerated failure time models and Cox 

proportional hazards regression. 

  

Accelerated failure time models 

In an accelerated failure time model, the explanatory variables act multiplicatively on 

the survival function. They either speed up or slow down the rate of ‘failure’. If g is a 

positive function of x and 0S  is the baseline survival function then an accelerated 

failure model can be expressed as 

))(()( 0 xgtStS x                                                  (2.9) 

Where the failure rate is speeded up where .1)( xg  By differentiating (2.9), the 

associated hazard function is  

)()]([)( 0 xgxtghthx                                              (2.10) 
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For survival data, accelerated failure models are generally expressed as a log-linear 

model, which occurs when .)( xT

exg   In that case, one can show that the random 

variable T satisfies 

ZxT T

xe   0log                                          (2.11) 

where Z is a random variable with zero mean and unit variance. The parameters,  , 

are then estimated through maximum likelihood methods. As a parametric model, Z is 

often specified as the Extreme Value distribution, which corresponds to T having an 

Exponential, Weibull, Log-logistic or other types of distribution. When building an 

accelerated failure models, the type of distribution of the dependent variable has to be 

specified.  

Using accelerated failure time ideas to model recovery rates, leads to problems in that 

they do not allow the target variable to have a zero value nor can there be a value t* so 

that S(t*)=1 for all cases. Thus to use this approach one must allow RR>1 and not 

redefine such recovery rates to be 1; one also needs to use a logistic regression model 

to first classify which loans will have zero recovery rate, and use the accelerated 

failure approach on those which are predicted to have positive recovery rate.  

 

Cox proportional hazards regression 

Cox (1972) proposed the following model 

)();( 0

)( thexth xT                                             (2.12) 

Where   is a vector of unknown parameters, x is a vector of covariates and )(0 th  is 

called the baseline hazard function. 
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The advantage of this model is that we do not need to know the parametric form of 

)(0 th  to estimate  , and also the distribution type of dependent variable does not need 

to be specified. Cox (1972) showed that one can estimate   by using only the rank of 

the failure times to maximise the likelihood function. 

 

3 Mixture distribution models 

Models may be improved by segmenting population and building different models for 

each segment, because some subgroups maybe have different features and 

distributions. For example, small and large loans have different recovery rates, long 

established customers have higher recovery rate than relatively new customers (the 

latter may have high fraudulent elements which lead to low RR), and recovery rate of 

house owners is higher than that of tenants (because the former has more assets which 

may be realisable). Segmenting on recovery rate is a way of splitting who will not pay 

or permanently cannot pay from those who temporarily cannot pay. One could 

develop more sophisticated segments but using the RR values is an obvious first 

approach to a mixture model. 

The development of finite mixture (FM) models dates back to the nineteenth century. 

In recent decades, as result of advances in computing, FM models proved to offer 

powerful tools for the analysis of a wide range of research questions, especially in 

social science and management (Dias, 2004). A natural interpretation of FM models is 

that observations collected from a sample of subjects arise from two or more 

unobserved/unknown subpopulations. The purpose is to unmix the sample and to 

identify the underlying subpopulations or groups. Therefore, the FM model can be 

seen as a model-based clustering or segmentation technique (McLachlan and Basford, 

1998; Wedel and Kamakura, 2000).  
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In order to investigate different features and distributions in subgroups, we model the 

recovery rate by segmenting first. A classification tree model is built to generate 

segments with different features. Then, linear regression and survival models are built 

for each segment, so that mixture distribution models can be created. 

 

4 Case Study – Single distribution model 

4.1 Data 

The data in the project is data on defaulted personal loans from a UK bank. The debts 

occurred between 1987 and 1999, and the repayment pattern was recorded until the 

end of 2003.  In total 27278 debts were recorded in the data set, of which, 20.1% 

debts were paid off before the end of 2003, 14% debts were still being paid, and 

65.9% debts were written off beforehand. The range of the debt amount was from 

£500 to £16,000; 78% of debts are less than or equal to £5,000 and only 3.6% of them 

are greater than £8,000. Loans for multiples of thousands of pound are most frequent, 

especially 1000, 2000, 3000 and 5000. Twenty one characteristics about the loan and 

the borrower were available in the data set such as the ratio of the loan to income, 

employment status, age, time with bank, and purpose and term of loan. 

The recovery amount is calculated as: 

                default amount – last outstanding balance   (for non-write off loans) 

        OR   default amount – write off amount   (for write off loans)   

 

The distribution of recovery amount is given in Figure 2, ignoring debts that are still 

being repaid but this graph could be misleading as it does not describe the original 

debt. 
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Distribution of Recovery Amount
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Figure 2: Distribution of Recovery Amount in the data set 

The recovery rate                  Recovery Amount 

                                             ——————— 

                                              Default Amount    

                        

is more useful as it describes what percentage of the debt is recovered. The average 

recovery rate in this data set is 0.42 (not including debts still being paid). Some debts 

could have negative recovery rate, if the defaulted amounts generate interest and fees 

in the months after default, but the debtors did not pay anything, so the outstanding 

balance keeps increasing. Whether fees and interest are allowed to be added after 

default is determined by banking rules and the lender’s accounting conventions. The 

vast majority of UK lenders do not add fees and so the amount owed is frozen at 

default and the recovery rate is the amount repaid as a percentage of this. We use this 

convention in this paper and so recovery rates only increase with time. It also means 

we redefine all negative recovery rates to be zero.  

If fees and interest are included it is possible for the recovered amount to exceed the 

amount at default. In this case should one allow RR>1 or redefine it to be 1. We 

choose the latter course of action, which is consistent with fees being a cost in the 

recovery process and not part of the debt which is repaid. This is what mortgage and 
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car finance companies do in that the fees are taken out of the money received for 

selling the repossessed property before addressing whether the remainder is enough to 

cover the defaulted balance of the loan. For credit card and personal loan recoveries 

there is less uniformity but normally a collections department will not charge fees or 

add interest to the defaulted balance during the recovery process. 

 

With these conventions, the distribution of recovery rate is a bathtub shape, see Figure 

3. 30.3% debts have 0 recovery rate, and 23.9% debts have 100% recovery rate, others 

are relatively evenly distributed between 0 and 1. (This distribution excludes the debts 

still being paid.)   
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Figure 3: Distribution of recovery rate in the data set 

 

The whole data is randomly split into 2 parts; the training sample contains 70% of 

observations for building models, and the test sample contains 30% of observations 

for testing and comparing models.  
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In the following sections, the modelling details are presented. The results from linear 

regression and survival analysis models are compared, as are the results from single 

distribution models and mixture distribution models. 

 

4.2 Single distribution models 

Linear regression 

Two multiple linear regression models are built, one is for recovery rate as the target 

variable and one is for recovery amount as the target variable. In the former case, the 

predicted recovery rate could be multiplied by the default amount, and so the recovery 

amount could be predicted indirectly; in the latter case, a predicted recovery rate can 

be obtained by dividing the predicted recovery amount by the default amount.  

 

The stepwise selection method was used for all regression models. Coarse 

classification was used on categorical variables so that attributes with similar average 

target variable values are put in the same class. The two continuous variables ‘default 

amount’ and ‘ratio of default amount to total loan’ were transformed into ordinal 

variables as well, and also their functions (square root, logarithm, and reciprocal) and 

their original form were included in the model building in order to find the best fit for 

the Recovery Rate. 

 

The results are reported using a number of measures, R
2
, the coefficient of 

determination is a common measure of goodness of fit for regression models , in that 

it measures how much of the square of the differences between the recovery rate of  

individual debtors and the mean recovery rate is explained by the RR model. 

Although R
2 

of up to 0.8 are common in time series analysis, in real problems 
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involving individual people, R
2 

around 0.1 to 0.2 are not unusual. If one is only 

interested in how well the model is ranking the debtors, the Spearman coefficient is 

more appropriate. If one is concerned about the error between the actual RR and the 

predicted RR for each individual then Mean absolute error (MAE) or Mean square 

error (MSE) would be the measure of importance. (MAE and MSE values for 

Recovery Amount will be much greater than those for Recovery Rate as the latter is 

always bounded between 0 and 1).  

 

The R-squares for these models are small, (see Table 1, which gives the results on the 

training samples). This is consistent with previous authors (Bellotti and Crook 2009, 

Dermine and Neto de Carvalho 2006, Matuszyk et al 2010), but they are statistically 

significant. The Spearman rank correlation reflects how accurate was the ranking of 

the predicted values. From the results, we can see modelling recovery rate directly is 

better than indirect modelling by first estimating the recovery amount. Surprisingly, 

better recovery amount results are also obtained by predicting recovery rate first and 

then calculating recovery amount rather than estimating the amount directly. 

 R-square Spearman MAE MSE 

Recovery Rate from 

recovery rate model 

0.1066 0.3183 0.3663 0.1650 

Recovery Rate from 

recovery amount model 

0.0354 0.2384 0.4046 0.2352 

Recovery Amount from 

recovery amount model 

0.1968 0.2882 1239.2 2774405.4 

Recovery Amount from 

recovery rate model 

0.2369 0.3307 1179.6 2637470.7 

Table 1:  Linear regression models (results are from training sample) 
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The details of these recovery rate models whose results are given in Table 1 are given 

in Appendix 1. The most significant variable is ‘the ratio of default amount to total 

loan’, which has a negative relation with recovery rate. This gives some indication of 

how much of the loan was still owed before default occurs, and if a substantial portion 

of the loan was repaid before default then the Recovery Rate is also likely to be high. 

The second most significant variable is ‘second applicant status’, where loans with a 

second applicant have higher recovery rate than loans without a second applicant. 

Other significant variables, using t value as a measure, include: employment status, 

residential status, and default amount. The coefficient of the reciprocal of default 

amount looks very large but is only multiplying small values; so the overall impact 

although significant is not the largest effect. The years of default were also allowed as 

variables since they represent the best one could hope to do if one used economic 

variables to represent the temporal changes in the credit environment. The fact they 

were not that significant means it was felt that adding in economic variables would 

have a minor impact in these models. 

 

In the recovery amount model, the variables which entered the model are very similar 

to recovery rate model. Because predicting recovery amount directly from the 

recovery amount model is worse than that predicting it indirectly via the recovery rate 

model, the coefficient details of recovery amount model are not given in this paper.  

 

Survival analysis 

There are two reasons why survival analysis may be a useful approach to Recovery 

Rate and LGD modelling. Firstly, debts still being repaid cannot be included in the 

standard linear regression approach. Survival analysis models can treat such 
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repayments as censored, and include them easily in the model building. Secondly, the 

recovery rate is not normally distributed, so modelling it using linear regression 

violates the assumptions of linear regression.  Survival analysis models can handle 

this problem; different distributions can be set in accelerated models and Cox model’s 

approach allows any empirical distribution. 

 

Survival analysis models can be built for modelling both recovery rate and recovery 

amount. The event of interest is the percentage recovered when the debt is written off, 

so written-off debts are treated as uncensored; debts which were paid off or were still 

being paid are treated as censored. All the independent variables which are used in the 

linear regression model building are used here as well, and they are coarse classified 

again and dummy variables used to represent the various classes created. Continuous 

variables were firstly split into 10 to 15 bins to become 10 to 15 dummy variables, 

and these used in a proportional hazard model without any other characteristics. 

Observing the coefficients from the model output, bins with similar coefficients were 

combined. The same method was used for nominal variables.  Two continuous 

variables ‘default amount’ and ‘ratio of default amount to total loan’ were included in 

the models both in their original form and as coarse classified versions.  

 

Because accelerated failure time models can not handle 0’s existing in target variable, 

observations with recovery rate 0 should be removed off from the training sample 

before building the accelerated failure time models. This is also something that could 

be done for proportional hazards model, so that one is estimating the spike at RR=0, 

separately from the rest of the distribution. This leads to a new task: a classification 

model is needed to classify recovery 0’s and non-0’s (recovery rate greater than 0). 
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Therefore, a logistic regression model is built based on the training sample before 

building the accelerated failure time models. In the logistic regression model, the 

variables ‘month until default’ and ‘loan term’ are very significant, though they were 

not so important in the linear regression models before. The other variables selected in 

the model are similar to those in the previous regression models. The Gini coefficient 

is 0.32 and 57.8% 0’s were predicted as non-0’s and 21.5% non-0’s were predicted as 

0’s by logistic regression model.  Cox regression models allow 0’s to exist in the 

target variable; so two variants of the Cox model were built – one where one first 

separated out those with RR=0 by building a logistic regression model, and a one 

stage model where all the data was used to build the Cox model.  

 

For the accelerated failure life models, the type of distribution of survival time needs 

to be chosen. After some simple distribution tests, Weibull, Log-logistic and Gamma 

distributions were chosen for the recovery rate models; and Weibull and Log-logistic 

distributions were chosen for the recovery amount models.  

 

Recovery Rate Optimal quantile Spearman MAE MSE 

Accelerated 

 (Weibull) 

34% 0.24731 0.3552 0.1996 

Accelerated 

(log-logistic) 

34% 0.25454 0.3532 0.2015 

Accelerated 

(gamma) 

36% 0.16303 0.3597 0.1968 

Cox-with 0 

recoveries 

46% 0.24773 0.3631 0.2092 

Cox-without 0 

recoveries 

30% 0.24584 0.3604 0.2100 

Table 2: Survival analysis models results for recovery rate (training sample)  
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Recovery Amount Optimal quantile Spearman MAE MSE 

Accelerated 

(Weibull) 

34% 0.30768 1129.7 3096952 

Accelerated 

(log-logistic) 

34% 0.31582 1117.0 3113782 

Cox-with 0 

recoveries 

46% 0.29001 1174.5 3145133 

Cox-without 0 

recoveries 

30% 0.30747 1140.25 3112821 

Table 3: Survival analysis models results for recovery amount (training sample) 

 

Unlike linear regression, survival analysis models generate a predicted distribution of 

the recovery values for each debt, rather than a precise value. Thus, to give a precise 

value, the quantile or mean of the distribution needs to be chosen. In all the survival 

models, the mean and median values are not good predictors, because they are too big 

and generate large MAE and MSE compared with predictions from some other 

quantiles. The optimal predicting quantile points are chosen based on minimising the 

MAE and/or MSE. The lowest MAE and MSE are found with quantile levels lower 

than median, and the results from the training sample models are listed in Table 2 and 

Table 3. The optimal quantiles are obtained empirically but it would be interesting to 

see whether there is any theoretical justification for them, which would be useful in 

using quantile regression in LGD modelling (Whittaker et al 2005). The model details 

of Cox-with 0 recoveries are found in Appendix 2., while the baseline hazard function 

for the model excluding the RR=0 values is given in Figure 4 
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Figure 4: Baseline hazard function obtained from Cox model excluding RR=0 

Using a quantile value has some advantages in this case and quantile regression has 

been applied in credit scoring research. Whittaker et al (2005) use quantile regression 

to analyse collection actions, and Somers and Whittaker (2007) use quantile 

regression for modelling distributions of profit and loss. Benoit and Van den Poel 

(2009) apply quantile regression to analyse customer life value. Using quantile values 

to make prediction avoids outlier influences. In particular when using survival 

analysis, the mean value of a distribution is affected by the amount of censored 

observations in the data set, so use a quantile value is a good idea when making 

predictions using it. 

If the Spearman rank correlation test is the criterion to judge the model, we can see, 

from the above results tables (table2 and table3), the accelerated failure time model 

with log-logistic distribution is the best one among several survival analysis models. 

We can also see the optimal quantile point is almost the same regardless of the 

distribution in accelerated failure time models. Also the number of censored 

observations in the training sample does influence what is the optimal quantile point. 
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If some of the censored observations are deleted from the training sample, the optimal 

quantile points move towards the median.  

 

Model comparison 

The comparison of the models is based on the results using the test sample. For debts 

still being paid, the final recovery amount and recovery rate are not known, and they 

can’t be measured properly, thus these observations are removed from the test sample.  

Recovery Rate R-square Spearman MAE MSE 

(1) Linear Regression 0.0904 0.29593 0.3682 0.1675 

(2) A – Weibull 0.0598 0.25306 0.3586 0.2042 

(3) A – log-logistic 0.0638 0.25990 0.3560 0.2060 

(4) A – gamma 0.0527 0.23496 0.3635 0.2015 

(5) Cox – including 0’s 0.0673 0.27261 0.3546 0.2006 

(6) Cox – excluding 0’s 0.0609 0.25506 0.3564 0.2072 

(7) Linear Regression* 0.0292 0.22837 0.4077 0.2432 

(8) A – weibull* 0.0544 0.24410 0.3606 0.2070 

(9) A – log-logistic* 0.0591 0.25315 0.3575 0.2077 

(10) Cox – including 0’s* 0.0425 0.22646 0.3693 0.2216 

(11) Cox – excluding 0’s* 0.0504 0.23269 0.3624 0.2108 

*: results from recovery amount models     

Table 4: Comparison of recovery rate from single distribution models (test sample) 

This is unfortunate since it means one is comparing the methods only using debts 

which have been completely written off or paid off. Yet one of the advantages of 

survival analysis is that it can deal with loans which are still paying. The results from 

all the single distribution models when applied to the test sample are listed in Tables 4 

and 5. 

From the recovery rate Table 4, if R-square and Spearman ranking test are the 

criterion to judge a model, we can see (1) Linear Regression is the best one, and (5) 
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Cox-including 0’s is the second best model. In the training sample, accelerated failure 

time model with log-logistic distribution outperforms the Cox models, but for the test 

sample, the Cox model including 0’s is more robust than the accelerated failure 

models. In terms of MSE, linear regression always achieves the lowest MSE as one 

would expect as it is minimising that criterion. All the survival models have similar 

results. For MAE, the results are very consistent, except the linear regression models  

Recovery Amount R-square Spearman MAE MSE 

(1) Linear Regression 0.1807 0.28930 1212.1 2634270 

(2) A – weibull 0.1341 0.30594 1123.5 3026908 

(3) A – log-logistic 0.1318 0.31178 1111.7 3047317 

(4) Cox – including 0’s 0.1572 0.31788 1138.9 2887499 

(5) Cox – excluding 0’s 0.1400 0.30437 1125.3 3017661 

(6) Linear Regression* 0.2068 0.32522 1162.4 2549591 

(7) A – weibull* 0.1424 0.31149 1116.1 2982477 

(8) A – log-logistic* 0.1396 0.31697 1105.9 3014320 

(9) A – gamma* 0.1413 0.30139 1141.5 2972807 

(10) Cox – including 0’s* 0.1628 0.34619 1101.9 2906821 

(11) Cox – excluding 0’s* 0.1377 0.31246 1107.4 3028183 

*: results from recovery rate models 

Table 5: Comparison of recovery amount from single distribution models (test 

sample) 

are poor. Modelling recovery rate directly (rows 1 to 6 in Table 4) gives better results 

than modelling it indirectly via recovery amount, whose results are in rows 7 to 11 of 

Table 4. Almost all the R-square and Spearman test from recovery amount models are 

lower than these from recovery rate models. 

 

From the recovery amount results in Table 5, we see that modelling recovery amount 

directly (rows 1 to 5) is not as good as estimating recovery rate first (rows 6 to 11). 
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The (6) Linear Regression* model achieves the highest R-square while (10) Cox-

including 0’s* model achieves the highest Spearman ranking coefficient. Both of 

them are recovery rate models and the predicted recovery amount is calculated by 

multiplying predicted recovery rate by the default amount. Regression models and 

Cox-including 0’s models outweigh the accelerated failure time models.  In the test 

sample, Cox-including 0’s model beats the other survival models. The reason is that 

the logistic regression model which is used before the other models to classify 0 

recoveries and non-0 recoveries generates more errors in the test sample, but Cox-

including 0’s model is not affected by this model.  

 

5 Mixture distribution models 

Mixture distribution models have the potential to improve prediction accuracy and 

they have been investigated by other researchers for modelling RR. Matuszyk et al 

(2010) suggested to separate LGD=0 and LGD>=0 for unsecured personal loans, and 

then modelling LGD by using different models in each segment. Bellotti and Crook 

(2009) suggested to separate RR=0, 0<RR<1, and RR=1 for credit cards, and then for 

the group 0<RR<1, use Ordinary Least Squares regression or Least Absolute Value 

regression to model RR and achieved R-square 0.077. One possible reason for 

modelling RR by mixture distribution is people’s different views about repayment. 

Some debtors want to pay back, but they have financial troubles and can’t pay back; 

but some debtors deliberately do not want to pay.  

 

For these reasons, we build a mixture model where the segments aim to have different 

recovery rate ranges. There are other ways of segmenting – age and size of loan, 

percentage of loan already paid off - which may also separate out the won’t pays from 
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the can’t permanently pays and can’t temporarily pays, but using Recovery Rate to 

segment has the advantage of building on the work of others and of the inherent view 

that RR=0 must contain the won’t pays. The default years were not considered as 

variables to segment on because they did not appear significant in the single 

distributions, but it might be worth exploring this further in due course. We describe 

two approaches to achieving appropriate segments.  

 

Method 1 

The recovery rate is treated as a continuous variable and also the target variable, and a 

classification tree model is built to split the whole population into a few subgroups, in 

order to maximise the difference of average recovery rate between the subgroups.  

    

Figure  5: Classification tree for recovery rate as continuous variable 

As is seen from the tree in Figure 5, the whole population was eventually split into 4 

segments. Generally, large amount loans have lower recovery rate than small amount 

loans; if the debtors have a mortgage with this bank, then their loans have higher 

Recovery Rate 
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Average: 0.3538 
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Average: 0.4933 
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N: 11843 

(2): Residential Status:  

Tenants and others 
Average: 0.3647 

N: 4418  
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Owners and With parents 
Average: 0.4395 

N: 7425 
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recovery rate than those without a mortgage with the bank; house owners or living 

with parents have higher recovery rates than people of tenants or those with ‘other’ 

residential status.  

 

Linear regression model and survival models are built on each of the segments.  The 

previous research shows that better predicted recovery amount results are obtained 

from predicting recovery rate first and then multiplying by the default amount, so only 

recovery rate models are built here. The models are built based on training samples 

and tested on test samples.  

Recovery Rate R-square Spearman MAE MSE 

Regression 0.0840 0.28544 0.3693 0.1688 

Accelerated 0.0660 0.26625 0.3549 0.2055 

Cox-including 0’s 0.0752 0.28581 0.3518 0.1967 

Cox-excluding 0’s 0.0636 0.26236 0.3549 0.2067 

Table 6: Recovery rate from mixture distribution models of method 1 (test sample) 

In all four segments, linear regression is always the best modelling technique, as it has 

the highest R-square and Spearman coefficient; so after piecing together the 4 

segments, linear regression model still has the highest R-square. Among the 

accelerated failure time models, the best fit in the first three segments are achieved 

with the log-logistic distribution models, and the best fit in the last segment is with 

Weibull distribution model. So the test results for the accelerated failure time models 

are made up of three log-logistic distribution models and one Weibull distribution 

model. In the Cox-regression modelling, the Cox model including 0’s (without 

logistic regression to predict 0 or non-0 recoveries) performs better than Cox model 

excluding 0’s (with logistic regression first) in all four subgroups. This means it is not 

better to predict 0 recoveries by logistic regression first. The results of the four 
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approaches are given for the recovery rate in Table 6 and for the recovery amount in 

Table 7. 

Recovery Amount R-square Spearman MAE MSE 

Regression 0.1942 0.31824 1166.7 2593870 

Accelerated 0.1346 0.31820 1102.3 3030185 

Cox-including 0’s 0.1574 0.35314 1100.5 2976283 

Cox-excluding 0’s 0.1357 0.31564 1105.8 3068188 

Table 7: Recovery amount from mixture distribution models of method 1 (test 

sample) 

In terms of R-square, among mixture distribution models, the linear regression models 

are the best; but in terms of Spearman ranking test, the Cox model-including 0’s 

outperforms the linear regression model, especially for predicting recovery amount. 

 

Compared with the analysis from single distribution models, the results from mixture 

distribution models are disappointing and are somewhat worse than the results from 

the single distribution models. In terms of R-square, the best mixture distribution 

model is linear regression, but its R-square is still lower than that from the single 

distribution linear regression model. In terms of Spearman ranking coefficient, the 

best mixture distribution model is the Cox model-including 0’s. The Spearman 

ranking coefficient for the recovery rate is a little bit lower than 0.29593 which is the 

best one in the single distribution models; the Spearman ranking coefficient for the 

recovery amount is higher than 0.34619 which is the highest in the single distribution 

models. Thus, it seems mixture distribution models only improve the Spearman rank 

coefficient in the case of recovery amount predictions. 
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Method 2 

Another way to separate the whole population is to split the target variable into three 

groups: the first group RR<0.05 (almost no recoveries), the second group 

0.05<RR<0.95 (partial recoveries), and the third group RR>0.95 (full recoveries). 

These splits correspond to essentially no, partial or full recovery. 

 

 

Figure  6: Classification tree for recovery rate as ordinal variable 

 

Recovery rate can be treated as an ordinal variable, with three classes - recovery rate 

less than 0.05 is set to 0, recovery rate between 0.05 and 0.95 is set 1, and recovery 

rate greater than 0.95 is set 2. A classification tree with the three classes as the target 

variable was tried, but the results were disappointing because each end node had 

similar distribution over the three classes. As an alternative a classification tree was 

first built to separate 0’s and non-0’s, so the whole data is split into two groups. Then 

a second classification tree was built for the non-0’s group, in order to separate them 

into 1’s and 2’s. So again the population was split into 3 subgroups and this gave 

slightly better results. The population in the first segment (most zero repayments) 
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have the following attributes: no mortgage and loan term less than or equal to 12 

months, OR no mortgage, time at address less than 78 months and have a current 

account. The population in the third segment (highest full repayment rate) have 

attributes: loan less than £4320 and insurance accepted. The rest of the population are 

allocated to the second segment as is shown in Figure 6. 

This classification is very coarse. Group (1) aims at debts with recovery rate less than 

0.05, but only 45.8% debts actually belong to this group; group (2) is for the debts 

with recovery rate between 0.05 and 0.95, but only 47.4% debts are in this range; 

group (3) is for the debts with recovery rate greater than 0.95, but, only 29.2% debts 

in this group have recovery rate greater than 0.95.  

 

In the previous analysis, the linear regression model and Cox-including 0’s model are 

the two best models, so here only the linear regression model and the Cox-including 

0’s regression model are built for each of the three segments. The results from the 

combined test sample are compared with the results from previous research in Tables 

8 and 9. 

 

Recovery Rate R-square Spearman MAE MSE 

Regression 0.0734 0.26453 0.3695 0.1688 

Cox including 0’s 0.0570 0.25869 0.3588 0.2051 

Table 8: Recovery rate from mixture distribution models of method 2 (test sample) 

 

Recovery Amount R-square Spearman MAE MSE 

Regression 0.2054 0.31356 1169.4 2564149 

Cox including 0’s 0.1669 0.33888 1125.7 2930725 

 Table 9: Recovery amount from mixture distribution models of method 2 (test sample) 
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From Tables 8 and 9, we can see that, for recovery rate, the linear regression model is 

still better than the Cox regression model in terms of R-square and Spearman 

coefficient; for recovery amount, the R-square of the linear regression model is higher 

than that of the Cox regression model, but the Spearman coefficient of linear 

regression is lower than that of the Cox model. Compared with the results from single 

distribution models, these mixture models do not improve the R-square or the 

Spearman ranking coefficient. 

 

5 Conclusions 

Estimating Recovery Rate and Recovery Amount has become much more important 

both because of the new Basel Accord regulation and because of the increase in the 

number of defaulters due to the recession.  

 

This paper makes a comparison between single distribution and mixture distribution 

models of predicting recovery rate for unsecured consumer loans. Linear regression 

and survival analysis are the two main techniques used in this research where survival 

analysis can cope with censored data better than linear regression. For survival 

analysis models we investigated the use of proportional hazard models and 

accelerated failure time models though the latter have certain problems that need to be 

addressed-they do not allow 0’s to exist in the target variable and the recovery rate 

cannot be bounded above. This can be overcome by not defining RR>1 to be censored 

at 1 and by  first using a logistic regression model to classify which loans have zero 

and which have non zero recovery rates. Cox’s proportional hazard regression models 

can deal with 0’s in the target variable and can deal with the requirement that RR1 

for all loans. So that approach was tried both with logistic regression used first to split 
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off the zero recoveries and without using logistic regression first. In all case one used 

the approaches to model both recovery rate and recovery amount, and for all the 

models it turns out it is better to model recovery rate and then use the estimate to 

calculate the recovery amount rather than modelling the recovery amount directly. 

. 

In the comparison of the single distribution models, the research result shows that 

linear regression is better than survival analysis models in most situations. For 

recovery rate modelling, linear regression achieves higher R-square and Spearman 

rank coefficient than survival analysis models. The Cox model without logistic 

regression first is the best model among all the survival analysis models. This is 

surprising given the flexibility of distribution that the Cox approach allows. Of course 

one would expect MSE to be minimised using linear regression on the training sample 

because that is what linear regression tries to do. However, the superiority of linear 

regression holds for the other measures both on the training and the test set. One 

reason may be the need to split off the zero recovery rate cases in the accelerated 

failure time approach. This is obviously difficult to do and the errors from this first 

stage results in a poorer model in the second stage. This could also be the reason that 

the mixture models do not give a real improvement. Finding suitable segments is 

difficult and the resultant subgroups are not as homogeneous as one would wish. 

 

Another reason for the survival analysis approach not doing so well is that to make 

comparisons we used test sets where the recovery rate was known for all the debtors. 

That is they all had either paid off or been written off. So there was no opportunity to 

test the models predictions on those who were still paying, which is of course the type 

of data that is used by the survival analysis models but not by the regression based 
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models. Finally in the survival analysis approach, there is the question of whether 

loans with RR=1 are really censored or not. Assuming they are not censored would 

lead to model lower estimate of RR, which might be more appropriate for the 

conservative philosophy of the Basel Accord.  

 

These results are based on the case study data, which though quite large is from one 

UK lender. The results would need further validation either from the use of other data 

sets or by some theoretical underpinning if they are to be considered valid for all types 

on unsecured consumer credit LGD modelling. 
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Appendix 1 

Coefficients of variables in single distribution linear regression model for RR 

Variable 
Parameter 
Estimate 

Standard 
Error 

P-value 

Intercept 0.682 0.029 ** 

Employment status 1 0.098 0.013 ** 

Employment status 2 0.144 0.015 ** 

Mortgage 0.047 0.009 ** 

Visa card -0.036 0.010 * 

Insurance indicator 2 -0.053 0.009 ** 

No. of dependant 2 0.027 0.010 * 

Personal loan account 0.024 0.008 * 

Residential status 1 -0.037 0.011 * 

Residential status 3 -0.041 0.017  

Residential status 4 -0.113 0.013 ** 

Saving account 0.014 0.007  

Loan term1 -0.063 0.019 * 

Loan term2 -0.027 0.010 * 

Loan term4 0.042 0.011 * 

Second applicant status 1 -0.107 0.014 ** 

Second applicant status 2 -0.051 0.017 * 

Second applicant status 3 -0.127 0.009 ** 

Loan purpose 1 -0.069 0.016 ** 

Loan purpose 2 -0.040 0.009 ** 

Loan purpose 3 -0.051 0.012 ** 

Loan purpose 4 -0.044 0.010 ** 

Time at address 2 0.033 0.011 * 

Time at address 3 0.037 0.010 * 

Time at address 4 0.051 0.013 ** 

Time at address 5 0.066 0.015 ** 

Time at address 6 0.074 0.015 ** 

Time at address 7 0.090 0.014 ** 

Time with the bank 1 -0.030 0.015  

Time with the bank 5 0.032 0.010 * 

Time in occupation 1 0.029 0.013  

Time in occupation 2 0.039 0.013 * 

Time in occupation 3 0.044 0.015 * 

Time in occupation 4 0.047 0.015 * 

Time in occupation 5 0.090 0.016 ** 

Monthly expenditure 0.036 0.016  

Monthly income 1 0.066 0.013 ** 

Monthly income 2 0.060 0.013 ** 

Affordability 3 0.057 0.016 * 

Default year 90 0.031 0.010 * 

Default year 96 0.029 0.011 * 

SQR default amount -0.003 0.000 ** 

REC default amount -58.398 8.933 ** 

Default rate -0.012 0.001 ** 

**: p<0.0001; *: p<0.01 
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Appendix 2 

Coefficients of variables in single distribution Cox regression model (including 0 

recoveries) for recovery rate 

Variable 
Parameter 
Estimate 

Standard 
Error 

P-value 

Mortgage -0.142 0.024 ** 

Visa card 0.106 0.027 ** 

Personal loan account -0.087 0.021 ** 

Employment status 1 -0.079 0.040  

Employment status 2 0.064 0.033  

Employment status 3 0.328 0.045 ** 

Insurance indicator 2 0.099 0.030 * 

Insurance indicator 3 0.115 0.032 * 

Marital status 0.090 0.031 * 

No. of dependant  -0.064 0.021 * 

Residential status 1 0.092 0.029 * 

Residential status 3 0.265 0.029 ** 

Second applicant status 1 -0.225 0.025 ** 

Second applicant status 2 -0.145 0.046 * 

Loan purpose 1 0.146 0.022 ** 

Loan purpose 2 0.130 0.026 ** 

Age of applicant -0.051 0.024  

Time at address -0.163 0.023 ** 

Time in occupation -0.147 0.024 ** 

Time with the bank 1 -0.060 0.023  

Time with the bank 2 -0.115 0.030 ** 

Time with the bank 3 -0.215 0.031 ** 

Affordability 0.170 0.031 ** 

Default rate 1 0.090 0.027 * 

Default rate 2 0.183 0.028 ** 

Default rate 3 0.324 0.039 ** 

Default rate 4 0.340 0.050 ** 

Default rate 5 0.439 0.052 ** 

Default amount 1 0.112 0.044  

Default amount 3 -0.068 0.027  

Default amount 4 0.059 0.027  

Default amount 5 0.183 0.040 ** 

Default amount 6 0.210 0.044 ** 

Month until default 1 0.120 0.039 * 

Month until default 2 0.067 0.027  

Default year 91 0.101 0.027 * 

Default year 92 0.082 0.038  

Default year 93 0.116 0.045  

Default year 95 -0.105 0.050  

Default year 96 -0.203 0.044 ** 

Default year 97 -0.190 0.046 ** 

Default year 98 -0.216 0.046 ** 

Default year 99 -0.165 0.064 * 

 **: p<0.0001; *: p<0.01 


