High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor

Bolzonella, D, Majone, M., Aulenta, F., Dionisi, D., D'Addario, E.N., Sbardellati, R. and Beccari, M. (2010) High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor Water Research, 44, (9), pp. 2745-2752. (doi:10.1016/j.watres.2010.02.008).


Full text not available from this repository.


This study investigates the anaerobic treatment of an industrial wastewater from a Fischer–Tropsch (FT) process in a continuous-flow packed-bed biofilm reactor operated under mesophilic conditions (35 °C). The considered synthetic wastewater has an overall chemical oxygen demand (COD) concentration of around 28 g/L, mainly due to alcohols. A gradual increase of the organic load rate (OLR), from 3.4 gCOD/L/d up to 20 gCOD/L/d, was adopted in order to overcome potential inhibitory effects due to long-chain alcohols (>C6). At the highest applied OLR (i.e., 20 gCOD/L/d) and a hydraulic retention time of 1.4 d, the COD removal was 96% with nearly complete conversion of the removed COD into methane. By considering a potential of 200 tCOD/d to be treated, this would correspond to a net production of electric energy of about 8 × 107 kWh/year.

During stable reactor operation, a COD balance and batch tests showed that about 80% of the converted COD was directly metabolized through H2? and acetate-releasing reactions, which proceeded in close syntrophic cooperation with hydrogenotrophic and acetoclastic methanogenesis (contributing to about 33% and 54% of overall methane production, respectively). Finally, energetic considerations indicated that propionic acid oxidation was the metabolic conversion step most dependent on the syntrophic partnership of hydrogenotrophic methanogens and accordingly the most susceptible to variations of the applied OLR or toxicity effects.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1016/j.watres.2010.02.008
ISSNs: 0043-1354 (print)
ePrint ID: 185891
Date :
Date Event
Date Deposited: 11 May 2011 12:49
Last Modified: 18 Apr 2017 02:15
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/185891

Actions (login required)

View Item View Item