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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Fengmin Le

Stroke affects a large percentage of the population in UK and one of the most devastating and

common consequences of the stroke is loss of the use of the arm and hand. Currently there is

increasing interest in the application of control schemes as part of a rehabilitation programme for

survivors of a stroke. Functional Electrical Stimulation is applied, together with the model-based

controller in order to ensure that the assistance provided coincides as much as possible with the

patient’s voluntary intention. The difficulty encountered is lack of a reliable model of electrically

stimulated muscle. Motivated by this, this thesis focus on identification of electrically stimulated

muscle, especially the impaired arm after stroke.

After studying the muscle behaviors and reviewing the existing muscle models, Hammerstein

structure is chosen to model the nonlinear dynamics of the electrically stimulated muscle un-

der isometric conditions. Firstly, batch identification algorithms are considered. A two-stage

algorithm is proposed, together with its identification procedure and comparison results on a

stimulated muscle system. Due to its simple implementation and good performance, this algo-

rithm has been developed to the later two iterative algorithms. Experimental results are used to

demonstrate the superior performance of the algorithms and the model structure when compared

with others.

Further more, considering the slowly time-varying properties of the muscle system, recursive

identification of Hammerstein structure is investigated later in the thesis. A novel recursive

identification algorithm is developed, where the linear and nonlinear parameters are separated

and estimated recursively in a parallel manner, with each updating algorithm using the most up-

to-date estimation produced by the other algorithm at each time instant. When compared with

the leading technique involving over-parametrization together with a Recursive Least Squares

algorithm on numerical examples and experimental data, the proposed algorithm exhibits supe-

rior performance.

Finally, the identified muscle models have been used in FES control schemes for electrically

stimulated muscle under isometric conditions and iterative learning controllers will be used

since the repeated nature of the task. Besides the two nonlinear ILC approaches, several trial-

dependent and adaptive control schemes has been designed and implemented in the thesis.
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Chapter 1

Introduction

1.1 Stroke Rehabilitation

Every year, an estimated 150,000 people in the UK have a stroke, that is, one person every

five minutes. Anyone can suffer from a stroke and the percentage increases strongly with age.

Similar demographics exist across the EU, and due to an aging population and better acute care,

the cost of stroke care, or rehabilitation will continue to increase.

A stroke is a brain injury caused by sudden interruption of blood flow. This will result in a variety

of sensory, motor, cognitive and psychological symptoms, such as sensory loss, hemispatial

neglect, aphasia, muscle weakness, spasticity, limited movement coordination, attention and

memory deficits, depression and behavioral changes. A stroke is the third most common cause

of death in the UK and is also the single most common cause of severe disability. More than

250,000 people in the UK live with disabilities caused by a stroke. One of the most devastating

and common consequences of the stroke is loss of the use of the arm and hand [Gowland et al.,

1992], which causes serious limitations in activities of daily living for the majority of stroke

patients and less than 50% have recovered useful upper limb function [Parker et al., 1986; Broeks

et al., 1999].

The survivors after a stroke can take part in rehabilitation to overcome or learn to cope with the

damage the stroke has caused. Although the dead brain cells cannot start working again, the

other parts of the brain can learn to take over from areas that have died, a process known as

‘relearning’. A major problem encountered in rehabilitation is so-called learned disuse, which

means the patient is unable to practice movements because of impaired motor control. The

difficulties to practice and the delay in recovery may lead to a decreased likelihood of recovery

occurring [Castro-Alamancos et al., 1992]. Fortunately, technological innovations provide an

opportunity to design interventions to stimulate motor relearning. A promising application is

the use of rehabilitation robotics to complement conventional therapy. Robotic devices have

the possibility to guide movements in a very accurate and reproducible way during specific

1
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parts of a movement and through specific types of guidance, which is hard to accomplish by

manual interaction between therapist and patient. Also, there is a growing body of clinical

evidence [de Kroon et al., 2002], and theoretical support from neurophysiology [Burridge

and Ladouceur, 2001] and motor learning research, to support the use of Functional Electrical

Stimulation (FES) to improve motor control. FES is a technique that uses electrical currents to

activate nerves innervating extremities affected by paralysis resulting from spinal cord injury,

head injury, stroke or other neurological disorders, aiming at restoring function in people with

such disabilities. FES can provide the patient with the experience of moving the impaired limb,

and when FES is applied coincidently with a patient’s voluntary intention whilst performing a

task, functional recovery is enhanced [Rushton, 2003].

1.2 Workstation Description

For stroke patients with hemiplegia, one essential function they find very difficult is to reach

out from the trunk to, for example, a cup sitting on a table top. When recovering from a stroke,

patients go through the same process as an unimpaired person does when learning to play tennis,

that is, acquiring the skills necessary by repeated practice. The difficulty is that they can hardly

move and consequently do not receive feedback on their progress, and hence get very limited

benefit. There is also strong evidence that intervention to help in this situation is best in support

of voluntary effort.

Iterative Learning Control (ILC) is a technique for controlling systems operating in a repetitive,

or pass-to-pass, mode with the requirement that a reference trajectory r(t) defined over a finite

interval [0,T ] is followed to a high precision. Examples of such systems include robotic manip-

ulators that are required to repeat a given task to high precision, chemical batch processes or,

more generally, the class of tracking systems. Motivated by human learning, the basic idea of

ILC [Arimoto et al., 1984] is to use information from previous executions of the task in order

to improve performance from pass-to-pass in the sense that the tracking error is sequentially

reduced. The objective of ILC schemes is to use their repetitive process structure, that is, infor-

mation propagation from pass-to-pass and along a pass, to progressively improve the accuracy

of the core operation under consideration by updating the control input progressively from pass-

to-pass. ILC is the subject of intense research effort, see [Bristow et al., 2006; Ahn et al., 2007]

for a starting point on the literature, both in terms of the underlying theory and experimental

verification. Recent work ([Freeman et al., 2007a]) has made highly novel use of ILC in robot

assisted stroke rehabilitation, including highly promising patient trials.

One of the first research programs to combine FES and robotic therapy together has been un-

dertaken at the University of Southampton. Here a robotic workstation was designed and con-

structed for use by stroke patients to perform upper limb tracking tasks. This operates in com-

bination with surface FES and their remaining voluntary effort in the hope that they may regain

useful voluntary control of their paralysed arm. ILC is used to update the stimulation level in
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order to ensure that the assistance provided coincides as much as possible with the patient’s

voluntary intention.

The robotic workstation consists of a five-link planar robotic arm rigidly connected to an over-

head projection system. A subject is strapped to the extreme link and a 6 axis force/torque sensor

records the force they apply to the robotic end effector. This also contains an encoder and LEDs

to provide visual feedback of the tracking performance. The robotic arm is used to constrain

the subject’s arm, to impose forces on the end-effector that make the task feel ‘natural’ to the

subject, to apply assistance during the performance of tracking tasks, and to move the patient’s

arm when necessary. The FES is applied to the triceps muscle, which is one of the muscles

primarily affected by stroke, and the patients task is to track a range of reaching trajectories, that

are projected onto a target positioned above their hand. Fig. 1.1 shows a stroke participant using

the robotic workstation during one of their eighteen treatment sessions, and shows the shoulder

strapping used to prevent trunk movement which would reduce the effectiveness of treatment.

FIGURE 1.1: A Stroke Participant Using the Robotic Workstation

The error between the angle of the forearm in the horizontal plane, ϑ(t), and the required an-

gle, ϑ ∗(t), is measured during the task, and, at its conclusion, the robot returns the arm to the

starting position. Fig. 1.2 shows the control scheme block diagram, which consists of a feed-

Arm and Muscle SystemLinearising ControllerFeedback controller+-
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FIGURE 1.2: Block Diagram of ILC Control Scheme

back controller, a linearising controller and an ILC feedforward controller. The former block,

taken as a proportional plus derivative controller in the clinical tests, acts as a pre-stabilizer and

provides satisfactory tracking during initial trials. During the arm resetting time at the end of

trial k, the ILC controller uses a biomechanical model of the arm and muscle system, along with
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the previous tracking error, to produce the feedforward update signal vk+1(t) for application in

the next trial (full details of the ILC algorithms applied appears in [Freeman et al., 2009a]). The

overall performance is clearly dependent on the accuracy of the arm and muscle model, which

comprises

• a stimulated muscle structure which accounts for the torque, y(t), acting about the elbow

generated in response to the applied electrical stimulation, u(t),

• a kinematic model which gives the component of this torque in the horizontal plane of

movement, and

• a two-link system which provides the resulting angular movement, ϑ(t).

The biomechanical model has been experimentally verified with both unimpaired subjects and

stroke patients using a variety of functional parameter forms [Freeman et al., 2009b].

Although the model can predict arm movement resulting from applied FES with reasonable

accuracy, experimental data confirms that the model of stimulated muscle adopted is not as

accurately identified as the remaining components of the arm. The presence of such modelling

inaccuracies necessitated use of relatively low ILC learning gains throughout the clinical trials,

but the treatment still resulted in statistically significant improvement for participants across

a number of outcome impairment measures [Hughes et al., 2009]. The basic feasibility of the

approach was therefore established, but the need for improved modeling of the patient’s arm, and

the muscle model, in particular, was also highlighted. Hence, identification of the electrically

stimulated muscle after stroke is investigated in this thesis.

1.3 Contribution and Thesis Organisation

The main contributions of this thesis can be summarized as follows:

• A specific Hammerstein structure with a cubic spline nonlinearity followed by a transfer

function description of linear dynamics is proposed as a suitable model for the electrically

stimulated muscle after stroke under isometric conditions, which means the muscle is held

at a fixed length.

• A novel identification procedure and corresponding two-stage algorithm is developed.

The algorithm is implemented on a simulated muscle system using real experimental data

from a stroke patient and outperforms both the ramp deconvolution and separable least

squares methods with different noise levels.

• Based on assumed model structures, two iterative algorithms are developed from the two-

stage algorithm, where the existing iterative algorithm in [Bai and Li, 2004] has been
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extended to encompass an Infinite Impulse Response (IIR) description of the linear com-

ponent.

• An essential step in any identification algorithm is the selection of appropriate input, or

test signals. Here four candidate tests are proposed with particular emphasis on the fact

that they will be applied to people, where the staircase test is the first time to be used in

this application.

• The iterative algorithms have been applied to experimental data from one impaired sub-

ject’s arm. Identification, validation and cross-validation results for different tests are

analysed.

• Due to the time-varying properties of the muscle system, a novel recursive identification

algorithm is developed for the Hammerstein structure. The new algorithm is compared

with the over-parametrization approach together with the Recursive Least Squares algo-

rithm in numerical examples and experimental tests.

• The Hammerstein plant model identified by the developed algorithms has been applied to

two advanced ILC algorithms to control the isometric muscle system. Following this, two

adaptive ILC schemes are proposed in order to better cope with the time-varying muscle

dynamics. One is a Linear Adaptor plus Trial-dependent ILC and the other one uses the

recursive algorithm developed here to implement online identification, together with an

adaptive ILC. Supporting simulation and experimental results are also given.

The following papers are generated based on above contributions:

• F. Le, I. Markovsky, C. Freeman and E. Rogers (2008), “Identification of the Dynamics of

Human Arms after Stroke”. In: 23rd IAR Workshop on Advanced Control and Diagnosis,

27-28 November 2008, Coventry University, UK.

• F. Le, I. Markovsky, C. Freeman and E. Rogers (2009), “Identification of Electrically

Stimulated Muscle after Stroke”. In: European Control Conference 2009 - ECC’09, 23-

26 August, 2009, Budapest, Hungary.

• F. Le, I. Markovsky, C. Freeman and E. Rogers (2009), “System Identification of Muscle

Dynamics for ILC-based Stroke Rehabilitation”. In: UKACC Research Student Event, 7th

May 2009, Institute of Engineering and Technology, Savoy Place, London.

• F. Le, I. Markovsky, C. Freeman and E. Rogers (2010), “Identification of electrically

stimulated muscle models of stroke patients”. Control Engineering Practice,Volume 18.

Pages 396-407.

• F. Le, I. Markovsky, C. Freeman and E. Rogers (2010), “Recursive Identification of Ham-

merstein Systems with application to Electrically Stimulated Muscle”. Control Engineer-

ing Practice. [Submitted]
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• F. Le, I. Markovsky, C. Freeman and E. Rogers (2011), “Recursive Identification of Ham-

merstein Structure”, American Control Conference 2011 - ACC’11, June 29 - July 1, 2011,

San Francisco, California, USA. [Accepted]

• F. Le, I. Markovsky, C. Freeman and E. Rogers (2011), “Online Identification of Electri-

cally Stimulated Muscle Models”, The 18th IFAC World Congress, August 28 - September

2, 2011, Milan, Italy. [Accepted]

The thesis is organized as follows:

In Chapter 2, a detailed literature review of electrically stimulated muscle models is first given,

including a summary of muscle behavior and four categories of existing muscle models. An

evaluation of existing identification test procedures is also given. With respect to the identifica-

tion techniques, seven categories of batch identification algorithm for Hammerstein structures

are reviewed, followed by three classes of recursive algorithm. Finally, a brief review of FES

control schemes is presented.

Chapter 3 discusses the batch identification of a Hammerstein structure. After a formal statement

of the identification problem, a two-stage algorithm is first developed, together with its identi-

fication procedure and comparison results on a stimulated muscle system. Then two iterative

algorithms are derived for two different linear component representations. In the experimen-

tal results section, some important issues in designing tests are discussed and four candidate

tests are developed. Based on the identification, validation and cross-validation results from

experiments, choice of the best model structure, identification algorithm and candidate test is

discussed.

Chapter 4 focuses on the recursive identification of a Hammerstein structure. Firstly, the leading

technique involving over-parametrization together with a Recursive Least Squares algorithm

is reviewed. Then a novel recursive identification algorithm is developed for a Hammerstein

structure. Two algorithms are compared using numerical examples and then applied to the

electrically stimulated muscle system.

The identified muscle model is then used to design FES control schemes for the electrically

stimulated muscle under isometric conditions in Chapter 5. After description of the Hammer-

stein plant, two existing advanced model-based ILC algorithms are first applied, followed by

the proposal of two adaptive control schemes. Finally, simulation and experimental results are

given to show the efficacy of the designs.

The thesis concludes in Chapter 6 with a summary of the progress made and recommendations

for further work.



Chapter 2

Literature Review

From birth, humans begin getting to know their world through interaction with the environment

and thereby receiving information and learning how to control actions by predicting their effects.

These predictions are based on “Mental” or “Intuitive” models, which are summarized from past

experience of the object’s behavior. Starting from very simple actions, humans become adept

at much more complicated challenges, such as playing tennis and cooking. These same mech-

anisms can be used to tackle more complex processes such as tidal variation, or the dynamics

of airplanes. In this case, an explicit mathematical model is required but the procedure of using

experience to inform the model remains the same.

There are basically three steps in the construction of a mathematical model of a given system.

1. Decide on model structure

In many cases, it is possible to proceed by directly examining the mechanisms that gen-

erate signals and variables inside the system. Based on physical or biological or other

laws the relationships that the govern the systems behaviour can be constructed. Incom-

plete knowledge of the system could, however, mean that the parameters of the model are

unknown and also there can be uncertainty associated with the final model obtained.

2. Design tests

To be effective, test signals have to be designed together with deciding which signals to

measure and where these measurements should take place. Also which signals to use as

inputs needs to be decided. The aim is to make the data obtained maximally informative.

3. Parameter estimation

This stage constructs a mathematical model from the measured output data produced in

response to a known input signal. The parameters in the identified model are estimated

using an appropriate criterion or cost function.

7
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The model is then validated by checking its predictive abilities using a new data set which

resembles that of the required application. If the model cannot satisfy a desired margin of error,

the procedure outlined must be repeated..

In the recent stroke rehabilitation research undertaken at Southampton, model-based controllers

are used to update the stimulation level to assist the stroke patients’ completion of planar reach-

ing tasks, meaning that muscle models with reasonable accuracy are required. Thus in this

application, the objective system is the electrically stimulated muscle after stroke. The remain-

der of this chapter reviews existing literature related to the modelling of electrically stimulated

muscle, and is organized to correspond with the ‘three steps’ of the modelling process.

2.1 Muscle Models

One potential solution is to use a black box model. However, pure black box models are free of

any assumed model structure, and the structure selection will most often require a long testing

time which is not acceptable in the application area considered. Consequently a model with a

well defined structure is required.

Obviously, no muscle model will be perfect with the variations from the ideal representation due

to the assumptions invoked in each case. Some existing models are biophysically based and can

capture a variety of muscle behaviour. Others are relatively simple but still are highly accurate

in particular cases. Before deciding on the model structure, some prior knowledge of muscle

behaviour is necessary in order to capture the features required. Consequently the next section

gives a brief description of muscle behaviour under stimulation.

2.1.1 Muscle Behavior

In the ‘unimpaired’, physiologically intact body, the signal to initiate muscle contraction is gen-

erated in the central nervous system. This signal is propagated to and along the peripheral nerve

and, via the synapsis, transferred to the muscle, where it induces a contraction. If this natural

muscle activation process is interrupted by a lesion such as stroke, the activation signals from

the central nervous system cannot reach the muscles, and hence they are paralyzed. FES is a

technique to artificially generate an activation signal in the peripheral nerve as follows: when the

stimulator sends a signal to the electrodes placed on the muscle body, an electrical field is gener-

ated between the two electrodes. This electrical field changes the external potential in the tissue

surrounding the nerve. If the depolarization is strong enough, an action potential is induced in

the nerve and propagated along the nerve fiber. This action potential is then chemically trans-

ferred to the muscle fibers via the synapsis and induces muscle contraction and consequently the

tendon force.

• Fiber contraction: Cross-bridge theory



Chapter 2 Literature Review 9

From a microscopic point of view, a set of muscle fibers make up a muscle and, in turn,

each fiber is constructed from a very large number of sarcomeres, the basic contractile

unit, separated by elastic zones and themselves sheltering filaments. These filaments are

made up of “thick” (myosin molecule) filaments surrounded by “thin” (actin molecules)

filaments and myosin heads stick out from the myosin filament along the length of the

myosin filament except for a region in the middle. When stimulated by an action poten-

tial, the muscles generate a force because of the contraction of the every single sarcomere.

Next, the cross-bridge theory of the microscopic mechanisms of fiber contraction is dis-

cussed.

Huxley [Huxley, 1957] speculated that unbonded myosin heads are in a cocked position,

due to a molecule of adenosine diphosphate attached to the myosin head. Meanwhile, an

activation potential causes calcium ions to be released by the sarcoplasmic reticulum, and

these ions bond to parts of the actin filament. In so doing, the actin filaments conformation

has been altered and bonding sites are exposed. The myosin heads attach to these exposed

sites to form cross-bridges, which have a different preferred structure that requires the

myosin head to rotate while releasing the molecule of adenosine diphosphate. As the

myosin head rotates, the overlap between the actin and myosin filaments increases and

results in the overall length of the sarcomere shortening. This is called the cross-bridge

power stroke. To release the bonds between the myosin and actin filaments at the end of

the power stroke, adenosine triphosphate is required. It binds to the myosin head, which

then detaches from the actin filament and the muscle fiber relaxes. Subsequently, the

adenosine triphosphate is dephosphorylated (releases a phosphate molecule) to become

adenosine diphosphate, which once again cocks the myosin head for future attachment to

another actin binding site [Kandel et al., 2000].

• Force summation

Within the muscle, a single action potential causes a twitch contraction, which will result

in relatively little force. When action potentials occur more often, cross-bridge formation

will increase, and individual twitches will overlap and begin to add together. This is

called unfused tetanus. Eventually, when the calcium ion release rate is greater than the

rate at which the ions are re-uptaken, a fused tetanus will occur in which a constant force

is sustained over a period of time. Overlapping twitch responses is not the only way to

generate forces greater than that of a single twitch. It is also possible to generate higher

forces by contracting multiple muscles. This is done by muscle recruitment.

• Muscle recruitment

Muscles can be recruited either by spatial summation, which means the area of stimulation

is increased, or temporal summation, i.e., stimulation is sustained in order to increase the

concentration of calcium ions required to form cross-bridges.

• Force-length and force-velocity relationships
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Under non-isometric conditions, the generated force also depends on the length and veloc-

ity of the muscles. Muscles operate with greatest active force when close to their resting

length. When stretched or shortened beyond this, the maximum active force generated de-

creases. This decrease is minimal for small deviations, but the force drops off rapidly as

the length deviates further from the ideal. Moreover, the speed at which a muscle changes

length also affects the force it can generate. Force declines in a hyperbolic fashion rela-

tive to the isometric force as the shortening velocity increases, eventually reaching zero

at some maximum velocity. The reverse holds true when the muscle is stretched - force

increases above the isometric maximum, until finally reaching an absolute maximum.

Modelling of electrically stimulated muscle has been a widely investigated area, and there ex-

ist a large number of models developed for different aspects of muscle contraction under both

isometric and non-isometric conditions, considering not only the microscopic-scale mechan-

ics but also the macroscopic-scale relationships. They can be roughly divided into four cate-

gories: Hill-type models, biophysical models, mathematical models and Hammerstein-Wiener

or Wiener-Hammerstein Models. The better the model, the closer the response to a stimula-

tion input matches that observed experimentally. At the same time, however, their degree of

computational efficiency and their feasibility for implementation in a practical controller, is an

important issue. Thus, the four types of model, including their performance and feasibility for

application, will be summarised next.

2.1.2 Physical Models

Hill-type model is the most popular physical model, which is described by a mass, spring, and

damper-like system, and by far the most widely used muscle representatives due to their relative

simplicity and their ability to be analyzed by classical mechanical methods. The original Hill

model suggested in [Hill, 1938] consists of masses, springs, dampers, and black-box contractile

elements, and produce a representation which includes the force-length and force-velocity rela-

tionship, see Fig. 2.1. The parallel (visco-) elastic element (PE) models the force generated by

the fascicles under passive conditions. In Fig. 2.1, it consists of a damper and a stiffness. This

damper is not always present. The contractile element (CE) models the active contractile ma-

chinery force of the muscle. This force is transmitted through the series elastic element (SE) to

the point of attachment. The SE models the series elasticity of the tendon and aponeurosis. The

combination of the contractile and (visco-)elastic elements is referred to as the muscle-tendon-

unit.

There is another widely used muscle model, where the PE is parallel to both the CE and SE.

Because the SE is much stiffer than the PE over the primary operating range, there is little

difference between the two forms. The precise nature of the series and parallel elastic elements

differs from model to model. But the general implementation is a nonlinear spring with a limited

operating range. The implementation of the contractile element is a more complex part of the
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model. It accounts for the generation of active force, which is the product of three independent

experimentally measured factors. These factors describe the force-length (FL) property, the

force-velocity (FV) property and the activation dynamics (AD) of the stimulation input.

FCE = AD ·FL ·FV (2.1)

CE

PE

SE

FIGURE 2.1: Hill-type Model Structure

A well-known Hill-type based model was introduced in [Durfee and Palmer, 1994], and is shown

in Fig. 2.2. Force is generated through the parallel combination of a PE with force FPE and an

active element (AE) with force FAE such that

FMT = FPE +FAE (2.2)

The PE force is produced by a parallel combination of a nonlinear spring that defines the passive

force-length relation fPEL and a nonlinear dashpot that defines the passive force-velocity relation

fPEV of the muscle

FPE = fPFL(x(t))+ fPFV (ẋ(t)) (2.3)

The AE force generator consists of a CE in series with a SE. To simplify the identification

procedures, SE was neglected by assuming it to be infinitely stiff. Force is generated in the CE

through the product of four factors: the normalized stimulation force fST IM(u, t), where u is the

stimulation activation strength, the normalized active FL relation fAFL(x(t)) where x(t) is the

length of the CE, the normalized active FV relation fAFV (ẋ(t)), and a scaling factor fSCALE that

recovers absolute muscle force

FAE = FCE = fST IM(u, t)× fAFL(x(t))× fAFV (ẋ(t))× fSCALE (2.4)

The stimulation force is modeled as a Hammerstein structure with a static nonlinearity represent-

ing the Isometric Recruitment Curve (IRC), cascaded with linear muscle activation dynamics to

produce fST IM(u, t).

In subsequent research, these three factors (FL, FV and AD) were found to be mutually cou-

pled through comparison of the uncoupled model and coupled models in [Shue et al., 1995].

Following this, a coupled model was used by [Chizeck et al., 1999] to identify the electrically
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FIGURE 2.2: Durfee Model

stimulated quadriceps muscle in paraplegic subjects. This coupled model involves the following

components.

Torque-Angle factor (or FL):

Ta(k) = 1+dΦ(k) (2.5)

Torque-Angular velocity factor (or FV):

Tv(k) = 1− cV (k) (2.6)

AD factor:

A(k) = Tv(k)[a1A(k−1)+a2A(k−2)]+bu(k−h) (2.7)

y(k) = A(k)Ta(k) (2.8)

Here Φ(k) and V (k) are the measured angle and angular velocity respectively, u(k) is the stim-

ulation input and a1,a2,b,c,d are the parameters to be estimated. The output torque y(k) is the

product of two factors: AD A(k) and Torque-Angle Ta(k), given by (2.8), where the AD depends

on the Torque-Angular velocity relationship (2.7).

In either coupled or uncoupled form, the Hill-type model is the most commonly used over the

past four decades. It has been successfully used in many fields, such as the design of neural

prostheses and the design of controllers to adjust the electrical stimulation applied.
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2.1.3 Biophysical Models

Hill-type models are useful for gaining an insight into the muscle as described by a mass, spring,

and damper-like system, but they are purely phenomenological; that is, they are based only

on output behavior and make no reference to the relatively well-understood underlying cross-

bridge mechanics causing the behavior. Some researchers have developed models based on

cross-bridge kinetics as formulated by Huxley [Huxley, 1957].

Zahalak et al.[Zahalak and Ma, 1990] simplified the classic Huxley two-state contraction model

to form a so-called Distribution Moment model, which is fourth-order state variable model for

contractile tissue. The four state variables are the first three moments of the actinmyosin bond-

distribution function (representing stiffness, force, and elastic energy, respectively) and the free

calcium concentration. In spite of the simplification, the bond distribution moment model has a

large number of parameters that must be solved nonlinearly.

Another form comprised a combination of Hill-type and Huxley-type elements, such as in [Dor-

gan and O’Malley, 1997] where a detailed muscle model was to represent many aspects of

muscle contraction. This is divided into five consecutive components: Reverse-Order Recruit-

ment Dynamics, the Fiber Active State, Fiber Contraction Dynamics, Derivation of an Excitation

Function and Activation Dynamics. Although it was demonstrated that this model was capable

of capturing a variety of nonlinear behavior observed in electrically stimulated muscle through

simulation results, it is too complicated for control applications.

Wexler et al. developed a model involving three coupled nonlinear differential equations [Wexler

et al., 1997]. The first described calcium release and uptake by the sarcoplasmic reticulum. The

second equation modeled calcium and troponin binding and release, and the third concerned

itself with the force mechanics of cross-bridges. The first two differential equations were with

respect to calcium concentration. The third relation was based on a Hill-type model with a

spring, damper, and motor in series and modelled force mechanics. This model has been suc-

cessfully used to predict the force of human skeletal muscles by [Ding et al., 2002]. Moveover,

when compared with six other models in terms of its ability to fit forces generated by stimulated

ankle dorsiflexors in [Bobet et al., 2005] and with two other mathematical models in terms of

fitting experimental data from paralyzed muscles in [Law and Shields, 2005] and [Law and

Shields, 2007], it is the most advanced and accurate one.

Models such as those above have the advantage that their parameters can often be directly related

to characteristics present in the muscle. However, they tend to be complex and thus computa-

tionally expensive. Their parameters are often difficult to identify, and their structure is rarely

controller orientated. Therefore, although biophysical models can be accurate descriptors of

muscle contractile dynamics, their numerical complexity makes them slow and difficult to real-

istically implement.
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2.1.4 Black-box Models

This category comprises all black-box based models. The simplest choice is a linear model,

which can fit experimental data fairly well if the experimental conditions are suitably con-

strained. For example, a critically damped second-order model has been shown to satisfactorily

model the dynamical response of nine different skeletal muscles in [Baratta and Solomonow,

1990]. The muscles are modelled under isometric conditions and the stimulation is applied with

fixed pulse width and frequency. Although the double real pole locations and the value of the

pure time delay are different from muscle to muscle, a simple second-order linear model can

perform very well. Another case is given in [Kirsch et al., 1994], where the muscle stiffness,

the dynamic relationship between muscle displacement and force, is modelled as linear during

transient movement tests undertaken at given operating points.

The linear model can be too simple due to the underlying nonlinear behaviour of the muscle.

Thus, the parameters of the linear model have been assumed to vary under different experimental

environments. In [Bobet et al., 1993], a variety of experimental conditions are tested whilst as-

suming a critically damped second-order linear model: different stimulation frequency, slow or

fast muscle types, rested or fatigued muscles, and maximal or submaximal stimulation voltage.

In order to adjust to these variations, the model parameters are allowed to vary between inter-

stimulus intervals. However, this model is still found to be insufficiently flexible because the

parameters are constrained to be constant within an interstimulus. In order to react to the more

rapidly changing stimulation, a linear time-varying model is employed and a recursive least

squares method is implemented using the MATLAB block RARX to estimate the parameters

online in [Ponikvar and Munih, 2001].

Another successful example can be found in [Gollee et al., 2001], which in essence closely

resembles approaches described above. Second-order linear models are constructed but are

only valid for certain operating regions. By blending them together and forming a scheduler

to select the model closest to the current operating point, the eventual local model network can

capture muscle behavior under a wide range of operation conditions. Despite accurate results in

capturing dynamics behavior, a disadvantage of these approaches is that local linearized models

are less tractable for developing controllers for practical implementation.

2.1.5 Hammerstein and Wiener Models

The Hammerstein and Wiener models belong to a block-oriented modeling technique, which

captures nonlinear dynamic systems using one or two static nonlinear blocks in series with

one or two linear ones, see Fig. 2.3. The benefit of breaking the system model into discrete,

independent blocks is that the individual blocks may correspond to different natural phenom-

ena. In [Hunter and Korenberg, 1986], the three structures: Hammerstein, Wiener and Wiener-

Hammerstein, also known as LNL (‘L’ represents a dynamic linear subsystem and ‘N’ represents

a static nonlinear subsystem) or “sandwich” systems, have been considered as block structured
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approaches for nonlinear system identification, together with identification schemes with special

concentration on application to biological systems. This paper provides successive researchers

with much inspiration and rich possibilities for models of biological systems. These structures

will be reviewed in turn:

Static 
Nonlinearity

Linear Dynamics

(a) Hammerstein structure

Static 
Nonlinearity

Linear Dynamics

(b) Wiener Structure

Static 
Nonlinearity

Linear Dynamics Static 
Nonlinearity

(c) Hammerstein-Wiener Structure

Static 
Nonlinearity

Linear Dynamics Linear Dynamics

(d) Wiener-Hammerstein Structure

FIGURE 2.3: Hammerstein-Wiener and Wiener-Hammerstein Structures

• Hammerstein structure

This model is a system consisting of a static nonlinearity followed by a dynamic lin-

ear subsystem, shown in Fig. 2.3(a), has been used so often that it has almost become

standard. The reason for using the Hammerstein structure is based mainly on empirical

evidence and without any rigid structured association. There is only occasional suggestion

that there may be a correspondence to the biophysics: the static nonlinearity f (u) repre-

sents the IRC, which is defined as the static gain relation between stimulus activation level

and output torque when the muscle is held at a fixed length and the linear dynamics G(q)
represents the dynamic response of electrically stimulated muscle.

The history of using a Hammerstein structure in muscle modeling can be traced back

to 1967. In [Vodovnik et al., 1967], a Hammerstein model is used to describe muscle

behavior and then a closed-loop controller is developed for an elbow prosthesis.

In 1986 [Bernotas et al., 1986] used a discrete-time Hammerstein model to describe the

input-output properties of electrically stimulated isometric muscle. The static block rep-

resenting the recruitment characteristics as mentioned above is tested beforehand and sep-

arated from the muscle system. A second-order linear model for the muscle dynamics is

then estimated by employing exponentially weighted recursive least squares methods. The

efficiency of the model is confirmed using tests on cat soleus and plantaris muscles with
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varying muscle length and stimulus periods, and also comparison between the closed-loop

control of stimulated muscle and simulations using the discrete-time model. Two years

later, this model was used successfully to design a feedback controller to accurately and

robustly regulate the properties of the electrically stimulated muscle in [Chizeck et al.,

1988].

In [Durfee and MacLean, 1989], four methods are developed to estimate the IRC within

the Hammerstein model. Of these, the ramp deconvolution method was introduced for

the first time and gave superior performance compared to the others, as well as having a

shorter computation time and higher accuracy. This was employed in the stroke rehabili-

tation project at Southampton to estimate the IRC by [Freeman et al., 2009b], and is used

to provide baseline performance comparison with approaches developed in Chapter 3 of

this thesis. The estimation of the IRC also improves the design of the controller, where an

inverse recruitment map is included in the forward path to partially cancel the effects of

the muscle recruitment curve.

Five years later, this Hammerstein model with a static nonlinearity, IRC, followed by the

linear dynamics, describing the isometric nonlinear muscle dynamics as a whole, was

used as the CE in a Hill-type structure to model the non-isometric muscles in [Durfee

and Palmer, 1994], see Fig. 2.2. An identification method for estimating the parameters

is given and tested experimentally. Experimental force data fitting and prediction results

demonstrated that the model was able to predict the behavior of stimulated muscle with

reasonable accuracy for a wide range of length, velocity, and activation inputs. The major

weakness of the model is the absence of time-variation. This led [Durfee and Palmer,

1994] to suggest an approach combining off-line and online identification, where one or

two of the most important parameters (such as a scaling factor accounting for the presence

of fatigue) could be tracked online.

After this work the popularity of the Hammerstein structure in this application area de-

clined. However, subsequent improvements in identification theory and experimental

techniques led to further work on improving the deficiencies in this model. [Hunt et al.,

1998] identified a Hammerstein model using experimental data from the plantarflexors of

an intact human, and when compared with local linear models valid at different activa-

tion levels, the Hammerstein model was found to be less accurate due to the fact that the

dynamics are not independent of activation levels. Subsequently, [Munih et al., 2000] fur-

ther investigated variation within the IRC and the dynamic response of the Hammerstein

model, based on tests from six groups of people. It was found that the IRC depends on

many factors, including electrode placement and location, physiological properties of the

muscle, its innervation and electrode properties and displays variation with time due to

fatigue. Besides these similar factors, the dynamics also depend on stimulation intensity,

which can be explained by Heinneman’s principle [Heinneman and Olson, 1965].

Some of these imperfections are quite easily overcome by performing an identification

tests before the treatment so that the dependencies due to the subject or sample tested

and the experimental environments can be excluded. However, some are more difficult to
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eliminate, such as fatigue or intensity-dependent dynamics. With case, the Hammerstein

model still can satisfy the requirements. In order to further improve the accuracy, a slowly

time-varying Hammerstein model may be assumed. Fatigue takes effect slowly and if the

input stimulation could be allowed to gradually vary, the dynamics would also be slowly

time-varying. Thus, the optimal solution would seem to be an online updating scheme for

the parameters in the Hammerstein model, which is one of the major contributions of this

thesis and is the subject of Chapter 4.

• Wiener structure

A dynamic linear subsystem followed only by a static nonlinearity is commonly referred

to as a Wiener system, see Fig. 2.3(b). The Wiener structure has also been proposed for bi-

ological nonlinear system modeling by [Hunter and Korenberg, 1986]. [Hunter, 1985] and

[Hunter, 1986] found that for active frog tibialis anterior muscle fibers, the dynamic rela-

tion between muscle length and tension can be more accurately represented by a Wiener

model rather than a Hammerstein model.

In these experiments, the stimulation was fixed at the maximal level and the length of the

muscle was varied using stochastic perturbations. Thus, it is to be expected that the first

nonlinear block, IRC, would be unnecessary and another output nonlinearity, accounting

for the force-length relationship, would appear. This explains why a Wiener model out-

performs a Hammerstein model in this application and does not affect the priority of the

Hammerstein model when the stimulation intensity is modulated and the muscle is under

isometric conditions.

• Hammerstein-Wiener structure

When the input and output nonlinearities are both present and a linear block is situated

in the middle, the structure is called a Hammerstein-Wiener structure, see Fig. 2.3(c).

In [Farahat and Herr, 2005] and [Schauer et al., 2005a], a Hammerstein-Wiener struc-

ture is used to model the dynamics of electrically stimulated muscle under non-isometric

conditions. Another output nonlinearity h(w,x, ẋ) is added to represent the relationship

between the force produced and the mechanical state of the muscle in order to incorporate

the force-length and force-velocity relationship, see Fig. 2.4. Thus, the model can charac-

terize the muscle dynamics under more general conditions. In [Farahat and Herr, 2005],

a two-stage identification scheme is presented to initially estimate the first two blocks,

which themselves comprise a Hammerstein structure, and then to estimate the output non-

linear block separately. Only simulation results are provided to demonstrate the efficiency

of the proposed structure. In [Schauer et al., 2005a], the model is estimated online using

an extended Kalman filter and tested in both simulation and with real experimental data.

This model is actually complementary to the Hammerstein structure because, after iden-

tifying the isometric muscle dynamics as a Hammerstein model, another output nonlin-

earity can be easily estimated by applying separate non-isometric tests, as in [Farahat

and Herr, 2005]. However, this model structure is too simple compared with the Hill-

type model in Fig. 2.2 to adequately model muscles under non-isometric conditions, since
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FIGURE 2.4: Hammerstein-Wiener structure under non-isometric conditions

experimental results show some discrepancies exist between the model output and the

measured output in [Schauer et al., 2005a].

• Wiener-Hammerstein structure

A Wiener-Hammerstein structure consists of a dynamic linear subsystem followed by

a static nonlinearity, which is then followed by another dynamic linear subsystem, see

Fig. 2.3(d). In [Bobet and Stein, 1998], a time-varying Wiener-Hammerstein model

was proposed. The model consists of two first-order linear systems separated by a static

nonlinearity and, in order to compensate for exponential drops in the output in the absence

of a change in the input, a nonlinear time-varying equation with three unknown parameters

was used in the last block. The model was validated using three cat soleus and plantaris

muscles and can reproduce these responses accurately over a wide range of stimulation

patterns.

A large number of unknown parameters result in identification complexity becoming an

issue for this model structure. An improvement over this model has been proposed re-

cently by [Bai et al., 2009], which takes the form of a modified Wiener-Hammerstein

structure, see Fig. 2.5.

It only has four unknown parameters, a1, a2, b1 and b2, and the difference compared to

a standard Wiener-Hammerstein structure is that a1 is a time-varying switching function.

Experimental data from the soleus muscles of individuals with spinal cord injury shows

that the identified model performs comparably to the model in [Ding et al., 2002], which

has been established as the most advanced and accurate one through comparison under-

taken in [Bobet et al., 2005], but with less complexity.
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FIGURE 2.5: Modified Wiener-Hammerstein structure [Bai et al., 2009]

These two papers model the isometric muscle force in response to a variation in inter-

pulse intervals. The output force can be modulated by varying either the number of active

muscle fibers (recruitment) or the frequency of activation (temporal summation). The
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modulation by temporal summation (stimulus period modulation, or, inversely, pulse fre-

quency modulation) is achieved by varying the time interval between the start of succes-

sive pulses, in, for example, [Bobet and Stein, 1998], [Bobet et al., 2005] and [Ding et al.,

2002] where the range of frequency is from 12.5Hz to 100Hz. However, it is shown that

the higher the stimulation frequency, the more quickly muscle fatigue becomes evident,

especially over 50Hz in [Baker et al., 1993]. [Carroll et al., 1989] also found frequency

modulation alone may not provide the ranges of torque required to achieve a variety of

functional tasks. Due to the fact that the subjects in this work are stroke patients who are

more easily fatigued than intact subjects, and the aim is to help them achieve functional

tasks and not to investigate the muscle behaviors per se; frequency modulation is not a

good choice.

Recruitment modulation involves varying the number of muscle fibers activated, by vary-

ing the amplitude (current or voltage amplitude) or the duration (width) of stimulus pulses.

Pulse width modulation is preferred because it is easier to quantify and control than the

stimulation pulse amplitude, provides a more consistent response across subjects, requires

a smaller charge per stimulus pulse, and allows for greater selectivity of recruitment than

amplitude modulation [Crago et al., 1980]. Therefore, pulse width modulation is em-

ployed here and it is open to debate whether the Bai et al. model will work at all under

this modulation. In Chapter 3, the Bai et al. model and its identification algorithm will

be implemented and compared with a Hammerstein model and the corresponding identi-

fication algorithm using the experimental data from isometric human muscles under pulse

width modulated stimulation. The Bai et al. model shows very poor performance and it

is speculated that the muscles exhibit different behaviors due to the type of stimulation

used.

After reviewing most of the existing models in the literature, a Hill-type model is chosen by

us to describe the whole non-isometric muscle behavior. Following the identification schemes

introduced in [Durfee and Palmer, 1994], the passive and active force-length and force velocity

relationships are not difficult to recover by simply fitting piecewise polynomials as has been

implemented in [Freeman et al., 2009b]. The most burdensome part is to identify the Hammer-

stein structure in the Hill-type model because of the interactions existing between the linear and

nonlinear block. The difficulties encountered in this task, together with the existing techniques

available will be reviewed in Section 2.3.

Moreover, the Hammerstein structure, as a model of the nonlinear muscle dynamics under iso-

metric conditions, is likely to be important in the design of systems for restoring force or motion

using FES. This is because the activities that FES is intended to replace (reach to grasp tasks,

tracking trajectories) are typically slow, controlled motions. For these activities, the effects of

inertia, velocity, and series elasticity are likely to be small and the isometric behavior of muscle

is likely to dominate.
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Therefore, identification of isometric muscle dynamics will be investigated in this thesis and

the Hammerstein structure is chosen as the underlying model. The existing tests used in the

literature to identify the linear dynamics and IRC, the two blocks in the Hammerstein structure,

will be reviewed in the next section.

2.2 Identification Tests

In an early study [Bernotas et al., 1986], Pseudo-Random Binary Sequences (PRBS) were used

in identification tests and at each stimulus instant, the pulse width switched between two acti-

vation levels. The PRBS has widely been used in linear system identification and can ensure

persistent excitation of the muscle dynamics so that subsequently many researchers made fair

use of it to identify the linear dynamics of muscles, [Shue et al., 1995], [Chizeck et al., 1999].

A pilot study of tests and methods for estimating the IRC of electrically stimulated muscles was

undertaken in [Durfee and MacLean, 1989]. This paper described three methods for estimating

the IRC and made a brief mention of a fourth. They are now summarized.

• Steady-state step response method: This method uses a step input to activate the muscle

at a fixed activation level for a period, n, and then averages the force over a further period,

m, at the end of the step input. The IRC was drawn by cross-plotting the averaged forces

against corresponding activation levels.

• Peak impulse response method (or twitch response method): A sequence of stimulus

pulses at different stimulation levels were applied to the muscle in a random order and

the peak of the muscle twitch responses were plotted against the stimulation level to ob-

tain the IRC.

• Triangular ramp method: A triangular ramp test was applied to the muscle and the muscle

ramp response was deconvolved by the linear dynamics of the muscle system. Then the

IRC was estimated by cross-plotting the deconvolved signal against the input ramp signal.

• Stochastic iteration method: The method considered used a stochastic input and per-

formed an iterative algorithm involving the muscle’s response to derive an estimate of

the IRC and the linear dynamics.

Later research into identification tests for electrically stimulated muscle is to a greater or lesser

extent based on these methods. The Steady-State Step Response Method is the simplest and

most common method in the literature, however, it is known to fatigue muscle so that its pop-

ularity has since diminished. The Peak Impulse Response Method is fast and non-fatiguing.

In [Hunt et al., 1998], it was termed the Twitch Response Method, and was used to estimate

the IRC and was also extended to estimate the linear dynamics as well. When compared to

the PRBS test, the linear model identified from the twitch response was shown to be inferior
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to the PRBS based model on a given set of validation data, primarily due to the low dynamic

information content of the twitch response. Therefore, the PRBS is a better signal to identify the

linear dynamics but it cannot excite the whole nonlinearity. A similar and superior choice are

Pseudo-Random Multi-level Sequences (PRMS), used in [Schauer et al., 2005a]. The PRMS is

a periodic, deterministic signal having an autocorrelation function similar to white noise. Mean-

while, the Triangular Ramp Method was demonstrated to be a promising alternative by [Durfee

and MacLean, 1989]. This method has also been used in frequency modulation [Bobet et al.,

2005] and has already been implemented in the stroke rehabilitation project at Southampton

in [Freeman et al., 2009b]. The last approach was not implemented by the authors [Durfee and

MacLean, 1989] but inspired a lot of later researchers. One of the methods developed in this

thesis is also an iterative algorithm based on a single identification test to estimate both the IRC

and the linear dynamics at the same time.

Another important paper which compares different identification tests is [Munih et al., 2000].

Three tests were applied: the Twitch response test, PRBS test and varied-frequency sinusoidal

signals (which vary the frequency of sinusoidal signals at [0.3, 0.5, 0.8, 1.2, 2, 3.2]Hz). The IRC

was estimated using a twitch response test and the linear dynamics were estimated using a twitch

response test and a PRBS test. The authors also calculated prediction errors on the validation

data for the models identified from the twitch response test and the PRBS test to demonstrate

that the PRBS is a more information-rich test than the twitch response test. Also it was stated

that use of varied-frequency sinusoidal signals led to large prediction errors but no tables or

figures were presented to support the statement.

Having reviewed the literature, there is a distinct lack of discussion related to the design of tests

for the identification of electrically stimulated muscle. Most identification algorithms give little

attention to the choice of input signal or the criteria used to assess the resultant accuracy, instead

picking an existing test input from the literature. A few of them compared several identification

tests but almost no one has conducted a comprehensive validation analysis or even a cross-

validation analysis. Therefore, a ‘test design’ section will be presented in Section 3.4.1 and some

important issues arising in the design of tests for identifying electrically stimulated muscles will

be discussed. Moreover, four candidate tests will be given and implemented experimentally and

identification, validation and cross-validation results will be given to evaluate the performance

of the tests.

2.3 Hammerstein Structure Identification

Finally, the last stage in building a model has been reached. The identification of Hammerstein

structures will be reviewed here. The Hammerstein structure is depicted in Fig. 2.6. It consists

of a memoryless nonlinear block followed by a linear dynamic system, and the difficulty is that

the inner signal w(t) is not measurable.

This structure was introduced in 1966 by [Narendra and Gallman, 1966]. A new technique for
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FIGURE 2.6: Hammerstein structure

the identification of nonlinear systems was suggested, based on the underlying model structure:

y(t) =
∫ t

−∞

k(τ) f (u(t− τ))dτ

where u(t) and y(t) are the system input and output respectively, k(τ) represents the impulse

response of the linear dynamics and f (·) is the static nonlinear function.

As an extension to the class of linear systems, the Hammerstein structure could be interpreted as

a linear-in-parameter model, e.g., by the over-parametrization technique [Bai, 1998], so that

many techniques from the well-researched area of linear system identification are possible.

Meanwhile, the presence of the static nonlinearity allows a much wider range of dynamics to

be described compared to those of purely linear models. Moreover, the structure has advantages

over more general nonlinear models in terms of practical issues such as computational time and

initial parameter selection, assuming that the real process fits into this particular form. There-

fore, Hammerstein structures have received considerable attention and have been used in various

areas to, for example, model chemical [Sung, 2002; Park et al., 2004], biological [Westwick and

Kearney, 2001] and electrical [Wang et al., 2009] processes.

The term “identification” refers as the parameter estimation process which uses measured input-

output data to forge the link between the mathematical model and the real world system and a

comprehensive introduction of the literature and methods of system identification can be found

in [Ljung, 1999; Soderstrom and Stoica, 1989]. In more detail, let z(t) denote the item of data

received at time t. This is in general a vector, composed of several different measurements, such

as input and output signals z(t) = [u(t) y(t)]T . Assuming that the data acquisition takes place in

discrete time, as is normally the case, at time t, a sequence of measurements z(1),z(2), . . . ,z(t)
is available. Let us use a superscript to denote the whole data set:

zt = {z(1),z(2), . . . ,z(t)}.

The purpose of identification is to estimate the model parameters θ based on the data zt recorded

during designed identification tests:

zt → θ̂ .

Identification should be concerned with not only theoretical and computational difficulties, but

with practical issues as well. Generally, it can be implemented in one of two procedures:
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• Off-line identification or batch identification

A batch of data is collected from the system and subsequently, is a separate procedure,

this batch of data is used to construct a model. After collecting the data up to some time

instant N, then a mapping from the data set zN to the parameter space

θ̂ = F(N,zN) (2.9)

is computed, where the function F may be implicitly defined (e.g., by the minimizing

argument of some function).

For batch identification, there is no need to predetermine the model structure beforehand,

since identification can consider different model structures and model orders.

• Recursive identification

However, in many cases it is necessary, or useful to have a model available on-line so

that it is available for making decisions during the operation of the system, e.g., adaptive

control. In such a situation, the model is updated at each time instant once the new data

becomes available. In principle, θ̂ could still be a general function of previous data as

in (2.9). However, in practice it is important that memory space and computation time

do not increase with t. Thus, an “information state” x(t) could be introduced, which has

fixed dimensions and is a result of condensing the past data:

x(t) = H
(
x(t−1), θ̂(t−1),z(t)

)
. (2.10)

Then the updated estimate θ̂ is formed using current data, the previous estimate and the

current state:

θ̂(t) = F
(
θ̂(t−1),x(t),z(t)

)
(2.11)

where F(·) and H(·) are given functions.

The major reason for the interest in such a procedure is as a useful tool in adaptive control,

adaptive filtering, adaptive prediction and adaptive signal-processing problems. Further-

more, it could be used to track variations in systems which are time-varying. However,

this procedure, due to its condensing of data into an informative state of fixed dimension,

does not yield the same accuracy as models identified using the batch procedure, with a

few exceptions.

There exist a large number of research papers on the topic of Hammerstein model identification

and a literature review for both batch algorithms and recursive algorithms will be carried out in

the following sections.

2.3.1 Batch Identification

Batch Identification methods can be roughly divided into seven categories:
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• Over-parametrization

By expanding the mathematical representation of the Hammerstein structure, one will

end up with an expression involving products of both linear and nonlinear parameters.

This results in a non-convex optimization problem. To overcome this difficulty, an over-

parametrization method was proposed by [Chang and Luus, 1971], where every cross-

product of unknowns is replaced by a new independent parameter. Then all the new

parameters are estimated by least squares methods and the nonlinear parameters are sep-

arated by minimizing the root mean-square error of the model output. In that method, a

transfer function is used to represent the linear dynamics, but no filtered noise is consid-

ered, which is then included in [Hsia, 1976]. In this paper, a multi-stage least squares

method was presented to estimate the nonlinear parameters, the linear transfer function

parameters and the noise parameters, using simple least squares solutions applied step by

step. In [Bai, 1998], the algorithm was expanded to identify systems containing an output

nonlinearity, also called a Hammerstein-Wiener system, and a Singular Value Decompo-

sition (SVD) was used to separate the parameters. Because the separated parameters were

obtained by searching over the entire parameter space, whilst [Chang and Luus, 1971]

and [Hsia, 1976] only searched a small subset, the author claims that global optimality is

achieved with no noise or white noise while [Chang and Luus, 1971] and [Hsia, 1976]

are only locally optimal.

• Subspace

Subspace identification methods (SIM) estimate the state-space model or the extended

observability matrix directly from the input and output data. There are several influen-

tial methods: Canonical Variate Analysis (CVA), Multivariable Output Error State-space

(MOESP) and Numerical Subspace State-Space System IDentification (N4SID). A uni-

fied statistical framework is given in [Shi and MacGregor, 2001], which consists of three

steps: estimating the predictable subspace for multiple future steps, then extracting state

variables from this subspace and finally fitting the estimated states to a state-space model.

Since it requires a modest computational load without the need of iterative optimization

procedures, this method has received lots of attention.

Previously, SIM only applied to Linear Time-Invariant (LTI) systems and it was for per-

haps the first time that Verhaegen and Westwick in 1996 extended it to Hammerstein sys-

tems in [Verhaegen and Westwick, 1996]. Here the MOESP method was applied to two

types of Hammerstein identification problems: polynomial parametric nonlinearity and

only limited a prior knowledge of the nonlinearity. Later on, this method was expanded

to all the families of SIM including the CVA, the MOESP and the N4SID by [Gomez

and Bayens, 2005]. Meanwhile, [Goethals et al., 2005] used the least squares support

vector machines regression to extend the linear N4SID subspace method to the Ham-

merstein structure. This method usually consists of two steps: the first step is to apply

a certain subspace-based identification algorithm to the over-parametric state-space rep-

resentation of the Hammerstein structure, where a similar approach is exploited to that
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described above, replacing each cross-product term by a new parameter; and then SVD is

used to recover the original parameters. The differences from the former category are the

state-space model and the corresponding subspace method.

The key scheme in both of these two methods is the over-parametrization approach, which treats

every cross-product term as a new parameter, resulting in linear-in-parameter difference equa-

tions or state-space models. Thus, these two methods suffer from the same problems: The

first one is the so-called dimension problem. When the dimensions of the parameter vectors

of the nonlinearity and linear subsystem increase, the number of extra unknown parameters to

be estimated in the over-parametric linear system increases very quickly. As a result, the per-

formance may decrease sharply. The second problem relates to an implicit rank constraint. In

the above two approaches, the least squares method or the SIM is applied directly to a gen-

eralized difference equation or state-space model. However, the model has a specialty that is

often ignored, that is, the newly defined parameter vector or matrix should have a rank con-

straint. Consequently, the performance is not quite satisfactory, for example, in [Bai, 2006], the

over-parametrization method shows sensitivity to the presence of noise, when compared with

the iterative and numerical methods at a high noise level.

Besides, due to its linear-in-parameter property, these two approaches both have recursive counter-

parts [Boutayeb and Darouach, 1995; Boutayeb et al., 1996] and [Bako et al., 2009], which will

be reviewed in the next section.

• Stochastic

Stochastic, relay feedback and blind methods are quite similar in the way they deal with

the difficulty of handling coupled linear and nonlinear parameters. All of them separate

the linear dynamics from the whole system by employing particular inputs with certain

properties. For the stochastic method, the inputs are assumed to consist of white noise so

that the internal signals w(t) and the outputs y(t) are also white. Thus, the linear dynam-

ics can be easily estimated by the correlation method. Once the linear system is known,

estimation of the static nonlinearity is straightforward. A kernel regression estimation is

presented in [Greblicki and Pawlak, 1986] and the orthogonal series estimation is em-

ployed in [Pawlak, 1991]. Although the latter one improves the rate of convergence, they

are still sensitive to irregularities in the input probability density. In [Greblicki, 1996], al-

gorithms with convergence rates independent of the shape of the input signal density have

been proposed using ordered observations in the cost of computational effort caused by

ordering. Later on, the stochastic method has been implemented recursively by Greblicki

[Greblicki, 2002] and Chen [Chen, 2004], which will be discussed in the next section.

• Relay feedback

The essence of this method is also to remove the effect of the nonlinear component. [Sung,

2002] suggested a special test signal, consisting of a binary signal and a multi-step signal.

The first part is used to exclude the effects of the nonlinearity so that all techniques from
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linear system identification are valid to subsequently recover the linear subsystem. Then

the purpose of the multi-level signal is to excite the whole nonlinearity, and the input-

output data together with the estimated linear dynamics are used to identify the static

nonlinear component. [Bai, 2004] shared the same idea but separated it into two steps, the

first of which uses a pseudo-random binary sequence. In the same year, [Park et al., 2004]

also considered the two-step approach but the difference is that a biased relay feedback

test is applied, which plays the same role in the whole approach.

• Blind

This approach exploits piece-wise constant input signals in order to decouple the lin-

ear system. In [Sun et al., 1999], this blind approach is borrowed from identification of

linear systems for use in Hammerstein structure identification for the first time. An input-

holding scheme is used, which means the test input signal is held during a multiple of the

output sampling interval and after the estimation of the numerator and denominator of the

linear dynamics, a deconvolution method is considered to recover the intermediate signal

without restriction to minimum phase systems. In [Bai and Fu, 2002], the approach is

applied to a wide range of inputs with the employment of a fast sampling technique, and

the inner signal is estimated by taking a direct inverse or by exploiting the Bezout identity

for minimum and non-minimum phase linear dynamics. [Wang et al., 2007] considers the

noise-corrupted case and the estimation of the process orders and the time delay. An even

more important improvement over the previous two is made in [Wang et al., 2007] where

a different method is used to estimate the inner signal, leading to reduced noise effects.

However, the output noise is propagated into the estimates in [Bai and Fu, 2002], and the

process in [Sun et al., 1999] is unnecessary complicated. Furthermore, in order to remove

the error propagation, [Wang et al., 2009] omits the step of estimating the numerator, and

only identifies the denominator of the linear dynamics and uses a subspace direct equaliza-

tion method to estimate the unmeasurable inner signal. The results in [Wang et al., 2009]

show significant improvement compared to the former, especially under noisy situations.

These three approaches do not require prior knowledge or an explicit parameterization of the

nonlinearity so that they significantly relax restrictions imposed on the identified system. This

is important since the nonlinearity could have many possible structures or could be hard to

represent by parametric models.

However, there are assumptions on the input properties, which make implementation infeasible.

The stochastic approach requires white noise inputs, the relay feedback approach needs the in-

put to be composed of both binary and multi-step signals, and the blind method uses a piecewise

constant input. By imposing these assumptions on the input, the linear dynamics can be identi-

fied in a decoupled manner, and then the nonlinearity can be identified in a nonparametric way.

Unfortunately because the identification has been separated into two stages, the error generated

in the first approximation will propagate to the second, where it is usually ignored, which will

lead to a significant discrepancy from the true model, especially under noisy situations. Thus, it
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is neither wise nor practical to implement these approaches alone.

• Separable Least Squares

The idea behind the Separable Least Squares (SLS) approach is to write one set of vari-

ables as a function of the other set based on the first-order necessary and sufficient con-

ditions. Thus, the dimension of the optimization space is reduced. In [Westwick and

Kearney, 2001], a technique based on SLS optimization was developed for application

to the Hammerstein structure. Firstly, the output is represented by a convolution sum of

the impulse response of the linear dynamics and a polynomial of the corresponding input

with unknown polynomial coefficients. Since the output is linear in its impulse response,

named linear parameters θl , the optimal value of θl corresponding to any choice of polyno-

mial coefficients, θn, can be found in closed form by solving a linear regression. Thus, θn

is a function of θl and also the modeled output and the minimization criterion. Therefore,

an iterative algorithm is used to optimize θn, involving employing Levenberg-Marquardt

algorithm to compute the updating step, and θl being updated by linear regression. Later

on, [Dempsey and Westwick, 2004] considered the use of cubic splines instead of a poly-

nomial to represent the static nonlinearity. Both of them have been applied to a biological

system (stretch reflex electromyogram) and the model with the cubic spline nonlinear-

ity was seen to provide more accurate predictions than the polynomial based model for

the experimental data. Also this method is found to be particularly useful for a class of

non-smooth nonlinearities [Bai, 2002b].

• Iterative

The idea behind the iterative method, introduced by Narendra and Gallman [Narendra and

Gallman, 1966], is the alternative estimation of parameters. Although there are some vari-

ations, the parameter set is usually divided into two subsets: a linear and nonlinear part.

One finds the optimal values for the first set while the second set is fixed. Then, the two

sets are switched in order to find the optimal value for the second set whilst the first one is

fixed. If convergent, the iterative algorithm converges rapidly and is very efficient. How-

ever, guaranteeing convergence is a problem. It was shown in [Stoica, 1981] by means

of a well-constructed Finite Impulse Response (FIR) example that in general the iterative

algorithm does not converge and in fact, the parameter estimates may diverge and become

unbounded. Since then, the convergence of this iterative algorithm has been an open

problem. [Bai and Li, 2004] carried out a detailed study on the convergence properties

of the iterative algorithm and derived some global convergence properties for the normal-

ized iterative algorithm applied to the identification of Hammerstein systems with smooth

nonlinearity and a FIR linear component. The results are extended to Hammerstein sys-

tems with an Infinite Impulse Response (IIR) linear part and nonsmooth nonlinearities,

together with a FIR linear part in [Liu and Bai, 2007].

These two iterative methods do not require a particular form of input, which would restrict their

practical use, and are simple and efficient in practice. For this reason, they are the only two cat-
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egories amongst the seven considered to be applied to real biological systems, e.g., [Westwick

and Kearney, 2001] and [Hunter and Korenberg, 1986]. Although SLS and the iterative tech-

nique suffer from the problem of global convergence, in applications, they generally converge

very fast and the converged values, even when they can not be proved to constitute a global opti-

mum, are quite accurate. Therefore, these two techniques are ripe candidates for the application

considered in this thesis.

With regards to the convergence problem, one possible solution is to choose a good initial esti-

mate. For SLS, starting from initial estimates of the nonlinear parameters, [Dempsey and West-

wick, 2004] suggested that if the initial estimates are close enough to the global optimum, the

model does not converge to a suboptimal local minimum and the over-parameterization method

was recommended to complete this task. Iterative algorithms can begin with either the initial

values for the linear part or the nonlinear part. [Bai and Li, 2004] proposed a certain set of

conditions for the initial values so as to guarantee convergence and, moreover, guarantee rapid

convergence. Therefore, generating a good initial value deserves special consideration in this

thesis in order to remedy the defects of these two approaches.

2.3.2 Recursive Identification

However, as stated above, the Hammerstein structure is not sufficiently complex to model mus-

cle dynamics, especially in the application considered. When applied to stroke rehabilitation,

stimulation must be applied during intensive, goal orientated practice tasks in order to maxi-

mize improvement in motor control [Schmidt and Lee, 1998]. In clinical trials this translates

to sustained application of stimulation during each treatment session of between 30 minutes

and 1 hour duration [de Kroon et al., 2005]. In this case, slowly time-varying properties of

the muscle system arise due to fatigue, changing physiological conditions or spasticity [Gra-

ham et al., 2006]. Therefore, a slowly time-varying Hammerstein system is assumed and online

identification, also termed recursive identification will be considered. Only a few of the existing

identification methods are recursive, and can be divided into three categories:

• The first category is the recently developed recursive subspace identification method

by [Bako et al., 2009], where the nonlinear function is first recursively estimated by

over-parameterization and component-wise Least Squares Supporting Vector Machine

(LS-SVM). This is followed by estimation of the Markov parameters by recursive least

squares, and then a propagator-based method is used to recursively estimate system state-

space model matrices from these parameters. This procedure does not have sparsity due to

the LS-SVM model, and the resulting computational load makes it unsuitable for real-time

implementation.

• The second category comprises stochastic approximation [Greblicki, 2002; Chen, 2004]

where a stochastic approximation algorithm with expanding truncations is developed for

recursive identification of Hammerstein systems. Two major issues with this method are
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the rather slow rates of convergence, and the lack of information on how to select the

optional parameters in the algorithm when applied to problems from different areas.

• The third category is recursive least squares or extended recursive least squares. The

Recursive Least Squares (RLS) algorithm is a well known method for recursive identifi-

cation of linear-in-parameter models and if the data is generated by correlated noise, the

parameters describing the model of the correlation can be estimated by Extended Recur-

sive Least Squares (ERLS). Here, a typical way to use these two algorithms is to treat

each of the cross-product terms in the Hammerstein system equations as an unknown pa-

rameter. This procedure, which results in an increased number of unknowns, is usually

referred to as the over-parametrization method [Bai, 1998] and [Chang and Luus, 1971].

Following this step, the RLS or ERLS method can be applied [Boutayeb and Darouach,

1995; Boutayeb et al., 1996; Zhao and Chen, 2009].

The limitations of current algorithms are stated next and are used to justify some of the critical

choices necessary for this work to progress

• The first two categories have only been applied in simulation and the stochastic approx-

imation has not considered time-varying linear dynamics. This, together with the draw-

backs described above, is the reason for not considering them further for the intended

application. The third category is the most promising as it has already been applied to

electrically stimulated muscle in [Chia et al., 1991] and [Ponikvar and Munih, 2001].

• Most of the test signals used comprise random noise in order to guarantee persistent ex-

citation, even when applied to the human muscle. For example, [Ponikvar and Munih,

2001] employs pseudorandom binary sequences. However, this type of signal, which ex-

cites the motor units abruptly, will cause patient discomfort and may elicit an involuntary

response, as reported in [Baker et al., 1993]. In [Chia et al., 1991] a test consisting of

25 pulses is used, each of which is of 1 second duration in the form of a noisy triangular

wave. This test meets our requirements but is too short to exhibit time-varying properties.

• The most relevant previous work is [Chia et al., 1991] where the system considered had

linear constraints and a RLS technique was developed for constrained systems. However,

the results given do not establish that the constraints are achieved. Moreover, when show-

ing the prediction error, the posteriori estimated output without constraints was observed

to outperform the one with constraints. Thus, there is clearly more work to be done in this

area, and hence the idea of adding constraints to RLS, leading to increased computational

load, is well worth consideration..

Overall, RLS is the most promising technique for application to electrically stimulated muscle,

but the problem of consistent estimation must be resolved [Chen, 2004; Chia et al., 1991]. This

algorithm is implemented in Section 4.2.1 but due to its unsatisfactory performance, especially

for noisy measurements, another recursive algorithm for Hammerstein systems is developed in
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Section 4.2.2. Moreover, a long-period test signal needs to be designed for our application,

which is persistently exciting and also gradually recruits the motor units. This problem is ad-

dressed in Section 4.4.

2.4 FES Control Schemes

There exists a wide variety of control schemes for electrically stimulated muscle. Many address

the case of paralysed muscle and are applied to subjects with spinal injury. Others are intended

for use in rehabilitation where there is evidence [Rushton, 2003] that functional recovery is

enhanced when stimulation is applied coincidentally with a patient’s voluntary intention whilst

performing a task. In the latter case, a control scheme is required to precisely provide stimulation

which allows the desired movement to be realised. A brief review and evaluation of existing

control schemes will be given next.

Open-loop methods have found favor in clinical use due to their simplicity. For example, [Davoodi

et al., 2002] used an open-loop method to control lower limb movement of paraplegic subjects

in a rowing exercise. The user voluntarily performed the upper body movement, while manual

and automatic control schemes were investigated. In the former category, the user pressed the

control button, and in the latter, the controller automatically applied the stimulation depending

on a set of rules governed by the instantaneous position of the set and the handle. However,

open-loop methods have not been able to provide the high level of performance which is neces-

sary to fully promote the required association between the subjects intended movement, and the

action of the applied electrical stimulation in realizing it.

In a laboratory, as opposed to clinical setting, a wide variety of model-based controllers for

electrical stimulation have been implemented which may be able to produce such accuracy.

These include the use of multichannel Proportional-Integral-Derivative (PID) control of the wrist

[Watanabe et al., 2003], and H∞ ([Hunt et al., 2001]), optimal control ([Hunt et al., 1997]) and

fuzzy logic control ([Davoodi and Andrews, 1998]) for paraplegic standing, and sliding mode

control of shank movement [Jezernik et al., 2004], and data-driven control ([Previdi et al., 2005])

for control of the paraplegic knee joint. Few such model-based schemes have been applied to

upper limb movement, exceptions principally comprising the use of neural networks for para-

plegic arm movements (see for example [Lan et al., 1994]; [Tresadern et al., 2006]). [Lan et al.,

1994] used an Artificial Neural Network (ANN) to control single joint human arm movements

in paralysed subjects. The ANN is trained over a range of movements to learn and store the

optimal patterns of muscle stimulation and can reproduce range of scaled optimal movements

well. Feedforward, recurrent feedback and time delay topologies of ANN are considered but

the ultimate structure is decided by the training process in order to provide good predictions for

novel movements. Thus, ANN schemes are often not suited to rehabilitation purposes because

retraining the network for each subject is slow, and online adaptation is not possible. Stability is

another issue due to their black-box structure.



Chapter 2 Literature Review 31

Another factor is that any suitable control method selected for the stimulation must also operate

in the presence of voluntary effort supplied by the patient. A simple method of achieving this is

for the controller to directly use electromyographic (EMG) or myoelectric activity of the mus-

cle being stimulated (see for example [Thorsen et al., 2001]). However, model-based control

methods have not yet incorporated this information since it does not directly relate to the force

or torque generated by the muscle, and because the signal is often either weak and unreliable or

that the artefact produced by the stimulation signal corrupts the natural EMG signal (although

in this case blanking techniques may be applied).

Iterative Learning Control (ILC) is one of the very few model-based approaches that has been

employed clinically and moreover, the repetitive nature of rehabilitation exercises makes ILC

particularly suitable for this application. ILC is specifically developed for the systems needed

to repeat a finite duration task over and over again. The novel feature is to use information

from previous trials to update the control signal to be used on the current trial. The most basic

control problem here is to design the control input in such a way that the system learns, by

iteration from trial-to-trial, to produce the required output or reference signal whilst ensuring

that the control signal does not exceed the limits imposed by the actuators used. Comprehensive

reviews of the history and categorization of ILC can be found in [Ahn et al., 2007] and [Bristow

et al., 2006]. This technique has previously been applied to control the electrically stimulated

human upper limb required to repeatedly perform a given task in [Dou et al., 1999]. The

proposed control strategy consists of a PD feedback controller and a high-order feedforward

ILC controller. The simulation and experimental results are presented, although a high level of

performance has not been achieved. In the current project, in order to control the FES applied to

the upper extremity for rehabilitation of stroke patients, [Freeman et al., 2009a] considered two

ILC schemes in the ILC feedforward controller: Phase-lead ILC and Gradient descent ILC. With

the addition of a linearizing controller and a PD feedback controller, these two ILC schemes

showed superior tracking performance in the study of 18 unimpaired subjects compared with the

alternative control methods in the literature. Furthermore, it possesses the advantages of reduced

identification experiments and simplicity of tuning. Later on, a more advanced ILC algorithm

is applied in the same application [Davies et al., 2008]: Newton method based ILC, which

is a nonlinear ILC approach which inherits the fast convergence rate of the Newton method.

The algorithm exhibits robustness together with a high level of performance. The results from

these two papers confirm the feasibility and efficacy of this approach and the following study,

involving the treatment of stroke patients, provides statistical support using a number of outcome

impairment measures [Hughes et al., 2009]. However, the experimental data confirms that the

model of stimulated muscle adopted is not as accurately identified as the remaining components

of the arm, which results in relatively low ILC learning gains used throughout the clinical trials.

Such difficulties in obtaining reliable and accurate muscle models are also the reason for the

lack of model-based methods in clinical application. Thus, the need for improved modeling of

the muscle system is particularly important, providing a strong motivation of the research in this

thesis.
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Moreover, the underlying musculoskeletal system is highly sensitive to physiological conditions

(such as skin impedance, temperature and moisture) and electrode placement, as well as time-

varying effects such as spasticity and fatigue [Baker et al., 1993], which means the plant to be

controlled is highly nonlinear and also time-varying. Thus, the need for online identification and

associated adaptive control schemes is highlighted. Adaptive control has been applied to sev-

eral existing control schemes for FES systems. For example, [Ferrarin et al., 2001] applied an

adaptive control scheme for FES-induced single joint movements, which resulted in additional

improvement by accounting for the time-variant effects of the system. Unfortunately, only one

researcher has implemented adaptive ILC for electrically stimulated muscle systems [Wu et al.,

2000]. Wu et al used a PID feedback controller together with a feedforward adaptive ILC con-

troller, where the ILC gains adapt in response to the previous performance of the controller. The

controller is not model-based and does not require prior knowledge of the system dynamics, and

the problem addressed is the stability of the PID controller. By adding the adaptive ILC scheme,

the sharp oscillation caused by the PID controller alone is overcome, and the overall scheme

is demonstrated by clinical experiments involving motion trajectory tracking of the elbow joint

and wrist joint. Unfortunately, exactly how the leaning gains are calculated is not given in detail.

From the above discussion, there do not exist ILC schemes in which the model is updated using

control input and corresponding muscle output data, in order to allow full adaptation of the

ILC scheme in response to changing dynamics. In Chapter 5, the implementation of a trial-

dependent adaptive gradient descent ILC and adaptive gradient descent ILC will be developed

in detail, together with the non-adaptive gradient descent ILC and Newton method based ILC.
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Identification

For the reasons provided in Chapter 2, a Hammerstein structure has been selected to model the

electrically stimulated muscle under isometric conditions. Therefore, in this Chapter, identifica-

tion of the parameters of the Hammerstein structure is investigated.

3.1 Problem Statement

A discrete-time Hammerstein model structure will be considered and is shown in Fig. 3.1. The

stimulation input u is first scaled by the static nonlinear function f and then passed to a linear

time-invariant system described by a transfer function G(q). The noise v is zero mean and white

and H(q) is the noise model. The internal signal w is not measurable, which is the reason that

the identification of such a model structure presents difficulties.
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FIGURE 3.1: Discrete-time Hammerstein Model Structure

The linear system is represented by the transfer function

G(q) =
B(q)
A(q)

=
b0q−d +b1q−(d+1) + · · ·+bnq−(n+d)

1+a1q−1 + · · ·+alq−l (3.1)

where q−1 is the delay operator and n, l and d are the number of zeros, poles and the time delay,

respectively. The parameters n, l and d are assumed to be known.

33
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The nonlinear function f (u) is represented by a cubic spline function, defined as

f (u) =
m−2

∑
i=1

βi|u−ui+1|3 +βm−1 +βmu+βm+1u2 +βm+2u3 (3.2)

where umin = u1 < u2 < u3 < · · · < um = umax are the spline knots. Although this is a non-

standard implementation of cubic splines, it has been used by several authors, see, for exam-

ple, [Zhu, 2000]. It is easy to verify that the first and second derivatives of the function are

continuous and hence the function possesses similar properties to the standard cubic spline rep-

resentation, whilst benefitting from increased simplicity.

θn =
[
β1 β2 · · · βm+2

]T
(3.3)

are the parameters of the nonlinear block and

θl =

[
θa

θb

]
=
[
a1 · · · al b0 b1 · · · bn

]T
(3.4)

are the parameters of the linear block.

The noise model H(q) is not specified here. Two kinds of noise models are plotted in Fig. 3.2.
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FIGURE 3.2: Two Discrete-time Hammerstein Model Structures with Different Noise Models

The first choice is an Auto Regressive eXternal (ARX) model [Ljung, 1999], in Fig. 3.2(a),

where the noise filter, H = 1/A(q), is coupled to the linear component of the plant model. In

Section 3.2 and 3.3, Algorithms 1 and 2 are based on this model structure, where

y(k) =
B(q)
A(q)

f (u(k))+
1

A(q)
v(k) (3.5)

However, from a physical point of view, it is perhaps not the most natural form because the white

noise, e.g. measurement noise, is assumed to pass through the denominator dynamics of the

linear block before being added to the output. Therefore, Algorithms 2 is extended to identify the
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Hammerstein structure with another linear model, an Output-Error (OE) model [Ljung, 1999],

in Fig. 3.2(b). In this case, the noise model is H = 1 and

y(k) =
B(q)
A(q)

f (u(k))+ v(k) (3.6)

The details are given in Section 3.3 and also the resulting Algorithm 3.

Therefore, the identification task is to estimate the parameter vector

θ =

[
θl

θn

]
(3.7)

that minimizes the cost function

||v||22 =
N

∑
k=1

v2(k) (3.8)

from collected input output data

[u(1),y(1),u(2),y(2), . . . . . . ,u(N),y(N)] (3.9)

3.2 Two-stage Algorithm

The two-stage algorithm establishes the groundwork for the research that follows. The idea

of this algorithm is to separate the linear and nonlinear parameters and alternately identify or

optimize them. Whilst the idea is not new, the proposal scheme uses a novel projection approach

to update the parameters. This is adopted continuously in a similar way to that of the later

algorithms.

In order to obtain accurate estimates for each patient during treatment, the identification tests

need to be performed just before each treatment session commences. A triangular ramp test is

applied to the muscle and a two-stage algorithm is then performed on the data. This shows su-

perior performance when compared with the Ramp Deconvolution (RD) method and Separable

Least Squares (SLS) Optimization Algorithm on a stimulated muscle system. A preliminary

step is also designed, whose purpose is to obtain an initial estimate of the linear parameters,

which is then used in the later identification procedure.

In order to concisely introduce the two-stage algorithm, (l,n,d) is assumed to be (2,1,1), which

has been assumed in a related problem by [Hunt et al., 1998]. Thus, the model formula (3.5)

becomes

y(k) =
b0q−1 +b1q−2

1+a1q−1 +a2q−2 f (u(k))+
1

1+a1q−1 +a2q−2 v(k) (3.10)

and the parameter vector (3.7) is given by a more simple expression

θ = [a1,a2,b0,b1,β1,β2, . . . ,βm+2]T . (3.11)
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3.2.1 Preliminary Step: Pseudo-Random Binary Sequences Test

The purpose of the preliminary step is to identify the linear parameters and this step is performed

when the stroke patients first arrive for their treatment session. Because the nonlinear muscle

contraction mechanism of a stroke patient is impaired and varies, see [Mccrea et al., 2003],

and may also change between trials, the identified linear parameters only can be used as an

initial estimate. However, this step is also very useful. The reason is that in order to avoid

patient fatigue, the before-treatment test should be as short as possible, which means the data

may not be very rich. Under such circumstances, the preliminary step can provide a fairly good

initial guess for a given patient, even when not performed on the same day. This improves the

identification results with benefit to the computational time consumed.

In the preliminary step, a Pseudo-Random Binary Signal (PRBS) test is used. This signal

changes between two levels so that it can exempt the nonlinearity from the isometric muscle

system and the linear dynamics alone can be identified as expected. Now, the identification pro-

cedure will be explained. First, the two levels of PRBS inputs are assumed to be 0 and +c (where

c > 0) because the input pulse-width can not be negative. Also it is known that f (0) = 0 and

hence c is chosen such that f (+c) = r (where r 6= 0) with the value of r large enough compared

to the possible noise level. Hence for all k

w(k) = f (u(k)) = αu(k) (3.12)

where α = r/c, and the output of the Hammerstein structure with PRBS inputs is

y(k) =
αb0q−1 +αb1q−2

1+a1q−1 +a2q−2 f (u(k))+
1

1+a1q−1 +a2q−2 v(k)

=
b̄0q−1 + b̄1q−2

1+a1q−1 +a2q−2 f (u(k))+
1

1+a1q−1 +a2q−2 v(k) (3.13)

or, with b̄ j = αb j j = 0,1

y(k) =−a1y(k−1)−a2y(k−2)+ b̄0u(k−1)+ b̄1u(k−2)+ v(k) (3.14)

and in matrix form

Y = Φθl +V (3.15)

where

Y = [y(3) y(4) · · · y(N)]T (3.16)

V = [v(3) v(4) · · · v(N)]T (3.17)



Chapter 3 Identification 37

and

Φ =


−y(2) −y(1) u(2) u(1)
−y(3) −y(2) u(3) u(2)

...
...

...
...

−y(N−1) −y(N−2) u(N−1) u(N−2)

 (3.18)

Hence the initial estimate, θ̂l can be obtained using the least squares method as

θ̂l = [â1, â2,
ˆ̄b0,

ˆ̄b1]T == (ΦT
Φ)−1

Φ
TY (3.19)

Using (3.10), the gains of f (u) and B(q) are not unique. In order for these to be uniquely

identifiable, the gains are normalized, e.g., set ˆ̄b0 = 1.

3.2.2 Two-stage Algorithm: Triangular Ramp Test

In order to identify the nonlinear part, a triangular ramp test is applied to the muscle, which is

rich enough to excite the whole nonlinearity.

This algorithm consists of two stages: firstly, identify the nonlinear part by using the linear

parameters estimated from the preliminary step; Secondly, optimize the linear parameters using

the nonlinear parameters estimated in stage one.

1. Identify nonlinear parameters:

In stage one, the estimated values of the linear parameter vector [â1, â2, b̂0, b̂1] from the

preliminary step are used to substitute [a1,a2,b0,b1] in (3.10) and extend the equation.

y(k) =−â1y(k−1)− â2y(k−2)+ b̂0 f (u(k−1),θn)+ b̂1 f (u(k−2),θn)+ v(k) (3.20)

Sequences of input and output signals are known and can be moved to the right hand side

and the unknown items to the left hand side to produce

y(k)+ â1y(k−1)+ â2y(k−2) = b̂0 f (u(k−1),θn)+ b̂1 f (u(k−2),θn)+ v(k) (3.21)

From (3.2), it is known that f (u) is just linear combination of βi if u is known so that after
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substituting (3.2) into (3.21)

y(k)+ â1y(k−1)+ â2y(k−2) =
m−2

∑
i=1

βi (b̂0|u(k−1)−ui+1|3 + b̂1|u(k−2)−ui+1|3)︸ ︷︷ ︸
fi(u(k),θ̂l)

+βm−1 (b̂0 + b̂1)︸ ︷︷ ︸
fm−1(u(k),θ̂l)

+βm (b̂0u(k−1)+ b̂1u(k−2))︸ ︷︷ ︸
fm(u(k),θ̂l)

+βm+1 (b̂0u(k−1)2 + b̂1u(k−2)2)︸ ︷︷ ︸
fm+1(u(k),θ̂l)

+βm+2 (b̂0u(k−1)3 + b̂1u(k−2)3)︸ ︷︷ ︸
fm+2(u(k),θ̂l)

(3.22)

and using the definition of the nonlinear parameter vector

θn = [β1,β2 . . . ,βm+2]T (3.23)

it becomes
y(3)+ â1y(2)+ â2y(1)
y(4)+ â1y(3)+ â2y(2)

...

y(N)+ â1y(N−1)+ â2y(N−2)


︸ ︷︷ ︸

Yn(y,θ̂l)

=


f1(u(3), θ̂l) · · · fm+2(u(3), θ̂l)
f1(u(4), θ̂l) · · · fm+2(u(4), θ̂l)

...
...

f1(u(N), θ̂l) · · · fm+2(u(N), θ̂l)


︸ ︷︷ ︸

Φn(u,θ̂l)


β1

β2
...

βm+2


(3.24)

Thus, (3.24) can be solved by the least square method

θ̂n = [β̂1, . . . , β̂m+2]T = (Φn(u, θ̂l)T
Φn(u, θ̂l))−1

Φn(u, θ̂l)TYn(y, θ̂l) (3.25)

2. Optimize linear parameters:

After estimating nonlinear parameter vector θ̂n, the linear parameters can be optimized by

linear regression in stage two. The model formula is rewritten as

y(k) =−a1y(k−1)−a2y(k−2)+b0 f (u(k−1), θ̂n)+b1 f (u(k−2), θ̂n)+ v(k) (3.26)
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which can be written in matrix form as
y(3)
y(4)

...

y(N)


︸ ︷︷ ︸

Yl(y)

=


−y(2) −y(1) f (u(2), θ̂n) f (u(1), θ̂n)
−y(3) −y(2) f (u(3), θ̂n) f (u(2), θ̂n)

...
...

...
...

−y(N−1) −y(N−2) f (u(N−1), θ̂n) f (u(N−2), θ̂n)


︸ ︷︷ ︸

Φl(u,y,θ̂n)


a1

a2

b0

b1


(3.27)

The solution for linear parameter is

θ̂l = [â1, â2, b̂0, b̂1]T = (Φl(u,y, θ̂n)T
Φl(u,y, θ̂n))−1

Φl(u,y, θ̂n)TYl(y) (3.28)

The two-stage algorithm can be summarized as

Algorithm 1 Two-stage algorithm

Inputs: an initial value of the linear parameters, θ̂l , an input/output data set u(k), y(k), k =
1,2, . . . ,N.
θ̂n = (Φn(u, θ̂l)T Φn(u, θ̂l))−1Φn(u, θ̂l)TYn(y, θ̂l)
θ̂l = (Φl(u,y, θ̂n)T Φl(u,y, θ̂n))−1Φl(u,y, θ̂n)TYl(y)

Output: θ̂ =
[

θ̂n

θ̂l

]

3.2.3 Simulation Study

Use of the Ramp Deconvolution (RD) method has led to high performance tracking within the

Southampton ILC rehabilitation project. However, in order to motivate use of alternative identi-

fication schemes, in this section the two-stage and Separable Least Squares (SLS) Optimization

Algorithm will be compared against the RD method using a simulated muscle system. Although

this muscle system adopts the underlying form assumed by the RD method, it will be shown that

the alternative approaches are more accurate and show greater robustness properties. The sim-

ulated muscle system will first be introduced and a triangular ramp input will be applied to

the system. The resulting stimulated data will be used to identify the Hammerstein structure

by three methods: Two-stage algorithm, Ramp Deconvolution method and SLS. The latter two

approaches will be introduced briefly in the next section.

1. Simulated muscle system

The simulated muscle system is designed as follows:

(a) The nonlinearity f (·), shown in Fig. 3.3, is a sigmoid function:

f (u) = x1 ·
ex2u−1
ex2u + x3

(3.29)
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where x1 = 6.8994, x2 = 0.0410 and x3 = 2.3897×103

(b) The linear dynamics G(q) is an underdamped second order system with Tω = 0.5284,

ζ = 0.6369 and gain is 1.

(c) The noise e(t) will be designed to different noise levels:

• e(t) = 0 ideal system without any noise.

• e(t) is normally distributed random noise with zero mean and standard deviation

λ = 0.02,0.04,0.06,0.08,0.10, respectively.

+
21

1

9985.09985.11
0022.0

qq
q)(tu

)(uf )(qG

)(ty

)(te

FIGURE 3.3: Simulated Muscle System

The parameter values used here come from real experimental data from a stroke patient.

After a long period of testing on this patient, we have estimated a model which is rep-

resentative and reliable. This model has been used in clinical tests and has produced a

high level of accuracy when applied with an simple ILC scheme [Freeman et al., 2009b].

For example, when stimulated with the same triangular input signals, the responses of the

simulated muscle system and real muscle of the stroke patient are very close to each other,

see Fig. 3.4.

2. Ramp deconvolution method

In this method, the Isometric Recruitment Curve (IRC) is estimated by deconvolving the

response of a muscle to a ramp input [Durfee and MacLean, 1989] and the Linear Activa-

tion Dynamics (LAD) is represented by a critically damped second-order system [Baratta

and Solomonow, 1990]. This method has already been used to identify models of stroke

patients in this project and it is implemented as follows, also see Fig. 3.5 for visual aid.

First, a triangular input is applied in which the up and down segments are each of 5 second

duration and the elbow torque is recorded. Second, the elbow torque is deconvolved using

the Linear Activation Dynamics (LAD). When plotted against the applied pulsewidth, this

provides two isometric recruitment curves, corresponding to the increasing and decreasing

ramps respectively. Then the expression

f (u) = x1 ·
ex2u−1
ex2u + x3

(3.30)

is selected to fit the data by a nonlinear Matlab function ‘lsquarefit’. Third, h(τ) is con-

volved with f (u) to produce the whole nonlinear dynamical model. The transfer function

of Linear Activation Dynamics (LAD) is

h(s) =
1

T 2
ω s2 +2Tωs+1

(3.31)
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FIGURE 3.4: Comparison of the responses of the simulated muscle system and the real muscle
of a stroke patient to a triangular ramp input signal

The natural frequency fω = 1
Tω

of the system is chosen as 0.85π which has been shown to

be accurate for most people.

3. Separable Least Squares optimization algorithm

The Separable Least Squares (SLS) Optimization Algorithm was proposed for Hammer-

stein Structure identification and applied to a biological system (stretch reflex electromyo-

gram) successfully by [Westwick and Kearney, 2001]. For this reason, SLS has been

implemented here and compared with two-stage method in a simulation study. In this

method, the linear dynamics is described by its impulse response, h(τ), which is assumed

to be of finite length T = 41 . The static nonlinearity f (u) is expressed by (3.30), including

three nonlinear parameters a1, a2 and a3. Thus, the model output is

ẑ(t) =
T−1

∑
τ=0

h(τ) f (u(t− τ)). (3.32)

It is obvious that the output is a linear function of the filter weights h(τ) and is nonlinear

in the parameters a1, a2 and a3. Thus, a parameter vector θ , including filter weights and

nonlinear parameters is used to represent model output.

θ = [h(0), · · · , h(T −1), a1, a2, a3]T = [θ T
l |θ T

n ]T (3.33)

The SLS method performs the iterative search only for the nonlinear parameters to find
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FIGURE 3.5: (1) Stimulation ramp input and recorded elbow torque, (2) deconvolved elbow
torque plotted against pulsewidth with fitted fuction, (3) measured elbow torque and modelled

elbow torque

the parameter vector θ , that minimizes the cost function

VN(θ) =
1

2N

N

∑
t=1

ε
2(t,θ). (3.34)

where ε(t,θ) = z(t)− ẑ(t,θ) which is the error between the model output and the mea-

sured output. N is the number of samples used as the input and output signals.

4. Results

Results are in terms of the Best Fit rate, defined as the percentage,

Best Fit =
(

1− ‖y− ŷ‖2

‖y− ȳ‖2

)
×100 (3.35)

where y is the measured output, ŷ is the simulated model output and ȳ is the mean of y. For

each noise level, 100 independent trials are performed and the mean values and standard

deviations of the Best Fit rates are calculated and shown in Table 3.1. Under noise-free

conditions, the two-stage method can almost reconstruct the simulated system. Although

the variance of the two-stage method is larger than the other two, it is still comparably

small enough to not affect the performance at all. More intuitively, from Fig. 3.6, it can be

seen that under different levels of normally distributed random noise, the three methods

all degrade to some extent but the two-stage method is still superior to the other two.
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TABLE 3.1: Best Fit (%) for different noise levels
Two-Stage Ramp Deconv SLS

noise-free 99.98 91.24 92.06
λ = 0.02 99.07±0.07 91.19±0.00 92.01±0.01
λ = 0.04 98.14±0.02 91.07±0.00 91.87±0.00
λ = 0.06 97.27±0.03 90.86±0.00 91.64±0.00
λ = 0.08 96.31±0.15 90.58±0.00 91.32±0.01
λ = 0.10 95.33±0.22 90.24±0.00 90.94±0.00
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FIGURE 3.6: Simulation results for different noise levels

3.3 Two Iterative Algorithms

From the results above, the two-stage algorithm developed is shown to outperform the Ramp

Deconvolution method and Separable Least Square method on a simulated muscle system with

different noise levels. However, only one iteration of optimization of both the linear and nonlin-

ear parameters is executed in the two-stage algorithm. In order to further improve the accuracy,

it is proposed to repeatedly execute the two stages until convergence is achieved, which leads to

the following algorithms.

These two iterative algorithms differ in terms of the assumed noise models:

one is for the ARX model with the system equation in (3.5) and

1
Â(q)

v = y−G(q, θ̂l) f (u, θ̂n) = y− B̂(q)
Â(q)

f (u, θ̂n) (3.36)

and the other one is for the OE model, where

v = y−G(q, θ̂l) f (u, θ̂n) = y− B̂(q)
Â(q)

f (u, θ̂n) (3.37)

is transformed from (3.6).
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3.3.1 Nonlinear Parameter Identification

Assume that an initial estimate of the linear parameter vector, θ̂l , is available. The nonlinear

parameters can be identified using the initial estimate of the linear parameter as follows.

• ARX model:

Multiplying (3.36) by Â(q) and substituting the resulting expression for v in (3.8) yields

θ̂n = argmin
θn

∥∥Â(q)y− B̂(q) f (u,θn)
∥∥ (3.38)

From (3.2), it can be seen that f (u,θn) is linear in θn, so that

(
B̂(q) f (u,θn)

)
(k) =

m−2

∑
i=1

βi (b̂0|u(k−d)−ui+1|3 + · · ·+ b̂n|u(k−d−n)−ui+1|3)︸ ︷︷ ︸
fi(u(k),θ̂b)

+βm−1 (b̂0 + · · ·+ b̂n)︸ ︷︷ ︸
fm−1(u(k),θ̂b)

+βm (b̂0u(k−d)+ · · ·+ b̂nu(k−d−n))︸ ︷︷ ︸
fm(u(k),θ̂b)

+βm+1 (b̂0u(k−d)2 + · · ·+ b̂nu(k−d−n)2)︸ ︷︷ ︸
fm+1(u(k),θ̂b)

+βm+2 (b̂0u(k−d)3 + · · ·+ b̂nu(k−d−n)3)︸ ︷︷ ︸
fm+2(u(k),θ̂b)

(3.39)

Therefore, (3.38) can be rewritten as an ordinary least squares problem

argmin
θn

wwYn(y, θ̂a)−Φn(u, θ̂b)θn
ww

2 (3.40)

where assuming that l > n+d,

Yn(y, θ̂a) =


y(l +1)+ â1y(l)+ · · ·+ âly(1)

y(l +2)+ â1y(l +1)+ · · ·+ âly(2)
...

y(N)+ â1y(N−1)+ · · ·+ âly(N− l)


and

Φn(u, θ̂b) =


f1(u(l +1), θ̂b) · · · fm+2(u(l +1), θ̂b)
f1(u(l +2), θ̂b) · · · fm+2(u(l +2), θ̂b)

...
...

f1(u(N), θ̂b) · · · fm+2(u(N), θ̂b)
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Therefore, the solution of (3.38) is

θ̂n =
(
Φn(u, θ̂b)T

Φn(u, θ̂b)
)−1

Φn(u, θ̂b)TYn(y, θ̂a) (3.41)

• OE model

Let ŷ be the output of Ĝ when the input is f (u,θn), i.e.,

ŷ(k) =
B̂(q)
Â(q)

f (u,θn) (3.42)

Multiplying both sides of (3.42) by Â(q), gives

Â(q)ŷ(k) = B̂(q) f (u,θn) (3.43)

and expanding B̂(q) f (u(k),θn) as in (3.39) yields the matrix equation

T (θ̂a)Ŷ = Φn(u, θ̂b)θn (3.44)

where

T (θ̂a) =


âl · · · â1 1 0 · · · · · · 0

0 âl · · · â1 1 · · · · · · 0
...

...

0 · · · · · · 0 âl · · · â1 1

 and Ŷ =


ŷ(1)
ŷ(2)

...

ŷ(N)

 (3.45)

However, T (θ̂a) is of dimension (N− l)×N, which implies that the solution for Ŷ is not

unique. The system theoretic interpretation of this linear algebra fact is that: the output

cannot be uniquely determined by the given model and input. Indeed, there are additional

degrees of freedom in the choice of the initial conditions. In order to make the solution

of problem (3.44) unique, let zero initial conditions be assumed. This choice is justifiable

in the context of the muscle identification problem because the experiment starts with the

muscle “at rest”. The choice of zero initial conditions amounts to extending the data by

zeros in the past, which in turn means that the matrices T (θ̂a) and Φn(u, θ̂b) are extended

to comprise N columns. Then (3.44) becomes

Text(θ̂a)Ŷ = Φn(uext , θ̂b)θn (3.46)
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with

Text(θ̂a) =



1 0 · · · 0 0 · · · · · · 0

â1 1 0 0 0 · · · · · · 0
...

. . .
...

âl · · · â1 1 0 · · · · · · 0

0 âl · · · â1 1 · · · · · · 0
...

...

0 · · · · · · 0 âl · · · â1 1


(3.47)

and

Φn(uext , θ̂b) =


f1(u(1), θ̂b) · · · fm+2(u(1), θ̂b)
f1(u(2), θ̂b) · · · fm+2(u(2), θ̂b)

...
...

f1(u(N), θ̂b) · · · fm+2(u(N), θ̂b)

 (3.48)

Consequently, Ŷ can be solved from (3.46) as

Ŷ = T−1
ext (θ̂a)Φn(uext , θ̂b)θn (3.49)

Substituting Ŷ in (3.37), the cost function (3.8) becomes

θ̂n = argmin
θn
||Y −T−1

ext (θ̂a)Φn(uext , θ̂b)θn||2 (3.50)

which can be solved approximately in the least squares sense to obtain the estimate of the

nonlinear parameter vector, θ̂n

θ̂n =
((

T−1
ext (θ̂a)Φn(uext , θ̂b)

)T
T−1

ext (θ̂a)Φn(uext , θ̂b)
)−1 (

T−1
ext (θ̂a)Φn(uext , θ̂b)

)T
Y

(3.51)

3.3.2 Linear Parameter Identification

Given an estimate θ̂n for the nonlinear parameter vector θn, the cost function (3.8) can be mini-

mized over the linear parameter vector θl . This subproblem is a linear least squares minimization

in the ARX case but it is a difficult nonlinear least squares problem in the OE case.

• ARX model

The minimization problem in the case of an ARX model is

θ̂l = argmin
θl

∥∥A(q)y−B(q) f (u, θ̂n)
∥∥ (3.52)

or in a matrix form

argmin
θl

wwY ′−Φl(u,y, θ̂n)θl
ww

2 (3.53)
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where

Y ′ =
[
y(l +1) y(l +2) · · · y(N)

]T
(3.54)

and

Φl(u,y, θ̂n) =


−y(l) · · · −y(1) f (u(l +1−d), θ̂n) · · · f (u(l +1−d−n), θ̂n)
−y(l +1) · · · −y(2) f (u(l +2−d), θ̂n) · · · f (u(l +2−d−n), θ̂n)

...
...

...
...

−y(N−1) · · · −y(N− l) f (u(N−d), θ̂n) · · · f (u(N−d−n), θ̂n)


(3.55)

Therefore, the solution of (3.53) is

θ̂l =
(
Φl(u,y, θ̂n)T

Φl(u,y, θ̂n)
)−1

Φl(u,y, θ̂n)TY ′ (3.56)

• OE model

Recall the partition (3.4) of the transfer function linear parameter vector θl into parame-

ter θa of the denominator A and parameter θb of the numerator B. The output error can

be minimized analytically over θb, reducing the number of optimization variables for the

minimization problem.

For given θa, (3.43) can be rewritten in a matrix form similar to (3.46) as

Text(θ̂a)Ŷ = Φ
′
l(uext , θ̂n)θb (3.57)

where

Φ
′
l(uext , θ̂n) =


f (u(1−d), θ̂n) · · · f (u(1−d−n), θ̂n)
f (u(2−d), θ̂n) · · · f (u(2−d−n), θ̂n)

...
...

f (u(N−d), θ̂n) · · · f (u(N−d−n), θ̂n)

 (3.58)

so that

Ŷ (θa,θb) = T−1
ext (θ̂a)Φ′l(uext , θ̂n)θb (3.59)

Thus, for a given θ̂a, the solution, θ̂b, for θb is given by

θ̂b = argmin
θb
||Y − Ŷ ||2

=
((

T−1
ext (θ̂a)Φ′l(uext , θ̂n)

)T
T−1

ext (θ̂a)Φ′l(uext , θ̂n)
)−1 (

T−1
ext (θ̂a)Φ′l(uext , θ̂n)

)T
Y︸ ︷︷ ︸

g(θ̂a)

(3.60)

The OE minimization problem is thus reduced to an unconstrained nonlinear least squares
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problem

θ̂a = argmin
θa
||Y − Ŷ (θa,g(θa))||2 (3.61)

with optimization variable θa only. Such a problem can be solved by standard local opti-

mization methods, e.g., the Levenberg–Marquardt method.

Imposing stability of the identified model is in general difficult. In the muscle identifi-

cation context, however, a second order system has been assumed by many authors, and

in this case it can be shown that the stability constraint reduces to the following bound

constraints on the parameters

0 < â2 ≤ 1 and −2≤ â1 ≤ 0.

3.3.3 Algorithm Summary

For both model structures, the minimization over the θn and θl parameters can be executed

repeatedly, which leads to the Algorithms 2 and 3.

Algorithm 2 Iterative algorithm for Hammerstein system identification with ARX model

Inputs: an initial value of the linear component, θ̂ 0
l , an input/output data set u(k), y(k), k =

1,2, . . . ,N, and a convergence tolerance ε .
j = 0
repeat

j = j +1

θ̂
j

n =
(

Φn(u, θ̂ j−1
b )T Φn(u, θ̂ j−1

b )
)−1

Φn(u, θ̂ j−1
b )TYn(y, θ̂

j−1
a )

θ̂
j

l =
(

Φl(u,y, θ̂ j
n )T Φl(u,y, θ̂ j

n )
)−1

Φl(u,y, θ̂ j
n )TY ′

until |VN(θ̂ j
l , θ̂ j

n )−VN(θ̂ j−1
l , θ̂ j−1

n )|< ε

Output: θ̂ =

[
θ̂

j
n

θ̂
j

l

]

Algorithm 3 Iterative algorithm for Hammerstein system identification with OE model

Inputs: an initial value of the linear component, θ̂ 0
l , an input/output data set u(k), y(k), k =

1,2, . . . ,N, and a convergence tolerance ε .
j = 0
repeat

j = j +1

θ̂
j

n =
((

T−1
ext (θ̂ j−1

a )Φn(uext , θ̂
j−1

b )
)T

T−1
ext (θ̂ j−1

a )Φn(uext , θ̂
j−1

b )
)−1(

T−1
ext (θ̂ j−1

a )Φn(uext , θ̂
j−1

b )
)T

Y

θ̂
j

a = argminθa ||Y − Ŷ (θa,g(θa))||2 where g(θa) is defined in (3.60) and θ̂
j

b = g(θ̂ j
a )

until |VN(θ̂ j
l , θ̂ j

n )−VN(θ̂ j−1
l , θ̂ j−1

n )|< ε

Output: θ̂ =

[
θ̂

j
n

θ̂
j

l

]



Chapter 3 Identification 49

3.4 Experimental Results

3.4.1 Test Design

Test Design is a crucial step for a successful identification procedure, which is more, the tests

are not applied to a mechanical or physical process, but to a human being, in particular, a stroke

patient. This means the test design must be given special attention.

1. Signal amplitude distribution

The muscle behavior is revealed to be nonlinear so that in order to excite the whole non-

linearity, multi-level signals should be used. Many signals satisfy this requirement, for

example, triangular ramp signals, staircase signals, pseudo-random multi-level signals,

multiple sinusoids, white noise and filtered white noise. When the number of signal levels

is sufficiently high, the next issue is how should the test signal amplitude be distributed

over its variation range. The amplitude distribution will influence the accuracy of the

model when there is process disturbance and unmodelled dynamics. The general guide-

line is that the test input amplitude should be similar to, but richer than, the input signal

during typical process operations; and/or, use higher density in areas where high model

accuracy is desired. A normal distribution of signal amplitude will put more weight on

the area around the mean value of input at the cost of other areas; a uniformly distributed

signal will treat the whole signal range equally. It is recommended that if there is not

enough a priori knowledge about the process, uniformly distributed1 test signals should

be used [Zhu, 2000] which will treat the whole signal range equally.

2. Duration of test

Common sense dictates that the identification test time should be sufficiently long so that

the effects of unmeasured disturbance can be averaged out. A shorter test can be used for

processes with lower noise level and/or simple models with smaller number of parameters;

a longer test time is necessary when the process noise level is high and/or many parameters

need to be determined. The muscle system undoubtedly belongs to the latter. However,

a long test time will lead to fatigue in the stroke patients’ muscles which will make our

time-invariant model unreliable because the fatigue is obviously a time-varying factor. As

a result, based on many simulation studies and real experimental experience, a test time

of 20−30 seconds is proposed in most cases.

3. Stimulation pattern

In frequency modulation, many different stimulation patterns have been used and com-

pared [Bobet et al., 2005]. However, stimulation pattern has not been considered before

for the core of pulsewidth modulation. Here the stimulation pattern can be translated into

the way the stimulation intensity changes or the way motor units are excited. It has been

1uniformly distributed means the occurrence frequencies of all levels are equal.
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taken into account because we need to identify the model of the response of the muscle to

electrical stimulation but we cannot isolate the muscle from the central nervous system.

Therefore, we need to keep the muscle relaxed all the time in order to exclude the effect

of an involuntary actuation component from the patient. Furthermore, since experimen-

tal tests are intended for application to stroke patients, their comfort is also of particular

importance.

One method to ensure the patient is relaxed and comfortable is to recruit motor units

gradually rather than abruptly exciting all desired units at once [Baker et al., 1993]. In

pulsewidth modulation, this is guaranteed by gradually increasing the duration of each

pulse, which will produce a gradual recruitment of nerve fibers after it exceeds the thresh-

old of excitation. Moreover, a gradual reduction of pulse duration is also recommended to

provide effectiveness and safety within a treatment program [Baker et al., 1993]. Without

any doubt, the Triangular Ramp signal has these qualities. Here we also propose another

input signal satisfying this requirement: Staircase signals, which to our knowledge have

not previously been considered in identification tests for electrically stimulated muscle.

However, there remain many other tests, which do not fulfill these specifications, such

as PRMS, and impulse trains with randomized activation levels [Ding et al., 2007]. In

the literature, no discomfort has been reported from human subjects and no unreliability

shown in the identified models resulting from the experimental data. Therefore, there is

no reason to avoid use of these randomly exciting test signals and we choose two tests

of this type. One is from the literature: PRMS and the other one also has not been used

before: Filtered Random Noise signals.

4. Candidate tests

Based on the above discussion, the following tests are presented for identification of elec-

trically stimulated muscle, see Fig. 3.7 for an example of each of the four candidate tests.

• Triangular Ramp (TR) test

The pulse duration rises up from 0 to 300µs and then back to 0 again and the range

of pulse duration is uniformly distributed.

• Staircase test

The duration of each pulse changes step by step. The number of stairs should be

great enough to identify the nonlinearity and the width of stairs should be chosen

carefully. Denote τ = Ts/4 (Ts is the 98% settling time). It is recommended to used

a mixed stair width: use stair width τ for 1/3 of the test period, 2τ for another 1/3

of the test period and 3τ for remaining 1/3 of the test period and mix them when

creating the test signals [Zhu, 2000].

• Filtered Random Noise (FRN) test

The value of pulse duration is set up by a filtered random noise. The low pass

filter is used to make the duration not change too fast which may cause the patients’
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discomfort or make their muscles tense and the filter gain can be adjusted so that the

duration of pulses spans the whole desired range.

• Pseudo-Random Multi-level Sequences (PRMS) test

The duration of pulse is decided by a Multi-level Pseudo-Random Sequence. The

level is uniformly distributed on the whole range.
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FIGURE 3.7: Test input

3.4.2 Experimental Set-up

University of Southampton Ethical approval has been obtained for conducting muscle identifi-

cation tests, using the planar robot (S07/04-01). Tests were performed on a single unimpaired

subject, and took place during two sessions conducted over consecutive days. Biometric mea-

surements, including the length of the upper arm and forearm, were first made using anatomical

landmarks, and then the participant was seated in the workstation. Their right arm was strapped

to the extreme link of the five-bar robotic arm which incorporates a six axis force/torque sen-

sor. The robotic arm provides support and constrains the forearm to lie in a horizontal plane.

Straps were also applied about the upper torso to prevent shoulder and trunk movement. The

subject’s upper limb was then moved over as large an area as possible and a kinematic model of

the arm was produced in order to calculate the torques applied about the subject’s elbow joint.

The electrode was then positioned on the lateral head of triceps and adjusted so that the applied

FES generated maximum forearm movement. The stimulation consists of a series of bi-phasic

pulses at 40Hz, whose pulsewidth is variable from 0 to 300µs with a resolution of 1µs. The am-

plitude, which is fixed throughout all subsequent tests, is determined by setting the pulsewidth
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equal to 300µs and slowly increasing the applied voltage until a maximum comfortable limit is

reached. A sample frequency of 40Hz is used by the real-time hardware, and all calculations are

performed using the Matlab/Simulink environment.

The position of the robotic arm was then fixed using a locking pin, at an elbow extension an-

gle, ϑ , of approximately π/2 rads. The identification tests that followed were each of 30 sec

duration, and used excitation signals in which the first and last 5 sec periods consisted of zero

stimulation. Only the middle 20 sec section of input and output data was used for identification,

with the adjoining periods used to establish the baseline torque offset (taken as the mean torque

value). The identification calculations were carried out immediately following each test in order

to establish the efficacy of the data.

For the TR test, Staircase test and FRN test, 10 trials were performed, however, in the case of

the PRMS test, only 4 trials were carried out as it was evident that the fit rate was poor. Between

every two tests there was a rest period of at least 10 min in order to eliminate fatigue [Graham

et al., 2006], and the order of identification tests was also randomized to minimize the effect of

subject memory or acclimatization increasing the subject’s involuntary response.

3.4.3 Results

The two iterative algorithms: Algorithm 2 and 3 are implemented here and the corresponding

Hammerstein structure is specified as follows:

• Linear system

The parameters (l,n,d) in (3.1) are assumed to be (2,1,1) and hence, the transfer function

is

G(q) =
b0q−1 +b1q−2

1+a1q−1 +a2q−2

The delay is chosen to be one since the combined delay resulting from muscle dead-

time and communication protocol was anticipated to lie just below the sample time of

25ms, which means that the muscle responds to a change in activation within one sample

period. A second order structure was assumed due to its wide use within Hammerstein

structure modelling of electrically stimulated muscle [Durfee and MacLean, 1989; Baratta

and Solomonow, 1990; Chizeck et al., 1988; Hunt et al., 1998] and its preliminary success

in the previous programme of work at Southampton [Freeman et al., 2009b].

• Static nonlinear function

Only one knot is assumed in the cubic spline function in (3.2), which is in the middle of

the full range from 0 to 300µs.

f (u) = β1|u−150|3 +β2 +β3u+β4u2 +β5u3
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Thus, the parameter vectors to be estimated are

θl = [a1,a2,b0,b1]T

and

θn = [β1,β2,β3,β4,β5]T .

These two algorithms are tested on the experimental data from all the candidate tests, com-

pared with another three identification schemes, whose identification methods and correspond-

ing model structures are described below:

1. PEM – General linear model

pem is a Matlab function to estimate model parameters using an iterative prediction-error

minimization method. Here, it is used for a general linear ARX model, which has the

form:

y(k) =
b0q−d +b1q−(d+1) + · · ·+bnq−(n+d)

1+a1q−1 + · · ·+alq−l u(k)+
1

1+a1q−1 + · · ·+alq−l v(k)

Only a second order model was chosen because, when compared with higher order mod-

els, similar levels of fitting were observed. This is reflected in [Bobet et al., 2005] which

compared several models for isometric muscles, and found that the general linear model

with higher order gave fits that were only slightly better than those with a second order

linear model. This suggests that the second order linear model provides a fit which is close

to the best fit possible using a general linear model. Therefore, only a second order linear

model is taken into account as the representation of the general linear model case, and the

following (not necessarily critically damped) polynomial transfer function is chosen:

G(q) =
b0 +b1q−1 +b2q−2

1+a1q−1 +a2q−2

2. BAI – A modified Wiener-Hammerstein model

This model structure and the corresponding identification comes from the recent pa-

per [Bai et al., 2009] so that it is named after the author. A modified Wiener-Hammerstein

model is proposed, shown in Fig. 2.5, which consists of two first-order linear blocks and

a static nonlinearity in the middle. v(k) and w(k) are internal signals.

v(k +1) = a1v(k)+a2u(k)

w(k) =
v(k)

1+ v(k)

y(k +1) = b1y(k)+b2w(k)

A Global Minimum Searching method is developed to find the four unknown parameters

a1, a2, b1 and b2.
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3. NLHW – Hammerstein structure

nlhw is a Matlab function used to estimate Hammerstein-Wiener models which describes

nonlinear dynamic systems using one or two static nonlinear blocks in series with a linear

block. Only the linear block contains dynamic, time-variant elements. When exclud-

ing the output nonlinearity, the nlhw function can be used to estimate the Hammerstein

structure.

The linear block is a discrete-time transfer function and the order of the linear block can

be specified by the following parameters:

• nb –The number of zeros plus one.

• n f –The number of poles.

• nk –The delay from input to the output in terms of the number of samples.

The nonlinear block is implemented using nonlinearity estimators such as Dead Zone,

Piecewise Linear and Saturation, etc. The estimator and number of units can be specified

as well.

In order to ensure continuity of the order of the linear block in the Hammerstein structure

and comparability with the developed iterative algorithms, the parameters nb = 2, n f = 2

and nk = 1 are chosen for the linear block and a piecewise estimator with the same amount

of units as the knots in the cubic splines in (3.2) is used for the input nonlinear block. The

output nonlinearity is excluded.

The results are all in terms of the Best Fit rate, defined in (3.35). It is noted that sometimes the

best fit rates will go to negative numbers, which means the modeled outputs are even worse than

a straight line representing the mean value of the measures outputs. Three aspects of results can

be drawn:

• Identification results

The identification results for each individual trial of four candidate tests are given to-

gether with the average results for all the trials, see Table 3.2 for three other identification

methods and Table 3.3 for two iterative algorithms.

• Validation results

To obtain the validation results, a model is firstly identified from the data of one trial and

then is used to predict the outputs for all the trials in the same type of test. The results

are the average values of all the prediction results in term of Best Fit rate. The validation

results show the predictive ability within the same type of identification test. Due to the

poor performance in identification results from the others, here only three algorithms are

compared: Matlab function ‘nlhw’ and two iterative algorithms, listed in Table 3.4.

• Cross-validation results
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TABLE 3.2: Identification results of three identification methods: Matlab Function ‘pem’ for a
Linear model, Matlab function ‘nlhw’ for a Hammerstein Model and Global Minimum Search-
ing method ‘bai’ for a modified Wiener-Hammerstein model for the four candidate tests. The

results are in terms of the Best Fit Rate.
(a) PEM

Triangular Ramp Filtered Random Noise Staircase PRMS
1 64 41.1 89.54 53.95
2 poor 41.92 70.9 50.89
3 85.16 37.41 68.81 38.9
4 87.78 33.43 86.81 34.82
5 64.44 50.56 82.51
6 89.57 59.01 67.23
7 20.13 43.73 71.75
8 83.59 57.16 32.93
9 81.64 56.34 66.42

10 88.09 57.48 70.91
average 73.8 47.8 70.78 44.64

(b) BAI

Triangular Ramp Filtered Random Noise Staircase PRMS
1 67.54 35.47 87.33 43.63
2 74.78 41.24 67.99 42.62
3 59.79 35.29 73.48 40.85
4 66.05 27.56 77.24 24.78
5 63.37 46.22 84.70
6 75.28 42.92 64.86
7 68.54 39.11 70.47
8 60.08 38.79 74.00
9 62.88 44.98 60.99

10 73.48 42.26 81.00
average 67.18 39.38 74.21 37.97

(c) NLHW

Triangular Ramp Filtered Random Noise Staircase PRMS
1 89.66 40.33 84.85 55.67
2 53.68 11.75 85.43 75.15
3 92.31 1.55 86.74 57.14
4 92.18 39.43 91.31 41.49
5 92.87 81.08 83.32
6 94.32 56.96 90.46
7 85.72 58.43 83.68
8 93.21 45.32 74.35
9 94.42 80.75 85.54
10 92.76 71.48 89.94

average 88.11 48.71 85.56 57.36

Similarly, in order to show the predictive ability for different stimulation patterns, cross-

validation analysis has been conducted, see Table 3.5. Firstly, a model is identified from
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TABLE 3.3: Identification results of Algorithm 2 and Algorithm 3 for the four candidate tests.
The results are in terms of the Best Fit Rate.

(a) Algorithm 2

Triangular Ramp Filtered Random Noise Staircase PRMS
1 85.88 42.54 87.62 50.34
2 88.34 36.39 89.16 52.48
3 91.33 36.09 85.18 52.43
4 89.23 36.58 89.68 36.69
5 92.25 63.38 89.84
6 90.68 55.23 91.35
7 89.14 48.12 88.33
8 91.41 58.09 88.17
9 94.25 74.74 83.46

10 89.02 66.84 91.85
average 90.15 51.8 88.46 48.00

(b) Algorithm 3

Triangular Ramp Filtered Random Noise Staircase PRMS
1 92.65 73.03 90.89 66.89
2 92.25 65.19 93.32 78.91
3 93.88 51.69 93.49 63.79
4 93.36 70.92 93.49 65.92
5 93.08 79.94 93.77
6 91.98 68.46 92.34
7 95.74 58.48 93.38
8 92.41 61.50 94.66
9 95.32 79.74 90.85
10 92.60 71.32 94.23

average 93.33 68.03 93.04 68.88

the data of all the trials in one type of test and then is used to predict the outputs for all the

trials in one of the other tests. The results are again the average value of the Best Fit rate.

Here only the TR, FRN, and Staircase tests are compared, due to the poor performance of

the PRMS test in both identification and validation. For the same reason provided above,

here only three algorithms are compared: Matlab function ‘nlhw’ and the two iterative

algorithms.

3.4.4 Discussion

1. Model structure comparison

It is obvious that the second-order linear model and its identification method ‘pem’ does

not work very well, see Table 3.2(a). It is believed that this model structure is not complex

enough to represent the muscle dynamics.

A modified Wiener-Hammerstein model is used in [Bai et al., 2009] to model the force-
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TABLE 3.4: Validation results of Algorithm 2, 3 and ‘nlhw’ for the four candidate tests. The
model is identified from the listed data set and validated on all the data of the same test. The

results are the average Best Fit Rate.
(a) Algorithm 2

Triangular Ramp Filtered Random Noise Staircase PRMS
1 82.28 28.01 73.99 11.17
2 82.78 45.00 83.63 43.45
3 79.01 40.52 77.77 46.32
4 82.51 8.79 77.27 44.10
5 82.83 37.62 82.72
6 81.94 28.97 82.28
7 78.51 40.67 81.20
8 80.11 30.37 80.68
9 82.80 44.77 78.09

10 83.25 -45.65 81.04
average 81.60 25.91 79.87 36.26

(b) Algorithm 3

Triangular Ramp Filtered Random Noise Staircase PRMS
1 76.12 16.90 75.86 46.08
2 80.94 26.34 84.39 32.15
3 76.58 36.32 83.42 29.50
4 81.80 16.31 83.47 50.22
5 81.79 24.37 75.82
6 75.98 41.43 83.09
7 68.03 29.49 83.32
8 79.87 20.76 81.96
9 80.32 46.80 80.67
10 78.61 -30.94 83.81

average 78.00 22.78 81.58 39.49

(c) NLHW

Triangular Ramp Filtered Random Noise Staircase PRMS
1 81.02 35.43 69.48 28.81
2 64.46 11.00 84.87 52.67
3 77.16 18.38 82.21 13.02
4 81.81 42.37 79.25 46.98
5 83.52 42.65 83.33
6 81.13 29.58 82.25
7 76.29 36.29 83.13
8 80.42 36.68 84.20
9 83.03 46.82 79.30
10 83.76 5.44 80.03

average 79.26 30.46 80.81 35.37

frequency relationship with fixed nonlinearity. However, it is found that in the identified

nonlinearity by the iterative Algorithm there is a dead-zone between 0 to around 40µs,
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TABLE 3.5: Cross Validation results of Algorithm 2 and Algorithm 3 for the TR, FRN, and
Staircase tests. The model is identified from all the data of one type of the test and validated on

all the data of the other type of the test. The results are the average Best Fit Rate.
(a) Algorithm 2

Triangular Ramp Filtered Random Noise Staircase
(TR) (FRN)

(TR) 84.83 17.76 47.94
(FRN) 83.96 40.23 71.40

Staircase 79.53 42.67 84.48

(b) Algorithm 3

Triangular Ramp Filtered Random Noise Staircase
(TR) (FRN)

(TR) 81.80 41.08 64.11
(FRN) 68.75 46.80 67.86

Staircase 80.72 45.00 84.39

(c) NLHW

Triangular Ramp Filtered Random Noise Staircase
(TR) (FRN)

(TR) 85.55 -29.00 74.70
(FRN) 76.68 42.92 79.80

Staircase 71.26 39.71 82.71

which also can be illustrated by [Baker et al., 1993], while the fixed nonlinearity in the

modified Wiener-Hammerstein model plotted in Fig. 3.8 does not contain dead-zone at

all. This explains why the identification results of the modified Wiener-Hammerstein

model are even worse than the linear model, Table 3.2(b). Thus, the modified Wiener-

Hammerstein model is not suitable for the case of varying the stimulation intensity.
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FIGURE 3.8: The fixed nonlinearity of the modified Wiener-Hammerstein model

The two iterative algorithms and the Matlab function ‘nlhw’ using the Hammerstein model

outperform the others and shows significant improvement, Table 3.3 and Table 3.2(c).
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Thus, it can be concluded that the Hammerstein model is the best choice based on the

results above.

2. Comparison between the two iterative algorithms
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FIGURE 3.9: Box plots of identification results from two iterative algorithm and Matlab func-
tion ‘nlhw’

In order to aid visual comparison, the box plots of the identification and validation results

for the three comparable algorithms are presented in Fig. 3.9 and 3.10, respectively.

For the identification results, Algorithm 3 gives the best performance and the Matlab

function ‘nlhw’ is the worst, even failing in one case (only achieving 1.55%). Algorithm 2

and 3 perform equivalently well in the validation results, easily observed from Fig. 3.10,

but Matlab function ‘nlhw’ produces the largest box, which represents the Interquartile

range of the results. Therefore, there is strong evidence that the two iterative algorithms

are superior to the Matlab function ‘nlhw’ in most cases. Thus, Matlab function ‘nlhw’

will be excluded from the later comparison, which is between the two iterative algorithms

in the following aspects:

• Initial values for linear parameters

Algorithm 2 and Algorithm 3 both require the initial values of the linear parameters,
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FIGURE 3.10: Box plots of validation results from the two iterative algorithms and Matlab
function ‘nlhw’

which can be obtained using any existing method which applies an input suitable

for use with stroke patients. One such technique is the Ramp Deconvolution method

[Durfee and MacLean, 1989], which was applied in the ILC stroke rehabilitation

project reported in [Freeman et al., 2009b], and a representative choice of parameters

may be taken. By using this representative estimate as the initial values, Algorithm 2

and Algorithm 3 can both achieve convergence after several iterations, illustrated by

Fig. 3.11(a) and 3.11(b). However, irrespective of the iteration number, Algorithm 3

takes a longer period of time because in each iteration, an iterative search is applied.

In order to expedite the identification process of Algorithm 3, a better solution of the

linear parameters is required as the initial values. The representative estimate from

[Freeman et al., 2009b] is obviously not accurate enough and, moreover, the values

of the linear parameters vary widely from subject to subject and it is difficult to find

one representative estimate among all the subjects. Therefore, the optimal solution

of the linear parameters from Algorithm 2 has been used to initialize Algorithm 3.

This thereby unites the two algorithms in a single scheme which combines the speed

of the first with the accuracy of the second. The results confirm high accuracy with
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fewer iterations to converge, as illustrated by Fig. 3.11(c).

• Structure and unknown parameters

A Hammerstein structure is used in both Algorithms, while the choice of the linear

model is different. Algorithm 2 chooses the ARX linear model, where the white

noise is assumed to pass through the denominator dynamics of the linear block be-

fore being added to the output. However, it is perhaps not the most natural form

from a physical point of view. Thus, another linear model, OE model, is assumed in

Algorithm 3, where white noise is added directly to the output, accounting for the

measured errors from the equipment. The number of unknown parameters is kept

the same for both Algorithms.

• Identification procedure

The identification procedures of the two algorithms are not the same but they both

alternatively optimize the nonlinear and linear parameters at each iteration.

Algorithm 2 is a development of the Two-Stage identification method derived in

Section 3.2, see also [Le et al., 2009], which has been shown to outperform the

Ramp Deconvolution method and Separable Least Square method on a simulated

muscle system with a range of noise levels. It alternatively solves the least squares

problems to optimize the linear and nonlinear parameters. It is computationally easy

and is reasonably fast in implementation.

The identification procedure of Algorithm 3 is more complicated. In each iteration,

the nonlinear parameters can be identified through use of transformations and related

assumptions, in a least squares sense, while the identification of the linear parameters

necessitates an iterative search technique to find the local optimal solution. Thus, it

is more time consuming than Algorithm 2, but, by using the optimal solution from

Algorithm 2 to provide initial values, the identification procedure of Algorithm 3

can be greatly speed up to the point where it is not a matter of concern.

• Performance

Both Algorithm 2 and Algorithm 3 provide good fitting performance and predictive

ability. Fig. 3.12 shows the fitting performance between the modeled outputs and

measured outputs in both identification and validation cases.

In terms of identification results, Algorithm 3 is superior to Algorithm 2, observed

directly from Fig. 3.9(a) and 3.9(b). Numerically, Algorithm 3 improves the average

results by up to 20% compared with Algorithm 2, as shown in Table 3.3.

However, for validation results, both perform similarly, as shown by Fig. 3.10(a)

and 3.10(b). Through examination of Table 3.4, Algorithm 2 is seen to be better for

TR and FRN test data, while Algorithm 3 is better for the Staircase and PRMS test

data. It is therefore reasonable to conclude that Algorithm 2 and Algorithm 3 have

comparable performances in prediction.

The validation and prediction results provide the most direct indication of the models’

accuracy when applied to the design of controllers for stroke rehabilitation. Since both
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algorithms exhibit similar performance in this area, it is Algorithm 2’s simpler implemen-

tation and faster computation that make it the preferable option. Whilst in this application

Algorithm 3’s increased complexity does not translate to improved results in validation

and prediction, it is anticipated that applications exist in which it does outperform Algo-

rithm 2.

3. Candidate tests comparison

In order to visual aid the comparison, an example of the identification, validation and

cross-validation results from four candidate tests are plotted in Fig. 3.13 and 3.14. In

Fig. 3.13, for each candidate test, the identification result for one trial is plotted, followed

by the validation result for another trial within the same type of identification test. In

Fig. 3.14, the identified model from one type of candidate test is used to predict outputs

for the other two. For example, in Fig. 3.14(d), a model is firstly identified from one trial

of Staircase test data and then used to predict the output for one trial of FRN test data.

The results plotted here are not average results as in the Table 3.4 and 3.5 but an example

for one trial.

Although the TR test is widely used in muscle tests such as [Freeman et al., 2009b], [Dur-

fee and MacLean, 1989] and [Durfee and Palmer, 1994] and can achieve satisfactory fit-

ting rates (almost the highest values in the identification case and approximately 80%

for Algorithm 2 and a little lower for Algorithm 3 in the validation case), illustrated by

Fig. 3.13(a), it shows poor capability in predicting other stimulation patterns, such as those

in Table 3.5 and fitting plots in Fig. 3.14(c) and 3.14(e). This is due to its non-persistent

excitation property discussed in the previous section, which leads to an unreliable model

identified by this test.

The FRN and PRMS tests are commonly used in system identification context but not

widely applied to the electrically stimulated muscle fibres. The average identification

results of these two tests by Algorithm 2 are 51.8% and 48% respectively, as shown in

Table 3.3(a). Although Algorithm 3 improves on these by up to 20%, these tests are still

far lower than those of the TR and Staircase tests. The validation results in Table 3.4 are

even lower. In Fig. 3.13(b) and 3.13(d), the fitting plots for identification data are not bad

but when using the identified models to predict the validation data, which is just a dif-

ferent trial within the same type of identification tests, the results are quite disappointing,

not to mention the cross validation fitting plots for other types of identification tests in

Fig. 3.14(f) and 3.14(a).

There may be two reasons for this: the first is that the experimental data is not proper.

Considering the effects caused by randomly exciting tests on the human subjects, it is be-

lieved that these signals elicit involuntary reflexes and subject discomfort, which results in

noisy data. The second reason is that the model structure and the identification algorithms

are not proper due to these tests containing higher frequency components than the other

two. However, with respect to our particular control application, where the control in-

puts employed in clinical treatment are similar to TR and Staircase signals, see Fig. 5.14
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for example, the models form from FRN and PRMS tests, even identified by improved

identification algorithms or advanced model structures, e.g. high-order system, may be

expected to lead to poor results when transferred to model-based control application due

to its lack of output prediction for TR and Staircase tests, see Fig. 3.14(f) and 3.14(a).

To the best of the authors knowledge, this is the first time the Staircase test has been used

in the identification of electrically stimulated muscles, and it has shown clear advantage

over alternatives, i.e. it is persistently exciting, gives high fitting rates in the identification

case (the second highest one in Table 3.3) and in the validation case (surpassing even

the TR test for Algorithm 3 in Table 3.4(b)), illustrated by Fig. 3.13(c) and shows accu-

rate predictive ability across different stimulation patterns (see Table 3.5 and Fig. 3.14(d)

and 3.14(b)). Therefore the Staircase test is highly recommended for the identification of

electrically stimulated muscle.

4. Sample Deficiency

Our study has some limitations which should be borne in mind when judging these com-

parisons. One is lack of samples. Only one unimpaired human sample is used and at least

34 identification tests were carried out on the same sample subject during several consec-

utive days with randomized order. When tested on more subject samples, it is expected

that there will be variation in identified linear dynamics and nonlinear recruitment curves,

which can be illustrated by several similar results, e.g. [Munih et al., 2000]. However,

there is no evidence to show that subject sampling will affect the identification algorithm,

the model structure or the identification tests, and this is reflected in [Munih et al., 2000],

where the same model structure and identification algorithm were performed using ex-

perimental data from different subjects and similar results were obtained in each case.

Thus, it can be concluded that the results here may be extended to the general cases but

more identification tests on a wide range of human samples or even stroke patients will be

carried out in the future.
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FIGURE 3.11: Examples of convergence properties for Algorithm 2 and Algorithm 3: (a) A
representative estimate from [Freeman et al., 2009b] is used as the initial values and Algo-
rithm 2 is applied. Convergence is achieved after 18 iterations, employing the tolerance ε

defined in Algorithm 2; (b) A representative estimate from [Freeman et al., 2009b] is used as
the initial values and Algorithm 3 is applied. Convergence is achieved after 35 iterations, using
the tolerance ε defined in Algorithm 3; (c)The optimal solution from Algorithm 2 is used to
provide the initial values and Algorithm 3 is applied. Convergence is achieved after 4 iterations,

using the tolerance ε defined in Algorithm 3.
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FIGURE 3.12: The force outputs of Algorithm 2 (dashed), Algorithm 3 (dotted) and the mea-
sured force outputs (solid) are plotted.
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(d) Pseudo-Random Multi-level test

FIGURE 3.13: An example of the identification and validation results from four identification
tests by Algorithm 2
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(f) Filtered Random Noise test

FIGURE 3.14: An example of the cross validation results by Algorithm 2: (a) and (b) validate
the models identified by Filtered Random Noise test and Staircase test, respectively, on the
same trial of Triangular Ramp test data; (c) and (d) validate the models identified by Triangular
Ramp test and Staircase test, respectively, on the same trial of Filtered Random Noise test data;
(e) and (f) validate the models identified by Triangular Ramp test and Filtered Random Noise

test, respectively, on the same trial of Staircase test data;





Chapter 4

Recursive Identification

The algorithms developed in the previous chapter constitute significant progress in the identi-

fication of electrically stimulated muscle, but the models were only verified over a short time

interval (20 sec duration). However, in clinical trials, the duration of stimulation usually lasts

between 30 minutes and 1 hour, where slowly time-varying properties of the muscle system

arise due to fatigue, changing physiological conditions or spasticity. Motivated by this, online

identification will be considered in this Chapter.

4.1 Problem Statement

Consider the discrete-time SISO Hammerstein model, shown in Fig. 4.1. The linear block is

)(ku )(kw
)(ky)(uf

)(
)(

qA
qB

+

)(kv

)(
1

qA

FIGURE 4.1: Hammerstein System

represented by ARX model:

y(k) =
B(q)
A(q)

w(k)+
1

A(q)
v(k) (4.1)

and

B(q) = b0q−d +b1q−(d+1) + · · ·+bnq−(n+d) (4.2)

A(q) = 1+a1q−1 + · · ·+alq−l (4.3)

where q−1 is the delay operator and n, l and d are the number of zeros, poles and the time delay

order, respectively. The parameters n, l and d are assumed to be known.

69
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The nonlinearity is represented by a sum of the known nonlinear function f1, f2, . . . , fm and a

bias:

w(k) = f (u(k)) = β0 +
m

∑
i=1

βi fi(u(k)) (4.4)

The considered identification problem is:

Given N consecutive input-output data measurements {u(k),y(k)} estimate recur-

sively the linear parameters [a1, . . . ,al,b0, . . . ,bn] in (4.2,4.3) and the nonlinear pa-

rameters [β0, . . . ,βm] in (5.1).

4.2 Recursive Algorithms

4.2.1 Recursive Least Square Algorithm

The well known RLS algorithm will be applied first, where in order to make the model linear

in the parameters, over-parameterization of the Hammerstein structure is required. Then RLS is

employed to recursively estimate the new parameter vector, and in the second step, SVD is used

to recover the original parameters.

1. Over-parameterization

Multiplying both sides of the difference equation (4.1) by A(q) and rearranging the terms

gives

y(k) =−a1y(k−1)−·· ·−aly(k− l), (4.5)

+b0β0 +b0

m

∑
i=1

βi fi(u(k−d))

...

+bnβ0 +bn

m

∑
i=1

βi fi(u(k−d−n))+ v(k) (4.6)

Define the regressor φ as a combination of the past outputs and known nonlinear functions

of the past inputs

φ(k) =
[
− y(k−1), . . . ,−y(k− l),

f1(u(k−d)), . . . , fm(u(k−d)), . . . ,

f1(u(k−d−n)), . . . , fm(u(k−d−n)),1
]T

(4.7)

and the extended parameter vector θ

θ(k) =
[
a1, . . . ,al,γ01, . . . ,γ0m, . . . ,γn1, . . . ,γnm,δ ]T (4.8)
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where

γi j = biβ j i = 0,1, . . . ,n j = 1,2, . . . ,m (4.9)

and

δ = β0

n

∑
i=0

bi (4.10)

With these definitions, y(k) can be expressed as linear in the new parameters

y(k) = φ
T (k)θ(k)+ v(k) (4.11)

Note that for the constant term in the nonlinearity, we only use one term in the φ vector

as the last entry in (4.7) and merge the parameters of constant items into δ in (4.10). The

RLS algorithm can now be applied as follows.

2. RLS algorithm

For a slowly time-varying system, a forgetting factor λ , 0 < λ ≤ 1 is introduced. This

parameter weights the most recent data at unity, and data that is n time units old at λ n.

The minimization criterion is

V (θ ,k) =
1
2

k

∑
i=1

λ
k−i (y(i)−φ

T (i)θ(i)
)2

(4.12)

and the RLS algorithm for minimization of V (θ ,k) over θ is given by the following equa-

tions:

P(k) =
1
λ

(
P(k−1)− P(k−1)φ(k)φ T (k)P(k−1)

λ I +φ T (k)P(k−1)φ(k)

)
(4.13)

θ̂(k) = θ̂(k−1)+P(k)φ(k)(y(k)−φ
T (k)θ̂(k−1)) (4.14)

3. Recover linear and nonlinear parameters

After each time instant, the new parameter vector θ is updated using (4.13) and (4.14).

However, in order to feed into the controller, it is necessary to recover the linear and

nonlinear parameters from the new parameter vector θ̂ , which can be separated into the

following three segments:

θ̂(k) =

 θ̂a(k)
θ̂bβ (k)
δ̂ (k)

 (4.15)

where

θ̂a(k) = [â1(k) · · · âl(k)]T (4.16)

and

θ̂bβ (k) = [γ̂01(k) · · · γ̂0m(k) · · · γ̂n1(k) · · · γ̂nm(k)]T (4.17)
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The estimated parameter γ̂i j(k) are put in a (n+1)×m matrix

Θ̂
′

bβ
(k) =


γ̂01(k) · · · γ̂0m(k)

...
...

γ̂n1(k) · · · γ̂nm(k)


Note that in the absence of noise

Θ̂
′

bβ
(k) =


b̂0(k)

...

b̂n(k)

[β̂1(k) · · · β̂m(k)
]

so that Θ̂
′

bβ
(k) has rank equal to one. In the presence of noise, however, the estimated

parameters γ̂i j(k) need not form a rank-1 matrix Θ̂
′

bβ
(k). Consequently, Θ̂

′

bβ
(k) is approx-

imated by a rank-1 matrix, which gives the estimated linear parameters b̂i and estimated

nonlinear parameters β̂ j. The rank-1 approximation is achieved by computing the SVD

θ̂
′

bβ
(k) = USV T (4.18)

Then

θ̂b(k) = [b̂0(k) · · · b̂n(k)]T = U1S1/2
1 (4.19)

θ̂β (k) = [β̂1(k) · · · β̂m(k)]T = V1S1/2
1 (4.20)

where U1 and V1 are the first columns of U and V , respectively, and S1 is the first singular

value. Finally,

β̂0(k) =
δ̂ (k)

∑
n
i=0 b̂i(k)

(4.21)

and the estimated nonlinear and linear parameter vectors are

θ̂n(k) =

[
β̂0(k)
θ̂β (k)

]
and θ̂l(k) =

[
θ̂a(k)
θ̂b(k)

]

respectively.

4.2.2 Alternative Recursive Least Square Algorithm

The use of over-parameterization and subsequent rank-1 approximation often leads to a model

which poorly fits the original data (as illustrated in Section 4.3). A new recursive identification

method, named Alternative Recursive Least Square (ARLS) algorithm, is therefore developed

which avoids over-parameterization by instead splitting the model into nonlinear and linear com-

ponents, where each is identified independently using a parallel implementation. This method

builds on the schemes described in Chapter 3 in which two iterative algorithms were developed

for Hammerstein systems with differing noise models, and in each case nonlinear and linear
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parameters were alternately optimized by different projection algorithms. Whilst both involved

Least Squares (LS) optimization for offline identification, and therefore extend naturally to the

online case through application of RLS, the one with simpler implementation and faster compu-

tation time will be taken as a starting point. By invoking certain approximations, this algorithm

can be implemented recursively as follows:

• Recursive identification of linear parameters

As described in Chapter 3, the parameters of the ARX model can be separated into linear

and nonlinear parameter vectors

θn = [β0 · · · βm]T (4.22)

θl = [a1 · · · al b0 · · · bn]T (4.23)

Assuming that the nonlinear parameter vector θn is known at the kth time instant, y(k) can

be expressed as a function of linear parameters a1(k), . . . ,al(k),b0(k), . . . ,bn(k) only

y(k) =−a1(k)y(k−1)−·· ·−al(k)y(k− l)

+b0(k) f (u(k−d),θn)+ · · ·+bn(k) f (u(k−d−n),θn)+ v(k) (4.24)

or

y(k) = φ
T
l (k,θn)θl(k)+ v(k) (4.25)

where

φ
T
l (k,θn) = [−y(k−1) · · · − y(k− l) f (u(k−d),θn) · · · f (u(k−d−n),θn)] (4.26)

A forgetting factor λl is used in the recursive least squares algorithm to minimize the

criterion

Vl(θl,k) =
1
2

k

∑
i=1

λ
k−i
l

(
y(k)−φ

T
l (k, θ̂n(k−1))θl(k)

)2
(4.27)

where the nonlinear parameter vector is approximated by the estimated value at the previ-

ous time instant k−1.

The recursive algorithm for the linear parameter vector θl(k) is

Pl(k) =
1
λl

(
Pl(k−1)−

Pl(k−1)φl(k, θ̂n(k−1))φ T
l (k, θ̂n(k−1))Pl(k−1)

λlI +φ T
l (k, θ̂n(k−1))Pl(k−1)φl(k, θ̂n(k−1))

)
(4.28)

θ̂l(k) = θ̂l(k−1)+Pl(k)φ T
l (k, θ̂n(k−1))

(
y(k)−φ

T
l (k, θ̂n(k−1))θ̂l(k−1)

)
(4.29)

• Recursive identification for the nonlinear parameter vector

As in the linear case, it is first assumed that the linear parameter vector θl is known.
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Hence, at the kth time instant,

y(k)+a1y(k−1)+ · · ·+aly(k− l)︸ ︷︷ ︸
A(q,θl)y(k)

= β0(k)
n

∑
i=0

bi+

β1(k)
n

∑
i=0

bi f1(u(k−d− i))+ · · ·+βm(k)
n

∑
i=0

bi fm(u(k−d− i))+ v(k) (4.30)

or, in matrix form,

A(q,θl)y(k) = φ
T
n (k,θl)θn(k)+ v(k) (4.31)

where

φ
T
n (k,θl) = [

n

∑
i=0

bi

n

∑
i=0

bi f1(u(k−d− i)) · · ·
n

∑
i=0

bi fm(u(k−d− i))] (4.32)

In order to recursively update the nonlinear parameter vector, the linear parameter vector

is approximated by the estimated value from the previous time instant, resulting in the

recursive least squares criterion

Vn(θn,k) =
1
2

k

∑
i=1

λ
k−i
n
(
A(q, θ̂l(k−1))y(k)−φ

T
n (k, θ̂l(k−1))θn(k)

)2
(4.33)

The recursive algorithm for the nonlinear parameter vector is

Pn(k) =
1
λn

(
Pn(k−1)− Pn(k−1)φn(k, θ̂l(k−1))φ T

n (k, θ̂l(k−1))Pn(k−1)
λnI +φ T

n (k, θ̂l(k−1))Pn(k−1)φn(k, θ̂l(k−1))

)
(4.34)

θ̂n(k)= θ̂n(k−1)+Pn(k)φ T
n (k, θ̂l(k−1))

(
A(q, θ̂l(k−1))y(k)−φ

T
n (k, θ̂l(k−1))θ̂n(k−1)

)
(4.35)

4.2.3 Initial Values for Two Algorithms

• RLS

The initial values for the RLS are θ and P, which are calculated from several initial

samples by the batch least squares algorithm. The number of samples is decided by the

dimension of φ in order to obtain the unique solution.

θini = (ΦT
Φ)−1

Φ
TY (4.36)

Pini = (ΦT
Φ)−1 (4.37)

where

Y =


y(1)

...

y(Tini)

 and Φ =


φ T (1)

...

φ T (Nini)
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The matrix Φ may become singular or poorly conditioned and hence there exist problems

with computing its inverse. Consequently, a regularization is applied, in which case (4.36)

and (4.37) become

θini = (ΦT
Φ+δ I)−1

Φ
TY (4.38)

Pini = (ΦT
Φ+δ I)−1 (4.39)

The regularization parameter δ is chosen to be small, say δ = 10−2−10−4, compared to

the magnitude of the elements of Φ.

• ARLS

For ARLS, the initial values are θl , θn, Pl and Pn. The initial values for θl and θn are found

by applying rank-1 approximation, and then calculating Φl and Φn, where

Φl =


φ T

l (1,θn)
...

φ T
l (Tini,θn)

 and Φn =


φ T

n (1,θl)
...

φ T
n (Tini,θl)


The initial values for Pl and Pn are therefore

Pl = (ΦT
l Φl)−1 and Pn = (ΦT

n Φn)−1

and again regularization may be applied to avoid ill-conditioning.
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FIGURE 4.2: Flow Chart of both RLS and ARLS algorithms
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4.3 Simulation Study

The two techniques are now compared in simulation across a number of criteria. Comparison

is also made with their offline counterparts which, in both cases, involves exchanging the RLS

update procedure for offline LS optimisation using full test data.

4.3.1 Numerical Example

The numerical example in [Boutayeb et al., 1996] is used, as it is highly relevant to the work

reported in this paper

B(q) = q−1 +0.6q−2 (4.40)

A(q) = 1−q−1 +0.8q−2 (4.41)

f (u) = 2.8u−4.8u2 +5.7u3 (4.42)

The input signal used in [Boutayeb et al., 1996] is a zero mean white noise sequence, which

is widely employed in recursive identification to guarantee persistent excitation. However, as

previously noted, this is unsuitable for the present application, and will therefore be exchanged

for a half cosine wave signal which has similar characteristics to signals used in rehabilitation

(see [Hughes et al., 2009]). In order to make the half cosine wave signal persistently exciting,

the diminishing excitation technique [Chen and Guo, 1991] has been applied:

u(k) = ud(k)+
ε(k)
kτ/2 (4.43)

where ud(k) is the designed input and ε(k) is a bounded random sequence with τ > 0 sufficiently

small. The added measurement noise v(k) is zero mean white noise such that the Signal-to-Noise

Ratio

SNR =
(

var(ysig)
var(ynoi)

)1/2

(4.44)

is equal to 10, 5 or 2. Here ysig = B(q)
A(q)w(k) is the noise-free output signal, ynoi = 1

A(q)v(k) is the

correlated noise and var(·) the population variance of a finite-size sequence,

var(y) =
1

N−1

N

∑
t=1

(yt − ȳ)2 , where ȳ =
1
N

N

∑
t=1

yt (4.45)

The input signals and the corresponding output signals with SNR=5 are given in Fig. 4.3.

4.3.2 Results

The two recursive algorithms, RLS and ARLS, are compared in terms of the following three

aspects:
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FIGURE 4.3: An example of the half cosine wave input and the corresponding output for the
numerical example.

1. Error norm

The error norm is the normalized error between the true values and the estimated values

of the linear and nonlinear parameters, which is defined as:

Error Norm =

√(
‖θn−θ̂n‖2
‖θn‖2

)2
+
(
‖θl−θ̂l‖2
‖θl‖2

)2

The recursive algorithms, together with their associated offline batch implementations,

have been performed on 100 independent trials using different noise levels. The mean

error norms of the updated parameter values at each time instant from the two recursive

algorithms are traced in Fig. 4.4 and compared with the reference lines, that is, the mean

error norms after 2000 samples from the two batch algorithms, LS and the first iterative

algorithm (Iterative), developed in Chapter 3.

Also the mean and standard deviation of the error norms after 2000 samples for 100

independent trials using different noise levels are listed in Table. 4.1.

TABLE 4.1: Numerical example: the mean and standard deviation of the error norms after
2000 samples for 100 independent trials using different noise levels (SNR=10, 5 and 2) from
the two recursive algorithms (RLS and ARLS) and the two batch algorithms (LS and Iterative).

Recursive Batch
RLS ARLS LS Iterative

SNR=10 0.0146±0.0102 0.0017±0.0010 0.0146±0.0102 0.0014±0.0008
SNR=5 0.0650±0.0420 0.0074±0.0041 0.0650±0.0420 0.0065±0.0034
SNR=2 0.7586±2.2713 0.0404±0.0253 0.7586±2.2713 0.0338±0.0224

2. Best Fit Rates

In order to show how well the identified model can predict the output, Fig. 4.5 plots

the measured output and the mean predicted output for 100 independent trials from two

recursive algorithms after 2000 samples using different noise levels.
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FIGURE 4.4: Numerical example: the mean error norms of the updated parameter values at
each time instant for 100 independent trials using different noise levels (SNR=10, 5 and 2)
from the two recursive algorithms (red dashed line for RLS and blue dash-dot line for ARLS)
are compared with the mean error norms after 2000 samples from the two batch algorithms

(magenta dotted line for LS and green solid line for Iterative).

Moreover, the mean and standard deviation of Best Fit rates after 2000 samples for 100

independent trials using different noise levels are listed in Table. 4.2.

3. Convergence of parameter estimates
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FIGURE 4.5: Numerical example: the plots show the measured output and the mean predicted
output for 100 independent trials using different noise levels (SNR=10, 5 and 2) from the two
recursive algorithms (red dashed line for RLS and blue dash-dot line for ARLS) after 2000

samples. The x axis is the number of samples and the y axis is the output.

In order to show how fast the estimated values of the parameters converge to the true

values, Fig. 4.6 plots the mean values of the updated nonlinear parameters for 100 inde-

pendent trials using different noise levels.
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TABLE 4.2: Numerical example: the mean and standard deviation of Best Fit rates after 2000
samples for 100 independent trials using different noise levels (SNR=10, 5 and 2) from the two

recursive algorithms (RLS and ARLS) and the two batch algorithms (LS and Iterative).

Recursive Batch
RLS ARLS LS Iterative

SNR=10 99.3354±0.3956 99.8009±0.0061 99.3354±0.3956 99.8011±0.0061
SNR=5 97.6243±1.5314 99.1991±0.0258 97.6243±1.5314 99.1998±0.0257
SNR=2 68.0062±35.3085 95.0197±0.1820 8.0062±35.3085 95.0225±0.1819

4. Effect of an abrupt change of the true model

The results given above are from a time-invariant model and to determine how these two

recursive algorithms track the time-variant model, an abrupt change in the true model after

2000 samples is introduced, and the nonlinear function becomes

f (u) = 2.8u−5.1u2 +5.7u3 (4.46)

where the coefficient of the term of the second degree changes from -4.8 to -5.1, which is

such a slight change that it cannot be observed from the output plot, illustrated by Fig. 4.7.

The convergence plots for the nonlinear parameter estimates from the two recursive algo-

rithms are compared in Fig. 4.8(a) where λ = 0.9993 is chosen for RLS and λl = 1 and

λn = 0.9993 for ARLS, and also the plot from ARLS has been magnified to show more

clearly that the estimates converge to the true values after 5000 samples in Fig. 4.8(b).

4.3.3 Discussion

ARLS algorithm is superior to the RLS algorithm in all the simulation results, especially in the

noisy environment.

For ARLS, the error norms more quickly converge to lower values in all noise cases than RLS

and even close to the batch algorithm which takes several iterations to optimize the parameters.

This also can be illustrated by the convergence plot for the nonlinear parameter estimates, where

the estimated values converge to the true value quickly even in noisy cases. When suffering from

an abrupt change of the true model, ARLS still can quickly track the changed model.

RLS performs comparable well with ARLS at low noise levels. However, RLS takes quite a long

time or even fails to converge to the true value for the noisy measurements. Furthermore, RLS

is not good at tracking the time-varying systems based on the above simulation results, where

the parameters estimates are subject to a greater oscillation and converge to the true values in a

longer period of time after a slight change in the simulated model.

It is noted that the electrically stimulated muscle system is time-varying and the experimental

results from such a system are very noisy. Thus, it is expected that ARLS will provide better
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FIGURE 4.6: Numerical example: the mean of the updated values for 100 independent trials
using different noise levels (SNR=10, 5 and 2) from the two recursive algorithms (red dashed
line for RLS and blue dash-dot line for ARLS) are compared with the true values (black solid
line) of the nonlinear parameters. The x axis is the number of samples and the y axis is the

value of the parameter.

performance than RLS. It also should be noted that the simulation with added white noise does

not reflect the type of noise that might be expected during the FES application.
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FIGURE 4.7: The half cosine wave input and the corresponding output when the model is
changed after 2000 samples. The x axis is the number of samples and the y axis is the input

(upper plot) or the output (lower plot).

4.4 Application to Electrically Stimulated Muscle

In this section, the recursive algorithms developed above are applied to online identification of

the response of electrically stimulated muscle.

4.4.1 Experiment Set-up

Recursive identification tests were performed on a single unimpaired subject, and took place on

several independent days. The position of the robotic arm was then fixed at an elbow extension

angle of approximately π/2 rads using a locking pin. This removes the non-isometric compo-

nents of the biomechanical model, so that the resulting system corresponds to a Hammerstein

structure (comprising the muscle model with the addition of passive elastic torque from the re-

maining arm which may also vary in time). The model’s input is the stimulation pulsewidth,

and its output is the torque about the elbow. The recursive identification tests last for 10 min,

comprising 10 repeated waves of either a half-cosine function, or a staircase signal, added to

which the diminishing excitation technique has been used to make the input signals persistently

exciting. The two kinds of input signal have similar characteristics to those used in rehabilitation

(see [Hughes et al., 2009]) and the corresponding output signals are plotted in Fig. 4.9.

4.4.2 Results

Here, the two recursive algorithms, RLS and ARLS, are compared in the following aspects:

1. One-step ahead prediction

In order to evaluate the accuracy of the recursive algorithms, the measured torque outputs

y are compared with the one-step ahead predicted outputs ŷ in term of the Best Fit rate,
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FIGURE 4.8: Numerical example with an abrupt change after 2000 samples: the time trajectory
of the estimated nonlinear parameter values from the two recursive algorithms (red dashed line
for RLS and blue dash-dot line for ARLS) at SNR=10. The x axis is the number of samples

and the y axis is the value of the parameter.

defined in (3.35) and ŷ is defined as

ŷ(k +1) = G(q, θ̂l(k)) f (u, θ̂n(k))

which is a one-step ahead prediction, using the updated model at the time instant k to

predict the output at the next time instant k+1.

Table 4.3 lists the Best Fit rates for half cosine and staircase wave inputs respectively, and

considers both the whole 10-minute dataset and the first 1-minute dataset, the latter of

which contains less time-varying information. The corresponding plots are shown in Fig.
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FIGURE 4.9: The input and output signals for recursive identification tests

4.10.

TABLE 4.3: Muscle tests: Best Fit rates between the measured outputs and the one-step ahead
predicted outputs from the two recursive algorithms, RLS and ARLS

half cosine wave input staircase wave input
RLS ARLS RLS ARLS

1 min -10.0244 87.9188 -130.4187 80.3162
10 min -52.3874 61.3267 -408.2148 57.4049

2. Long-period prediction

In order to demonstrate the predictive ability for the longer period, the two recursive algo-

rithms together and their corresponding offline batch implementations have been applied

to the first 3, 4, 5, 6 and 7 minutes of the data respectively, and the resulting models then

used to predict the corresponding outputs for the remaining time period. The Best Fit rates

for identification and prediction are listed in Table 4.4. Fig. 4.11 shows the measured out-

puts and the modelled outputs in the case of the first 5 minutes for the identification phase
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(c) staircase wave input: 1 min
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FIGURE 4.10: Muscle Tests: the plots show the measured outputs and the one-step ahead
predicted outputs from the two recursive algorithms, RLS and ARLS.

as it is representative of all the results obtained.

3. Computational time

Since the algorithms are intended for online implementation in real-time, their computa-

tion time is an important factor. The time taken to perform a single updating step for both

recursive algorithms is listed in Table. 4.5.

4.4.3 Discussion

• Batch algorithms vs recursive algorithms

Batch algorithms are offline and use all the data at hand to perform the identification pro-

cess in order to find the best model according to the minimization criterion. Table 4.6

shows the identification results for the two batch algorithms: LS and iterative respec-

tively. It is clear that LS cannot deal with the noisy and time-varying experimental data

and the iterative algorithm greatly improves the Best Fit rates. For 1 minute data, itera-

tive algorithm achieves around 85% fitting rates, which is in agreement with the results
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FIGURE 4.11: Muscle Tests: the plots show the measured outputs and the modelled outputs
for identification validation data, respectively, in the case of both halves of the data for identi-

fication and prediction.

reported in Chapter 3, where a 20 second test was used. However, for the 10 minute data,

which contains more time-varying information, even the iterative algorithm cannot find a

time-invariant model to fit all the data and it only yields 12% fitting rate for the staircase

input.

It follows from Table 4.4 that the iterative algorithm provides the best identification fitting

rates in all cases but performs very poorly for prediction. However, ARLS is very good

at prediction and gives even higher fitting rates for prediction compared to identifica-

tion. The results of Fig. 4.11 reflect that the iterative algorithm uses all the identification
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TABLE 4.4: Muscle tests: Identification and validation Best Fit rate (%).
Recursive Batch

RLS ARLS LS Iterative
first 3 min Identification -115.2605 40.0999 -115.2605 46.4750
next 7 min Prediction -119.4234 30.4174 -119.4234 -0.1979
first 4 min Identification -90.0323 38.0301 -90.0323 40.5572
next 6 min Prediction -100.0545 60.3873 -100.0545 19.5024
first 5 min Identification -60.7013 40.6237 -60.7013 42.2075
next 5 min Prediction -70.6340 66.5179 -70.6340 29.9268
first 6 min Identification -10.9030 40.7501 -10.9030 41.7214
next 4 min Prediction -7.5807 69.0567 -7.5807 37.4819
first 7 min Identification 23.4563 44.5587 23.4563 45.0254
next 3 min Prediction 17.2580 63.8627 17.2580 40.9369

TABLE 4.5: Muscle tests: computational time in seconds for a single updating step for the two
recursive algorithms: RLS and ARLS

RLS ARLS
computational time 0.0019 1.0989×10−4

data to calculate the best model, which, due to the time-varying properties of the sys-

tem, produces an identified model which may be interpreted as an ‘average’ response, see

Fig. 4.11(a). However, since ARLS updates the estimated model so that it is responsive

to changes in underlying dynamics, the model produced after 5 min, even when it has

not corresponded with particularly high fitting rates for the past data, is the best model to

predict the future output, as illustrated by Fig. 4.11(b). Finally, the batch algorithm is not

good at identification of long-period data from a time-varying system.

TABLE 4.6: Muscle tests: Best Fit rates between the measured outputs and modeled outputs
from two batch algorithms: LS and Iterative

half cosine wave input staircase wave input
LS Iterative LS Iterative

1 min -49.5367 86.9901 -133.4340 85.2571
10 min 23.8095 44.6698 -46.7207 12.2363

On the other hand, batch algorithms are computationally heavy and not suitable for real-

time implementation, as illustrated by Table. 4.7, where the computational times for 1

min and 10 min data from the two batch algorithms, LS and Iterative, are listed. The

computational time grows considerably with the increase in samples, so that there comes

a point when calculations cannot be completed before the arrival of new data.

• RLS vs ARLS

From above analysis, it is necessary to perform recursive rather than batch identification
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TABLE 4.7: Muscle tests: computational time for 1 min and 10 min data from the two batch
algorithms, LS and Iterative, in seconds

LS Iterative
1-min 0.1155 1.9881
10-min 28 70

for the experimental data. Here the two recursive identification algorithms are applied,

RLS and ARLS. For both cases, they first use several samples to generate an initial esti-

mate, less than 0.1 minutes of data, and then update the linear and nonlinear parameters

at each time instant.

It is clear that ARLS is far superior in this respect to RLS, which is in accord with the

expected outcome after the simulation study. In a lot of cases, RLS will generate nega-

tive Best fit rates, which means the predicted values are even worse than a straight line,

standing for the average value of the output. For the noisy experimental data and slowly

time-varying muscle system, ARLS is the best choice. For 1 minute data, one-step ahead

prediction can track the output well, shown in Fig. 4.10(a) and 4.10(c) and for 10 minute

data, it also can capture long term variation in the muscle properties, as illustrated by

Fig. 4.10(b) and 4.10(d).

Moreover, ARLS is even faster than RLS, because ARLS splits the algorithm into two

parallel ones, each of which entails low-dimensional matrix multiplication.

Another advantage of ARLS over RLS is that ARLS has two separate weighting param-

eters for linear and nonlinear parameters, λl and λn. In the real muscle system, the linear

and nonlinear parameters represent two different mechanisms (muscle activation and re-

cruitment respectively) which change over time at different rates. The ability to choose

individual weighting parameters for each mechanisms provides clear selection and per-

formance advantages over a single λ parameter.

In the previous recursive process, the weighting parameters λ , λl and λn are fixed at 1,

and the implications of this choice are now considered using Tables 4.8 and 4.9. For RLS,

there is no improvement when tuning the λ parameter, while for ARLS, the fitting rate

reaches 70% for λl = 0.9995 and λn = 0.9997.

TABLE 4.8: 10 min data of half cosine wave input: the Best Fit rates between the measured
outputs and the one-step ahead predicted outputs from RLS with difference choices of λ

λ Best Fit Rate (%)
1 -52.3874

0.9999 -109.1885
0.9998 -141.6934
0.9997 -103.2831
0.9990 -64.0752



Chapter 4 Recursive Identification 89

TABLE 4.9: 10 min data of half of cosine wave input: the Best Fit rates between the measured
outputs and the one-step ahead predicted outputs from ARLS with difference choices of λl and

λn

λl λn Best Fit Rate (%)
1 1 61.3267

0.9999 0.9999 63.6053
0.9998 0.9999 65.8187
0.9997 0.9999 67.6394
0.9996 0.9998 68.7207
0.9995 0.9997 70.8437
0.9994 0.9996 43.0805

• Time-variance of the muscle model

Fig. 4.12 shows the time trajectory of the estimated values for the linear and nonlinear pa-

rameters from ARLS and the time variation of the estimated values of all the parameters,

except the third linear parameter, which was normalized as 1 during the identification.

In Fig. 4.12, it is a little difficult to observe with the naked-eye the variance of the esti-

mated nonlinear parameters and the variance of the absolute values of the estimated linear

parameters is greater. In order to provide visual aid, the step response for the identified

linear block and IRC for the identified nonlinearity are plotted for four time instants at

equal intervals, 1, 2, 3 and 4 mins, in Fig. 4.13, where the slower step response and lower

muscle gain are observed, due to fatigue. This illustrates the variance of the underlying

physiological mechanisms of the muscles.
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FIGURE 4.12: Muscle tests: the time trajectory of the estimated values of the linear and non-
linear parameters from ARLS.
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Chapter 5

Functional Electrical Stimulation
Control

In this chapter the identified muscle models that have been developed will be directly used in

FES control schemes for electrically stimulated muscle under isometric conditions. The exper-

imental tests will be undertaken using the same equipment employed in the program of stroke

rehabilitation, in order to confirm performance under conditions as similar as possible to those

used clinically. In particular, FES is applied to the subject’s triceps muscle when the arm is

strapped to the robotic arm, and the task is to repeatedly track a reference trajectory of torque

about the elbow. As explained, iterative learning controllers will be used since the repeated na-

ture of the task, together with resetting between trials, exactly corresponds to the ILC methodol-

ogy. Since its formal conception [Arimoto et al., 1984] more than two decades ago, ILC theory

has been developed and applied to a huge range of systems and applications. The basic concept

of ILC is based on the notion that the performance of a system conducting the same task many

times can be improved by using information gathered from previous executions. In this Chapter,

the plant model will be firstly described and then two nonlinear ILC approaches will be theoret-

ically explained and implemented. Later on, their trial-dependent counterparts are investigated

and compared in terms of their performance in simulation and experimental tests. Finally, on-

line identification algorithms developed in the last Chapter will be used to produce adaptive ILC

methods, which will also be implemented on the simulated muscle system.

5.1 Hammerstein Plant Description

As in the previous tests, the plant is the isometric muscle system which means that the muscle

will held at a fixed length during all experiments. The input of the plant is the stimulation pulse-

width, u, in µs and the output is the torque generated at the elbow joint, y. The Hammerstein

structure is used as a model for the plant, which consists of a static nonlinear block followed by

91



92 Chapter 5 Functional Electrical Stimulation Control

a linear dynamics, see Fig. 3.1. In detail, the static nonlinearity is represented by a cubic spline

f (u) =
m−2

∑
i=1

βi|u−ui+1|3 +βm−1 +βmu+βm+1u2 +βm+2u3, (5.1)

umin = u1 < u2 < u3 < · · ·< um = umax are the spline knots and the linear block is a discrete-time

transfer function

G(q) =
b0q−d +b1q−(d+1) + · · ·+bnq−(n+d)

1+a1q−1 + · · ·+alq−l (5.2)

For implementation in the ILC framework which follows, it is transformed to a state-space

model:
x(k +1) = Ax(k)+B f (u(k))

y(k) = Cx(k) x(0) = x0
(5.3)

where

A =



−a1 −a2 · · · −al−1 −al

1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
...

...

0 0 1 0


(5.4)

B(k) =



1

0

0
...

0


(5.5)

C(k) =
[

0 · · · 0 b0 · · · bn

]
(5.6)

and

f (u(k)) =
m−2

∑
i=1

βi|u(k)−ui+1|3 +βm−1 +βmu(k)+βm+1u2(k)+βm+2u3(k) (5.7)

Moreover, the model is not limited to the time-invariant case. In Chapter 4, a slowly time-

varying Hammerstein model is assumed, which is the optimal solution after reviewing the de-

fects of the Hammerstein structure as the most popular candidate for modelling the isometric

muscle dynamics in Section 2.1.5. Thus, a slowly time-varying state-space model is considered

in later sections and a subscript or an index is used to indicate the time-varying parameters.

The system is defined over the finite time interval k ∈ [0,1,2, . . . ,N− 1]. The single input and

single output sequences are given by the vectors

u = [u(0),u(1), . . . ,u(N−1)]T (5.8)

y = [y(0),y(1), . . . ,y(N−1)]T (5.9)

The goal of the standard ILC framework is to construct a series of input sequences which drive
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the system to track a reference sequence

yd = [yd(0),yd(1), . . . ,yd(N−1)]T (5.10)

Let u j and y j be the input and output vectors respectively on the jth trial, and the tracking error

be defined as e j = yd − y j. Then the ILC problem is to find a sequence of control inputs that

satisfies

lim
j→∞
‖e j‖= 0, lim

j→∞
‖u j−ud‖= 0 (5.11)

where ud is the ideal control input.

Over each trial the relationship between the input and output time-series can be expressed by

the following algebraic functions

y(0) = Cx(0) = g0(x(0))

y(1) = Cx(1) = C(Ax(0)+B f (u(0)))
= g1(x(0),u(0))

y(2) = Cx(2) = C(Ax(1)+B f (u(1)))
= CA(Ax(0)+B f (u(0)))+CB f (u(1))
= g2(x(0),u(0),u(1))

...

y(N−1) = Cx(N−1) = C(Ax(N−2)+B f (u(N−2)))
= gN−1(x(0),u(0),u(1), . . . ,u(N−2))

(5.12)

This allows a rigid connection to be made between ILC and the techniques from nonlinear

optimization which are employed in the next sections, and provides an analytic basis for their

extension to ILC. Using the relations (5.12), the system (5.3) can be represented by the algebraic

function g(·)
y = g(u), g(·) = [g0(·),g1(·),g2(·), . . . ,gN−1(·)]T (5.13)

This plant description is now used to demonstrate the implementation of two existing ILC ap-

proaches: Gradient descent ILC and Newton method based ILC.

5.2 Control Schemes

The standard ILC set-up is shown in Fig. 5.1, which comprises the update equations:

u j+1 = u j +Le j (5.14)

e j = yd− y j (5.15)
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where yd is the reference trajectory, u j, y j and e j are the input applied on the jth trial, the cor-

responding plant output and the error, respectively and L is the learning operator. In terms of

designing the learning operator, ILC algorithms can be roughly divided into two categories. The

first category does not assume any prior knowledge of the plant model and the corresponding

controllers generally comprise a simple mathematical operation, such as a derivative or time-

shift. The second uses knowledge of the plant to seek to guarantee favourable convergence or

robustness properties. The model-based schemes that will be considered have both been used in

the stroke rehabilitation project, and so are known to be suitable for use in the intended applica-

tion area. These are Gradient descent ILC and Newton method based ILC. In the following two

sections, the detailed theory about these two algorithms will be given.

Isometric 
Muscle 
system

−ju

 ILC 
controller

jy

1+ju

dy
_

je

+−

−++

FIGURE 5.1: Block diagram of control scheme

5.2.1 Gradient Descent ILC

ILC can be considered as an iterative numerical solution to the problem

min
u
‖e‖2

2 = ‖yd−g(u)‖2
2 = p(u) (5.16)

The gradient descent method is a nonlinear minimization technique which solves this iteratively

with the update

u j+1 = u j−
ε

2
∇p(u j)

= u j + ε∇g(u j)(yd−g(u j))

= u j + εg′(u j)T (yd−g(u j)) (5.17)

where ε is a positive scalar gain. In the ILC framework the term yd − g(u j) is replaced by the

experimentally obtained error signal, e j, to produce

u j+1 = u j + εg′(u j)T e j (5.18)
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The derivative g′(u j) is equivalent to the system linearization around u j and is represented by

the N×N matrix

g′(u j) =



∂g0

∂u j(0)
∂g0

∂u j(1)
. . .

∂g0

∂u j(N−1)
∂g1

∂u j(0)
∂g1

∂u j(1)
. . .

∂g1

∂u j(N−1)
...

...
. . .

...
∂gN−1

∂u j(0)
∂gN

∂u j(1)
. . .

∂gN−1

∂u j(N−1)


(5.19)

since, from (5.12), gs(·) is not a function of u j(t), t > s, this can be simplified to

g′(u j) =



∂g0

∂u j(0)
0 0 0 0

∂g1

∂u j(0)
∂g1

∂u j(1)
0 0 0

∂g2

∂u j(0)
∂g2

∂u j(1)
∂g2

∂u j(2)
0 0

...
...

...
. . .

...
∂gN−1

∂u j(0)
∂gN−1

∂u j(1)
∂gN−1

∂u j(2)
. . .

∂gN−1

∂u j(N−1)


(5.20)

Here, firstly, a time-invariant Hammerstein plant is considered and g′(u j) =



0 0 0 · · · 0

CB ∂ f
∂u j(0) 0 0 · · · 0

CAB ∂ f
∂u j(0) CB ∂ f

∂u j(1) 0 · · · 0
...

...
...

. . .
...

CAN−2B ∂ f
∂u j(0) CAN−3B ∂ f

∂u j(1) CAN−4B ∂ f
∂u j(2) · · · 0


(5.21)

where A, B and C are the state, input and output matrices of the nominal model defined in

(5.4,5.5,5.6) and ∂ f
∂u j(k)

is the derivative of f (·), defined in (5.7), with respect to u at the point

u = u j(k).

For an iteration-invariant plant it can be shown that there exists a scalar parameter ε > 0 in

(5.18) which guarantees convergence to a local minimum error norm (global for the LTI case).

Moreover, for the LTI case it is shown in [Owens et al., 2009], that ε can be chosen before each

trial to minimise the subsequent error norm, using the iteration-varying value

ε j+1 =
‖gT

e e j‖2

‖gegT
e e j‖2 (5.22)
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where ge = 

D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAN−2B CAN−3B CAN−4B · · · D


(5.23)

which contains the Markov parameters of the nominal model, which correspond to components

of the discrete FIR of the plant. This algorithm has been found to possess extremely desirable

robust convergence properties and has been tested using a gantry robot facility [Ratcliffe et al.,

2008], a non-minimum phase testbed [Freeman et al., 2007b], and in our project [Freeman

et al., 2009a]. When testing on a single unimpaired human subject for a slow and fast trajecto-

ries, the phase-lead algorithm and adjoint algorithm (called Gradient Decent ILC in our thesis)

show comparable good performances with the far more complex norm-optimal ILC (NOILC)

algorithm, see Fig. 5.2.
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FIGURE 5.2: Single subject comparison of phase-lead and adjoint (Gradient Decent in our
thesis) algorithms with NOILC for a) the slow trajectory, and b) the fast trajectory. [Freeman

et al., 2009a]
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5.2.2 Newton Method Based ILC

This approach is based on the Newton method, which is perhaps the best known method for find-

ing successively better approximations to the roots of a real-valued function. Given a function

f (x) and its derivative f ′(x), an estimation of the roots can be obtained iteratively by

xn+1 = xn−
f (xn)
f ′(xn)

(5.24)

where n is the iteration number. This method converges very fast since its rate is quadratic rather

than linear but it is only feasible when the inverse of f ′(xn) exists and also it requires efficient

computational implementation of inversion.

When this advanced iterative optimization technique is applied to (5.14,5.15), the corresponding

learning gain L is given by

L =
(

∂ (yd−g(u j))
∂u j

)−1

= g′(u j)−1 (5.25)

which results in

u j+1 = u j +g′(u j)−1e j (5.26)

The next step is the calculation of the derivative g′(·) and then the inverse g′(·)−1 if they exist.

In order to avoid the problem of infeasibility, ill-conditioning, or the presence of high ampli-

tudes/frequencies in the update, another ILC scheme is used to find the solution. This is given

as follows: firstly, use z j+1 to substitute g′(u j)−1e j in (5.26)

u j+1 = u j + z j+1 (5.27)

then z j+1 can be computed by solving the equation

g′(u j)z j+1 = e j (5.28)

Because g(·) represents the nonlinear dynamic system, the derivative g′(u j) is equivalent to the

linearization of the system about u j. Then solving (5.28) becomes finding the zk+1 that drives

the linearized system g′(u j) to track the desired output e j, which can be achieved by any globally

convergent ILC algorithm for LTV systems.

Specifically, consider the Hammerstein state-space plant in (5.3), and assume the parameters are

time-invariant. In this case the Newton method based ILC can be summarized as:

On the jth trial, run the system on the current trial input u j and record the output y j and the

tracking error e j = yd− y j.

1. System linearization
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The linearization of the system is

x̃(k +1) = Ã(k)x̃(k)+ B̃(k)ũ(k)
ỹ(k) = C̃(k)x̃(k)

(5.29)

where

Ã(k) = A =



−a1 −a2 · · · −al−1 −al

1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
...

...

0 0 1 0



B̃(k) = B× ∂ f
∂u j(k)

=



∂ f
∂u j(k)

0

0
...

0


C̃(k) = C =

[
0 · · · 0 b0 · · · bn

]
2. ILC to find z j+1

For the linear time-varying system (5.29), a linear time-varying ILC algorithm, such as

NOILC, is adopted to find the control input z j+1 in order to track the reference signal e j.

3. Get the control input u j+1

After calculating z j+1, the control input for the next trial is updated by (5.27).

This algorithm has been implemented in our application in [Davies et al., 2008], where through

simulation studies and experimental evaluation, it was ascertained that Newton Method Based

ILC algorithm provided a good improvement from Gradient Descent ILC in terms of reduction

of the tracking error norm as the number of trials increased, see Fig. 5.3.

5.3 Adaptive Control Scheme

From inspection of the general class of ILC algorithm considered, the performance of the con-

troller clearly depends on three factors, the physical plant (as opposed to the plant model), the

desired output, and the learning gain. The latter operator is applied to the previous trial error to

produce the updating step (see (5.14)). Usually, a rule is defined to describe how the learning

gain depends on the data, e.g., εg′(u j)T in (5.18) for Gradient descent ILC and g′(u j)−1 in (5.25)

for Newton method based ILC. However, the two algorithms in the last section are confined to

so-called non-adaptive update laws, which means the rule defined for calculating the learning
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(a) Medium trajectory

(b) Fast trajectory

FIGURE 5.3: Medium and fast trajectory error results using various α . [Davies et al., 2008]

gain is fixed, typically determined by the prior knowledge of the plant model. Due to the plant

being potentially highly time-varying and the fact that the more precise the plant model is, the

better performance the controller may be expected to obtain, adaptive ILC algorithms will be

investigated here. These update the plant model, and, in so doing, also update the ILC algorithm.

Firstly, the trial-dependent adaptive ILC is considered, where the update rule is trial dependent

and hence not updated during the trial. Thus, online identification is not required and there is

plenty of time between trials to re-identify the plant model. Moreover, it is observed from Fig.

4.13 that linear parameters are more time-varying than the nonlinear ones. Thus, for simplicity,

not the whole Hammerstein plant model, but only the linear part, is updated and then fed into the

ILC controller to revise the update rule used for the learning gain. The detailed implementation

is as follows.

5.3.1 Linear Adaptor plus Trial-dependent ILC

The whole control scheme, plotted in Fig. 5.4, consists of a linear adaptor and a trial-dependent

ILC, two types of which are considered: Gradient descent ILC and Newton method based ILC.

• Linear adaptor
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FIGURE 5.4: Block diagram of Linear Adaptor plus Trial-dependent ILC Controller

As its name implies, the linear adaptor only updates the linear block in the Hammerstein

model and the nonlinearity identified beforehand is fixed in the plant model throughout

the control test. The batch of data at the current trial and the memory of only the last

trial’s linear parameters are used in the updating algorithm, which is defined as

θ̂
j

l = argmin
θl
‖Yj−Φ jθ

j
l ‖2 +Λ‖θ j

l −θ
j−1

l ‖2 (5.30)

where Λ is a diagonal matrix with each diagonal element representing the variability of

the corresponding linear parameter.

Λ =


λ1 0 · · · 0

0 λ2 · · · 0

0 0
. . . 0

0 · · · 0 λl+n+1


where Yj is the vector of the measured output at the jth trial

Yj =


y j(l)

y j(l +1)
...

y j(N)


and Φ j is the same as (4.26), while u j, y j is used instead

Φ j =


−y j(l) · · · −y j(1) f (u j(l +1−d), θ̂n) · · · f (u j(l +1−d−n), θ̂n)
−y j(l +1) · · · −y j(2) f (u j(l +2−d), θ̂n) · · · f (u j(l +2−d−n), θ̂n)

...
...

...
...

−y j(N−1) · · · −y j(N− l) f (u j(N−d), θ̂n) · · · f (u j(N−d−n), θ̂n)
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and

θ
j

l =



a j
1
...

a j
l

b j
0
...

b j
n


The first part of the right hand side in (5.30) is to minimize the cost function and the

second part is to minimize the updating step with a factor matrix Λ. The solution is

θ̂
j

l = (ΦT
j Φ j +Λ)−1(ΦT

j Yj +Λθ
j−1

l ) (5.31)

• Trial-dependent ILC

For the class of model-based ILC algorithms, performance can be improved by revising

the update rule to account for new plant data. By responding to change in the assumed

plant model, this clearly provides a more precise updating step for the input in order to

track the desired reference. In the sections which follow, the exact design of the update

rule is considered for both Gradient descent ILC and Newton method based ILC will be

explained.

– Gradient descent ILC

For the Gradient descent ILC algorithm, the trial-dependent update law becomes

u j+1 = u j + ε jg′j(u j)T e j (5.32)

where

g′j(u j) =



0 0 0 · · · 0

C jB j
∂ f

∂u j(0) 0 0 · · · 0

C jA jB j
∂ f

∂u j(0) C jB j
∂ f

∂u j(1) 0 · · · 0
...

...
...

. . .
...

C jAN−2
j B j

∂ f
∂u j(0) C jAN−3

j B j
∂ f

∂u j(1) C jAN−4
j B j

∂ f
∂u j(2) · · · 0


(5.33)

The subscript j in A, B and C denotes the linear plant model for the jth trial, which

can be recalculated by (5.4,5.5,5.6) according to the updated linear parameters θ j

from the Linear Adaptor.

Moreover, ε j is also adaptive and the optimal solution is

ε j =
‖g′j(u j)T e j‖2

w+‖g′j(u j)g′j(u j)T e j‖2 (5.34)
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and

w = w0 +w1‖e j‖2 (5.35)

where w0 and w1 are the tuning factors necessary to keep the magnitude of ε j small

in order to enhance the resulting robustness properties.

– Newton method based ILC

Similarly, the trial-dependent update law for Newton method based ILC necessitates

adding a subscript j to the adaptive term:

u j+1 = u j +g′j(u j)−1e j (5.36)

where g′j(u j)−1e j = z j+1, which is the norm optimal ILC solution that drives the

linearized system g′j(u j) to track the desired output e j. The only difference is that

the linearized system is also trial-dependent. The Ã, B̃ and C̃ matrices in (5.29) are

recalculated at each trial based on the updated linear parameters θ j from the Linear

Adaptor.

5.3.2 Online Identification plus Adaptive ILC

By extension of the methodology of the previous section, if online identification has been im-

plemented, the plant model could be updated at each sampling time instant. In this case the

update rule used for the learning gain is updated more often, not simply trial-dependent but tak-

ing each sampling time instant as an updating unit. The control scheme is shown schematically

in Fig. 5.5, and consists of an online identification block and an adaptive ILC.

Isometric 
Muscle 
system

)(ku j

Adaptive ILC 
controller

)(ky j

)(klθ

Online 
Identification

)(knθ

Memory

)1( +ku j

1−je

1−ju

FIGURE 5.5: Block diagram of Online Identification plus Adaptive ILC

• Online identification

This online Identification block operates in real time to update the linear and nonlinear

parameter vectors for the Hammerstein plant model at each sampling time instant. The
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ARLS algorithm is employed, which is fast enough for real-time implementation, see

Table 4.7 and has satisfactory performance for the noise experimental data and slowly

time-varying muscle system, illustrated by Table 4.6. For the ARLS algorithm, the linear

and nonlinear parts are separated and updated individually. Firstly, the information state

for the linear and nonlinear part Pl(k) and Pn(k) is updated by (4.28) and (4.34) and then

the linear and nonlinear parameter vectors θ̂l(k) and θ̂n(k) are updated as well according

to (4.29) and (4.35), respectively. For added clarity, these updates are restated below:

Pl(k) =
1
λl

(
Pl(k−1)−

Pl(k−1)φl(k, θ̂n(k−1))φ T
l (k, θ̂n(k−1))Pl(k−1)

λlI +φ T
l (k, θ̂n(k−1))Pl(k−1)φl(k, θ̂n(k−1))

)

Pn(k) =
1
λn

(
Pn(k−1)− Pn(k−1)φn(k, θ̂l(k−1))φ T

n (k, θ̂l(k−1))Pn(k−1)
λnI +φ T

n (k, θ̂l(k−1))Pn(k−1)φn(k, θ̂l(k−1))

)
θ̂l(k) = θ̂l(k−1)+Pl(k)φ T

l (k, θ̂n(k−1))
(
y(k)−φ

T
l (k, θ̂n(k−1))θ̂l(k−1)

)
θ̂n(k) = θ̂n(k−1)+Pn(k)φ T

n (k, θ̂l(k−1))
(
A(q, θ̂l(k−1))y(k)−φ

T
n (k, θ̂l(k−1))θ̂n(k−1)

)

• Adaptive gradient ILC

Only the Gradient descent ILC algorithm has been implemented adaptively since every

update of Newton method based ILC requires an operation consisting of several-trials of

norm optimal ILC, which is time-consuming and difficult to accomplish before the next

sampling time arrives. However, a method to speed up the Newton adaptive implemen-

tation is presented, which may facilitate future implementation. The adaptive Gradient

descent ILC is intended to respond to the newly updated plant model and to generate the

input signal for the next sampling time instant according to the updated update law, which

is derived as follows:

First, the non-adaptive update law is rewritten as

u j = u j−1 + εg′(u j−1)T e j−1 (5.37)

and for the Hammerstein plant model, when substituting (5.21) in (5.37), the k+1th entry

becomes

u j(k +1) = u j−1(k +1)+ ε

N−k−1

∑
i=1

CAi−1B
∂ f

∂u j−1(k +1)
e j−1(k + i+1) (5.38)

Similarly, for the online version, the plant model is updated at each sampling time instant,

and the matrix g′(·) is updated using the most recent plant model. From (5.18) we can

write

u j(k +1) = u j−1(k +1)+ ε

[
g′(u j−1)

∣∣T
k+1 e j−1

]
(k +1) (5.39)

where g′(u j−1)
∣∣
k+1 is the linearised system matrix on sample k+1 which uses the current
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plant information as the best estimate for future samples. It is defined by

g′(u j)
∣∣
k =


0 0 · · · 0

C(1k)B(1k)
∂ f (1k )
∂u j (0) 0 · · · 0

C(2k)A(2k)B(2k)
∂ f (2k )
∂u j (0) C(2k)B(2k)

∂ f (2k )
∂u j (1) · · · 0

.

.

.
.
.
.

. . .
.
.
.

C((N−1)k)A((N−1)k)N−2B((N−1)k)
∂ f ((N−1)k )

∂u j (0) C((N−1)k)A((N−1)k)N−3B((N−1)k)
∂ f ((N−1)k )

∂u j (1) · · · 0

 (5.40)

where xk = min{x,k}. In particular, the kth column of (5.40) is0, . . . , 0,︸ ︷︷ ︸
k

C(kk)B(kk)
∂ f (kk)
∂u j(k)

, . . . , C((N−1)k)A((N−1)k)N−k−1B((N−1)k)
∂ f ((N−1)k)

∂u j(k)

T

(5.41)

=

0, . . . , 0,︸ ︷︷ ︸
k

C(k)B(k)
∂ f (k)
∂u j(k)

, C(k)A(k)B(k)
∂ f (k)
∂u j(k)

, . . . , C(k)A(k)N−k−1B(k)
∂ f (k)
∂u j(k)

T

(5.42)

Application in the gradient algorithm (5.18) gives

u j(k +1) = u j−1(k +1)

+ε

0, . . . , 0,︸ ︷︷ ︸
k+1

C(k +1)B(k +1)
∂ f (k +1)
∂u j(k +1)

, . . . , C(k +1)A(k +1)N−kB(k +1)
∂ f (k +1)
∂u j(k +1)

T

e j−1

This leads to the adaptive update law:

u j(k +1) = u j−1(k +1)

+ε(k +1)
N−k−1

∑
i=1

C(k +1)A(k +1)i−1B(k +1)
∂ f (k +1)

∂u j−1(k +1)
e j−1(k +1+ i)(5.43)

• Adaptive Newton method based ILC

Consider the Newton update (5.28) which must be resolved on each update using the

most recent plant model. We therefore desire a recursive relationship in order to reduce

computation. For the kth sample (5.28) is given by

g′(u j)
∣∣
k z j+1,k = e j (5.44)

where g′(u j)
∣∣
k is given by (5.40). For the k +1th sample we can write

g′(u j)
∣∣
k+1 z j+1,k+1 = g′(u j)

∣∣
k

(
z j+1,k +∆z j+1,k

)
= e j (5.45)

where ∆z j+1,k is the increment to z j+1,k due to the new model information. Now from
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(5.28)

g′(u j)
∣∣
k+1 = g′(u j)

∣∣
k +


0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

0 . . . 0 g′(u j)
∣∣k
k+1
− g′(u j)

∣∣k
k

 (5.46)

where g′(u j)
∣∣m
k

is the bottom left m×m subarray of the lower-triangular matrix g′(u j)
∣∣
k
.

Application in (5.45) gives

g′(u j)
∣∣
k z j+1,k + g′(u j)

∣∣
k ∆z j+1,k +


0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

0 . . . 0 g′(u j)
∣∣k
k+1
− g′(u j)

∣∣k
k

zk
j+1

+


0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

0 . . . 0 g′(u j)
∣∣k
k+1
− g′(u j)

∣∣k
k

∆zk
j+1 = e j (5.47)

Then application of (5.44) yieldsg′(u j)
∣∣
k +
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...
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− g′(u j)

∣∣k
k

zk
j+1 (5.48)

The lower triangular structure of g′(u j)
∣∣
k means that the first k elements of ∆zk

j+1 are zero,

and so the solution to (5.48) can be written as

g′(u j)
∣∣k
k+1

∆zk
j+1
∣∣k =

(
g′(u j)

∣∣k
k
− g′(u j)

∣∣k
k+1

)
zk

j+1
∣∣k (5.49)

where zk
j+1

∣∣∣k denotes the lower N−k elements of zk
j+1. The relationship (5.49) is a recur-

sive formula for the calculation of the Newton direction z j+1 on trial k, whose dimension

reduces with every sample. This effectively allows the Newton method based ILC law to

be implemented recursively since:

– The gradient ILC algorithm can be used in place of NOILC to solve (5.49) between

each trial



106 Chapter 5 Functional Electrical Stimulation Control

– The update (5.49) does not have to be solved at every sample, but can be computed

at every M > 1 samples. This provides additional time to perform the computation,

and M can be chosen to ensure the first, largest computation is not excessive

– Updating every M samples also introduces time-scale separation between the iden-

tification and control algorithms which stabilizes the dual system since it can ensure

convergence of the identification routine prior to use in the controller.

5.4 Simulation Results

In order to investigate the performance of the adaptive control schemes, a simulated muscle

system is firstly used to demonstrate the feasibility and superiority over the non-adaptive coun-

terparts.

5.4.1 Simulated Muscle System

The simulated muscle system is designed as follows:

1. The nonlinearity f (·), shown in Fig. 5.6, is a cubic splines function with one knot at 150:

f (u) =−0.0278+0.0019u−7.83×10−6u2 +1.78×10−8u3 +2.36×10−8|u−150|3

(5.50)

2. The linear dynamics G(q) is a second-order linear system with one unit time delay, one

zero at 0.2493 and two poles at 0.9830 and 0.1110.

3. e(t) is normally distributed random noise with the noise power 0.001.
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FIGURE 5.6: Simulated Muscle System

In real experimental situations, two kinds of problem are usually encountered: Firstly, due to

inaccuracy of the identification procedure and the time span between the identification tests and

the control tests, the identified plant model and the true plant are likely to be different. Moreover,

even if the plant model is reasonably accurate, the true plant is actually time-varying and the

fixed plant model must therefore contain inaccuracies. Thus, the adaptive control schemes and

their non-adaptive counterparts will be evaluated using the following three situations:
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• Case 1: exact plant model + time-invariant system

Here it is assumed that the identified plant model is exactly the same as the true plant and

the true plant is time-invariant.

• Case 2: wrong plant model + time-invariant system

For this case, the linear dynamics of the identified plant model are different from those of

the true plant:

Ĝ(q) =
q−1−0.2493q−2

1−1.1830q−1 +0.1966q−2 (5.51)

where the two poles are 0.9830 and 0.2000, only one of which is different. The true plant

is kept time-invariant.

• Case 3: exact plant model + time-variant system

In this situation, the true plant is assumed to be time-variant. Here, for simplicity, only

a time-varying gain factor is applied to multiply the output. Two functions of time are

applied to the gain factor:

1. Trial-variant gain factor
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FIGURE 5.7: The trial-variant gain factor

This is a reasonably simple case, where the gain factor in the same trial is kept

constant, but decreases from 1 to 0.5 along each trial, see Fig. 5.7.

2. Time-variant gain factor

In this case, the gain factor is truly time-varying, like Fig. 5.8. With the assumption

that there is no rest between the trials, this time-varying gain factor works as a look-

up table, with the output being multiplied by the value at the corresponding time

instant.

For each case, a 30-trial ILC implementation is applied to the stimulated muscle system and the

reference trajectory is chosen as half of the cosine wave, shown in Fig. 5.9. The tracking errors
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FIGURE 5.8: The time-varying gain factor

are normalized using

Normalized Error =
‖e j(k)‖2

‖r(k)‖2

and plotted against trial number.
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FIGURE 5.9: The reference trajectory

5.4.2 Gradient vs Trial-dependent Gradient ILC

For the Gradient ILC scheme, ε is only tuned for the first trial and fixed throughout the remainder

of the test. However, the trial-dependent Gradient ILC will update the linear plant model, and ε

and g′ are also updated at each trial. Thus, the tracking error of the Gradient ILC converges par-

ticularly slowly when the plant model is not correct, compared with that of the trial-dependent

one in Fig. 5.10(b). Moreover, when the simulated muscle system is time-varying, the tracking

errors from the trial-dependent Gradient ILC still can remain stable and are under 0.2. How-

ever, for the Gradient ILC scheme, the tracking errors are not robust and instability results, see

Fig. 5.11.
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(a) exact plant model
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FIGURE 5.10: The normalized tracking errors of Gradient and trial-dependent Gradient ILC
on Case 1: exact plant model + time-invariant system and Case 2: wrong plant model + time-

invariant system
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(a) trial-variant gain factor
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FIGURE 5.11: The normalized tracking errors of Gradient and trial-dependent Gradient ILC
on Case 3: exact plant model + time-variant system

5.4.3 Newton vs Trial-dependent Newton Based ILC

For the Newton method based ILC and its trial-dependent version, the performances are both

quite satisfactory and the tracking errors converge very fast as expected, except in Fig. 5.12(b)

where the plant model is not quite accurate. Because the simulated muscle system does not

vary very much with time and the wrong plant model does not vary significantly from the true

plant, the trial-dependent Newton method based ILC only slightly improves the performance,

illustrated by Fig. 5.12 and 5.13. Thus, in real experiments, only the Newton method based ILC

has been implemented.

However, although the Newton method based ILC performs very well, it has not yet been used

in combination with online identification plus adaptive ILC control scheme, because this neces-

sitates a large amount of computation online whilst a separate ILC law is employed to solve the
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intermediate problem (5.28). This is true even with the recursive formulation of the Newton

update (5.49).
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FIGURE 5.12: The normalized tracking errors of Newton and trial-dependent Newton based
ILC on Case 1: exact plant model + time-invariant system and Case 2: wrong plant model +

time-invariant system
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FIGURE 5.13: The normalized tracking errors of Newton and trial-dependent Newton based
ILC on Case 3: exact plant model + time-variant system

5.5 Experimental Results

Experiments have so far been carried out using a single unimpaired subject. The reference signal

yd comprises half of a cosine wave whose amplitude is chosen as a percentage of the maximum

force calculated during the identification test. The Gradient and Newton method based ILC

algorithms are implemented for the non-adaptive control scheme and only Gradient ILC has

been implemented for the trial-dependent adaptive control scheme so far. Ten individual tests

are performed on the same subject over the course of different days for these three control

schemes.
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• Gradient ILC

Fig. 5.14 shows an example of the results using Gradient ILC, where the control inputs

and the measured outputs for the first and last trials are plotted and in the last trial, the

measured output torque could track the reference quite well. However, it do not happen all

the cases, see Fig. 5.15, where three typical examples for the normalized tracking errors

against trial number are plotted. For this non-adaptive control scheme, the plant model

and ε are not updated. Therefore, if the ε is small enough, the performance is more robust

but the tracking error converges very slowly, as shown in Fig. 5.15(a). When increasing ε ,

the controller will suffer from instability, such as shown in Fig. 5.15(b) or even significant

fluctuations as in Fig. 5.15(c).
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FIGURE 5.14: An example of isometric control experiments using Gradient ILC: (a) updated
stimulation pulsewidth as control input for the first and last trials; (b) the measured output

torques for the first and last trials, compared with the reference.

• Newton method based ILC

Fig. 5.16 shows an example of the results using Newton method based ILC, where in

the first trial, the measured output is not far away from the reference due to its fast con-

vergence, also illustrated by Fig. 5.17. When compared with Gradient ILC in Fig. 5.18,

Newton method based ILC is more robust and converges faster than Gradient ILC.

• Trial-dependent gradient ILC

Similar example can be found for the trial-dependent Gradient ILC as in Fig. 5.14, while

the performance of trial-dependent Gradient ILC is more robust and the fluctuations are

within a certain acceptable region. Moreover, the tracking errors for 10 tests are aver-

aged and plotted against trial number in Fig. 5.20, for both Gradient and trial-dependent

Gradient ILC in order to aid visual comparison. It is obvious that the the trial-dependent

Gradient ILC is superior to the standard Gradient ILC law when applied to a real muscle

system.
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FIGURE 5.15: Three examples of the normalized tracking errors of the Gradient ILC from real
experimental data
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FIGURE 5.16: An example of isometric control experiments using Newton method based ILC:
(a) updated stimulation pulsewidth as control input for the first and last trials; (b) the measured

output torques for the first and last trials, compared with the reference.
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FIGURE 5.17: Two examples of the normalized tracking errors of Newton method based ILC
from real experimental data
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FIGURE 5.18: The averaged tracking errors for both Gradient and Newton method based ILC
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FIGURE 5.19: Three examples of the normalized tracking errors of the trial-dependent Gradi-
ent ILC from real experimental data
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FIGURE 5.20: The averaged tracking errors for 10 individual tests of both Gradient and trial-
dependent Gradient ILC



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis concentrates on the identification of electrically stimulated muscle after stroke and

aims to provide model-based controllers with more accurate plant models in order to improve

the effectiveness of FES treatments and hence speed the recovery of the impaired arms.

After reviewing muscle behavior and existing dynamic models, the nonlinear muscle dynamics

under isometric conditions is adopted as the modelling subject in this thesis and a Hammerstein

structure is chosen as the model. This consists of a static nonlinearity described by a cubic spline

function and linear dynamics represented by a transfer function.

In Chapter 3, batch identification is first considered. By separating the parameters into linear

and nonlinear parts, the Hammerstein model was expressed in terms of bilinear equations, which

involves fixing one part, resulting in a linear system which is then solved for the other part using

a least squares algorithm. The later researches all share this idea. At the initial phase, a two-

stage algorithm is presented, which starts from an estimate of the linear parameters from the

preliminary study, and then identifies the nonlinear and optimizes the linear parameters in two

consecutive stages. When compared with the extended Ramp Deconvolution Method and Sep-

arable Least Squares (SLS) Optimization Algorithm on a simulated muscle system, this simple

algorithm outperforms the others. In order to further improve the accuracy, a direct way is to

repeatedly execute the two stages until the convergence is achieved, which leads to the iterative

algorithm. Note that this iterative algorithm is not new in the literature, with several having been

applied to the IIR linear part. Furthermore, the iterative algorithm has been extended to the OE

linear model and formed the second iterative algorithm, where some extra schemes were ap-

plied to solve the difficulties encountered by using an OE linear model instead of an ARX linear

model. These two iterative algorithms, the second of which is totally new, have been compared

with another three identification methods on the experimental data from a single unimpaired

subject. Four candidate tests are chosen through intensive study of related issues concerning

115
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identification tests, and a comprehensive comparison is carried out on the identification, valida-

tion and cross validation results, showing: (1) the Hammerstein model is the best choice after

comparison with a second-order linear model and the modified Wiener-Hammerstein model; (2)

Two iterative algorithms both exhibit similar performance in prediction results, while due to the

simpler implementation and faster computation, the first one is preferable; (3) The Staircase test,

which is used for the first time in muscle tests, shows clear advantages over alternatives and is

highly recommended.

Furthermore, with respect to the time-varying properties of the muscle models, recursive iden-

tification is considered in Chapter 4, where a novel recursive identification algorithm is inves-

tigated for the Hammerstein structure. This algorithm is derived from the iterative algorithm

and the idea is to separate the linear and nonlinear parameters and construct their own infor-

mation states and updating algorithms, based on Recursive Least Square (RLS) algorithms with

exponential forgetting factors. Although the linear and nonlinear parts are recursively estimated

in a parallel manner, the updating algorithms are related to each other’s estimations from the

previous time instant, so that it is named the Alternately Recursive Least Square (ARLS) Al-

gorithm. This algorithm does not require a particular type of input signal and outperforms the

leading RLS alternative in both numerical simulation, and when applied to the experimental

identification of electrically stimulated muscle. RLS is the most promising technique in the

literature and has been applied to the relevant work, which employs the RLS algorithm to the

over-parameterization of the Hammerstein structure and applies SVD to recover the original pa-

rameters. However, due to the ignorance of the rank constraint in the over-parametric vector,

the performance is not fully satisfactory, especially in noisy environments. The proposed ARLS

can overcome this problem and become even faster in computational time for a single updating

step and more reasonable compared to RLS due to two separate forgetting factors.

Eventually, the identified muscle model is used in FES control schemes for the electrically stim-

ulated muscle under isometric conditions in Chapter 5. Firstly, two advanced model-based ILC

schemes: Gradient descent ILC and Newton method based ILC have been used to control the

Hammerstein plant. Then, two adaptive control schemes are proposed, that is, Linear Adaptor

plus Trial-dependent ILC and Online Identification plus Adaptive ILC. The performance of these

control schemes is investigated on a simulated muscle system and several are implemented on

the robotic workstation. Future work will include experimental validation of all control schemes.

6.2 Future Work

The work reported in this thesis can be divided into two main topics: identification and control.

The former is well-structured and heavily investigated and in the future, it could be expanded in

terms of generality and individuality:

1. The identification algorithms developed in this thesis will be extended to more general
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Hammerstein structures and even the other transformations in the Hammerstein Wiener

model family.

So far, the iterative algorithms and their recursive counterpart, ARLS, both are built for the

specified Hammerstein structure with a cubic spline nonlinearity followed by a transfer

function linear dynamics. However, it is quite straightforward to extend them to more

general Hammerstein representations. With respect to the models of the linear dynamics,

generally, they are input-output polynomial models with the equations:

y(k) =
B(q)
A(q)

f (u(k))+
C(q)
D(q)

v(k) (6.1)

where B(q) and A(q) are the same as described in (3.1) and

C(q) = 1+ c1q−1 + · · ·+ crq−r (6.2)

D(q) = 1+d1q−1 + · · ·+dsq−s (6.3)

When A(q) = 1, they become impulse-response models, in which case the problem will

become much more easy and the solution can be found in [Bai and Li, 2004]. In this

thesis, ARX and OE cases are considered, where C(q) = 1, D(q) = A(q) and C(q) = 1,

D(q) = 1, respectively. It will be very useful to expand the algorithms to this general

linear model. For example, the over-parameterization identification algorithm is extended

to MISO Hammerstein model with the same linear form as in (6.1) and some extra stages

are required to identify the C and D in [Boutayeb et al., 1996]. Taking account of the

nonlinearity, the algorithms in this thesis already can be widely used in the case that the

nonlinearity can be expressed as

f (u) =
p

∑
i=1

βi fi(u) (6.4)

where fi are known functions. However, when considering the real situation, some more

complex nonlinearities are presented, such as hard nonlinearities with the dead-zone, sat-

uration, preload, relay and hysteresis in [Bai, 2002b]. These particular cases are worth

studying in the future. Moreover, there are quite a lot of related works in the literature

widening their objective models to the other three in the Hammerstein Wiener model

family, e.g. [Bai, 2002a] and [Gomez and Bayens, 2005]. The Wiener system, where

the linear subsystem is in front of the static nonlinearity, has a similar forms to the Ham-

merstein structure. The other two, shown in Fig. 2.3, with another static nonlinearity at

the beginning or linear dynamics in the end, are all very useful in modelling the nonlinear

system, even for muscle systems. Thus, the algorithms will be developed for the other

three model structures.

2. After identification of the nonlinear muscle dynamics under isometric conditions, the re-

maining components in the muscle model will be investigated. These comprise the passive

force-length and force-velocity relationship fpassive(x, ẋ) and the active force-length and
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force-velocity relationship factive(x, ẋ), described in Section 2.1.2.

For the purpose of off-line identification, it is easy to identify these two by applying sep-

arate identification tests and fitting strategies, introduced by [Durfee and Palmer, 1994]

and implemented in the project by [Freeman et al., 2009b]. After identifying the non-

linear muscle dynamics as a Hammerstein model, a passive test, where the force is gen-

erated only by passive manipulation of the muscle tendon, is firstly applied to estimate

fpassive(x, ẋ) by piecewise linear fitting in a least squares sense. Then factive(x, ẋ) is identi-

fied from the test subjecting the muscle to constant stimulation and random length inputs.

By eliminating the effects from the other two, factive(x, ẋ) is estimated. However, because

of the individual identification procedures, the error caused by one process will propagate

to the later, resulting in an inaccurate muscle model, especially when one or two of these

procedures failed. Thus, further optimization strategies will be considered as well as the

case in which separate processes are avoided and they are identified together.

More importantly, online identification of the whole muscle model will be investigated.

This topic has been studied before: in [Schauer et al., 2005b], a Hammerstein-Wiener

model was used to model the whole muscle system and extended Kalman filter is ex-

ploited to online identify the model. However, the experimental results between modeled

and measured output are not in close agreement. In the literature, online identification of

Hill-type muscle model has not been implemented yet and must be enforced in the future.

As stated in the previous Chapter, muscle system is found to be time-varying due to fa-

tigue, spasticity or changing physiological conditions so that the parameters of the most

trustworthy Hill-type model should be estimated online.

The control component of this thesis is still at an early stage, with only simulation and a few

experimental results presented so far. In order to provide the evidence that the model iden-

tified from the proposed algorithms indeed improves the performance of the controller, some

experiments comparing the old identification scheme and the one proposed in this thesis will

be carried out, including a number of subjects and repeated tests. These Two adaptive control

schemes, Linear Adaptor plus Trial-dependent ILC and Online Identification plus Adaptive ILC,

are suggested in order to respond to the time-variant muscle system. Unfortunately, only the first

one has been implemented on the robotic workstation with just a few tests. Thus, in the future,

the second one will be implemented and together with the first one, a large number of experi-

ments will be carried out to evaluate the performance of adaptive control schemes and online

identification.
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