
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

Using Low Latency Storage to Improve

RDF Store Performance

by

Alisdair Owens

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

April 2011

http://www.soton.ac.uk
mailto:ao@zepler.net
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Alisdair Owens

Resource Description Framework (RDF) is a flexible, increasingly popular data model
that allows for simple representation of arbitrarily structured information. This flexibil-
ity allows it to act as an effective underlying data model for the growing Semantic Web.
Unfortunately, it remains a challenge to store and query RDF data in a performant
manner, with existing stores struggling to meet the needs of demanding applications:
particularly low latency, human-interactive systems. This is a result of fundamental
properties of RDF data: RDF’s small statement size tends to engender large joins with
a lot of random I/O, and its limited structure impedes the generation of compact, rele-
vant statistics for query optimisation.

This thesis posits that the problem of performant RDF storage can be effectively miti-
gated using in-memory storage, thanks to RAM’s extremely high throughput and rapid
random I/O relative to disk. RAM is rapidly reducing in cost, and is finally reaching the
stage where it is becoming a practical medium for the storage of substantial databases,
particularly given the relatively small size at which RDF datasets become challenging
for disk-backed systems.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ao@zepler.net


iv

In-memory storage brings with it its own challenges. The relatively high cost of RAM ne-
cessitates a very compact representation, and the changing relationship between memory
and CPU (particularly increasing RAM access latency) benefits designs that are aware
of that relationship. This thesis presents an investigation into creating CPU-friendly
data structures, along with a deep study of the common characteristics of popular RDF
datasets. Together, these are used to inform the creation of a new data structure called
the Adaptive Hierarchical RDF Index (AHRI), an in-memory, RDF-specific structure
that outperforms traditional storage mechanisms in nearly every respect.

AHRI is validated with a comprehensive evaluation against other commonly used in-
memory data structures, along with a real world test against a memory-backed store,
and a fast disk-based store allowed to cache its data in RAM. The results show that
AHRI outperforms these systems with regards to both space consumption and read-
/write behaviour. The document subsequently describes future work that should pro-
vide substantial further improvements, making the use of RAM for RDF storage even
more compelling.



Contents

Acknowledgements xix

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation, Aims, and Approach . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Research Motivation 9
2.1 The Importance of the Semantic Web . . . . . . . . . . . . . . . . . . . . 9
2.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 RDFS and OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 RDF in Relation to Other Database Models . . . . . . . . . . . . . . . . . 16

2.4.1 Early Database Models . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 The Relational Data Model . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Other Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Representing RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4.1 Storing unstructured data . . . . . . . . . . . . . . . . . . 20
2.4.4.2 Further information . . . . . . . . . . . . . . . . . . . . . 22
2.4.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Related Work 25
3.1 Characteristics of Modern Hardware . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Main Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3.1 Superscalar and Pipelined Architectures . . . . . . . . . . 28
3.1.3.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3.3 Multiple Cores . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.4 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Physical Representation: Translating a Data Model into a Performant
Storage Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Physical Representations in DBMSs . . . . . . . . . . . . . . . . . 34

v



vi CONTENTS

3.2.1.1 Compression . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Physical Representation in RDF Stores . . . . . . . . . . . . . . . 36

3.2.2.1 Indexing Strategies . . . . . . . . . . . . . . . . . . . . . 39
3.2.2.2 Normalising . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2.3 Updates and Deletion . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Indexing: A Key to High Performance RDF Stores . . . . . . . . . . . . . 42

3.3.1 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 B-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 T-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Bitmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.5 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.6 Space Filling Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Operator Implementation: The Importance of the Join in RDF Query . . 54
3.4.1 Query Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Types of Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2.1 Nested Loop . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2.2 Merge and Sort/Merge . . . . . . . . . . . . . . . . . . . 57
3.4.2.3 Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Join Mechanisms in RDF Stores . . . . . . . . . . . . . . . . . . . 58
3.4.4 Join Minimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Scaling to Extremely Large Systems Through Distribution . . . . . . . . 62
3.5.1 Enabling Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.3 Distributing RDF Stores . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3.1 Distributing Memory Stores . . . . . . . . . . . . . . . . 69
3.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Summary of Existing RDF Stores . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Java as a DBMS language 75
4.1 Time Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Memory Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Profiling an In-Memory, Java-based RDF Store . . . . . . . . . . . . . . . 80

4.4.1 The design of the Jena Memory Model . . . . . . . . . . . . . . . . 80
4.4.2 CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2.1 Indexes and Cache Efficiency . . . . . . . . . . . . . . . . 82
4.4.2.2 Node Comparisons . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2.3 Garbage Collection . . . . . . . . . . . . . . . . . . . . . 83

4.4.3 Memory Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Examination of RDF Datasets 85
5.1 ExamineRDF Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS vii

5.1.1 Parsing and Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2 Joining and Statistics Generation . . . . . . . . . . . . . . . . . . . 86
5.1.3 Design Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.1 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1.1 Node and Pairing Data . . . . . . . . . . . . . . . . . . . 90
5.2.1.2 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . 94
5.2.1.3 String Lengths . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.1 Summary Information . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Node and Pairing Data . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.3 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.4 String Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.1 RDF Index Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.2 String Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.3 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.4 The Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 AHRI, a Highly Performant In-Memory RDF Index 109
6.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Normalisation Strategy . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.2 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Per-Level Index Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.1 Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Pointers and FixedBuckets . . . . . . . . . . . . . . . . . . . . . . 117

6.3.2.1 Physical Layout . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.2.3 Alternative FixedBucket Array Structure . . . . . . . . . 122

6.3.3 Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.4 Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5 Overall Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5.1 Per-Index Suitability . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.3 Value Skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5.4 Sorted Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Integration into the Jena RDF Toolkit . . . . . . . . . . . . . . . . . . . . 130
6.6.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.6.2 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.6.3 Join Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.6.4 Answering Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6.4.1 Binding Sets . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.6.4.2 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6.4.3 Vector AQA . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.6.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



viii CONTENTS

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Evaluating AHRI 139
7.1 Candidate Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Test Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3 Initial Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.1 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.2 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3.3 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3.4 Failed Finds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3.5 Alternative L3 indexes . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3.6 Cache Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.7 TLB misses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3.8 Branch Mispredictions . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4 Large Scale Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.4.1 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.4.2 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4.3 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4.3.1 BSBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4.3.2 DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.5 Jena Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5.1 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.5.2 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.5.3 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5.3.1 BSBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.5.3.2 Complex BSBM Queries . . . . . . . . . . . . . . . . . . 172
7.5.3.3 DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8 Conclusions and Future Work 177
8.1 AHRI: A Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.2.1 Short Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.2.1.1 AHRI Improvements . . . . . . . . . . . . . . . . . . . . . 179
8.2.1.2 Jena Integration . . . . . . . . . . . . . . . . . . . . . . . 180
8.2.1.3 Real World Studies . . . . . . . . . . . . . . . . . . . . . 181

8.2.2 Long Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.2.1 Multi-processors . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.2.2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.3 Contributions of this Research . . . . . . . . . . . . . . . . . . . . . . . . 182
8.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A Binary Chop Tests 185
A.1 Java Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.2 C Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



CONTENTS ix

B Test Machine 189

C RDF Dataset Statistics 191
C.1 DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
C.1.2 Node appearances as S, P, O, SP, PO, OS . . . . . . . . . . . . . . 192
C.1.3 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.1.4 Node lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

C.2 UniProt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.2.2 Node appearances as S, P, O, SP, PO, OS . . . . . . . . . . . . . . 201
C.2.3 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.2.4 Node lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

C.3 CIA World Factbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
C.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
C.3.2 Node appearances as S, P, O, SP, PO, OS . . . . . . . . . . . . . . 211
C.3.3 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 214
C.3.4 Node lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.4 Jamendo Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.4.2 Node appearances as S, P, O, SP, PO, OS . . . . . . . . . . . . . . 219
C.4.3 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 221
C.4.4 Node lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.5 GeoSpecies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
C.5.2 Node appearances as S, P, O, SP, PO, OS . . . . . . . . . . . . . . 227
C.5.3 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 229
C.5.4 Node lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

C.6 LinkedCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
C.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
C.6.2 Node appearances as S, P, O, SP, PO, OS . . . . . . . . . . . . . . 234
C.6.3 Aggregate Node Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 237
C.6.4 Node lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

D Raw Evaluation Data 243
D.1 Timing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

D.1.1 Load Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
D.1.2 Restriction by One Attribute . . . . . . . . . . . . . . . . . . . . . 250
D.1.3 Restriction by Two Attributes . . . . . . . . . . . . . . . . . . . . 256
D.1.4 Restriction by Three Attributes . . . . . . . . . . . . . . . . . . . . 263
D.1.5 Restriction by Mixed Attributes . . . . . . . . . . . . . . . . . . . 270

D.2 Performance Counter Information . . . . . . . . . . . . . . . . . . . . . . . 277
D.2.1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

D.2.1.1 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
D.2.1.2 Restriction by One Attribute . . . . . . . . . . . . . . . . 278
D.2.1.3 Restriction by Two Attributes . . . . . . . . . . . . . . . 279
D.2.1.4 Restriction by Three Attributes . . . . . . . . . . . . . . 281



x CONTENTS

D.2.1.5 Restriction by Mixed Attributes . . . . . . . . . . . . . . 282
D.2.2 TLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

D.2.2.1 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
D.2.2.2 Restriction by One Attribute . . . . . . . . . . . . . . . . 284
D.2.2.3 Restriction by Two Attributes . . . . . . . . . . . . . . . 286
D.2.2.4 Restriction by Three Attributes . . . . . . . . . . . . . . 287
D.2.2.5 Restriction by Mixed Attributes . . . . . . . . . . . . . . 288

D.2.3 Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
D.2.3.1 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
D.2.3.2 Restriction by One Attribute . . . . . . . . . . . . . . . . 291
D.2.3.3 Restriction by Two Attributes . . . . . . . . . . . . . . . 292
D.2.3.4 Restriction by Three Attributes . . . . . . . . . . . . . . 293
D.2.3.5 Restriction by Mixed Attributes . . . . . . . . . . . . . . 294

Bibliography 297



List of Figures

2.1 The Semantic Web layer cake (May 2008). . . . . . . . . . . . . . . . . . . 11
2.2 Triple concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 RDF triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 RDF graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 SPARQL query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 SPARQL triple pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 SPARQL query using FILTER and OPTIONAL . . . . . . . . . . . . . . 15
2.8 Illustration of common database operations . . . . . . . . . . . . . . . . . 18

3.1 Data storage hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Binary chop cost per comparison as dataset increases in size . . . . . . . . 31
3.3 3store data schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 SQL produced by 3Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Graph of the the ID width required to maintain a 0.1% collision rate when

using hash IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Balanced Binary Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 RDF stored using a BST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 RDF IDs stored using a B+tree . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 T-Tree node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Querying using a bitmap index on a relational system . . . . . . . . . . . 50
3.11 The two dimensional Hilbert curve . . . . . . . . . . . . . . . . . . . . . . 52
3.12 SPARQL query to determine the meals enjoyed by Bangladeshi students

at the University of Southampton. Triple patterns are numbered for ref-
erence purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Rates of assertion during a Clustered TDB load (Owens et al., 2008) . . . 68

4.1 Memory usage of a Java object. This diagram illustrates an array of 12
characters. Note that characters are two bytes wide in Java in order to
support Unicode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Generational memory layout in the Sun JVM. Older generations are in-
dicated by darker shades. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 The Jena Memory Model: representing a small dataset . . . . . . . . . . . 81
4.4 Nodes generated in the Memory Model versus unique nodes that exist in

the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Joining file buffers in ExamineRDF . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Time taken by ExamineRDF to process subsets of the DBpedia dataset . 88
5.3 Summary data output by ExamineRDF for DBpedia . . . . . . . . . . . . 89
5.4 Cardinality of predicates in the DBpedia dataset . . . . . . . . . . . . . . 91

xi



xii LIST OF FIGURES

5.5 Naive (unclear) visualisation for node and pairing data in DBpedia . . . . 92
5.6 Improved visualisation for cardinality of predicates . . . . . . . . . . . . . 93
5.7 Cumulative visualisation for cardinality of predicates . . . . . . . . . . . . 93
5.8 Cumulative visualisation of S, P, O, SP, PO, and OS cardinalities for the

DBpedia dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.9 Node reuse data for DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10 Cumulative node reuse data for DBpedia . . . . . . . . . . . . . . . . . . 95
5.11 Node length data for DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.12 Cumulative node length data for DBpedia . . . . . . . . . . . . . . . . . . 97
5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.14 Cumulative node and pairing data for BSBM-100m . . . . . . . . . . . . . 100
5.15 Cumulative node and pairing data for UniProt . . . . . . . . . . . . . . . 100
5.16 Cumulative node reuse data for BSBM-100m . . . . . . . . . . . . . . . . 101
5.17 Cumulative node reuse data for UniProt . . . . . . . . . . . . . . . . . . . 101
5.18 Cumulative node length data for BSBM-100m . . . . . . . . . . . . . . . . 102
5.19 Cumulative node length data for UniProt . . . . . . . . . . . . . . . . . . 102
5.20 Inlining data into a 32-bit ID. All figures are bit-widths. . . . . . . . . . . 107

6.1 A full multi-level index structure, in POS ordering, over a simple RDF
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 An adaptive multi-level index structure, in POS ordering, over a simple
RDF dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 An SPO-ordered index with no L2 or L3 indexes . . . . . . . . . . . . . . 117
6.4 An SPO-ordered index with single array . . . . . . . . . . . . . . . . . . . 118
6.5 An SPO-ordered index with a FixedBucket array approach . . . . . . . . 119
6.6 An SPO-ordered index with a FixedBucket array approach: update illus-

tration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.7 FixedBucket Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.8 An SPO-ordered index with one independent array object . . . . . . . . . 121
6.9 Alternative FixedBucket Array Structure . . . . . . . . . . . . . . . . . . 122
6.10 Level 2 hash index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.11 FixedBuckets with a width of one attribute value . . . . . . . . . . . . . . 123
6.12 AHRI structural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.13 Node to ID index: compact but slow implementation . . . . . . . . . . . . 131
6.14 Node to ID index: larger, faster implementation . . . . . . . . . . . . . . . 132
6.15 Query answering in AJP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.16 Query answering in AJP: a more complex query . . . . . . . . . . . . . . 135
6.17 SPARQL query that performs poorly using simple INL . . . . . . . . . . . 136

7.1 Index sizes for 5 million triples of BSBM data (lower is better) . . . . . . 143
7.2 Load rate for 5 million triples of BSBM data (higher is better) . . . . . . 144
7.3 SPO query performance for 5 million triples of BSBM data (higher is better)145
7.4 POS query performance for 5 million triples of BSBM data (higher is better)146
7.5 OSP query performance for 5 million triples of BSBM data (higher is better)147
7.6 Query to find friends at some-company with differing opinions on Marmite147
7.7 Failed find performance over SPO-ordered, 5 million triple BSBM dataset

(higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



LIST OF FIGURES xiii

7.8 Failed find performance over POS-ordered, 5 million triple BSBM dataset
(higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.9 Failed find performance over OSP-ordered, 5 million triple BSBM dataset
(higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.11 POS query performance for alternative L3 index types over 5 million

triples of BSBM data (higher is better) . . . . . . . . . . . . . . . . . . . . 151
7.12 Cache misses when loading 5 million triples of BSBM data (lower is better)152
7.13 Cache misses when querying over 5 million triples of BSBM data (lower

is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.14 Cache misses for L3 index variants for a POS index over 5 million triples

of BSBM data (lower is better) . . . . . . . . . . . . . . . . . . . . . . . . 154
7.15 TLB misses when loading 5 million triples of BSBM data (lower is better) 155
7.16 TLB misses when querying over 5 million triples of BSBM data (lower is

better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.17 Branch mispredictions when loading 5 million triples of BSBM data (lower

is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.18 Branch mispredictions when querying over 5 million triples of BSBM data

(lower is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.19 Branch mispredictions for L3 index variants when loading 5 million triples

of BSBM data (lower is better) . . . . . . . . . . . . . . . . . . . . . . . . 158
7.20 Index sizes for 350 million triples of BSBM data (lower is better) . . . . . 160
7.21 Index sizes for the full 230 million triple DBPedia dataset (lower is better) 161
7.22 Load rate with increasing BSBM dataset size (higher is better) . . . . . . 161
7.23 Load rate for the full 230 million triple DBpedia dataset (higher is better) 162
7.24 Query performance over the 350 million triple BSBM dataset using SPO

ordering (higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.25 Query performance over the 350 million triple BSBM dataset using POS

ordering (higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.26 Query performance over the 350 million triple BSBM dataset using OSP

ordering (higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.27 Query performance over the full DBPedia dataset using SPO ordering

(higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.28 Query performance over the full DBPedia dataset using POS ordering

(higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.29 Query performance over the full DBPedia dataset using OSP ordering

(higher is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.1 Node and pairing data for DBpedia . . . . . . . . . . . . . . . . . . . . . . 192
C.2 Cumulative node and pairing data for DBpedia . . . . . . . . . . . . . . . 192
C.3 Node reuse data for DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.4 Cumulative node reuse data for DBpedia . . . . . . . . . . . . . . . . . . 195
C.5 Node length data for DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . 198
C.6 Cumulative node length data for DBpedia . . . . . . . . . . . . . . . . . . 198
C.7 Node and pairing data for UniProt . . . . . . . . . . . . . . . . . . . . . . 201
C.8 Cumulative node and pairing data for UniProt . . . . . . . . . . . . . . . 201



xiv LIST OF FIGURES

C.9 Node reuse data for UniProt . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.10 Cumulative node reuse data for UniProt . . . . . . . . . . . . . . . . . . . 205
C.11 Node length data for UniProt . . . . . . . . . . . . . . . . . . . . . . . . . 208
C.12 Cumulative node length data for UniProt . . . . . . . . . . . . . . . . . . 208
C.13 Node and pairing data for CIA World Factbook . . . . . . . . . . . . . . . 211
C.14 Cumulative node and pairing data for CIA World Factbook . . . . . . . . 211
C.15 Node reuse data for CIA World Factbook . . . . . . . . . . . . . . . . . . 214
C.16 Cumulative node reuse data for CIA World Factbook . . . . . . . . . . . . 214
C.17 Node length data for CIA World Factbook . . . . . . . . . . . . . . . . . . 216
C.18 Cumulative node length data for CIA World Factbook . . . . . . . . . . . 216
C.19 Node and pairing data for Jamendo Music Data . . . . . . . . . . . . . . . 219
C.20 Cumulative node and pairing data for Jamendo Music Data . . . . . . . . 219
C.21 Node reuse data for Jamendo Music Data . . . . . . . . . . . . . . . . . . 221
C.22 Cumulative node reuse data for Jamendo Music Data . . . . . . . . . . . 222
C.23 Node length data for Jamendo Music Data . . . . . . . . . . . . . . . . . 224
C.24 Cumulative node length data for Jamendo Music Data . . . . . . . . . . . 224
C.25 Node and pairing data for GeoSpecies . . . . . . . . . . . . . . . . . . . . 227
C.26 Cumulative node and pairing data for GeoSpecies . . . . . . . . . . . . . . 227
C.27 Node reuse data for GeoSpecies . . . . . . . . . . . . . . . . . . . . . . . . 229
C.28 Cumulative node reuse data for GeoSpecies . . . . . . . . . . . . . . . . . 230
C.29 Node length data for GeoSpecies . . . . . . . . . . . . . . . . . . . . . . . 232
C.30 Cumulative node length data for GeoSpecies . . . . . . . . . . . . . . . . . 232
C.31 Node and pairing data for LinkedCT . . . . . . . . . . . . . . . . . . . . . 234
C.32 Cumulative node and pairing data for LinkedCT . . . . . . . . . . . . . . 235
C.33 Node reuse data for LinkedCT . . . . . . . . . . . . . . . . . . . . . . . . 237
C.34 Cumulative node reuse data for LinkedCT . . . . . . . . . . . . . . . . . . 237
C.35 Node length data for LinkedCT . . . . . . . . . . . . . . . . . . . . . . . . 240
C.36 Cumulative node length data for LinkedCT . . . . . . . . . . . . . . . . . 240



List of Tables

2.1 Database model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Cost of binary chop as dataset increases in size . . . . . . . . . . . . . . . 31
3.2 Summary of current RDF stores . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Comparison of Java and C on an unpredictable large scale binary chop . . 76
4.2 Comparison of Java and C on a predictable large scale binary chop . . . . 76

5.1 Subset of node length information from the UniProt dataset . . . . . . . . 91
5.2 Space required for string data for BSBM, DBpedia, and UniProt in terms

of bytes per triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 Size of prefix-eliminated indexes over BSBM, DBpedia, and UniProt data,

normalised against a B+Tree with 100 triple wide nodes. Both structures
use 32-bit wide IDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Size per triple given 32 and 64-bit IDs and references . . . . . . . . . . . . 112
6.2 Size per triple given 32 and 64-bit IDs and references on a Java-based

implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Size per triple including an ideal value for Disk . . . . . . . . . . . . . . . 112

7.1 Space consumed (GB) by different RDF stores, loading BSBM and DB-
pedia datasets. Note that JMM proved unable to load the full BSBM
dataset, running out of memory during garbage collection. As a result,
figures are linearly projected from a smaller, 30.5 million triple BSBM
document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2 Load times in seconds for different RDF stores. Note that JMM proved
unable to load the full BSBM dataset, running out of memory during
garbage collection. As a result, figures are linearly projected from a
smaller, 30.5 million triple BSBM document. . . . . . . . . . . . . . . . . 170

7.3 Query Mixes Per Hour for BSBM. Note that figures for JMM are for a
smaller, 30.5 million triple dataset. . . . . . . . . . . . . . . . . . . . . . . 171

7.4 BSBM query results. Results indicate the number of queries performed
per second for each query type. Note that figures for JMM are for a
smaller, 30.5 million triple dataset. . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Query Mixes Per Hour for the complex query benchmark. Note that
figures for JMM are for a smaller, 30.5 million triple dataset, while figures
for TDB exclude Query 3, which it was unable to complete. . . . . . . . . 173

7.6 Complex query results. Results indicate the number of queries performed
per second for each query type. Note that figures for JMM are for a
smaller, 30.5 million triple dataset. . . . . . . . . . . . . . . . . . . . . . . 173

xv



xvi LIST OF TABLES

7.7 Detailed DBpedia query results. Figures indicate the time in milliseconds
required for each query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.1 Node appearances as S, P, O, SP, PO, OS for DBpedia . . . . . . . . . . . 194
C.2 Node reuse data for DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . 197
C.3 Node length data for DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.4 Node appearances as S, P, O, SP, PO, OS for UniProt . . . . . . . . . . . 204
C.5 Node reuse data for UniProt . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.6 Node length data for UniProt . . . . . . . . . . . . . . . . . . . . . . . . . 210
C.7 Node appearances as S, P, O, SP, PO, OS for CIA World Factbook . . . . 213
C.8 Node reuse data for CIA World Factbook . . . . . . . . . . . . . . . . . . 215
C.9 Node length data for CIA World Factbook . . . . . . . . . . . . . . . . . . 217
C.10 Node appearances as S, P, O, SP, PO, OS for Jamendo Music Data . . . . 221
C.11 Node reuse data for Jamendo Music Data . . . . . . . . . . . . . . . . . . 223
C.12 Node length data for Jamendo Music Data . . . . . . . . . . . . . . . . . 226
C.13 Node appearances as S, P, O, SP, PO, OS for GeoSpecies . . . . . . . . . 229
C.14 Node reuse data for GeoSpecies . . . . . . . . . . . . . . . . . . . . . . . . 231
C.15 Node length data for GeoSpecies . . . . . . . . . . . . . . . . . . . . . . . 233
C.16 Node appearances as S, P, O, SP, PO, OS for LinkedCT . . . . . . . . . . 236
C.17 Node reuse data for LinkedCT . . . . . . . . . . . . . . . . . . . . . . . . 239
C.18 Node length data for LinkedCT . . . . . . . . . . . . . . . . . . . . . . . . 242

D.1 Load rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
D.2 Restriction by one attribute . . . . . . . . . . . . . . . . . . . . . . . . . . 256
D.3 Restriction by two attributes . . . . . . . . . . . . . . . . . . . . . . . . . 263
D.4 Restriction by three attributes . . . . . . . . . . . . . . . . . . . . . . . . 270
D.5 Restriction by mixed attributes . . . . . . . . . . . . . . . . . . . . . . . . 277
D.6 Cache performance counters: load . . . . . . . . . . . . . . . . . . . . . . 278
D.7 Cache performance counters: restriction by one attribute . . . . . . . . . . 279
D.8 Cache performance counters: restriction by two attributes . . . . . . . . . 281
D.9 Cache performance counters: restriction by three attributes . . . . . . . . 282
D.10 Cache performance counters: restriction by mixed attributes . . . . . . . . 283
D.11 TLB performance counters: load . . . . . . . . . . . . . . . . . . . . . . . 284
D.12 TLB performance counters: restriction by one attribute . . . . . . . . . . 286
D.13 TLB performance counters: restriction by two attributes . . . . . . . . . . 287
D.14 TLB performance counters: restriction by three attributes . . . . . . . . . 288
D.15 TLB performance counters: restriction by mixed attributes . . . . . . . . 289
D.16 Branch performance counters: load . . . . . . . . . . . . . . . . . . . . . . 291
D.17 Branch performance counters: restriction by one attribute . . . . . . . . . 292
D.18 Branch performance counters: restriction by two attributes . . . . . . . . 293
D.19 Branch performance counters: restriction by three attributes . . . . . . . 294
D.20 Branch performance counters: restriction by mixed attributes . . . . . . . 296



Listings

6.1 Iterating over results from an index retrieval . . . . . . . . . . . . . . . . . 134
6.2 INL pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Optimised INL pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.1 Java implementation of simple binary search . . . . . . . . . . . . . . . . . 185
A.2 C implementation of simple binary search . . . . . . . . . . . . . . . . . . 186

xvii





Acknowledgements

With many thanks to my advisors, m.c. schraefel and Nick Gibbins for giving me the
benefit of their experience, and so readily sharing their knowledge. I am indebted also
to Andy Seaborne for consistently offering his help and advice, and to Talis for kindly
providing the server used to perform the larger-scale tests. Thanks to my family for all
of their support, and especially to my wife Clare, whose capacity to provide help and
encouragement never cease to amaze me.

xix





Chapter 1

Introduction

Resource Description Framework (RDF) (Lassila et al., 1999) is a means for expressing
knowledge in a generic manner, without requirement for adherence to a tightly specified
schema. It is designed to provide a flexible means to support simple data aggregation,
discovery, and interchange, and has already found use as an underlying data format in
such fields as e-science (Taylor et al., 2005, 2006) and faceted browsing (Smith et al.,
2007; schraefel et al., 2004). The goal of researchers in the area is that as technologies
mature, the Semantic Web will be built upon linked RDF data (Berners-Lee et al., 2001).

Making real use out of information encoded in the RDF format requires the ability
to process that information: most particularly to be able to ask questions, or queries,
about the data. Indeed, the ability to efficiently ask questions about RDF data is a
fundamental requirement of the Semantic Web. Small scraps of information can be
stored in flat files, but as datasets scale up, they generally require a structured storage
system that allows them to be queried against in a performant manner. Systems that
manage RDF data n this manner are known as RDF or Triple stores.

There is already a considerable body of work dedicated to information storage and
retrieval: the Database Management System (DBMS) community has been working in
this area for many years, and a great deal of progress has been made - an overview
of which can be found in Date (1990). High performance RDF storage depends to a
significant extent on correct application of existing DBMS research, and so these areas
of research run in parallel: indeed, many RDF stores are built as layers that rely on
existing relational DBMSs (RDBMSs) to do much of the work. Unfortunately, the
unpredictable structure of RDF graphs has proved challenging for traditional DBMSs,
and they have not been able to scale effectively to large quantities of RDF data. The
reasons for this are explored in the following section.

1



2 Chapter 1 Introduction

1.1 Problem Statement

The performance of Relational DBMSs (RDBMSs) has resulted in users becoming ac-
customed to being able to perform complex, meaningful queries over very large amounts
of information. Unfortunately, RDF datasets have proven challenging to work with in
comparison to traditional relational ones, resulting in RDF stores being both slow and
lacking in scalability by the standards of modern DBMSs1. The most powerful single
machine RDF stores are capable of storing around two billion RDF statements, or in
the order of tens or a few hundred gigabytes of data (Erling and Mikhailov, 2009), and
pattern-match queries performed over much smaller datasets can produce unacceptable
performance (Smith et al., 2007). Commercial RDBMS products, on the other hand,
are capable of storing terabytes of data whilst preserving real time query performance.

The performance issues of RDF stores can be categorised as scale and query latency
related. Some progress has been made on scaling, with improved single machine sys-
tems and the emergence of distributed stores (Harth et al., 2007; Erling and Mikhailov,
2008), but relatively little work has examined the creation of stores that offer low query
latencies. This places limitations upon software that is designed for human interaction,
in particular the new wave of rich web applications that rely on regular contact with a
backing data store (Smith et al., 2007).

1.2 Motivation, Aims, and Approach

While RDF stores have been in development since shortly after the RDF data model
was created, none have fully satisfied the challenges posed by the RDF graph’s limited
structure. Poor RDF store performance is a problem for a variety of reasons. Most
importantly, it’s a limiting issue for the wider Semantic Web: without the ability to
manipulate and extract information from large data stores in a performant manner, it
will be impossible to develop the sort of killer features that popularised the Web. In
particular, it will be difficult to develop high quality human-interactive applications:
user perception of application performance has a strong impact on satisfaction (Palmer,
2003).

Further, much of the current web is based on providing information for free (or supported
by advertising) - and this is a fundamental driver of its popularity. This is only possible
because the cost of providing information is very low. In order for the Semantic Web
to grow, it must be cheap and feasible to work with Semantic Web information, or
individuals and organisations simply won’t provide their data in Semantic Web formats

1http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/



Chapter 1 Introduction 3

Finally, the performance of RDF stores is a key issue for those who wish to work with
data of limited or free schema, even outside the context of a Semantic Web. Many
e-science projects make use of RDF stores as a result of their flexibility. Indeed, these
projects have produced many of the largest existing RDF datasets currently in existence
(Belleau et al., 2008; Jain et al., 2009).

The wider area of DBMSs has been researched for decades, and is one of the most
important and active fields under the umbrella of Computer Science. RDF exhibits
some features that make it difficult to model using traditional database systems: the
structure of an RDF document is highly unpredictable, and does not lend itself to storage
in any but the most generic of schemas. This unpredictability is also evident in query
patterns: unlike more conventional relational systems, support for performant arbitrary
queries is expected on RDF stores. Finally, RDF’s datums (triples) are very small.
It thus exhibits an unusually large number of individual data points compared to the
amount of information encoded, meaning that when processing a comparable amount of
information, each operation generally has more datums to process.

Typically, each of these issues inhibits efficient storage and query optimisation, making
even advanced stores relatively slow - and it’s a difficult problem to fix. Some partial
solutions exist:

• Extreme read-orientation. Many stores take this approach (Harth et al., 2007;
Weiss and Bernstein, 2009; Neumann and Weikum, 2008), which certainly im-
proves the performance of queries. Unfortunately, some systems are completely
non-updateable, while others are so slow to update that using them in an environ-
ment with writes would be impractical. This kind of optimisation, while effective,
neuters one of RDF’s key advantages: that it is a format for describing data where
one can add information in a free manner.

• Distribution. This tends to allow scaling to larger datasets, as well as larger num-
bers of users (Harth et al., 2007; Harris et al.; Erling and Mikhailov, 2008). It has
not, however, been shown to substantially improve the performance of individual
queries.

• Storing in memory. Low latency storage methods such as RAM are a promis-
ing avenue for RDF storage, particularly as they become more affordable. Cur-
rent main-memory systems are not heavily developed, and can consume excessive
amounts of RAM, as will be shown in Chapter 4.



4 Chapter 1 Introduction

1.3 Hypothesis

This document considers a variety of options for improving the performance of RDF
stores, but focusses on the application of low latency storage systems to improve per-
formance. While storing data in-memory provides an obvious immediate improvement
when compared to legacy media such as hard disks, carefully tuning data structures for
such storage mediums can yield substantial additional benefits.

This thesis posits that RDF-specific memory-based structures can substantially outper-
form alternative methods, and that existing in-memory structures can be improved upon
substantially. The veracity of this assertion is determined through the creation of an
alternative physical storage schema for RDF data, based on a detailed analysis of both
RDF datasets, and the properties of modern CPU and RAM subsystems. This structure
(called the Adaptive Hierarchical RDF Index, or AHRI) uses much less memory than
existing solutions while:

• Offering excellent insert performance.

• Remaining open at all times to fast updates.

• Offering excellent query performance.

• Offering detailed statistics to improve RDF query.

This thesis shows that existing work would benefit from a stronger understanding of the
structure of common RDF datasets, since prior to this document little work had been
performed on producing human-readable statistics over RDF. Further, thanks to the
limited penetration of memory-backed stores, the behaviour of modern computers be-
yond the overwhelming latency imposed by disk access has not be considered in sufficient
detail in existing literature. This work has important implications for RDF storage as a
whole, as RDF can experience an unusual degree of benefit from analysing the behaviour
of modern CPUs and memory subsystems.

1.4 Contributions

The body of work described in this thesis has yielded a variety of contributions, produced
to the end of creating AHRI. These six key contributions are detailed below.

1. An investigation into the behaviour of modern computer architectures, and how
the features of these architectures can be utilised to improve the performance of
RDF data stores.



Chapter 1 Introduction 5

2. A deep review of the structure of RDF datasets, including a tool to produce de-
tailed statistics over RDF data. These statistics provide insight into common
factors in RDF documents that can be used to inform the development of future
stores.

3. An application of the knowledge gained in (1) and (2): a high performance, com-
pact new data structure for storing RDF information. AHRI is suitable for general
purpose RDF storage, and particularly for systems that rely on low latency storage
such as UIs or caches.

4. A detailed validation of AHRI against a variety of existing data structures that
are used for RDF data storage. This evaluation confirms that the performance of
AHRI makes a substantial difference even in the context of all the other latencies
associated with working with RDF data. The evaluation also provides a framework
for testing alternative index types in a standardised manner.

5. AJP: a prototype query answering system for AHRI, in the form of a Jena plugin.
While currently in a relatively basic state, this plugin can be extended to provide
a fully featured RDF store.

6. A review of the suitability of Java (and the JVM in particular) for creating DBMSs,
concluding that the language is suitable for such work, with the caveat that atten-
tion must be paid to the memory consumption of small objects.

1.5 Overview of Thesis

The document is structured as follows:

• Chapter 2 presents a basic background description of the core technologies of the
Semantic Web, with particular reference to RDF, defining terms and situating the
importance of developing RDF storage systems. It goes on to compare RDF to
models used in existing database systems, with particular reference to relational
systems, and describes why RDF is significantly different.

• Chapter 3 goes on to provide detailed related work, describing five key areas: the
characteristics of modern computer architecture; how data is physically represented
in storage in modern DBMSs; the importance of indexing to modern RDF storage;
the importance of operator implementation specifics (for example, join type); and
the use of distribution to scale RDF stores.

• Chapter 4 investigates the properties of modern Java Virtual Machines (JVMs),
and what impact these properties have upon RDF storage. This work is performed
because the most commonly-used, mature Semantic Web frameworks use Java



6 Chapter 1 Introduction

technologies and JVM behaviour can have a substantial impact upon many modern
RDF stores.

• Chapter 5 performs a detailed study of RDF datasets. While RDF imposes very
little structure on documents, this chapter uncovers the structural features that
are featured in most common datasets, and uses these as a means to inform the
design of structures for storing RDF data.

• Chapter 6 presents AHRI, the RDF data structure that resulted from the investi-
gations in previous chapters. It is designed to perform well on modern computer
architectures, and execute effectively on virtual machines such as that used by
Java.

• Chapter 7 describes in-depth tests upon AHRI. These tests show that AHRI uses
less space than alternative structures, while providing superior insert, update, and
query performance. It presents an implementation of AHRI into a real triple store,
showing that AHRI provides a significant speedup, particularly on difficult queries.

• Finally, Chapter 8 offers conclusions and future work.

Additionally, this thesis has four appendices:

• Appendix A provides small code samples from some of the work described in
Section 4.1.

• Appendix B describes the test machine used for many of the experiments performed
in this thesis.

• Appendix C presents statistics on additional RDF documents to support the work
performed in Chapter 5.

• Appendix D provides some raw evaluation data from the experiments performed
in Chapter 7.

1.6 Declaration

I, Alisdair Owens, declare that this thesis and the work presented within are both my
own, and have been generated by me as the result of my own original research. I confirm
that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.



Chapter 1 Introduction 7

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

• None of this work has been published before submission.

Signed:
Date:





Chapter 2

Background and Research

Motivation

This chapter describes the Semantic Web and several of its core technologies. It presents
the case for supporting the development of RDF stores in the context of the Semantic
Web’s requirement for high performance data storage and retrieval.

2.1 The Importance of the Semantic Web

The Semantic Web (Berners-Lee et al., 2001) is a large-scale effort to bring machine-
processable data to the World Wide Web. This is intended to allow machines to be able
to understand and easily navigate a web of data. Mechanisms for shared understanding
enable machines to communicate with each other, even in situations where they were
not expressly designed to do so. The advantages that can be found in this endeavour
are extraordinary: in particular, the long-awaited potential of software agents could be
realised (Hendler, 2001). Consider the following example:

Having decided to become healthier, Alisdair is undertaking a new fitness regime at the
gym. As well as regular exercise, Alisdair’s trainer has recommended a more healthy diet
plan to him. As a member of the gym, he has complimentary access to a large selection
of recipes. Since he feels like trying something new, he asks his agent (accessed through
a smartphone) to pick one for him. The agent, knowing the foods that he particularly
likes and dislikes, works on finding him a recipe. It can do this because metadata on
the recipes is held in an RDF store. This allows the agent to query for recipes that use
ingredients or cooking methods that he might particularly enjoy. It then presents the
best option to him for confirmation, along with a note that he will need to buy more
ingredients to be able to cook it. It sounds good, so he accepts, and asks the agent to tell
him where he can get the items he needs from. The agent, knowing that the weather is

9



10 Chapter 2 Background and Research Motivation

good and that Alisdair likes to walk, looks for shops in the immediate area, and suggests
two in close proximity that between them should stock everything that he needs.

This example shows a variety of benefits, in the elimination of a great deal of drudgery
from Alisdair’s life. Of course, if he wants to perform any tasks, such as picking the
recipe himself, he can, but if he chooses he can have large parts of his life automated
for him. This example is enabled by the intersection of two concepts: Intelligent Agents
and the Semantic Web. The agent learns about Alisdair’s preferences, and understands
certain concepts such as food, recipe, shop, and weather. Other services on the internet
also understand some of these concepts: the gym’s agent understands recipes, while
the BBC’s agent might understand weather (as well as the date and time that Alisdair
wants to know the weather for). The shops’ agents understand various kinds of food and
whether something is in stock. Alisdair’s agent is able to communicate through these
shared understandings to bring about the scenario described above.

Of course, the agents are the things that understand the concepts. However, the pro-
cess of sharing a vocabulary such that agents can communicate about concepts they
understand, and the mechanism for publishing that data, are brought about through
the Semantic Web. The Semantic Web has innumerable other uses: researchers on the
Semantic Grid (Taylor et al., 2005) are using it to advertise the availability of computing
resources. E-Science researchers (Taylor et al., 2006) are using Semantic Web languages
to exchange and aggregate data. There are Semantic Web browsers such as Tabulator
(Berners-Lee et al., 2006) that offer individuals the ability to browse Semantic Web data
for themselves. Faceted browsers like mSpace (schraefel et al., 2005) use Semantic Web
data to provide a rich browsing experience, releasing information that would have had
to be painstakingly manually collated previously. These are just a subset of the current
uses of the Semantic Web, and the potential uses of the future are limited only by the
imagination - and the capability of the backing technologies to support them.

The development of Semantic Web languages is proceeding apace: of the Semantic Web
layer cake, as seen in Figure 2.1, RDF (Lassila et al., 1999), RDFS (Brickley et al.,
2004), OWL (Patel-Schneider et al., 2004), and SPARQL (SPARQL Protocol and RDF
Query Language) (Prud’hommeaux and Seaborne, 2006) have reached a stable state. A
simplistic explanation of these is that RDF provides the ability to express data, SPARQL
provides a mechanism for querying this data, while RDFS and OWL add to the ability
to share concepts (for example, providing mappings from one concept to another), as
well as infer new data from that already present.

2.2 Data Representation

RDF is, as previously mentioned, the underpinning language for data expression in the
Semantic Web (Lassila et al., 1999). It is expressed in the simple manner of a triple,



Chapter 2 Background and Research Motivation 11

Figure 2.1: The Semantic Web layer cake (May 2008).

composed of subject, predicate, and object (S,P, and O respectively). This is roughly
analogous to the subject verb and object of a simple sentence (Berners-Lee et al., 2001):
for example:

Subject: Alisdair
Predicate: Has Gender
Object: Male

This is expressed visually in Figure 2.2.

Alisdair MaleHas Gender

Figure 2.2: Triple concept

RDF triples are built out of Uniform Resource Identifiers (URIs) (Berners-Lee et al.,
1998) and literals. A URI is a unique identifier that denotes a concept: for example,
the URI for a dog might be http://www.example.com/animals/dog. A literal is simply
a string, such as ‘Alisdair Owens’, with optional additions denoting language (such as
English or French) and datatype (any supported by XML, such as int and datetime).
Ideally, a URI is unique (no other concepts have the same URI), and each concept only
has one URI to describe it. However, while uniqueness is relatively simple to ensure
through naming conventions, it is very likely that any concept will have more than one
URI associated with it, through the creators of the URI being unaware of the existence
of others. Along with URIs and literals, a third type called a Blank Node (or B-Node)
exists. This is used in situations where one wishes to refer to an implicit concept without
giving it an explicit name. URIs, literals and B-Nodes are collectively referred to as
‘nodes’ in the rest of this document.



12 Chapter 2 Background and Research Motivation

The use of URIs in RDF makes it easy to find documents that relate to information that
an individual or agent is interested in and understands. For example, if someone (or
their piece of software) is looking for information about dogs, and they know the URI
http://www.example.com/animals/dog refers to the concept of a dog, they know that a
triple containing that URI is certainly relevant to them.

In an RDF triple, the subject and predicate are guaranteed to be URIs, as they must
refer to concepts (if I wish to talk about myself, it makes no sense to assert facts about
the string ‘Alisdair Owens’, whereas it does make sense to do so about my URI). The
object can be either a URI or a literal. URIs are related to each other through their
expression in triples. This is shown in Figure 2.3.

http://www.example.com/people/Alisdair http://www.example.com/has-gender http://www.example.com/genders/male

Figure 2.3: RDF triple

An RDF document is simply a set of RDF triples. As these triples refer to URIs,
relationships between concepts are described, and a directed graph of information is
created. This is a natural way to describe most information (Berners-Lee et al., 2001).
This is illustrated in Figure 2.4, where for simplicity the prefix ‘ex:’ is used to replace
‘http://www.example.com/’. There is no limit to the structure of this graph, beyond
the need to express the data in triples format.

ex:people/Alisdair ex:has-gender ex:genders/Male

ex:people/Sally

ex:has-brother ex:has-sister

ex:organisations/UoS

ex:works-for

Figure 2.4: RDF graph

RDF, then, has a great deal of power and flexibility. It offers the ability to specify
concepts and link them together into an unlimited larger graph of data. As a storage
language, this affords several advantages:

• RDF supports simple data aggregation: linking data sources together can simply
be a matter of adding a few additional triples specifying relationships between



Chapter 2 Background and Research Motivation 13

the concepts. This is much easier than the complicated schema realignment that
might have to occur in a standard data repository such as an RDBMS.

• The use of URIs offers the opportunity to discover new data, as the same URI
is (conceptually) used to refer to a concept across every document in which that
concept is contained. While this ideal will usually not be the case, any degree of
URI reuse is of benefit.

• Since the data graph is unlimited, with no requirements for data to be or not
be present, RDF offers a great deal of flexibility. There are no requirements for
tightly defined data schemas as seen in environments such as RDBMSs, which is
a significant benefit when the structure of the data is not well known in advance
(Taylor et al., 2006).

• RDF offers a single language for representing virtually any knowledge. This is
useful in terms of allowing reuse of parsing and knowledge extraction engines.

RDF offers a very useful data model, but as with any information, the topic of how
to manage that data is important. Clearly, in the case of small datasets, it may be
sufficient to simply statically store an RDF file, and allow individuals to process it as
they wish. However, in many cases this approach will be inadequate: as the dataset
grows, or concurrent users wish to access or modify it, it becomes necessary to have a
system for managing it. This is the preserve of DBMSs, and the DBMSs of the Semantic
Web world are known as RDF (or Triple) Stores. RDF stores allow a repository of RDF
data to be queried in place, using a language such as SPARQL (described in Section
2.3).

2.2.1 RDFS and OWL

Semantic Web technologies offer the ability to infer new facts from the base facts found
in an RDF datast. While not the focus of this document, it is worthwhile to give a
brief summary of the languages that enable this feature. RDF Schema is an extension
to RDF that adds some basic constructs (Lassila et al., 1999). Most importantly, this
includes classes and subclasses, which allows statements about something’s type. This
means one could make statements such as ‘Greg has a type of “Human” ’, and, with
an additional statement that a ‘Human’ is a subclass of the type ‘Animal’, infer that
Greg is an Animal. Further additions include property domains and ranges, allowing
the ability to make statements about the class of objects that act as the subject and
object of particular properties.

OWL (and its recent successor, OWL 2 (Motik et al., 2009)) adds much more wide
ranging capabilities, aimed at providing computers with the ability to share not just
information, but vocabulary (Patel-Schneider et al., 2004). This means that potentially,



14 Chapter 2 Background and Research Motivation

even if computers do not share the same understood ontologies, they might be able to
communicate by expressing concepts and relations that they do understand. OWL adds
extensive reasoning capabilities, varying within three sublanguages:

• OWL Lite, which offers minimal reasoning capabilities designed to support classi-
fication hierarchies. This enables reasoners to work with OWL Lite ontologies and
produce relatively fast results.

• OWL DL, which offers a great deal of expressiveness, along with guarantees that
all reasoning will be both complete and computable.

• OWL Full, which offers maximum expressiveness, with no guarantees that reason-
ing can be concluded in finite time.

Reasoning over RDFS and OWL ontologies is complex. Most RDF stores pre-compute
much of the entailment of RDFS data (forward chaining). This effectively determines all
the new facts that might be inferred and asserts them, leading to a relatively minimal
impact upon query performance beyond the requirement to store more triples.

The pre-computation of the full entailment of even OWL Lite data is complex and likely
to result in an explosion of the number of triples that need to be stored. Reasoning at
the point of the query (backward chaining) is often too expensive to support interactive-
time query satisfaction. This problem is largely outside the scope of this document, as
it focuses on the issue of storing and querying the RDF graph, rather than performing
efficient reasoning.

2.3 Data Extraction

Given a standard set of data representation languages, it is of clear use to have a stan-
dard mechanism for extracting subsets of information from documents expressed in
them. A variety of query specifications have been created to accomplish this, with the
SPARQL standard being the W3C’s recommendation (Prud’hommeaux and Seaborne,
2006). SPARQL, like other languages of its kind (Seaborne, 2004; Karvounarakis et al.,
2002; Broekstra and Kampman, 2003b), works by allowing users to specify a graph pat-
tern containing variables, which is then matched against a given data source, with all
matching datasets returned. Figure 2.5 gives an example.

SELECT ?x WHERE {
?x <http://www.example.com/has-gender> <http://www.example.com/male> .
}

Figure 2.5: SPARQL query



Chapter 2 Background and Research Motivation 15

The query shown in Figure 2.5 would select all unique values ?x, where there is a
triple that matches any subject ?x, and the specified predicate and object (in this case,
anything with a gender of male). The data is returned in a standard XML-based format.

Queries can be built up into a pattern longer than one triple in length. In Figure 2.6,
there are two constraints, which ought to return any URIs representing a human male:

SELECT ?x WHERE {
?x <http://www.example.com/has-gender> <http://www.example.com/male> .
?x <http://www.example.com/has-species> <http://www.example.com/human> .

}

Figure 2.6: SPARQL triple pattern

These query patterns are the fundamental operation in SPARQL. While SPARQL re-
mains a simple language when compared to Structured Query Language (SQL), the
equivalent in the world of RDBMSs, it has a variety of additional features: the ability
to sort output, retrieve subsets of the output, or ensure that each output row is distinct,
for example.

Two more fundamental operations are the ability to specify that some parts of the
pattern are optional, and to specify that a given variable binding must match a certain
value or pattern. An example with these two features, using the prefix ‘ex:’ to replace
‘http://www.example.com/’ is shown in Figure 2.7. This query finds all male humans
who have fewer than 20 books, and if there is any record of the food they like, retrieves
that too. Note that if there is no record of the food they like, their information is still
retrieved due to the pattern being marked as optional.

PREFIX ex: <http://www.example.com/>

SELECT ?x ?foods WHERE {
?x ex:has-gender ex:male .
?x ex:has-species ex:human .
?x ex:has-book-count ?bookcount .
FILTER (?bookcount < 20)

OPTIONAL {
?x ex:likes-food ?foods .

}
}

Figure 2.7: SPARQL query using FILTER and OPTIONAL

The benefit to be gained through the use of a standard query language is clear: poten-
tially, a human or computer could connect to any open data repository, make a very
specific request for information, and retrieve machine-processable data. This is in stark
contrast to the web of today, which machines have a great deal of difficulty traversing



16 Chapter 2 Background and Research Motivation

in a meaningful manner, and which even humans can have difficulty in finding relevant
information.

2.4 RDF in Relation to Other Database Models

As described in Section 2.2, effectively working with large datasets of any kind implies a
system to manage that data: Database Management Systems. In any database system,
data is accessed according to some model: that is, there is some logical concept of how
data is laid out within the system. This section describes data models in common use
today, with a particular focus on the pre-eminent relational model. It relates this knowl-
edge back to the RDF data model as described in Section 2.2, and asks the question:
is the RDF data model fundamentally different? The answer to this question dictates
the extent to which the approaches used in traditional DBMSs can be applied to RDF
stores.

2.4.1 Early Database Models

A database management system is a computerised record keeping system. This docu-
ment distinguishes between the database, which is the body of data, and the database
management system which manages that data.

The storage and processing of databases is one of the earliest uses of computer systems.
Database systems were created to enable such enormous tasks as tracking inventory data
related to the Apollo project. Early systems were designed for sequential access via tape
drive, and were later adapted for magnetic hard drive storage. Data was stored in a
strict hierarchical or network-oriented manner (Tsichritzis and Lochovsky, 1976; Taylor
and Frank, 1976; Date, 1990).

What was notable about these database systems was that the manner in which they
logically stored data reflected the way in which in which it was physically stored on
the hard disk. Changes to the way data was physically represented (to improve perfor-
mance, for example) necessitated changes to both the dataset itself, to match the new
database structure, and to the applications sitting on top of the database such that they
could physically traverse the data. These applications accessed the data in a procedural
manner, navigating from node to node to find the information that they needed. This
mechanism was optimised for the retrieval of individual pieces of data, rather than whole
datasets matching particular criteria.

Clearly, this mechanism for data storage and management has significant disadvantages.
Changes to the DBMS could result in a lot of work modifying existing databases to fit,
and a requirement to modify existing applications to take into account the new data



Chapter 2 Background and Research Motivation 17

traversal paths they would have to take. Further, writing queries was something that
only a highly skilled professional would do, and while there was scope for the fine tuning
of queries to maximise performance, it relied on the programmer working out the optimal
manner in which to retrieve data. The modern database market has evolved massively
from this starting point, thanks in large part to the relational data model, derivatives
of which are pre-eminent in the DBMS market today.

2.4.2 The Relational Data Model

A radical diversion from early approaches was proposed by E. F. Codd in Codd (1970). In
his approach, a mathematically complete data model based on set theory and predicate
logic is used to define the logical storage of data, and the interactions that can be
performed on it. This is known as the relational model. In particular, it emphasises the
separation of this data model from the way the information is physically stored: that is,
the DBMS may choose to lay the data down in storage in any manner, but the way in
which the data appears to the user remains consistent.

The relational model defines data in terms of relations, consisting of any number of
tuples and attributes. Relations are broadly analogous to tables, consisting of rows and
columns. These terms are used interchangeably in the rest of this document. These
relations are (conceptually) unordered. Each tuple is unique (since it makes little sense
to assert the same fact twice). Data retrieval in the relational data model differs sig-
nificantly to the way it was performed in prior systems, primarily in that queries are
specified in a declarative language, which allows users to state what data they want
to retrieve, without forcing them to specify how to retrieve it. Generally, in relational
systems it is the responsibility of the DBMS to work out how to make the query run
as fast as possible (Stonebraker et al., 1976). The component that performs this work
is usually known as the query optimiser. This removes the burden of optimisation from
the application programmer, and allows the database system to be queried with a much
smaller level of expertise (Stonebraker, 1980).

The relational model is designed to support broad operations that return a large number
of results: queries like ‘retrieve all mechanics who have worked on a car containing part
x’. This was a relatively complex operation in previous data models, where each node
would have to be separately navigated to through hierarchies that may not have been
designed for this kind of query.

Relations can have a variety of operations performed upon them, each of which produces
a relation as an output. This ‘closure principle’ means that query commands can be
chained. These include, in particular, select, project, and join. These are explained
below, and illustrated in Figure 2.8.



18 Chapter 2 Background and Research Motivation

Select: A selection (or restriction) is a simple unary operation that returns all tuples
in a relation that satisfy a particular condition. For example, one might select all tuples
in a relation describing people, where the value of the ‘Surname’ attribute is ‘Owens’:

Project: A projection is a unary operation applied to a relation by restricting it to
certain attributes. Non-unique results are filtered out of the resulting relation.

Join: A join is a binary operation used to combine information in relations based on
common values in a common attribute.

ID Surname First Name
1 Owens Alisdair

3 Smith Daniel
4 Livingstone Ken

2 Owens Sally

ID Has-visited
1 Boston
1 London
1 Lyon
2 Boston
2 Edinburgh
2 London
2 New York
3 London
3 Portsmouth

ID Surname First Name
1 Owens Alisdair
2 Owens Sally

Surname
Owens
Smith

Livingstone

ID Surname First Name Has-visited
1 Owens Alisdair Boston
1 Owens Alisdair London
1 Owens Alisdair Lyon
2 Owens Sally Boston
2 Owens Sally Edinburgh
2 Owens Sally London
2 Owens Sally New York
3 Smith Daniel London
3 Smith Daniel Portsmouth

Table 1: Table describing individuals

Result of selecting over the Surname 
1. Result of projecting over 

Surname on table 1.

Result of joining table 1 and table 2 

Table 2: 
IDs to places they have visited

Figure 2.8: Illustration of common database operations

2.4.3 Other Data Models

Since the relational data model gained dominance in the 1980’s, other models have also
been created. Perhaps the most heavily publicised challenger is the Object data model
described in Atkinson et al. (1989). This is based on the familiar principles found in



Chapter 2 Background and Research Motivation 19

object-oriented programming, and indeed these DBMSs are often used as a persistence
mechanism for application objects.

In the object model, a database designer creates ‘classes’, which are templates describing
objects that can be created. Each object stores certain data, and has ‘methods’ (defined
by the class) that can modify or retrieve that data. Object-based DBMS have amassed a
body of criticism (Date, 1990) for their perceived slowness and inflexibility: due to their
very nature, it is difficult to perform arbitrary queries across these databases, as each
object is designed to support specific operations. While the object model is very much
appropriate for applications, which use the objects for pre-defined, specific purposes, a
DBMS is much more likely to require more ad-hoc use. Some of the useful features of
ODBMSs have been incorporated into many commercial databases, in a hybrid model
called the Object Relational Model. This document does not consider Object Relational
Models to a great extent: there is little need for the complexity of objects in a system
that models tiny discrete data items such as triples.

There are many other models in existence. Increasingly common are Data Warehouses
(DWs) and Data Marts. These are often, as in many RDF stores, built as a layer
on top of SQL databases: indeed, SQL now provides explicit support for them. DWs
are built for specialised applications such as business decision support, which often
require complex, unpredictable queries over massive quantities of batch-updated data
(Chaudhuri and Dayal, 1997). Warehouses may be constructed as an aggregate of many
smaller operational databases, and are a very large task to construct: it is very important
to define a data schema that effectively models business processes and captures the right
information. Query performance is much more important than ability to process writes,
and a lot of data (such as aggregate figures) is precalculated to save work.

Finally, a common model used by applications for data persistence is simple key/value
pair storage, as evidenced in Berkeley DB (Olson et al., 1999). This DBMS allows
arbitrary data assertion and retrieval, assuming the structure conforms to its simple
model.

In general, most models work on a presumption that data will be asserted in a well-
understood manner. Table 2.1 offers a brief overview of the differences between current
models.

2.4.4 Representing RDF

While the purpose of RDF stores is similar to that of conventional database systems such
as the dominant RDBMSs, Object-Relational DBMSs (ORDBMS) and Object-Oriented
DBMSs (OODBMS), RDF graph storage and querying bears notable differences in terms
of the structure of the data that is stored. Whereas existing database systems largely
require that the data structures that can be asserted into them (the schema of the data)



20 Chapter 2 Background and Research Motivation

are defined prior to assertion of actual data (Date, 1990), RDF stores allow arbitrary
assertion of knowledge in the form of triples (or quads if provenance information is also
desired). While the very concept of a triple is a data schema in and of itself, it is
extremely loose compared to that expected to be defined within most previous database
systems.

There are important reasons why it is necessary to explicitly define schema in existing
database systems:

• It defines what data is expected to be asserted into the system. Since most current
databases act as knowledge stores for a fixed set of applications, this is usually both
reasonable and useful: it prevents the assertion of data of an incorrect structure
for those applications to use, and preserves data integrity (Date, 1990).

• It offers cheap, detailed information to the DBMS on how the data is structured:
how it might best be laid down in storage, how queries can be optimised using
knowledge of indexes, row lengths, and so on. (Date, 1990; Stonebraker et al.,
1976)

2.4.4.1 Storing unstructured data

While the requirement for strict schema definition is usually helpful in traditional database
environments, the situation regarding RDF storage is rather different, as RDF has been
designed to be as unconstrained as possible. As previously noted, this has advantages in
terms of accessing arbitrary data sources on the Semantic Web, interoperation between
heterogeneous data sources, and situations where the data is of unknown or constantly
changing structure (Taylor et al., 2005). However, lack of defined structure generates
difficulties in optimising stores such that they are capable of storing large numbers of
triples, and querying them in an efficient period of time (Carroll et al., 2004; Smith
et al., 2007). Current RDF stores are restricted to storing orders of magnitude less data
than relational systems (Lee, 2004; Schmidt et al., 2010; Bizer and Schultz, 2009).

As noted, an individual installation of a traditional DBMS product is likely to have a
known set of applications running upon it. Thus, the access patterns can be anticipated,
and the database can be optimised for those patterns through the use of indexes and
other tactics. While arbitrary access is supported, this can be dramatically slower than
doing so through the predicted routes (Date, 1990). In contrast, an open data node
(a store that is publicly accessible) on the Semantic Web might be used in a variety
of manners. It could be accessed in a completely arbitrary manner, as different users
request different information, or it might have a certain set of applications that perform
the majority of data requests. It might have to adapt to new applications suddenly



Chapter 2 Background and Research Motivation 21

adding a lot of load with a new style of query that it had not previously had to satisfy
often (Erling and Mikhailov, 2008).

As mentioned in Section 2.4.3, constructing a basic schema for RDF storage is straight-
forward: indeed, it is possible to represent RDF using the relational model and translate
SPARQL queries into SQL (Harris, 2005). Many RDF stores are built into or on top of
existing relational DBMS engines, and even non-relational RDF stores usually use the
concepts of select, project, and join to answer queries. Conceptually, RDF can be mod-
elled as simply a long list of triples, and this can be represented using a single relation.
If one wishes to normalise, one can use more tables to store a list of unique URIs and
literals, with the triple table itself storing integer keys into those tables.

Unfortunately, RDF’s flexibility (in both the manner in which data is represented and
the manner in which it is queried) presents a barrier to creating more complex, expressive
representations. The ease with which the structure of an RDF document can change
makes the creation of anything but the most simplistic of fixed storage schemas very
challenging. This can be considered the major factor that differentiates the RDF model
from the other common representations. These differences can be seen at a glance in
Table 2.1.

Intended Use Expected Data
Structure

Queries

RDF Arbitrary knowledge
representation

Triples, potentially
no greater repeating
structure

Unknown level of
query predictability

Relational Application support,
knowledge base

Tables, predefined
structure

Mostly predictable
queries, but includes
arbitrary query
support

Object Application support Objects, predefined
structure

Mostly predictable
queries, may include
some arbitrary
query support

Data
Warehousing
(various)

Decision support,
statistics, knowledge
base.

Tables, predefined
structure

Limited query
predictability

Key/Value Application support Key/value pairs Unknown level of
query predictability,
relatively simplistic
query support

Table 2.1: Database model comparison

An attempt to implement a more descriptive schema that adapted to the structure of the
data is described in Wilkinson (2006), but this approach has its own issues. While it was



22 Chapter 2 Background and Research Motivation

shown to confer some performance advantages, and attempts were made at managing
the evolution of the schema automatically (Ding et al., 2003), it generally proved a
complex, largely manual task (Abadi et al., 2007). As will be seen in the following
chapters, the difficulty of creating anything but the most general of schemas for RDF in
the relational model is mirrored by a difficulty in creating a physical storage schema that
provides adequate performance: indeed, it has been suggested that RDF stores produce
incomplete results in an attempt to limit query costs (Erling, 2009).

2.4.4.2 Further information

There are several more features of the RDF data model that are of interest when con-
structing a DBMS implementation:

• There is no requirement for partial text searching over URIs: that is, while URIs
are strings, there is no requirement to match over a portion of that string, because
URIs are discrete concepts.

• Sorting has no inherent meaning for RDF URIs, since they are simply labels for a
concept rather than data in and of themselves.

• There is likely to be a requirement for partial text searching over literals.

• Typically, most SPARQL queries specify a predicate, and are searching for either
subjects or objects. It is less common to search for the predicate that connects
two concepts (Seaborne, 2008).

• RDF typically has a large number of data points (triples) relative to the physical
size of the data.

2.4.4.3 Summary

RDF storage poses a variety of challenges for traditional datastores, largely due to the
unpredictable nature of information encoded in RDF, and the unpredictable manner
in which such data may be queried. It is important to solve these challenges, most
particularly because the problem of RDF storage is important to the success of the
Semantic Web. If individuals or organisations are to be expected to host data and allow
users to query it, particularly in a free environment, it has to be feasible to support low
latency, concurrent queries over large quantities of such information. Interfaces on to
RDF data for human users must maintain the interactive performance to which they
have become accustomed.

The following chapter goes on to explore the issues of importance when creating a DBMS,
and the techniques used to approach those issues. These are evaluated for their relevance



Chapter 2 Background and Research Motivation 23

to RDF storage, with the purpose of informing the creation of future, high performance
RDF DBMSs.





Chapter 3

Related Work

RDF storage and query is a challenging problem, thanks to the nature of the RDF data
model: data structure and query load are both highly unpredictable, and each data
point in an RDF document is very small, implying a large number of data points to
encode a meaningful amount of information. Managing and working with such a large
quantity of points in a performant manner is difficult.

This chapter considers mechanisms for improving the performance of RDF stores, draw-
ing on knowledge from the wider world of relational DBMSs, and existing experiences
of RDF store creation. This knowledge is analysed, and opportunities for improvement
are derived. Several important factors in the creation of a high performance RDF store
are considered:

• Section 3.1 provides background on the architecture of modern computer systems.
This is of critical importance when designing a DBMS, and highlights common
misunderstandings with regard to the manner in which hardware components be-
have.

• Section 3.2 examines the problem of translating the RDF data model into a rep-
resentation suited for storage and retrieval on a computer, using the knowledge
gathered in Section 3.1 to examine the techniques used in current RDF stores.

• Section 3.3 tightens the focus to indexing data structures. Since RDF stores typ-
ically have to extract small amounts of data from a vast corpus, while experi-
encing unpredictable queries, the indexing technique used is extremely important.
This section reviews the most promising indexing technques in the DBMS world,
analysing their suitability for RDF storage.

• Section 3.4 describes the importance of the join operation in RDF storage, and
how the amount of time spent joining can be minimised through careful query
optimisation and precalculated joins.

25



26 Chapter 3 Related Work

• Section 3.5 describes the primary method for scaling RDF stores to extremely large
quantities of data: clustering information across multiple machines. This section
includes a description of work performed by the author aimed at overcoming the
issues that RDF presents with regard to distribution.

• Section 3.6 briefly describes how the techniques described in the preceding sections
are implemented in a variety of existing RDF stores.

• Finally, Section 3.7 distils the preceding sections into an analysis of the most
promising opportunities for future work.

3.1 Characteristics of Modern Hardware

In order to understand how to create a performant RDF store, it is obviously important
to understand how the hardware on which a store is to be run behaves. This section
offers a brief overview of the components of modern computers that are particularly
relevant to DBMS performance, with a focus on the commonly used x86 architecture.

3.1.1 Disk

The majority of modern DBMSs make use of disk-based storage. It is plentiful and
cheap, with consumer-level disks offering up to two terabytes of space.

Unfortunately, while the speed of CPUs has continued to rise dramatically, the perfor-
mance of hard disks has not kept pace (Stonebraker et al., 2007). The speed of sustained
reads and writes on the disk is quite slow, in the order of 100MB/s. Even more criti-
cally, there is an average seek time associated with travelling from one block of data to
another non-sequential block in the order of 10ms. The specific value of this seek time
is dependent upon how far apart the data is located (Abadi et al., 2006).

This storage medium, in particular its seek time, is a major limiting factor in both read
and write performance in any disk-based DBMS. To put this in perspective, using a
modern 3.0GHz processor that can execute up to four simple instructions per cycle, 120
million instructions might be executed in the time it takes to perform a single disk seek
(Casazza, 2009). It has thus become necessary to attach a substantial number of disks
to a typical database server, giving it the ability to perform several seeks in parallel.
Upcoming solid state disk designs are less capacious, but by comparison feature much
smaller seek times for reads. This is particularly relevant for RDF stores, which are
generally required to process a great many very small data points: in this situation,
assuming the processing cannot be kept fully sequential, access time is extremely im-
portant. It can be expected that as solid state disks mature they will become a popular
choice for RDF storage.



Chapter 3 Related Work 27

3.1.2 Main Memory

On the face of it, storing data in RAM is a relatively simple matter: RAM itself has
a constant access time, and its performance is vastly better than that of hard drives:
modern paired consumer ram modules offer a throughput of over 10GB/s. This means
that the requirement for pieces of logically contiguous data to be placed next to each
other is looser, making RAM easy to work with. Since RAM is a resource that is
consistently reducing in cost, it has the potential to become the main storage medium
for applications that require very low latency.

Unfortunately, this view of RAM has been rendered overly simplistic, thanks to the
failure of modern RAM technologies to keep up with the performance of CPUs (Boncz
et al., 1999). While the bandwidth of RAM is very high, latency can be in excess of 200
processor cycles (Boncz et al., 2005). This makes it impractical for modern processors
to wait for memory every time they need access to a piece of data (Drepper, 2007). As
a result, data going to and from RAM is held in caches on the processor. These are
explored in more depth in Section 3.1.3, but the practical upshot is that contiguity of
data access remains important even when working with a main-memory system.

Other difficulties in working with RAM are that it is limited in size and not persistent.
Thanks to its increasing availability, however, main-memory stores are becoming more
practical, leading some observers (Stonebraker et al., 2007) to call for certain classes
of DBMS to become main-memory based. RAM’s lack of persistence complicates this
somewhat, as it must be possible to reconstruct the database into RAM from a persistent
store (usually a hard disk) in case of failure.

3.1.3 CPU

Making efficient use of the CPU has become an increasingly challenging task, thanks
largely to the fact that the rate of improvement in processor performance has outpaced
that of supporting technologies. In particular, both disk and memory latencies for ran-
dom access are now vastly greater relative to processor performance than in previous
years (Hua and Lee, 1990; Keeton et al., 1998). This rapid growth in processor per-
formance has been supported by increases in clock frequency, combined with changes
such as the introduction of pipelined, superscalar architectures and the addition of mul-
tiple processor cores per CPU (Harizopoulos et al., 2006). A single core of a modern
CPU is now capable of executing up to four instructions per cycle on certain workloads
(Casazza, 2009) - or in the order of 12 billion instructions in a single second at a 3GHz
clock rate.



28 Chapter 3 Related Work

3.1.3.1 Superscalar and Pipelined Architectures

In a nutshell, pipelining is the process of breaking down the work required to perform
an instruction into its component parts, and executing them sequentially. If the pipeline
is kept full (i.e. once stage 1 of the pipeline has finished executing part 1 of instruction
1, it immediately begins executing part 1 of instruction 2), the processor can execute
one instruction per cycle, despite the fact that any given instruction will take several
cycles to complete (Anderson et al., 1967). This process has the benefit of allowing the
CPU to maximise the utilisation of its functional units, and hide the fact that there are
latencies involved in the processing of an instruction that make it impossible to compute
in a single cycle. Pipeline lengths can vary dramatically between processor designs: the
Intel Itanium 2 has a short pipeline length of seven stages, as opposed to 31 for the Intel
Pentium 4 (Boncz et al., 2005).

Superscalar architectures involve a processor being able to fetch and complete more than
one instruction simultaneously. This is performed not with the simple duplication of all
functional units within the processor, but by the inspection of the instruction stream
to find suitable instructions available for execution given the currently available unused
functional units (Boncz et al., 2005).

Both of these architectural improvements have the benefit of increasing CPU through-
put without the requirement for increases in clock frequency. Unfortunately, neither is
foolproof. Both require data-independent instructions if they are to operate with full
effectiveness: that is, if one instruction depends on the output of another, it cannot enter
the pipeline (or be processed simultaneously) until the first instruction has completed,
and the processor may have to insert stalls, or wasted clock cycles into the pipeline
(Riseman and Foster, 1972). Fortunately, modern processors have the ability to process
instructions out of order, allowing instructions that do not depend on actions performed
in the pipeline to ‘jump the queue’. This is usually highly effective, except in situations
such as a tight loop that operates repeatedly on a small number of pieces of data, re-
sulting in a lot of dependencies within the instruction stream (Zukowski et al., 2006).
In this case, a lot of processor cycles can be wasted.

Instruction pipelines also benefit from a predictable instruction stream: that is, if the
instructions involve a conditional branch to another code area, the processor has to guess
which branch will be taken and fill the pipeline with those instructions (Drepper, 2007).
If the guess is wrong, the pipeline has to be cleared, resulting in the loss of all ongoing
work within it. Modern CPUs include branch prediction units that attempt to decide
which branch will be taken in advance based on past behaviour: these are effective
for branches that exhibit predictability (Drepper, 2007), and on suitable workloads can
achieve correct predictions in over 97% of cases (Yeh and Patt, 1991).



Chapter 3 Related Work 29

3.1.3.2 Caching

In order to hide the performance inadequacies of main memory, a complex set of caches
has been created. Of particular import are the data and instruction caches, and the
Translation Lookaside Buffer (TLB).

When the CPU is looking for information in memory, it will check its caches first. If one
of the caches has the information, the CPU can access it at the cost of cache latency
rather than main memory latency. If not, the information is transferred from main
memory into the cache, and other information is evicted on a Least Recently Used
(LRU) basis. Typically, an entire ‘cache line’ (usually 64 bytes on modern systems)
will be transferred from memory at once, making subsequent accesses to adjacent data
especially fast (Harizopoulos et al., 2006). Accesses to main memory are pipelined:
that is, the system does not have to wait for one request to finish being retrieved from
memory before sending off another (Badawy et al., 2004). Thus, if the system always
knows what information it will require well in advance, the latency of RAM is not an
issue. In practice, however, this is rarely the case.

Traditional CPUs have Level 1 (L1) and Level 2 (L2) caches. The L1 cache is small
(on the order of 16-32KB each for data and instructions), and extremely fast. Data can
usually be retrieved from this level in around three processor cycles. The L2 cache is
larger (at two or more megabytes in total), and somewhat slower, requiring around 14
cycles to access: this is still an order of magnitude faster than main memory, however
(Drepper, 2007). Multi-core processors may differ from this standard approach: the
Intel Core i7 has a three level cache system, with each core having an L1 and small
(256KB) L2 cache of its own, with a large shared L3 cache (Casazza, 2009).

As long as data and instruction flow is sufficiently predictable, or occurs over a suffi-
ciently small set of data, information can be held in and retrieved from cache, allowing
the exceptional throughput of modern processors to be utilised to full effect. A simplified
hierarchy of data storage is shown in Figure 3.1.

Assuming a working set of information larger than these small caches, predictability is
once again key to maintaining overall performance. In the case of loading the instructions
to run a program, if the processor knows what instructions will be accessed, they can be
prefetched into cache. Conditional branch instructions again cause issues, this time with
the caching of instructions: if the processor does not accurately predict which branch
will be taken, it may end up having to clear the pipeline(s) and wait on main memory
to retrieve instructions. This kind of stall is especially severe since the processor cannot
perform any out of order execution in an attempt to cover the error (Ailamaki et al.,
1999).

In certain situations, the CPU can also perform data prefetching into cache. Modern
processors can detect sequential access in situations such as iteration over an array,



30 Chapter 3 Related Work

CPU

L1 Data Cache
16-32KB

Latency: ~3 cycles

L1 Instruction Cache
16-32KB

Latency: ~3 cycles

L2 Cache
1-8MB

Latency: ~14 cycles

RAM
1-128GB

Latency: >200 cycles

Disk
1TB+

Latency: ~30M cycles

Figure 3.1: Data storage hierarchy.

and behave appropriately to fetch information into cache ahead of time (Drepper, 2007;
Harizopoulos et al., 2006). Thanks to the high bandwidth of memory, extremely high
performance can be maintained in this scenario. Other common operations such as tree
traversal, linked list iteration, or binary chop over an array do not benefit from this
optimisation, however, resulting in poor processor utilisation.

In modern operating systems, each process is given access to an area of memory that
appears sequential, unused by any other process. This area is known as a virtual address
space. Virtual addresses within this space are then mapped by the OS onto physical
memory addresses. Since the process of translating virtual addresses to physical ones can
be quite expensive, even in a system that performs much of the work in hardware, modern
processors have a TLB. The TLB is a cache that stores commonly used virtual to physical
address mappings (Ailamaki et al., 1999). The more memory pages an application uses,
the more entries are required in the TLB, increasing the likelihood of overflowing its
capacity and requiring expensive manual translations for memory accesses (Drepper,
2007). In practice, for applications that use a lot of memory, the TLB encourages
accessing only a few pages at any one time: staying within these pages means that the



Chapter 3 Related Work 31

application will have all or most of its virtual to physical address mappings cached,
improving performance.

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600

T
im

e
/c

o
m

p
a
ri
so

n
 (

n
s)

Array Size (MiB)

Unpredictable
Predictable

Figure 3.2: Binary chop cost per comparison as dataset increases in size

Array Size
(MB)

Comparisons
Required

Unpredictable
(ms)

Predictable
(ms)

0.6 18 2200 820
6 21 9610 960
60 24 20660 1090
600 28 67540 1270

Table 3.1: Cost of binary chop as dataset increases in size

In general, as the working set of information moves outside of the capabilities of these
caches, overall performance degrades significantly thanks to the relatively high latency
of main memory. This is illustrated in Table 3.1 and Figure 3.2, where the author
created a simple application to perform repeated binary chops with predictable (i.e
repeating) and unpredictable search terms, over a given quantity of data. It can be
seen that with unpredictable search terms the time required increases out of proportion
with the number of comparisons required, whereas with predictable terms the scaling is
more linear. This is because the predictable terms are consistently accessing the same,
already cached values, while the unpredictable terms need to wait regularly on memory.
The disparity is small for a dataset that fits in cache, because the entire dataset can be
cached, but becomes huge as the dataset scales up. The code for this test can be found
in Appendix A.

Given this information, it can be seen that it is important for applications which require
extremely high performance to ensure that data is compact, and that related data is



32 Chapter 3 Related Work

located contiguously where possible, maximising cache utilisation. DBMSs have histori-
cally performed poorly at this task (Ailamaki et al., 1999; Keeton et al., 1998; Knighten,
1999).

3.1.3.3 Multiple Cores

Attempts to increase clock frequency have come up against hard limits. As clock fre-
quency increases, power consumption (and hence heat production) increases out of pro-
portion. The traditional offset for this, reduction of the scale at which processors are
manufactured, has become insufficient (Agarwal et al., 2000; Sutter, 2005), and a new
approach to improving CPU performance was required beyond simply ramping up the
frequency. The result of this is multi-core CPUs, essentially multiple processors on
the same die, with certain shared components (for example, one level of cache may be
shared).

Programming for multiple cores has its complications: thread synchronisation across
processors is complex, and keeping caches current when a single location in memory
may be altered by multiple cores can cause serious performance degradation (Drepper,
2007). Typically, however, multi-user DBMSs are well placed to take advantage of multi-
core CPUs: these systems are inherently multi-threaded, working on several nearly
independent problems at the same time. Many of the techniques used in distributed
DBMSs (explored further in Section 3.5.3) can be applied to the problem of concurrent,
single machine DBMSs.

3.1.4 Network

The behaviour of computer networks is important when discussing distributed stores.
Typically, a round trip over gigabit ethernet with no other traffic has a latency in
the order of 0.2ms (Erling and Mikhailov, 2008), and the maximum bandwidth for an
individual Network Interface Card (NIC) is 1Gbit/s.

Practically, two factors have a significant impact upon these stated figures. Firstly, the
effective bandwidth of the system reduces with an increasing number of messages: there
is a significant overhead associated with sending a communication and the necessary
acknowledgement. This means that effective bandwidth increases as the size of messages
goes up (Erling and Mikhailov, 2008). Secondly, the structure of the network makes a
big difference to the overall bandwidth between two machines. Two machines that are
communicating across several network switches are much more likely to require access to
a contended network line than two machines located on the same switch. Switches also
tend to impose a substantial latency in the order of tens of microseconds per operation
(Ousterhout et al., 2010), unless they are of a specialised high performance variety. It



Chapter 3 Related Work 33

is thus desirable to keep communication limited to machines on the same hub as far as
possible.

3.1.5 Summary

This section provided an overview of the components of a modern computer system with
special relevance to the creation of a DBMS. A recurring theme in modern computers
is the issue of latency. Both disk and RAM have a very high latency compared to
their maximum throughput, and the CPU experiences latencies in the processing of
instructions: it has mechanisms to disguise them, but they only work if the workload is
sufficiently predictable.

In order to achieve the highest possible performance, these components require pre-
dictable, contiguous access. This presents a significant challenge for DBMSs, since their
job is usually to work with and extract relatively small amounts of information out of
an extremely large corpus, an activity that inherently involves a certain amount of non-
sequential access. The challenge, then, is to limit unpredictable access as far as possible
without processing too much irrelevant data, or causing storage footprints to balloon
overmuch. The balance between these factors depends on the components in question.

In addition to favouring sequential access, both RAM and disk provide a block of infor-
mation in the course of an access: in the case of a disk, a page in the order of 4-16KB is
retrieved. In the case of RAM, the equivalent is a 64 byte cache line. The difference in
cost between doing work on only one datum in this block and doing work on the entire
block is relatively small: in both cases, the cost of retrieving another nonsequential block
is usually high compared to the cost of actually doing the work. The practical upshot
of this is that data structures should attempt to make all of the data within a block at
least somewhat related, as this extra information can be processed cheaply.

3.2 Physical Representation: Translating a Data Model

into a Performant Storage Layer

As noted in Section 2.4, modern DBMSs have a logical view onto data that is not
required to match the manner in which data is physically stored and manipulated on
the system. The topic, then, of translating a logical representation into a performant
physical one is clearly of great importance. This section considers the host of factors
and challenges involved in creating a performant physical representation for any DBMS
(Date, 1990; Stonebraker, 1980; Hawthorn and Stonebraker, 1986), including:



34 Chapter 3 Related Work

• What is the optimal manner in which to store the data for a given storage medium?
Is the goal to optimise for small database footprint or performance? If the answer
is performance, is read or write performance the most important?

• How can the most efficient use of the various components of the system be made,
in particular the CPU, memory, and disk?

3.2.1 Physical Representations in DBMSs

The physical representation of a database has a large impact on read performance,
write performance and space utilisation, and is thus a topic of clear importance. There
is often a requirement for trading off between these considerations, and the focus is
chosen depending on the expected usage profile of the DBMS. The choice of physical
representation is also heavily influenced by the chosen storage mechanism (such as RAM,
hard drive, or even flash memory).

In general, the most common (O)RDBMSs have physical representations that are re-
markably similar to the logical layout of the relational model. Data is written to the
disk row by row, kept loosely sorted, or ‘clustered’, on a given column or set of columns
(Rowe and Stonebraker, 1986). Typically, the table will be accompanied by one or more
indexes that allows, for a specified key, the location of rows containing that key to be
located promptly: this is necessary since as the table grows it quickly becomes imprac-
tical to scan through all entries. Since indexes are of particular importance to RDF
stores, due to the exceptionally long tables that they can require, the topic of indexing
is explored in more detail in Section 3.3.

Row oriented representations can be considered optimised for write performance, in that
adding a row to a table usually only requires a single write operation to the backing
storage. This is appropriate for the most common DBMS tasks, such as a backing store
for a web site, or storing employee payroll information, since data may change at any
time and there is little requirement for performing extremely complex queries: most
read operations will involve retrieving a single record (Shao et al., 2004).

Optimising for writes in this fashion can have a significant impact on read performance,
however, which is of great importance for other applications such as data warehousing
and decision support. Row-orientation means that in performing a select based on a
single column, it is necessary to read the entirety of each row into memory. This results
in greater data transfer, more memory use, less efficient use of CPU and disk caches, and
is particularly damaging on wide tables. Finally, the fact that data is not maintained in
correctly sorted order means that additional disk seeks can be required when retrieving
data, and the cost of join operations increases (Stonebraker et al., 2005).

If database use is expected to be heavily read-biased, one might choose to optimise for
reads. Characteristically, a read-optimised DBMS will maintain strict sorted order, and



Chapter 3 Related Work 35

may store its data in columns: that is, each column of data will be stored contigu-
ously in disk or memory. This benefits read performance significantly when working
with specified columns over a larger table, as irrelevant columns can simply be ignored
(Stonebraker et al., 2005). In addition to a reduction in wasted memory and disk trans-
fer time, this lack of wasted space has a beneficial effect upon CPU cache performance,
as related data is more likely to be colocated within cache lines (improving access times,
and resulting in less wasted cache). Schemes to improve the cache utilisation of row
oriented DBMSs also exist, an example of which is PAX (Ailamaki et al., 2001). PAX
stores information row-wise overall, but column-wise within a disk block, resulting in
improved cache utilisation without significantly increasing time spent writing to disk.

In general, when designing the physical layer of a DBMS, the following rules of thumb
should be considered:

• When attempting to optimise data assertion performance, it is important to min-
imise the amount of data written to storage. This includes reordering of data: for
example, if data is kept in sorted order on disk or in memory, it is expensive to
perform an insertion.

• When attempting to optimise data retrieval performance, it is important to min-
imise the amount of data that is read from storage. This does not necessarily mean
that the data footprint should be small: if the data is stored in several represen-
tations, it is necessary only to read from the one that will allow the retrieval of
the data in the quickest time. It is often useful to maintain data in sorted order,
contiguously on the storage medium.

• For both cases, it is important to read or write the data as contiguously as possible
to reduce the impact of memory and/or disk latency.

3.2.1.1 Compression

Thanks to the increasing disparity between disk and CPU performance, data compres-
sion has become a topic of increasing importance in the DBMS field. Where compression
was originally utilised purely for the benefit of saving storage space (Stonebraker et al.,
1976), it has now reached a point where in a disk-based environment the saving in the
time taken to retrieve a chunk of data can actually result in improved overall query
performance. This is thanks to the obvious improvement in effective transfer rate, com-
bined with a reduction in average seek time due to the reduced distance between data
points (Abadi et al., 2006).

Both read and write oriented stores may use compression. Most DBMSs that make
use of compression inflate data either as it is streamed off disk, or in the process of



36 Chapter 3 Related Work

working on it. This necessitates extremely high performance algorithms of the kind de-
scribed in Zukowski et al. (2006). As a result of this, DBMS compression techniques are
usually very lightweight. Examples of these algorithms are simple dictionary compres-
sion, common prefix elimination, frame of reference (subtraction of a common maximum
number and storage of the small delta), and run length encoding. These are commonly
encoded at a block level (Poess and Potapov, 2003; Zukowski et al., 2006): that is, a
given dictionary or common prefix will apply to a single (or small number of) disk block,
reducing the cost of data changes when compared to maintaining a dictionary over the
entire database. Some DBMSs also make use of more heavyweight algorithms such as
Lempel-Ziv compression (Abadi et al., 2006; Ziv and Lempel, 1978), which can generally
compress data reliably regardless of its format. This comes at the cost of greater com-
pression/decompression time, and the loss of the ability to retrieve individual values:
instead, a block must be decompressed en masse. To mitigate the cost of compression,
some specialised DBMSs use dedicated hardware to decompress data as it is streamed
off disk (Mueller and Teubner, 2009).

For memory-backed DBMSs, the use of even these simple forms of compression is a
trading off of space for time, except in the most extreme cases. For data that is used
rarely, this may be a desirable approach, but it does not offer the same clear-cut gain
that compression in disk-backed systems does. However, in Abadi et al. (2006), the
authors note that a better way in which to make use of compression is to integrate it
into the query optimiser itself, such that the query optimiser can use aspects of the
compression to its own benefit. For example, a join over two sorted, run length encoded
columns is extremely simple compared to the equivalent join over uncompressed data.
This adds significant complexity to the query optimiser, and is less simple to integrate
into existing DBMS engines than simple pre-execution decompression, but represents
the opportunity to create large performance improvements, even on in-memory systems.

3.2.2 Physical Representation in RDF Stores

While the creation of a simple logical representation for RDF is not difficult, it is chal-
lenging to create a performant physical representation. This section describes in detail
the concerns with regards to implementation in RDF stores. This document does not
offer any great detail on systems designed to put an RDF interface on an existing fixed
relational schema, as described in Bizer and Cyganiak (2006): the focus in this document
is on stores designed for unpredictable access patterns and unpredictable data changes.

Perhaps the standard model for an RDF triple store is that of a triple table storing
identifiers representing URIs and literals, combined with mapping tables to translate
these identifiers back into their lexical form. This approach is exemplified by 3Store
(Harris, 2005), a system of moderate performance that runs on top of the MySQL
relational engine. 3Store uses a single table in which to store the graph shape (as quads,



Chapter 3 Related Work 37

since it adds another field to denote provenance, or ‘model’), as shown in Figure 3.3.
Since MySQL is a simple row oriented store, the physical representation of this schema
largely mirrors its logical structure.

Model Subject Predicate Object
64 bit hash 64 bit hash 64 bit hash 64 bit hash

Literal
boolean

Inferred
boolean

Hash Lexical
64 bit int text

Integer
64 bit int

Floating
real

Datetime
datetime

Datatype
32 bit int

Language
32 bit int

Triples

Symbols

Figure 3.3: 3store data schema.

Each subject, predicate, and object field in the triples table contains a hash value, the
actual text of which is discovered by joining to the symbols table, keyed on the hash
value. This table contains information such as the lexical representation of the data, as
well as integer, floating point and datetime representations stored for the purposes of
performing comparisons between literals.

The answering of SPARQL queries is a relatively simple matter in this model: the
SPARQL is translated into an SQL query that the underlying RDBMS can answer. For
example, if one wished to answer the SPARQL query in Figure 2.5, 3Store might perform
the SQL in Figure 3.4 upon the triples table.

SELECT subject
FROM triples
WHERE predicate=[hash of <http://www.example.com/has-gender>]
AND object=[hash of <http://www.example.com/male>]
AND model=0

Figure 3.4: SQL produced by 3Store

Clearly, additional SQL is required to determine the lexical representation of the hash
values that would be returned by this query, but the mechanism is adequately illustrated.
In the case of additional constraints in the SPARQL query, 3Store simply performs joins
back onto the triples table. 3Store relies on the MySQL query optimiser to optimise the
SQL it produces.

This schema offers a significant degree of flexibility, by virtue of the fact that any rep-
resentation of triples is stored in a generic fashion, without requirement for schema or
index customisation. There is no limitation upon the structure of the graph, except for
the amount of data that MySQL can efficiently process.

The approach of a long triple table stored in a relational database is common in the
world of RDF stores: popular systems such as Jena (Wilkinson et al., 2003), Sesame
(Broekstra et al., 2003), and Redland (Beckett, 2002) all have popular backends that



38 Chapter 3 Related Work

utilise this kind of structure. However, while it is relatively simple to implement, and
provides full support for RDF storage and query, it should be noted that the nature of
the simple RDF schema described above is such that it is somewhat intractable for real
RDBMSs: the triple tables are exceptionally long, with very little information per row.
This has several effects:

• Very long, thin tables are a nonstandard optimisation case, making it challenging
for DBMSs to produce relevant statistics to aid the automatic resolution of queries.

• An increasing quantity of rows usually increases the difficulty in finding any given
piece of information.

• Typical queries become very expensive. Since a small amount of information is
encoded per row, a useful amount of information typically requires a lot of rows to
encode. Unfortunately, to answer queries, the triple table has to be joined to itself,
and queries that involve lots of joins become rapidly more costly as the number of
rows in the working set increases (Date, 1990).

• (O)RDBMSs usually have a per-row overhead due to tuple headers that provide
information about the row. While these headers are useful for ensuring optimal
behaviour with larger rows, in the case of RDF stores they can overwhelm the size
of the actual data being stored (Abadi et al., 2007).

• The row-oriented versus column oriented debate is relatively academic. RDF rows
are so small in a normalised environment that the benefits provided by column
orientation are reduced somewhat, particularly since RDF query matching often
requires that the whole triple be retrieved anyway. Most stores thus stick to a
row-oriented approach, although it is, of course, still beneficial to consider ways to
reduce the size of the data that is being worked with.

An alternative structure for RDF data, called Property Tables, was described in Abadi
et al. (2007). This approach simply assigned a separate table to every property, storing
each unique SO combination associated with that property in the table. While initial
results showed that this ordering gave substantial advantages, subsequent investigations
showed that using a different sort order for the triple table approach substantially re-
duced the performance improvement (Schmidt et al., 2010).

As noted in Section 2.4.4, in a relational database there is usually an expectation that
a fixed set of applications will be running, with a largely predictable query load. When
performing queries that are unexpected, and thus do not have appropriate indexes to
aid the retrieval of data, query performance can quickly become extremely poor (Date,
1990). Since the knowledge of what queries will be performed is typically very limited in
an RDF store environment, RDF stores often employ a highly comprehensive indexing



Chapter 3 Related Work 39

scheme. This, however, has associated costs in build time, maintenance, and storage
space, making indexing a topic of particular importance in RDF stores. Section 3.2.2.1
considers comprehensive indexing approaches in more detail.

3.2.2.1 Indexing Strategies

Since RDF stores typically operate on one or a few very large tables, it is impractical to
simply iterate through them to find the data in which one is interested. Indexes make
it possible to specify fixed values for one or several attributes, and jump straight to
results with these values. Most modern RDF stores employ a heavy indexing strategy
to overcome their large table handicap: indeed, many stores have no need for a table,
because all possible access patterns are covered by their indexes (Weiss et al., 2008).

Assuming the use of an index type that is ordered (that is, given an SPO index, one
cannot restrict by P alone: S must be specified), N ! indexes, where N is the number
of attributes, are required if one wishes to maintain a truly comprehensive set. Some
newer RDF stores do implement all six of the possible index orderings over RDF data
(the merit of which is discussed further in Section 3.4.3), but it is more common to use
just three indexes: Subject-Predicate-Object (SPO), Predicate-Object-Subject (POS),
and Object-Subject-Predicate (OSP). It can be seen that for any given combination of
subject, predicate, or object, a corresponding index can be found in this set that is
suitable to retrieve related data. A second point of interest in this design is that the
table becomes unnecessary: the indexes contain all the data, so all the work can be done
within them.

RDF stores implement a variety of different indexing strategies. These are examined in
detail in Section 3.3.

3.2.2.2 Normalising

As previously noted, many RDF stores normalise URIs and literals into unique integer
IDs. This offers several advantages: much less space is used to store each triple, reducing
storage requirements and time required to transfer information to and from backing
storage, improving cache efficiency, and making comparisons (for the purposes of joins)
vastly quicker. In addition, working sets require much less space in memory, and the
complication and inefficiency of working with large, variable length data is eliminated.

The major disadvantage of this approach is that at some point the IDs must be trans-
formed back into their real lexical values again. Retrieving each uncached ID to lexical
value mapping may require seeks on the disk, so this process can be extremely expensive.
In general, if the output set of a query is similar in size to the total of all the data that
entered the working set, this normalisation scheme will significantly reduce performance.



40 Chapter 3 Related Work

Fortunately, however, the output set of most queries is much smaller than this, and in
general complex queries will benefit significantly from this approach.

Where possible, it is clearly worthwhile to eliminate the ID to lexical value conversion.
This is possible in some situations: with 64 bit IDs it is possible to encode integers,
dates, floats, and even small strings directly in the ID. This process is known as inlining
(Owens et al., 2008). Some overhead is required to distinguish between genuine IDs and
inline values, as well as the type of the inlined data, but it is generally possible to inline
large ranges of several data types. Any data outside those ranges can be assigned an ID
and treated as normal.

The mechanism for creating an ID also deserves attention. As noted in Section 3.2.2,
many stores take a hash of the lexical value and use that as the ID (others, such as
Kowari (Wood et al., 2005), generate IDs iteratively). This approach has the advantage
that conversion of the lexical values of URIs and literals in a SPARQL query into IDs
can be performed by simply taking a hash. As a result, no lexical form to ID index is
required, saving both time and space.

Hash generation of IDs is attractive on the surface. Unfortunately, it provides no guar-
antees that prevent the generation of duplicate IDs. A collision cannot be cheaply
detected, and so in the event of such a collision incorrect results will be retrieved from
queries. Stores typically use a large 64 bit ID space to minimise the likelihood of this,
but the probability of collision is unintuitively high: assuming a hash function with
perfect distribution, and a 64 bit ID space, a 200 million ID dataset has a probability
of experiencing a collision of around 0.1%, while a billion ID dataset is nearly 3%. A 72
bit ID space allows for 3 billion IDs while maintaining a collision probability of 0.1%,
while for 80 bit IDs this rises to nearly 50 billion. This behaviour is defined by the
mathematical problem known as the Birthday Problem, illustrated in Figure 3.5. Note
that in practice, the likelihood of a collision is somewhat higher, since hash functions do
not generally provide a perfect distribution.

The alternative to hash generation, incrementing IDs, is safer but slower. It requires
a smaller ID space, and so can save space in this regard, but also requires an index to
allow conversion from lexical form to ID. This index needs to be consulted for every
RDF statement written into the store, and so can have a significant impact upon insert
performance. In practice, many RDF stores use hash-based IDs, but this decision would
require review in mission-critical systems.

3.2.2.3 Updates and Deletion

Current RDF stores, particularly those that scale to very large numbers of triples, tend
towards read optimisation. While the initial bulk assert can be extremely fast, subse-
quent assertions can exhibit much poorer performance.



Chapter 3 Related Work 41

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1  100  10000  1e+06  1e+08  1e+10  1e+12

B
its

 r
e
q
u
ir
e
d
 t
o
 m

a
in

ta
in

 c
o
lli

si
o
n
 p

ro
b
a
b
ili

ty
 o

f 
0
.1

%

Number of elements

Figure 3.5: Graph of the the ID width required to maintain a 0.1% collision rate
when using hash IDs

Deletions offer their own difficulties. In a simple RDF-only store there is little computa-
tional difficulty in eliminating a statement from the system, unless a complex compres-
sion scheme, heavy read-optimisation, or an unusual index structure is used. Recovering
the resources the statement used is also difficult: assuming a normalised ID-based sys-
tem, it is relatively time or space consuming to keep track of when IDs are no longer
in use, and there needs to be a mechanism for ID recovery and reuse - whether it be
an ongoing process or via bulk operation (which requires a sufficiently large ID and
storage space). This is a relatively small problem in stores that do not experience signif-
icant deletions, but is important for systems that experience loads with regular updates.
Current stores tend to be optimised for read operations, and do not perform ID deletion.

There is even greater complexity in deletions when it comes to systems that support
inference (usually RDFS and/or OWL). Most RDF stores that offer inference do so
making some use of forward chaining, or calculating entailment in advance. While this
increases the amount of stored data, it usually dramatically reduces the cost of queries.
Unfortunately, such systems do not usually keep track of how statements were inferred,
meaning that when a statement is deleted, it is difficult to work out which inferred
statements to remove. Keeping track of how statements were inferred (keeping in mind
that this can happen more than once for any statement) is extremely expensive: an
implementation was attempted in Broekstra and Kampman (2003a) for Sesame, but
resulted in significant performance issues as data sizes scaled up.

As it stands, then, RDF stores today are largely found in read-mostly environments,
which does not make use of RDF’s flexibility. Work on incremental update and delete
would provide a significant benefit.



42 Chapter 3 Related Work

3.2.3 Summary

Efficient physical representation of RDF is a significant challenge. RDF’s highly variable
structure does not lend itself to anything but the simplest of fixed schemas, and poses a
challenge for adaptive systems. Unmodified RDBMSs are generally not suitable for the
task of storing RDF: they are usually designed for wider, shorter tables, and issues like
tuple header sizes and correct statistic generation inhibit performance. The Virtuoso
ORDBMS (Erling and Mikhailov, 2009) is an example of a relational system that has
RDF-specific modifications, and performs well.

Normalisation is considered to offer a substantial performance improvement over storing
a triple table in lexical form. With this approach, most of the work in a query is
performed on small, fixed size integers rather than large variable length strings, offering
a less complex workload, smaller footprint, and a vast improvement in cache efficiency,
as well as reduced I/O time in many cases. Correct implementation of normalisation still
presents something of a challenge, with the most performant implementations suffering
from the risk of data corruption, and most implementations never deleting mappings
from hash to lexical form.

DBMS researchers are finding that compression can provide a significant performance
benefit in disk based systems. Disk I/O is now so much slower than the rest of the system
that it is cheaper to perform decompression than it is to transfer the uncompressed data.
In memory based systems this benefit is less obvious, but the goal of reducing data
size is certainly important: reduced data size generally improves the chance of cache
line colocation as well as the total amount of information that can be held in cache,
increasing overall performance. In addition, memory is a much more limited resource
than disk, and so the goal of fitting more information into a given space is particularly
important.

3.3 Indexing: A Key to High Performance RDF Stores

Storing data in an optimal manner for writing or later retrieval is all very well, but
queries will still perform slowly if there is a requirement to scan through every row to
find relevant pieces of information. To mitigate this problem, databases are indexed on
columns of data (Date, 1990). This process creates a structure that, for a column or set
of columns, quickly returns the location of specified data within those columns.

The topic of indexes has special relevance to RDF stores, because these systems are
typically heavily reliant on them: the storage required for the indexes will often exceed
the storage required for the data itself. This makes it especially important that indexes
for RDF data are compact, fast, and easy to build and update.



Chapter 3 Related Work 43

There are a wide variety of indexing structures, each appropriate for different tasks. This
section discusses the most popular and relevant of these, along with their performance
characteristics, what applications they are suited to, and particularly their usefulness
with regard to RDF storage and query.

3.3.1 Binary Search Trees

Binary search trees (BSTs) are tree structures in which each node is comprised of one
given value, along with ‘left’ and ‘right’ pointers to subtrees that respectively contain
only items less and greater than the node value. In general, for a balanced (that is, the
height of any one leaf node in the tree is no more than one greater than any other leaf)
tree, as depicted in Figure 3.6, a match can be found in log2 N comparisons, where N is
the number of items in the tree. Likewise, an insertion or deletion can be performed in
O(log N) time.

M

ZGA

E

H

Figure 3.6: Balanced Binary Search Tree

Since a naive tree implementation will quickly go out of balance (and thus have a poten-
tially worst case retrieval time of O(N)), there are a variety of different algorithms for
trees that balance themselves automatically, and even (in the case of the Splay tree) for
automatically optimising for quick retrieval of regularly accessed members. These algo-
rithms include the Red-Black (Bayer, 1972), AVL (Adelson-Velskii and Landis, 1962),
Treap (Aragon and Seidel, 1989) and Splay trees (Sleator and Tarjan, 1985). This doc-
ument does not enter into great detail on each of these algorithms, but rather focuses
on the broader characteristics of BSTs in general.

Since each traversal of a node will require a seek to a different location, BST-based
indexes are fundamentally unsuited to storage on a hard disk. A BST indexing one
billion items will have a height of 30, meaning 30 seeks are required to retrieve one datum.
Data structures such as the B-tree (described in Section 3.3.2) are more commonly used
for this purpose.



44 Chapter 3 Related Work

BSTs are often used in main memory-oriented systems. In this situation, this indexing
mechanism offers reasonable retrieval times, fast in-order traversal, and potentially good
space efficiency. The qualities of BSTs depend to a degree on node size, however: if the
node size is small, then the storage overhead of the left and right pointers (in addition
to any further information that a balancing tree will need to store) becomes significant.
Node size also has an impact on cache efficiency: if a node is sufficiently small that more
than one could fit into a cache line, a BST’s poor contiguity of data access will often
waste the opportunity.

BSTs, like all tree structures, also exhibit branch prediction issues: generally, unless the
nodes that are being searched for are exceptionally repetitive, the branch that will be
taken is unpredictable, with a corresponding impact on CPU pipeline performance.

10:23:1

11:2:51:23:111:23:5

1:23:10

5:73:60

ID URI
1 ex:Alisdair
2 ex:likes-food
5 ex:beef
10 ex:Clare
11 ex:Dan
23 ex:has-friend
60 ex:meat
73 ex:kind-of

Figure 3.7: RDF stored using a BST

Figure 3.7 shows an implementation of a BST for an RDF store. This diagram shows
a composite index in subject-predicate-object order: that is, the index is created over
all three columns of a triple store. Composite indexes in trees are ordered: that is, it
is impossible (or at least extremely inefficient) to determine who it is that ‘likes-food’
‘beef’ using the tree in this example.

Since RDF stores typically have very small node sizes, BSTs are unlikely to be an effective
index type. For 32 bit IDs, encoding a subject, predicate, and object will require just 12
bytes, relative to a minimum overhead of 8 bytes for the left and right pointers, or 16 on
a 64-bit system. This is a space efficiency of just 60% at best, without even considering
additional overheads: AVL trees, for example, require that a node store its height in the
tree. In addition, since RDF stores are not subject to restricted range queries, in-order
traversal is a higher level guarantee than is strictly required, although sorted output
may be helpful for maintaining high performance joins.



Chapter 3 Related Work 45

Modified BSTs do see use in one notable RDF store: Kowari (and its derivative Mulgara)
extend the node size by storing a range of values within the node (Wood et al., 2005).
The left pointer is taken for values smaller than the minimum value in the node, and
the right for those that are greater than the maximum value. Any search between
the minimum and maximum results in a binary search for the search term within the
node. This approach results in near 100% space efficiency for large node sizes, and is
intended to maximise the utilisation of memory before being forced onto disk. It will
also, however, usually result in a much greater tree height and thus more total seeks
being required than in a comparable wide-node approach such as a B-tree.

3.3.2 B-trees

B-trees (Comer, 1979) are self-balancing tree structures in which each node can have
multiple children, with each node apart from the root being required to be at least
half full. This has the effect of offering a control over the height of a tree: the height
of the tree is proportionate to logn, where n is the minimum number of items in each
node, or the fanout. While the height of the tree decreases as the fanout gets larger,
the number of in-node comparisons required to determine which child node to access
increases. Overall, the number of comparisons required stays static.

This format is historically useful for block-based storage such as hard disks: keeping the
nodes sized to a block (typically around 4-8KB) makes good use of the disk’s charac-
teristics: relatively few seeks are required due to the low height of the tree, and while
each node is quite large, the cost of retrieving the whole disk block as opposed to a
partial block is the same. Assuming the file system makes some effort to keep logically
contiguous blocks physically contiguous, it is often worth expanding the node size to
more than one block, and increasing the fanout further, since this additional data can
be read very cheaply. By contrast, binary trees store a very small amount of data per
node, drawing attention to the latency issues that hard disks experience.

1:32:12 12:32:12

... ... ...

12:32:64

64:5:1 75:32:64

12:32:60 12:32:641:32:13 6:5:75 12:32:121:32:10 1:32:12

Leaf Nodes

Figure 3.8: RDF IDs stored using a B+tree



46 Chapter 3 Related Work

The B+ variant of this tree (depicted in Figure 3.8) is particularly common, and modifies
the structure of the B-tree such that all pointers to actual data are stored in the leaf
nodes of the tree. This offers several significant advantages:

• Fanout can be increased somewhat without having to increase the size of the node,
as data pointers are eliminated from non-leaf nodes.

• Leaf nodes do not require child pointers, saving space and improving locality.

• Leaf nodes can be easily linked, allowing high performance sequential traversal.

For the purposes of string comparisons, B-trees will typically store a sufficient prefix of
the string to perform a comparison. Since RDF stores are usually performing compar-
isons of integer triple IDs, the entirety of each triple can be stored in the index. This
means that for stores that offer comprehensive indexing, there is no need for a separate
data table at all, and thus no need for pointers from the leaf nodes! Alternatively, the
B-tree can simply store pointers to shared triple objects, but this incurs penalties for
non-sequential access.

Another artifact of indexing over small datums is that the space used by child pointers
is especially relevant, because they are a significant fraction of the space used in a node.
Attempts have been made (Rao and Ross, 2000) to reduce the cost of these pointers,
generally resulting in improved read performance due to increased opportunity for fanout
and better cache locality, but at the cost of an increase in update costs.

As a result of their flexibility and reliably good performance, B-trees, in particular the
B+tree variant, remain perhaps the most common data structure for implementing disk-
based indexes (Comer, 1979). Most triple stores backed by existing RDBMSs will make
exclusive use of this index, and other dedicated systems such as Jena TDB (Owens et al.,
2008) and RDF-3X(Neumann and Weikum, 2008) implement their own versions.

When considered for the purposes of main-memory DBMSs, the advantages of the B-
tree and its variants are less clear cut. In particular, maximising fanout is no longer
especially beneficial: the only analogy to ‘blocks’ in main memory are relatively small
cache lines, and binary chop across large nodes does not make efficient use of cache
prefetching. Further, since nodes are kept sorted, the larger the fanout, the more work
required on insert into a node. This is generally trivial next to the cost of a disk seek,
but, in an environment without such huge latencies involved, becomes significant.

It should be noted, however, that contrary to conventional wisdom B-trees can offer
better performance than binary trees for in-memory indexing. If each datum held in a
B-tree node is sufficiently small, a B-tree node may hold several, including pointers, in
a single cache line. Doing extra processing on data already in the cache is extremely



Chapter 3 Related Work 47

cheap, so a correctly sized B-tree can mean fewer waits for main memory than with a
binary tree (Rao and Ross, 1999).

Smaller fanouts tend to be more data cache friendly: a node size exactly the same as
the length of a cache line guarantees a minimum of waits on the data cache. Initial
studies on cache-friendly B+Trees thus used a node size of a single cache line (Rao and
Ross, 2000, 1999). In practice, however, small node sizes result in skipping between a
lot of different memory pages, causing the TLB’s hit rate to drop. A small multiple of
the size of a cache line offers superior performance (Hankins and Patel, 2003). Cache
sensitive B+Trees have been shown to reduce find times by as much as 26% on data held
in memory, and further gains can be made in an environment that supports programatic
cache prefetching (Chen et al., 2001).

The B-tree and its variants are also guilty of wasting space, making their suitability for
in-memory indexing somewhat questionable (Wood et al., 2005). They do not usually fill
up each node with data (an average of 25% being wasted in a standard implementation),
each node of size n contains n + 1 pointers, and when used as composite indexes the
lower levels of the tree tend to contain a lot of repetition of data in the prefixes. This
latter issue can be mitigated through the use of compression techniques such as those
described in Section 3.2.1.1 and Lomet (2001), at the cost of increased update time and
complexity.

An example of a store that uses compression is RDF-3X. This store implements com-
pressed B+Trees, using a variable-length delta compression scheme to reduce their size
(Neumann and Weikum, 2008). This scheme (using 32-bit IDs) performs a delta on
each of S, P, and O in a node, comparing them to their counterparts in the preceding
triple, and uses only the number of bytes required to encode that delta: for example,
if S2 − S1 = 502, S2 requires only 2 bytes to encode. Each triple has an overhead of
one byte, which encodes the length in bytes of each of S, P, and O. This scheme saves
a substantial amount of space, but does have a cost in terms of performance: firstly,
in the operations required to perform the decompression, and secondly, due to the fact
that the triples are of variable width. It is not feasible to perform a binary chop upon
a tree node with variable width contents, so a linear scan must be performed, limiting
performance somewhat. This tradeoff is likely to be beneficial for disk-backed stores like
RDF-3X, but costly for in-memory systems.

3.3.3 T-Trees

T-Trees (Lehman and Carey, 1986) are a class of tree designed for in-memory DBMSs.
T-Trees can be thought of as AVL trees with wide nodes, similar to the layout used in
Kowari (described in Section 3.3.1). In this design, multiple logically adjacent values
are held within each node. When traversing the tree to find a value, comparisons are



48 Chapter 3 Related Work

made against the smallest and largest values in the node. If the search term is outside
the bounds of these values, the left or right child pointers are taken respectively. If the
search term is between the smallest and largest values in the node, the node is searched
internally.

The difference between T-Trees and Kowari’s approach is that T-Trees store only point-
ers to the data they are indexing over, rather than copies of the data. To perform
comparisons between a search term and values in the index, pointers to those values
must be dereferenced. In many situations, this can save a substantial amount of space:
when indexing over strings, for example, the string data need only be stored once no
matter how many indexes point to it.

Figure 3.9: T-Tree node

The disadvantage of T-Trees is the requirement to dereference pointers every time a
comparison has to be made. This disadvantage has become more acute with the passing
of time, as the cost of the cache misses caused by pointer dereferences has increased, and
as a result, T-Trees are now a relatively slow mechanism for indexing (Rao and Ross,
1999). For some applications, where each datum being indexed over is large relative
to the size of a pointer, this relative slowness may be tolerable for the space savings
offered. Since the size of an RDF triple is very small, however, the space savings caused
by the normalisation of index data would be substantially offset by the cost of storing
the pointers to that data. There is thus little reason to believe that T-Trees represent a
worthwhile avenue of investigation for RDF storage.



Chapter 3 Related Work 49

3.3.4 Bitmaps

Bitmap indexes are popular for applications which require high read performance on
arbitrary queries, particularly where it is infeasible to perform comprehensive indexing.
They are commonly used in environments with wide tables such as data warehouses
(Chaudhuri and Dayal, 1997). They are traditionally used for low-cardinality attributes
such as ‘Gender’, or ‘Country’, but have been shown to be applicable even to columns
with a high degree of unique values (Date, 1990).

A bitmap index simply creates a bitmap for each unique value that a column might
take. Conceptually, each bitmap contains a bit for every item in the column, showing
whether the field contains that value or not. Practically, a bitmap will usually encode
a start and stop point, assuming all values outside that range are 0. This reduces the
storage footprint, and also mitigates locking issues when updating these indexes.

The particularly useful feature of bitmap indexes is the manner in which the number of
required indexes grows with the number of columns in a table. Consider the example of
B-trees: if one wishes to implement a truly comprehensive index over a quad table, there
are 4!, or 24 different indexes that can be created. Analysis of typical queries allows the
removal of several relatively useless indexes, but as the number of columns grows (with
the addition of, for example, temporal data) it quickly becomes impossible to maintain
comprehensive indexing. With bitmap indexes, no such problem exists: it is only neces-
sary to create one index per column. To perform a query such as that described in Fig-
ure 2.5, it is necessary only to retrieve the bitmaps for <http://www.example.com/has-
gender> and <http://www.example.com/male>, AND them together, and examine the
table at all positions in which there is a 1 in the resultant bitmap. Reading the bitmaps
and ANDing them has excellent disk and cache performance: all work is done via sequen-
tial reads. Bitmap indexing and the mechanism for performing selects across columns
are depicted in the context of an RDBMS query in Figure 3.10.

In order to make bitmap indexes space efficient for high cardinality columns, compression
is necessary. Run Length Encoding (RLE) based algorithms such as Word Aligned
Hybrid are usually very simple and worthwhile (Wu et al., 2006), and result in high
space efficiency. Each bitmap in the index, once compressed, is quite small, tractable
to load into memory, and can be joined to other columns using fast modified ANDing
algorithms.

While bitmap indexes generally offer good read performance, they are more computa-
tionally complex to create and maintain than B-tree or hash based indexes, and demon-
strate poor characteristics in terms of locking granularity: when performing an update,
all bitmaps that encode values in the range of the update must be locked.

It should be emphasised that since bitmap indexes maintain only one sort order, accesses
to the associated triple table will often not be contiguous. This is in contrast to the



50 Chapter 3 Related Work

France Germany UK US
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0

ID Country
1 France
2 UK
3 US
4 Germany
5 UK

Gender
M
F
F
M
M

M F
1 0
0 1
0 1
1 0
1 0

Country=UK Gender=M AND
0 1 0
1 0 0
0 0 0
0 1 0
1 1 1

Find all males in 
the UK

Bitmap indexed 
Country/Gender 

table

Figure 3.10: Querying using a bitmap index on a relational system

comprehensive composite tree indexes used in systems such as Jena TDB (Owens et al.,
2008) that can encode all data within the index, and may significantly impact overall
performance due to the cost of disk seeks and/or cpu cache misses.

From the point of view of disk-based RDF stores, Virtuoso (Erling and Mikhailov, 2009)
has demonstrated that bitmap indexes can produce excellent results (Erling, 2006).
Virtuoso uses a custom bitmap that acts very differently to the traditional approach
shown in this section, however. In Virtuoso, bitmap indexes are composite and order-
dependent: that is, they behave much like a tree based index in that, given a POS index,
it is not possible to easily search by just O. Using this approach means that it is not
necessary to AND bitmaps together: this has essentially been done in advance. It does,
however, lose the property that the number of indexes required to maintain coverage
scales linearly with the number of attributes.

3.3.5 Hash Tables

A commonly used index for RAM-based storage is the hash table (or hash map) (Date,
1990). Using a hash map, one might take the hash of a piece of data, and then store in
a memory position corresponding to that hash a pointer to the location of that piece of



Chapter 3 Related Work 51

data in the database. This is an O(1) operation, and since hash indexes usually require
only one or two comparisons to be performed, the problem of unpredictable branches is
effectively eliminated. It is, of course, necessary to utilise a suitable hashing algorithm
to ensure that there are not too many hash collisions, and that the process as a whole
offers good performance.

Unfortunately, hashes do exhibit a variety of less desirable characteristics. Hash indexes
do not, of course, guarantee that there is any proximity on disk of logically ordered
data (for example, sorted order). This means that if one were to perform a query that
acts on a range of values, a disk seek would likely be required for each different value,
creating massive efficiency issues. For this reason, hash indexes are usually used only in
situations where queries are operating on discrete specified values, not over a range.

Unlike tree and bitmap indexes, hash indexes do not inherently provide support for
composite indexing: it is thus necessary to create a sub-index below the primary level if
one wishes to index over more than one column of data. Without careful design, this can
be both slow and space inefficient. Taking an example from the RDF world, consider
a Predicate-Object-Subject ordered index, for which a comprehensive index is required.
If there are 100 predicates, and each predicate has an average of 1000 objects associated
with it, and each of those objects has 10 subjects associated with it, a total of 101,001
index structures would be required to index only 106 triples. The per-index overhead
would overwhelm the costs of actually storing the triples.

Consider, however, the alternative: with no sub-indexes (and thus allowing restriction
only by predicate), only one index structure is required. However, if one wishes to check
if the index contains a particular POS binding, one has to cycle through up to 10,000
values, comparing against each of them. This is a clearly undesirable alternative.

From the point of view of RDF/SPARQL, which rarely utilise limited range searches,
hash maps can be an appropriate solution for both disk and particularly memory storage.
Indeed, the most popular in-memory RDF stores such as Jena (Seaborne, 2009), Sesame,
and SwiftOwlim (Ognyanoff et al., 2007) all use hash maps to store data. The problem
of lack of support for composite indexes will become more significant as data sizes scale
up, and might be resolved using subindex-based techniques.

3.3.6 Space Filling Curves

Space filling curve (SFC) (Sagan and Holbrook, 1994) can be used to produce multi-
dimensional indexes (Bayer and Markl, 1998). SFCs are essentially a continuous curve
that fills up any given square or cube (or even a hypercube of any dimension), assuming
that object is constructed of discrete units. SFCs are usually repeating patterns that are
constructed iteratively. Well-known examples of these are Z-order and Hilbert curves
(Lawder and King, 2000), the latter of which is illustrated in Figure 3.11.



52 Chapter 3 Related Work

Figure 3.11: The two dimensional Hilbert curve

SFCs can be applied to RDF storage and indexing: the TriStarp1 project has already
utilised SFCs to store and index data in a non-RDF triple store. Taking RDF as a
three dimensional storage problem (ignoring, for now, provenance), it can be imagined
as a cube, with each dimension being one of subject, predicate, and object. An RDF
triple is a point within the cube. The fact that RDF has more than one dimension is a
problem when attempting to store it contiguously - in a one dimensional manner. SFCs
can be applied to this problem: the curve passes through every point in the cube (or
every triple, in this case), so the triples can be stored on disk in the order in which they
are traversed by the curve. The result is a one dimensional representation of a three
dimensional structure.

In SFC’s such as the Hilbert or Z-order curves, indexing of this one-dimensional rep-
resentation can be performed through a tree-based system (Lawder and King, 2000)
(for example UB-trees (Bayer and Markl, 1998)). The repeating structure is evidenced
at every level of construction of the SFC, and this repetition can be used to form a
tree-based index into the curve.

Indexing via SFCs has the important property that no one dimension is dominant, as is
the case with some more common techniques such as B-trees (Lawder and King, 2000).
It is possible to retrieve data by any combination of dimensions (for example, fixing
subject and property and searching for all related objects, or fixing object and searching
for all related subject and properties). The particular dimensions that are supplied make
no theoretical difference to query time (although if two dimensions are supplied, this will
clearly be quicker under normal circumstances than if only one is). This property means
that a single index can be used for all lookups, and could make SFC-based indexes

1http://www.dcs.bbk.ac.uk/TriStarp/



Chapter 3 Related Work 53

substantially more space efficient for RDF storage than the more common practice of
using several conventional indexes.

SFC-based indexes are most often used in situations that require range selections over
more than one dimension. Traditional DBMSs perform poorly at this task, since it
is necessary to scan all datums that satisfy one of the ranges, and then restrict the
resultant output by the other specified ranges. In the case where several broad ranges
are required, or data is of low cardinality, this is extremely inefficient. Using SFC-based
techniques, a volume is designated for retrieval, the points at which the curve intersects
that volume computed, and these matching points retrieved (Ramsak et al., 2000). This
property is of little relevance, however, to RDF stores, the queries for which usually
come down to a fixed term (or set of terms), or the entire range of a dimension.

There appears to be little evaluation of the performance of SFC-based techniques as
applied to triple graphs in the TriStarp system. It is possible to draw some inferences,
however. While a good curve will keep spatially related information somewhat close
together on disk, it is clearly impossible to maintain perfect locality, particularly as the
amount of information expands. This is not a large problem for queries over a small
range, but becomes a greater issue in RDF where, as noted above, queries of restricted
range are not a common commodity. This property means that SFC-based indexes will
inevitably involve a much higher proportion of non-contiguous accesses than indexes
with a single dimension: this is a major issue for both disk and in-memory storage,
where the costs of such a quantity of seeks are crippling. Combined with potentially
high costs for calculating the location of a datum, this makes SFC-based indexes a space
efficient but slow solution.

3.3.7 Summary

Indexing is of critical importance to RDF stores: indexes offer vast benefits when at-
tempting to retrieve a few values from a very long table, which is a common situation
in RDF storage. Indeed, some RDF stores exhibit such comprehensive indexing that
there is no longer a need for the original data table. Maintenance of such a strategy is
sustainable for triple stores, but becomes more challenging as more attributes, such as
provenance or temporal information, are required.

Traditional B-tree indexes perform well for disk based storage. They are simple to
implement, and require a small number of seeks compared to other tree-based methods
to find any given item. They do waste a certain amount of space through their partially-
filled nature and the repetition of prefixes, but this latter can be mitigated through
correct application of compression.

For memory-based RDF systems, trees in general are a capable but limited solution.
While they provide strong guarantees regarding sorted order, this is more than is required



54 Chapter 3 Related Work

for RDF stores that do not rely on merge sort, and thus have no use for sorted order.
Trees generally waste a substantial amount of space in pointers and/or empty space,
and offer poor characteristics with regards to contiguity of access during find operations.
Block based tree indexes like B-Trees do, however, offer very good contiguity of access
when iterating over leaf nodes.

Hash indexes are generally appropriate for in-memory RDF storage, as they offer amor-
tised O(1) retrieval and update with a low constant factor. Hash indexes bring with
them their own issues, however. Care must be taken to ensure efficient use of space
when creating hash indexes, and it should be noted that hash indexes do not inherently
support indexing over more than one attribute. To scale to large RDF datasets, a space
efficient solution to providing multi-attribute indexing is required.

3.4 Operator Implementation: The Importance of the Join

in RDF Query

As noted in Section 2.4, the relational model implements several operators: most no-
tably select, project, and join. Typically, with the aid of suitable indexes, performing
a selection is quite cheap (Date, 1990). If a relevant index is available, it is possible to
simply navigate directly to an item, and retrieve all subsequent tuples containing that
data value. In this case, select scales linearly with the number of items that have been
selected, and at worst logarithmically with overall table size, depending on what sort of
index is used. Retrieval is complicated if the data is not clustered on the index: in this
case, if no index is available, the operation scales linearly with overall data size. This
can quickly become prohibitively expensive on large tables.

Projection is generally a brute-force algorithm, restricting a table to certain columns,
and removing all duplicate values. Clearly, as the size of the data being projected over
increases, the cost of projection increases in linear fashion. If data is sorted over the
attribute(s) being projected over, little memory is required to perform the operation
otherwise, it is necessary to remember previously seen values.

The operation of special relevance to RDF is the join: answering a SPARQL query over
a traditional triple table schema implies joining the table onto itself repeatedly, once
for each triple in the query. This can quickly become very expensive if the working
set of information is allowed to grow too large. There are thus two areas of particular
importance when attempting to reduce time spent in joins: a high-performance join
algorithm, and minimising the set of data to be joined in the first place.

This section provides a brief overview of query optimisation to illustrate the importance
of the order and manner in which operations are performed. The various mechanisms



Chapter 3 Related Work 55

for joining are then explored further in Section 3.4.2, followed by a brief exploration of
precalculation as a method for reducing time spent in joins.

3.4.1 Query Optimisation

In the leap from procedural database systems to RDBMS, a switch was made to declar-
ative query languages: that is, the agent making the query merely specifies what data
is desired, not how to retrieve it. Working out how to retrieve the data is the job of
the query optimiser and is, as Youssefi and Wong (1979) notes, of critical importance:
while the same overall result will be obtained whatever order operations are performed
in, a bad query execution plan can potentially cause data retrieval to be many orders of
magnitude slower than it ought to be.

Automatic query satisfaction is not a trivial task. However, while a programmer may
intuitively know the most efficient manner in which to process a query, this is by no
means guaranteed, and requires significant insight and expertise. An automatic query
optimiser can evaluate many different plans before settling on one with a low cost, and
can do so without the input of a knowledgeable human. As noted in Date (1990), there
are four steps to query optimisation:

1. Cast the query into internal form.

2. Convert to canonical form.

3. Choose candidate low-level procedures.

4. Generate query plans and choose the cheapest.

The first two stages essentially transform the query from a textual representation such
as SQL or SPARQL into an internal form that is easier for a machine to process, per-
forming trivial optimisations such as eliminating irrelevant statement ordering on the
way. Step 3 is more complex, and involves working out low-level operations that can sat-
isfy parts of the query. This attempts to produce worthwhile operations by considering
such information as physical data structure on disk, availability of indexes to speed the
operation, and so on. Each potential operation will have an associated cost calculated
for it, at the minimum specifying number of disk accesses required, but possibly also
including information such as memory and CPU usage. This data may be estimated
where hard figures are not available or easily calculated. Depending on whether the
operation has prerequisites for other operations to be performed first, it may well be
possible to perform them simultaneously across multiple processor cores, processors, and
disks to enhance performance.



56 Chapter 3 Related Work

Finally, step 4 involves the creation of a set of potential plans from the procedures
generated in step 3. Clearly, there could be overwhelmingly many plans produced if
there were a significant set of candidate procedures generated, so a heuristic to create
only plausible plans is of great use in this situation. The order in which operations
are performed has a huge impact on query performance: if the correct operations are
performed early in the query, the working set can be cut down to the point that later,
more challenging operations only have to work on a small amount of data.

While this overview gives a broad explanation of query processing, the implementation of
these steps is quite difficult. SQL, the standard for most modern RDBMS, is extremely
complex, and the creation of a high-quality optimiser for most cases is a difficult task,
accomplished in a wide variety of manners. The cost of operations is usually calculated
from statistics stored for each table, and the columns within them. Examples of this
include cardinality of the table as a whole and the number of pages it occupies, as well
as the number of distinct items in each column, and average values for each column.
These statistics are quite simple, but can make a significant difference to the creation of
an optimal strategy. Since they are so small, they can be stored in memory and accessed
with great ease.

Satisfaction of SPARQL queries does not differ in concept, but has some differences in
terms of implementation. RDF stores typically have a very few extremely long tables.
This means that the statistics on each of those tables need to be very much more in
depth than is normal for an RDBMS to in order to provide adequate results: otherwise
the information available may be insufficient to provide good cost estimates. Virtuoso
(Erling and Mikhailov, 2008) goes as far as performing real time sampling of the data
rather than expending large amounts of storage on the necessary statistics.

In practice, it is reasonable to make some assumptions about the nature of RDF data:
typically, there are many fewer properties than subjects or objects. This means that
property-oriented subqueries should be pushed late into the query plan. It is also gen-
erally practical to store information about the cardinality of every property. This helps
avert the worst-case situations that are of special importance when answering a query.
These assumptions are explored further in Chapter 5.

3.4.2 Types of Join

Joining can be an expensive operation, involving as it does comparisons between two
different tables, with the potential for nonsequential reads. There are a variety of algo-
rithms, depending on the state of the data as regards sorting. This ranges from the very
basic brute force algorithm, with a scaling factor of O(n2) with the size of the data being
examined, to more useful techniques, such as indexed nested loops, merge, sort/merge,
and hash joins (Date, 1990). These are described below.



Chapter 3 Related Work 57

3.4.2.1 Nested Loop

At its simplest level, the nested loop joins is the O(n2) algorithm mentioned above. It
takes a pair of join inputs (tables, or outputs from another operator), and designates one
the outer, and one the inner input. The inner input is then scanned for matches once
for each item in the outer. This approach guarantees that all matches are found, and is
very practical for small datasets. It is also highly pipelineable: methods like sort/merge
or hash joins are ‘blocking’, in that they have to perform a large proportion of their
work before they can start to output results. Nested loops, on the other hand, can
output results in an iterating manner, without a large upfront cost. This same property
means that nested loops joins require very little memory, as they do not have to build
up complete result sets prior to producing output. Despite these advantages, however,
nested loops joins scale very poorly to the larger joins that one might expect to perform
with RDF stores.

A substantial improvement upon the naive nested loops algorithm exists, in the index
nested loops (INL) join. This join relies on an index being available on the inner join
input, and consults it for matches against each row of the outer join input. This alterna-
tive is substantially faster: for each row of the outer join input, only a single operation
has to be performed if there is no match, rather than iterating through the entire inner
input.

INL joins require very little memory, and are especially effective for some situations: if
the left join input is small and is being matched against a very large right join input,
the selectivity of the index is brought to bear, returning only relevant results and thus
reducing computation. They are particularly relevant to RDF storage, since RDF stores
often have comprehensive indexing strategies.

Nested loop joins are faster than or comparably effective to hash joins in the general case,
as long as an appropriate index is available. If one is not, hash joins are substantially
more effective (DeWitt and Gerber, 1985), and are thus used more often in ad-hoc
queries. Nested loops queries also parallelise highly effectively (Sheu and Thai, 1991). It
should be noted, however, that in disk-based stores the looped accesses to the index will
have a cost in terms of repeated disk seeks, compared to hash or sort/merge joins, which
are less inherently selective, but allow more linear disk accesses. Seek time is a smaller
issue in memory-backed stores, and index nested loops joins can be highly effective in
this environment, benefitting especially from their low memory consumption.

3.4.2.2 Merge and Sort/Merge

Merge joins assume that both inputs are sorted in order on the columns that are being
joined on. With this being the case, a simple scan of both inputs can perform a join



58 Chapter 3 Related Work

in linear time with the amount of data being joined, if the join is one to many, or near
linear if it is many-many. Merge join is always faster than sort/merge or hash joins if
data is sorted correctly. For this reason, query optimisers in an RDBMS will usually
keep track of the sort order of the current working set of data, and will order joins to
allow as much use of merge joining as possible.

Sort/Merge joins simply sort the inputs as required, and then perform a merge join on
the resulting data. This approach is largely constrained by the performance of the sort.

3.4.2.3 Hash

A hash join performs a single scan over each input. It creates a hash table on the first
input, with a pointer to the corresponding tuple. When scanning the second input, it
compares against that hash table to produce the joined output. This technique scales
in linear fashion with the amount of data scanned, and does not require inputs to be
sorted to work efficiently (although, of course, sorting will ensure better contiguity of
access and cache utilisation). It is, however, likely to be slower than merge join, since
operations such as hashing require a degree of computational expense. Further, it is less
tractable to hold all the intermediate data on disk if no memory is available.

3.4.3 Join Mechanisms in RDF Stores

As described in Section 3.2.2.1, the standard physical storage schema in RDF stores is
a three index layout using SPO, POS, and OSP indexes, effectively covering all access
paths into the system. Some dedicated stores, such as Jena TDB, use an exclusively
index nested loops approach to joining data, while systems based on top of RDBMSs
will use whatever join mechanism the system chooses at query time.

Some newer stores, specifically Hexastore (Weiss et al., 2008) and RDF-3X (Neumann
and Weikum, 2008), have chosen a different approach. They create all six possible index
permutations, allowing them to make the greatest possible use of merge joins, and where
merging is not possible employ sort-merge or hash join strategies.

Each of the different join strategies can be illustrated using the query specified in Fig-
ure 3.12, a query that one might run over an RDF database of students studying in the
UK.

To answer this query using INL, one might use the process outlined below:

1. Look up pattern 1 in the POS-ordered index, receving results for ?x back. Bind
next value of ?x. If bindings are exhausted, query is complete.



Chapter 3 Related Work 59

PREFIX ex: <http://www.example.com/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?mealname WHERE {
1 ?x ex:attends-university ex:Southampton .
2 ?x ex:nationality ex:bangladesh .
3 ?x ex:has-gender ex:male .
4 ?x ex:likes-meal ?meal .
5 ?meal rdfs:label ?mealname .

}

Figure 3.12: SPARQL query to determine the meals enjoyed by Bangladeshi students
at the University of Southampton. Triple patterns are numbered for reference purposes.

2. All values for pattern 2 are now fixed. Look up in any index. Receive at most one
result back. If no results are returned, return to pattern 1 and bind next value of
?x.

3. All values for pattern 3 are now fixed. Look up in any index. Receive at most one
result back. If no results are returned, return to pattern 1 and bind next value of
?x.

4. Look up, in an SPO-ordered index, which meals the currently bound value of ?x
enjoys, receiving results for ?meal back. If no results are returned, or results are
exhausted, return to pattern 1 and bind next value of ?x, else bind next value of
?meal

5. All values for pattern 5 are now fixed. Look up in any index. Receive at most one
result back. If no results are returned, bind the next value of pattern 4. Otherwise,
output a result.

An alternative merge and sort-merge strategy might take a variety of approaches, de-
pending on how the query was optimised. If the store attempts to minimise the number
of sorts performed, it might merge join patterns 1 and 3. It would then merge join 2
and 4. These two outputs would then be merge joined together, and sorted on ?meal.
Finally, the working set would be joined against the output of query pattern 5.

The characteristics of each approach vary substantially. Consider the following (fabri-
cated) figures:

1. There are 10,000 students at the University of Southampton.

2. There are 15,000 Bangladeshi students in the UK, of which Southampton has 500.

3. There are 1,000,000 male students in the UK.

4. Each student (out of 2 million in the UK) likes around 4 different meals.



60 Chapter 3 Related Work

5. There are 20,000,000 different labelled ‘things’ in the database.

If the query were run using INL joins, triple pattern 1 returns 10,000 results. Pattern 2
returns a result 1/20th of the time, while pattern 3 will return a result 1/2 of the time.
Pattern 4 returns four results on average, and pattern 5 then returns one result at most.
This query, then, will run pattern 1 once, pattern 2 10,000 times, pattern 3 500 times,
pattern 4 250 times, and pattern 5 1000 times, giving a total of 11,751 lookups.

If this query were performed using merge and sort/merge joins, the join might involve
the following steps (although one might find an alternative ordering to cut down result
sets further):

1. Merge join patterns 1 and 3: iterate over 10,000 items on the left side, and up
to 1,000,000 on the right, producing an output of 5000 elements. This output is
already sorted on ?x, and does not need sorting again.

2. Merge join patterns 2 and 4: iterate over 15,000 elements on the left side, and
2,000,000 on the right, producing an output of 60,000 elements. This output is
already sorted on ?x, and does not need sorting again.

3. Merge join the output of steps 1 and 2, outputting around 250 results. Sort this
output on ?meal.

4. Merge join the output of step 3 against the 20,000,000 items produced by triple
pattern 5.

5. Output results.

The advantage of the many-index approach used by Hexastore and RDF-3X is that they
avoid having to do a lot of expensive sorts, as if the data has a sort order, they can find
an index to make use of that sort order. The fact that the query described in Figure 3.12
has very few variables is helpful in this regard: most of the time, the working set remains
sorted on ?x. Overall, this approach has been conclusively shown to provide significantly
better performance than using fewer indexes with a merge/sort-merge strategy (Weiss
et al., 2008).

No comparisons, however, have been made between the merge join strategy and the use
of index nested loops. It’s possible to see from this example that INL does a better job
of eliminating irrelevant data, thanks to its superior selectivity: the merge join example
has to iterate over many millions of items, which INL ignores by virtue of substituting
additional bindings into index retrievals. The factor working against INL is that while
it touches much less data, it performs a lot more random access. If that random access
is cheap, INL will be much faster. If the random access is very expensive, merge and
sort/merge will become faster.



Chapter 3 Related Work 61

Overall, then, memory-based or heavily cached disk-based systems are likely to benefit
from an INL approach (particularly given its low memory usage), while systems without
such benefits are likely to do better with merge/sort-merge or merge/hash join strate-
gies. In future, for disk-based stores using INL joins, it may be worth investigating
data structures like compact, in-memory Bloom filters (Bloom, 1970) that would inform
whether a disk query would return any results or not, eliminating the large majority of
disk seeks that would return no results. In this example, assuming a 1% error rate and
no caching of information, the number of lookups for the INL approach would drop from
11,750 to 1,976. In practice, that number of seeks would usually be further reduced by
the influence of cached data.

3.4.4 Join Minimisation

As previously noted, reducing time spent in joins is an excellent method for improving
overall RDF store performance. One method for achieving this is to perform the work
in advance. Abadi et al. (2007) describes the concept of ’materialised path expressions’,
in essence the process of pre-calculating joins such that they do not have to be per-
formed at run time. The authors note that this can afford an orders of magnitude level
improvement in performance on suitable queries.

Join precalculation is generally very attractive for read optimised disk-based systems.
If a given join is performed regularly, a great deal of time can be saved by storing the
completed join on disk. There are, however, a variety of complications to this approach.
The precalculated data needs to be updated every time a related piece of information
is added or removed, which can be expensive. In addition, it is necessary to determine
what precalculated information would actually offer a significant benefit, which can be a
complex process. Doing this work manually would be difficult, so it becomes necessary to
maintain accurate usage statistics (or batch-processable logs) to allow the determination
of what joins should be precalculated. Finally, precalculated joins are clearly not suitable
for systems where storage space is very limited.

3.4.5 Summary

RDF offers a somewhat unusual problem with regards to operator implementation: its
large triple tables (or, indeed, property tables) and the high likelihood of appropriate
indexes being available means that the choice between INL and merge join systems is
not completely clear for disk-backed systems. For memory-backed systems, it is likely
that INL will have a significant advantage due to the lower cost of seeking.

Thanks to the sheer quantity of data points in a typical RDF store, RDF does require
a special emphasis on minimising the time spent in joins. This can be achieved by



62 Chapter 3 Related Work

methods such as intelligent query optimisation, and join precalculation. The former is
important for ordering queries appropriately, such that the working set stays as small
as possible. This is a challenging problem, relying on high quality statistics to estimate
the size of each data retrieval, and by extension the effect on the working set. Some
systems, like RDF-3X (Neumann and Weikum, 2008), generate exhaustive statistics over
their datasets, while others, such as Virtuoso, rely on estimation to save space (Erling,
2009). Since it is expensive to generate high quality statistics about RDF data thanks
to its large quantity of data points, there is room for research in this area.

Join precalculation is clearly attractive for the large corpus, read-mostly use case. There
is a clear need to be able to determine what precalculation is necessary, which again offers
an opening for new work in the area.

3.5 Scaling to Extremely Large Systems Through Distri-

bution

The most powerful single machine RDF stores are currently capable of storing up to
around two billion triples2. Clearly, it is possible to use more expensive, more powerful
machines to improve scalability and response times. Unfortunately, buying ever-faster
machines yields diminishing returns as one escapes the commodity market. To realise
practical, large scale improvements it is necessary to allow RDF stores to make use of
the power of multiple machines. Traditional DBMSs underwent a similar evolution, as
ever-increasing dataset sizes required the development of DBMSs with better scaling
characteristics, and this research is of interest in the creation of a highly scalable RDF
store.

When considering the distribution of RDF stores, it is important to draw the distinction
between ‘federated’ and ‘clustered’ stores. A clustered store is, to all outside appear-
ances, a single system: there is only one point of query, and no guarantee that any single
system within the cluster will hold meaningful data. By contrast, a federated store is a
system that amalgamates several existing stores, each one of which can be individually
and meaningfully queried. One might desire this approach for (for example), provid-
ing the ability to query all museums in the UK about what artefacts they hold from a
particular period of time. In this situation, each museum will have its own store, and
will want to control its own data, but may be willing to share it such that it can be
accessed from a federated system. A compromise between these two approaches is found
in many peer to peer stores, which are able to ask other systems to store data, without
necessarily requiring it (Battre et al., 2006; Heine et al., 2005; Nejdl et al., 2003; Cai
and Frank, 2004).

2http://esw.w3.org/topic/LargeTripleStores



Chapter 3 Related Work 63

The differences between these the federated and clustered paradigms is significant from
the point of view of performance. In a clustered system, the DBMS has the freedom to
place data wherever it wishes, making it possible to distribute data based on a known
function. This makes it possible to know trivially where a given datum will be located.
In a federated system, it is necessary to either record where information is located, or
have some kind of discovery mechanism. In either case, this has a serious impact on
performance: there is no way to control data placement such that it is optimally located,
and finding information has an additional cost in space and/or time. Federated systems
are not considered in this section, as it is focused on using multiple machines to the end
of improving the performance of an individual store.

The desired performance improvements in distributed DBMSs can be categorised as
follows (Boral et al., 1990; DeWitt and Gray, 1992):

• Scaleup: An increase in the number of machines leads to the ability to store more
data.

• Speedup: An increase in the number of machines leads to a reduction in the
amount of time taken to serve an individual query, all other factors being equal.

• Throughput Scaleup: An increase in the number of machines leads to the ability
to perform more transactions in a given time frame.

While ideally both speedup and scaleup will be linear with the amount of processing
power available, this is a practical impossibility in any database system: some operations
(such as sort) do not scale in linear time. There are other significant barriers to such a
perfect level of system scalability (DeWitt and Gray, 1992):

• Startup: the time needed to start a parallel operation - if a small operation
results in lots of processes being started across a lot of nodes, the cost of startup
can overwhelm any advantages gained through increased parallelism.

• Interference: The slowdown each new process creates when accessing shared
resources.

• Skew: The effect where one part of a parallelised operation takes much longer to
complete than the others: since the job is limited by the slowest process, this can
seriously affect performance.

A variety of hardware architectures have been utilised to create parallel database sys-
tems. These can be broadly grouped into three categories: shared memory (SM), shared
disk (SD) and shared nothing (SN) (Stonebraker, 1986). In SM systems all processors



64 Chapter 3 Related Work

share a common central memory, in SD they have a private memory but a common col-
lection of disks, and in SN they share only the ability to communicate with each other
via messages over a network.

Generally speaking, shared nothing systems are favoured today for their excellent char-
acteristics with regards to resource contention: the only shared resource is network
access, and there is no need for the complex resource locking methods seen in SM and
SD systems. This means that scaling up SN clusters has historically been easier than the
alternatives (DeWitt and Gray, 1992; Stonebraker, 1986). Further, SN clusters can be
built out of commodity parts, as used by companies like Google (Brin and Page, 1998),
offering an excellent price/performance profile. It should be noted, however, that today’s
multi-processor/multi-core designs effectively create a SM system on each machine in a
cluster, meaning that the complexities of shared memory systems are still relevant to
the design of today’s database systems.

The disadvantage of the SN approach is that there is greater complexity in deciding
where data is placed: it is important to place data such that each machine undergoes
a similar load profile to enable efficient scaling, and does not require excessive use of
network resources. Ongoing maintenance (whether manual or automatic) to the distri-
bution of data is necessary to prevent ‘hot spots’, or points at which data or query skew
has caused a machine to have too high a workload. When these hot spots occur, they
can usually be eliminated by redistribution of data on the machine.

3.5.1 Enabling Parallelism

Parallel execution can be enabled through a variety of strategies. Most obviously, it
is possible to partition (or decluster) information across more than one machine, such
that the time required to retrieve a large block of data is reduced, and the number of
processes that can retrieve data at any one time (assuming they are not both trying to
access the same data) is also increased (DeWitt and Gray, 1992; Mehta and DeWitt,
1997). It should be noted that when reading or writing small amounts of data, it is
desirable to perform the work on as few machines as possible. This is because the setup
costs will dwarf any advantages gained from partitioning (Khan et al., 1999). Section
3.5.2 considers the problem of how to decluster data in more detail.

Another means of parallelising database systems is to cluster the execution of relational
operations, so that for a given operation (such as a join) each machine processes a defined
range of data values out of an overall dataset. This prevents one machine from doing
all the processing work and becoming a bottleneck (Boral et al., 1990).

Pipelining of operations can also provide a performance boost: many relational operators
do not need to complete before they start emitting results. In this sense they can be
viewed as a stream. The output of this stream can be directed to other operations,



Chapter 3 Related Work 65

which can start processing them in parallel with the first operation. The benefits of
this approach are somewhat limited, however: pipelines are terminated by the presence
of an operation (such as a sort) that cannot emit results until it is complete, rendering
most pipelines relatively short (DeWitt and Gray, 1992). Further, some operations take
much longer than others (an example of skew), thus causing some machines to have to
undertake much more work than others.

Finally, parallelism is supported by simply allowing multiple users to access a system, and
allowing the subqueries that form an individual query to run in parallel. This is enabled
by the likelihood that different users and subqueries will be accessing different pieces
of information, so hardware resources can be shared between them and the queries run
in parallel. Multi-user systems can, however, exhibit greatly increased complexity with
regards to transactional behaviour and resource locking, depending on the behavioural
guarantees that are required.

These mechanisms for enabling parallelism can be characterised as occurring at three
levels (Khan et al., 1999)

• Inter-query: The ability to run more than one query simultaneously.

• Intra-query: The ability to run different subqueries in parallel and pipeline op-
erations.

• Intra-operation: Distributing single operations over more than one node for
concurrent execution.

3.5.2 Data Partitioning

A standard approach to partitioning data in an RDBMS is horizontally partitioning (or
declustering) each relation in the system. In these systems, tuples of each relation in
the database are partitioned across the storage of each processing node on the network,
allowing multiple machines to scan a relation in parallel. It also addresses hotspot issues,
as the contents of regularly accessed relations are spread across multiple machines, and
more can be added as necessary.

DeWitt and Gray (1992) describes methods for horizontal partitioning of data, dividing
them into three common techniques:

• Round Robin: simply distributing the tuples in a round robin fashion to each
server. This approach works well for sequential scans, but is inefficient if there is
a desire to access tuples based on attribute values, since the location of a given
tuple is unknown.



66 Chapter 3 Related Work

• Hash Partitioning: distribution of tuples by applying a hash function to an at-
tribute value. The function emits a number which specifies a machine (and possi-
bly location on that machine) on which to store the information. This approach is
effective if tuples are accessed based on a fully specified attribute, but is much less
effective for range queries: hashing does not do a good job of clustering related
data. Further, hash partitioning suffers from difficulties with the addition of new
machines to a cluster, and addressing hot spots: in a naive implementation it is
not possible to repartition data.

• Range Partitioning: distribution of tuples by selecting a range over one attribute.
For example, all tuples with a value of ‘surname’ between A-C go on one partition,
D-E on another, and so on. This approach clusters data effectively. The major
issue with this is that it risks both data and execution skew: one part of the
range may have a disproportionately large quantity of the actual data, and one
part of the cluster may get accessed much more frequently than others (this being
particularly likely if it has to store more of the data).

Partitioning improves the response time of sequential scans, because more processors
and I/O resources (disks or memory) are used to perform the scan. It aids associative
scans (scanning based on an attribute value) because the number of tuples stored at
each node is reduced, and hence index sizes are reduced. In the case of RDF, scans are
usually associative thanks to the comprehensive indexing strategies employed by most
stores.

It is important to decluster data in a manner appropriate to both the dataset itself,
and the manner in which it will be accessed. In particular, the following factors have a
significant influence:

• Degree of declustering: it is important to decluster to an appropriate extent. If
a very small relation is partitioned over a very large number of machines, startup
costs and overheads (such as disk seeks) will overwhelm any advantages gained from
parallelism, as well as making poor use of resources. In practice, parallel systems
such as Bubba (Boral, 1988; Boral et al., 1990) have found that full declustering
is often inappropriate.

• Skew: it is important to ensure that each machine undergoes a comparable work-
load. A simple implementation will balance the quantity of information stored
on each server, but it is also important to take into account the possibility that
certain data ranges will be accessed much more regularly than others, creating an
excessive load on some servers. This type of skew (execution skew) can be coun-
tered by balancing data distribution not by the volume stored on each machine
in the cluster, but by the frequency with which each machine has to access data,
particularly that which is uncached (Boral et al., 1990).



Chapter 3 Related Work 67

• Declustering attribute: it is necessary to partition on an appropriate attribute:
the location of tuples is only known, if it is known at all, based on a function
of that attribute. Queries that reference a relation based on a different attribute
have to be flooded to all machines that store a portion of the relevant relation
(Hua and Lee, 1990). This presents no barriers in a store with comprehensive
indexing, since each index can be distributed based on its primary attribute, but
is of interest when considering other strategies.

3.5.3 Distributing RDF Stores

RDF stores offer a few elements of special case behaviour with regards to distribution.
Conveniently, the tendency of single system RDF stores to utilise quite a complete
level of indexing is advantageous: each one of the SPO, POS, and OSP indexes can
be distributed based on their subject, predicate, and object respectively, eliminating
the issue of choosing a declustering attribute (Hua and Lee, 1990), and meaning that
triples can be easily discovered whatever portion of the triple is supplied. Bitmap and
SFC indexes also distribute effectively: since they index into a single attribute (the line
number for bitmap indexes) there only needs to be one data ordering. These indexes do
not guarantee that logically related data will be located on the same machine, however.

Perhaps the most significant issue when considering the clustering of RDF storage is
data distribution. Generally speaking, there is usually a relatively even distribution
of subjects, each subject being used a relatively small number of times. This makes
it advisable to keep all data on a subject in an SPO index on a single machine, as
startup costs will remove any gains from increased parallelisation. Predicates (and some
objects), on the other hand, tend to be of much higher cardinality, potentially resulting
in individual machines having to do excessive amounts of work and becoming hot spots.
This is exhibited to an extreme extent in predicates such as rdfs:label, which is often
used extremely regularly, and can result in certain machines storing very large portions
of the POS index. YARS2, one of the few existing clustered triple stores, works around
this problem by distributing predicate-ordered entries to a random server, and flooding
all predicate-oriented queries to every server in the system (Harth et al., 2007). This
approach is overly simplistic, removing contiguity of access and making querying against
lower cardinality predicates (and particularly predicate-object pairings) unnecessarily
expensive.

In Owens et al. (2008) the author proposed an alternative mechanism for dealing with
these hot spots: an ‘exception list’ that stores exceptions to the usual rules, distributed
to every machine in the cluster. Since the number of outliers are by definition relatively
small, this list requires only a small amount of memory. This allows low-medium cardi-
nality properties and objects to be stored as normal on a single machine, high cardinality
ones to be stored over a subset of the cluster, and extreme cases such as rdfs:label to



68 Chapter 3 Related Work

be stored over the entire cluster. The latter two cases could have their distribution
performed based on two attributes (such as P and O), so that queries that supply two
attribute values can still hit only one machine, while single attribute requests gain the
benefit of parallelisation. This approach should logically provide improved results.

Aside from these issues, RDF stores usually distribute effectively using traditional tech-
niques. Since range searches are rendered moot in RDF query due to the standard
normalised model, distribution based on a hash function is ideal. The main issue with
hash-based distribution, that it does not provide room for the addition and removal of
machines from the cluster, is easily solved (Erling and Mikhailov, 2008). If one pretends
that a cluster has several thousand machines, one can assign several of these virtual
machines to each physical server. Each server in the cluster holds a small amount of
information describing where the virtual machines are located, and store and retrieve
commands are subsequently performed on the virtual machines. Virtual machines can
then be moved between servers at will. This process can create some issues with main-
taining locality when required, but this can be overcome, as described in Owens et al.
(2008).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50  100  150  200  250  300  350  400

T
ri
p

le
s/

s

Triples asserted x1,000,000

1 Machine
2 Machines
3 Machines

Figure 3.13: Rates of assertion during a Clustered TDB load (Owens et al., 2008)

Figure 3.13 shows the scaling with regards to assertion rates for 1, 2, and 3 machine
clusters for the work performed by the author in Owens et al. (2008). As this figure
indicates, assertion time for large RDF files scales excellently using a hash partitioning
approach. Query performance depends on the types of queries being performed: some,
such as those that involve large index nested loops joins provide excellent opportunity
for parallelisation, while others offer more limited benefit. In systems such as this that
normalise URIs and literals into unique IDs, the process of converting IDs to URIs also
affords excellent parallelisation opportunities.



Chapter 3 Related Work 69

3.5.3.1 Distributing Memory Stores

There are no memory-only clustered RDF stores currently in existence. Distribution
in this scenario has quite different requirements to a disk based environment: in the
latter case, the latency of the network is usually much lower than that of a disk, so the
latency is often hidden quite effectively. While it is generally beneficial to perform as
little network transfer as possible, it is not excessively expensive to do so. By contrast,
in a memory-only or heavily memory-based scenario, the cost of network access is sub-
stantial compared to an access to RAM (Erling and Mikhailov, 2008). Given this fact,
it becomes more important to reduce network accesses wherever possible. This may re-
quire compromises such as globally cached data, which impedes scalability, or avoidance
of parallelisation-enabling techniques such as index nested loops joins in favour of tech-
niques which require fewer round trips. Alternative strategies such as modifying index
nested loops joins to buffer multiple operations at a time might also prove fruitful.

In practise, Ousterhout et al. (2010) argues that it is possible to substantially reduce
the latencies experienced by current networks, from several hundred microseconds to
between 5 and 10, making them more practical for memory (or SSD)-oriented designs.
This could be accomplished through a combination of improved practices:

• Lower latency network switches. Standard switches introduce substantial latency:
around 100µs for a round trip across a typical network. Newer designs can be used
to cut this by a factor of ten or more. Alternative network architectures such as
Myrinet (Boden et al., 1995) and Infiniband (InfiniBand Trade Association, 2001)
can also offer substantially reduced delays: Infiniband, for example, claims to offer
microsecond-level latency.

• Reductions in the overheads imposed by general-purpose operating systems in
socket communication. Current systems rely on passing through O/S layers to
communicate information to an application. Ousterhout et al. (2010) argues that
it will be possible to substantially reduce latency by dedicating a processor core
to polling for data and performing basic packet processing, or allowing network
cards to map areas in application memory, and directly pass in data.

• Alterations to the standard TCP protocol for intra-datacentre communication,
such as reductions in retransmission windows.

• Increased bandwidth at the more contended parts of the network, in order to
reduce the need for retransmission.



70 Chapter 3 Related Work

3.5.4 Summary

This section presented a brief summary of clustering in RDF stores and other DBMSs,
including the author’s own work in the area. While mid-sized datasets can be reasonably
stored on a single machine, realisation of extremely large improvements in scalability
will inevitably require a move towards clustered stores, the background of which was
described in this section. This trend is evident in the relatively recent release of 4store
(Harris et al.), Virtuoso Cluster (Erling and Mikhailov, 2008), YARS2 (Harth et al.,
2007), and the author’s own work described in this chapter.

In general, RDF distributes fairly efficiently using existing techniques, and the issues
that do exist can be overcome: Section 3.5.3 describes the author’s work in this area.
Interesting research opportunities arise in the event of low latency storage such as main
memory or SSDs becoming popular (Lee et al., 2009). Currently, the latency cost of
accessing data over the network is not excessive in comparison to the cost of disk I/O,
but this will change with low latency storage. Even when measures such as the instal-
lation of low-latency network switches are taken, it will become more critical to locally
cache regularly accessed data, increasing update complexity and compromising linear
scalability in the aid of better absolute performance.

3.6 Summary of Existing RDF Stores

As a whole, this thesis focusses on improving the various subsystems that combine to
form an RDF store, particularly data storage structures. As a result, this literature re-
view has considered existing RDF stores in a piecemeal fashion, rather than comparing
them as monolithic entities. In order to provide an overview of how the techniques de-
scribed in this review are used in real world stores, this section contains a brief summary
of the properties of several popular existing systems.

Store Backing
Storage

Join
Mechanism

Triple Data Structures

3Store (Harris,
2005)

RDBMS
(Disk)

Mixed
(DBMS-
specified)

Standard RDBMS quad table with
user-specifiable indexes (usually
B+Trees).

4Store (Harris
et al.)

RAM INL Distributed. Quads indexed using
radix tries with a 4-bit radix.

continued on next page



Chapter 3 Related Work 71

Store Backing
Storage

Join
Mechanism

Triple Data Structures

C-Store (Vertical
Partitioning)
(Abadi et al.,
2007)

RDBMS
(Disk)

Mixed
(DBMS-
specified)

Fully sorted columnar RDBMS
property tables with B+Tree indexes
over SO, and, optionally, OS
(batch-updateable).

Hexastore (Weiss
et al., 2008)

Memory,
Disk

Merge,
sort-merge

Six custom triple indexes. In an
SPO-ordered index, for example, a
sorted vector of Subjects links to
associated sorted vectors of
Predicates, which link to associated
Object vectors (read only).

Jena Tuple
Database (TDB)

Disk INL B+Trees over SPO, POS, and OSP.

Jena Memory
Model (JMM)
(Carroll et al.,
2004)

RAM INL Custom single-attribute hash-based
indexes (See Section 4.4).

Kowari (Wood
et al., 2005)

Disk INL Wide node AVL trees (see Section
3.3.1).

RDF-3X
(Neumann and
Weikum, 2008)

Disk Merge, hash Delta-compressed B+Trees (read
only).

Sesame 2 Native Disk Mixed B+Trees over SPOG, POSG,
additional indexes configurable.

SwiftOWLIM
(Ognyanoff et al.,
2007)

RAM Unknown Hash indexes.

Virtuoso (Erling,
2006)

Disk Mixed Triple table with user-configurable
indexes (B+Tree and custom bitmap.
See Section 3.3.4).

continued on next page



72 Chapter 3 Related Work

Store Backing
Storage

Join
Mechanism

Triple Data Structures

YARS2 (Harth
et al., 2007)

Disk INL Six custom, hash distributed ’sparse’
indexes. Triples stored in fully sorted,
huffman compressed lists divided into
blocks. Each block is represented by
an entry in memory that is used to
determine the block in which a triple
is located (read only).

Table 3.2: Summary of current RDF stores

3.7 Opportunities

There are a variety of opportunities for research in the areas described in this chapter.
Valuable contributions can be made by minimising the time spent in joins through
improved query optimisation, or work on precalculated joins, and there is certainly
scope for improving the deletion performance of stores that perform inference.

Other opportunities largely center around the upcoming availability of low latency stor-
age, a growing trend in the computing industry. RAM is becoming significantly cheaper,
with 32-64GB machines now fairly commonplace. In addition, solid state disks (SSDs)
are becoming increasingly common and practical.

Low latency storage can have a very significant impact on overall performance. In a disk
based environment, the cost of disk seeks is by far the largest cause of waiting under
many circumstances. A simple example illustrates this: in an uncached system based
on B+trees, a billion triple index might have a tree height of 5. If an index nested loops
join is performed that joins over just 10 items in the outer input, and a disk seek takes
10ms, the minimum I/O latency for that one operation is 500ms. Now, clearly a realistic
system will cache most of the upper levels of the tree, but even if all but the final level
is cached, the minimum I/O latency for the join operation is 100ms.

A typical SSD might have a random read latency of less than 0.1ms. The same join on
that hardware would have an I/O latency of just 1ms: a very substantial improvement.
Main memory is, of course, much quicker again. Since SPARQL queries are very join-
heavy, this is excellent news from the point of view of performance.

Lower I/O latency changes the focus of research. In a disk bound environment, poor
cpu cache utilisation or poor branching performance is likely to be overlapped to some
extent by disk latency, and in any case can generally be considered much less significant
by comparison. In an environment with low I/O latency, less overlapping is likely,



Chapter 3 Related Work 73

and more efficient use of CPU and memory will produce a relatively much larger gain.
With their small datum size, RDF stores have a particular opportunity to benefit from
improved cache locality.

Systems with relatively low I/O latency enable a greater variety of strategies for phys-
ical representation. Indexes based on SFCs, for example, become more practical in an
environment with lower seek times. RDF-specific index structures become an interest-
ing research area in a memory based environment that does not mandate the use of
large blocks. Such index structures become particularly attractive since SSDs and RAM
are typically significantly more expensive per gigabyte, placing an emphasis on space
consumption.

In general, the author sees the increasing practicality of low latency storage as being
perhaps the most important recent development in RDF storage, yielding a variety of
new research opportunities, particularly in the area of physical storage schemas. To
that end, this thesis focuses on the creation of memory-based index structures for RDF
storage.





Chapter 4

Java as a DBMS language

Existing Semantic Web toolkits (for example, Jena (Carroll et al., 2004) and Sesame
(Broekstra et al., 2002)) largely make use of Java and related technologies. Despite this,
Java is not traditionally seen as a language suitable for the development of high per-
formance database systems. This chapter contends that the prevailing attitude towards
the suitability of Java is out of date, and discusses the implications of its use in the
development of RDF storage systems.

The Java programming language’s reputation for poor performance exists thanks largely
to the immature technology behind early Java Virtual Machines (JVMs). In reality,
however, modern JVMs have seen a host of advances such as Just In Time (JIT) compi-
lation (Adl-Tabatabai et al., 1998), generational garbage collection (Sun Microsystems,
2006), aggressive inlining, escape analysis (Kotzmann et al., 2008), synchronisation per-
formance enhancements (Russell and Detlefs, 2006), array bounds check elimination
(Würthinger et al., 2007) and many more. These improvements have allowed JVMs to
approach the time performance of compiled C or C++ across recent benchmarks within
a factor of less than 2 (Fulgham and Gouy), and improve upon them in some tests. Java
has thus become increasingly useful for performance-dependent applications.

A complete discussion of the JVM’s compiler optimisations is beyond the scope of this
chapter, but can be found in Kotzmann et al. (2008) and Sun Microsystems (2008). The
observations made in this chapter are based on the Sun reference JVM running on an
x86 architecture, but the information given is valid for most other systems as well.

The maturity of Java and its backing technologies has resulted in its being used in more
efficiency-dependent systems. Hadoop (White, 2009; Borthakur, 2007), for example,
is a Map-Reduce (Dean and Ghemawat, 2004) implementation designed for processing
extremely large datasets. The two most popular Semantic Web frameworks, Jena and
Sesame, are also implemented in Java. Noting the extent to which Java is used in Seman-
tic Web technologies, this chapter performs a further investigation into this technology,

75



76 Chapter 4 Java as a DBMS language

in order to determine whether it is suitable language choice for an implementation of
the prototype data structure described in Chapter 6, and if it has unusual features that
may help or hinder RDF storage.

4.1 Time Performance

Java is a virtual machine-based language, which can result in different behaviour com-
pared to a compiled application running on the bare hardware. While Java has the
overhead of dynamic code compilation and garbage collection, there are associated per-
formance benefits, such as the extremely cheap memory allocation that garbage collec-
tion provides (Blackburn et al., 2004), and the ability to dynamically recompile code
when it might be beneficial.

An example of this can be seen in some brief experimentation performed by the author
as a test of branch prediction and cache performance. When performing a binary chop
of varying predictability over an extremely large array, as illustrated in Table 4.1 and
Table 4.1, Java exhibited much better worst case performance and significantly worse
best case performance than a similar C implementation. Note that these results were
experienced on Sun’s reference implementation under Linux, and different implementa-
tions may yield different results. The code for these implementations, along with the
compilation flags, can be found in Appendix A. The machine upon which the tests were
performed is described in Appendix B.

Array Size (ints) Java (ms) C (ms)

150000000 44106 67540
15000000 17963 20660
1500000 9293 9610
150000 2514 2200

Table 4.1: Comparison of Java and C on an unpredictable large scale binary chop

Array Size (ints) Java (ms) C (ms)

150000000 1723 1270
15000000 1481 1090
1500000 1308 960
150000 1123 820

Table 4.2: Comparison of Java and C on a predictable large scale binary chop



Chapter 4 Java as a DBMS language 77

4.2 Memory Efficiency

While Java’s time performance is often broadly comparable to more traditionally perfor-
mant languages, its space efficiency is often significantly worse: an issue that is important
for data-centric programs like DBMSs. Benchmarks (Fulgham and Gouy) indicate that
it is not unusual for Java applications to use 3 or more times the amount of memory of
a traditional C or C++ program, even on large datasets where the proportion required
for the JVM application is relatively small. There are a variety of causes for this:

• Baseline cost of the JVM application.

• Overhead of storing instrumentation data to allow the JVM to perform runtime
optimisation.

• Overhead associated with objects.

• Overhead of garbage collection and memory model.

The first two issues are important for small applications, but are respectively constant
and related to code size, and so are relatively insignificant for data-centric applications
like DBMSs. The latter two issues scale up with the size of the dataset, and are thus
relevant to this discussion.

The optimisation of small objects is an issue of great significance in JVM design. There
is a cost associated with managing each object with respect to both space and time
efficiency, and a large number of small objects exacerbates this overhead. These costs
are considered in detail in this section, as well as in Section 4.3.

Each RDF triple encodes only a very small amount of information: a single relationship.
As a result of this, an RDF document that expresses a meaningful amount of data
typically requires a large number of triples. To represent this data, a natural object
model will create an object for each RDF triple, with each URI or literal within the
triple also represented by objects. The practical upshot of this is that current memory
based RDF stores (as described in Section 4.4) produce a large number of objects, each
of which contains very little data. While this is a natural fit to the RDF model, there
is a minimum space overhead associated with each object created: in most JVMs, this
amounts to two words (Bacon et al., 2002). This space is required to maintain class
information and data related to synchronisation and garbage collection. In addition, on
x86 architectures objects are usually aligned to word boundaries, according to standard
practice on those systems.

On a 64-bit system, then, the per-object overhead is between 16 and 23 bytes, which in
a small object-heavy system can lead to a large amount of wasted space. Further, poor



78 Chapter 4 Java as a DBMS language

space utilisation can have performance implications: inefficient use of space can lead
to poor utilisation of CPU caches, which as noted in Section 3.1.3.2 is an increasingly
important issue in modern computers (Appel and Palsberg, 2002). Figure 4.1 gives an
illustration of the memory use of Java objects.

A particular matter of interest for modern JVM implementations is the expense of small
strings, of which most RDF DBMSs store many. There are two sources of potential
overhead in Java’s string implementation: firstly, string objects in Java store a variety
of additional information, such as a cached hash code. Secondly, Java uses a fixed-width,
2 byte character type, using UCS-2 encoding. This encoding supports a wide range of
Unicode characters, but for documents largely restricted to an 8 bit range, as is the case
for a large proportion of documents outside of Asia, the extra space is wasted, and a
variable length encoding would be more compact.

The TIJmp1 Java heap profiling tool was used to perform a simple measurement of the
space required by 1.5 million 20 character String objects. This test indicated that each
String had a total overhead of 64 bytes on 40 bytes worth of data: enough space to store
32 more UCS-2 characters. This space could store 104 8-bit characters. The per-string
overhead grows proportionately less as the size of the string increases.

Bytes
0 8 16 4440 48

Chars
Size
(int)

Class
Pointer

Sync,
GC, etc

Align-
ment

Figure 4.1: Memory usage of a Java object. This diagram illustrates an array of
12 characters. Note that characters are two bytes wide in Java in order to support

Unicode.

4.3 Garbage Collection

Early garbage collectors had difficulty managing large number of objects (Ungar, 1984).
This issue has, however, been effectively mitigated in more recent JVMs. Generational
garbage collectors (Lieberman and Hewitt, 1983), as shown in Figure 4.2 split the heap
into age-based generations. In the Sun reference JVM, allocations are performed se-
quentially in the ‘eden’ of the ‘young’ generation, and are promoted to the ‘survivor’
space of the young generation upon surviving a garbage collection (Sun Microsystems,
2006). This promotion works by copying the live objects in the eden to the end of the
survivor space. There are effectively two survivor spaces allocated: each time garbage

1http://www.khelekore.org/jmp/tijmp/



Chapter 4 Java as a DBMS language 79

collection is performed, all the live objects in the young generation are copied to the
other space (Blackburn et al., 2004). This process effectively compacts information,
eliminating fragmentation. After a given number of collections, objects are promoted to
the ‘tenured’ generation, where they will stay until they are deallocated. Finally, there
is a ‘permanent’ generation for information that will be needed for the lifetime of an
application, such as class definitions.

Young GenerationTenured Generation

Total Heap Space

TenuredPermanent EdenSurv. 1 Surv. 2

Figure 4.2: Generational memory layout in the Sun JVM. Older generations are
indicated by darker shades.

Generational collectors are based on the observation that most objects created in a typ-
ical system are very short lived, while some live for an extremely long time (Lieberman
and Hewitt, 1983). Collections work by determining what objects are still alive, and so
there is effectively no cost for object deallocation; instead, there is a cost for each object
that remains alive. They are performed much more regularly on the young generation,
and since this is typically small, with a large proportion of deallocated objects, take
relatively little time (Sun Microsystems, 2006). Collections on the tenured generation
are relatively rare, but take much more time as a result of working on a much larger set
of objects, and having to perform in-place compaction.

A consequence of this memory allocation system is that allocation is extremely cheap:
in contrast to a typical ‘malloc’ system, all allocations are performed sequentially at a
known location. The cost of garbage collection is variable, depending on how many live
objects remain in the system. This means that while large object counts are less costly
when compared to earlier technologies, there is still some time overhead associated with
them. In the Jena Memory Model, for example, a full collection on a 1.43 million triple
dataset, using the ‘throughput’ collector on a dual 1.8 GHz Opteron system requires as
much as 15 seconds, during which the system cannot respond to queries. Fortunately,
such a collection is very rare unless there are a large number of modifications being made
to the dataset.

In a scenario where a very high number of alterations are not expected, Java’s garbage
collection is a good fit for in-memory DBMSs. The space overhead is not excessive:
the young generation (which wastes half of its allocated space at any one time) need
only be relatively small, as most data in a DBMSs is permanently stored. For a mode
of use that results in large numbers of updates, alternative garbage collectors can be
considered that aim to reduce latency, at the cost of higher memory requirements (Sun
Microsystems, 2006).



80 Chapter 4 Java as a DBMS language

4.4 Profiling an In-Memory, Java-based RDF Store

This section discusses the performance of the Jena Memory Model, an in-memory store
written in Java, the design of which is discussed in Section 4.4.1. It contributes an
evaluation featuring profiling on issues such as memory use, CPU time, and cache miss
rates, evaluated in the context of the requirements that modern processors, memory
subsystems, and Java itself place upon the design of RDF stores.

This section uses a Berlin SPARQL Benchmark (BSBM) dataset of 1.43 million triples,
generated using a scale factor of 4000. The pieces of software used for measuring per-
formance were OProfile2 for CPU and cache profiling, and Netbeans3 and TIJmp4 for
memory analysis. The hardware upon which the tests were performed is described in
Appendix B.

4.4.1 The design of the Jena Memory Model

The Jena Memory Model (JMM) is designed to be an efficient fit to the RDF data
model. It stores each RDF statement in three separate hash indexes, based respectively
on Subject, Predicate and Object. This allows rapid lookup of triples based on partial
match criteria, a necessity for efficient SPARQL query processing: given, for example,
the Subject ‘Alisdair’, it becomes easy to find all triples with that subject.

Each index is comprised of a hash table that maps from nodes (URIs, B-Nodes, or
literals) to Bunches (a set of RDF statements corresponding to that node). A Bunch is
either an array of size 5 or 9 statements, or an open addressed hash table for instances
where more statements are present. The manner in which Jena internally represents a
small dataset is illustrated in Figure 4.3.

At the top level, Jena’s hash-based indexes make sense for RDF storage. Their property
of O(1) addition and lookup is highly desirable in a system that is expected to scale to
large quantities of data. Their traditional weakness, the lack of sorted order, is less of
an issue when storing RDF than it is with most other forms of data: URIs are discrete
concepts to which sorting has little meaning, and so searches over an alphabetic range
of URIs are less likely.

Jena’s adaptive Bunch structure allows the index to grow in a manner that promotes
high performance: the arrays used in smaller Bunches allow for fast linear traversal
and compact representation, while the hash sets enable cheap duplicate detection as the
Bunch grows, promoting fast assertion. Effectively, in the context of a POS-ordered
index, the JMM is very fast for restricting over P, and for restricting over POS: the

2http://oprofile.sourceforge.net/
3http://www.netbeans.org/
4http://www.khelekore.org/jmp/tijmp/



Chapter 4 Java as a DBMS language 81

Alisdair has-friend Paul

Triple 1

Alisdair has-friend Dan

Triple 2

Paul likes-food Chocolate

Triple 3

Subject Hash Index

Paul Triple 3

BunchMap

Alisdair Triple 1

BunchMap

Triple 2

Property Hash Index

has-friend Triple 1

BunchMap

likes-food Triple 3

BunchMap

Triple 2

Object Hash Index

Dan Triple 2

BunchMap

Chocolate Triple 3

BunchMap

Paul Triple 1

BunchMap

<Al isda i r>  <has- f r iend> <Paul>

<Al isda i r>  <has- f r iend> <Dan>

<Paul>      < l ikes-food>  <Chocolate>

Dataset:

Triples Produced:

Indexes:

Node Reference

Triple Reference

Object Definit ion

Figure 4.3: The Jena Memory Model: representing a small dataset

Hash Bunches provide a fast ‘contains’ check, while the Array Bunches are small enough
to simply iterate over. Unfortunately, it has no indexing mechanism for restricting over
PO, which can cause significant issues with performance.

While conceptually this design largely fits the RDF data model, its space efficiency is
in question due to specific implementation details in the most common Java Virtual
Machines (JVMs), as it creates a lot of small objects in certain circumstances. The
reasons behind this are considered in more depth in Chapters 5 and 6.

4.4.2 CPU Profiling

This section considers the CPU efficiency of the Jena Memory Model, with particular
reference to the process of answering queries rather than data assertion. The profiling
tools use sampling to attribute time spent to methods: figures may thus not be perfectly
accurate. To enable correct attribution of profiling data to methods, method inlining
was turned off using the -XX:-Inline JVM option.



82 Chapter 4 Java as a DBMS language

4.4.2.1 Indexes and Cache Efficiency

Jena uses a hash-based index scheme that does not support composite indexing. As a
result, it spent a large proportion of its time iterating over indexes: iteration operations
(next() and hasNext()) consumed 26% of CPU runtime. Jena’s indexes offer excellent
performance when matching against a single node (subject, predicate, or object): the
underlying hash maps offer O(1) lookup, allowing the Bunch associated with a node to
be retrieved quickly. However, if one wishes to restrict by a second node (for example,
a predicate as well as a subject), it is necessary to iterate over all the elements in the
retrieved Bunch to find the matches. This scales poorly as the Bunch expands.

Jena dedicated six times more storage to Hash Bunches than Array Bunches, with the
Hash Bunches allocating space for an average of 1088 triples each, with some larger
than 300,000. A consequence of the amount of data stored in large Hash Bunches is
that Jena spends a lot of time iterating over the arrays backing those structures to
retrieve matches. One result of this is that Jena’s data cache efficiency is quite high: its
access patterns are very predictable. Profiling indicated that over the course of a BSBM
query session the proportion of data cache accesses that missed both L1 and L2 was just
0.45%, much lower than typical DBMSs (Ailamaki et al., 1999). It is likely that this
percentage would increase with a better, more selective mode of access.

4.4.2.2 Node Comparisons

In any query, particularly those that deal with large working sets of data, a lot of node
comparisons are necessary: joins must be performed, and triples must be matched within
Bunches. Jena’s design, however, does not preclude multiple node objects being created
to represent the same actual node: it simply uses a node cache to try to reduce the
number of duplicates that get created. This approach means that Jena does not have
to maintain a separate explicit index to find nodes, but has a variety of disadvantages.

Since there may be more than one instance of logically equivalent nodes, it is not possible
to use a simple referential comparison to determine node equality, and a String equality
test is required. This is not a large performance hit when comparing strings of different
lengths, since the inequality can be trivially discovered, but requires a computationally
expensive character-by-character comparison in the case of equal length Strings.

This issue is exposed by the BSBM dataset: BSBM’s automatically generated URIs have
relatively little variation in length, and as a result Jena spent as much as 13.5% of its
time performing String comparisons.



Chapter 4 Java as a DBMS language 83

4.4.2.3 Garbage Collection

Tests indicated that Jena spent an insignificant amount of time (less than 0.05%) in
garbage collection. This is due to the fact that the dataset is, in this case, static. The
only garbage generated is short-lived objects related to handling queries, which are re-
moved efficiently during collections of the young generation. In this case, generational
garbage collection is an ideal match. It should be noted, however, that manually trig-
gering a garbage collection caused a 15 second pause, indicating that in the event of a
collection, the overhead is substantial.

4.4.3 Memory Profiling

The Jena Memory Model (JMM) was profiled after assertion of the dataset, with a full
garbage collection triggered to remove any unused objects. The JMM used a total of
639.27MB after assertion, spread across 6,253,509 objects. This is an average of 466.4
bytes per triple. At nearly twice the size of the original data file, despite the normalising
of repeated nodes, this footprint is clearly undesirable. It should be noted that this
footprint is also dependent upon the dataset being in sorted order on the subject field,
so that node cache utilisation can be maximised: using the same dataset in shuffled
order increased storage requirements to 1.18GB. The space used by the sorted dataset
broke down as follows: 377.71MB of the space was dedicated to node storage: nodes,
String objects, their underlying character arrays, and so on. 257.86MB was dedicated
to indexes: Triple objects, Bunches, and their underlying arrays. The remainder was
used by instances of rarely used classes in the system.

There are several culprits for wasted space in the memory model. The most interesting
is overhead associated with small objects: assuming even the bare minimum per-object
overhead of 16 bytes, this amounts to 95.4MB. It can amount to substantially more
when considering extra space required for alignment.

Secondly, the fact that nodes are not guaranteed to be normalised, combined with a
relatively small, fixed node cache size, means that a lot of space is used storing duplicate
nodes. Figure 4.4 indicates the number of nodes generated compared to those that exist
in the dataset. The amount of memory used for storing nodes, even in this cached
environment, validates the fully-normalised model.

Finally, there is the issue of empty space in the arrays that back both Hash and Array
Bunches. Clearly, the fixed-size arrays of 4 or 9 elements will regularly be only partially
full, and the Hash Bunches use at most 50% of their underlying array’s capacity. This
overhead exists for a reason: over-filling hash maps or resizing arrays each time they are
added to is costly.



84 Chapter 4 Java as a DBMS language

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

 900,000

URIs Literals All

Unique Node Count
Generated Node Count

Figure 4.4: Nodes generated in the Memory Model versus unique nodes that exist in
the dataset

4.5 Summary

This chapter has showed that modern JVMs are entirely suitable hosts for high-performance
DBMSs:they offer excellent performance with respect to CPU time, and have the poten-
tial to be compact. Within this statement, however, there are caveats: programs that
are likely to generate large quantities of small objects, in particular, are poor candidates
for JVMs. This is due to the cost in terms of memory space, and the strain placed on
garbage collection, as shown in Section 4.4.

If attention is paid to the weaknesses described in this chapter, however, there are few
barriers to the creation of a performant Java-based RDF store. This analysis informs
the use of Java as the implementation language for the prototypes described in Chapter
6.



Chapter 5

Examination of RDF Datasets

As previously emphasised in this document, the structure (or lack thereof) of RDF data
remains a particular problem for efficient storage and retrieval. The commonalities that
can be found in existing RDF datasets are not well understood, and it follows that
understanding them in more depth would provide a substantial benefit to the develop-
ment of high quality RDF storage systems. In order to inform such development, it was
decided to create a tool to produce statistics on RDF documents.

This chapter describes the design and development of ExamineRDF, a tool created to
produce detailed statistics over arbitrarily-sized RDF files. It is designed to require rel-
atively little memory, scales linearly with the amount of data being processed, performs
fast, append-only writes to disk, and reads from disk in large, contiguous chunks. Its
only requirement is sufficient disk space to store its results during processing.

The chapter goes on to provide an explanation of the output of the ExamineRDF tool,
and the use to which this output can be put. Finally, new statistics on a variety of
popular RDF datasets are presented and analysed. This information offers insights into
the compressibility of both triple data and the string sets found in RDF datasets, and
provides much of the basis for the development of the new RDF data structure described
in the following chapters.

5.1 ExamineRDF Design

ExamineRDF was created out of a desire to analyse popular RDF datasets such as
DBpedia (Auer et al., 2007) and UniProt (Apweiler et al., 2004). DBpedia amounts to
over 200 million triples, while UniProt is over three billion. Simply loading these datasets
into an RDF store and extracting statistics using SPARQL queries would be impractical:
it was found that just loading a 200 million triple set would take several hours on modern
stores, and analytics would take much longer. Scaling this to UniProt, or even larger

85



86 Chapter 5 Examination of RDF Datasets

datasets, would not be practical. This is the approach taken by RDFStats (Langegger
and Wöß, 2009), the only alternative RDF statistics generation system that the authors
are aware of. While it produces very detailed information, RDFStats does not effectively
scale to very large datasets, and does not have support for human visualisation of results.
As a result, the decision was made to build a custom system, the design of which is related
in this section.

5.1.1 Parsing and Loading

The free Redland Raptor library (Beckett, 2002) offers a reliable, fast mechanism to
parse RDF files of all common formats. As a result, the decision was made to use this
library to provide parsing for ExamineRDF. Only one non-standard parse option was
used: the feature raptor feature check rdf id was turned off. If this feature is
left on, Raptor performs checks to eliminate duplicate triples. Tracking of duplicates
requires a significant amount of memory that grows with the size of the dataset, and is
thus impractical for a system designed to scale to arbitrary datasets.

After parsing an RDF triple, Raptor calls back to the main ExamineRDF program. The
subject, predicate, and object are then hashed (using MurmurHash1), and the string
data thrown away. The hashes are then used to uniquely identify the node. For each
unique node, data is stored about its length (in terms of bytes, excluding any data type
information), the amount it is reused, and the number of times it appears as the subject,
predicate, or object of a triple. Further information is stored about how many times SP,
PO, and OS pairings appear.

Storage of all of this information is handled by two large, constant size hash tables: one
to hold the per-node information, and one to hold the pairing data. Since large RDF
files would quickly exhaust all available memory, the program regularly dumps the hash
tables to temporary files on the disk, and clears the hash tables. Once all the data is
processed, the files can then be joined together.

5.1.2 Joining and Statistics Generation

Under normal circumstances, joining a large number of files that do not fit together in
memory would be a painful process, involving a great deal of random I/O. ExamineRDF
avoids this issue by virtue of its use of fixed size hash tables. The fact that the size of the
tables never changes means that a node will always hash to the same slot: the program
knows that for a given node or pairing, any data that requires joining will always be
contained in the same slot, which occupies a limited, and generally very small, amount
of memory. Since slots are always laid down on disk in ascending order, locating a slot

1http://sites.google.com/site/murmurhash



Chapter 5 Examination of RDF Datasets 87

is trivial. All that is required, then, is to read sequential chunks from each temporary
file in turn. Buffers default to 1MB per file. The process of joining slots from a buffer
is illustrated in Figure 5.1.

Figure 5.1: Joining file buffers in ExamineRDF

ExamineRDF’s memory use can be configured: larger hash tables will result in lower
disk space usage (as more repeating nodes are caught) and faster statistics generation
(as fewer files need to be joined), but greater memory use.

ExamineRDF produces aggregate statistics on the fly during the join process, throwing
away the joined data once it has been processed. This approach keeps the requirement
for memory during the join phase low.

5.1.3 Design Discussion

ExamineRDF’s core design plays to the strengths of modern disks: fast sequential reads
and writes. As a result, it is able to fully process the DBpedia dataset in around 20
minutes on the machine described in Appendix B. UniProt takes significantly longer,
at 10 hours. This is due mostly to the increased size of the dataset, but also to the
fact that UniProt is encoded in XML/RDF rather than NTriples, and parsing XML is
substantially slower. Figure 5.2 shows the time ExamineRDF required to process subsets
of the DBpedia dataset, demonstrating linear scalability as the dataset grows.



88 Chapter 5 Examination of RDF Datasets

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  5e+07  1e+08  1.5e+08  2e+08  2.5e+08  3e+08

Ti
m

e 
(s

)

Triple Count

Load
Statistics Generation

Total

Figure 5.2: Time taken by ExamineRDF to process subsets of the DBpedia dataset

ExamineRDF does have one limitation upon scaling in its current implementation: it
uses 64 bit hashes to ‘uniquely’ identify nodes. The program will not detect a hash
collision, and so there is a risk that the statistics will be compromised. Assuming a hash
function with perfect distribution, a dataset with 200 million nodes has a probability of
experiencing a collision of around 0.1%, while a billion node dataset is nearly 3%. For
perspective, UniProt has approximately 450 million nodes, while DBpedia has about 66
million. Generally speaking, this risk of collision is unimportant: to make a noticeable
impact on the statistics, one heavily reused node would have to collide with another
heavily reused node, and the likelihood of this is marginal. If ExamineRDF is used for
datasets growing to hundreds of billions of triples or more, however, it may be worth
moving to 128 bit hash values.

Initial tests showed that a more important skew on results were duplicate values: the
statistics on the UniProt data, for example, suggested that a particular OS pairing was
repeated over 200,000 times. This is a practical impossibility, since the UniProt dataset
features only 127 distinct predicate values. As a result, duplicate detection was added
to ExamineRDF.

Duplicate detection works in a similar manner to the rest of the program: each triple is
hashed, and stored with a count in a fixed size hash table that dumps to a file when it
is full. Prior to the main join process taking place, this data is read back in and joined.
Triples with a count higher than 1 are duplicate values. As a result of the duplicate join
process, dump files are created that contain negative counts for the relevant node and



Chapter 5 Examination of RDF Datasets 89

pairing data. The dump files are then read in as normal during the main join process,
and correct the results.

5.2 Output

ExamineRDF outputs basic human-readable text output, as well as detailed files for
machine processing. It provides a top-level summary with the following information:

• Triple count.

• Unique URI and literal counts.

• Average URI and literal lengths (in bytes), including standard deviation.

• Average times each URI and literal are reused.

• Which URIs have appeared in which position in triples: how many have only
appeared as S, or as S and P, and so on.

Triple Count: 231661194
URI Count: 30218224
Average URI length: 52.93, Standard Deviation: 20.45
Average URI reuse: 20.97
Appeared as (ignoring literals):
S only: 1735317
P only: 1101
O only: 11794631
S and P: 38559
O and S: 16648616
P and O: 0
S, P and O: 0
O including literals: 48039661

Literal Count: 36245030
Average literal length: 76.72, Standard Deviation: 282.03
Average literal reuse: 1.69
Blank Node Count: 0
Average Blank Node reuse: 0.00

Figure 5.3: Summary data output by ExamineRDF for DBpedia

For example, the DBpedia dataset’s summary information appears as shown in Fig-
ure 5.3. In addition, the human-readable output contains tables with detailed data on
the following information:

• The number of times nodes appear as S, P, or O: for example, UniProt has
39,749,143 subjects that appear only once.



90 Chapter 5 Examination of RDF Datasets

• The number of times SP, PO, or OS pairings occur.

• URI and literal rate of reuse.

• URI and literal lengths.

These statistics give a wealth of information to work with, allowing the discovery of
useful commonalities between RDF datasets. The basic summary data alone allows the
determination of the ratio of unique nodes to triples, rates of reuse, the amount of unique
string data it is necessary to store, and whether that is due to URIs or literals.

The detailed information gives even more useful feedback. Using the cardinalities of
nodes and pairings, it is possible to garner detailed information on what proportion
of a given RDF index would be comprised of repeating elements. This informs issues
like the effectiveness of compression techniques, or whether a hash-based system using
sub-indexes (as described in Section 3.3.5) would be practical. The lengths of URIs
and literals informs issues like whether a few extremely large literals are a cause of the
majority of string storage, whether URIs cause much of the storage overhead, and what
kinds of compression might have a substantial impact on the size of a database.

Table 5.1 shows a subset of the node length information gathered over the UniProt
dataset. The ‘URI’ and ‘Literal’ columns show the number of nodes with the size
specified in the ‘Node Length’ column. For the sake of readability, ExamineRDF groups
the size ranges as they increase: lengths between 10 and 19 are grouped, as are those
between 100 and 199, and so on.

5.2.1 Visualisation

While the information output by the ExamineRDF tool is useful, the tabulated summary
data does not give a good visualisation of the results. As a result, Perl scripts were
written to process the machine-readable data files, and turn them into human readable
HTML or LATEX files with graph visualisations.

Producing useful graph visualisations is a challenge in and of itself, due to the large
quantity of data, and the fact that it is very ‘spiky’: intermittent 0-values tend to make
many graph visualisations unreadable. This section considers various potential types of
graph, using the DBpedia dataset as an example.

5.2.1.1 Node and Pairing Data

Figure 5.4 shows a graph of the cardinality of predicates in the DBpedia dataset, plotting
predicate cardinality on the x-axis against the number of predicates with that cardinality.



Chapter 5 Examination of RDF Datasets 91

Node Length (bytes) URI Literal

Total 391273031 54206101
1-1 0 64
2-2 0 2190
3-3 0 31265
4-4 0 191842
5-5 0 375910
6-6 0 596624
7-7 0 1031449
8-8 0 1193425
9-9 0 2101651

10-19 190439573 20780878
20-29 124 1672825
30-39 63918056 1560708
40-49 131036014 1207753
50-59 5695675 750303
60-69 161304 701346
70-79 7430 762338
80-89 8280 710313
90-99 2293 684261

Table 5.1: Subset of node length information from the UniProt dataset

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

E
n
tr

ie
s

Individual Cardinality

P Cardinality

Figure 5.4: Cardinality of predicates in the DBpedia dataset

This figure provides some information: it is possible to tell that there are around 10,000
predicates that are used only once in the DBpedia dataset, and that there are just a few
predicates that are reused a great many times. Unfortunately, however, the visualisation
provides little additional information, due to the spiky nature of the data. It also



92 Chapter 5 Examination of RDF Datasets

downplays the importance of the predicates that are repeated many times: while the
majority of the dataset will be comprised of triples featuring one out of a small selection
of predicates, this graph makes them appear almost insignificant. The problems of this
form of visualisation are exacerbated when adding the data for S, O, and the SP, PO,
and OS pairings, as shown in Figure 5.5.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

E
n
tr

ie
s

Individual Cardinality

S
P
O

SP
PO
OS

Figure 5.5: Naive (unclear) visualisation for node and pairing data in DBpedia

Clearly, Figure 5.5 provides virtually no useful information. An alternative visualisation
is to base the y-axis upon how many triples the nodes or pairings have appeared in.
This approach gives a much better idea of what proportion of the dataset is made up
of triples containing subjects (for example) that repeat only once, or those that repeat
many times. Figure 5.6 provides an example, again visualising predicates in the DBpedia
dataset.

Figure 5.6 offers some improvement: It is clear from the graph that high-cardinality
predicates are used in the bulk of triples in the DBpedia dataset. The issue of the data’s
spikiness is exacerbated, however. The problem is that as the graph goes to higher
cardinalities, the likelihood of there being no predicates with that particular cardinality
becomes higher. One might consider a scatter plot, but then the number of points,
particularly near the beginning of the graph, makes the chart unreadable. A better
solution is to make the graph cumulative, as shown in Figure 5.7.

Figure 5.7 gives a much more powerful, smoother visualisation. If one considers all pred-
icates with a cardinality between m and n, the y-delta between those points describes
the number of triples containing predicates with a cardinality between m and n. This
is perhaps harder to initially comprehend than the previous, simpler graphs, but lends



Chapter 5 Examination of RDF Datasets 93

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

T
ri
p
le

s

Individual Cardinality

P

Figure 5.6: Improved visualisation for cardinality of predicates

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

T
ri
p
le

s

Individual Cardinality

P

Figure 5.7: Cumulative visualisation for cardinality of predicates

itself well to determining what proportion of the dataset is made up of repeating or
non-repeating values. This visualisation also lends itself well to including the data for
S, O, and the SP, PO, and OS pairings all in one graph, as shown in Figure 5.8.

Using Figure 5.8, it is possible to discern a wide variety of information about the DBpedia



94 Chapter 5 Examination of RDF Datasets

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure 5.8: Cumulative visualisation of S, P, O, SP, PO, and OS cardinalities for the
DBpedia dataset

dataset. Subjects are usually repeated between 1 and 200 times, with most of the
dataset being comprised of subjects that repeat 50 times or more. Predicates take the
opposite extreme: while there are a fair variety of different predicates, most of the
dataset is comprised of triples featuring predicates that are reused tens of millions of
times. Objects are something of a mixture: while most objects are repeated only a few
times, there are enough objects of larger cardinality that triples featuring these objects
make up a substantial proportion of the dataset.

The pairing data provides interesting information, too. Subject-Predicate pairings are
of generally low cardinality: half the dataset is made up out of triples with pairings
that never repeat. Predicate-Object pairings repeat at almost the same rate as Objects,
suggesting that most objects are only ever referred to by one predicate. Finally, Object-
Subject pairings are repeated extremely rarely. The impact of these insights is discussed
further in 5.4.

5.2.1.2 Aggregate Node Reuse

ExamineRDF also produces detailed statistics over aggregate node reuse, covering the
number of times nodes are reused in any position in a triple. These are provided in
two forms, the first of which, shown in Figure 5.9, simply plots the number of times a
node is reused (its cardinality) on the x-axis, against the count of nodes that are reused
that number of times. The second, shown in Figure 5.10, is another cumulative graph,



Chapter 5 Examination of RDF Datasets 95

similar to that shown in Figure 5.8. This plots node cardinality on the x-axis against
cumulative (count of nodes with that cardinality) * (node cardinality). This latter graph
helps visualise whether the dataset is made up of regularly repeating URIs and literals
or not.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

#
N

o
d
e
s

#Times reused

URI
Literal

Blank Node

Figure 5.9: Node reuse data for DBpedia

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure 5.10: Cumulative node reuse data for DBpedia



96 Chapter 5 Examination of RDF Datasets

Figure 5.10 provides more useful results, as Figure 5.9 hides information about the few
nodes that repeat very regularly. Figure 5.9 might be improved by the addition of a log
scale on the y-axis, but then the issue of the data’s spikiness as it moves further along
the x-axis becomes substantially more apparent. Several inferences about the DBpedia
dataset can be drawn from these visualisations:

• URIs appear substantially more often than literals, much more so than is accounted
for the fact that literals cannot appear as S or P.

• The DBpedia dataset contains no blank nodes.

• URIs experience a great deal of reuse, and the dataset is largely comprised of URIs
that repeat more than 20 times.

• Literals generally repeat very little, although there are a few literals that repeat
quite regularly. These are likely to be small integer values.

In fact, there are more unique literals in the DBpedia dataset than there are URIs.
The fact that they’re repeated so rarely means that URIs are seen much more often,
however. This distinction can be made with the aid of the summary data, and the
tabulated detailed information. Full tabulated data for all the datasets in this chapter
can be found in Appendix C.

5.2.1.3 String Lengths

Finally, ExamineRDF also produces detailed statistics over string lengths. This data fits
reasonably well into two different kinds of visualisation. The first, shown in Figure 5.11,
simply plots node length on the x-axis against the number of nodes with that length
on the y-axis. The second, shown in Figure 5.12, plots node length against cumulative
bytes consumed.

Again, the non-cumulative form hides a lot of information. This can be mitigated by the
addition of a log scale, but then the issue of data spikiness returns. There are several
interesting facts about the DBpedia dataset exposed by these graphs:

• Literals occupy almost twice as much space as URIs.

• Most literals are quite small: around 10 characters long.

• The bulk of the space required by literal data is used in nodes larger than 100
bytes.

• Virtually all URIs are in a small size range, between 30 and 90 bytes. This is
expected: much of the length of most URIs is a repeating prefix.



Chapter 5 Examination of RDF Datasets 97

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1  10  100  1000  10000  100000  1e+06

#
N

o
d
e
s

Node Length

URI
Literal

Figure 5.11: Node length data for DBpedia

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 1  10  100  1000  10000  100000  1e+06

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure 5.12: Cumulative node length data for DBpedia

5.3 Other Datasets

This section discusses two other datasets: UniProt, and a synthetically generated file
from the Berlin SPARQL Benchmark (Bizer and Schultz, 2009), built using the standard



98 Chapter 5 Examination of RDF Datasets

BSBM data generator, and options ‘-fc -pc 284826’. These datasets are used to demon-
strate common trends in RDF storage, as well as provide a brief examination of BSBM’s
similarity to real-world RDF data. Appendix C contains the statistics for several more
datasets that were used to inform the conclusions derived in this chapter.

5.3.1 Summary Information

Triple Count: 100000112
URI Count: 14739372
Average URI length: 88.57
Standard Deviation: 2.40

Average URI reuse: 16.84
Appeared as (ignoring literals):
S only: 8544915
P only: 40
S and P: 0
O only: 5705305
O and S: 489112
P and O: 0
S, P and O: 0
O including literals: 14467148

Literal Count: 8761843
Average literal length: 477.77
Standard Deviation: 601.05

Average literal reuse: 5.90
Blank Node Count: 0
Average Blank Node reuse: 0.00

(a) BSBM

Triple Count: 2809173894
URI Count: 391273031
Average URI length: 29.08
Standard Deviation: 13.19

Average URI reuse: 18.98
Appeared as (ignoring literals):
S only: 101791597
P only: 104
S and P: 0
O only: 39637426
O and S: 249843881
P and O: 23
S, P and O: 0
O including literals: 93843528

Literal Count: 54206102
Average literal length: 158.32
Standard Deviation: 301.96

Average literal reuse: 18.45
Blank Node Count: 0
Average Blank Node reuse: 0.00

(b) UniProt

Figure 5.13: Summary data

The summary data for UniProt and BSBM is shown in Figure 5.13. It’s immediately
clear that both UniProt and BSBM operate over much more tightly specified domains
than DBpedia (shown in Figure 5.3): each have relatively few unique predicates, at 127
for UniProt and only 40 for BSBM, compared to nearly 40,000 for DBpedia. It might
be argued, then, that DBpedia represents a more compelling use case for RDF: UniProt
and BSBM might be represented using a relational schema, while it is not clear that the
same is true for the DBpedia dataset.

Another notable issue is that BSBM has, on average, much larger strings than either
UniProt or DBpedia: literals are three times longer than UniProt, and 6 times longer
than DBpedia. Further, URIs are substantially longer in BSBM. Table 5.2 shows the
space required per triple for string data for each of these three datasets, assuming the
string data is normalised such that it does not have to be repeated. It’s clear from these
statistics that the synthetic BSBM dataset has atypically large storage requirements for
string data.



Chapter 5 Examination of RDF Datasets 99

Dataset Literal URI Total

BSBM 41.86 13.05 54.91
DBpedia 12.0 6.90 18.90
UniProt 3.05 4.05 7.1

Table 5.2: Space required for string data for BSBM, DBpedia, and UniProt in terms
of bytes per triple

5.3.2 Node and Pairing Data

Node and pairing cardinalities for BSBM and UniProt are shown in Figure 5.14 and
Figure 5.15 respectively. These bear marked similarities to the DBpedia data shown in
Figure 5.8, but do exhibit certain differences:

• Subjects have an even lower cardinality.

• SP pairings almost always have a cardinality of 1.

• OS pairings almost always have a cardinality of 1.

• Predicates are even higher cardinality: low cardinality predicates make no real
impact on the dataset.

5.3.3 Aggregate Node Reuse

Aggregate node reuse data for BSBM and UniProt is shown in Figure 5.16 and Fig-
ure 5.17 respectively. In this case, UniProt shares some similarities with the DBpedia
dataset, shown in Figure 5.10: Both feature dramatically greater overall instances of
URIs than literals. BSBM, on the other hand, features a great many more literals.

In contrast to DBpedia, UniProt and BSBM feature many more literals that are repeated
regularly. This is likely to be a result of integer values: the literal ‘0’, for example, will
be repeated very often.



100 Chapter 5 Examination of RDF Datasets

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 1.1e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure 5.14: Cumulative node and pairing data for BSBM-100m

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 1  10  100  1000  10000 100000 1e+06  1e+07  1e+08  1e+09

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure 5.15: Cumulative node and pairing data for UniProt



Chapter 5 Examination of RDF Datasets 101

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure 5.16: Cumulative node reuse data for BSBM-100m

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure 5.17: Cumulative node reuse data for UniProt



102 Chapter 5 Examination of RDF Datasets

5.3.4 String Lengths

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 1  10  100  1000  10000

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure 5.18: Cumulative node length data for BSBM-100m

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1  10  100  1000  10000  100000

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure 5.19: Cumulative node length data for UniProt

Node length data for BSBM and UniProt is shown in Figure 5.18 and Figure 5.19
respectively. BSBM shows a striking difference to UniProt and DBpedia (shown in
Figure 5.12) here: along with string data requiring substantially more space per triple



Chapter 5 Examination of RDF Datasets 103

than in the other datasets, BSBM has a much larger proportion of its string data in
literals, particularly very large ones of over 500 bytes.

5.4 Discussion

The statistics produced by ExamineRDF provide a great deal of information, making
it easier to design RDF storage systems in an evidence-based manner, and informing
future research in the area. This section discusses the most important insights gained
by the examination of the datasets examined in this section, as well as those covered by
Appendix C.

5.4.1 RDF Index Design

The most obvious outcome of ExamineRDF’s output is that datasets are largely com-
prised out of nodes that repeat several times, and encoding the node once for every
triple it features in is a mistake. A clear case is thus made for the normalised model of
triple storage, where nodes are uniquely identified by integer IDs or references.

Examination of the results in this chapter reveals that the different orderings of RDF
data require very different behaviour from their data structures to extract high perfor-
mance:

• The low cardinality of Subjects and SO/SP pairings means that lookup time is
always dominant for retrievals from SPO or SOP-ordered indexes.

• When restricting by Predicate alone in a PSO or POS-ordered index, speed of
iteration is paramount due to the very high cardinality of most Predicates.

• Since PS pairings are always low cardinality, restricting by these two attributes on
PSO indexes is dominated by lookup time. By contrast, PO pairings are a mixture
of high and low cardinalities. Depending on the use case, lookup time or iteration
performance may be more important when restricting by two attributes over POS
indexes.

• Objects also exhibit a mixture of cardinalities, so restrictions by one attribute in
an OSP or OPS-ordered index depend on the use case.

• OS pairings are always low cardinality, and so restrictions by two attributes on
an OSP-ordered index are always dominated by lookup time. By contrast, OP
pairings are a mixture of cardinalities, so restrictions by two attributes on OPS-
ordered data depend on the use case.



104 Chapter 5 Examination of RDF Datasets

In order to complete this information, it will be necessary to perform studies of the kinds
of RDF queries that are performed in the wild, to determine which of these factors are
most important.

The qualities of POS-ordered data give an indication of the difficulties involved in creat-
ing scalable RDF stores. Any query that requires iterating over all the data associated
with a high cardinality P or PO pairing will inevitably have to work with a huge amount
of data. This issue is compounded by the fact that high cardinality predicates such as
<rdf:type> or <rdfs:label> tend to scale up in linear fashion with the size of the dataset.

In practice, most triple patterns in a query include a fixed predicate (Seaborne, 2008).
The result of this is that for OSP and SOP indexes, limited size is a greater priority
than high performance.

In addition to retrieval performance, the size of RDF data structures is very important,
particularly in contexts where a substantial amount of information is cached in memory.
One approach to reducing space requirements is to eliminate repetition of IDs, as seen
in systems like Hexastore (Weiss et al., 2008) and multi-level hash indexes. Many index
types require that each triple be stored in its entirety: for example, a B-tree might
store four triples in a leaf in the form SPO-SPO-SPO-SPO. If S and P are the same for
each triple, it is wasteful to repeatedly encode them. Ideally, one would wish to store
it in the form SPO-O-O-O instead. This can be accomplished in B-Trees with prefix
compression schemes, while systems like Hexastore, or multi-level hash indexes, work
by essentially creating sub-structures for each node and node pairing. For the purposes
of this discussion, the Hexastore-style approach will be termed prefix elimination, as
opposed to prefix compression for the techniques used on trees.

Unfortunately, the variance in the level of repetition between (and even within) different
index orderings highlights the challenge in compressing triple indexes. The effectiveness
of prefix elimination depends on regular ID repetition in order to make up for the
overhead of storing pointers to the sub-structures. A similar issue exists for prefix-
compressed tree indexes: the prefix must repeat often enough that the overhead of the
compression scheme is eliminated.

In an environment where prefixes are reused very often, as in a POS-ordered index, the
cost of the pointers in a prefix-eliminated index is virtually negligible. By contrast, in
an SPO-ordered index, with a relatively low level of prefix reuse, the pointer cost is
very significant. These observations are backed up by the calculations shown in Table
5.3. This table shows the size of a prefix-eliminated index like that used in Hexastore,
normalised against the size of an equivalent uncompressed B+Tree, at varying levels of
per-prefix overhead. Orderings are grouped by the two minimal sets of orderings that
provide full index coverage, showing that there is no theoretical advantage to choosing
either grouping. Note that this comparison ignores additional overheads like partial
filling of data structures: it assumes that both structures experience 100% utilisation.



Chapter 5 Examination of RDF Datasets 105

Table 5.3: Size of prefix-eliminated indexes over BSBM, DBpedia, and UniProt data,
normalised against a B+Tree with 100 triple wide nodes. Both structures use 32-bit

wide IDs.

Dataset Overhead
(B)

SPO POS OSP Avg SOP PSO OPS Avg Overall
Avg

8 1.28 0.46 1.33 1.02 1.28 1.19 0.60 1.02 1.02
BSBM 4 0.98 0.42 1.01 0.80 0.98 0.92 0.51 0.80 0.80

0 0.66 0.38 0.68 0.57 0.66 0.63 0.43 0.57 0.57
8 0.85 0.66 1.36 0.96 1.17 0.77 0.92 0.96 0.96

DBpedia 4 0.68 0.56 1.03 0.76 0.90 0.63 0.73 0.76 0.76
0 0.51 0.45 0.69 0.55 0.62 0.49 0.54 0.55 0.55
8 1.16 0.51 1.35 1.01 1.35 1.04 0.63 1.01 1.01

UniProt 4 0.89 0.46 1.02 0.79 1.02 0.81 0.53 0.79 0.79
0 0.62 0.40 0.68 0.57 0.69 0.58 0.44 0.57 0.57

In the ideal case of no per-prefix overhead, prefix elimination saves a lot of space. In
a more realistic situation of 4 or 8 bytes per-prefix overhead (typical pointer sizes),
however, the situation is less clear cut. Additional per-prefix overheads are also likely
to be incurred: for example, storing the count of values at each level of sub-structure.

The upshot of this is that for some orderings of the triple data, an indiscriminate prefix
elimination scheme may get overwhelmed by overheads. In order to achieve very good
compression ratios, they must be able to adaptively apply prefix elimination only where
it is appropriate. For example, if prefix elimination were only applied over the ‘S’ portion
of the SPO-ordered index on the BSBM dataset, the data structure would be only 70%
of the size of an equivalent B+Tree, even with an 8 byte per-prefix overhead.

It is worth noting that Hexastore mitigates its overheads by sharing some information
between different data orderings, resulting in a 20% overall saving of space when com-
pared to the naive approach considered in this section. In general, however, this work
indicates that prefix elimination schemes benefit from a more adaptive approach.

5.4.2 String Storage

The amount of space required for string storage in RDF datasets can vary substantially:
UniProt requires only a third as much per triple as DBpedia, for example. Regardless,
however, it is likely to occupy a substantial proportion of the space required by any
dataset. This is an important issue for any store that operates in memory, or wishes to
cache nodes effectively.

Reducing the space required for string storage must be split into the separate issues of
URIs and literals, since these behave very differently. URIs are a relatively simple case
for performant compression: they typically share long, regularly reused prefixes with a



106 Chapter 5 Examination of RDF Datasets

short unique portion as a suffix. Prefix compression is a cheap, fast and effective way to
compress data, and should allow much of the cost of URIs to be eliminated.

Literals are a more complex case, but generally require as much space as URIs, and are
thus equally important. Long literals, which make up the majority of literal string data,
are likely to be unpredictable text, for which simple methods like prefix compression
are ineffective. General purpose compression algorithms such as Lempel-Ziv (Ziv and
Lempel, 1978) are effective at compressing this sort of information, but the cost of
decompression is substantially higher. For a high performance in-memory store, this
cost may be unacceptable. An alternative approach, although unlikely to be faster,
might be to offload large literals onto fast secondary storage such as an SSD.

The problem of large literals requiring time to access, whether it be by decompression
or I/O latency, may not be as large as it initially appears. While the majority of space
required for literals is for those that are large (over 100 characters), smaller literals make
up the majority of the dataset: for example, 86.4% of literals in DBpedia are smaller
than 50 characters. Assuming a linear access profile, and only large literals undergoing
a compression or secondary storage strategy, most literal accesses would still cause no
slowdown. It is likely that large literals will be reused less (since values like small
integers are likely to be reused many times), meaning that even fewer accesses would
cause a slowdown. Depending on the use case, these approaches may be a worthwhile
compromise in order to save space.

Many types of small literal are amenable to compression, too. In an integer ID-based
system, integers, and types that can be represented using integers such as dates, can
be inlined directly into the ID, rather than being stored as separate node objects. Fig-
ure 5.20 shows an example of a 32-bit ID scheme that supports inlining. The first bit is
used to determine whether the integer represents an ID or an inlined literal. If it is an
ID, the remaining 31 bits are dedicated to the ID. If it is an inlined literal, the following
7 bits represent the type of the literal (integer, date, and so on), and the remaining bits
are the actual literal data. If the literal is too wide to fit into that space, it will not be
inlined.

Inlining offers a variety of benefits. Firstly, it saves space. The statistics show that
the space required for small literals is almost insignificant, but these do not include
overheads: space required to store the node in the node/ID map, and small object
overheads being the most obvious examples. Secondly, inlining can improve performance.
It does this by eliminating the cost (and likely cache misses) of performing the node/ID
mapping. This is especially useful when performing filter operations, which often require
a large quantity of ID to node conversions.



Chapter 5 Examination of RDF Datasets 107

Figure 5.20: Inlining data into a 32-bit ID. All figures are bit-widths.

5.4.3 Synthetic Datasets

This section briefly considers the challenges facing synthetic data generation, particularly
in an environment where queries must be automatically generated over the synthetic
data.

The most obvious difference between the DBpedia and UniProt datasets is the number of
distinct properties they contain. UniProt is a more obviously homogeneous, managed set
of information, featuring just 127 distinct properties, as opposed to tens of thousands
for DBpedia. BSBM attempts to mimic the characteristics of managed datasets like
UniProt, generating triples in a repetitive pattern based on a constant scale factor.

Generating synthetic data via a repeating pattern is an understandable choice, as it
is substantially easier to automatically generate queries over a predictable dataset. It
is questionable, however, whether this approach represents the most compelling use
case for RDF: that of a world where the data is unmanaged and unpredictable, where
new properties may be added regularly and at will, and where multiple datasets are
aggregated together. This environment is one in which the traditional relational model
suffers for its expectation of predictable data, and RDF shines. By contrast, BSBM
datasets translate well to a relational model, and the benchmark shows substantially
better performance on such systems (Bizer and Schultz, 2009).

While BSBM effectively mimics the characteristics of managed datasets like UniProt, it
does have some associated problems. One significant issue is the average string length.
Both literals and URIs have a substantially larger average length than that of common
real world RDF datasets. BSBM thus puts a greater emphasis on string compression
than is strictly warranted. An additional issue is that BSBM’s URIs display a very
noticeable lack of variation in length when compared to real-world datasets.



108 Chapter 5 Examination of RDF Datasets

To be effective tests of real world RDF store performance, benchmarks using synthetic
datasets must carefully examine and simulate both real world datasets and the queries
likely to be performed upon them. ExamineRDF can be used as a tool to improve the
quality of synthetic datasets, a fundamental aid to research in the area: in the long run,
the information provided by ExamineRDF should have the effect of improving the RDF
stores that test against these synthetic testbeds.

5.4.4 The Future

ExamineRDF can already be used to inform the design of physical storage schemas and
query optimisers for RDF data, but there is a variety of work that could be done to
yield even more useful results. The data that ExamineRDF already collects could be
used to produce even more statistics: for example, it would be interesting to know how
the length of a node string affects its likelihood of reuse. It would also be useful to
be able to set parameters such as a minimum overhead per node, in order to get a
more complete understanding of the amount of space small nodes consume in a real-
world implementation. Finally, there is certainly room for providing improved graph
visualisations, and even making them interactive, to allow the user to experiment with
what visualisation suits them best.

In terms of the core architecture, while ExamineRDF does scale linearly with the size of
the dataset, it currently only uses a single core of a CPU. This lack of distribution could
cause issues when scaling to datasets in the hundreds of billions of triples. Fortunately, it
is exceptionally well suited to parallelisation. During the load phase, files could be split
into portions, each of which is attended by one thread, writing to a separate file. During
the join and statistics aggregation phase, the temporary files could also be chunked,
thanks to the property that related data is always found within the same hash slot.

Overall, ExamineRDF provides a practical, scalable means to understand how the struc-
ture of RDF datasets affect how we need to store them. The information provided by
this tool is an invaluable aid to the design of effective RDF storage structures, as will
be described in Chapter 6.



Chapter 6

AHRI, a Highly Performant

In-Memory RDF Index

In Stonebraker et al. (2007), Stonebraker, a lead creator of the Ingres (Stonebraker
et al., 1976) and Postgres (Stonebraker and Kemnitz, 1991) DBMSs argues that for
many datasets, main memory DBMSs represent a desirable alternative to disk backed
systems. The amount of memory available in even mid-range server systems is in the
order of tens of gigabytes, and there is no reason to believe that this amount will not
continue to grow rapidly. Stonebraker suggests that datasets of less than 1 terabyte can
be considered appropriate for main-memory systems in the near future.

The storage and query of RDF data generally fits this requirement: files of over a billion
triples are considered truly large, and queries upon these datasets stress the capabilities
of existing systems (Rohloff et al., 2007); yet a billion triples does not constitute a vast
quantity of information. Indeed, datasets smaller than 100M triples (around 20GB of
asserted data) can stretch the capabilities of current disk-backed systems, particularly
in applications that require low-latency queries: for example, human-interactive applica-
tions, where users are unwilling to wait long periods of time between responses (Erling,
2009; schraefel et al., 2005).

Thanks to the consistently reducing cost of RAM, in-memory storage is becoming in-
creasingly compelling for classes of data, like RDF, that require little space but a large
amount of processing. A modern processor can perform tens of millions of operations in
the time it takes to perform a single disk seek, and since such operations are common
in RDF processing, this can add up to a vast amount of time lost.

It is clear that a direct in-memory solution has substantial performance benefits over
a disk-backed system operating with enough RAM to cache all its data: disk-backed
systems are constrained by the need to use data structures tuned for disk storage, and
by the need to check that relevant data is stored in buffer pools. In-memory storage

109



110 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

does, however, bring its own set of challenges: Firstly, there is a much greater premium
on space, rendering it impractical to store every possible sort order in a separate index,
and secondly, latencies that are relatively well hidden by the overwhelming cost of disk
access come to the fore.

Given the problems involved in creating high-performance RDF stores, moving to low
latency in-memory storage is clearly an avenue worthy of future research. The focus
chosen within this area was a data structure designed for indexing RDF data in-memory.
Current RDF storage structures are flawed when used for in-memory storage: trees
typically require a lot of space, and exhibit large find times, while hash-based structures
either provide no support for composite indexing, or result in an excessive proliferation
of indexing structures, and resultant space overheads. The primary contribution of this
document is an investigation into a new structure for RDF data called the Adaptive
Hierarchical RDF Index (AHRI).

6.1 Requirements

For the purposes of creating an in-memory index for RDF data, the following require-
ments were considered.

1. The index must support both fast find and fast iteration. Both of these features
are necessary: SPO-ordered indexes, for example, generally have low cardinality
contents and are thus find dominated, while POS-ordered indexes have high car-
dinality contents, and are thus dominated by the time it takes to iterate over their
contents.

2. The index must support fast insertion and deletion. While many current uses
of RDF are read-mostly (Weiss and Bernstein, 2009), this is partly a function of
the fact that performant RDF stores usually have relatively poor update support.
Much as has occurred on the Web, some workloads can be expected to become
more write-heavy as RDF is exposed to a greater variety of applications.

3. The index must be compact: while RAM is constantly becoming cheaper, it is still
a more expensive resource than disk, so it is important to use it efficiently.

4. The index must perform effectively when written using newer languages. Lan-
guages like Java or Python have substantial overheads for small objects, which
must be considered in the design phase.

From these base requirements were derived several further issues of importance:

• Support for composite indexes is vital. As the indexes scale, the inability to filter
by more than one attribute causes an overwhelming slowdown.



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 111

• Given the performance requirements, the index must be designed to miss cache
infrequently, and cause very few branch mispredictions.

• The index must not create a large quantity of small objects. These will cause
excessive space overhead, as discussed in Chapter 4.

• Any compression scheme used must exhibit exceptionally high performance, and
not significantly impact the ability to add or remove triples from the store.

6.2 Design Decisions

Given the set of requirements described in Section 6.1, this section considers the broad
architectural decisions that were made to support the creation of an in-memory index
for RDF data.

6.2.1 Normalisation Strategy

Given the requirement for space efficiency, any in-memory index structure must feature
a fully normalised strategy; that is, any given node must be represented in its full lexical
form only once in the system. There are two common models for normalisation in RDF
stores. The first (referred to as Disk) is seen most often in disk-backed stores. It is quite
simple: one structure maintains a list of unique nodes, and provides mapping between
nodes and an integer ID that is used to represent the node elsewhere. A second structure
is a set of indexes, each of which represents the triples in the dataset in a given attribute
order (SPO, POS, etc). These indexes encode node IDs inline to represent the subject,
predicate, and object of each triple.

An alternative approach (referred to as Mem) is seen in in-memory stores: these typically
have a model where each triple is represented by a triple object, each of which contains
references to node objects. Indexes over this data then use references to point to related
triple objects. This approach does not require a separate structure to convert between
IDs and their equivalent nodes: the IDs in this system are references to triple and node
objects, which implicitly encode where the nodes are located.

From the point of view of in-memory storage, Mem has a variety of advantages: space is
saved by the lack of a node mapping structure, and by the fact that triples are normalised
as well as nodes: Disk encodes the triple inline in each of its triple indexes, which means
that (Index Count ∗ 3 ∗ ID Size) bytes are used representing each triple. By contrast,
Mem requires ((Index Count ∗Reference Size) + Triple Size) bytes per triple, where
Triple Size usually equates to (3 ∗Reference Size). Further, retrieving the lexical text
of a node is faster: one simply has to follow the reference rather than undertake the



112 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

mapping procedure in Disk. The space required by Mem and Disk for systems using 32
and 64-bit references or IDs is summarised in Table 6.1, assuming a 3 index system.

Strategy 32-bit (bytes) 64-bit (bytes)

Disk 36 72
Mem 24 48

Table 6.1: Size per triple given 32 and 64-bit IDs and references

Mem’s advantage in terms of space is not all it appears, however. A 32-bit reference-
based application can usually address no more than 4GB of RAM. This is not enough to
store a very large quantity of information. On the other hand, a 32-bit Disk -like system
running on a 64-bit computer can address a practically unlimited quantity of RAM: it
is limited only by the number of IDs it can generate. A 32-bit ID space supports over
4 billion IDs, which, assuming the level of reuse seen in the UniProt dataset, is enough
for 26 billion triples: enough for the foreseeable future. In practice, then, a 32-bit ID
space is sufficient for Disk, where it is not for Mem.

A further issue is worth considering: having a separate object for each triple gen-
erates a lot of small objects. In most JVMs, objects have a minimum overhead of
(2 ∗ Reference Size). For a Java-based implementation, then, the relative size per
triple for Mem grows, as shown in Table 6.2.

Strategy 32-bit (bytes) 64-bit (bytes)

Disk 36 72
Mem 32 64

Table 6.2: Size per triple given 32 and 64-bit IDs and references on a Java-based
implementation

Finally, there is a potential for Disk to be reduced in size by omitting repeating values
(Weiss and Bernstein, 2009). For example, in a POS-ordered index, high cardinality
Predicates will be repeated very often. If it were possible to eliminate such repeating
values, the size of the Disk indexes could be shrunk dramatically. Table 6.3 shows the
effect of this, using the UniProt dataset to estimate how much repeating data could be
eliminated across the three index set. This figure (labelled Disk (min)) is idealised, since
it assumes no overhead is required to enable the omission of repeating values.

Strategy 32-bit (bytes) 64-bit (bytes)

Disk 36 72
Disk (min) 20.8 41.6

Mem 24 48
Mem (Java) 32 64

Table 6.3: Size per triple including an ideal value for Disk



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 113

For in-memory stores, then, the Disk strategy is a clear winner for datasets smaller
than 26 billion triples, particularly for any implementation that includes a small object
overhead. Any overhead caused by the requirement to implement a node/ID mapping
will not come close to overwhelming Disk ’s advantage. When datasets larger than 26
billion triples come into existence, the Mem strategy will likely have some advantage in
space consumption on systems with no object penalties.

A further concern with the Mem strategy is cache performance. In order to perform
a search in an index, it is necessary to compare the content of different triples. This
inherently requires that the triples be dereferenced, which will inevitably involve a large
quantity of cache misses. It is likely, then, that the performance of Mem will be con-
siderably worse than that of Disk. This observation parallels the discoveries in Rao and
Ross (1999), where it was found that T-Trees, which attempt to save space by stor-
ing references to data rather than holding it inline, performed substantially worse than
B-Trees with inline data.

A final point in favour of the Disk architecture is that it supports distribution, where
Mem does not: a reference-based system inherently assumes that an object can be found
somewhere in memory, unlike an ID-based one. Even if a shared memory system were
implemented across the cluster of machines, the architecture has poor characteristics for
distribution: since triple objects would be distributed across the cluster, ‘dereferencing’
them would prove prohibitively expensive.

Given these observations, it was decided to adopt the Disk -style model of data normali-
sation, using a monotonically increasing, 32-bit integer ID to identify unique nodes. The
advantages and disadvantages of integer and hash IDs are discussed in detail in Section
3.2.2.2, but in this case the hashing approach is infeasible: a 32-bit ID space gives an
unacceptably high risk of ID collision with only tens of thousands of nodes.

6.2.2 Overall Structure

In order to satisfy the requirement of a fast find time, it was clear that tree indexes
were not a suitable solution. Hashes are attractive for their excellent find performance,
but experience overwhelming overhead when acting as a composite, multi-level index:
Figure 6.1 shows a simple example of a multi-level index, and it’s easy to see how the
number of index structures could blow up as the dataset increases in size. Given the
wildly varying characteristics of the different orderings of RDF data, an adaptive solution
was required: one that provided composite indexing where it would be beneficial, while
ignoring it where the cost would be excessive. This approach allows for fast find times
and low overheads.

The proposed structure features multiple levels of indexing: that is, given an SPO-
ordered index, a level 1 (L1) index covers every Subject in the dataset, while a level



114 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

Figure 6.1: A full multi-level index structure, in POS ordering, over a simple RDF
dataset

2 (L2) index covers every Predicate related to a given Subject. Finally, a level 3 (L3)
index covers every Object related to a given Subject-Predicate combination. How many
of these levels are used depends on the way the data behaves. Consider Figure 6.1, for
example: for this data, one might decide that maintaining a separate L2 and L3 index
for the triple ‘dan pet ned’ is wasteful. As a result, the L3 and L2 indexes are merged
into one, as shown in Figure 6.2. This approach substantially curtails overheads, at
the cost of forcing the creation of a greater variety of data structures, or ones that are
flexible enough to support merging.

Figure 6.2: An adaptive multi-level index structure, in POS ordering, over a simple
RDF dataset



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 115

In this model, assuming a three index store (SPO, POS, and OSP-ordered indexes), one
would expect the following characteristics, based on the results found in Chapter 5:

• All three would feature an L1 index.

• SPO would require little or no L2 or L3 indexing, as Subjects are generally of
low cardinality: it is practical to simply iterate or binary chop through the data
associated with a given Subject.

• POS would feature a large quantity of L2 and L3 indexes: Predicates are of almost
universally high cardinality, while PO pairings are also often of high cardinality.

• OSP would have a substantial requirement for L2 indexing, but almost none for
L3: Objects are often of mid-high cardinality, while OS pairings are almost always
extremely low cardinality.

An alternative approach would be to simply use distinct index structures for each of
the three orderings, given their very different characteristics. An adaptive strategy,
however, has the advantage that it can manage datasets that do not conform to the
expected norms.

A multi-level design also offers the opportunity to eliminate the cost of repeating values,
as described in Section 6.2.1. Since each L2 index is uniquely associated with an L1
value, it isn’t necessary for the L1 value to be repeated inside the L2 index. Given
this fact, as long as the L2 and L3 indexes have a very low overhead, a multi-level
indexing strategy can save a substantial amount of space, providing a kind of implicit,
free compression.

Finally, the multi-level design offers another substantial advantage: the freedom to
choose, at each level, what kind of indexing structure to use. One might decide that
a hash is appropriate for the L1 data, but want a B+Tree for L2 data, depending on
the structure of the chosen dataset. Further, providing the ability to switch between
such structures automatically would allow the system to tune itself without manual
intervention. The decisions for what data structures to use are described in Section 6.3.

6.3 Per-Level Index Choices

This section considers the merits of various indexing strategies for each different level
of the data structure. The choice of index can dramatically affect overall performance
and size, and so picking a good strategy is extremely important. It is not required that
each level have only one, fixed type of index, and the best choice will depend partly on
the use case.



116 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

6.3.1 Level 1

The requirement of the L1 index structure is simply to provide a pointer to an L2 index,
or, if no further indexing is required, a data structure that is able to hold a flat list of
the second and third attribute values.

The most immediately obvious choice for an L1 index is a hash table. They offer fast,
amortised O(1) insertion and retrieval, with a minimum of cache misses and branch
mispredictions. They do, however, have a significant overhead associated with them:
depending on type, hash tables can only be filled between 50-75% of their array size
if they wish to maintain performance. Further, and more importantly, the table must
store both the key (node ID) used to index into the table, and the pointer to the L2
index. Assuming a hash table with a maximum utilisation of 70%, with a growth factor
of 2, using 32-bit pointers, a hash table will be 285-571% of the size of the raw data it
stores. For reference, a B+Tree, for reference, would experience slightly lower overhead,
at an average of just over 300%.

A less obvious, but simpler, alternative to the hash table is direct mapping. Direct
mapping means simply using the ID being searched for as the index into an array of
pointers. If the array uses a simple growth algorithm (such as increasing by a factor
of 1.5 every time growth is required), direct mapping offers O(1) insertion and retrieval
with an exceptionally low constant factor. Since the ID is the index, there is no need to
store the ID keys in the array. Further, growing the array is much cheaper than growing
a hash-backed array: hash table growth requires a re-hashing of every inserted element,
while a direct mapping array can be increased in size by simply allocating a new, larger
array and performing a simple memory copy from one to the other.

The overhead of direct mapping is dependent on the extent to which nodes are reused
across attributes. The maximum overhead occurs when no Subject nodes are ever used
as Objects or Predicates, no Predicates are ever used as Subjects or Objects, and so on.
The minimum overhead occurs when every Subject appears as a Predicate and Object in
other triples, and so on. Assuming a three index system, the average per-index overhead
factor can be calculated as:

overhead = 1−((S Node Count+P Node Count+O Node Count))/(Total Nodes∗3))

Taking the UniProt dataset as an example, this overhead factor is 0.52: the array to
support the direct mapping will on average be 52% larger than the amount of real data
in the array. Including a 25% average overhead to allow the array to grow in amortised
O(1) time, a direct mapping array will be, on average, 185% of the size of the real data
it stores.

Direct mapping is a poor fit for a predicate-ordered index: for example, UniProt has only
127 unique properties, and so a direct mapping approach is vastly inefficient in terms of



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 117

space. The average case, however, is substantially better than alternative approaches.
In general, then, direct mapping requires around half of the overhead of a hash table or
B-tree, and is dramatically quicker for both read and write operations, making it the
index structure of choice for the L1 index.

6.3.2 Pointers and FixedBuckets

For the subsets of the dataset that do not require indexing beyond L1, it is necessary
to store their additional attribute values somewhere: on an SPO-ordered index, for
example, the Predicate and Object data needs to be stored. The most obvious approach
is to place that information in an independent array, and have the L1 index store a
pointer to that array. Find operations are performed by simply iterating through or
binary chopping the array (if it is sorted). This simple approach is illustrated in the
context of an SPO-ordered index, with no L2 or L3 indexes, in Figure 6.3. Note that
for the remainder of this section, examples work in the context of an SPO-ordering.

Figure 6.3: An SPO-ordered index with no L2 or L3 indexes

This independent array approach has a variety of flaws. Firstly, it has a substantial
amount of overhead. For each Subject, it is necessary to store an array length counter,
a pointer to the array, and any object overhead. When the array is storing 10 items
or less, this adds up to a substantial amount: 8 bytes for the pointer, 2-4 bytes for the
array length, and 16 bytes if there is per-object overhead similar to that seen in Java:
10-28 bytes on 8-80 bytes of data. Secondly, the data is non-contiguous: if one wishes to
iterate over all the data, a vast number of cache accesses will be triggered. Further, this



118 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

approach has the potential to spread small amounts of data all over the virtual memory
space, causing poor usage of the TLB.

These problems can be mitigated by a flat array approach. Instead of storing the data
related to each Subject without an L2 index in a separate array, the data for all Subjects
gets placed in one central array, as shown in Figure 6.4.

Figure 6.4: An SPO-ordered index with single array

The single array approach solves many of the multiple-array issues. Iterating over the
data is now extremely fast, and the usage of the TLB is much improved. Overhead is
much lower: the object penalty is now insignificant, and (if there are fewer than 232

triples being stored in the array), a 4-byte integer can be used to index into the array,
rather than an 8-byte pointer. The overhead on 8-80 bytes of data is now merely 6-8
bytes.

Unfortunately, this approach has some substantial disadvantages. Firstly, it isn’t pos-
sible to use the data structure for more than 232 triples without increasing the size of
the pointer index. More importantly, this array is subject to fragmentation: as data is
updated or deleted, holes will appear in the array that must be tracked. This approach
is thus difficult to use effectively for dynamic stores.

A modification of this approach can work effectively, however. If a few arrays are used,
each of them containing fixed size buckets of data, the problem is solved. The fixed-size
buckets stored in each of these arrays are called FixedBuckets.

In this approach, any Subject that has only one PO pairing associated with it will have
its data stored in one array. Any Subject which has two PO pairings will have its data
stored in another array, and so on. The approach used for pointing into a FixedBucket
array is quite simple. Using a 32-bit integer (called a location), the first 4 bits indicate
the array, while the remaining 28 bits indicate the position of the bucket in that array.
This means that each FixedBucket array can store up to 228 buckets prior to overflowing.
For reference, the largest FixedBucket array produced by the 2.8 billion triple UniProt



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 119

dataset is less than 1/4 of this size. In ideal circumstances, the first fifteen FixedBucket
arrays could store over 34 billion triples. The FixedBucket approach is illustrated in
Figure 6.5.

Figure 6.5: An SPO-ordered index with a FixedBucket array approach

If another PO pairing is attached to a given Subject, the data associated with that
Subject is ‘promoted’ to the array which stores the next bucket size up, while the
opposite occurs for deletion. Performing a promotion is simple:

• Copy FixedBucket (FB1 ) from current array (array1 ) to the tail of higher array
(array2), inserting new element as required.

• Update location pointer to reflect FB1 ’s new position.

• Copy FixedBucket (FB2 ) from the tail of array1 to FB1 ’s old position.

• Update location pointer to reflect FB2 ’s new position.

Note that in order to practically perform this operation, each FixedBucket must also
store the Subject to which it is attached: moving FB2 requires updating the pointer
that points to it, which cannot be easily discovered without the Subject. The effect of
an update is illustrated in Figure 6.6. In this update, ‘al’ buys a new fish, which he calls
‘bob’. His data is thus promoted to the higher FixedBucket array.

The FixedBucket approach has excellent characteristics. They are very fast to iterate
over, group related data effectively, can store a very large number of triples, and do not
suffer from fragmentation. Their overhead is small: just 4 bytes for the location pointer
and 4 bytes to store the Subject ID on 8-80 bytes of data. Note that in a bulk-built,
non-updateable version, the Subject data would not be required. Further, the size of
the FixedBucket is implicitly encoded in the location pointer, making it very fast (and
space overhead-free) to retrieve statistics on data stored in FixedBuckets.



120 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

Figure 6.6: An SPO-ordered index with a FixedBucket array approach: update illus-
tration

6.3.2.1 Physical Layout

In practice, the physical layout of a FixedBucket can differ from the conceptual layout
depicted above. There are two candidate physical structures for FixedBucket arrays
(depicted in Figure 6.7), depending on the use case. In-order stores the S value at
the start of each bucket, followed by sorted PO pairings. This layout works well for
element-at-a-time retrieval: all accesses inside the bucket are performed sequentially,
and the layout is simple. Buckets can be easily rearranged.

The alternative structure, vector is designed for block-at-a-time retrieval. All the Subject
values are stored in a block at the start of the array. Each FixedBucket then stores all its
Predicate values followed by all its Object values (again in pairwise sorted order). This
approach is designed for vector-based query engines, which will want to retrieve groups
of values at a time. Using this layout, one can use fast block memory copy operations
to copy all the Predicate values into one vector, and all the related Object values into
another. This is not possible with in-order. Vector is more complex to update and
grow than in-order, but this cost is relatively minor. Vector has further special-case
performance advantages when compared to in-order : these will be described in more
detail in Section 6.3.3.

6.3.2.2 Limitations

One obvious limitation of the FixedBucket approach is that due to the width of the 4-bit
‘array’ portion of the pointer, the size of a FixedBucket cannot exceed 16. In practice,



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 121

Figure 6.7: FixedBucket Layouts

the overhead of storing larger buckets in a separate object is quite small, so that is the
approach taken. The highest value of array (15) is reserved, and is used to assert that
the data related to that Subject is stored in an independent object. That object may be
a flat list, or an L2 index, depending on how much there is of it. The ‘position’ portion
of the pointer indexes into an array of references to these objects. Figure 6.8 shows how
this would work when the Subject ‘dan’ has a lot more pairings attached to it.

Figure 6.8: An SPO-ordered index with one independent array object

Overall, then, the direct mapping + FixedBucket solution offers excellent performance
with low overheads. It provides a way to distinguish between data that is indexed
further and that which is not, and a way to link to L2 indexes, the structure for which
is discussed in Section 6.3.3.



122 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

6.3.2.3 Alternative FixedBucket Array Structure

The current FixedBucket Array structure is very simple: a flat array of FixedBuckets. To
increase the size of the array, a new array is allocated, and all the existing FixedBuckets
copied to it. To maintain amortised O(1) insertion performance, the new array is 1.5
times bigger than the old one, giving an average of 16.7% space wasted in a FixedBucket
Array. This space can be substantially reduced using an alternative FixedBucket Array
and location pointer structure, shown in Figure 6.9.

Figure 6.9: Alternative FixedBucket Array Structure

In this new structure, a FixedBucket Array essentially morphs into a two dimensional
array. The first dimension (or TopArray) simply holds references to SubArrays. In this
approach, a SubArray is allocated, and grows up to a maximum size as data is added.
Once this size is reached, a second SubArray is allocated, and so on. This approach
means that when growing, only the current, unfilled SubArray needs to be reallocated,
and the maximum wasted space is only 0.5 ∗ SubArraySize.

In order to implement this approach, the location pointers need to be reworked to store
SubArray information too. This approach can save a substantial amount of space, and
substantially reduces overheads when growing the array, but also introduces the risk of
an additional cache miss. As a result, AHRI does not currently implement this approach,
although it is worthy of future consideration.

6.3.3 Level 2

The direct mapping approach used in the L1 index does not work for level 2 structures.
An L2 index will contain substantially fewer entries than an L1 index, and yet the
potential range of IDs is the same: the overhead is thus dramatically greater.

As a result, AHRI falls back to a hash-based structure for level 2. Aside from the use
of a hash to locate data related to a given ID, the structure of this L2 index, known as



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 123

an L2Hash, is remarkably similar to that of the L1 index. Each ID is associated with
a 32-bit location that points to a structure containing related data (in the context of
an SPO-ordered index, the Objects related to an SP pairing). That location is again
comprised of 4 bits array and 28 bits position, pointing to either a FixedBucket or an
L3 index.

Figure 6.10: Level 2 hash index

For the purposes of compactness and cache-friendly linear access, the hash table used
in this design is a linear addressing structure. The structure of the FixedBuckets used
in L2Hashes is similar to that described in Section 6.3.2.1, but with a width of only
one attribute value. The physical structure of the one-wide FixedBuckets is shown in
Figure 6.11.

Figure 6.11: FixedBuckets with a width of one attribute value

As well as wanting to find individual elements, there is also a requirement to be able to
return all the data within the L2Hash, to satisfy queries that fix only one value. Initial
versions of the L2Hash iterated over all of the elements in the hash table, retrieving the



124 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

FixedBuckets or L3 indexes that they pointerd to in turn. This approach was extremely
slow (about 1/4 the speed of a B+tree), as it offered poor locality of access as well
as requiring extra calculation. An alternative approach is substantially faster: each
FixedBucket array is iterated through in turn, with each FixedBucket within that array
being accessed sequentially. After this, each L3 index is iterated through in turn.

The vector FixedBucket strategy has a useful optimisation when performing retrieval
of all values in the L2Hash. For SP pairings (in an SPO index) that have a cardinality
of one, the number of Predicate values is equal to the number of Object values. This
being the case, when copying data out into vectors for a query processor, one can simply
perform a straight memory copy of these Predicate and Object values into their respec-
tive vectors, across multiple FixedBuckets. This optimisation provides a substantial
performance boost, particularly on OSP-ordered indexes, where most OS pairings have
a cardinality of one.

The L2Hash design is highly efficient for POS-ordered indexes. The FixedBuckets offer
generally low overheads, while the large majority of data in POS-ordered indexes will
be held in L3 indexes: as long as these remain compact, then the index as a whole will
perform well.

OSP-ordered indexes are something of a different matter, however. While many Objects
are of fairly high cardinality, most OS pairings are of cardinality 1. This is the worst case
for the multi-level index paradigm, which has fixed per-element overheads, relying on
some of those elements to be high cardinality to produce good overall results. Since the
fixed overhead is relatively high, a bucket width of one produces poor space efficiency. As
a result, for OSP-ordered data AHRI produces high performance, but space efficiency
only slightly better than a B+Tree. This is a less than ideal result: the OSP index
is used by far the least out of the SPO, POS, OSP set, so the focus should be on
compactness rather than performance. Future work will include experimentation with
different, OSP-specific forms of L2 index. A delta-compressed B-tree would perhaps
provide more appropriate characteristics.

6.3.4 Level 3

The level 3 index is used to provide support for a fast contains? operation, particularly
important when asserting data. It must also allow very fast element-at-a-time or vector
retrieval, while sorted order may be important for some use cases.

The most basic implementation is a flat list, which does provide excellent bulk retrieval
performance. Unfortunately, as the index scales up, contains? performance becomes
unacceptable. For very high contains? performance, a hash set is ideal: it is a simple
O(1) operation to retrieve data, with low space overhead. Unfortunately, this approach



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 125

yields poor bulk retrieval performance: since any given slot may not be occupied, an
unpredictable if statement is required over every element.

An improvement on these approaches is a combination: a list and hash set, with all data
added to both. This approach provides excellent contains? performance and fast bulk
retrieval, but at the cost of a substantially increased size overhead. Further, deleting
elements from the index is still slow: it must be found in and removed from the list.
However, in situations where a performant delete operation is not required, this index
is very fast.

Finally, the B+Tree is worthy of consideration. At only one element wide it is possible
to increase the fanout and lower overheads without hurting cache performance, and it
also supports very fast iteration: as long as a reference is kept to the leftmost leaf node,
there is no need to traverse the tree except during a contains? operation. Further, the
B+Tree produces sorted output, which may be of benefit for some query optimisers.

It is worth mentioning that only one index out of the SPO, POS, OSP set needs to
support a fast contains? operation: since all three attribute values are specified, any of
the three indexes can be used. Particularly in situations where deletion performance can
be slightly degraded, it is worth considering alternative data structures. One example
is the wide-node tree structure used by Kowari (described in Section 3.3.1), which has
relatively poor contains? performance, but provides extremely low overheads and good
traversal performance. Such structures will be considered further in future work.

6.4 Complexity

Analysing AHRI’s complexity is a slightly more involved topic than for many other
data structures. This is due to its adaptive structure, where different components have
different complexities. As a result, each of the different index structures is independently
analysed below. Note that retrievals assume that a find operation for a single element
is being performed: if multiple elements are being retrieved, a complexity of O(k) with
the number of elements being retrieved must be added.

• The direct-mapped L1 indexes have a worst-case retrieval complexity of O(1).
Insertion complexity is amortised O(1): that is, some insertions will trigger a
growth of the table (O(n) with the size of the table), but this is amortised across
all insertions for O(1) overall complexity.

• Retrieval from FixedBuckets has O(n) complexity with the size of the bucket:
since FixedBuckets are always smaller than 16 elements, a linear search is used
to retrieve elements. Insertion is amortised O(1): some insertions will trigger a
growth of the FixedBucket Array, but this is O(1) amortised over all insertions.



126 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

• Retrieval from and independent array structures is O(log n) with respect to the size
of the array: for these larger arrays, a binary chop is used to find data. Insertion
is O(n) with respect to the size of the array, as these structures are kept sorted.
The growth of these structures is limited to a maximum of subn elements, a value
usually set at 100.

• Retrieval from L2Hash indexes, simple hash structures, is O(1). Insertion is amor-
tised O(1). Again, resizing the table will trigger an O(n) table resize, but this is
amortised across all other insertions.

• Retrieval from and insertion into L3 indexes depends on the structure chosen. For
a hash set structure, retrieval is O(1), and insertion is amortised O(1). For the
B+tree, insertion and retrieval are both O(log n).

These facts can be used to determine complexities for the structure as a whole. Since
the growth of FixedBuckets and independent arrays are limited by small constants,
their complexities in the context of the whole structure are effectively O(1). Since all
structures other than the L3 indexes are O(1), the L3 index determines the complexity
of the structure as a whole. Thus, if a hash set is used, AHRI’s exhibits O(1) complexity
for retrievals, and amortised O(1) complexity for assertions. If a B+Tree is used, AHRI’s
worst case complexity is O(log n) with the size of the largest L3 index for both retrievals
and insertions.

Practically, using a B+Tree for an L3 index does not affect the performance of SPO and
OSP-ordered indexes, since these structure make little or no use of such structures. In
this case, AHRI will exhibit average-case complexity of O(1).

Overall, AHRI’s complexity compares favourably with tree structures, which generally
feature O(log n) scaling for insertions and retrievals with the total size of the dataset.
AHRI largely features O(1) retrievals and insertions, and even where this does not hold,
the scaling factor is the size of an individual L3 index, rather than the dataset as a
whole.

6.5 Overall Design

Figure 6.12 shows the overall structural design of AHRI. Note that subn is the point
at which AHRI decides to convert a flat list into an L2 index. Based on experimental
observation, subn is usually set at a value of 100, but can be adjusted.

AHRI’s design results in low overheads on typical RDF datasets, with the ability to
adapt effectively to unusual situations. A particularly useful feature of AHRI’s multi-
level design is that the cost of find operations are largely predicated upon the number



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 127

Figure 6.12: AHRI structural overview

of attributes being indexed over, rather than the size of the dataset: each level in the
index can offer O(1) lookup times and insertion, with low constant factors. This is ideal
for RDF, which features just three attributes. Thanks to the design of its sub-indexes,
AHRI also features very fast iteration, meaning that whether a given retrieval matches
many elements or few, AHRI can offer good performance.

Unlike many existing RDF data structures, AHRI also features the ability to add and
delete data highly efficiently: FixedBuckets maintain zero fragmentation, while the other
structures (hashes and B+trees) are also resist fragmentations effectively. The only



128 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

potential source of difficulty is the L1 index, where deletion of whole IDs can lead to
fragmentation. This can be effectively mitigated, however, through the use of a free ID
list.

6.5.1 Per-Index Suitability

AHRI’s adaptive nature is important for controlling overheads. Take the example of
SPO-ordered indexes: on the UniProt dataset, 85% of Subjects have a cardinality of
15 or less, and 75% have a cardinality of 10 or less. In such a situation, controlling
per-Subject overheads is of paramount importance. AHRI accomplishes this by not
performing unnecessary indexing, and through the use of very compact FixedBuckets.
The combination of these factors results in very low overheads for datasets that are
SPO-ordered.

AHRI also works well with POS-ordered data. Most data stored in a POS-ordered
structure is in L3 indexes, meaning that AHRI cuts out a huge amount of repetition of
Predicate and Object IDs: a kind of implicit compression. Due to the low quantity of
predicates in the average dataset, the direct mapping L1 index is in theory very inefficient
for Predicate-ordered data, but in practice this is rarely a problem: since Predicates are
frequently mentioned, usually near the start of the dataset, they generally all have very
low IDs, and the direct mapping table never has to grow. If this does become a problem,
it might be worth either replacing the L1 index with a hash table in POS-ordered indexes,
or taking steps to ensure that Predicates are always inserted into a reserved, low section
of the ID space.

AHRI suitability for OSP-ordered data is slightly less clear cut. It is highly performant
for this data ordering, but its advantage in terms of space is much more limited than for
the other two index types. Since keeping the index size down is a major focus for the OSP
index, it would be useful to consider alternative L2 index structures for OSP-ordered
data, such as B+Trees or wide-node AVL trees.

Overall, however, AHRI fulfils the requirements listed in Section 6.1 admirably. It
provides fast fin and iteration, fast insertion and deletion, is compact, and does not
produce very large quantities of small objects. It also provides some ancillary benefits,
which are explored in the following sections.

6.5.2 Statistics

As noted in Section 3.4.1, good quality statistics are essential to the effectiveness of
a SPARQL query optimiser. One upshot of the AHRI design is that it provides a
large quantity of useful statistics at very low cost. This is a result of the fact that
AHRI implicitly groups a lot of data into FixedBuckets, each of which has a known



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 129

size. Since the number of independent data structures is generally very small compared
to the number of FixedBuckets, it costs very little to store explicit statistics for those
structures.

AHRI provides exact cardinality data for queries restricting over only one attribute. For
queries restricting over two attributes, the situation is more complex: if the data to
satisfy this query is stored in an L2Hash index, the statistics will be accurate. If not,
they are estimated based on the first attribute’s cardinality. Since data not being stored
in an L2Hash is by definition of low cardinality, it is generally easy to make a good
guess. The practical upshot of this is that when querying over two attributes, if the
result set will be larger than the L2 index threshold subn, the statistics will be accurate.
Otherwise, a good estimate is produced.

6.5.3 Value Skipping

In Neumann and Weikum (2008), the authors describe a mechanism for passing useful
information ‘sideways’ through the query tree. This information can then be used to
skip past irrelevant data and prevent it progressing further into the query plan, saving
time. AHRI’s L2Hash indexes support this better than tree-based structures that have
no explicit index levels. Consider a POS index in which one needs to skip past a
given O: using AHRI it is possible to skip up a level in the index hierarchy and move
immediately to the next O. In a tree-based index index, it is necessary to either perform
another find or scan until a new O is found. Considering that these Objects are often
of high cardinality, and thus expensive to scan through, this is a useful capability.

AHRI’s FixedBuckets and array indexes do not support such fast value skipping, but
since they are used when the quantity of related data is small (less than subn elements),
this isn’t a significant loss.

6.5.4 Sorted Order

The sacrifice that AHRI makes in comparison to tree-based methods is that it does not
guarantee that data is fully sorted in all cases. When retrieving all data from an L2Hash
index, for example, it will read through all of its FixedBucket arrays in turn, followed by
any level 3 indexes. Visiting buckets in sort order harms cache performance and results
in a dramatic reduction in performance, as data is read in nonsequential fashion.

Assuming sorted level 3 indexes are used where available, AHRI displays the following
properties:

• Queries that fix two attributes return sorted results.



130 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

• Queries that fix one attribute return sorted results if the result count is smaller
than subn. Otherwise, grouped results are returned: from an SPO index, all
Objects related to a Predicate will be returned together (and, indeed, sorted), but
the order in which Predicates are returned is not guaranteed.

• Queries that fix no attributes (i.e. retrieve everything) return grouped results. In
all cases, it is possible to cheaply determine in advance whether results will be
returned in sorted order or not.

For most situations SPO-ordered indexes almost always return sorted results, while
POS-ordered ones return sorted results over queries with two fixed attributes only, and
OSP-ordered indexes are a mixture of the two. In practice, the importance of this
behaviour depends on the join strategy being used. For merge joins, it is ideal to always
retrieve sorted results, while for an index nested loops or hash join strategy sort order
is less relevant.

It is possible to implement a fully sorted version of AHRI. Using a B+Tree or other sorted
structure as an L2 index would provide the ability to traverse the index in-order. In the
current implementation, this would lead to an unacceptably large slowdown, but this
could be mitigated by a variety of strategies. Most importantly, the structure would have
to be created in a language (such as C or C++) that supports software prefetching of data
into cache: the fact that data was not being traversed sequentially would then matter
less. Further, making an attempt to improve the sort order of FixedBuckets within their
arrays would reduce the rate of nonsequential access. Fundamentally, however, AHRI is
more naturally implemented as a partially-sorted structure.

6.6 Integration into the Jena RDF Toolkit

In order to perform tests that gave a good overview of AHRI’s real-world performance,
it was decided to integrate it into a real world Semantic Web query engine. Jena was
chosen for this task, being a mature, popular toolkit with which the author already had
some familiarity. This section describes the choices made in creating a prototype store
that could use AHRI to answer queries.

6.6.1 Structure

The structure of the AHRI Jena Plugin (AJP) is fairly simple. It hooks into the Je-
na/ARQ1 framework for parsing of RDF datasets and handling of SPARQL queries.
AJP overrides methods in ARQ to perform query optimisation and answer segments

1http://jena.sourceforge.net/ARQ/



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 131

of queries called Basic Graph Patterns (BGP) (Prud’hommeaux and Seaborne, 2006).
ARQ also handles formatting of results and allows queries to be answered over HTTP
in concert with the Joseki2 server.

AJP features three AHRI indexes, using the SPO, POS, and OSP orderings, and a string
dictionary that maps between nodes and their respective IDs. This string dictionary is
effectively two indexes. The first maps IDs to nodes using direct mapping: simply an
array of references to nodes, where the node ID is the index of the node in the array.
This allows simple, fast conversion between nodes and IDs. Nodes themselves are stored
as Node objects in the Jena framework.

Converting from node to ID is only a slightly more complex task. AHRI uses a linear
addressing hash table to convert from ID to node. The node is hashed, and the position
in the table corresponding to the hash value is retrieved. That position stores an ID,
which is then looked up in the ID to node conversion table. If the strings match, then
the node is found. If not, the hash table moves to the next address, and retrieves the
next ID.

This approach (illustrated in Figure 6.13) is very compact, but somewhat cache-inefficient,
particularly in the case of re-probing on hash collision: it causes a potential cache miss
every time it performs a lookup in the ID to node index, since these lookups are nonse-
quential.

Figure 6.13: Node to ID index: compact but slow implementation

An alternative approach (depicted in Figure 6.14) is to store references to nodes directly
in the node to ID index. This results in a minimum of eight extra bytes per entry
overhead for the node reference. Overall, since node to ID conversions should be a
relatively infrequent event, the slower, more compact approach was chosen.

2http://joseki.sourceforge.net/



132 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

Figure 6.14: Node to ID index: larger, faster implementation

6.6.2 Optimisation

AJP’s current implementation performs only basic static optimisation, based on the
observation that in order to keep the working set of data small (and thus reduce costs),
it is usually best to process triple patterns that return fewer matches sooner.

The query optimiser iteratively scores query triple patterns based on the elements they
specify. OS is preferred, followed by SP, S, PO, O, P, and then no elements. This follows
the typical cardinalities of each of these query patterns: a pattern that specifies Subject
and Predicate, for example, usually retrieves substantially fewer elements than one that
specifies Predicate alone. After a triple pattern is chosen to be next, any variables that
the triple binds are marked as bound in the remaining triple patterns, each is re-scored,
and another chosen, until none remain. In the future this approach will benefit from use
of AHRI’s statistics, rather than being purely static.

6.6.3 Join Strategy

AJP uses index nested loops as its only join strategy. For an in-memory environment,
index nested loops are a compelling solution: they allow queries to be performed in
small, pipelined chunks that require extremely small quantities of RAM. Due to the
substantially lower cost of nonsequential access in RAM, the fact that INL processes
a substantially fewer datums is a very substantial advantage. Further, INL parallelises
highly effectively.

6.6.4 Answering Queries

AJP implements two query answering (QA) strategies. The first retrieves data from
indexes in an element-at-a-time iterative approach, while the second retrieves vectors of
information at a time. Much of the mechanics behind these two approaches are very
similar, however.



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 133

The QA needs, for each triple in the query pattern, to perform a call to the correct
index to serve that pattern, specifying what data is bound and what is not, and then to
store the returned data in the correct order. Since this operation is performed extremely
often, it is important to optimise it as far as possible. There are two obvious approaches
to the problem. The first is to store, for each triple pattern, a value indicating what
index to use. Then, when the pattern is reached during the QA process, use an if or
switch statement to determine which index to call, and how to format the output data.

Unfortunately, this simple approach introduces a large quantity of unpredictable branch
instructions, and is thus quite slow. An alternative is to define a class for each index
ordering, inheriting from a common base type. For each triple pattern, an object is
stored, created from one of these classes, that knows what index to call and what to do
with attributes values passing to and from the index.

This approach is more elegant, but also not especially fast. It has two issues: firstly,
calls to and from the object will be virtual, by virtue of the fact that the index that is
used is not predictable. Secondly, such virtual function calls cannot be inlined. In an
iterated environment, calls to these objects will be made every time a value is retrieved
from an index, so these costs are extremely high.

The AJP QA (AQA) is built around a principle of minimising branch mispredictions
and virtual function calls. It does this by exchanging what would be a virtual function
call or unpredictable branch instruction for a data dependency on information that will
almost certainly be cached, a lesser cost (Zukowski et al., 2006).

For each triple pattern, AQA pre-calculates which index it will be using, and stores a
reference to the index, allowing it to call each index using the same code path. This is not
sufficient of itself, however: since the same code path is being used to store each index,
it is necessary to order the attribute values sent to and from the index appropriately:
For example, when querying a POS-ordered index, it must be sent data in the order
POS rather than the canonical SPO.

To accomplish this, AQA stores a value in an array for each unique node and node
variable in a query. That value represents the current state of the node (which, in the
case of fixed nodes, will never change). This structure is called the values array. There
are two other arrays, called the read and write arrays, each of which index into the
values array. The read array stores, for each triple, where to read the values with which
to query the index. The write array stores where to put the values that come back. An
illustration of a simple query using this method is shown in Figure 6.15.

Note that the values array has two special values at its head: JUNK and ANY. JUNK
is the write destination for results that are of no interest: for example, in Figure 6.15,
the Subject values retrieved are irrelevant, as the value is fixed. Retrieved Subjects thus
get placed in JUNK. ANY, on the other hand, is a special value used when performing



134 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

Figure 6.15: Query answering in AJP

MyTripleIterator = RetrieveFromIndex(Index_Reference , values[read [0]],
values[read [1]], values[read [2]]);

while(MyTripleIterator.hasNext ()) {
values[write [0]] = MyTripleIterator.getVal1 ();
values[write [1]] = MyTripleIterator.getVal2 ();
values[write [2]] = MyTripleIterator.getVal3 ();

}

Listing 6.1: Iterating over results from an index retrieval

a read from an index. A value of ANY indicates a variable. Listing 6.1 shows sample
code to perform a request to the index and return all the results.

Using this approach, no virtual method calls or branch statements are required. The
only unusual cost is in the data dependency required to find out which slots of the values
array to read from and write to. Figure 6.16 provides a slightly more complex example.
In this example, there are two triple patterns to answer, one using the POS-ordered
index, and one using the SPO-ordered index. It is important to note that, as shown
in the diagram, the values in the read and write arrays are ordered by the order of the
index their triple pattern accesses: in this case, triple 1 is ordered by POS, and triple
two by SPO.

Answering this query using INL is quite simple. The QA retrieves the first result for
Triple 1, and stores the relevant data in the values array. As a result of this retrieval,
there are now bindings for the ?x variable. The subsequent find operation for Triple 2
thus uses the bound values for ?x, rather than treating it as a variable. If the retrieval
from triple 2 returns any results, they are iterated over, and result sets (or binding sets)
are output as it goes. Once the results from Triple 2 are exhausted, it moves back to



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 135

Figure 6.16: Query answering in AJP: a more complex query

Loop while CurrentTriple >= FirstTriple

If (CurrentTriple.HasMoreResults)
Get Next Result
If (CurrentTriple is the last triple pattern)

Output Binding
Else

Perform initial find operation for next triple
Move forward to next triple

End If
Else

Return to previous triple
End If

End Loop

Listing 6.2: INL pseudocode

Triple 1, iterates to the next result (and the next value of ?x), and repeats. The generic
pseudocode for this is shown in Listing 6.2.

As can be seen, the storage space required for this approach is minimal: simply enough
space to store the values, read, and write arrays. This contrasts with a hash or sort-
merge approach, which potentially requires a large amount of space.

6.6.4.1 Binding Sets

Outputting binding sets is generally a fairly simple matter. AJP implements a binding
set that takes an array of node IDs (a copy of the variables portion of the values array),



136 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

and lazily converts them to Nodes.

One slight complication of this approach is that Jena references variables by their name
rather than by an integer index into an array. To avoid unnecessary string comparisons
to determine node equality, AJP remembers the order in which variables are asked for,
and by default outputs variables in that order. It is designed to cope with changes in
the order, although this results in suboptimal performance.

6.6.4.2 Optimisation

The standard INL algorithm described in Listing 6.2 has one notable flaw. This is
illustrated by the query described in Figure 6.17, designed to match colleagues at a
company who own the same pieces of sporting equipment: a crude way of determining
that they might like to play games with each other.

PREFIX ex: <http://www.example.com/>

SELECT ?x ?colleague WHERE {
?x ex:works-at ex:some-company .
?x ex:has-colleague ?colleague .
?x ex:owns-sports-equipment ?equipment .
?colleague ex:owns-sports-equipment ?equipment .

}

Figure 6.17: SPARQL query that performs poorly using simple INL

Consider the effect if ?x owns no pieces of sporting equipment, meaning that the query
will produce no results with this binding of ?x. Rather than going back to the first triple
pattern and immediately binding a new value of ?x, the standard algorithm simply goes
back one triple pattern, and cycles through all of ?x ’s colleagues. Since this is clearly
suboptimal, the algorithm was modified such that it would immediately retreat back to
the first triple pattern, as shown in Listing 6.3.

6.6.4.3 Vector AQA

The standard iterated model of AQA is performant for most index structures. Unfor-
tunately, AHRI has some special requirements that cause it to perform suboptimally in
this environment.

Most structures, like trees, have one block of code that defines how to iterate over found
results. In a B+Tree, for example, one simply sequentially iterates through all values in
the leaf nodes that match the specified triple pattern. In a simple iterated environment,
the function containing this code will be repeatedly called in order to retrieve the next
result.



Chapter 6 AHRI, a Highly Performant In-Memory RDF Index 137

Loop while CurrentTriple >= FirstTriple

If (CurrentTriple.HasMoreResults)
Get Next Result
If (CurrentTriple is the last triple pattern)

Output Binding
Else

Perform initial find operation for next triple

End If
Else

Return to previous triple
End If

End Loop

Listing 6.3: Optimised INL pseudocode

Calling a function takes a certain amount of time: not a noticeable cost in most cases,
but a significant issue when it is called very regularly. As a result, compilers make an
effort to inline functions where it would be appropriate to do so: that is, the function
call is directly replaced with a copy of the block of code in the function. Doing this
eliminates the cost of the function call, at the cost of inflating code size (Ayers et al.,
1997).

AHRI’s iterators, unfortunately, do not lend themselves well to inlining. This is because
AHRI makes extensive use of polymorphism: it has a variety of different internal index
types, each of which has different iterators that all conform to the same external interface.
This means that at compile time it is not possible to know what block of code will be
called when retrieving the next result from an iterator, and it is thus not possible to
inline the call. The result of this is a method call being performed for every result
retrieved from an AHRI index. This causes a substantial slowdown for POS-ordered
indexes, which are dependent upon fast iteration performance. SPO-ordered indexes are
less badly affected, as they are generally dominated by find time.

Vector AQA (VAQA) was implemented to combat this issue. Instead of retrieving an
element at a time from an index, it copies chunks (vectors) of data out at a time, into
AQA-local structures. These local structures have a uniform access method, so calls
to them can be efficiently inlined. VAQA provides improved overall performance when
using indexes that don’t inline effectively.

VAQA has an additional benefit: its ability to handle non-inlined index calls allows the
use of a completely different data structure for each index. One might, for example,
consider using a compressed B+Tree or wide-node AVL tree instead of AHRI for OSP-
ordered data. This approach would not be efficient with the simple iterated model.



138 Chapter 6 AHRI, a Highly Performant In-Memory RDF Index

6.6.5 Limitations

The existing AJP implementation has a few limitations, largely as a result of the fact
that it is designed as a prototype only. The most important issues are that the cur-
rent support for OPTIONAL and FILTER keywords is very limited: they rely on Jena
fallback mechanisms that require all node IDs to be converted back into nodes, then
back into IDs again, as well as incurring other substantial overheads. This is a slow
process, and means that the current implementation processes queries containing those
keywords suboptimally. In particular, FILTER support could be substantially improved
by adding support for the inlined IDs described in Section 5.4.2), which would reduce
space requirements and dramatically speed up integer comparisons.

A second substantial issue is that the current implementation performs only a very
little, static optimisation of queries. High quality query optimisation is a topic beyond
the scope of this work, but the statistics generated by AHRI have the potential to be
of great use to a high quality query optimiser, and could dramatically improve overall
performance.

Finally, in the current implementation no attempt is made to curb the size of the string
dictionary. As discussed in Section 5.4.2, there are a variety of strategies that can be
used to reduce the size of the string dictionary, like common prefix elimination for URIs
and general purpose compression algorithms for especially large literals.

6.7 Summary

This chapter has described AHRI, an adaptive in-memory index for RDF data. It is
designed with an awareness of the structure of common RDF datasets, and the ar-
chitectural features of modern processors in mind. As well as being designed to keep
constant-factor costs (such as memory retrievals and branch mispredictions) low, AHRI
provides attractive assertion and retrieval complexity, comparable to that of multi-level
hash indexes, without the crippling inefficiency that these structures exhibit with regard
to space consumption.

AHRI provides a variety of other advantages. It approaches size reduction in a prag-
matic manner, informed by the analysis in Section 5.4 that showed that indiscriminate
prefix elimation is costly. It also offers detailed statistics on the data it stores, providing
excellent opportunities for query optimisers to improve their plans. The following chap-
ter builds on this design work by testing AHRI, and showing that as well as performing
well in theory, it offers excellent real-world characteristics.



Chapter 7

Evaluating AHRI

Chapter 6 described AHRI, a novel data structure for the storage and retrieval of RDF
data. This chapter performs a detailed evaluation of AHRI, considering the extent to
which it fulfills the requirements listed in Section 6.1. AHRI was evaluated against a
variety of different index types, with the expectation that, thanks to its adaptive architec-
ture, AHRI would improve upon the alternatives on insertion and retrieval performance,
as well as occupying less space.

Section 7.3 describes initial tests, performed against a variety of different data structures.
The machine these tests were performed upon offers the ability to inspect the rates of
data cache and TLB misses, as well as branch mispredictions. This information helps
to build a detailed impression of how AHRI performs the way it does.

Section 7.4 evaluates AHRI’s ability to scale, using a machine with a large amount of
memory to compare it against the fastest of the other candidate data structures. Section
7.5 goes on to test AJP, the Jena plugin that uses AHRI as an index type, verifying the
assumption that improved index performance will have a substantial impact upon the
overall performance of a SPARQL query. The plugin is evaluated using the standard
Berlin SPARQL Benchmark, as well as with challenging custom queries over BSBM
data, and a standard benchmark over DBPedia data.

Finally, Section 7.6 distills the information from these results into a discussion of AHRI’s
abilities in comparison to the other candidate structures.

7.1 Candidate Data Structures

The following candidate structures were indicated by the literature review described in
Section 3.3:

• B+Tree with inlined IDs. (B+Tree)

139



140 Chapter 7 Evaluating AHRI

• B-Tree with inlined IDs. (B-Tree)

• B-Tree with references to shared triple objects (B-TreeRef )

• Optimal BST with inlined IDs (BST )

• Bitmap index using Word Aligned Hybrid compression, with references to central
triple table. (Bitmap)

• Jena Memory Model-like lightweight single-level, linear chaining hash with refer-
ences to triple buckets, either arrays or hash sets (Hash)

• AHRI using inlined IDs, with B+Trees used as level 3 indexes (AHRI )

In general, these structures were implemented as standard. Data was asserted in SPO
ordering, as is normal in the BSBM dataset, as well as most others. This has an impact
on load time, as one can expect ordered data to load faster in indexes that are themselves
ordered.

BST was implemented as a non-updateable structure, constructed from a sorted array
of data. This approach meant that when iterating over data stored in a BST, there was
a good chance that related data would be colocated in cache.

B-Tree and B-TreeRef were included in order to examine the difference in size and
performance between structures that share triples, versus those that encode data inline.
Their code bases are kept as similar as possible. None of the B-Tree variants have
pointers in their leaf nodes: this is unnecessary, as all relevant data is encoded within
the structure itself.

In every case, inlined IDs were 32 bits wide. For indexes that used shared triple objects,
the triple object consisted of three 32-bit integers to represent S, P, and O. B-Tree
variants used a node width of 100 triples, which provided a good balance between read
and update performance.

7.2 Test Framework

The main evaluation followed a simple, standard procedure for testing data structures:
the structures were placed in a test harness that directly measures the time taken to
perform large quantities of operations, such as insertion or retrieval. This approach is
common in the evaluation of new data structures, as can be seen in Rao and Ross (1999),
Aguilera et al. (2008), and Hankins and Patel (2003).

The test harness reads triple data from files and asserts it into an index of a given
ordering (for example, SPO or POS). In order to ensure that only the index assertion



Chapter 7 Evaluating AHRI 141

performance was being tested, data files were converted into ID form and loaded into
memory in advance, and loaded into the structures from there. The result of this is
that retrieving a triple to load into an index only requires reading three sequential
integers from an array. This eliminates factors such as disk I/O and parse time from
the evaluation.

After loading data, but prior to performing queries or find operations, the test harness
shuffles all the triples in the array describing the dataset. These triples then have 0-2
attributes changed to a value indicating a variable. The array is then used as the set of
queries to perform upon the asserted data. This approach allows the testing of retrievals
that do not, for example, specify an object.

In order to simplify the process of benchmarking a variety of indexes, the test harness
allows a large amount of configuration. It features a noninteractive mode for the purposes
of scripting, and an interactive mode that pauses after data load and after each test, in
order to allow measurements of factors like index size to be performed.

For each index, over SPO, POS and OSP orderings, the following tests were performed:

• Load rate

• Size in memory (tested using TIJmp1 memory profiler)

• Warmup (mixed query set, untimed)

• Queries with restriction over mixed attribute count

• Queries with restriction over 1 attribute

• Queries with restriction over 2 attributes

• Queries with restriction over 3 attributes (find operations)

• Find operations that will fail, restricting over 1, 2, and 3 attributes

The mixed query sets used 10% restriction over 1 attribute, 50% restriction over 2
attributes, and 40% restriction over 3 attributes. This is not intended to be an accurate
representation of how many queries of each type will appear in a real-world query set,
but rather to ensure that the JVM is not performing optimisations that are specific to
1, 2, or 3 attribute query sets.

Most of these tests are both standard and self-explanatory, but the last requires further
clarification. Multi-level index types like AHRI can determine that a match will be
not found quite early during a query: consider a find operation being performed on an
SPO-ordered index, for example. If no matching Subject is found, the find operation

1http://www.khelekore.org/jmp/tijmp/



142 Chapter 7 Evaluating AHRI

will fail immediately on the first level index. By contrast, a B+Tree still has to perform
a full search. This factor is tested because it is especially important in a query engine
using INL joins, as these will often perform searches for non-existent data.

When answering a query, each index is allowed to return data in three different manners.
The first is an array: the test harness passes a large, empty array to the index, and the
index fills the array with results from the query. The second is a simple, element-at-a-
time iterator. Finally, the third is a vector-based iterator, designed specifically for AHRI
to allow it to amortise the cost of its non-inlinable iterator calls, as described in Section
6.6.4.3. The tests in Section 7.3 use the array method of retrieval, as it was simple to
implement in a performant manner for the wide variety of index types tested in that
section.

As the field is narrowed substantially in Section 7.4, the simple and vector iterator
models are used. These methods are most commonly used inside real DBMSs, and so
provide further, more accurate insight into the real-world performance of the tested
indexes.

7.3 Initial Tests

Initial tests were performed using a system of the following specifications:

• Dual 1.8GHz AMD Opteron, 1MB L2 cache per core

• 8GB RAM

• Linux kernel 2.6.32 (64 bit)

• 64 bit Sun reference JVM (version 1.6.13), run using options ‘-server -Xms7000M
Xmx7000M’

• OProfile 0.9.4

Each index loaded 5 million triples generated by the Berlin SPARQL Version 2.0 bench-
mark tools (Bizer and Schultz, 2009), using the options ‘-fc -pc 14087’. Results measure
only the time taken to insert data into the indexes: nodes were converted into IDs and
loaded into memory in advance. Indexes were then tested in SPO, POS, and OSP or-
der. Note that AHRI was configured using a B+Tree L3 index, and used the standard
in-order FixedBucket layout.



Chapter 7 Evaluating AHRI 143

  250

  300

  350

  400

spo pos osp

In
d
ex

 s
iz

e 
(M

B
)

Bitmap  
BST   
B−Tree  
B−TreeRef
B+Tree
Hash
AHRI

  0

  50

  100

  150

  200

Figure 7.1: Index sizes for 5 million triples of BSBM data (lower is better)

7.3.1 Size

Since memory is a relatively expensive resource, it is important to consider the amount
of space used by each index structure, as shown in Figure 7.1. Bitmap can use the
same structures to provide SPO, POS, and OSP support, and so for the purposes of
comparison, the total size was divided by three, and assigned to each of SPO, POS and
SPO. Similarly, for structures that share common triple objects, the space used by those
objects is divided by three, and assigned to each of the index orders.

Hash’s lack of attention to overheads is clear in these results: it generates separate
structures to store data related to each S, P, and O. This has disastrous results due to
the quantity of Subjects and Objects that are of very low cardinality. AHRI shows similar
degradation on the OSP index: OS pairings are typically of extremely low cardinality,
and so AHRI generates a large quantity of data structures. Overall, however, AHRI
requires substantially less space than the other index types, thanks to its policy of not
storing repeating values, and producing very few objects.

The tree-based methods perform as expected: BST requires substantial additional space
due to its pointer overheads, while B+Tree and B-Tree are broadly similar. B-TreeRef
requires a little more space, but in an environment without object penalties for its
shared triple objects would likely achieve parity. B-Tree and B+Tree benefit from their
wide-node approach: they generate relatively few objects, all of a relatively large size.

Bitmap requires a substantial amount of space as a result of generating a large quantity
of small objects: one for each distinct Subject, Predicate, and Object, as well as each
triple object.



144 Chapter 7 Evaluating AHRI

  2.5

  3

  3.5

  4

  4.5

spo pos osp

L
o
ad

 r
at

e 
(N

o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e)
Bitmap  
BST   
B−Tree  
B−TreeRef
B+Tree  
Hash
AHRI

  0

  0.5

  1

  1.5

  2

Figure 7.2: Load rate for 5 million triples of BSBM data (higher is better)

7.3.2 Load

Figure 7.2 shows load times. In order to improve graph readability, results other than
index size are reported by normalising against the results achieved by B-Tree. Note that
Bitmap and BST are built using bulk load methods, and do not represent the (much
higher) cost of incremental update. All of the other indexes are built using incremental
insertions, and so these results can be considered indicative of the cost of updating the
structures, as well as the cost of bulk load.

It can be seen from these figures that AHRI provides particularly fast insertion. AHRI
has a very fast search, and requires only relatively small movements of data to insert new
values. AHRI’s POS results are relatively poor because almost all insertion is performed
into level 3 indexes: B+Trees. The other bucketed index, Hash, is also substantially
faster than tree-based methods.

Of the tree-based methods, B+Tree and B-Tree produce broadly similar results, with
BST falling behind. The results for B-TreeRef are of interest: it is competitive for the
SPO index, but falls badly behind on POS and OSP. This is because the dataset is
inserted in SPO order, and so triples are sequentially allocated in SPO order. Traversal
of the SPO index is thus much more likely to yield contiguous access to triple objects.

7.3.3 Query

This section describes the query (read) performance for each index type. For each
ordering, retrievals were performed restricting by one, two and three attributes, or a
mixture (val1, val2, val3, mixed respectively). For the purposes of this test, each index
returned results into an array that was passed into it. In order to improve readability



Chapter 7 Evaluating AHRI 145

of the graph, results are normalised. Tables including the raw figures for each of these
tests can be found in Appendix D.

Figure 7.3, Figure 7.4 and Figure 7.5 show the relative performance of each of the storage
structures. AHRI dominates over the other indexing strategies, proving substantially
faster in all but one case. Hash’s lack of sub-indexing proves a substantial weakness:
while it provides fast ‘contains’ checks, it is unable to index further into the large buckets
produced by the POS and OSP orderings, and is forced to iterate over the entire bucket.

AHRI

  0

  1

  2

  3

  4

  5

  6

spo(mixed) spo(val1) spo(val2) spo(val3)

Q
u
er

ie
s/

ti
m

e 
(N

o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e) Bitmap  
BST   
B−Tree  
B−TreeRef
B+Tree  
Hash

Figure 7.3: SPO query performance for 5 million triples of BSBM data (higher is
better)

Figure 7.3 shows the results for each of the structures over SPO-ordered data. As
expected, AHRI and Hash do well here. Due to the fact that Subjects are of almost
universally low cardinality, this particular case plays to their major strengths: fast find
operations.

By contrast, the tree based methods do poorly. This is not unexpected: performing finds
is relatively slow in trees, and the find portion of the operation dominates the process
of filling the array with the rest of the matching data.

BST is slower than most of the other options, due to poor cache performance. This same
factor explains the poor results for BTreeRef: since it has to perform dereferencing to
access a central triple table, it is more likely to miss cache. B+Tree provides the expected
moderate performance gain over the next best tree implementation, B-Tree.

Finally, Bitmap’s performance is especially bad. In order to return just a few results,
Bitmap has to perform three hash lookups (to find the relevant bitmaps), AND the
bitmaps together, and then iterate through the resulting bitmap and look up triples in
the triple table. Bitmap never seriously challenges the alternatives, but does better as
the number of elements to iterate over decreases, and the iteration time dominates.



146 Chapter 7 Evaluating AHRI

  4.5

pos(mixed) pos(val1) pos(val2) pos(val3)

Q
u
er

ie
s/

ti
m

e 
(N

o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e) Bitmap  
BST   
B−Tree  
B−TreeRef
B+Tree  
Hash
AHRI

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

Figure 7.4: POS query performance for 5 million triples of BSBM data (higher is
better)

AHRI offers slightly less improvement for POS-ordered data when compared to tree-
based structures: tree structures, particularly those with wide nodes, are relatively
performant for retrieving large amounts of sequential information. AHRI does gain,
however, by the fact that it works with a substantially smaller quantity of data: in its
L3 B+Tree indexes, it only has to read S values rather than the full triple. Further,
AHRI does not have to perform tests during the iteration to determine if triples being
read match the required attributes: it knows that when matching over a PO pairing,
every element in the associated L3 index is required.

Hash fares very poorly in this test. It is fast when restricting over all three attributes, and
capable enough when restricting by only the first attribute: slightly slower than most of
the tree structures, because iterating over its hash sets requires an unpredictable branch
statement. Unfortunately, its performance is extremely poor when restricting by two
attributes. This is because it features no L2 index, and is forced, when trying to find a
particular PO pairing, to iterate over all the elements attached to a given P.

Of the tree methods, B+Tree performs the best, as expected, again improving mod-
erately over B-Tree. B-TreeRef improves over BST for this ordering. This is to be
expected, as while retrieving the next triple from the B-TreeRef node incurs a potential
cache miss, the same is true for moving to the next BST node. Bitmap improves slightly
over its results for the SPO index, but is still uncompetitive.

Finally, the results for OSP show a similar trend to that in the other two orderings. AHRI
is substantially quicker than the other candidate indexes, particularly in situations where
the find part of the operation dominates any other work, as in val2 and val3 in this
case.



Chapter 7 Evaluating AHRI 147

  4.5

  5

osp(mixed) osp(val1) osp(val2) osp(val3)

Q
u
er

ie
s/

ti
m

e 
(N

o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e) Bitmap  
BST   
B−Tree  
B−TreeRef
B+Tree  
Hash
AHRI

  0

  0.5

  1

  1.5

  2

  2.5

  3

  3.5

  4

Figure 7.5: OSP query performance for 5 million triples of BSBM data (higher is
better)

It should be noted that the results for this index are of lesser importance than for the
first two, as it is generally used less. Future development will focus on reducing the size
of OSP-ordered data rather than improving retrieval performance.

7.3.4 Failed Finds

The performance of failed finds is a significant issue in systems that use index nested
loops joins, particularly in situations where a difficult query or poor query optimisation
occurs. Consider the query in Figure 7.6, and assume that it is executed in-order. This
query is designed to find all people at a company who manage to maintain a friendship
despite differing opinions on Marmite. In answering this query, a number of bindings
will be generated each for ?x and ?z, and the final triple pattern matches them up. This
triple pattern will be called a great deal, and may fail a lot, so it is important that it
performs well.

PREFIX ex: <http://www.example.com/>

SELECT ?x ?z WHERE {
?x ex:works-at ex:some-company .
?z ex:works-at ex:some-company .
?x ex:loves-food ex:marmite .
?z ex:hates-food ex:marmite .
?x ex:friend-of ?z .

}

Figure 7.6: Query to find friends at some-company with differing opinions on Marmite



148 Chapter 7 Evaluating AHRI

The factor that distinguishes failed finds from normal find operations is the potential to
catch them early on. For this example, consider two individuals, Dan and Bob. They
both work at the company, but do not know each other, and have no other relationship.
If one were matching using an OSP-ordered index, it would be possible to tell that the
binding would fail upon searching for the subject and finding it not present.

Failed finds were simulated on the test harness by searching for non-existent IDs. To
prevent the unwanted cache effects that would occur from using a single non-existent
ID, non-existent IDs were simply the set of odd numbers (0 < x <= (largest real ID +
1), x mod 2 == 1, while real IDs were even. Note that figures are not included for
Bitmap, as this approach gives inaccurate results for this index type: the fact that the
ID does not actually exist can be determined during the bitmap finding stage, without
the need to actually compare bitmaps. The result of this is Bitmap appearing to perform
unrealistically fast, and so this index type has been ommitted.

  6e+06

  7e+06

spo(mixed) spo(val1) spo(val2) spo(val3)

F
in

d
 o

p
er

at
io

n
s/

s

BST   
B−Tree  
B−TreeRef
B+Tree  
Hash
AHRI

  0

  1e+06

  2e+06

  3e+06

  4e+06

  5e+06

Figure 7.7: Failed find performance over SPO-ordered, 5 million triple BSBM dataset
(higher is better)

Figure 7.7 shows failed find performance for SPO-ordered data. This graph shows the
weakness of tree structures for find operations: they require a lot of processing to de-
termine if a triple is contained within the graph. AHRI and Hash, on the other hand,
perform very well.

For AHRI, if the subject simply doesn’t exist, the find operation is extremely quick: it
simply misses against the L1 index. If the predicate or object doesn’t exist, the operation
is somewhat slower: it is necessary to search through attached FixedBuckets.

Hash behaves similarly. It matches against an L1 index, and if a match is found either
iterates through a small array to find a match, or hashes the triple object to find a match
in a hash set. This approach results in excellent find performance.



Chapter 7 Evaluating AHRI 149

AHRI

  0

  5e+06

  1e+07

  1.5e+07

  2e+07

  2.5e+07

  3e+07

pos(mixed) pos(val1) pos(val2) pos(val3)

F
in

d
 o

p
er

at
io

n
s/

s

BST   
B−Tree  
B−TreeRef
B+Tree  
Hash

Figure 7.8: Failed find performance over POS-ordered, 5 million triple BSBM dataset
(higher is better)

On POS-ordered indexes, AHRI is particularly fast on L1 failures: since there are fewer
than 100 predicates in the L1 index, cache performance is extremely good. Its perfor-
mance over L3 indexes is poor, however: an artifact of using a B+Tree to store the L3
data. Hash again does well here, showing its consistent performance with respect to find
operations.

  1.2e+07

  1.4e+07

  1.6e+07

osp(mixed) osp(val1) osp(val2) osp(val3)

F
in

d
 o

p
er

at
io

n
s/

s

BST   
B−Tree  
B−TreeRef
B+Tree  
Hash
AHRI

  0

  2e+06

  4e+06

  6e+06

  8e+06

  1e+07

Figure 7.9: Failed find performance over OSP-ordered, 5 million triple BSBM dataset
(higher is better)

AHRI is fast for OSP-ordered data: its L2Hash indexes can quickly determine whether
a find operation has failed on the second attribute. Hash again does well, outshining
the tree-based index types.

Overall, AHRI’s performance for both failed and successful finds substantially outshines
the other index types, particularly tree structures. When performing a find operation,



150 Chapter 7 Evaluating AHRI

any of the SPO, POS, and OSP indexes can be used, since all three attribute values are
specified. From these results, the SPO and OSP-ordered structures appear to do best
for AHRI. OSP has an edge, but in a real-world system is used relatively little, and so is
less likely to be cached. As a result, the SPO index was chosen as the means by which
to perform find operations for AJP.

7.3.5 Alternative L3 indexes

As described in Section 6.3, AHRI can make use of a variety of different L3 indexes.
The evaluation of AHRI concentrates on the B+tree L3 index (AHRI-bp), since this
provides the most sorted output, and is hence useful in the widest variety of situations,
but this section considers the alternatives: a hash set (AHRI-hb) and a hash set with an
attached array (AHRI-hbwa), designed to improve the performance of range retrievals.

Both AHRI-hb and AHRI-hbwa use a linear addressing hash set with a load factor of
0.7, and a growth factor of 2. This gives an average utilisation of 52.5%. AHRI-bp uses
a very wide node size of 1000 elements, optimising for size and read performance.

In
d

ex
 s

iz
e 

(M
B

)

  10

  20

  30

  40

  50

  60

  70

  80

  90

AHRI(bp) AHRI(hb) AHRI(hbwa)
  0

(a) Size

L
o

ad
 r

at
e 

(N
o

rm
al

is
ed

 a
g

ai
n

st
 B

−
T

re
e)

  0.5

  1

  1.5

  2

  2.5

  3

AHRI(bp) AHRI(hb) AHRI(hbwa)
  0

(b) Load rate

Figure 7.10: Size (a) and load rate (b) on the POS index for alternative L3 index
types, over 5 million triples of BSBM data.

Figure 7.10(a) and Figure 7.10(b) show the size and load rates for each L3 index type.
As expected, AHRI-bp is substantially slower than the other strategies: inserting into
a B+Tree is much more work than insertion into a hash set. AHRI-hbwa shows the
expected small slowdown when compared to AHRI-hb, along with requiring significantly
more space.

Figure 7.11 shows the read performance of each of the L3 index types. The results for
POS-ordering are shown here, since POS-ordered data require heavy use of L3 indexes.
AHRI-hbwa shows excellent all-round performance, using its array to perform retrievals
when the third attribute is not specified, and its hash set to perform retrievals when
it is. There are two caveats on this, however: firstly, AHRI-hbwa requires significantly
more space than the other index types, and secondly, it cannot perform fast deletions



Chapter 7 Evaluating AHRI 151

  5

  6

pos(mixed) pos(val1) pos(val2) pos(val3)

Q
u
er

ie
s/

ti
m

e 
(N

o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e)
AHRI(bp)    
AHRI(hb)
AHRI(hbwa)

  0

  1

  2

  3

  4

Figure 7.11: POS query performance for alternative L3 index types over 5 million
triples of BSBM data (higher is better)

due to its array structure. It would be possible to modify AHRI-hbwa to perform fast
deletions: the hash set could index into the array, rather than simply storing the value.
This would slow down find operations somewhat.

Of the other types, AHRI-bp substantially outperforms AHRI-hb when iterating over
the whole index, but is much slower when performing find operations. This is expected:
finds are slow on a B+Tree due to having to traverse the tree, while iterating over a
hash set is slow because each element requires performing an unpredictable comparison
to determine whether the bucket is filled or not. AHRI-hb uses a smaller but comparable
amount of space, so the preferred index type depends on the application to which it is
being put.

7.3.6 Cache Performance

As described in Section 6.1, cache miss rate can have a substantial impact upon the
performance of data structures being used on modern computers. Missing cache infre-
quently is thus a basic requirement of a performant index. This section analyses the
data cache miss rate for each of the candidate data structures.

The statistics in this section were gathered using the OProfile2 measuring tool. OProfile
works by monitoring performance counters in the CPU. These counters increment every
time a particular event happens: for example, an L2 data cache miss. Since it is obviously
impractical to interrupt program execution for every such event, OProfile works by
sampling: it sets an interrupt to occur every n times the event occurs. When the
interrupt is triggered, OProfile records the currently running application, and attributes
n counts of the event to that application.

2http://oprofile.sourceforge.net/



152 Chapter 7 Evaluating AHRI

This sampling method obviously has the potential to introduce errors: a different ap-
plication might be responsible for the majority of the cache misses. This is rendered
unlikely by the choice of a high sampling rate (interrupting every 10,000 events), and
the fact that the test harness is the only application putting a significant load on the
machine.

For testing data cache misses, the following events were recorded:

• DATA CACHE ACCESSES (L1 data cache reads)

• DATA CACHE MISSES (L1 data cache misses)

• L2 CACHE MISS, restricted to data miss only (L2 data cache misses)

This section considers miss rates relative to B-Tree, in order to make charts more read-
able. Raw data can be found in Appendix D.

  2.5

  3

  3.5

  4

  4.5

  5

spo(load) pos(load) osp(load)C
ac

h
e 

m
is

se
s 

(N
o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e)

Bitmap  
BST    
B−Tree   
B−TreeRef 
B+Tree  
Hash
AHRI

  0

  0.5

  1

  1.5

  2

Figure 7.12: Cache misses when loading 5 million triples of BSBM data (lower is
better)

Figure 7.12 shows the number of cache misses incurred by each of the different index
types when loading 5 million triples of BSBM data. There are several interesting pieces
of interesting information revealed by this chart. Firstly, AHRI performs very well in
general. Particularly, on the SPO index, where data is inserted in-order, it misses very
rarely indeed. As expected, it does less well on the POS index, where data is being
inserted into a B-tree.

B-Tree and B+Tree perform comparably, with B-TreeRef being a substantial outlier.
B-TreeRef does very well on SPO-ordered data, where, since the BSBM data is in SPO
order, information is inserted in-order into the tree. This means that only a few nodes of
the B-Tree are in active use, and each of the triples being compared against is likely to



Chapter 7 Evaluating AHRI 153

be found in cache. The story is very different for the POS and OSP indexes, where data
is inserted out of order. In this scenario, the point at which a triple is inserted into the
tree is less predictable, meaning that the triples that are compared against in the tree
are also less predictable. This results in a relatively low likelihood of these triples being
found in cache. This poor behaviour explains the poor load rates found for B-TreeRef
in Section 7.3.2.

  3

  4

  5

  6

spo(mixed) pos(mixed) osp(mixed)C
ac

h
e 

m
is

se
s 

(N
o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e)

BST   
B−Tree  
B−TreeRef
B+Tree  
Hash
AHRI

  0

  1

  2

Figure 7.13: Cache misses when querying over 5 million triples of BSBM data (lower
is better)

Figure 7.13 shows cache misses relative to B-Tree when performing retrievals against
BSBM data. Bitmap is not considered in this graph, because it misses cache so much
that it renders the other information hard to see. Note again AHRI’s very low miss rate
relative to the other methods, contributing to its excellent read performance.

Despite B-TreeRef’s very poor apparent cache behaviour, it exhibits creditable read
performance. A potential explanation for this is that while data was not in cache, it was
already in the process of being retrieved (due to predictable access patterns enabling
prefetching). B+Tree offers the expected minor improvement over B-Tree: iterating over
data requires simply traversing a linked list rather than traversing the tree.

The results for Hash are also of interest. Retrievals over POS and OSP, which are
dominated by iteration over found data, cause a lot of cache misses. This is again due
to the use of shared triple objects, and is particularly bad due to Hash lacking a level
two index, meaning that retrievals have to access an extremely large number of such
objects when selecting over two fixed attributes. The cost of using shared triple objects
is reflected in poor results for POS(val1) and OSP(val1), described in Section 7.3.3.

The relatively good results of BST are also quite notable. This is due to the manner in
which BSTs are bulk constructed in these tests: BST sorts all the data prior to iterating
over the sorted array, and creating tree nodes. Tree node objects are thus allocated



154 Chapter 7 Evaluating AHRI

in-order in memory, thnks to the JVM’s appending allocator. As a result, iterating
sequentially over nodes in BST, a behaviour which dominates retrievals from POS and
OSP-ordered structures, is very friendly to cache prefetching. It’s notable that retrievals
from SPO-ordered structures, which are dominated by tree traversal, are more subject
to cache misses.

  0

  0.1

  0.2

  0.3

  0.4

  0.5

  0.6

  0.7

  0.8

  0.9

pos(load) pos(mixed) pos(val1) pos(val2) pos(val3)C
ac

h
e 

m
is

se
s 

(N
o

rm
al

is
ed

 a
g

ai
n

st
 B
−

T
re

e)

AHRI(bp)
AHRI(hb)
AHRI(hbwa)

Figure 7.14: Cache misses for L3 index variants for a POS index over 5 million triples
of BSBM data (lower is better)

The cache miss rates for AHRI L3 index variants are shown in Figure 7.14, and confirm
expectations. AHRI-bp has relatively poor cache behaviour for loading and find opera-
tions retrievals, due to the cost of unpredictable tree traversals. Otherwise the costs are
relatively similar.

7.3.7 TLB misses

Translation Lookaside Buffer misses are related to data cache misses. The TLB is
accessed for every time an L1 data cache access is performed, in order to convert virtual
memory addresses to physical ones. The TLB can only cache information about a certain
number of memory pages, so programs that access data in a very disparate manner, or
simply those that access a lot of data, are likely to miss the TLB frequently.

In order to measure TLB miss rates, the following processor events were counted using
OProfile:

• DATA CACHE ACCESSES (L1 data cache reads, equivalent to L1 TLB reads
(Drongowski, 2008))

• L1 DTLB MISS AND L2 DTLB HIT (L1 TLB misses that hit the L2 TLB)



Chapter 7 Evaluating AHRI 155

• L1 DTLB AND L2 DTLB MISS (L2 TLB misses)

Note that in order to calculate the L1 TLB miss rate, it is necessary to add the figures
for L1 DTLB MISS AND L2 DTLB HIT and L1 DTLB AND L2 DTLB MISS (Dron-
gowski, 2008).

  4

  6

  8

  10

  12

  14

spo(load) pos(load) osp(load)

T
L

B
 m

is
se

s 
(N

o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e) Bitmap  
BST    
B−Tree   
B−TreeRef 
B+Tree   
Hash
AHRI

  0

  2

Figure 7.15: TLB misses when loading 5 million triples of BSBM data (lower is better)

Figure 7.15 shows the miss rates when loading for each data structure. The poor perfor-
mance of B-TreeRef is again notable here. This is again due to the cost of shared triple
objects, which have to be accessed over a variety of pages.

The apparently varying results for Bitmap are a result of normalisation. For Bitmap,
data is always inserted in the order it arrives, whether it is sorted or not. By contrast,
structures like trees inherently sort data. Since the data arrives in SPO order, trees
insert faster on the SPO index, and so have better results than for POS or OSP. Bitmap’s
apparently poor performance on SPO-ordered data is actually a result of B-Tree being
better, rather than Bitmap getting worse.

TLB miss results for querying over BSBM data are described in Figure 7.16. It’s notable
that AHRI causes particularly few TLB misses, because relative to the others it touches
very little data: for example, if a query iterates over an L3 index, it only has to read
one attribute, rather than all three as required by tree indexes.

7.3.8 Branch Mispredictions

Large quantities of branch mispredictions can have a significant impact on index perfor-
mance. This section considers branch misprediction rate for each of the candidate data
structures. Measuring this requires monitoring only two performance counters using
OProfile:



156 Chapter 7 Evaluating AHRI

  6

  7

  8

  9

  10

spo(mixed) pos(mixed) osp(mixed)

T
L

B
 m

is
se

s 
(N

o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e) BST   
B−Tree  
B−TreeRef
B+Tree  
Hash
AHRI

  0

  1

  2

  3

  4

  5

Figure 7.16: TLB misses when querying over 5 million triples of BSBM data (lower
is better)

• RETIRED BRANCH INSTRUCTIONS (Total branch instructions)

• RETIRED MISPREDICTED BRANCH INSTRUCTIONS (Mispredicted branch
instructions)

  1

  1.2

  1.4

  1.6

spo(load) pos(load) osp(load)

B
ra

n
ch

 m
is

p
re

d
ic

ti
o
n
s 

(N
o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e)

Bitmap  
BST    
B−Tree   
B−TreeRef 
B+Tree   
Hash
AHRI

  0

  0.2

  0.4

  0.6

  0.8

Figure 7.17: Branch mispredictions when loading 5 million triples of BSBM data
(lower is better)

Figure 7.17 describes the quantity of branch mispredictions when loading BSBM data
into each of the candidate data structures. As expected, AHRI does well by this metric,
except for POS-ordered data, where it has to load information into B+trees. Note that
the reason it does not mispredict as often as the standard tree structures is that there are



Chapter 7 Evaluating AHRI 157

a relatively large quantity of L3 B+Trees, and so the height of each tree is, on average,
lower.

Hash does the best by this metric, thanks to a very simple insertion, fast assertion
mechanism that requires only inserting into a small array or hash set. By contrast, as
expected, the B-trees perform poorly. Both BST and Bitmap are built by a bulk, rather
than incremental, method, which is why BST achieves better results than the other tree
types.

  8

  10

  12

  14

spo(mixed) pos(mixed) osp(mixed)

B
ra

n
ch

 m
is

p
re

d
ic

ti
o
n
s 

(N
o
rm

al
is

ed
 a

g
ai

n
st

 B
−

T
re

e)

BST   
B−Tree  
B−TreeRef
B+Tree  
AHRI

  0

  2

  4

  6

Figure 7.18: Branch mispredictions when querying over 5 million triples of BSBM
data (lower is better)

Figure 7.18 shows branch mispredictions for each of the data structures. Both Bitmap
and Hash had to be eliminated from this chart, due to their distorting the readability of
the results. Bitmap causes 90 times as many branch mispredictions as B-Tree for SPO-
ordered data, caused by the process of ANDing large compressed bitmaps together. Hash
caused over 30 times as many branch mispredictions as B-Tree for POS and OSP ordered
data, by virtue of the cost of iterating over hash sets: these data structures inherently
require unpredictable comparisons to determine if a slot contains a valid element or not.

AHRI performs exceptionally well by this metric. This is a result of the fact that it
requires very few branches in general: when iterating over an L3 index, for example,
there is no need to check that elements should be added to the result set: by virtue of
the fact that they are in the index, they are part of the result set. This contrasts with
tree structures, which do not add data to explicit buckets, and thus have to perform
more checks when performing retrievals.

BST’s poor results when iterating over data, as shown in the POS and OSP results,
reflect the relative complexity of iterating over a binary tree. On arriving at a node, for



158 Chapter 7 Evaluating AHRI

example, it’s necessary to check whether one or both child nodes has been traversed,
and make the decision about where to go next. This contrasts with the relatively simple
iteration offered by B-Tree variants.

  7

pos(load) pos(mixed) pos(val1) pos(val2) pos(val3)

B
ra

n
ch

 m
is

p
re

d
ic

ti
o

n
s 

(N
o

rm
al

is
ed

 a
g

ai
n

st
 B
−

T
re

e)

AHRI(bp)
AHRI(hb)
AHRI(hbwa)

  0

  1

  2

  3

  4

  5

  6

Figure 7.19: Branch mispredictions for L3 index variants when loading 5 million
triples of BSBM data (lower is better)

The branch misprediction results for the different AHRI L3 indexes (shown in Fig-
ure 7.19) are predictable. AHRI-hb performs extremely poorly when forced to iterate
over many results. This is because hash sets inherently require a lot of unpredictable
comparisons to determine if a slot is filled or not. By contrast, AHRI-bp performs
relatively poorly (although less spectacularly so) for find operations.

It should be noted that the cardinality of Predicates, Objects, and PO pairings tends
to go up as the size of the dataset increases. This means that the poor results for Hash
and AHRI-hb seen in this section are only likely to get worse as the size of the datset
increases. However, it is equally quite likely that such high cardinality elements are
relatively unlikely to be accessed very often by an intelligent query optimiser, mitigating
the impact of this issue.

7.3.9 Discussion

The first round of tests suggest that AHRI substantially outperforms all of the alterna-
tive data structures: AHRI is almost universally best on measures of load time, space
consumed, and read performance, often by a substantial margin. The analysis of data
cache misses, TLB misses, and branch mispredictions described in Sections 7.3.6, 7.3.7,



Chapter 7 Evaluating AHRI 159

and 7.3.8 shed light on the reasons behind these results: AHRI performs excellently on
each of these metrics.

In terms of load times and performance on some retrieval operations, Hash keeps up with
AHRI. Unfortunately, its inability to control space overheads, combined with extremely
poor performance on queries that restrict on the second attribute, means that it cannot
be considered a suitable competitor on an all-round basis.

In general, the most suitable competitor for AHRI is the B+Tree, which, when com-
pared to B-Tree, trades slightly greater space consumption for faster retrieval times and
a simpler codebase. This result was expected, given the B+Tree’s recent history of per-
forming well on in-memory systems. In the following sections, B+Tree is used as the
only algorithm against which AHRI is compared.

The alternative structures all failed to keep up, particularly in the case of Bitmap.
B-Tree and B-TreeRef provided an interesting case study of the differences between
structures that refer to shared triple objects and those that encode data inline. This
study showed that encoding information inline is a significantly superior in terms of both
retrieval performance and space consumed. This conclusion may have to be revisited for
tree structures once datasets get so large that they require a 64-bit ID space: B-TreeRef
would significantly improve its relative space efficiency in this case.

7.4 Large Scale Tests

To show that AHRI scales effectively, tests were performed on two larger documents: a
350 million triple BSBM dataset (generated using ‘-fc -pc 1000000’), and the full 230
million triple (after duplicate elimination) DBpedia dataset. As described in Chapter
5, these two represent very different structures of RDF data, and thus provide a good
all-round test of AHRI.

In order to work with these datasets, a machine with a substantially larger quantity
of RAM was used. This machine was an m2.2xlarge Amazon EC2 instance with the
following settings:

• 34.2 GB of memory

• 13 EC2 Compute Units (4 virtual cores with 3.25 EC2 Compute Units each)

• I/O Performance: High

• Linux kernel 2.6.31

• Sun reference JVM (version 1.6.18), run using options ‘-server -Xms31000M Xmx31000M’



160 Chapter 7 Evaluating AHRI

Only the B+Tree and AHRI indexes were tested with this dataset, since they were the
most performant options from the initial tests. Unfortunately, the EC2 instance does
not provide access to the hardware counters used by OProfile, so it was not possible to
obtain cache miss and branch misprediction data on this machine.

7.4.1 Size

  0

  1

  2

  3

  4

  5

  6

  7

  8

  9

spo pos osp

In
d

ex
 s

iz
e 

(G
B

)

B+Tree
AHRI(bp)
AHRI(hb)
AHRI(hbwa)

Figure 7.20: Index sizes for 350 million triples of BSBM data (lower is better)

Figure 7.20 shows the sizes of each of the AHRI variants, compared against B+Tree, over
a 350 million triple BSBM dataset. The relative sizes of AHRI and B+Tree stay similar
when compared to the 5 million triple BSBM dataset. This is expected: BSBM is built
on repeating patterns, so there is no fundamental change in the characteristics of the
dataset when it gets scaled up. While the size of the B+Tree does increase superlinearly
with the size of the dataset, this is at a rate of logn, where n is the average node size.
This is too small a factor to have a substantial influence.

As before, AHRI-hb is the smallest of the indexes, followed by closely by AHRI-bp, and
trailed substantially by AHRI-hbwa. These results are mirrored when considering the
full DBpedia set, shown in Figure 7.21. The results for this dataset are somewhat closer,
with the B+Tree achieving a particularly good packing factor on its SPO index. Due to
the fact that DBPedia subjects are of relatively high cardinality, AHRI gets relatively
little advantage from the small size of its FixedBuckets, increasing overheads somewhat.
In general, however, AHRI puts in a strong performance, and remains significantly
smaller than the B+Tree.



Chapter 7 Evaluating AHRI 161

  2.5

  3

  3.5

  4

spo pos osp

In
d

ex
 s

iz
e 

(G
B

)

B+Tree
AHRI(bp)
AHRI(hb)
AHRI(hbwa)

  0

  0.5

  1

  1.5

  2

Figure 7.21: Index sizes for the full 230 million triple DBPedia dataset (lower is
better)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  5e+07  1e+08  1.5e+08  2e+08  2.5e+08  3e+08  3.5e+08  4e+08

T
ri
p

le
s 

L
o

a
d

e
d

/T
im

e
 (

N
o

rm
a

lis
e

d
 a

g
a

in
st

 B
+

T
re

e
)

Dataset Size (triples)

AHRI-bp (spo)
AHRI-hb (spo)
AHRI-bp (pos)
AHRI-hb (pos)
AHRI-bp (osp)
AHRI-hb (osp)

Figure 7.22: Load rate with increasing BSBM dataset size (higher is better)

7.4.2 Load

Figure 7.22 shows AHRI’s load rate for BSBM data, relative to B+Tree, as the size of
the dataset increases. Note, again, that both of these indexes are built using incremen-
tal insertion methods, and so these results can be considered indicative of the cost of
updating as well as the cost of bulk load.

The load rate of the SPO-ordered index is particularly noticeable here: AHRI’s perfor-
mance relative to B+Tree increases dramatically as the dataset size increases. In reality,
this is an artifact of B+Tree’s insert rate dropping, while AHRI’s stays approximately



162 Chapter 7 Evaluating AHRI

constant. AHRI’s best insertion rate ocurred on the 30 million triple dataset, averaging
11.5 million triples per second. This high performance is a result of AHRI’s fast Fixed-
Bucket structures: the only operations that have to be performed are a direct-mapped
lookup in an array, followed by a copy and insertion into a very small array of data.
This strategy is particularly effective thanks to the fact that data is inserted in SPO
order: almost all lookups in the L1 index will be cached, as will the FixedBuckets that
get used. B+Tree suffers by comparison due to its relatively wide nodes and long lookup
times.

The performance of AHRI’s POS indexes is still substantially better than that of B+Tree,
although they do not reach the same heights. The POS-ordered structure is heavily
influenced by the choice of L3 index: AHRI-bp inserts at a rate of 1.5-2 times that
of B+Tree, compared to 2.5-3.5 times for AHRI-hb. The rate for AHRI-bp could be
substantially improved by reducing the width of AHRI’s L3 B+Tree index nodes, which
are currently very wide, at 1000 elements. This would trade off a small amount of space
and read performance.

Finally, the insert rate of AHRI’s OSP ordered structures is between 2 and 2.5 times
that of B+Tree. The rates are extremely similar for the different L3 indexes, as BSBM
makes no use of them on the OSP ordering.

  1.5

  2

  2.5

  3

spo pos osp

L
o

ad
 r

at
e 

(N
o

rm
al

is
ed

 a
g

ai
n

st
 B

+
T

re
e)

B+Tree  
AHRI(bp)
AHRI(hb)

  0

  0.5

  1

Figure 7.23: Load rate for the full 230 million triple DBpedia dataset (higher is
better)

Figure 7.23 shows the insertion rate for DBpedia, a dataset that makes much less use of
AHRI’s FixedBuckets, due to the relatively high cardinality of its Subjects. It can be
seen in these results that while performance on SPO-ordered data is still substantially
higher than B+Tree, it does not reach the same heights. The insertion rate for this
index is just 5 million triples per second. By contrast, the relative load rates for the
POS and OSP-ordered indexes are similar to that seen in the BSBM load phase.



Chapter 7 Evaluating AHRI 163

7.4.3 Query

This section describes the query (read) performance for each index type, over the two
large datasets. Testing was performed as in Section 7.3.3, with the exception that data
was retrieved using an iterated method. Instead of passing in an array and writing
all results into that array, the index structures returned an object that knew how to
iterate over the data structures. This makes it possible to perform element-at-a-time
retrieval, necessary to support pipelined operations. This mode of operation is more
representative of the conditions found in modern database systems. Tables including
the raw figures for each of these tests can be found in Appendix D.

Initial tests at this scale revealed flaws in the design of AHRI. In an iterated environment,
where elements are returned from the index one at a time by calling a next() method,
AHRI slows down significantly. This is due to the cost of calling the next() method.
Simple codebases that do not feature much inheritance, like a B+Tree, can have many
of their method calls inlined - that is, instead of calling the method, the compiler simply
replaces the method call with a copy of the method’s code, eliminating the call cost.
For methods that do not execute extremely regularly, this is a minor operation, but
it is of great importance for methods that execute extremely frequently - like next().
Unfortunately, AHRI is more complex than a B+Tree, and the code executed in the
next() call is subject to inheritance, which makes it impossible to inline. Since next()
gets called for every single element returned, the quantity of method calls slows down
execution considerably.

In order to overcome this issue, a version of AHRI that retrieves vectors of results at a
time was implemented: effectively buffering calls to next(), and substantially reducing
the number of method calls performed. Section 6.3.2.1 discusses the changes made to
FixedBuckets to accommodate this change effectively. The alternative structure has
negligible differences in terms of load times, and uses the same amount of space, so
results for these factors are not discussed here.

7.4.3.1 BSBM

BSBM represents a relatively curated class of information, akin, for example, to the
UniProt dataset. Subjects are of predictably very low cardinality, while the dataset
contains only a very few predicates, each of which is of very high cardinality.

Figure 7.24 shows the query response rates for the SPO ordering of the BSBM dataset.
As expected, AHRI is substantially faster than B+Tree for this ordering. With the
higher overheads of the iterated environment mitigating the speed advantage of AHRI’s
lookups, AHRI manages only an average of 2.5 times improvement upon B+Tree. This is
still, however, a very substantial improvement. Since Subject-related queries are always



164 Chapter 7 Evaluating AHRI

  3.5

  4

  4.5

sp
o
(m

ix
ed

)

sp
o
(v

al
1
)

sp
o
(v

al
2
)

sp
o
(v

al
3
)Q

u
er

ie
s/

ti
m

e 
 (

N
o
rm

al
is

ed
 a

g
ai

n
st

 B
+

T
re

e)
B+Tree  
AHRI(bp)
AHRI(hb)
AHRI−vec(bp)
AHRI−vec(hb)

  0

  0.5

  1

  1.5

  2

  2.5

  3

Figure 7.24: Query performance over the 350 million triple BSBM dataset using SPO
ordering (higher is better)

of low cardinality, and do not generally require an L3 index, there is little to choose
between each of the AHRI variants.

  3.5

p
o
s(

m
ix

ed
)

p
o
s(

v
al

1
)

p
o
s(

v
al

2
)

p
o
s(

v
al

3
)Q

u
er

ie
s/

ti
m

e 
 (

N
o
rm

al
is

ed
 a

g
ai

n
st

 B
+

T
re

e)

B+Tree  
AHRI(bp)
AHRI(hb)
AHRI−vec(bp)
AHRI−vec(hb)

  0

  0.5

  1

  1.5

  2

  2.5

  3

Figure 7.25: Query performance over the 350 million triple BSBM dataset using POS
ordering (higher is better)

Results for the POS ordering (shown in Figure 7.25) show the real differences between
each of the AHRI variants. As expected, the AHRI variants using a hash set L3 index
perform poorly for retrievals limited by one or two attributes: they are slow to iterate
over. They do, however, perform exceptionally well for find operations. AHRI variants
using the B+tree L3 index perform well for retrievals limited by one or two attributes,
thanks to very high iteration performance. The difference in iteration performance be-
tween the standard and vector models is clearly visible, with the vector model perfoming



Chapter 7 Evaluating AHRI 165

substantially better.

AHRI−vec(hb)

  0

  0.5

  1

  1.5

  2

  2.5

  3

o
sp

(m
ix

ed
)

o
sp

(v
al

1
)

o
sp

(v
al

2
)

o
sp

(v
al

3
)Q

u
er

ie
s/

ti
m

e 
 (

N
o
rm

al
is

ed
 a

g
ai

n
st

 B
+

T
re

e)

B+Tree  
AHRI(bp)
AHRI(hb)
AHRI−vec(bp)

Figure 7.26: Query performance over the 350 million triple BSBM dataset using OSP
ordering (higher is better)

Figure 7.26 depicts results for the OSP ordering, with AHRI again achieving substantial
improvements over B+Tree. Since the OSP ordering makes no use of L3 indexes, there is
predictably little difference between the AHRI-hb and AHRI-bp variants. Unexpectedly,
the vector model actually causes a slight slowdown when compared to the standard
iterated model. Since the expected incidence of queries over the OSP index is low, this
is not a substantial concern.

7.4.3.2 DBpedia

The DBpedia dataset represents a significant change from the BSBM one. It is more
organic, less managed, and demonstrates substantially different characteristics with re-
spect to the SPO index: a given subject might have a cardinality of several hundred
elements, while it exhibits a much greater variety of predicates, a few of which are of
low cardinality.

Figure 7.27 shows the results for the SPO ordering. AHRI, while still exhibiting a sig-
nificant improvement over the B+Tree, does not show the same improvement that it did
for BSBM. This is a predictable consequence of the fact that Subjects have substantially
higher cardinality in the DBpedia dataset: AHRI’s major advantage is in the find time,
and iterating over more elements proportionally reduces the influence of this factor. A
further consequence of this increased emphasis on iteration performance is the improved
results for the vector implementations.



166 Chapter 7 Evaluating AHRI

AHRI−vec(hb)

  0

  0.5

  1

  1.5

  2

  2.5

  3

sp
o
(m

ix
ed

)

sp
o
(v

al
1
)

sp
o
(v

al
2
)

sp
o
(v

al
3
)Q

u
er

ie
s/

ti
m

e 
 (

N
o
rm

al
is

ed
 a

g
ai

n
st

 B
+

T
re

e)
B+Tree  
AHRI(bp)
AHRI(hb)
AHRI−vec(bp)

Figure 7.27: Query performance over the full DBPedia dataset using SPO ordering
(higher is better)

AHRI−vec(hb)

  0

  0.5

  1

  1.5

  2

  2.5

  3

p
o
s(

m
ix

ed
)

p
o
s(

v
al

1
)

p
o
s(

v
al

2
)

p
o
s(

v
al

3
)Q

u
er

ie
s/

ti
m

e 
 (

N
o
rm

al
is

ed
 a

g
ai

n
st

 B
+

T
re

e)

B+Tree  
AHRI(bp)
AHRI(hb)
AHRI−vec(bp)

Figure 7.28: Query performance over the full DBPedia dataset using POS ordering
(higher is better)

Results for the POS index, show in Figure 7.28, are very similar to those for the BSBM
dataset. Again, iteration-focused improvements like using the B+tree L3 index and
using a vector layout provide substantial benefits.

Finally, the OSP ordering, depicted in Figure 7.29, also provides expected results. AHRI
is substantially faster overall, with the vector implementations especially leaping ahead.
The limited use of L3 indexes over the OSP ordering means that there is little to choose
between the different L3 index implementations.



Chapter 7 Evaluating AHRI 167

AHRI−vec(hb)

  0

  0.5

  1

  1.5

  2

  2.5

  3

o
sp

(m
ix

ed
)

o
sp

(v
al

1
)

o
sp

(v
al

2
)

o
sp

(v
al

3
)Q

u
er

ie
s/

ti
m

e 
 (

N
o
rm

al
is

ed
 a

g
ai

n
st

 B
+

T
re

e)

B+Tree  
AHRI(bp)
AHRI(hb)
AHRI−vec(bp)

Figure 7.29: Query performance over the full DBPedia dataset using OSP ordering
(higher is better)

7.4.4 Discussion

Overall, AHRI maintains a substantial advantage over B+Tree for these large datasets.
It offers a load rate between 2 and 6 times that of B+Tree, with a substantial reduction
in size, and much better query throughput: for most operations AHRI can perform
between 1.5 and 3 times as many queries per second as B+Tree.

The different L3 index types, B+tree and hash set, have significantly different behaviour.
While they require approximately the same amount of space, AHRI-bp performs signif-
icantly better with respect to iteration over large quantities of data, while AHRI-hb
is much better for load performance and find operations. The best choice of structure
depends largely on workload.

Finally, the size of AHRI’s OSP-ordered index is again a noticeable issue. While it
is somewhat smaller than the equivalent B+Tree structure, the saving is not especially
large. Considering that the OSP index is generally used the least out of all the orderings,
there is a clear need to work on a version of AHRI that provides better behaviour with
respect to size, even at the cost of query performance.

7.5 Jena Plugin

Testing AHRI’s performance as part of a real RDF store is an important part of demon-
strating AHRI’s real-world utility: while the results show that AHRI’s performance is
substantially higher than alternative structures in virtually all cases, it must also be



168 Chapter 7 Evaluating AHRI

demonstrated that this improvement has a significant impact in the context of all the
other operations that a store has to perform.

The AHRI Jena Plugin was created to test AHRI’s performance inside a real query
engine, and to verify the belief that AHRI would have a substantial impact upon the
overall performance of an RDF store. This section considers the size and load/query
performance of AJP using the same hardware as that described in Section 7.4.

As well as considering the AHRI and B+Tree index types, performance is compared
against two alternative systems that use the Jena framework: The Jena Tuple Database
(TDB), a high performance disk-backed store, and the Jena Memory Model (JMM), an
example of a current in-memory system. Since these systems all use the same toolkit, and
the same indexed nested loops join strategy, as many variables as possible have been
eliminated. To ensure, as far as possible, similar query answering strategies, TDB’s
statistics-based query optimiser was disabled. JMM was also modified to use the same
parsing engine as TDB and AJP, an upgrade over its standard parser. The only change
to the configuration described in Section 7.4 was for TDB, where the Java options used
were ‘-server -Xmx5000M’. This lower memory limit is because the memory mapping
that TDB performs does not count as part of the standard Java heap space. It is thus
beneficial to restrict TDB to a smaller amount of memory, in order to ensure that the
heap space does not grow to contend with the space available for memory mapping.

Two datasets are used in this section: a 65M triple BSBM file, and a 43.4M triple
DBpedia subset, constructed from DBpedia version 3.5, using the files specified by the
DBpedia benchmark (Becker, 2008): infoboxes.nt, geocoordinates.nt, and homepages.nt.

7.5.1 Size

Dataset AHRI-bp AHRI-hb B+Tree TDB JMM

BSBM (65M) 11.55 11.52 13.38 12.62 31.02*
DBPedia 4.89 4.9 6.0 5.9 13.62

Table 7.1: Space consumed (GB) by different RDF stores, loading BSBM and DBpe-
dia datasets. Note that JMM proved unable to load the full BSBM dataset, running
out of memory during garbage collection. As a result, figures are linearly projected

from a smaller, 30.5 million triple BSBM document.

Table 7.1 breaks down the space consumption of each of the different stores over the
two datasets. Results for the vector implementations of AHRI are not included here,
since they use the same amount of space as non-vector versions. Amongst these results,
JMM’s consumption is the noticeable outlier. The reasons for this are twofold:

• JMM does not perform full normalisation of string data (as described in Section
4.4), meaning that string data is often stored more than once.



Chapter 7 Evaluating AHRI 169

• JMM’s triple index structure, similar to the Hash structure used in this chapter,
generates a lot of small objects, wasting a lot of space.

TDB’s space consumption was determined by examining the size of the data files that it
generates, and adding the amount of heap space it consumes. Since TDB uses memory
mapping to read and write data, this provides a reasonably accurate figure. TDB’s
relatively low memory consumption is very noteable, as it comes in at even smaller than
AJP’s B+Tree implementation. This is an artifact of a kind of implicit compression
performed by TDB: when writing to disk, strings are converted into UTF-8 form. Since
both of these datasets largely only require one byte per character, UTF-8 encoding saves
a substantial amount of space when compared to Java’s two byte strings. The downside
of this is that encoding and decoding the strings takes a certain amount of time.

Overall, the AHRI implementations are more compact than the alternatives, but there
is an unexpectedly small difference in size between B+Tree and AHRI for the BSBM
data. This is due to the size of the string dictionary, which consumes 8.5GB in the
current uncompressed implementation. This is atypical: BSBM generates an unusually
large quantity of text data at 2.5 times as much per triple as the full DBPedia dataset.

Figure 7.30(a) breaks down the amount of space used for string data and triple indexes
when loading the BSBM data into AJP, showing that string data consumes the majority
of memory space when loading the BSBM dataset, particularly when using AHRI. This
is a clear indicator that the next focus for saving space should be on highly performant
string compression, or other means of reducing the burden on memory space.

  0

  2

  4

  6

  8

  10

  12

  14

  16

B+Tree AHRI

S
iz

e 
(G

B
)

Total       
Node Dictionary
Triple Indexes

(a) BSBM

  0

  1

  2

  3

  4

  5

  6

  7

  8

B+Tree AHRI

S
iz

e 
(G

B
)

Total
Node Dictionary
Triple Indexes

(b) DPbedia

Figure 7.30: Total space consumed by AJP (AHRI-bp) loading a 65M triple BSBM
dataset (a) and 43.4M triple DBpedia dataset (b) (lower is better)

Figure 7.30(b) shows results for the 46M triple DBpedia dataset. Despite being over
2/3rds the size of the BSBM file in terms of triple count, it consumes less than half as
much space, by virtue of its smaller string dictionary. The advantage of using AHRI is
quite significant with this dataset.



170 Chapter 7 Evaluating AHRI

7.5.2 Load

Dataset AHRI
(bp)

AHRI
(hb)

AHRI-
vec(bp)

AHRI-
vec(bp)

B+Tree TDB JMM

BSBM (65M) 539 513 546 518 603 3768 1221*
DBPedia 268 251 273 274 327 2888 316

Table 7.2: Load times in seconds for different RDF stores. Note that JMM proved
unable to load the full BSBM dataset, running out of memory during garbage collection.
As a result, figures are linearly projected from a smaller, 30.5 million triple BSBM

document.

Table 7.2 shows the time required to load data into each RDF store for each dataset.
Note that TDB was timed using the included bulk loader. When compared to the
results found in earlier tests, the difference in performance between AJP using B+Tree
and AHRI is relatively limited. This is an indication that reading and parsing data from
disk consumes the majority of AJP’s time. TDB is very substantially slower in this test,
which is likely to be a consequence of having to occasionally flush data to disk.

AHRI’s advantage should become more apparent in systems that are not disk bound, or
have greater disk bandwidth. These results indicate that work on faster parsers would
be fruitful. One approach might be to work on a parser that uses multiple CPUs.

7.5.3 Query

In order to demonstrate AHRI’s query performance, three benchmarks were performed.
The first (described in Section 7.5.3.1) was the standard BSBM version 2.0 benchmark,
which represents a workload for an e-commerce site: mostly OLTP in nature, with
relatively few long running, analytical queries.

In order to demonstrate AHRI’s performance in a more analytical situation, four rela-
tively complex custom queries were also created over the BSBM dataset. The BSBM
test driver was modified to use these queries in a second round of tests, described in
Section 7.5.3.2. For both BSBM tests, the benchmark software was configured to run
100 warmup and 200 normal iterations, ensuring good accuracy of results.

Finally, Section 7.5.3.3 explores AHRI’s performance using the DBpedia benchmark.
This benchmark is largely of a more analytical nature.

For each test running TDB in this section, the data was reloaded into the store, and
the Java object representing TDB kept alive. This is important for ensuring that the
store has the best opportunity to cache all its data in RAM: if TDB were restarted after
loading data, the only information reliably held in RAM would be that used during the
warmup runs. By contrast, loading reliably touches all the data in the system, giving
the best odds that all information is cached.



Chapter 7 Evaluating AHRI 171

7.5.3.1 BSBM

The standard BSBM suite connects to repositories over HTTP. For the purposes of this
experiment, a modified version3 was used, allowing a direct, local connection. This
eliminates the overhead of making the connection, which dominates the cost of some
small queries.

BSBM measures performance in terms of sets of queries called ‘Query Mixes’, reporting
an overall metric of ‘Query Mixes Per Hour’. This figure is reported here, along with a
detailed breakdown of per-query results. Queries 3, 8, and 10 caused excessively long
runtimes with AJP due to its inability to work efficiently with OPTIONAL and FILTER
statements, and so were not tested. As noted previously, JMM proved unable to load
the full 65M triple dataset, and so results are instead reported for the reduced 30.5M
triple set.

Store QMPH

AHRI(bp) 1849.3
AHRI(hb) 1856.3

AHRI-vec(bp) 2556.3
AHRI-vec(hb) 2558.0

B+Tree 965.1
TDB 202.2
JMM* 131.34

Table 7.3: Query Mixes Per Hour for BSBM. Note that figures for JMM are for a
smaller, 30.5 million triple dataset.

Table 7.3 reports the overall QMPH figure for the BSBM run. This shows that AHRI
performs extremely well overall, beating B+Tree by a factor of 2-3, and the alternative
stores by a factor of ten or more. Since this figure is quite a blunt instrument, per-query
results are broken down in Table 7.4.

These results indicate that while AHRI is faster than the alternatives in most situa-
tions, the difference is more pronounced on longer running queries. This is not a big
surprise: shorter queries are more likely to be dominated by the cost of setup, while
longer running ones will work harder on the triple indexes. This effect is mirrored in the
comparison between the standard and vector versions of AHRI: it’s noticeable that the
vector processor provides the largest improvement in the long running query 5.

TDB’s poor results for queries 1 and 4 are likely to be a result of taking a different query
answering strategy to AJP and JMM: differences as large as a factor of a thousand are
unlikely to be down to the performance of the index. Overall, however, it is outperformed
by all the AJP implementations, including B+Tree. This is expected: while TDB was

3http://github.com/afs/BSBM-Local



172 Chapter 7 Evaluating AHRI

Query AHRI
(bp)

AHRI
(hb)

AHRI-
vec(bp)

AHRI-
vec(hb)

B+Tree TDB JMM*

1 1136.4 1149.4 1227.0 1149.0 746.3 1.5 270.3
2 1016.1 1014.3 1000.0 988.47 944.4 292.7 526.8
3 - - - - - - -
4 749.1 684.9 813.01 803.2 438.6 0.75 175.3
5 0.55 0.56 0.78 0.79 0.28 0.07 0.04
6 8.3 8.0 8.4 8.4 8.4 0.52 8.73
7 1030.9 1008.8 1034.9 959.23 918.5 351.8 638.5
8 - - - - - - -
9 1822.3 1946.5 1965.6 1980.2 1713.1 918.5 1777.8
10 - - - - - - -
11 3333.3 3225.8 3333.3 2777.8 4255.3 1408.5 2985.1
12 1470.6 1418.4 1418 1526.7 1290.3 682.6 1360.5

Table 7.4: BSBM query results. Results indicate the number of queries performed per
second for each query type. Note that figures for JMM are for a smaller, 30.5 million

triple dataset.

given enough memory to cache all its data, working with memory mapped files is not as
fast as working in normal memory.

Finally, JMM produces a creditable performance, particularly for extremely short lived
queries. Its generally good per-query results are overwhelmed in in the overall metric
by extremely poor performance in query 5.

7.5.3.2 Complex BSBM Queries

Since BSBM mostly consists of an OLTP-like workload, which does not heavily stress
the underlying indexes, four queries with a more challenging, analytical nature were
generated. These queries are shown in Figure 7.31.

These queries provide relatively little opportunity for restricting the working set, thanks
to their low proportion of repeating variables and fixed bindings. As a result, they
tend to stress the triple indexes more, as more pieces of data need to be retrieved for
joining. This is shown in the results, with queries generally requiring substantially
longer runtimes. Table 7.5 shows the QMPH figures for each store. As before, AHRI
substantially outperforms the alternative methods, particularly when using the vector
version. Unlike the standard BSBM query set, these queries give the B+tree L3 index
a significant performance advantage over the hash set. This is because harder queries
such as these are more likely to have to iterate over large sets of L3 data.

Table 7.6 shows the per query results for the complex query set. The disk-based store’s
performance over this dataset is particularly noticeable, and it was unable to complete
Query 3 in less than 30 minutes. It is not clear whether this is down to poor query



Chapter 7 Evaluating AHRI 173

Store QMPH

AHRI(bp) 10933.4
AHRI(hb) 10221.9

AHRI-vec(bp) 13768.8
AHRI-vec(hb) 12126.1

B+Tree 5549.6
TDB* 54.27
JMM* 1328.1

Table 7.5: Query Mixes Per Hour for the complex query benchmark. Note that figures
for JMM are for a smaller, 30.5 million triple dataset, while figures for TDB exclude

Query 3, which it was unable to complete.

Query AHRI
(bp)

AHRI
(hb)

AHRI-
vec(bp)

AHRI-
vec(hb)

B+Tree TDB JMM*

1 40.62 43.34 47.56 46.53 25.37 0.12 10.22
2 421.94 421.05 441.5 422.83 346.02 64.45 109.83
3 148.92 167.93 187.44 154.8 87.91 - 27.82
4 5.8 4.87 7.83 6.28 2.51 0.06 0.48

Table 7.6: Complex query results. Results indicate the number of queries performed
per second for each query type. Note that figures for JMM are for a smaller, 30.5

million triple dataset.

optimisation or incomplete caching of its indexes, but the memory-based stores have a
clear advantage for these queries.

The performance gap between JMM and AHRI is much larger for these tests, as the
latency is less influenced by query startup time. This effect also allows the vector-based
versions of AHRI to display their full power, providing significant performance gains on
the harder queries.



174 Chapter 7 Evaluating AHRI

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

SELECT ?vendor ?product WHERE {
?offer bsbm:product ?product .
?product bsbm:productFeature %ProductFeature1% .
?offer bsbm:vendor ?vendor .

}
(a) Query 1: Return all vendors who sell product(s) with a given feature, along with those products.

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rev: <http://purl.org/stuff/rev#>

SELECT DISTINCT ?productset WHERE {
?prod1 rdf:type %ProductType% .
?review bsbm:reviewFor ?prod1 .
?review rev:reviewer ?person .
?allreviews rev:reviewer ?person .
?allreviews bsbm:reviewFor ?productset .

} LIMIT 1000
(b) Query 2: For a given product, return products that have also been reviewed by people who bought it.

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?label ?vendor ?producer ?country WHERE {
?product bsbm:producer ?producer .
?producer bsbm:country ?country .
?offer bsbm:vendor ?vendor .
?offer bsbm:product ?product .
?vendor bsbm:country ?country .
?product rdfs:label ?label .
?product rdf:type %ProductType% .

} ORDER BY ?label
(c) Query 3: For products of a given type, find the vendors who sell in the country of manufacture.

PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>

PREFIX rev: <http://purl.org/stuff/rev#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?review WHERE {
?review rev:reviewer ?person .
?person foaf:name ?name .
?review bsbm:reviewFor ?product .
?review bsbm:rating1 2 .
?product bsbm:productFeature %ProductFeature1%

}
(d) Query 4: For products with a given feature, find the reviews that gave the product a rating of 2.

Figure 7.31: Analytical queries for the BSBM dataset



Chapter 7 Evaluating AHRI 175

7.5.3.3 DBpedia

The benchmark described in Becker (2008) was used to test query performance over
DBpedia data. The results in Section 7.4 indicate that AHRI’s advantage when working
with DBpedia information is smaller than for BSBM, because DBpedia makes much
less use of AHRI’s fast FixedBuckets, and so these tests consider AHRI’s real-world
performance in a more challenging environment. In order to ensure that each store was
warmed up effectively, a set of three variants of each query was performed in advance.
The test was run three times, with the mean result taken.

Query AHRI
(bp)

AHRI
(hb)

AHRI-
vec(bp)

AHRI-
vec(hb)

B+Tree TDB JMM

1 3 4 4 4 4 4 6
2 84 83 87 82 105 225 164
3 69 70 60 64 152 490 17
4 1169 1214 1086 1076 1178 4255 1770
5 1121 1252 1055 1050 1124 4342 1907

Table 7.7: Detailed DBpedia query results. Figures indicate the time in milliseconds
required for each query.

The per-query results are shown in Table 7.7. On average, AHRI-vec(bp) provided a
38% reduction in the time taken to perform each query when compared to B+Tree, a
substantial improvement. AHRI is also generally substantially faster than both JMM
and TDB except in one case: JMM performed exceptionally well on query 3.

7.6 Discussion

Overall, the results in this chapter have shown that AHRI provides a substantial im-
provement upon other index types for storing RDF data in memory. It manages to
effectively maintain a compact layout, while offering excellent load/update/query per-
formance. This is accomplished through a few key features, which together fulfil the
requirements listed in Section 6.1:

• Inlining of the IDs that represent triples directly into indexes, rather than storing
separate, shared triple objects. This is shown to save space, and dramatically
reduce cache misses.

• Elimination of repeating IDs, but trying to do so only where the saved space
would be higher than the incurred overhead. In general, this approach saves a
large quantity of storage.



176 Chapter 7 Evaluating AHRI

• Customisation of the structure to fit the shape of the data being stored. This
customisation is enabled through the examination of RDF datasets discussed in
Chapter 5.

• Avoiding, where possible, structures that require a lot of computation and large
numbers of branch operations to locate data. AHRI’s L1 and L2 indexes locate
data quickly and efficiently, requiring little computation and causing very few
branch mispredictions when compared to tree-like structures.

• Limiting the creation of small objects, which tend to have high space overheads in
many modern languages.

Section 7.5 showed that these advantages translate effectively into real stores, partic-
ularly for long running queries. With further development of AJP to support more
standard features such as string compression, and fast multi-threaded parsing, the ad-
vantages of AHRI will become even more apparent, as the overheads that mitigate its
impact are reduced.

While AHRI shows excellent overall behaviour, the results presented in this chapter have
shown that there is room for it to improve further. In particular, it is not especially
compact on OSP-ordered data. While there are theoretical limits to the amount of com-
pression that can be performed on OSP-ordered data, AHRI can certainly be improved.
The fact that this ordering of data is used relatively infrequently means that there is
particular flexibility for improvement: it can be heavily optimised for space consumption
rather than time. One could consider, for example, applying a more expensive to read
system such as delta-compressed B+Trees.

The hypothesis described in Section 1.3 stated that RDF-specific in-memory structures
could substantially outperform more general structures, and that existing in-memory
RDF structures could be improved upon substantially. This evaluation has effectively
proved this hypothesis, showing that in-memory data structures can benefit substantially
from the major points of interest raised in this document: the importance of designing
with respect to the underlying structure of RDF datasets, and with the characteristics
of modern CPUs and memory latency firmly in mind. These two factors combine to
afford AHRI substantial benefits over alternative structures, and offer the ability to
significantly improve the performance of RDF storage in general.



Chapter 8

Conclusions and Future Work

The Semantic Web offers the potential to dramatically improve the manner in which
we retrieve and interact with data. RDF stores represent a critical requirement for the
emergence of this vision: the importance of high performance storage and query over
unpredictable RDF data is clear, and has been articulated during the course of this
thesis.

RDF does, however, represent a challenge when it comes to delivering performant storage
and query solutions. Common DBMSs derive their performance from an expectation of
both predictable data structure and predictable query loads, neither of which can be
expected for RDF data. A standard approach to fixing this issue has been extreme
read-orientation, rendering it infeasible to update information in the store.

These issues represent a threat to the Semantic Web as a whole: modern web applica-
tions, for example, have thrived on rich user interaction, which requires both low latency
queries and the ability to update information. Without such capabilities, a wide variety
of applications that would be useful to Semantic Web users are rendered impractical.

The work in this thesis represents an alternative to existing approaches: it combines
research aimed at better understanding the common characteristics of RDF datasets,
with a focus on designing practical, RDF-specific in-memory data structures that make
excellent use of the features of modern computer hardware. High performance RDF
memory stores have received relatively little attention in existing literature, despite
the requirements for low latency RDF storage found in interactive applications and
reasoners, and the hardware trends that are making main memory storage increasingly
practical. This thesis, then, represents significant new contributions to the body of
literature on RDF storage.

177



178 Chapter 8 Conclusions and Future Work

8.1 AHRI: A Summary

AHRI is a structure that grew out of the analysis of RDF data provided in Chapter
5. It performs particularly well, making it substantially faster to load, update, and
query RDF information than alternative structures, while using substantially less space.
It does this by adapting its structure to fit the requirements of the information it is
storing, based on an in-depth understanding of how RDF datasets behave, and how to
get the best performance out of modern computers.

Thanks to a multi-level index structure, AHRI eliminates excessive repetition of values,
and their implied wasted space. Its adaptive structure allows the provision of greater
or lesser levels of indexing, depending on how much is useful and how it will impact
structure size, all the while retaining excellent characteristics with respect to both data
locality and the predictability of branch operations. On the whole, this work has shown
that RDF data is an excellent candidate for cache-friendly data structures: the size of
a single RDF fact is very small, making it possible to fit several such facts into a cache
line. It is expected that the work on cache-friendly RDF data structures described in
this thesis will be of interest to the designers of existing RDF stores.

Unlike tree structures, where the number of operations required to access information
slowly scales up with the size of the dataset, AHRI scales with the number of attributes
that the dataset exhibits. Since RDF has only three attributes (Subject, Predicate,
and Object), it is an ideal candidate for this sort of approach. Other data description
languages with a small number of attributes would also benefit from this approach.

AHRI’s design is especially effective when implemented using newer programming lan-
guages like Java: its sparing use of small objects substantially reduces memory overheads
when compared to many alternative approaches, as well as dramatically reducing load
on garbage collectors. Further, it implicitly provides a substantial quantity of statistical
information that can be used to improve the quality of query plans.

Overall, AHRI represents a significant step towards a Semantic Web that allows indi-
viduals to ask meaningful questions in a timely manner. It also provides a basis for
the realisation of further improvements: while AHRI is already faster and smaller than
existing alternatives, it leaves open the possibility of integrating future enhancements,
through an architecture that encourages plugging in alternative sub-indexes.

Beyond AHRI itself, this thesis provides a foundation for the improvement of RDF
storage in general: it provides detailed information on the structure of RDF documents,
using a tool that automatically generates human-readable results, as well as a review
on the effect of modern computer architectures on RDF data structures. Improvements
to AHRI, and future work building on the contributions of this thesis, are described in
Section 8.2.



Chapter 8 Conclusions and Future Work 179

8.2 Future Work

This thesis serves as the basis for a great deal of future work, related to both the further
development of AHRI and AJP, and the future of RDF storage in general. This section
breaks this future work into short and long term segments. Short term work relates
largely to incremental improvements of AHRI and AJP, along with studies to provide
data on the query patterns most commonly used in Semantic Web applications.

By contrast, the longer term work features more fundamental research into paralleli-
sation: how RDF stores can make use of multi and many-core processors, along with
coping with distribution across networks in in-memory stores.

8.2.1 Short Term

8.2.1.1 AHRI Improvements

There is a variety of work that could be performed to improve both AHRI and its
integration into the Jena Semantic Web framework. Perhaps the most important change
is to make AHRI still more adaptive. While AHRI performs very well overall, it has
relatively poor characteristics over the OSP index.

Since the OSP index is accessed relatively rarely, the focus should be upon keeping its
size small rather than achieving extremely high performance. Instead, over this index
ordering, AHRI is fast but requires more space than it does in SPO or POS orderings.
This is due to the relative lack of repetition in the OSP index, and AHRI’s attempts
at eliminating repeating data sometimes costing more than the amount of space that is
saved.

A remedy to this issue would be to implement more second level index types. The OSP
index would have lower overheads using a B+Tree or radix trie as a second level index.
While a tree would not provide statistics, this would not be a significant issue due to
the fact that OS pairings are almost universally extremely low cardinality, and rarely
used anyway. Compression techniques (particularly RDF-3X style encoding) could also
be explored, although the low cardinality of OS pairings would limit the success of such
approaches.

A second, larger piece of future work is to implement a version of AHRI that supports
fully sorted order: If AHRI were to be implemented into systems using a merge and
sort/merge strategy, it would be beneficial to provide sorted order in all cases. AHRI
currently offers full sorting for some data, with grouping for the rest. Implementing
a performant, sorted version of AHRI is impractical in Java due to the fact that Java



180 Chapter 8 Conclusions and Future Work

does not support software cache prefetching. A fully sorted version requires lower level
control, and an implementation in C or C++ would be used for this purpose.

8.2.1.2 Jena Integration

The current AJP implementation is relatively simple, sufficient for prototype-level test-
ing but with room for significant improvement. The most crucial items on the list are
simple implementation issues: improved support for OPTIONAL and FILTER patterns
in SPARQL queries, which currently rely on a slow fallback mechanism in the Jena
framework. FILTER support can be further improved by adding support for inlined IDs
(as described in Section 5.4.2), which would reduce space requirements and dramatically
speed up integer comparisons.

Space requirements can be further reduced by the introduction of curbs on the size of
the string dictionary. While the BSBM test set used in this document has an unusually
large amount of string data, space requirements are substantial even for a more normal
dataset. As described in Section 5.4.2, common prefix elimination is a simple solution
to the issue of the space consumed by URIs, eliminating a large percentage of their
overhead, while performing sufficiently well for fast in-memory stores.

Literals are a more complex issue. The majority of space consumed by literals is used by
large strings. These are unlikely to be receptive to any simple compression technique,
but general purpose algorithms such as Lempel-Ziv may be effective. Such algorithms
do have a substantial cost in terms of performance, but the number of literals that
would need to be encoded to save a large amount of space is very small, making this
avenue worth investigating. One piece of future work, then, is to examine the effect of
compression on both URIs and literals.

Another improvement that can be made to AJP is support for persistence. The cur-
rent implementation offers no persistence, although the data held in AHRI can be easily
extracted and saved as a file. Addition of incremental persistence is simply an implemen-
tation issue, but choices will have to be made about the required level of transactional
integrity: strong guarantees that data will be persisted once asserted into AHRI will
inevitably slow down the assertion process.

Finally, the statistics generated by AHRI go unused by the current implementation.
These statistics have the potential to substantially improve the performance of AJP,
if used in conjunction with a high quality query optimiser. A good quality optimiser
will be able to produce better query plans, and even alter the plan on the fly if results
suggest that the current approach is poor.



Chapter 8 Conclusions and Future Work 181

8.2.1.3 Real World Studies

A useful piece of future work would be integrating AHRI into real-world applications,
and observing the improvement that it produces. AHRI is well suited to a variety
of scenarios. RDF-based human-interactive applications such as mSpace (Smith et al.,
2007) require extremely performant, low latency backing stores to drive their flexible UIs.
mSpace requires very low latency over queries of significant complexity, with multiple
concurrent users. For datasets of any significant size, mSpace has been forced to move
from RDF stores to more restrictive RDBMSs in order to attain acceptable performance.
The problem in this case is not one of the ability to assert very large numbers of triples,
but of being able to perform nontrivial queries in an extremely short period of time.

Other use cases for AHRI exist. Backward chaining reasoners require extremely high
performance backing stores to operate effectively, and heavily read oriented DBMSs like
C-Store (Stonebraker et al., 2005) (and its descendant, Vertica) use supplemental very
low latency memory-based systems to allow incremental assertions and updates. These
systems have to be extremely fast in order to not create a noticeable drag on the overall
system performance. Such a subsystem would be of use in existing highly read optimised
RDF stores such as YARS2, RDF-3X, and Hexastore.

A further helpful outcome from integrating AHRI into real world systems would be
a study into the sorts of queries that commonly get performed on RDF stores in the
wild. This would be complementary to the work described on ExamineRDF in this
document: ExamineRDF inspects the features of datasets, while this piece of work would
inspect the characteristics of queries that are run upon them. With both of these pieces
of information, RDF store creators would be better equipped to make evidence-based
decisions about how to design their systems.

8.2.2 Long Term

8.2.2.1 Multi-processors

As processor manufacturers come up against hard limits to how far they can increase
clock speeds, multi-core and multi-processor systems are becoming the norm. While
increased transaction throughput is eminently feasible with the application of greater
numbers of cores, particularly in a read-oriented environment, achieving speedup is a
much harder proposition.

Application of techniques designed for distributed systems described in Section 3.5 could
afford real gains in speedup. The index nested loops join used by AJP offers excellent
opportunities for parallelisation without having to share (and thus lock) much data. A



182 Chapter 8 Conclusions and Future Work

major piece of future work in the space of RDF storage will be allowing multi-core,
multi-thread systems to create real speedup opportunities.

8.2.2.2 Distribution

While a multi-core extension of AHRI may make use of traditional techniques from the
world of distributed DBMSs, a truly distributed system is substantially more challenging.
Traditional distributed DBMSs rely on the assumption that network latency is relatively
insignificant: a reasonable assertion when relying on disk-backed storage, but very much
untrue in a memory-based environment: a typical 200-500µs round trip latency (Erling
and Mikhailov, 2008) is very large in such a system.

Distributing a memory store requires a reduction in network latency, which is achievable
using advanced hardware: network switches are the largest cause of latency in modern
networks (Ousterhout et al., 2010), and high-performance switches can substantially
reduce this latency. Expanding a memory-backed store to multiple systems and their
extra storage space is highly desirable, and with the use of such hardware, distributing
AHRI becomes a feasible and useful piece of future work. AHRI itself is perfectly suited
to acting as part of a distributed store. A similar approach to that used by the author
in Clustered TDB (described in Section 3.5.3) would be applicable.

8.3 Contributions of this Research

This thesis has yielded a variety of contributions, produced as steps on the road to
creating AHRI, the major aim of this work. The first of these steps was an investigation
into the behaviour of modern processors, with particular reference to the effects of
memory latency and branch misprediction on high performance software. This was
combined with a deep review of the structure of existing RDF datasets, including the
creation of a tool to produce detailed statistics over RDF data, and identify common
factors in those datasets.

Combined with some research into the behaviour of modern JVMs, relevant because
an increasing number of high performance systems run on top of virtual machines, the
knowledge gained from these investigations enabled the creation of AHRI and AJP. A de-
tailed evaluation showed that AHRI provides superior performance to competing struc-
tures, and offers the potential to substantially improve the performance of in-memory
RDF stores.



Chapter 8 Conclusions and Future Work 183

8.4 Final Remarks

AHRI, the RDF data structure described in this thesis, is designed to improve the
performance of RDF data stores. It was created using new insights into the structure
of RDF datasets, combined with a deep analysis of how RDF stores can fully leverage
the power of modern computers. AHRI is intended to break through the limitations of
existing data stores, effectively balancing find and iteration performance against space
consumption in an in-memory environment. Detailed evaluation of AHRI shows that it
achieves these goals.

The aim of this body of work has been to increase the practicality of using RDF data, par-
ticularly in interactive environments with a requirement for performant read/write/up-
date operations. The work in this thesis provides a foundation for further improvements
in RDF storage and query, with a rich set of future work described in this chapter. It is
hoped that ongoing work on providing the ability to update information in RDF stores,
while retaining high performance read operations, will provide the inspiration for a wide
variety of new applications to drive adoption of the Semantic Web.





Appendix A

Binary Chop Tests

This appendix contains the code for both the Java and C implementations for the tests
described in Section 4.1.

A.1 Java Implementation

Run using: java -server -Xmx2048M <filename>

TestClass {

size = 150000000;

iterations = 50000000;

step = 10;

[] cmparr;

[] arr1;

[] arr2;

/* arr1 is an array of sorted , randomly increasing integers

arr2 is filled with 1s. cmparr contains a pregenerated array

of random numbers to search for in these arrays.

Note that this implementation of binary chop does not complete early ,

so it will not finish after one comparison on the predictable data.

*/

TestClass () {

init ();

time;

time = System.currentTimeMillis ();

dosearch(arr2 ,cmparr ,iterations );

System.out.println(System.currentTimeMillis () - time);

time = System.currentTimeMillis ();

dosearch(arr1 ,cmparr ,iterations );

System.out.println(System.currentTimeMillis () - time);

}

185



186 Appendix A Binary Chop Tests

init() {

( l = 0; l < iterations;l++) {

}

incr = 0;

arr1 = [size];

( i = 0; i < size; i++) {

incr +=( )(Math.random ()* step);

arr1[i] = incr;

}

arr2 = [size];

( i = 0; i < size; i++) {

arr2[i] = 1;

}

cmparr = [iterations ];

( i = 0; i < iterations; i++) {

cmparr[i] = ( )(Math.random ()* arr1[arr1.length -1]);

}

}

dosearch( [] arr , [] cmparr , iterations) {

( i = 0; i < iterations;i++) {

max = size -1;

min = 0;

(min < max) {

pos = min +((max -min )/2);

(arr[pos] > cmparr[i]) {

max = pos;

} {

min = pos +1;

}

}

}

0;

}

main (String [] args) {

TestClass ();

}

}

Listing A.1: Java implementation of simple binary search

A.2 C Implementation

Compiled using: gcc -Wall -Werror -O3 -std=c99 <filename>

<stdio.h>

<time.h>

<stdlib.h>

SIZE 150000000

ITERATIONS 50000000



Appendix A Binary Chop Tests 187

STEP 10

IN_OTHER 0

* domalloc( size)

{

* mem = malloc(size);

(mem == NULL)

{

exit (0);

}

mem;

}

/* performs a binary chop on arr for each value in cmparr */

runarr( * restrict arr , * restrict cmparr) {

i;

clock_t starttime;

starttime = clock ();

(i = 0; i < ITERATIONS;i++) {

min = 0;

max = SIZE -1;

(min < max) {

pos = min +((max -min )/2);

// printf (" Pos: %d Min: %d Max: %d\n",pos , min ,max );

(arr[pos] > cmparr[i]) {

max = pos;

} {

min = pos +1;

}

}

}

printf("ms: %d\n",( )(( clock () - starttime )/( )( CLOCKS_PER_SEC /1000)));

0;

}

/* numbers is an array of sorted , randomly increasing integers

numbers2 is filled with 1s. cmparr contains a pregenerated array

of random numbers to search for in these arrays.

Note that this implementation of binary chop does not complete early ,

so it will not finish after one comparison on the predictable data.

*/

IN_OTHER ==0

main( argc , *argv [])

{

i;

* restrict numbers;

* restrict numbers2;

* restrict cmparr;

currnum = 0;

numbers = domalloc(SIZE * ( ));

numbers2 = domalloc(SIZE * ( ));

cmparr = domalloc(ITERATIONS * ( ));



188 Appendix A Binary Chop Tests

(i = 0; i < SIZE; i++) {

currnum += (rand ()/(( )RAND_MAX +1))* STEP;

numbers[i] = currnum;

numbers2[i] = 1;

}

(i = 0; i < ITERATIONS; i++) {

cmparr[i] = 1+( rand ()/((( )RAND_MAX +1))* numbers[SIZE -1]);

}

runarr(numbers2 ,cmparr );

runarr(numbers ,cmparr );

free(numbers );

free(numbers2 );

free(cmparr );

0;

}

Listing A.2: C implementation of simple binary search



Appendix B

Test Machine

A variety of small experiments were conducted through the course of this thesis. Ex-
cept where otherwise mentioned, these were performed on a machine with the following
specifications:

• Dual 1.8GHz AMD Opteron, 1MB L2 cache per core

• 8GB RAM

• Linux kernel 2.6.32 (64 bit)

• 64 bit Sun reference JVM (version 1.6.13)

• OProfile 0.9.4

189





Appendix C

RDF Dataset Statistics

C.1 DBpedia

C.1.1 Summary

Triple Count: 231661194
URI Count: 30218224
Average URI length: 52.93, Standard Deviation: 20.45
Average URI reuse: 20.97
Appeared as (ignoring literals):
S only: 1735317
P only: 1101
S and P: 38559
O only: 11794631
O and S: 16648616
P and O: 0
S, P and O: 0
O including literals: 48039661
Literal Count: 36245030
Average literal length: 76.72, Standard Deviation: 282.03
Average literal reuse: 1.69
Blank Node Count: 0
Average Blank Node reuse: 0.00

191



192 Appendix C RDF Dataset Statistics

C.1.2 Node appearances as S, P, O, SP, PO, OS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

E
n
tr

ie
s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.1: Node and pairing data for DBpedia

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.2: Cumulative node and pairing data for DBpedia



Appendix C RDF Dataset Statistics 193

Cardinality S P O SP PO OS
Total 18422492 39660 64688277 112753228 84943262 192062986
1-1 734198 12899 49741498 99958311 74386735 160322033
2-2 2326425 3515 7773391 4071109 4390289 25863273
3-3 87910 1852 2119364 2125134 1513971 4433129
4-4 11433732 1220 1011063 1613126 881030 1130500
5-5 229739 901 615796 862354 597213 179579
6-6 316280 735 462601 428145 430183 94019
7-7 59241 626 341414 339319 328748 21026
8-8 70952 555 274464 287173 261233 12164
9-9 39432 480 225395 233385 212285 2584

10-19 490919 3340 1073029 1334970 989297 4512
20-29 477096 1695 372922 584914 333453 105
30-39 433028 1124 184720 312555 164837 17
40-49 468415 862 109811 175099 98482 7
50-59 326108 655 72882 108358 65772 6
60-69 223578 483 51244 72750 46811 3
70-79 159799 451 37803 49486 34721 5
80-89 115875 350 28151 35472 26518 3
90-99 89577 351 22036 27210 20579 0

100-199 272325 1831 95504 97731 90062 13
200-299 40821 949 29111 20774 27622 7
300-399 12997 593 13227 7053 12645 1
400-499 5664 392 7787 3153 7322 0
500-599 3022 303 5033 1933 4602 0
600-699 1598 306 3483 1068 3184 0
700-799 930 245 2427 630 2256 0
800-899 688 156 1916 441 1837 0
900-999 469 136 1499 325 1418 0

1000-1099 4 3 8 1 10 0
1000-1999 1463 909 6001 1081 5795 0
2000-2999 147 383 1727 113 1768 0
3000-3999 38 211 875 34 812 0
4000-4999 10 126 486 9 460 0
5000-5999 10 89 320 10 298 0
6000-6999 1 81 228 1 185 0
7000-7999 1 49 154 1 119 0
continued on next page



194 Appendix C RDF Dataset Statistics

Cardinality S P O SP PO OS
8000-8999 0 64 137 0 113 0
9000-9999 0 47 81 0 69 0

10000-19999 0 273 353 0 303 0
20000-29999 0 111 140 0 94 0
30000-39999 0 80 61 0 45 0
40000-49999 0 35 41 0 20 0
50000-59999 0 29 13 0 14 0
60000-69999 0 17 15 0 18 0
70000-79999 0 17 11 0 5 0
80000-89999 0 17 8 0 1 0
90000-99999 0 7 10 0 3 0

100000-199999 0 61 24 0 14 0
200000-299999 0 13 2 0 0 0
300000-399999 0 3 3 0 4 0
400000-499999 0 1 3 0 3 0
500000-599999 0 7 3 0 2 0
600000-699999 0 1 0 0 0 0
700000-799999 0 1 0 0 0 0
800000-899999 0 2 0 0 0 0

1000000-1999999 0 4 1 0 1 0
2000000-2999999 0 1 0 0 0 0
3000000-3999999 0 2 0 0 0 0
4000000-4999999 0 1 0 0 0 0
5000000-5999999 0 1 0 0 0 0
6000000-6999999 0 1 0 0 0 0
7000000-7999999 0 4 1 0 1 0
9000000-9999999 0 2 0 0 0 0

10000000-19999999 0 1 0 0 0 0
90000000-99999999 0 1 0 0 0 0

Table C.1: Node appearances as S, P, O, SP, PO, OS for DBpedia



Appendix C RDF Dataset Statistics 195

C.1.3 Aggregate Node Reuse

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

#
N

o
d
e
s

#Times reused

URI
Literal

Blank Node

Figure C.3: Node reuse data for DBpedia

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure C.4: Cumulative node reuse data for DBpedia



196 Appendix C RDF Dataset Statistics

#Times reused URI Literal Blank Node
Total 30218224 36245030 0
1-1 8454355 30514732 0
2-2 3738198 3915583 0
3-3 1920471 934156 0
4-4 412706 322932 0
5-5 9810425 145747 0
6-6 739064 95783 0
7-7 518101 50710 0
8-8 253417 36805 0
9-9 203877 25931 0

10-19 887449 104545 0
20-29 553293 34578 0
30-39 473485 18380 0
40-49 451994 10673 0
50-59 399317 7045 0
60-69 276840 4696 0
70-79 207441 3370 0
80-89 157333 2250 0
90-99 120778 1829 0

100-199 446536 7928 0
200-299 92856 2361 0
300-399 36324 1109 0
400-499 18705 768 0
500-599 10831 581 0
600-699 7075 425 0
700-799 4826 283 0
800-899 3497 216 0
900-999 2591 186 0

1000-1099 26 0 0
1000-1999 9910 692 0
2000-2999 2324 244 0
3000-3999 1108 123 0
4000-4999 642 65 0
5000-5999 384 40 0
6000-6999 302 39 0
7000-7999 194 26 0

continued on next page



Appendix C RDF Dataset Statistics 197

#Times reused URI Literal Blank Node
8000-8999 192 23 0
9000-9999 113 17 0

10000-19999 582 62 0
20000-29999 213 37 0
30000-39999 124 21 0
40000-49999 56 17 0
50000-59999 39 5 0
60000-69999 27 6 0
70000-79999 24 4 0
80000-89999 25 0 0
90000-99999 15 2 0

100000-199999 81 4 0
200000-299999 14 1 0
300000-399999 6 0 0
400000-499999 4 0 0
500000-599999 10 0 0
600000-699999 1 0 0
700000-799999 1 0 0
800000-899999 2 0 0

1000000-1999999 5 0 0
2000000-2999999 1 0 0
3000000-3999999 2 0 0
4000000-4999999 1 0 0
5000000-5999999 1 0 0
6000000-6999999 1 0 0
7000000-7999999 5 0 0
9000000-9999999 2 0 0

10000000-19999999 1 0 0
90000000-99999999 1 0 0

Table C.2: Node reuse data for DBpedia



198 Appendix C RDF Dataset Statistics

C.1.4 Node lengths

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1  10  100  1000  10000  100000  1e+06

#
N

o
d
e
s

Node Length

URI
Literal

Figure C.5: Node length data for DBpedia

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 1  10  100  1000  10000  100000  1e+06

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure C.6: Cumulative node length data for DBpedia



Appendix C RDF Dataset Statistics 199

Node Length URI Literal
Total 30218224 36245029
1-1 72 23
2-2 1855 2841
3-3 7132 38834
4-4 9682 125933
5-5 10573 268445
6-6 9322 889580
7-7 9103 3650586
8-8 7736 6631679
9-9 6853 8503520

10-19 70046 6049375
20-29 667438 3127136
30-39 4469975 1493856
40-49 11058969 533083
50-59 6582427 272552
60-69 3431096 203984
70-79 1678006 128919
80-89 775803 115052
90-99 467434 95416

100-199 910083 688230
200-299 38465 541664
300-399 4073 679607
400-499 1011 1019534
500-599 362 201570
600-699 276 157567
700-799 179 128169
800-899 80 103969
900-999 53 85415

1000-1099 1 778
1000-1999 118 379846
2000-2999 1 87226
3000-3999 0 23927
4000-4999 0 7901
5000-5999 0 3145
6000-6999 0 2407
7000-7999 0 1471

continued on next page



200 Appendix C RDF Dataset Statistics

Node Length URI Literal
8000-8999 0 533
9000-9999 0 326

10000-19999 0 749
20000-29999 0 115
30000-39999 0 34
40000-49999 0 17
50000-59999 0 3
60000-69999 0 6
70000-79999 0 3
90000-99999 0 2

100000-199999 0 1

Table C.3: Node length data for DBpedia

C.2 UniProt

C.2.1 Summary

Triple Count: 2809173894
URI Count: 391273031
Average URI length: 29.08, Standard Deviation: 13.19
Average URI reuse: 18.98
Appeared as (ignoring literals):
S only: 101791597
P only: 104
S and P: 0
O only: 39637426
O and S: 249843881
P and O: 23
S, P and O: 0
O including literals: 93843528
Literal Count: 54206102
Average literal length: 158.32, Standard Deviation: 301.96
Average literal reuse: 18.45
Blank Node Count: 0
Average Blank Node reuse: 0.00



Appendix C RDF Dataset Statistics 201

C.2.2 Node appearances as S, P, O, SP, PO, OS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

E
n
tr

ie
s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.7: Node and pairing data for UniProt

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 1  10  100  1000  10000 100000 1e+06  1e+07  1e+08  1e+09

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.8: Cumulative node and pairing data for UniProt



202 Appendix C RDF Dataset Statistics

Cardinality S P O SP PO OS
Total 351635478 127 343687432 2151619560 591661013 2734351818
1-1 39749143 0 122422328 1822170403 470540556 2678549398
2-2 55590683 0 117036507 263473659 41731214 36782765
3-3 16523708 0 27114367 37550409 38137671 19019654
4-4 11430341 0 36518018 5194729 17976442 1
5-5 57528465 0 9400196 3206989 5296608 0
6-6 60388594 0 7733445 2982967 4789474 0
7-7 4237137 0 4443999 2370572 2562360 0
8-8 6295105 0 4032765 1504296 1797058 0
9-9 9511368 0 3219638 1436581 1462460 0

10-19 46805887 1 9085318 7749391 5252901 0
20-29 37557316 1 1516494 2304913 1082105 0
30-39 3034431 0 432044 622738 286698 0
40-49 1622760 0 157085 537959 146500 0
50-59 627111 0 90547 112841 93396 0
60-69 340188 0 64624 216317 78020 0
70-79 163815 0 51958 29945 45870 0
80-89 46495 0 38348 38188 34461 0
90-99 32414 0 30531 60174 30041 0

100-199 113481 1 143728 21460 141586 0
200-299 32346 1 53746 30725 55520 0
300-399 1511 1 19119 1273 20783 0
400-499 661 2 11004 573 12497 0
500-599 389 1 7632 366 9208 0
600-699 272 1 5914 255 7073 0
700-799 167 0 4419 156 5510 0
800-899 112 1 3538 108 4466 0
900-999 97 0 2815 97 3365 0

1000-1099 1 0 42 1 39 0
1000-1999 522 8 15570 519 20459 0
2000-2999 350 1 7177 350 9697 0
3000-3999 233 2 5196 233 5356 0
4000-4999 205 4 3474 203 3687 0
5000-5999 85 1 2218 85 2617 0
6000-6999 30 0 1377 30 1652 0
7000-7999 19 1 1028 19 1217 0
continued on next page



Appendix C RDF Dataset Statistics 203

Cardinality S P O SP PO OS
8000-8999 6 1 841 6 948 0
9000-9999 6 0 708 6 807 0

10000-19999 16 5 3669 16 4725 0
20000-29999 1 2 1904 1 2140 0
30000-39999 2 3 995 2 912 0
40000-49999 2 5 669 2 590 0
50000-59999 0 1 448 0 343 0
60000-69999 2 2 215 2 293 0
70000-79999 0 1 184 0 241 0
80000-89999 0 0 193 0 219 0
90000-99999 0 1 139 0 118 0

100000-199999 1 1 684 1 570 0
200000-299999 0 8 188 0 178 0
300000-399999 0 1 94 0 90 0
400000-499999 0 2 61 0 58 0
500000-599999 0 2 41 0 35 0
600000-699999 0 3 23 0 17 0
700000-799999 0 3 15 0 19 0
800000-899999 0 0 12 0 9 0
900000-999999 0 0 10 0 10 0

1000000-1999999 0 9 62 0 54 0
2000000-2999999 0 0 11 0 12 0
3000000-3999999 0 1 9 0 8 0
4000000-4999999 0 0 5 0 4 0
5000000-5999999 0 2 3 0 3 0
6000000-6999999 0 1 4 0 6 0
7000000-7999999 0 4 5 0 5 0
8000000-8999999 0 1 1 0 3 0
9000000-9999999 0 2 3 0 3 0

10000000-19999999 0 12 15 0 13 0
20000000-29999999 0 3 3 0 5 0
30000000-39999999 0 7 4 0 3 0
40000000-49999999 0 1 1 0 1 0
50000000-59999999 0 1 1 0 1 0
60000000-69999999 0 4 0 0 0 0
80000000-89999999 0 0 1 0 1 0
90000000-99999999 0 1 0 0 1 0
continued on next page



204 Appendix C RDF Dataset Statistics

Cardinality S P O SP PO OS
100000000-199999999 0 6 2 0 1 0
200000000-299999999 0 3 0 0 0 0
400000000-499999999 0 1 0 0 0 0

Table C.4: Node appearances as S, P, O, SP, PO, OS for UniProt

C.2.3 Aggregate Node Reuse

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

#
N

o
d
e
s

#Times reused

URI
Literal

Blank Node

Figure C.9: Node reuse data for UniProt



Appendix C RDF Dataset Statistics 205

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure C.10: Cumulative node reuse data for UniProt

#Times reused URI Literal Blank Node
Total 391273031 54206102 0
1-1 30238413 18507119 0
2-2 11838128 11128387 0
3-3 56231643 4545853 0
4-4 43321078 14607056 0
5-5 34746557 3650391 0
6-6 51788561 322830 0
7-7 10446355 296079 0
8-8 8530234 100995 0
9-9 9769873 89455 0

10-19 81829719 448770 0
20-29 41641375 151686 0
30-39 4324233 73589 0
40-49 2703065 43194 0
50-59 1649321 29750 0
60-69 919664 21900 0
70-79 568046 16761 0
80-89 202983 13348 0

continued on next page



206 Appendix C RDF Dataset Statistics

#Times reused URI Literal Blank Node
90-99 103007 11801 0

100-199 282185 69325 0
200-299 68354 33570 0
300-399 16432 8437 0
400-499 8486 5091 0
500-599 5708 3421 0
600-699 4098 2622 0
700-799 2975 1920 0
800-899 2260 1518 0
900-999 1768 1232 0

1000-1099 10 15 0
1000-1999 9527 6562 0
2000-2999 4173 2967 0
3000-3999 3154 2071 0
4000-4999 2110 1377 0
5000-5999 1402 906 0
6000-6999 890 591 0
7000-7999 714 408 0
8000-8999 590 371 0
9000-9999 466 311 0

10000-19999 2223 1580 0
20000-29999 1091 819 0
30000-39999 720 283 0
40000-49999 430 243 0
50000-59999 236 210 0
60000-69999 135 84 0
70000-79999 77 109 0
80000-89999 53 140 0
90000-99999 47 94 0

100000-199999 196 490 0
200000-299999 69 128 0
300000-399999 39 56 0
400000-499999 20 41 0
500000-599999 14 28 0
600000-699999 12 13 0
700000-799999 8 9 0
800000-899999 5 8 0
continued on next page



Appendix C RDF Dataset Statistics 207

#Times reused URI Literal Blank Node
900000-999999 3 7 0

1000000-1999999 19 49 0
2000000-2999999 6 7 0
3000000-3999999 5 4 0
4000000-4999999 0 5 0
5000000-5999999 0 1 0
6000000-6999999 1 2 0
7000000-7999999 7 1 0
8000000-8999999 2 0 0
9000000-9999999 2 3 0

10000000-19999999 19 5 0
20000000-29999999 8 1 0
30000000-39999999 7 1 0
40000000-49999999 1 1 0
50000000-59999999 2 0 0
60000000-69999999 4 0 0
70000000-79999999 1 0 0
90000000-99999999 1 0 0

100000000-199999999 7 1 0
200000000-299999999 3 0 0
400000000-499999999 1 0 0

Table C.5: Node reuse data for UniProt



208 Appendix C RDF Dataset Statistics

C.2.4 Node lengths

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 1  10  100  1000  10000  100000

#
N

o
d
e
s

Node Length

URI
Literal

Figure C.11: Node length data for UniProt

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1  10  100  1000  10000  100000

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure C.12: Cumulative node length data for UniProt



Appendix C RDF Dataset Statistics 209

Node Length URI Literal
Total 391273031 54206101
1-1 0 64
2-2 0 2190
3-3 0 31265
4-4 0 191842
5-5 0 375910
6-6 0 596624
7-7 0 1031449
8-8 0 1193425
9-9 0 2101651

10-19 190439573 20780878
20-29 124 1672825
30-39 63918056 1560708
40-49 131036014 1207753
50-59 5695675 750303
60-69 161304 701346
70-79 7430 762338
80-89 8280 710313
90-99 2293 684261

100-199 4265 5954322
200-299 17 4616940
300-399 0 3200410
400-499 0 1831947
500-599 0 1203891
600-699 0 696823
700-799 0 473241
800-899 0 351584
900-999 0 278286

1000-1099 0 2449
1000-1999 0 1090341
2000-2999 0 110266
3000-3999 0 23946
4000-4999 0 8578
5000-5999 0 4627
6000-6999 0 1245
7000-7999 0 811

continued on next page



210 Appendix C RDF Dataset Statistics

Node Length URI Literal
8000-8999 0 383
9000-9999 0 282

10000-19999 0 372
20000-29999 0 141
30000-39999 0 69
40000-49999 0 2

Table C.6: Node length data for UniProt

C.3 CIA World Factbook

C.3.1 Summary

Triple Count: 161489
URI Count: 30338
Average URI length: 48.41, Standard Deviation: 11.24
Average URI reuse: 13.87
Appeared as (ignoring literals):
S only: 9963
P only: 87
S and P: 0
O only: 28
O and S: 20186
P and O: 74
S, P and O: 0
O including literals: 22311
Literal Count: 22283
Average literal length: 42.96, Standard Deviation: 131.07
Average literal reuse: 2.86
Blank Node Count: 0
Average Blank Node reuse: 0.00



Appendix C RDF Dataset Statistics 211

C.3.2 Node appearances as S, P, O, SP, PO, OS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000  100000

E
n
tr

ie
s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.13: Node and pairing data for CIA World Factbook

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 1  10  100  1000  10000  100000

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.14: Cumulative node and pairing data for CIA World Factbook



212 Appendix C RDF Dataset Statistics

Cardinality S P O SP PO OS
Total 30149 161 42571 127531 52745 159346
1-1 0 1 33095 118222 46517 158100
2-2 12476 0 6125 5700 2878 923
3-3 5463 0 729 708 851 128
4-4 1152 3 633 516 426 44
5-5 5734 0 218 746 254 44
6-6 5058 0 234 340 198 47
7-7 0 0 131 240 144 30
8-8 0 0 120 196 125 10
9-9 0 1 82 168 112 12

10-19 0 1 380 429 419 8
20-29 0 1 176 55 174 0
30-39 22 0 111 59 114 0
40-49 7 0 111 77 186 0
50-59 0 1 135 33 91 0
60-69 2 2 47 21 33 0
70-79 3 1 26 14 19 0
80-89 0 1 11 2 9 0
90-99 5 3 14 1 9 0

100-199 54 24 107 3 110 0
200-299 133 80 43 1 44 0
300-399 36 3 17 0 8 0
400-499 3 2 2 0 1 0
500-599 1 1 5 0 6 0
600-699 0 3 1 0 1 0
700-799 0 0 4 0 3 0
800-899 0 2 2 0 2 0
900-999 0 2 0 0 0 0

1000-1999 0 14 6 0 7 0
2000-2999 0 6 4 0 2 0
3000-3999 0 2 0 0 0 0
5000-5999 0 0 1 0 1 0
7000-7999 0 1 0 0 0 0
8000-8999 0 1 0 0 0 0
9000-9999 0 4 1 0 1 0

30000-39999 0 1 0 0 0 0



Appendix C RDF Dataset Statistics 213

Table C.7: Node appearances as S, P, O, SP, PO, OS for CIA World Factbook



214 Appendix C RDF Dataset Statistics

C.3.3 Aggregate Node Reuse

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1  10  100  1000  10000  100000

#
N

o
d
e
s

#Times reused

URI
Literal

Blank Node

Figure C.15: Node reuse data for CIA World Factbook

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1  10  100  1000  10000  100000

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure C.16: Cumulative node reuse data for CIA World Factbook



Appendix C RDF Dataset Statistics 215

#Times reused URI Literal Blank Node
Total 30338 22283 0
1-1 1 15830 0
2-2 0 4405 0
3-3 10723 562 0
4-4 5562 542 0
5-5 6883 163 0
6-6 5991 173 0
7-7 53 80 0
8-8 55 83 0
9-9 52 42 0

10-19 248 181 0
20-29 106 68 0
30-39 68 39 0
40-49 40 23 0
50-59 40 15 0
60-69 23 10 0
70-79 15 6 0
80-89 10 0 0
90-99 8 3 0

100-199 110 23 0
200-299 142 11 0
300-399 109 14 0
400-499 39 2 0
500-599 10 1 0
600-699 4 0 0
700-799 4 2 0
800-899 3 1 0

1000-1999 21 1 0
2000-2999 7 3 0
3000-3999 2 0 0
5000-5999 1 0 0
7000-7999 1 0 0
8000-8999 1 0 0
9000-9999 5 0 0

30000-39999 1 0 0

Table C.8: Node reuse data for CIA World Factbook



216 Appendix C RDF Dataset Statistics

C.3.4 Node lengths

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1  10  100  1000  10000

#
N

o
d
e
s

Node Length

URI
Literal

Figure C.17: Node length data for CIA World Factbook

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1  10  100  1000  10000

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure C.18: Cumulative node length data for CIA World Factbook



Appendix C RDF Dataset Statistics 217

Node Length URI Literal
Total 30338 22282
1-1 0 11
2-2 0 116
3-3 0 1107
4-4 0 2344
5-5 0 2119
6-6 0 1586
7-7 0 1497
8-8 0 1170
9-9 0 1162

10-19 1 4397
20-29 214 1287
30-39 0 837
40-49 26689 503
50-59 1186 506
60-69 1299 1162
70-79 529 292
80-89 195 219
90-99 86 201

100-199 129 949
200-299 5 265
300-399 1 112
400-499 1 81
500-599 1 82
600-699 0 44
700-799 2 54
800-899 0 34
900-999 0 28

1000-1099 0 2
1000-1999 0 111
2000-2999 0 4

Table C.9: Node length data for CIA World Factbook



218 Appendix C RDF Dataset Statistics

C.4 Jamendo Music

C.4.1 Summary

Triple Count: 1047950
URI Count: 410929
Average URI length: 48.10, Standard Deviation: 14.35
Average URI reuse: 7.04
Appeared as (ignoring literals):
S only: 45634
P only: 25
S and P: 0
O only: 74979
O and S: 290291
P and O: 0
S, P and O: 0
O including literals: 148663
Literal Count: 73684
Average literal length: 115.42, Standard Deviation: 412.85
Average literal reuse: 3.42
Blank Node Count: 0
Average Blank Node reuse: 0.00



Appendix C RDF Dataset Statistics 219

C.4.2 Node appearances as S, P, O, SP, PO, OS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100  1000  10000  100000  1e+06

E
n
tr

ie
s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.19: Node and pairing data for Jamendo Music Data

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1  10  100  1000  10000  100000  1e+06

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.20: Cumulative node and pairing data for Jamendo Music Data



220 Appendix C RDF Dataset Statistics

Cardinality S P O SP PO OS
Total 335925 25 438954 865837 485446 1042078
1-1 36903 0 384903 797072 477630 1036206
2-2 198463 0 50397 46780 4229 5872
3-3 45774 0 1266 1029 1207 0
4-4 117 0 587 7029 573 0
5-5 368 0 335 1258 337 0
6-6 47305 0 198 6737 197 0
7-7 715 0 140 806 140 0
8-8 237 0 115 753 122 0
9-9 116 0 104 612 101 0

10-19 594 0 372 2984 374 0
20-29 2653 0 137 442 137 0
30-39 1730 0 96 180 95 0
40-49 526 0 54 82 54 0
50-59 208 0 31 68 31 0
60-69 112 0 25 3 25 0
70-79 84 0 16 1 17 0
80-89 15 0 12 0 11 0
90-99 4 0 12 1 12 0

100-199 1 0 71 0 71 0
200-299 0 0 14 0 14 0
300-399 0 0 13 0 14 0
400-499 0 1 6 0 5 0
500-599 0 0 2 0 2 0
600-699 0 0 3 0 3 0
700-799 0 0 2 0 2 0
800-899 0 1 1 0 1 0
900-999 0 0 3 0 3 0

1000-1999 0 0 7 0 7 0
2000-2999 0 1 7 0 7 0
3000-3999 0 3 4 0 4 0
4000-4999 0 0 3 0 3 0
5000-5999 0 3 4 0 4 0
7000-7999 0 0 1 0 1 0
8000-8999 0 2 1 0 1 0
9000-9999 0 1 1 0 1 0
continued on next page



Appendix C RDF Dataset Statistics 221

Cardinality S P O SP PO OS
10000-19999 0 0 5 0 5 0
20000-29999 0 1 0 0 0 0
40000-49999 0 7 3 0 3 0
50000-59999 0 2 2 0 2 0

100000-199999 0 2 1 0 1 0
200000-299999 0 1 0 0 0 0

Table C.10: Node appearances as S, P, O, SP, PO, OS for Jamendo Music Data

C.4.3 Aggregate Node Reuse

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1  10  100  1000  10000  100000  1e+06

#
N

o
d
e
s

#Times reused

URI
Literal

Blank Node

Figure C.21: Node reuse data for Jamendo Music Data



222 Appendix C RDF Dataset Statistics

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 1  10  100  1000  10000  100000  1e+06

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure C.22: Cumulative node reuse data for Jamendo Music Data

#Times reused URI Literal Blank Node
Total 410929 73684 0
1-1 111515 69938 0
2-2 8920 2857 0
3-3 186421 478 0
4-4 47002 152 0
5-5 662 71 0
6-6 685 37 0
7-7 1811 23 0
8-8 46101 22 0
9-9 553 20 0

10-19 1212 37 0
20-29 2699 9 0
30-39 2004 6 0
40-49 642 3 0
50-59 251 0 0
60-69 144 2 0
70-79 103 0 0
80-89 35 1 0
90-99 15 0 0

continued on next page



Appendix C RDF Dataset Statistics 223

#Times reused URI Literal Blank Node
100-199 69 5 0
200-299 13 1 0
300-399 11 2 0
400-499 6 1 0
500-599 1 1 0
600-699 3 0 0
700-799 1 1 0
800-899 2 0 0
900-999 2 1 0

1000-1999 4 3 0
2000-2999 6 2 0
3000-3999 5 2 0
4000-4999 1 2 0
5000-5999 4 3 0
7000-7999 1 0 0
8000-8999 3 0 0
9000-9999 2 0 0

10000-19999 3 2 0
20000-29999 1 0 0
40000-49999 10 0 0
50000-59999 2 2 0

100000-199999 3 0 0
200000-299999 1 0 0

Table C.11: Node reuse data for Jamendo Music Data



224 Appendix C RDF Dataset Statistics

C.4.4 Node lengths

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1  10  100  1000  10000  100000

#
N

o
d
e
s

Node Length

URI
Literal

Figure C.23: Node length data for Jamendo Music Data

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 1  10  100  1000  10000  100000

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure C.24: Cumulative node length data for Jamendo Music Data



Appendix C RDF Dataset Statistics 225

Node Length URI Literal
Total 410929 73684
1-1 0 52
2-2 0 361
3-3 0 906
4-4 0 1907
5-5 0 2667
6-6 0 3264
7-7 1 3680
8-8 1 3914
9-9 0 3839

10-19 116 31142
20-29 1467 8891
30-39 129084 3018
40-49 135422 1099
50-59 110055 516
60-69 72 221
70-79 69 124
80-89 23105 84
90-99 11536 90

100-199 1 514
200-299 0 428
300-399 0 498
400-499 0 553
500-599 0 684
600-699 0 668
700-799 0 678
800-899 0 643
900-999 0 552

1000-1099 0 4
1000-1999 0 2178
2000-2999 0 359
3000-3999 0 84
4000-4999 0 31
5000-5999 0 12
6000-6999 0 4
7000-7999 0 5

continued on next page



226 Appendix C RDF Dataset Statistics

Node Length URI Literal
8000-8999 0 7
9000-9999 0 1

10000-19999 0 5
30000-39999 0 1

Table C.12: Node length data for Jamendo Music Data

C.5 GeoSpecies

C.5.1 Summary

Triple Count: 2076380
URI Count: 185147
Average URI length: 48.44, Standard Deviation: 16.94
Average URI reuse: 30.80
Appeared as (ignoring literals):
S only: 619
P only: 173
S and P: 0
O only: 86644
O and S: 97710
P and O: 1
S, P and O: 0
O including literals: 281554
Literal Count: 194910
Average literal length: 33.85, Standard Deviation: 19.36
Average literal reuse: 2.70
Blank Node Count: 1
Average Blank Node reuse: 3.00



Appendix C RDF Dataset Statistics 227

C.5.2 Node appearances as S, P, O, SP, PO, OS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100  1000  10000  100000  1e+06

E
n
tr

ie
s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.25: Node and pairing data for GeoSpecies

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 1  10  100  1000  10000  100000  1e+06

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.26: Cumulative node and pairing data for GeoSpecies



228 Appendix C RDF Dataset Statistics

Cardinality S P O SP PO OS
Total 98330 174 379266 1306860 661452 1495863
1-1 30 11 246437 1186577 528035 1044944
2-2 35923 12 34904 43459 93688 353634
3-3 677 3 10175 35506 12888 65002
4-4 3262 0 50406 16932 7554 32268
5-5 378 1 13904 15149 9916 0
6-6 4 5 2068 3366 2014 15
7-7 1 2 474 350 377 0
8-8 9 5 290 346 326 0
9-9 0 0 2894 189 285 0

10-19 37489 11 13945 931 1584 0
20-29 589 7 331 617 834 0
30-39 5478 25 161 563 655 0
40-49 9895 5 109 547 611 0
50-59 1537 7 80 610 657 0
60-69 190 2 53 836 882 0
70-79 55 3 49 608 637 0
80-89 35 0 2564 18 38 0
90-99 25 0 37 14 36 0

100-199 2641 1 145 54 124 0
200-299 12 3 36 7 24 0
300-399 5 2 21 6 22 0
400-499 8 2 16 9 22 0
500-599 4 1 9 9 18 0
600-699 1 0 7 13 22 0
700-799 3 0 7 17 17 0
800-899 0 0 7 6 10 0
900-999 0 0 0 9 9 0

1000-1999 0 5 17 85 98 0
2000-2999 73 0 78 14 20 0
3000-3999 0 2 5 4 9 0
4000-4999 0 2 6 2 8 0
5000-5999 0 0 4 1 5 0
6000-6999 0 1 1 0 1 0
7000-7999 0 1 1 0 1 0
8000-8999 0 3 2 0 2 0
continued on next page



Appendix C RDF Dataset Statistics 229

Cardinality S P O SP PO OS
9000-9999 0 1 0 1 1 0

10000-19999 3 23 10 5 12 0
20000-29999 3 4 4 0 1 0
30000-39999 0 8 6 0 7 0
40000-49999 0 1 1 0 0 0
50000-59999 0 5 2 0 2 0
60000-69999 0 4 0 0 0 0
70000-79999 0 1 0 0 0 0
80000-89999 0 2 0 0 0 0
90000-99999 0 1 0 0 0 0

100000-199999 0 2 0 0 0 0

Table C.13: Node appearances as S, P, O, SP, PO, OS for GeoSpecies

C.5.3 Aggregate Node Reuse

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 1  10  100  1000  10000  100000  1e+06

#
N

o
d
e
s

#Times reused

URI
Literal

Blank Node

Figure C.27: Node reuse data for GeoSpecies



230 Appendix C RDF Dataset Statistics

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 1  10  100  1000  10000  100000  1e+06

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure C.28: Cumulative node reuse data for GeoSpecies

#Times reused URI Literal Blank Node
Total 185147 194910 1
1-1 65405 166746 0
2-2 12834 5288 0
3-3 14515 1432 1
4-4 21502 8539 0
5-5 9340 10748 0
6-6 3257 314 0
7-7 14 229 0
8-8 10 185 0
9-9 31 146 0

10-19 8967 668 0
20-29 28771 200 0
30-39 625 91 0
40-49 5044 65 0
50-59 8003 45 0
60-69 3243 34 0
70-79 402 25 0
80-89 80 14 0

continued on next page



Appendix C RDF Dataset Statistics 231

#Times reused URI Literal Blank Node
90-99 47 18 0

100-199 392 61 0
200-299 2399 12 0
300-399 27 9 0
400-499 25 7 0
500-599 11 5 0
600-699 3 5 0
700-799 6 1 0
800-899 3 2 0
900-999 3 0 0

1000-1999 18 6 0
2000-2999 7 3 0
3000-3999 5 2 0
4000-4999 5 3 0
5000-5999 74 2 0
6000-6999 2 0 0
7000-7999 1 1 0
8000-8999 5 0 0
9000-9999 1 0 0

10000-19999 29 1 0
20000-29999 5 0 0
30000-39999 15 2 0
40000-49999 5 0 0
50000-59999 6 1 0
60000-69999 4 0 0
70000-79999 1 0 0
80000-89999 2 0 0
90000-99999 1 0 0

100000-199999 2 0 0

Table C.14: Node reuse data for GeoSpecies



232 Appendix C RDF Dataset Statistics

C.5.4 Node lengths

 0

 5000

 10000

 15000

 20000

 25000

 1  10  100  1000

#
N

o
d
e
s

Node Length

URI
Literal

Figure C.29: Node length data for GeoSpecies

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1  10  100  1000

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure C.30: Cumulative node length data for GeoSpecies



Appendix C RDF Dataset Statistics 233

Node Length URI Literal
Total 185147 194910
1-1 0 4
2-2 0 9
3-3 0 67
4-4 0 1030
5-5 0 7686
6-6 0 10516
7-7 0 2754
8-8 0 5019
9-9 0 3462

10-19 5 30642
20-29 1166 15085
30-39 71673 40885
40-49 61706 27305
50-59 12420 33403
60-69 2533 12845
70-79 9781 3212
80-89 25839 742
90-99 11 172

100-199 13 71
200-299 0 1

Table C.15: Node length data for GeoSpecies

C.6 LinkedCT

C.6.1 Summary

Triple Count: 9804652
URI Count: 1169985
Average URI length: 49.94, Standard Deviation: 5.75
Average URI reuse: 19.31
Appeared as (ignoring literals):
S only: 179319
P only: 80
S and P: 0
O only: 188015
O and S: 802561
P and O: 10



234 Appendix C RDF Dataset Statistics

S, P and O: 0
O including literals: 2982612
Literal Count: 2794597
Average literal length: 133.29, Standard Deviation: 532.98
Average literal reuse: 2.44
Blank Node Count: 0
Average Blank Node reuse: 0.00

C.6.2 Node appearances as S, P, O, SP, PO, OS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100  1000  10000  100000  1e+06

E
n
tr

ie
s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.31: Node and pairing data for LinkedCT



Appendix C RDF Dataset Statistics 235

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1  10  100  1000  10000  100000  1e+06

T
ri
p
le

s

Individual Cardinality

S
P
O

SP
PO
OS

Figure C.32: Cumulative node and pairing data for LinkedCT

Cardinality S P O SP PO OS
Total 981880 90 3785183 8702452 4523234 9581290
1-1 159 0 3274987 8507939 4237829 9372840
2-2 0 0 254045 94064 144581 194426
3-3 0 0 81250 37208 41866 13136
4-4 89845 0 35755 19399 22113 888
5-5 154920 0 16082 10246 13301 0
6-6 339532 0 15604 5822 9121 0
7-7 146070 0 37811 3968 6759 0
8-8 97334 0 13777 2935 5350 0
9-9 67890 0 6778 2306 4087 0

10-19 5511 0 29100 9281 18556 0
20-29 753 0 6859 2924 6265 0
30-39 20690 0 3322 1505 3258 0
40-49 37318 0 1948 1053 2047 0
50-59 10935 0 1322 715 1419 0
60-69 3591 0 960 535 1041 0
70-79 1863 0 702 451 773 0
80-89 1238 0 520 312 558 0
90-99 806 0 448 274 451 0

continued on next page



236 Appendix C RDF Dataset Statistics

Cardinality S P O SP PO OS
100-199 2665 0 2220 1031 2081 0
200-299 504 0 644 298 632 0
300-399 110 0 248 72 261 0
400-499 54 0 151 39 168 0
500-599 29 0 87 23 102 0
600-699 17 0 66 10 94 0
700-799 11 0 69 15 80 0
800-899 14 0 46 8 59 0
900-999 5 0 30 4 50 0

1000-1999 15 1 0 14 147 0
1000-1099 0 0 1 0 0 0
1000-1999 0 0 148 0 0 0
2000-2999 1 2 68 1 62 0
3000-3999 0 3 33 0 26 0
4000-4999 0 0 19 0 15 0
5000-5999 0 2 14 0 11 0
6000-6999 0 1 3 0 1 0
7000-7999 0 2 7 0 6 0
8000-8999 0 0 4 0 4 0
9000-9999 0 2 8 0 7 0

10000-19999 0 5 20 0 24 0
20000-29999 0 3 5 0 7 0
30000-39999 0 1 4 0 4 0
40000-49999 0 4 1 0 2 0
50000-59999 0 3 2 0 1 0
60000-69999 0 10 4 0 5 0
70000-79999 0 11 2 0 3 0
80000-89999 0 17 3 0 2 0
90000-99999 0 1 0 0 0 0

100000-199999 0 13 4 0 4 0
200000-299999 0 3 1 0 0 0
300000-399999 0 3 1 0 1 0
700000-799999 0 1 0 0 0 0
900000-999999 0 2 0 0 0 0

Table C.16: Node appearances as S, P, O, SP, PO, OS for LinkedCT



Appendix C RDF Dataset Statistics 237

C.6.3 Aggregate Node Reuse

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 1  10  100  1000  10000  100000  1e+06  1e+07

#
N

o
d
e
s

#Times reused

URI
Literal

Blank Node

Figure C.33: Node reuse data for LinkedCT

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 1  10  100  1000  10000  100000  1e+06  1e+07

C
u
m

u
la

tiv
e
 N

o
d
e
 A

p
p
e
a
ra

n
ce

s

#Times reused

URI
Literal

Blank Node

Figure C.34: Cumulative node reuse data for LinkedCT



238 Appendix C RDF Dataset Statistics

#Times reused URI Literal Blank Node
Total 1169985 2794597 0
1-1 178740 2410524 0
2-2 2171 195527 0
3-3 1031 60756 0
4-4 1318 24973 0
5-5 114789 9666 0
6-6 123971 11054 0
7-7 329675 34553 0
8-8 137704 11124 0
9-9 85809 4672 0

10-19 101529 20121 0
20-29 6429 3912 0
30-39 22863 1868 0
40-49 38453 1130 0
50-59 11614 774 0
60-69 4053 563 0
70-79 2239 396 0
80-89 1486 305 0
90-99 1026 242 0

100-199 3691 1274 0
200-299 784 382 0
300-399 199 162 0
400-499 98 108 0
500-599 58 60 0
600-699 36 46 0
700-799 36 43 0
800-899 28 34 0
900-999 11 24 0

1000-1999 39 0 0
1000-1099 0 1 0
1000-1999 0 125 0
2000-2999 10 61 0
3000-3999 4 31 0
4000-4999 0 19 0
5000-5999 4 12 0
6000-6999 1 3 0

continued on next page



Appendix C RDF Dataset Statistics 239

#Times reused URI Literal Blank Node
7000-7999 2 7 0
8000-8999 0 4 0
9000-9999 2 7 0

10000-19999 6 16 0
20000-29999 5 4 0
30000-39999 0 4 0
40000-49999 5 1 0
50000-59999 3 1 0
60000-69999 10 2 0
70000-79999 10 1 0
80000-89999 17 2 0

100000-199999 16 2 0
200000-299999 4 1 0
300000-399999 3 0 0
900000-999999 2 0 0

1000000-1999999 1 0 0

Table C.17: Node reuse data for LinkedCT



240 Appendix C RDF Dataset Statistics

C.6.4 Node lengths

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1  10  100  1000  10000  100000

#
N

o
d
e
s

Node Length

URI
Literal

Figure C.35: Node length data for LinkedCT

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 1  10  100  1000  10000  100000

T
o
ta

l N
o
d
e
 C

h
a
ra

ct
e
rs

Node Length

URI
Literal

Figure C.36: Cumulative node length data for LinkedCT



Appendix C RDF Dataset Statistics 241

Node Length URI Literal
Total 1169985 2794596
1-1 0 56
2-2 0 704
3-3 0 3257
4-4 0 13934
5-5 0 100010
6-6 0 256781
7-7 0 44486
8-8 0 64998
9-9 0 23276

10-19 0 835532
20-29 8 444365
30-39 49757 142719
40-49 617098 113396
50-59 499542 103829
60-69 3573 64712
70-79 7 50019
80-89 0 40372
90-99 0 32665

100-199 0 185768
200-299 0 85541
300-399 0 31029
400-499 0 18653
500-599 0 14513
600-699 0 11751
700-799 0 10055
800-899 0 8400
900-999 0 7668

1000-1099 0 66
1000-1999 0 44285
2000-2999 0 21222
3000-3999 0 10056
4000-4999 0 5012
5000-5999 0 2247
6000-6999 0 1196
7000-7999 0 663

continued on next page



242 Appendix C RDF Dataset Statistics

Node Length URI Literal
8000-8999 0 416
9000-9999 0 270

10000-19999 0 595
20000-29999 0 56
30000-39999 0 23

Table C.18: Node length data for LinkedCT



Appendix D

Raw Evaluation Data

This appendix contains the raw evaluation data for the evaluation described in Chapter
7. Section D.1 includes the timing-related data, while Section D.2 contains the informa-
tion on CPU performance counters.

D.1 Timing Data

This section contains the timing data for the evaluation in Chapter 7. Experiments
were performed on BSBM datasets, which are unmarked, and DBPedia ones, which are
marked with (DBP).

D.1.1 Load Rates

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
Bitmap osp 5.00 3883 1287.66
Bitmap pos 5.00 4262 1173.16
Bitmap spo 5.00 4112 1215.95
BPTree osp 5.00 7411 674.67
BPTree pos 5.00 8183 611.02
BPTree spo 5.00 5907 846.45
BST osp 5.00 12933 386.61
BST pos 5.00 13408 372.91
BST spo 5.00 9700 515.46
BTree osp 5.00 7895 633.31

continued on next page

243



244 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
BTree pos 5.00 7891 633.63
BTree spo 5.00 5933 842.74

BTreeRef osp 5.00 15840 315.66
BTreeRef pos 5.00 19048 262.49
BTreeRef spo 5.00 6073 823.31

AHRI (bp) osp 5.00 2731 1830.83
AHRI (bp) pos 5.00 8567 583.63
AHRI (bp) spo 5.00 1338 3736.91
AHRI (hb) osp 5.00 3193 1565.92
AHRI (hb) pos 5.00 2827 1768.66
AHRI (hb) spo 5.00 1308 3822.62

AHRI (hbwa) osp 5.00 2703 1849.79
AHRI (hbwa) pos 5.00 3527 1417.63
AHRI (hbwa) spo 5.00 1372 3644.31

Hash osp 5.00 5234 955.29
Hash pos 5.00 4135 1209.19
Hash spo 5.00 1877 2663.82

AHRI (vec,bp) osp 5.00 3116 1604.62
AHRI (vec,bp) pos 5.00 7582 659.46
AHRI (vec,bp) spo 5.00 1495 3344.47
AHRI (vec,hb) osp 5.00 3116 1604.62
AHRI (vec,hb) pos 5.00 3040 1644.73
AHRI (vec,hb) spo 5.00 1444 3462.60

AHRI (vec,hbwa) osp 5.00 3220 1552.79
AHRI (vec,hbwa) pos 5.00 3345 1494.77
AHRI (vec,hbwa) spo 5.00 1457 3431.70

BPTree osp 10.00 7177 1393.33
BPTree pos 10.00 8220 1216.54
BPTree spo 10.00 4798 2084.19

AHRI (bp) osp 10.00 2988 3346.70
AHRI (bp) pos 10.00 5651 1769.59
AHRI (bp) spo 10.00 1308 7645.21
AHRI (hb) osp 10.00 2985 3350.06
AHRI (hb) pos 10.00 3202 3123.03
AHRI (hb) spo 10.00 1316 7598.73

continued on next page



Appendix D Raw Evaluation Data 245

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
AHRI (hbwa) osp 10.00 3073 3254.13
AHRI (hbwa) pos 10.00 3153 3171.56
AHRI (hbwa) spo 10.00 1307 7651.06
AHRI (vec,bp) osp 10.00 3042 3287.29
AHRI (vec,bp) pos 10.00 5595 1787.30
AHRI (vec,bp) spo 10.00 1415 7067.09
AHRI (vec,hb) osp 10.00 3014 3317.83
AHRI (vec,hb) pos 10.00 3077 3249.90
AHRI (vec,hb) spo 10.00 1454 6877.53

AHRI (vec,hbwa) osp 10.00 3039 3290.53
AHRI (vec,hbwa) pos 10.00 3225 3100.75
AHRI (vec,hbwa) spo 10.00 1442 6934.77

BPTree osp 30.69 25948 1182.58
BPTree pos 30.69 29520 1039.48
BPTree spo 30.69 16159 1898.98

AHRI (bp) osp 30.69 10271 2987.59
AHRI (bp) pos 30.69 18560 1653.32
AHRI (bp) spo 30.69 4173 7353.36
AHRI (hb) osp 30.69 10262 2990.21
AHRI (hb) pos 30.69 10759 2852.08
AHRI (hb) spo 30.69 3886 7896.44

AHRI (hbwa) osp 30.69 11025 2783.27
AHRI (hbwa) pos 30.69 11258 2725.67
AHRI (hbwa) spo 30.69 3934 7800.09
AHRI (vec,bp) osp 30.69 11251 2727.36
AHRI (vec,bp) pos 30.69 20546 1493.51
AHRI (vec,bp) spo 30.69 6061 5062.79
AHRI (vec,hb) osp 30.69 11230 2732.46
AHRI (vec,hb) pos 30.69 11213 2736.61
AHRI (vec,hb) spo 30.69 5699 5384.38

AHRI (vec,hbwa) osp 30.69 11148 2752.56
AHRI (vec,hbwa) pos 30.69 13002 2360.07
AHRI (vec,hbwa) spo 30.69 4480 6849.46

BPTree osp 46.14 (DBP) 44128 1045.53
BPTree pos 46.14 (DBP) 48815 945.14

continued on next page



246 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
BPTree spo 46.14 (DBP) 28609 1612.68

AHRI (bp) osp 46.14 (DBP) 18565 2485.16
AHRI (bp) pos 46.14 (DBP) 33836 1363.55
AHRI (bp) spo 46.14 (DBP) 9552 4830.09
AHRI (hb) osp 46.14 (DBP) 18670 2471.19
AHRI (hb) pos 46.14 (DBP) 22639 2037.95
AHRI (hb) spo 46.14 (DBP) 9091 5075.03

AHRI (hbwa) osp 46.14 (DBP) 18322 2518.12
AHRI (hbwa) pos 46.14 (DBP) 23407 1971.08
AHRI (hbwa) spo 46.14 (DBP) 9124 5056.67
AHRI (vec,bp) osp 46.14 (DBP) 18881 2443.57
AHRI (vec,bp) pos 46.14 (DBP) 38767 1190.11
AHRI (vec,bp) spo 46.14 (DBP) 10076 4578.91
AHRI (vec,hb) osp 46.14 (DBP) 20387 2263.06
AHRI (vec,hb) pos 46.14 (DBP) 23453 1967.21
AHRI (vec,hb) spo 46.14 (DBP) 11172 4129.71

AHRI (vec,hbwa) osp 46.14 (DBP) 18691 2468.41
AHRI (vec,hbwa) pos 46.14 (DBP) 22836 2020.37
AHRI (vec,hbwa) spo 46.14 (DBP) 9966 4629.45

BPTree osp 65.04 56423 1152.74
BPTree pos 65.04 63877 1018.22
BPTree spo 65.04 31479 2066.16

AHRI (bp) osp 65.04 22989 2829.21
AHRI (bp) pos 65.04 39988 1626.51
AHRI (bp) spo 65.04 7777 8363.22
AHRI (hb) osp 65.04 23340 2786.67
AHRI (hb) pos 65.04 22129 2939.16
AHRI (hb) spo 65.04 6909 9413.92

AHRI (hbwa) osp 65.04 23245 2798.05
AHRI (hbwa) pos 65.04 23650 2750.14
AHRI (hbwa) spo 65.04 6888 9442.62
AHRI (vec,bp) osp 65.04 23665 2748.40
AHRI (vec,bp) pos 65.04 40108 1621.64
AHRI (vec,bp) spo 65.04 7754 8388.03
AHRI (vec,hb) osp 65.04 23540 2762.99

continued on next page



Appendix D Raw Evaluation Data 247

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
AHRI (vec,hb) pos 65.04 22691 2866.37
AHRI (vec,hb) spo 65.04 7850 8285.45

AHRI (vec,hbwa) osp 65.04 23684 2746.19
AHRI (vec,hbwa) pos 65.04 23511 2766.40
AHRI (vec,hbwa) spo 65.04 7965 8165.82

BPTree osp 95.47 (DBP) 85273 1119.60
BPTree pos 95.47 (DBP) 88878 1074.19
BPTree spo 95.47 (DBP) 48762 1957.91

AHRI (bp) osp 95.47 (DBP) 33866 2819.10
AHRI (bp) pos 95.47 (DBP) 54207 1761.25
AHRI (bp) spo 95.47 (DBP) 15402 6198.66
AHRI (hb) osp 95.47 (DBP) 33742 2829.46
AHRI (hb) pos 95.47 (DBP) 36397 2623.07
AHRI (hb) spo 95.47 (DBP) 15973 5977.07

AHRI (hbwa) osp 95.47 (DBP) 33422 2856.56
AHRI (hbwa) pos 95.47 (DBP) 37951 2515.66
AHRI (hbwa) spo 95.47 (DBP) 15011 6360.12
AHRI (vec,bp) osp 95.47 (DBP) 35310 2703.82
AHRI (vec,bp) pos 95.47 (DBP) 54426 1754.16
AHRI (vec,bp) spo 95.47 (DBP) 16403 5820.39
AHRI (vec,hb) osp 95.47 (DBP) 36857 2590.33
AHRI (vec,hb) pos 95.47 (DBP) 36946 2584.09
AHRI (vec,hb) spo 95.47 (DBP) 16240 5878.81

AHRI (vec,hbwa) osp 95.47 (DBP) 35032 2725.27
AHRI (vec,hbwa) pos 95.47 (DBP) 38144 2502.93
AHRI (vec,hbwa) spo 95.47 (DBP) 16212 5888.96

BPTree osp 100.00 89010 1123.47
BPTree pos 100.00 101502 985.20
BPTree spo 100.00 48897 2045.12

AHRI (bp) osp 100.00 35527 2814.76
AHRI (bp) pos 100.00 62061 1611.32
AHRI (bp) spo 100.00 9635 10378.84
AHRI (hb) osp 100.00 35534 2814.21
AHRI (hb) pos 100.00 34038 2937.90
AHRI (hb) spo 100.00 9542 10479.99

continued on next page



248 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
AHRI (hbwa) osp 100.00 34959 2860.50
AHRI (hbwa) pos 100.00 35651 2804.97
AHRI (hbwa) spo 100.00 9516 10508.63
AHRI (vec,bp) osp 100.00 35924 2783.66
AHRI (vec,bp) pos 100.00 62040 1611.87
AHRI (vec,bp) spo 100.00 10324 9686.18
AHRI (vec,hb) osp 100.00 36165 2765.11
AHRI (vec,hb) pos 100.00 34559 2893.61
AHRI (vec,hb) spo 100.00 10785 9272.15

AHRI (vec,hbwa) osp 100.00 36179 2764.04
AHRI (vec,hbwa) pos 100.00 37154 2691.50
AHRI (vec,hbwa) spo 100.00 10792 9266.13

BPTree osp 157.84 144978 1088.73
BPTree pos 157.84 162540 971.10
BPTree spo 157.84 76768 2056.10

AHRI (bp) osp 157.84 58899 2679.88
AHRI (bp) pos 157.84 100776 1566.27
AHRI (bp) spo 157.84 15883 9937.83
AHRI (hb) osp 157.84 58166 2713.66
AHRI (hb) pos 157.84 54886 2875.82
AHRI (hb) spo 157.84 15003 10520.73

AHRI (hbwa) osp 157.84 59286 2662.39
AHRI (hbwa) pos 157.84 57886 2726.78
AHRI (hbwa) spo 157.84 15161 10411.09
AHRI (vec,bp) osp 157.84 60132 2624.93
AHRI (vec,bp) pos 157.84 101866 1549.51
AHRI (vec,bp) spo 157.84 16631 9490.86
AHRI (vec,hb) osp 157.84 60765 2597.59
AHRI (vec,hb) pos 157.84 55927 2822.30
AHRI (vec,hb) spo 157.84 19159 8238.56

AHRI (vec,hbwa) osp 157.84 65678 2403.28
AHRI (vec,hbwa) pos 157.84 59563 2650.01
AHRI (vec,hbwa) spo 157.84 17175 9190.25

BPTree osp 189.57 (DBP) 215461 879.85
BPTree pos 189.57 (DBP) 211123 897.93

continued on next page



Appendix D Raw Evaluation Data 249

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
BPTree spo 189.57 (DBP) 106513 1779.82

AHRI (bp) osp 189.57 (DBP) 88834 2134.02
AHRI (bp) pos 189.57 (DBP) 127632 1485.31
AHRI (bp) spo 189.57 (DBP) 42457 4465.07
AHRI (hb) osp 189.57 (DBP) 88027 2153.59
AHRI (hb) pos 189.57 (DBP) 82563 2296.11
AHRI (hb) spo 189.57 (DBP) 36598 5179.89

AHRI (hbwa) osp 189.57 (DBP) 88250 2148.14
AHRI (hbwa) pos 189.57 (DBP) 84749 2236.88
AHRI (hbwa) spo 189.57 (DBP) 33996 5576.35
AHRI (vec,bp) osp 189.57 (DBP) 94295 2010.43
AHRI (vec,bp) pos 189.57 (DBP) 129061 1468.87
AHRI (vec,bp) spo 189.57 (DBP) 46565 4071.16
AHRI (vec,hb) osp 189.57 (DBP) 93610 2025.14
AHRI (vec,hb) pos 189.57 (DBP) 84226 2250.77
AHRI (vec,hb) spo 189.57 (DBP) 40350 4698.23

AHRI (vec,hbwa) osp 189.57 (DBP) 93762 2021.86
AHRI (vec,hbwa) pos 189.57 (DBP) 87997 2154.32
AHRI (vec,hbwa) spo 189.57 (DBP) 39210 4834.83

BPTree osp 350.56 411739 851.41
BPTree pos 350.56 460948 760.52
BPTree spo 350.56 244327 1434.79

AHRI (bp) osp 350.56 183657 1908.77
AHRI (bp) pos 350.56 241811 1449.72
AHRI (bp) spo 350.56 42363 8275.12
AHRI (hb) osp 350.56 180659 1940.45
AHRI (hb) pos 350.56 133678 2622.41
AHRI (hb) spo 350.56 38720 9053.69

AHRI (hbwa) osp 350.56 180158 1945.84
AHRI (hbwa) pos 350.56 140387 2497.09
AHRI (hbwa) spo 350.56 38208 9175.01
AHRI (vec,bp) osp 350.56 192900 1817.31
AHRI (vec,bp) pos 350.56 240258 1459.09
AHRI (vec,bp) spo 350.56 51673 6784.18
AHRI (vec,hb) osp 350.56 167737 2089.93

continued on next page



250 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M)
Load Time

(ms)
Triples Per

Second
AHRI (vec,hb) pos 350.56 135644 2584.40
AHRI (vec,hb) spo 350.56 44985 7792.80

AHRI (vec,hbwa) osp 350.56 186607 1878.59
AHRI (vec,hbwa) pos 350.56 142832 2454.34
AHRI (vec,hbwa) spo 350.56 44433 7889.61

Table D.1: Load rates

D.1.2 Restriction by One Attribute

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
Bitmap osp 5.00 500 8363 59.79
Bitmap pos 5.00 60 5783 10.38
Bitmap spo 5.00 2000000 6795 294334.07
BPTree osp 5.00 3000 5918 506.93
BPTree pos 5.00 600 11053 54.28
BPTree spo 5.00 2000000 5998 333444.48
BST osp 5.00 3000 12726 235.74
BST pos 5.00 600 21415 28.02
BST spo 5.00 2000000 11357 176102.84
BTree osp 5.00 3000 7650 392.16
BTree pos 5.00 600 13844 43.34
BTree spo 5.00 2000000 7314 273448.18

BTreeRef osp 5.00 3000 6701 447.69
BTreeRef pos 5.00 600 13978 42.92
BTreeRef spo 5.00 2000000 9912 201775.63

AHRI (bp) osp 5.00 3000 3156 950.57
AHRI (bp) pos 5.00 600 5378 111.57
AHRI (bp) spo 5.00 2000000 1458 1371742.11
AHRI (hb) osp 5.00 3000 3198 938.09
AHRI (hb) pos 5.00 600 9133 65.70
AHRI (hb) spo 5.00 2000000 1780 1123595.51

AHRI (hbwa) osp 5.00 3000 3083 973.08
AHRI (hbwa) pos 5.00 600 5489 109.31

continued on next page



Appendix D Raw Evaluation Data 251

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (hbwa) spo 5.00 2000000 1785 1120448.18

Hash osp 5.00 3000 9169 327.19
Hash pos 5.00 600 18383 32.64
Hash spo 5.00 2000000 6025 331950.21

AHRI (vec,bp) osp 5.00 3000 2817 1064.96
AHRI (vec,bp) pos 5.00 600 5276 113.72
AHRI (vec,bp) spo 5.00 2000000 1636 1222493.89
AHRI (vec,hb) osp 5.00 3000 2835 1058.20
AHRI (vec,hb) pos 5.00 600 9035 66.41
AHRI (vec,hb) spo 5.00 2000000 1633 1224739.74

AHRI (vec,hbwa) osp 5.00 3000 2786 1076.81
AHRI (vec,hbwa) pos 5.00 600 5351 112.13
AHRI (vec,hbwa) spo 5.00 2000000 1334 1499250.37

BPTree osp 10.00 2000 1722 1161.44
BPTree pos 10.00 300 2245 133.63
BPTree spo 10.00 4000000 4505 887902.33

AHRI (bp) osp 10.00 2000 1373 1456.66
AHRI (bp) pos 10.00 300 1915 156.66
AHRI (bp) spo 10.00 4000000 1579 2533248.89
AHRI (hb) osp 10.00 2000 1362 1468.43
AHRI (hb) pos 10.00 300 3434 87.36
AHRI (hb) spo 10.00 4000000 1724 2320185.61

AHRI (hbwa) osp 10.00 2000 1354 1477.10
AHRI (hbwa) pos 10.00 300 1951 153.77
AHRI (hbwa) spo 10.00 4000000 1721 2324230.10
AHRI (vec,bp) osp 10.00 2000 988 2024.29
AHRI (vec,bp) pos 10.00 300 1391 215.67
AHRI (vec,bp) spo 10.00 4000000 1985 2015113.35
AHRI (vec,hb) osp 10.00 2000 990 2020.20
AHRI (vec,hb) pos 10.00 300 2998 100.07
AHRI (vec,hb) spo 10.00 4000000 1998 2002002.00

AHRI (vec,hbwa) osp 10.00 2000 989 2022.24
AHRI (vec,hbwa) pos 10.00 300 1398 214.59
AHRI (vec,hbwa) spo 10.00 4000000 2008 1992031.87

continued on next page



252 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
BPTree osp 30.69 2000 6063 329.87
BPTree pos 30.69 300 6486 46.25
BPTree spo 30.69 4000000 5832 685871.06

AHRI (bp) osp 30.69 2000 4577 436.97
AHRI (bp) pos 30.69 300 5746 52.21
AHRI (bp) spo 30.69 4000000 1867 2142474.56
AHRI (hb) osp 30.69 2000 4566 438.02
AHRI (hb) pos 30.69 300 9915 30.26
AHRI (hb) spo 30.69 4000000 1890 2116402.12

AHRI (hbwa) osp 30.69 2000 4646 430.48
AHRI (hbwa) pos 30.69 300 5688 52.74
AHRI (hbwa) spo 30.69 4000000 1874 2134471.72
AHRI (vec,bp) osp 30.69 2000 4342 460.62
AHRI (vec,bp) pos 30.69 300 4104 73.10
AHRI (vec,bp) spo 30.69 4000000 2148 1862197.39
AHRI (vec,hb) osp 30.69 2000 4335 461.36
AHRI (vec,hb) pos 30.69 300 8827 33.99
AHRI (vec,hb) spo 30.69 4000000 1850 2162162.16

AHRI (vec,hbwa) osp 30.69 2000 4339 460.94
AHRI (vec,hbwa) pos 30.69 300 4044 74.18
AHRI (vec,hbwa) spo 30.69 4000000 2132 1876172.61

BPTree osp 46.14 (DBP) 2000 1109 1803.43
BPTree pos 46.14 (DBP) 300 2675 112.15
BPTree spo 46.14 (DBP) 4000000 8710 459242.25

AHRI (bp) osp 46.14 (DBP) 2000 1015 1970.44
AHRI (bp) pos 46.14 (DBP) 300 2260 132.74
AHRI (bp) spo 46.14 (DBP) 4000000 5175 772946.86
AHRI (hb) osp 46.14 (DBP) 2000 1133 1765.23
AHRI (hb) pos 46.14 (DBP) 300 3723 80.58
AHRI (hb) spo 46.14 (DBP) 4000000 5882 680040.80

AHRI (hbwa) osp 46.14 (DBP) 2000 882 2267.57
AHRI (hbwa) pos 46.14 (DBP) 300 2594 115.65
AHRI (hbwa) spo 46.14 (DBP) 4000000 5372 744601.64
AHRI (vec,bp) osp 46.14 (DBP) 2000 911 2195.39

continued on next page



Appendix D Raw Evaluation Data 253

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,bp) pos 46.14 (DBP) 300 1544 194.30
AHRI (vec,bp) spo 46.14 (DBP) 4000000 5301 754574.61
AHRI (vec,hb) osp 46.14 (DBP) 2000 995 2010.05
AHRI (vec,hb) pos 46.14 (DBP) 300 3165 94.79
AHRI (vec,hb) spo 46.14 (DBP) 4000000 6166 648718.78

AHRI (vec,hbwa) osp 46.14 (DBP) 2000 675 2962.96
AHRI (vec,hbwa) pos 46.14 (DBP) 300 1514 198.15
AHRI (vec,hbwa) spo 46.14 (DBP) 4000000 5390 742115.03

BPTree osp 65.04 2000 10962 182.45
BPTree pos 65.04 300 15062 19.92
BPTree spo 65.04 4000000 6554 610314.31

AHRI (bp) osp 65.04 2000 7766 257.53
AHRI (bp) pos 65.04 300 12523 23.96
AHRI (bp) spo 65.04 4000000 2573 1554605.52
AHRI (hb) osp 65.04 2000 7663 260.99
AHRI (hb) pos 65.04 300 22242 13.49
AHRI (hb) spo 65.04 4000000 2705 1478743.07

AHRI (hbwa) osp 65.04 2000 7716 259.20
AHRI (hbwa) pos 65.04 300 11245 26.68
AHRI (hbwa) spo 65.04 4000000 2693 1485332.34
AHRI (vec,bp) osp 65.04 2000 8332 240.04
AHRI (vec,bp) pos 65.04 300 10411 28.82
AHRI (vec,bp) spo 65.04 4000000 2828 1414427.16
AHRI (vec,hb) osp 65.04 2000 8286 241.37
AHRI (vec,hb) pos 65.04 300 19033 15.76
AHRI (vec,hb) spo 65.04 4000000 2833 1411930.82

AHRI (vec,hbwa) osp 65.04 2000 8329 240.12
AHRI (vec,hbwa) pos 65.04 300 10297 29.13
AHRI (vec,hbwa) spo 65.04 4000000 2806 1425516.75

BPTree osp 95.47 (DBP) 2000 1330 1503.76
BPTree pos 95.47 (DBP) 300 6760 44.38
BPTree spo 95.47 (DBP) 4000000 9825 407124.68

AHRI (bp) osp 95.47 (DBP) 2000 1063 1881.47
AHRI (bp) pos 95.47 (DBP) 300 6246 48.03

continued on next page



254 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (bp) spo 95.47 (DBP) 4000000 5808 688705.23
AHRI (hb) osp 95.47 (DBP) 2000 1075 1860.47
AHRI (hb) pos 95.47 (DBP) 300 11184 26.82
AHRI (hb) spo 95.47 (DBP) 4000000 6250 640000.00

AHRI (hbwa) osp 95.47 (DBP) 2000 1012 1976.28
AHRI (hbwa) pos 95.47 (DBP) 300 6978 42.99
AHRI (hbwa) spo 95.47 (DBP) 4000000 5955 671704.45
AHRI (vec,bp) osp 95.47 (DBP) 2000 1019 1962.71
AHRI (vec,bp) pos 95.47 (DBP) 300 4771 62.88
AHRI (vec,bp) spo 95.47 (DBP) 4000000 5936 673854.45
AHRI (vec,hb) osp 95.47 (DBP) 2000 1041 1921.23
AHRI (vec,hb) pos 95.47 (DBP) 300 9000 33.33
AHRI (vec,hb) spo 95.47 (DBP) 4000000 6410 624024.96

AHRI (vec,hbwa) osp 95.47 (DBP) 2000 1024 1953.12
AHRI (vec,hbwa) pos 95.47 (DBP) 300 4940 60.73
AHRI (vec,hbwa) spo 95.47 (DBP) 4000000 5983 668560.92

BPTree osp 100.00 2000 17020 117.51
BPTree pos 100.00 300 22991 13.05
BPTree spo 100.00 4000000 6946 575871.00

AHRI (bp) osp 100.00 2000 12346 162.00
AHRI (bp) pos 100.00 300 19340 15.51
AHRI (bp) spo 100.00 4000000 2837 1409940.08
AHRI (hb) osp 100.00 2000 12348 161.97
AHRI (hb) pos 100.00 300 32138 9.33
AHRI (hb) spo 100.00 4000000 2835 1410934.74

AHRI (hbwa) osp 100.00 2000 12333 162.17
AHRI (hbwa) pos 100.00 300 19306 15.54
AHRI (hbwa) spo 100.00 4000000 2851 1403016.49
AHRI (vec,bp) osp 100.00 2000 13393 149.33
AHRI (vec,bp) pos 100.00 300 13885 21.61
AHRI (vec,bp) spo 100.00 4000000 2954 1354096.14
AHRI (vec,hb) osp 100.00 2000 14163 141.21
AHRI (vec,hb) pos 100.00 300 28949 10.36
AHRI (vec,hb) spo 100.00 4000000 2821 1417936.90

continued on next page



Appendix D Raw Evaluation Data 255

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,hbwa) osp 100.00 2000 13273 150.68
AHRI (vec,hbwa) pos 100.00 300 15607 19.22
AHRI (vec,hbwa) spo 100.00 4000000 2943 1359157.32

BPTree osp 157.84 2000 31311 63.88
BPTree pos 157.84 300 39364 7.62
BPTree spo 157.84 4000000 7414 539519.83

AHRI (bp) osp 157.84 2000 23145 86.41
AHRI (bp) pos 157.84 300 32341 9.28
AHRI (bp) spo 157.84 4000000 2755 1451905.63
AHRI (hb) osp 157.84 2000 20400 98.04
AHRI (hb) pos 157.84 300 54046 5.55
AHRI (hb) spo 157.84 4000000 2804 1426533.52

AHRI (hbwa) osp 157.84 2000 20420 97.94
AHRI (hbwa) pos 157.84 300 31922 9.40
AHRI (hbwa) spo 157.84 4000000 2760 1449275.36
AHRI (vec,bp) osp 157.84 2000 23489 85.15
AHRI (vec,bp) pos 157.84 300 26468 11.33
AHRI (vec,bp) spo 157.84 4000000 2910 1374570.45
AHRI (vec,hb) osp 157.84 2000 23502 85.10
AHRI (vec,hb) pos 157.84 300 48742 6.15
AHRI (vec,hb) spo 157.84 4000000 3072 1302083.33

AHRI (vec,hbwa) osp 157.84 2000 22125 90.40
AHRI (vec,hbwa) pos 157.84 300 25986 11.54
AHRI (vec,hbwa) spo 157.84 4000000 2918 1370801.92

BPTree osp 189.57 (DBP) 2000 817 2447.98
BPTree pos 189.57 (DBP) 300 148098 2.03
BPTree spo 189.57 (DBP) 4000000 14241 280879.15

AHRI (bp) osp 189.57 (DBP) 2000 616 3246.75
AHRI (bp) pos 189.57 (DBP) 300 111043 2.70
AHRI (bp) spo 189.57 (DBP) 4000000 9802 408079.98
AHRI (hb) osp 189.57 (DBP) 2000 636 3144.65
AHRI (hb) pos 189.57 (DBP) 300 190195 1.58
AHRI (hb) spo 189.57 (DBP) 4000000 12592 317662.01

AHRI (hbwa) osp 189.57 (DBP) 2000 547 3656.31

continued on next page



256 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (hbwa) pos 189.57 (DBP) 300 138117 2.17
AHRI (hbwa) spo 189.57 (DBP) 4000000 10179 392965.91
AHRI (vec,bp) osp 189.57 (DBP) 2000 435 4597.70
AHRI (vec,bp) pos 189.57 (DBP) 300 90015 3.33
AHRI (vec,bp) spo 189.57 (DBP) 4000000 8967 446080.07
AHRI (vec,hb) osp 189.57 (DBP) 2000 603 3316.75
AHRI (vec,hb) pos 189.57 (DBP) 300 175997 1.70
AHRI (vec,hb) spo 189.57 (DBP) 4000000 12161 328920.32

AHRI (vec,hbwa) osp 189.57 (DBP) 2000 586 3412.97
AHRI (vec,hbwa) pos 189.57 (DBP) 300 90657 3.31
AHRI (vec,hbwa) spo 189.57 (DBP) 4000000 9123 438452.26

BPTree osp 350.56 2000 71195 28.09
BPTree pos 350.56 300 84671 3.54
BPTree spo 350.56 4000000 7777 514337.15

AHRI (bp) osp 350.56 2000 44390 45.06
AHRI (bp) pos 350.56 300 68191 4.40
AHRI (bp) spo 350.56 4000000 3109 1286587.33
AHRI (hb) osp 350.56 2000 44445 45.00
AHRI (hb) pos 350.56 300 118479 2.53
AHRI (hb) spo 350.56 4000000 3113 1284934.15

AHRI (hbwa) osp 350.56 2000 44421 45.02
AHRI (hbwa) pos 350.56 300 67441 4.45
AHRI (hbwa) spo 350.56 4000000 3130 1277955.27
AHRI (vec,bp) osp 350.56 2000 51194 39.07
AHRI (vec,bp) pos 350.56 300 49219 6.10
AHRI (vec,bp) spo 350.56 4000000 3154 1268230.82
AHRI (vec,hb) osp 350.56 2000 47964 41.70
AHRI (vec,hb) pos 350.56 300 105132 2.85
AHRI (vec,hb) spo 350.56 4000000 3271 1222867.62

AHRI (vec,hbwa) osp 350.56 2000 47961 41.70
AHRI (vec,hbwa) pos 350.56 300 48413 6.20
AHRI (vec,hbwa) spo 350.56 4000000 3153 1268633.05

Table D.2: Restriction by one attribute

D.1.3 Restriction by Two Attributes



Appendix D Raw Evaluation Data 257

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
Bitmap osp 5.00 10000 2684 3725.78
Bitmap pos 5.00 300 4404 68.12
Bitmap spo 5.00 10000 10551 947.78
BPTree osp 5.00 2000000 4075 490797.55
BPTree pos 5.00 3000 5025 597.01
BPTree spo 5.00 2000000 4733 422564.97
BST osp 5.00 2000000 5848 341997.26
BST pos 5.00 3000 9570 313.48
BST spo 5.00 2000000 6878 290782.20
BTree osp 5.00 2000000 5301 377287.30
BTree pos 5.00 3000 6349 472.52
BTree spo 5.00 2000000 4866 411015.21

BTreeRef osp 5.00 2000000 5820 343642.61
BTreeRef pos 5.00 3000 6418 467.44
BTreeRef spo 5.00 2000000 7146 279876.85

AHRI (bp) osp 5.00 2000000 1086 1841620.63
AHRI (bp) pos 5.00 3000 2121 1414.43
AHRI (bp) spo 5.00 2000000 1090 1834862.39
AHRI (hb) osp 5.00 2000000 1389 1439884.81
AHRI (hb) pos 5.00 3000 4294 698.65
AHRI (hb) spo 5.00 2000000 1358 1472754.05

AHRI (hbwa) osp 5.00 2000000 1347 1484780.99
AHRI (hbwa) pos 5.00 3000 2282 1314.64
AHRI (hbwa) spo 5.00 2000000 1359 1471670.35

Hash osp 5.00 6000 16293 368.26
Hash pos 5.00 2000 46834 42.70
Hash spo 5.00 2000000 4718 423908.44

AHRI (vec,bp) osp 5.00 2000000 1377 1452432.82
AHRI (vec,bp) pos 5.00 3000 2174 1379.94
AHRI (vec,bp) spo 5.00 2000000 1378 1451378.81
AHRI (vec,hb) osp 5.00 2000000 1367 1463057.79
AHRI (vec,hb) pos 5.00 3000 4323 693.96
AHRI (vec,hb) spo 5.00 2000000 1390 1438848.92

AHRI (vec,hbwa) osp 5.00 2000000 1132 1766784.45

continued on next page



258 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,hbwa) pos 5.00 3000 2186 1372.37
AHRI (vec,hbwa) spo 5.00 2000000 1124 1779359.43

BPTree osp 10.00 4000000 3697 1081958.34
BPTree pos 10.00 2000 1286 1555.21
BPTree spo 10.00 4000000 3801 1052354.64

AHRI (bp) osp 10.00 4000000 1417 2822865.21
AHRI (bp) pos 10.00 2000 1115 1793.72
AHRI (bp) spo 10.00 4000000 1307 3060443.76
AHRI (hb) osp 10.00 4000000 1444 2770083.10
AHRI (hb) pos 10.00 2000 1672 1196.17
AHRI (hb) spo 10.00 4000000 1346 2971768.20

AHRI (hbwa) osp 10.00 4000000 1448 2762430.94
AHRI (hbwa) pos 10.00 2000 1167 1713.80
AHRI (hbwa) spo 10.00 4000000 1363 2934702.86
AHRI (vec,bp) osp 10.00 4000000 1489 2686366.69
AHRI (vec,bp) pos 10.00 2000 700 2857.14
AHRI (vec,bp) spo 10.00 4000000 1331 3005259.20
AHRI (vec,hb) osp 10.00 4000000 1517 2636783.12
AHRI (vec,hb) pos 10.00 2000 1659 1205.55
AHRI (vec,hb) spo 10.00 4000000 1333 3000750.19

AHRI (vec,hbwa) osp 10.00 4000000 1546 2587322.12
AHRI (vec,hbwa) pos 10.00 2000 686 2915.45
AHRI (vec,hbwa) spo 10.00 4000000 1335 2996254.68

BPTree osp 30.69 4000000 5080 787401.57
BPTree pos 30.69 2000 3924 509.68
BPTree spo 30.69 4000000 5064 789889.42

AHRI (bp) osp 30.69 4000000 1694 2361275.09
AHRI (bp) pos 30.69 2000 2877 695.17
AHRI (bp) spo 30.69 4000000 1479 2704530.09
AHRI (hb) osp 30.69 4000000 1688 2369668.25
AHRI (hb) pos 30.69 2000 5309 376.72
AHRI (hb) spo 30.69 4000000 1532 2610966.06

AHRI (hbwa) osp 30.69 4000000 1699 2354326.07
AHRI (hbwa) pos 30.69 2000 2635 759.01

continued on next page



Appendix D Raw Evaluation Data 259

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (hbwa) spo 30.69 4000000 1479 2704530.09
AHRI (vec,bp) osp 30.69 4000000 1800 2222222.22
AHRI (vec,bp) pos 30.69 2000 2232 896.06
AHRI (vec,bp) spo 30.69 4000000 1459 2741603.84
AHRI (vec,hb) osp 30.69 4000000 1850 2162162.16
AHRI (vec,hb) pos 30.69 2000 5228 382.56
AHRI (vec,hb) spo 30.69 4000000 1455 2749140.89

AHRI (vec,hbwa) osp 30.69 4000000 1825 2191780.82
AHRI (vec,hbwa) pos 30.69 2000 2134 937.21
AHRI (vec,hbwa) spo 30.69 4000000 1586 2522068.10

BPTree osp 46.14 (DBP) 4000000 5603 713903.27
BPTree pos 46.14 (DBP) 2000 514 3891.05
BPTree spo 46.14 (DBP) 4000000 5957 671478.93

AHRI (bp) osp 46.14 (DBP) 4000000 2414 1657000.83
AHRI (bp) pos 46.14 (DBP) 2000 357 5602.24
AHRI (bp) spo 46.14 (DBP) 4000000 2802 1427551.75
AHRI (hb) osp 46.14 (DBP) 4000000 2465 1622718.05
AHRI (hb) pos 46.14 (DBP) 2000 700 2857.14
AHRI (hb) spo 46.14 (DBP) 4000000 3055 1309328.97

AHRI (hbwa) osp 46.14 (DBP) 4000000 2357 1697072.55
AHRI (hbwa) pos 46.14 (DBP) 2000 432 4629.63
AHRI (hbwa) spo 46.14 (DBP) 4000000 2806 1425516.75
AHRI (vec,bp) osp 46.14 (DBP) 4000000 2429 1646768.22
AHRI (vec,bp) pos 46.14 (DBP) 2000 294 6802.72
AHRI (vec,bp) spo 46.14 (DBP) 4000000 2932 1364256.48
AHRI (vec,hb) osp 46.14 (DBP) 4000000 2491 1605780.81
AHRI (vec,hb) pos 46.14 (DBP) 2000 691 2894.36
AHRI (vec,hb) spo 46.14 (DBP) 4000000 3119 1282462.33

AHRI (vec,hbwa) osp 46.14 (DBP) 4000000 2367 1689902.83
AHRI (vec,hbwa) pos 46.14 (DBP) 2000 281 7117.44
AHRI (vec,hbwa) spo 46.14 (DBP) 4000000 2918 1370801.92

BPTree osp 65.04 4000000 6055 660611.07
BPTree pos 65.04 2000 8894 224.87
BPTree spo 65.04 4000000 5899 678081.03

continued on next page



260 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (bp) osp 65.04 4000000 2694 1484780.99
AHRI (bp) pos 65.04 2000 6614 302.39
AHRI (bp) spo 65.04 4000000 2254 1774622.89
AHRI (hb) osp 65.04 4000000 2697 1483129.40
AHRI (hb) pos 65.04 2000 12710 157.36
AHRI (hb) spo 65.04 4000000 2308 1733102.25

AHRI (hbwa) osp 65.04 4000000 2688 1488095.24
AHRI (hbwa) pos 65.04 2000 7431 269.14
AHRI (hbwa) spo 65.04 4000000 2310 1731601.73
AHRI (vec,bp) osp 65.04 4000000 2747 1456133.96
AHRI (vec,bp) pos 65.04 2000 6162 324.57
AHRI (vec,bp) spo 65.04 4000000 2310 1731601.73
AHRI (vec,hb) osp 65.04 4000000 2787 1435235.02
AHRI (vec,hb) pos 65.04 2000 12514 159.82
AHRI (vec,hb) spo 65.04 4000000 2284 1751313.49

AHRI (vec,hbwa) osp 65.04 4000000 2751 1454016.72
AHRI (vec,hbwa) pos 65.04 2000 5863 341.12
AHRI (vec,hbwa) spo 65.04 4000000 2300 1739130.43

BPTree osp 95.47 (DBP) 4000000 6324 632511.07
BPTree pos 95.47 (DBP) 2000 891 2244.67
BPTree spo 95.47 (DBP) 4000000 6551 610593.80

AHRI (bp) osp 95.47 (DBP) 4000000 3001 1332889.04
AHRI (bp) pos 95.47 (DBP) 2000 725 2758.62
AHRI (bp) spo 95.47 (DBP) 4000000 3477 1150417.03
AHRI (hb) osp 95.47 (DBP) 4000000 3003 1332001.33
AHRI (hb) pos 95.47 (DBP) 2000 1237 1616.81
AHRI (hb) spo 95.47 (DBP) 4000000 3645 1097393.69

AHRI (hbwa) osp 95.47 (DBP) 4000000 3004 1331557.92
AHRI (hbwa) pos 95.47 (DBP) 2000 603 3316.75
AHRI (hbwa) spo 95.47 (DBP) 4000000 3538 1130582.25
AHRI (vec,bp) osp 95.47 (DBP) 4000000 3097 1291572.49
AHRI (vec,bp) pos 95.47 (DBP) 2000 492 4065.04
AHRI (vec,bp) spo 95.47 (DBP) 4000000 3641 1098599.29
AHRI (vec,hb) osp 95.47 (DBP) 4000000 3076 1300390.12

continued on next page



Appendix D Raw Evaluation Data 261

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,hb) pos 95.47 (DBP) 2000 1187 1684.92
AHRI (vec,hb) spo 95.47 (DBP) 4000000 3757 1064679.27

AHRI (vec,hbwa) osp 95.47 (DBP) 4000000 3103 1289075.09
AHRI (vec,hbwa) pos 95.47 (DBP) 2000 468 4273.50
AHRI (vec,hbwa) spo 95.47 (DBP) 4000000 3648 1096491.23

BPTree osp 100.00 4000000 6433 621793.88
BPTree pos 100.00 2000 13223 151.25
BPTree spo 100.00 4000000 6305 634417.13

AHRI (bp) osp 100.00 4000000 2917 1371271.85
AHRI (bp) pos 100.00 2000 9598 208.38
AHRI (bp) spo 100.00 4000000 2443 1637331.15
AHRI (hb) osp 100.00 4000000 2928 1366120.22
AHRI (hb) pos 100.00 2000 17728 112.82
AHRI (hb) spo 100.00 4000000 2437 1641362.33

AHRI (hbwa) osp 100.00 4000000 2922 1368925.39
AHRI (hbwa) pos 100.00 2000 8900 224.72
AHRI (hbwa) spo 100.00 4000000 2454 1629991.85
AHRI (vec,bp) osp 100.00 4000000 2979 1342732.46
AHRI (vec,bp) pos 100.00 2000 7508 266.38
AHRI (vec,bp) spo 100.00 4000000 2424 1650165.02
AHRI (vec,hb) osp 100.00 4000000 3019 1324942.03
AHRI (vec,hb) pos 100.00 2000 17882 111.84
AHRI (vec,hb) spo 100.00 4000000 2412 1658374.79

AHRI (vec,hbwa) osp 100.00 4000000 3014 1327140.01
AHRI (vec,hbwa) pos 100.00 2000 8351 239.49
AHRI (vec,hbwa) spo 100.00 4000000 2416 1655629.14

BPTree osp 157.84 4000000 6641 602318.93
BPTree pos 157.84 2000 20705 96.60
BPTree spo 157.84 4000000 6638 602591.14

AHRI (bp) osp 157.84 4000000 3103 1289075.09
AHRI (bp) pos 157.84 2000 14604 136.95
AHRI (bp) spo 157.84 4000000 2500 1600000.00
AHRI (hb) osp 157.84 4000000 3121 1281640.50
AHRI (hb) pos 157.84 2000 25988 76.96

continued on next page



262 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (hb) spo 157.84 4000000 2536 1577287.07

AHRI (hbwa) osp 157.84 4000000 3125 1280000.00
AHRI (hbwa) pos 157.84 2000 13503 148.12
AHRI (hbwa) spo 157.84 4000000 2512 1592356.69
AHRI (vec,bp) osp 157.84 4000000 3195 1251956.18
AHRI (vec,bp) pos 157.84 2000 13367 149.62
AHRI (vec,bp) spo 157.84 4000000 2494 1603849.24
AHRI (vec,hb) osp 157.84 4000000 3193 1252740.37
AHRI (vec,hb) pos 157.84 2000 26042 76.80
AHRI (vec,hb) spo 157.84 4000000 2535 1577909.27

AHRI (vec,hbwa) osp 157.84 4000000 3174 1260239.45
AHRI (vec,hbwa) pos 157.84 2000 12941 154.55
AHRI (vec,hbwa) spo 157.84 4000000 2501 1599360.26

BPTree osp 189.57 (DBP) 4000000 6796 588581.52
BPTree pos 189.57 (DBP) 2000 527 3795.07
BPTree spo 189.57 (DBP) 4000000 10259 389901.55

AHRI (bp) osp 189.57 (DBP) 4000000 3461 1155735.34
AHRI (bp) pos 189.57 (DBP) 2000 319 6269.59
AHRI (bp) spo 189.57 (DBP) 4000000 6040 662251.66
AHRI (hb) osp 189.57 (DBP) 4000000 3460 1156069.36
AHRI (hb) pos 189.57 (DBP) 2000 668 2994.01
AHRI (hb) spo 189.57 (DBP) 4000000 7929 504477.24

AHRI (hbwa) osp 189.57 (DBP) 4000000 3464 1154734.41
AHRI (hbwa) pos 189.57 (DBP) 2000 418 4784.69
AHRI (hbwa) spo 189.57 (DBP) 4000000 6501 615289.96
AHRI (vec,bp) osp 189.57 (DBP) 4000000 3492 1145475.37
AHRI (vec,bp) pos 189.57 (DBP) 2000 288 6944.44
AHRI (vec,bp) spo 189.57 (DBP) 4000000 5947 672608.04
AHRI (vec,hb) osp 189.57 (DBP) 4000000 3531 1132823.56
AHRI (vec,hb) pos 189.57 (DBP) 2000 667 2998.50
AHRI (vec,hb) spo 189.57 (DBP) 4000000 8102 493705.26

AHRI (vec,hbwa) osp 189.57 (DBP) 4000000 3554 1125492.40
AHRI (vec,hbwa) pos 189.57 (DBP) 2000 273 7326.01
AHRI (vec,hbwa) spo 189.57 (DBP) 4000000 5965 670578.37

continued on next page



Appendix D Raw Evaluation Data 263

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
BPTree osp 350.56 4000000 7223 553786.52
BPTree pos 350.56 2000 47821 41.82
BPTree spo 350.56 4000000 7134 560695.26

AHRI (bp) osp 350.56 4000000 3398 1177163.04
AHRI (bp) pos 350.56 2000 31121 64.27
AHRI (bp) spo 350.56 4000000 2744 1457725.95
AHRI (hb) osp 350.56 4000000 3403 1175433.44
AHRI (hb) pos 350.56 2000 56159 35.61
AHRI (hb) spo 350.56 4000000 2732 1464128.84

AHRI (hbwa) osp 350.56 4000000 3439 1163128.82
AHRI (hbwa) pos 350.56 2000 28728 69.62
AHRI (hbwa) spo 350.56 4000000 2733 1463593.12
AHRI (vec,bp) osp 350.56 4000000 3504 1141552.51
AHRI (vec,bp) pos 350.56 2000 24363 82.09
AHRI (vec,bp) spo 350.56 4000000 2695 1484230.06
AHRI (vec,hb) osp 350.56 4000000 3521 1136040.90
AHRI (vec,hb) pos 350.56 2000 55638 35.95
AHRI (vec,hb) spo 350.56 4000000 2724 1468428.78

AHRI (vec,hbwa) osp 350.56 4000000 3533 1132182.28
AHRI (vec,hbwa) pos 350.56 2000 23085 86.64
AHRI (vec,hbwa) spo 350.56 4000000 2688 1488095.24

Table D.3: Restriction by two attributes

D.1.4 Restriction by Three Attributes

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
Bitmap osp 5.00 10000 12963 771.43
Bitmap pos 5.00 10000 31867 313.80
Bitmap spo 5.00 10000 13460 742.94
BPTree osp 5.00 2000000 4695 425985.09
BPTree pos 5.00 2000000 5086 393236.34
BPTree spo 5.00 2000000 4562 438404.21
BST osp 5.00 2000000 5335 374882.85

continued on next page



264 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
BST pos 5.00 2000000 6124 326583.93
BST spo 5.00 2000000 6354 314762.35
BTree osp 5.00 2000000 5282 378644.45
BTree pos 5.00 2000000 5432 368188.51
BTree spo 5.00 2000000 5143 388878.09

BTreeRef osp 5.00 2000000 6763 295726.75
BTreeRef pos 5.00 2000000 6792 294464.08
BTreeRef spo 5.00 2000000 6830 292825.77

AHRI (bp) osp 5.00 2000000 1083 1846722.07
AHRI (bp) pos 5.00 2000000 1956 1022494.89
AHRI (bp) spo 5.00 2000000 991 2018163.47
AHRI (hb) osp 5.00 2000000 1418 1410437.24
AHRI (hb) pos 5.00 2000000 1174 1703577.51
AHRI (hb) spo 5.00 2000000 1255 1593625.50

AHRI (hbwa) osp 5.00 2000000 1350 1481481.48
AHRI (hbwa) pos 5.00 2000000 1017 1966568.34
AHRI (hbwa) spo 5.00 2000000 1257 1591089.90

Hash osp 5.00 2000000 2159 926354.79
Hash pos 5.00 2000000 1315 1520912.55
Hash spo 5.00 2000000 2330 858369.10

AHRI (vec,bp) osp 5.00 2000000 1421 1407459.54
AHRI (vec,bp) pos 5.00 2000000 1963 1018848.70
AHRI (vec,bp) spo 5.00 2000000 1280 1562500.00
AHRI (vec,hb) osp 5.00 2000000 1404 1424501.42
AHRI (vec,hb) pos 5.00 2000000 1153 1734605.38
AHRI (vec,hb) spo 5.00 2000000 1292 1547987.62

AHRI (vec,hbwa) osp 5.00 2000000 1123 1780943.90
AHRI (vec,hbwa) pos 5.00 2000000 991 2018163.47
AHRI (vec,hbwa) spo 5.00 2000000 1035 1932367.15

BPTree osp 10.00 4000000 3685 1085481.68
BPTree pos 10.00 4000000 3946 1013684.74
BPTree spo 10.00 4000000 3710 1078167.12

AHRI (bp) osp 10.00 4000000 1433 2791346.82
AHRI (bp) pos 10.00 4000000 2070 1932367.15

continued on next page



Appendix D Raw Evaluation Data 265

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (bp) spo 10.00 4000000 1261 3172085.65
AHRI (hb) osp 10.00 4000000 1451 2756719.50
AHRI (hb) pos 10.00 4000000 1072 3731343.28
AHRI (hb) spo 10.00 4000000 1284 3115264.80

AHRI (hbwa) osp 10.00 4000000 1447 2764340.01
AHRI (hbwa) pos 10.00 4000000 1082 3696857.67
AHRI (hbwa) spo 10.00 4000000 1281 3122560.50
AHRI (vec,bp) osp 10.00 4000000 1503 2661343.98
AHRI (vec,bp) pos 10.00 4000000 2143 1866542.23
AHRI (vec,bp) spo 10.00 4000000 1284 3115264.80
AHRI (vec,hb) osp 10.00 4000000 1525 2622950.82
AHRI (vec,hb) pos 10.00 4000000 1101 3633060.85
AHRI (vec,hb) spo 10.00 4000000 1284 3115264.80

AHRI (vec,hbwa) osp 10.00 4000000 1549 2582311.17
AHRI (vec,hbwa) pos 10.00 4000000 1129 3542958.37
AHRI (vec,hbwa) spo 10.00 4000000 1290 3100775.19

BPTree osp 30.69 4000000 5162 774893.45
BPTree pos 30.69 4000000 5277 758006.44
BPTree spo 30.69 4000000 4827 828672.05

AHRI (bp) osp 30.69 4000000 1712 2336448.60
AHRI (bp) pos 30.69 4000000 2554 1566170.71
AHRI (bp) spo 30.69 4000000 1419 2818886.54
AHRI (hb) osp 30.69 4000000 1708 2341920.37
AHRI (hb) pos 30.69 4000000 1151 3475238.92
AHRI (hb) spo 30.69 4000000 1468 2724795.64

AHRI (hbwa) osp 30.69 4000000 1718 2328288.71
AHRI (hbwa) pos 30.69 4000000 1227 3259983.70
AHRI (hbwa) spo 30.69 4000000 1407 2842928.22
AHRI (vec,bp) osp 30.69 4000000 1806 2214839.42
AHRI (vec,bp) pos 30.69 4000000 2622 1525553.01
AHRI (vec,bp) spo 30.69 4000000 1409 2838892.83
AHRI (vec,hb) osp 30.69 4000000 1849 2163331.53
AHRI (vec,hb) pos 30.69 4000000 1195 3347280.33
AHRI (vec,hb) spo 30.69 4000000 1375 2909090.91

continued on next page



266 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,hbwa) osp 30.69 4000000 1828 2188183.81
AHRI (vec,hbwa) pos 30.69 4000000 1261 3172085.65
AHRI (vec,hbwa) spo 30.69 4000000 1545 2588996.76

BPTree osp 46.14 (DBP) 4000000 5539 722152.01
BPTree pos 46.14 (DBP) 4000000 5578 717102.90
BPTree spo 46.14 (DBP) 4000000 5462 732332.48

AHRI (bp) osp 46.14 (DBP) 4000000 2443 1637331.15
AHRI (bp) pos 46.14 (DBP) 4000000 3248 1231527.09
AHRI (bp) spo 46.14 (DBP) 4000000 2526 1583531.27
AHRI (hb) osp 46.14 (DBP) 4000000 2359 1695633.74
AHRI (hb) pos 46.14 (DBP) 4000000 2177 1837390.90
AHRI (hb) spo 46.14 (DBP) 4000000 2541 1574183.39

AHRI (hbwa) osp 46.14 (DBP) 4000000 2357 1697072.55
AHRI (hbwa) pos 46.14 (DBP) 4000000 2264 1766784.45
AHRI (hbwa) spo 46.14 (DBP) 4000000 2491 1605780.81
AHRI (vec,bp) osp 46.14 (DBP) 4000000 2385 1677148.85
AHRI (vec,bp) pos 46.14 (DBP) 4000000 3260 1226993.87
AHRI (vec,bp) spo 46.14 (DBP) 4000000 2592 1543209.88
AHRI (vec,hb) osp 46.14 (DBP) 4000000 2365 1691331.92
AHRI (vec,hb) pos 46.14 (DBP) 4000000 2298 1740644.04
AHRI (vec,hb) spo 46.14 (DBP) 4000000 2539 1575423.40

AHRI (vec,hbwa) osp 46.14 (DBP) 4000000 2319 1724881.41
AHRI (vec,hbwa) pos 46.14 (DBP) 4000000 2302 1737619.46
AHRI (vec,hbwa) spo 46.14 (DBP) 4000000 2578 1551590.38

BPTree osp 65.04 4000000 6075 658436.21
BPTree pos 65.04 4000000 6317 633211.97
BPTree spo 65.04 4000000 5831 685988.68

AHRI (bp) osp 65.04 4000000 2713 1474382.60
AHRI (bp) pos 65.04 4000000 3731 1072098.63
AHRI (bp) spo 65.04 4000000 2218 1803426.51
AHRI (hb) osp 65.04 4000000 2713 1474382.60
AHRI (hb) pos 65.04 4000000 2052 1949317.74
AHRI (hb) spo 65.04 4000000 2259 1770695.00

AHRI (hbwa) osp 65.04 4000000 2727 1466813.35

continued on next page



Appendix D Raw Evaluation Data 267

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (hbwa) pos 65.04 4000000 2132 1876172.61
AHRI (hbwa) spo 65.04 4000000 2248 1779359.43
AHRI (vec,bp) osp 65.04 4000000 2742 1458789.20
AHRI (vec,bp) pos 65.04 4000000 3772 1060445.39
AHRI (vec,bp) spo 65.04 4000000 2251 1776988.01
AHRI (vec,hb) osp 65.04 4000000 2780 1438848.92
AHRI (vec,hb) pos 65.04 4000000 2076 1926782.27
AHRI (vec,hb) spo 65.04 4000000 2247 1780151.31

AHRI (vec,hbwa) osp 65.04 4000000 2752 1453488.37
AHRI (vec,hbwa) pos 65.04 4000000 2112 1893939.39
AHRI (vec,hbwa) spo 65.04 4000000 2251 1776988.01

BPTree osp 95.47 (DBP) 4000000 6252 639795.27
BPTree pos 95.47 (DBP) 4000000 6457 619482.73
BPTree spo 95.47 (DBP) 4000000 6256 639386.19

AHRI (bp) osp 95.47 (DBP) 4000000 2964 1349527.67
AHRI (bp) pos 95.47 (DBP) 4000000 3796 1053740.78
AHRI (bp) spo 95.47 (DBP) 4000000 3281 1219140.51
AHRI (hb) osp 95.47 (DBP) 4000000 2950 1355932.20
AHRI (hb) pos 95.47 (DBP) 4000000 2810 1423487.54
AHRI (hb) spo 95.47 (DBP) 4000000 3254 1229256.30

AHRI (hbwa) osp 95.47 (DBP) 4000000 2962 1350438.89
AHRI (hbwa) pos 95.47 (DBP) 4000000 2907 1375988.99
AHRI (hbwa) spo 95.47 (DBP) 4000000 3272 1222493.89
AHRI (vec,bp) osp 95.47 (DBP) 4000000 3005 1331114.81
AHRI (vec,bp) pos 95.47 (DBP) 4000000 3751 1066382.30
AHRI (vec,bp) spo 95.47 (DBP) 4000000 3393 1178897.73
AHRI (vec,hb) osp 95.47 (DBP) 4000000 2991 1337345.37
AHRI (vec,hb) pos 95.47 (DBP) 4000000 2851 1403016.49
AHRI (vec,hb) spo 95.47 (DBP) 4000000 3338 1198322.35

AHRI (vec,hbwa) osp 95.47 (DBP) 4000000 3021 1324064.88
AHRI (vec,hbwa) pos 95.47 (DBP) 4000000 2857 1400070.00
AHRI (vec,hbwa) spo 95.47 (DBP) 4000000 3346 1195457.26

BPTree osp 100.00 4000000 6457 619482.73
BPTree pos 100.00 4000000 6553 610407.45

continued on next page



268 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
BPTree spo 100.00 4000000 6220 643086.82

AHRI (bp) osp 100.00 4000000 2938 1361470.39
AHRI (bp) pos 100.00 4000000 3937 1016002.03
AHRI (bp) spo 100.00 4000000 2381 1679966.40
AHRI (hb) osp 100.00 4000000 2956 1353179.97
AHRI (hb) pos 100.00 4000000 2239 1786511.84
AHRI (hb) spo 100.00 4000000 2387 1675743.61

AHRI (hbwa) osp 100.00 4000000 2942 1359619.31
AHRI (hbwa) pos 100.00 4000000 2258 1771479.19
AHRI (hbwa) spo 100.00 4000000 2400 1666666.67
AHRI (vec,bp) osp 100.00 4000000 2997 1334668.00
AHRI (vec,bp) pos 100.00 4000000 4011 997257.54
AHRI (vec,bp) spo 100.00 4000000 2389 1674340.73
AHRI (vec,hb) osp 100.00 4000000 3011 1328462.30
AHRI (vec,hb) pos 100.00 4000000 2214 1806684.73
AHRI (vec,hb) spo 100.00 4000000 2390 1673640.17

AHRI (vec,hbwa) osp 100.00 4000000 3001 1332889.04
AHRI (vec,hbwa) pos 100.00 4000000 2243 1783325.90
AHRI (vec,hbwa) spo 100.00 4000000 2379 1681378.73

BPTree osp 157.84 4000000 6642 602228.24
BPTree pos 157.84 4000000 6904 579374.28
BPTree spo 157.84 4000000 6548 610873.55

AHRI (bp) osp 157.84 4000000 3145 1271860.10
AHRI (bp) pos 157.84 4000000 4163 960845.54
AHRI (bp) spo 157.84 4000000 2442 1638001.64
AHRI (hb) osp 157.84 4000000 3138 1274697.26
AHRI (hb) pos 157.84 4000000 2320 1724137.93
AHRI (hb) spo 157.84 4000000 2489 1607071.11

AHRI (hbwa) osp 157.84 4000000 3148 1270648.03
AHRI (hbwa) pos 157.84 4000000 2396 1669449.08
AHRI (hbwa) spo 157.84 4000000 2459 1626677.51
AHRI (vec,bp) osp 157.84 4000000 3180 1257861.64
AHRI (vec,bp) pos 157.84 4000000 4243 942729.20
AHRI (vec,bp) spo 157.84 4000000 2424 1650165.02

continued on next page



Appendix D Raw Evaluation Data 269

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,hb) osp 157.84 4000000 3197 1251172.97
AHRI (vec,hb) pos 157.84 4000000 2353 1699957.50
AHRI (vec,hb) spo 157.84 4000000 2488 1607717.04

AHRI (vec,hbwa) osp 157.84 4000000 3175 1259842.52
AHRI (vec,hbwa) pos 157.84 4000000 2386 1676445.93
AHRI (vec,hbwa) spo 157.84 4000000 2478 1614205.00

BPTree osp 189.57 (DBP) 4000000 6754 592241.63
BPTree pos 189.57 (DBP) 4000000 6794 588754.78
BPTree spo 189.57 (DBP) 4000000 6701 596925.83

AHRI (bp) osp 189.57 (DBP) 4000000 3438 1163467.13
AHRI (bp) pos 189.57 (DBP) 4000000 4080 980392.16
AHRI (bp) spo 189.57 (DBP) 4000000 3897 1026430.59
AHRI (hb) osp 189.57 (DBP) 4000000 3357 1191540.07
AHRI (hb) pos 189.57 (DBP) 4000000 3040 1315789.47
AHRI (hb) spo 189.57 (DBP) 4000000 3745 1068090.79

AHRI (hbwa) osp 189.57 (DBP) 4000000 3443 1161777.52
AHRI (hbwa) pos 189.57 (DBP) 4000000 3115 1284109.15
AHRI (hbwa) spo 189.57 (DBP) 4000000 3777 1059041.57
AHRI (vec,bp) osp 189.57 (DBP) 4000000 3475 1151079.14
AHRI (vec,bp) pos 189.57 (DBP) 4000000 4157 962232.38
AHRI (vec,bp) spo 189.57 (DBP) 4000000 3976 1006036.22
AHRI (vec,hb) osp 189.57 (DBP) 4000000 3521 1136040.90
AHRI (vec,hb) pos 189.57 (DBP) 4000000 3097 1291572.49
AHRI (vec,hb) spo 189.57 (DBP) 4000000 3815 1048492.79

AHRI (vec,hbwa) osp 189.57 (DBP) 4000000 3478 1150086.26
AHRI (vec,hbwa) pos 189.57 (DBP) 4000000 3119 1282462.33
AHRI (vec,hbwa) spo 189.57 (DBP) 4000000 3825 1045751.63

BPTree osp 350.56 4000000 7224 553709.86
BPTree pos 350.56 4000000 7476 535045.48
BPTree spo 350.56 4000000 7056 566893.42

AHRI (bp) osp 350.56 4000000 3405 1174743.02
AHRI (bp) pos 350.56 4000000 4590 871459.69
AHRI (bp) spo 350.56 4000000 2688 1488095.24
AHRI (hb) osp 350.56 4000000 3411 1172676.63

continued on next page



270 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (hb) pos 350.56 4000000 2600 1538461.54
AHRI (hb) spo 350.56 4000000 2678 1493651.98

AHRI (hbwa) osp 350.56 4000000 3442 1162115.05
AHRI (hbwa) pos 350.56 4000000 2556 1564945.23
AHRI (hbwa) spo 350.56 4000000 2690 1486988.85
AHRI (vec,bp) osp 350.56 4000000 3493 1145147.44
AHRI (vec,bp) pos 350.56 4000000 4614 866926.74
AHRI (vec,bp) spo 350.56 4000000 2629 1521491.06
AHRI (vec,hb) osp 350.56 4000000 3501 1142530.71
AHRI (vec,hb) pos 350.56 4000000 2575 1553398.06
AHRI (vec,hb) spo 350.56 4000000 2685 1489757.91

AHRI (vec,hbwa) osp 350.56 4000000 3542 1129305.48
AHRI (vec,hbwa) pos 350.56 4000000 2627 1522649.41
AHRI (vec,hbwa) spo 350.56 4000000 2624 1524390.24

Table D.4: Restriction by three attributes

D.1.5 Restriction by Mixed Attributes

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
Bitmap osp 5.00 1000 2517 397.30
Bitmap pos 5.00 200 3921 51.01
Bitmap spo 5.00 10000 10459 956.11
BPTree osp 5.00 15000 3093 4849.66
BPTree pos 5.00 1500 3679 407.72
BPTree spo 5.00 2000000 4786 417885.50
BST osp 5.00 15000 7159 2095.26
BST pos 5.00 1500 7417 202.24
BST spo 5.00 2000000 7167 279056.79
BTree osp 5.00 15000 4178 3590.23
BTree pos 5.00 1500 4532 330.98
BTree spo 5.00 2000000 5557 359906.42

BTreeRef osp 5.00 15000 3378 4440.50
BTreeRef pos 5.00 1500 4716 318.07

continued on next page



Appendix D Raw Evaluation Data 271

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
BTreeRef spo 5.00 2000000 6213 321905.68

AHRI (bp) osp 5.00 15000 1721 8715.86
AHRI (bp) pos 5.00 1500 1803 831.95
AHRI (bp) spo 5.00 2000000 1106 1808318.26
AHRI (hb) osp 5.00 15000 1736 8640.55
AHRI (hb) pos 5.00 1500 3133 478.77
AHRI (hb) spo 5.00 2000000 1291 1549186.68

AHRI (hbwa) osp 5.00 15000 1717 8736.17
AHRI (hbwa) pos 5.00 1500 1836 816.99
AHRI (hbwa) spo 5.00 2000000 1381 1448225.92

Hash osp 5.00 15000 24061 623.42
Hash pos 5.00 1500 21021 71.36
Hash spo 5.00 2000000 4312 463821.89

AHRI (vec,bp) osp 5.00 15000 1538 9752.93
AHRI (vec,bp) pos 5.00 1500 1764 850.34
AHRI (vec,bp) spo 5.00 2000000 1382 1447178.00
AHRI (vec,hb) osp 5.00 15000 1506 9960.16
AHRI (vec,hb) pos 5.00 1500 3130 479.23
AHRI (vec,hb) spo 5.00 2000000 1208 1655629.14

AHRI (vec,hbwa) osp 5.00 15000 1514 9907.53
AHRI (vec,hbwa) pos 5.00 1500 1821 823.72
AHRI (vec,hbwa) spo 5.00 2000000 1124 1779359.43

BPTree osp 10.00 15000 1545 9708.74
BPTree pos 10.00 1000 1134 881.83
BPTree spo 10.00 4000000 3881 1030662.20

AHRI (bp) osp 10.00 15000 1213 12366.03
AHRI (bp) pos 10.00 1000 965 1036.27
AHRI (bp) spo 10.00 4000000 1339 2987303.96
AHRI (hb) osp 10.00 15000 1203 12468.83
AHRI (hb) pos 10.00 1000 1650 606.06
AHRI (hb) spo 10.00 4000000 1374 2911208.15

AHRI (hbwa) osp 10.00 15000 1206 12437.81
AHRI (hbwa) pos 10.00 1000 992 1008.06
AHRI (hbwa) spo 10.00 4000000 1371 2917578.41

continued on next page



272 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,bp) osp 10.00 15000 880 17045.45
AHRI (vec,bp) pos 10.00 1000 680 1470.59
AHRI (vec,bp) spo 10.00 4000000 1380 2898550.72
AHRI (vec,hb) osp 10.00 15000 881 17026.11
AHRI (vec,hb) pos 10.00 1000 1505 664.45
AHRI (vec,hb) spo 10.00 4000000 1385 2888086.64

AHRI (vec,hbwa) osp 10.00 15000 885 16949.15
AHRI (vec,hbwa) pos 10.00 1000 674 1483.68
AHRI (vec,hbwa) spo 10.00 4000000 1387 2883922.13

BPTree osp 30.69 15000 4635 3236.25
BPTree pos 30.69 1000 3313 301.84
BPTree spo 30.69 4000000 5105 783545.54

AHRI (bp) osp 30.69 15000 3499 4286.94
AHRI (bp) pos 30.69 1000 2742 364.70
AHRI (bp) spo 30.69 4000000 1510 2649006.62
AHRI (hb) osp 30.69 15000 3488 4300.46
AHRI (hb) pos 30.69 1000 4888 204.58
AHRI (hb) spo 30.69 4000000 1557 2569043.03

AHRI (hbwa) osp 30.69 15000 3543 4233.70
AHRI (hbwa) pos 30.69 1000 2661 375.80
AHRI (hbwa) spo 30.69 4000000 1515 2640264.03
AHRI (vec,bp) osp 30.69 15000 3318 4520.80
AHRI (vec,bp) pos 30.69 1000 2004 499.00
AHRI (vec,bp) spo 30.69 4000000 1526 2621231.98
AHRI (vec,hb) osp 30.69 15000 3315 4524.89
AHRI (vec,hb) pos 30.69 1000 4493 222.57
AHRI (vec,hb) spo 30.69 4000000 1480 2702702.70

AHRI (vec,hbwa) osp 30.69 15000 3307 4535.83
AHRI (vec,hbwa) pos 30.69 1000 1951 512.56
AHRI (vec,hbwa) spo 30.69 4000000 1642 2436053.59

BPTree osp 46.14 (DBP) 15000 824 18203.88
BPTree pos 46.14 (DBP) 1000 787 1270.65
BPTree spo 46.14 (DBP) 4000000 6081 657786.55

AHRI (bp) osp 46.14 (DBP) 15000 751 19973.37

continued on next page



Appendix D Raw Evaluation Data 273

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (bp) pos 46.14 (DBP) 1000 625 1600.00
AHRI (bp) spo 46.14 (DBP) 4000000 2956 1353179.97
AHRI (hb) osp 46.14 (DBP) 15000 813 18450.18
AHRI (hb) pos 46.14 (DBP) 1000 1055 947.87
AHRI (hb) spo 46.14 (DBP) 4000000 3163 1264622.19

AHRI (hbwa) osp 46.14 (DBP) 15000 651 23041.47
AHRI (hbwa) pos 46.14 (DBP) 1000 719 1390.82
AHRI (hbwa) spo 46.14 (DBP) 4000000 2972 1345895.02
AHRI (vec,bp) osp 46.14 (DBP) 15000 678 22123.89
AHRI (vec,bp) pos 46.14 (DBP) 1000 442 2262.44
AHRI (vec,bp) spo 46.14 (DBP) 4000000 3072 1302083.33
AHRI (vec,hb) osp 46.14 (DBP) 15000 714 21008.40
AHRI (vec,hb) pos 46.14 (DBP) 1000 934 1070.66
AHRI (vec,hb) spo 46.14 (DBP) 4000000 3235 1236476.04

AHRI (vec,hbwa) osp 46.14 (DBP) 15000 517 29013.54
AHRI (vec,hbwa) pos 46.14 (DBP) 1000 433 2309.47
AHRI (vec,hbwa) spo 46.14 (DBP) 4000000 3068 1303780.96

BPTree osp 65.04 15000 10029 1495.66
BPTree pos 65.04 1000 7305 136.89
BPTree spo 65.04 4000000 5952 672043.01

AHRI (bp) osp 65.04 15000 7090 2115.66
AHRI (bp) pos 65.04 1000 5896 169.61
AHRI (bp) spo 65.04 4000000 2280 1754385.96
AHRI (hb) osp 65.04 15000 7024 2135.54
AHRI (hb) pos 65.04 1000 10564 94.66
AHRI (hb) spo 65.04 4000000 2338 1710863.99

AHRI (hbwa) osp 65.04 15000 7057 2125.55
AHRI (hbwa) pos 65.04 1000 5593 178.79
AHRI (hbwa) spo 65.04 4000000 2342 1707941.93
AHRI (vec,bp) osp 65.04 15000 7629 1966.18
AHRI (vec,bp) pos 65.04 1000 5017 199.32
AHRI (vec,bp) spo 65.04 4000000 2354 1699235.34
AHRI (vec,hb) osp 65.04 15000 7613 1970.31
AHRI (vec,hb) pos 65.04 1000 9411 106.26

continued on next page



274 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,hb) spo 65.04 4000000 2340 1709401.71

AHRI (vec,hbwa) osp 65.04 15000 7640 1963.35
AHRI (vec,hbwa) pos 65.04 1000 4896 204.25
AHRI (vec,hbwa) spo 65.04 4000000 2342 1707941.93

BPTree osp 95.47 (DBP) 15000 966 15527.95
BPTree pos 95.47 (DBP) 1000 2628 380.52
BPTree spo 95.47 (DBP) 4000000 6824 586166.47

AHRI (bp) osp 95.47 (DBP) 15000 766 19582.25
AHRI (bp) pos 95.47 (DBP) 1000 2317 431.59
AHRI (bp) spo 95.47 (DBP) 4000000 3648 1096491.23
AHRI (hb) osp 95.47 (DBP) 15000 790 18987.34
AHRI (hb) pos 95.47 (DBP) 1000 3958 252.65
AHRI (hb) spo 95.47 (DBP) 4000000 3738 1070090.96

AHRI (hbwa) osp 95.47 (DBP) 15000 726 20661.16
AHRI (hbwa) pos 95.47 (DBP) 1000 2489 401.77
AHRI (hbwa) spo 95.47 (DBP) 4000000 3693 1083130.25
AHRI (vec,bp) osp 95.47 (DBP) 15000 740 20270.27
AHRI (vec,bp) pos 95.47 (DBP) 1000 1721 581.06
AHRI (vec,bp) spo 95.47 (DBP) 4000000 3800 1052631.58
AHRI (vec,hb) osp 95.47 (DBP) 15000 763 19659.24
AHRI (vec,hb) pos 95.47 (DBP) 1000 3182 314.27
AHRI (vec,hb) spo 95.47 (DBP) 4000000 3882 1030396.70

AHRI (vec,hbwa) osp 95.47 (DBP) 15000 744 20161.29
AHRI (vec,hbwa) pos 95.47 (DBP) 1000 1740 574.71
AHRI (vec,hbwa) spo 95.47 (DBP) 4000000 3784 1057082.45

BPTree osp 100.00 15000 12987 1155.00
BPTree pos 100.00 1000 11245 88.93
BPTree spo 100.00 4000000 6379 627057.53

AHRI (bp) osp 100.00 15000 9540 1572.33
AHRI (bp) pos 100.00 1000 8979 111.37
AHRI (bp) spo 100.00 4000000 2475 1616161.62
AHRI (hb) osp 100.00 15000 9542 1572.00
AHRI (hb) pos 100.00 1000 15570 64.23
AHRI (hb) spo 100.00 4000000 2476 1615508.89

continued on next page



Appendix D Raw Evaluation Data 275

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (hbwa) osp 100.00 15000 9544 1571.67
AHRI (hbwa) pos 100.00 1000 8810 113.51
AHRI (hbwa) spo 100.00 4000000 2491 1605780.81
AHRI (vec,bp) osp 100.00 15000 10247 1463.84
AHRI (vec,bp) pos 100.00 1000 6578 152.02
AHRI (vec,bp) spo 100.00 4000000 2485 1609657.95
AHRI (vec,hb) osp 100.00 15000 10865 1380.58
AHRI (vec,hb) pos 100.00 1000 14548 68.74
AHRI (vec,hb) spo 100.00 4000000 2455 1629327.90

AHRI (vec,hbwa) osp 100.00 15000 10180 1473.48
AHRI (vec,hbwa) pos 100.00 1000 7362 135.83
AHRI (vec,hbwa) spo 100.00 4000000 2484 1610305.96

BPTree osp 157.84 15000 26156 573.48
BPTree pos 157.84 1000 18599 53.77
BPTree spo 157.84 4000000 6692 597728.63

AHRI (bp) osp 157.84 15000 19486 769.78
AHRI (bp) pos 157.84 1000 14490 69.01
AHRI (bp) spo 157.84 4000000 2515 1590457.26
AHRI (hb) osp 157.84 15000 17047 879.92
AHRI (hb) pos 157.84 1000 24184 41.35
AHRI (hb) spo 157.84 4000000 2553 1566784.18

AHRI (hbwa) osp 157.84 15000 17052 879.66
AHRI (hbwa) pos 157.84 1000 14113 70.86
AHRI (hbwa) spo 157.84 4000000 2537 1576665.35
AHRI (vec,bp) osp 157.84 15000 19543 767.54
AHRI (vec,bp) pos 157.84 1000 12219 81.84
AHRI (vec,bp) spo 157.84 4000000 2524 1584786.05
AHRI (vec,hb) osp 157.84 15000 19563 766.75
AHRI (vec,hb) pos 157.84 1000 22382 44.68
AHRI (vec,hb) spo 157.84 4000000 2580 1550387.60

AHRI (vec,hbwa) osp 157.84 15000 18361 816.95
AHRI (vec,hbwa) pos 157.84 1000 11971 83.54
AHRI (vec,hbwa) spo 157.84 4000000 2542 1573564.12

BPTree osp 189.57 (DBP) 15000 635 23622.05

continued on next page



276 Appendix D Raw Evaluation Data

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
BPTree pos 189.57 (DBP) 1000 56862 17.59
BPTree spo 189.57 (DBP) 4000000 9310 429645.54

AHRI (bp) osp 189.57 (DBP) 15000 476 31512.61
AHRI (bp) pos 189.57 (DBP) 1000 42433 23.57
AHRI (bp) spo 189.57 (DBP) 4000000 5580 716845.88
AHRI (hb) osp 189.57 (DBP) 15000 485 30927.84
AHRI (hb) pos 189.57 (DBP) 1000 73359 13.63
AHRI (hb) spo 189.57 (DBP) 4000000 6739 593559.88

AHRI (hbwa) osp 189.57 (DBP) 15000 427 35128.81
AHRI (hbwa) pos 189.57 (DBP) 1000 53298 18.76
AHRI (hbwa) spo 189.57 (DBP) 4000000 5799 689774.10
AHRI (vec,bp) osp 189.57 (DBP) 15000 343 43731.78
AHRI (vec,bp) pos 189.57 (DBP) 1000 34574 28.92
AHRI (vec,bp) spo 189.57 (DBP) 4000000 5493 728199.53
AHRI (vec,hb) osp 189.57 (DBP) 15000 464 32327.59
AHRI (vec,hb) pos 189.57 (DBP) 1000 67765 14.76
AHRI (vec,hb) spo 189.57 (DBP) 4000000 6829 585737.30

AHRI (vec,hbwa) osp 189.57 (DBP) 15000 453 33112.58
AHRI (vec,hbwa) pos 189.57 (DBP) 1000 34798 28.74
AHRI (vec,hbwa) spo 189.57 (DBP) 4000000 5459 732734.93

BPTree osp 350.56 15000 54773 273.86
BPTree pos 350.56 1000 45050 22.20
BPTree spo 350.56 4000000 7203 555324.17

AHRI (bp) osp 350.56 15000 34272 437.68
AHRI (bp) pos 350.56 1000 30428 32.86
AHRI (bp) spo 350.56 4000000 2779 1439366.68
AHRI (hb) osp 350.56 15000 34296 437.37
AHRI (hb) pos 350.56 1000 53431 18.72
AHRI (hb) spo 350.56 4000000 2777 1440403.31

AHRI (hbwa) osp 350.56 15000 34302 437.29
AHRI (hbwa) pos 350.56 1000 29467 33.94
AHRI (hbwa) spo 350.56 4000000 2778 1439884.81
AHRI (vec,bp) osp 350.56 15000 39331 381.38
AHRI (vec,bp) pos 350.56 1000 22348 44.75

continued on next page



Appendix D Raw Evaluation Data 277

Structure
Attribute
Order

Size (M) Iterations
Runtime

(ms)

Queries
Per

Second
AHRI (vec,bp) spo 350.56 4000000 2727 1466813.35
AHRI (vec,hb) osp 350.56 15000 36900 406.50
AHRI (vec,hb) pos 350.56 1000 48993 20.41
AHRI (vec,hb) spo 350.56 4000000 2778 1439884.81

AHRI (vec,hbwa) osp 350.56 15000 36931 406.16
AHRI (vec,hbwa) pos 350.56 1000 21674 46.14 (DBP)
AHRI (vec,hbwa) spo 350.56 4000000 2724 1468428.78

Table D.5: Restriction by mixed attributes

D.2 Performance Counter Information

This section contains all the results for using OProfile to measure CPU events such as
cache misses. For this section, the only dataset used was the 5 million triple BSBM
dataset.

D.2.1 Cache

D.2.1.1 Load

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

Bitmap osp 4000000 81655 2038 960
Bitmap pos 4000000 87740 2292 1056
Bitmap spo 4000000 87129 2118 1024
BPTree osp 4000000 177244 4965 1673
BPTree pos 4000000 205859 5794 1734
BPTree spo 4000000 145776 1973 995
BST osp 4000000 150785 5985 3432
BST pos 4000000 160001 6194 3586
BST spo 4000000 85321 4121 3718
BTree osp 4000000 174034 3963 1446
BTree pos 4000000 195188 5119 1603
BTree spo 4000000 149238 1877 1039

continued on next page



278 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

BTreeRef osp 4000000 203798 16172 6558
BTreeRef pos 4000000 243735 22594 7679
BTreeRef spo 4000000 142726 2000 929

AHRI (vec,cbp) osp 4000000 53869 1902 931
AHRI (vec,cbp) pos 4000000 168948 6090 1373
AHRI (vec,cbp) spo 4000000 40676 436 168
AHRI (vec,hb) osp 4000000 54778 1924 901
AHRI (vec,hb) pos 4000000 52080 1649 656
AHRI (vec,hb) spo 4000000 38578 413 159

AHRI (vec,hbwa) osp 4000000 54081 1981 924
AHRI (vec,hbwa) pos 4000000 56407 2000 800
AHRI (vec,hbwa) spo 4000000 44441 459 171

Hash osp 4000000 62187 3342 1754
Hash pos 4000000 52712 1997 1209
Hash spo 4000000 42415 683 407

AHRI (cbp) osp 4000000 63510 2038 973
AHRI (cbp) pos 4000000 168261 5969 1389
AHRI (cbp) spo 4000000 44030 454 181
AHRI (hb) osp 4000000 60225 2058 969
AHRI (hb) pos 4000000 61581 1764 673
AHRI (hb) spo 4000000 44175 438 184

AHRI (hbwa) osp 4000000 64089 2042 983
AHRI (hbwa) pos 4000000 75352 2300 934
AHRI (hbwa) spo 4000000 49252 551 200

Table D.6: Cache performance counters: load

D.2.1.2 Restriction by One Attribute

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

Bitmap osp 1000 149461 3234 2256
Bitmap pos 120 117398 4092 2604
Bitmap spo 4000000 199989 2442 1799
BPTree osp 6000 265167 3081 678

continued on next page



Appendix D Raw Evaluation Data 279

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

BPTree pos 1200 463970 5301 1214
BPTree spo 4000000 183055 2676 1592
BST osp 6000 483722 6698 992
BST pos 1200 942348 12530 1486
BST spo 4000000 367837 5387 3228
BTree osp 6000 310660 3141 878
BTree pos 1200 618005 6601 1699
BTree spo 4000000 233145 3164 2013

BTreeRef osp 6000 199248 7067 3272
BTreeRef pos 1200 353629 12472 6047
BTreeRef spo 4000000 266324 5494 3421

AHRI (vec,cbp) osp 6000 138923 1859 148
AHRI (vec,cbp) pos 1200 230529 3108 460
AHRI (vec,cbp) spo 4000000 60668 479 265
AHRI (vec,hb) osp 6000 157105 2210 159
AHRI (vec,hb) pos 1200 403993 4336 476
AHRI (vec,hb) spo 4000000 100007 552 296

AHRI (vec,hbwa) osp 6000 141194 1895 135
AHRI (vec,hbwa) pos 1200 274041 3802 560
AHRI (vec,hbwa) spo 4000000 59899 476 261

Hash osp 6000 321727 6745 610
Hash pos 1200 812817 14240 1255
Hash spo 4000000 191510 1804 858

AHRI (cbp) osp 6000 128552 2059 174
AHRI (cbp) pos 1200 232347 3418 439
AHRI (cbp) spo 4000000 54163 538 331
AHRI (hb) osp 6000 117814 1950 159
AHRI (hb) pos 1200 391816 4237 502
AHRI (hb) spo 4000000 58339 587 373

AHRI (hbwa) osp 6000 131768 2124 185
AHRI (hbwa) pos 1200 247698 3540 511
AHRI (hbwa) spo 4000000 60906 636 398

Table D.7: Cache performance counters: restriction by one attribute

D.2.1.3 Restriction by Two Attributes



280 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

Bitmap osp 20000 61258 1092 44
Bitmap pos 600 87784 2157 1282
Bitmap spo 20000 248147 4967 164
BPTree osp 4000000 102638 2496 1501
BPTree pos 6000 203520 2336 542
BPTree spo 4000000 114541 2872 1753
BST osp 4000000 126748 4532 3341
BST pos 6000 388945 5292 687
BST spo 4000000 159658 4310 3156
BTree osp 4000000 136802 2865 1924
BTree pos 6000 294761 2993 813
BTree spo 4000000 121266 3039 2019

BTreeRef osp 4000000 135560 5131 3392
BTreeRef pos 6000 162777 5738 2571
BTreeRef spo 4000000 140899 4835 3103

AHRI (vec,cbp) osp 4000000 25024 691 309
AHRI (vec,cbp) pos 6000 104748 1382 178
AHRI (vec,cbp) spo 4000000 34537 447 265
AHRI (vec,hb) osp 4000000 25028 720 301
AHRI (vec,hb) pos 6000 181869 1816 137
AHRI (vec,hb) spo 4000000 36092 437 262

AHRI (vec,hbwa) osp 4000000 25425 689 311
AHRI (vec,hbwa) pos 6000 109395 1481 133
AHRI (vec,hbwa) spo 4000000 35167 457 264

Hash osp 12000 569344 14671 1866
Hash pos 4000 1363738 39791 8336
Hash spo 4000000 137536 1870 977

AHRI (cbp) osp 4000000 27258 785 331
AHRI (cbp) pos 6000 95194 1250 153
AHRI (cbp) spo 4000000 42773 558 350
AHRI (hb) osp 4000000 28424 870 373
AHRI (hb) pos 6000 203653 2032 138
AHRI (hb) spo 4000000 44846 574 384

AHRI (hbwa) osp 4000000 29396 859 384

continued on next page



Appendix D Raw Evaluation Data 281

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

AHRI (hbwa) pos 6000 100068 1361 117
AHRI (hbwa) spo 4000000 53456 737 452

Table D.8: Cache performance counters: restriction by two attributes

D.2.1.4 Restriction by Three Attributes

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

Bitmap osp 20000 308682 6043 227
Bitmap pos 20000 1013952 12158 2561
Bitmap spo 20000 319682 6276 229
BPTree osp 4000000 100976 2465 1508
BPTree pos 4000000 118092 2728 1631
BPTree spo 4000000 102545 2772 1749
BST osp 4000000 122988 4464 3340
BST pos 4000000 141424 4759 3661
BST spo 4000000 145935 4505 3425
BTree osp 4000000 134008 2760 1897
BTree pos 4000000 131672 3054 2082
BTree spo 4000000 105264 2925 2019

BTreeRef osp 4000000 120902 4471 3013
BTreeRef pos 4000000 127252 4360 2986
BTreeRef spo 4000000 122286 4583 3012

AHRI (vec,cbp) osp 4000000 25524 631 307
AHRI (vec,cbp) pos 4000000 61468 1456 874
AHRI (vec,cbp) spo 4000000 28030 401 270
AHRI (vec,hb) osp 4000000 26231 660 302
AHRI (vec,hb) pos 4000000 28117 481 191
AHRI (vec,hb) spo 4000000 29312 401 263

AHRI (vec,hbwa) osp 4000000 28148 708 346
AHRI (vec,hbwa) pos 4000000 28465 538 199
AHRI (vec,hbwa) spo 4000000 28911 391 270

Hash osp 4000000 26106 801 451

continued on next page



282 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

Hash pos 4000000 24002 444 261
Hash spo 4000000 28946 865 669

AHRI (cbp) osp 4000000 26338 705 330
AHRI (cbp) pos 4000000 53756 1275 755
AHRI (cbp) spo 4000000 35320 465 329
AHRI (hb) osp 4000000 28827 799 359
AHRI (hb) pos 4000000 27374 473 184
AHRI (hb) spo 4000000 36922 486 365

AHRI (hbwa) osp 4000000 27008 735 351
AHRI (hbwa) pos 4000000 31283 618 225
AHRI (hbwa) spo 4000000 37699 517 363

Table D.9: Cache performance counters: restriction by three attributes

D.2.1.5 Restriction by Mixed Attributes

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

Bitmap osp 2000 49388 1062 530
Bitmap pos 400 86648 2601 1588
Bitmap spo 20000 256033 5104 189
BPTree osp 30000 139612 1630 372
BPTree pos 3000 154290 1791 419
BPTree spo 4000000 116373 2782 1709
BST osp 30000 291112 4113 546
BST pos 3000 289999 3853 529
BST spo 4000000 170723 4306 3143
BTree osp 30000 168810 1727 503
BTree pos 3000 186458 1872 523
BTree spo 4000000 137493 3342 2184

BTreeRef osp 30000 104624 3709 1759
BTreeRef pos 3000 128119 4575 1704
BTreeRef spo 4000000 143827 4751 3029

AHRI (vec,cbp) osp 30000 99042 1363 112
AHRI (vec,cbp) pos 3000 79101 1092 189

continued on next page



Appendix D Raw Evaluation Data 283

Structure
Attribute

Order
Iterations

L1
Accesses
(x10,000)

L1 Misses
(x10,000)

L2 Misses
(x10,000)

AHRI (vec,cbp) spo 4000000 35162 457 267
AHRI (vec,hb) osp 30000 79942 1164 88
AHRI (vec,hb) pos 3000 118801 1273 180
AHRI (vec,hb) spo 4000000 44288 498 300

AHRI (vec,hbwa) osp 30000 79704 1100 98
AHRI (vec,hbwa) pos 3000 78688 1115 163
AHRI (vec,hbwa) spo 4000000 35792 456 267

Hash osp 30000 794429 19569 2825
Hash pos 3000 721939 19188 2473
Hash spo 4000000 95303 1386 792

AHRI (cbp) osp 30000 65297 1133 126
AHRI (cbp) pos 3000 75662 1059 158
AHRI (cbp) spo 4000000 39983 517 334
AHRI (hb) osp 30000 66553 1160 116
AHRI (hb) pos 3000 135983 1473 190
AHRI (hb) spo 4000000 45546 589 394

AHRI (hbwa) osp 30000 68699 1151 108
AHRI (hbwa) pos 3000 94760 1378 211
AHRI (hbwa) spo 4000000 41687 575 357

Table D.10: Cache performance counters: restriction by mixed attributes

D.2.2 TLB

D.2.2.1 Load

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
Bitmap osp 4000000 81655 6047 1448
Bitmap pos 4000000 87740 5827 1285
Bitmap spo 4000000 87129 5834 1373
BPTree osp 4000000 177244 1881 588
BPTree pos 4000000 205859 2771 1038
BPTree spo 4000000 145776 690 504
BST osp 4000000 150785 5000 2319

continued on next page



284 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
BST pos 4000000 160001 6690 3169
BST spo 4000000 85321 700 495
BTree osp 4000000 174034 2326 844
BTree pos 4000000 195188 2850 1048
BTree spo 4000000 149238 653 447

BTreeRef osp 4000000 203798 26783 11504
BTreeRef pos 4000000 243735 27001 11278
BTreeRef spo 4000000 142726 10569 1037

AHRI (vec,cbp) osp 4000000 53869 3485 758
AHRI (vec,cbp) pos 4000000 168948 5425 1032
AHRI (vec,cbp) spo 4000000 40676 996 153
AHRI (vec,hb) osp 4000000 54778 3889 1015
AHRI (vec,hb) pos 4000000 52080 4223 863
AHRI (vec,hb) spo 4000000 38578 873 50

AHRI (vec,hbwa) osp 4000000 54081 3431 690
AHRI (vec,hbwa) pos 4000000 56407 4410 828
AHRI (vec,hbwa) spo 4000000 44441 975 103

Hash osp 4000000 62187 4504 1576
Hash pos 4000000 52712 4620 1446
Hash spo 4000000 42415 900 190

AHRI (cbp) osp 4000000 63510 3804 798
AHRI (cbp) pos 4000000 168261 6142 1302
AHRI (cbp) spo 4000000 44030 1315 169
AHRI (hb) osp 4000000 60225 4421 1053
AHRI (hb) pos 4000000 61581 4939 979
AHRI (hb) spo 4000000 44175 1563 142

AHRI (hbwa) osp 4000000 64089 4044 940
AHRI (hbwa) pos 4000000 75352 4443 818
AHRI (hbwa) spo 4000000 49252 1294 182

Table D.11: TLB performance counters: load

D.2.2.2 Restriction by One Attribute



Appendix D Raw Evaluation Data 285

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
Bitmap osp 1000 149461 1525 1047
Bitmap pos 120 117398 1029 765
Bitmap spo 4000000 199989 2327 1249
BPTree osp 6000 265167 413 361
BPTree pos 1200 463970 1170 1089
BPTree spo 4000000 183055 1588 770
BST osp 6000 483722 1986 1869
BST pos 1200 942348 3797 3566
BST spo 4000000 367837 2664 1110
BTree osp 6000 310660 735 555
BTree pos 1200 618005 2315 2055
BTree spo 4000000 233145 1781 992

BTreeRef osp 6000 199248 1350 1079
BTreeRef pos 1200 353629 1529 1025
BTreeRef spo 4000000 266324 2898 1783

AHRI (vec,cbp) osp 6000 138923 239 193
AHRI (vec,cbp) pos 1200 230529 943 882
AHRI (vec,cbp) spo 4000000 60668 644 336
AHRI (vec,hb) osp 6000 157105 375 336
AHRI (vec,hb) pos 1200 403993 1068 999
AHRI (vec,hb) spo 4000000 100007 602 339

AHRI (vec,hbwa) osp 6000 141194 240 195
AHRI (vec,hbwa) pos 1200 274041 664 599
AHRI (vec,hbwa) spo 4000000 59899 629 372

Hash osp 6000 321727 745 620
Hash pos 1200 812817 2353 2140
Hash spo 4000000 191510 1570 1123

AHRI (cbp) osp 6000 128552 223 181
AHRI (cbp) pos 1200 232347 851 792
AHRI (cbp) spo 4000000 54163 930 538
AHRI (hb) osp 6000 117814 286 242
AHRI (hb) pos 1200 391816 1033 970
AHRI (hb) spo 4000000 58339 1001 585

AHRI (hbwa) osp 6000 131768 264 223

continued on next page



286 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
AHRI (hbwa) pos 1200 247698 746 685
AHRI (hbwa) spo 4000000 60906 1002 624

Table D.12: TLB performance counters: restriction by one attribute

D.2.2.3 Restriction by Two Attributes

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
Bitmap osp 20000 61258 129 61
Bitmap pos 600 87784 714 482
Bitmap spo 20000 248147 902 769
BPTree osp 4000000 102638 1365 720
BPTree pos 6000 203520 799 744
BPTree spo 4000000 114541 1465 750
BST osp 4000000 126748 2501 1157
BST pos 6000 388945 906 783
BST spo 4000000 159658 2935 1390
BTree osp 4000000 136802 1331 670
BTree pos 6000 294761 1338 1194
BTree spo 4000000 121266 1498 780

BTreeRef osp 4000000 135560 2230 1249
BTreeRef pos 6000 162777 576 315
BTreeRef spo 4000000 140899 3059 1998

AHRI (vec,cbp) osp 4000000 25024 1193 517
AHRI (vec,cbp) pos 6000 104748 358 325
AHRI (vec,cbp) spo 4000000 34537 572 253
AHRI (vec,hb) osp 4000000 25028 1195 537
AHRI (vec,hb) pos 6000 181869 362 324
AHRI (vec,hb) spo 4000000 36092 582 277

AHRI (vec,hbwa) osp 4000000 25425 1129 486
AHRI (vec,hbwa) pos 6000 109395 230 195
AHRI (vec,hbwa) spo 4000000 35167 569 290

Hash osp 12000 569344 1386 1227

continued on next page



Appendix D Raw Evaluation Data 287

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
Hash pos 4000 1363738 5590 5045
Hash spo 4000000 137536 1422 952

AHRI (cbp) osp 4000000 27258 1273 592
AHRI (cbp) pos 6000 95194 104 67
AHRI (cbp) spo 4000000 42773 949 528
AHRI (hb) osp 4000000 28424 1203 612
AHRI (hb) pos 6000 203653 477 440
AHRI (hb) spo 4000000 44846 784 385

AHRI (hbwa) osp 4000000 29396 1212 592
AHRI (hbwa) pos 6000 100068 243 212
AHRI (hbwa) spo 4000000 53456 827 439

Table D.13: TLB performance counters: restriction by two attributes

D.2.2.4 Restriction by Three Attributes

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
Bitmap osp 20000 308682 681 534
Bitmap pos 20000 1013952 2790 2474
Bitmap spo 20000 319682 597 447
BPTree osp 4000000 100976 984 398
BPTree pos 4000000 118092 1278 657
BPTree spo 4000000 102545 1497 765
BST osp 4000000 122988 2172 837
BST pos 4000000 141424 2390 1184
BST spo 4000000 145935 2909 1420
BTree osp 4000000 134008 1734 1029
BTree pos 4000000 131672 1758 1109
BTree spo 4000000 105264 1257 546

BTreeRef osp 4000000 120902 1990 1128
BTreeRef pos 4000000 127252 1770 858
BTreeRef spo 4000000 122286 2566 1424

AHRI (vec,cbp) osp 4000000 25524 1105 440
AHRI (vec,cbp) pos 4000000 61468 1523 568

continued on next page



288 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
AHRI (vec,cbp) spo 4000000 28030 535 243
AHRI (vec,hb) osp 4000000 26231 1169 517
AHRI (vec,hb) pos 4000000 28117 1153 370
AHRI (vec,hb) spo 4000000 29312 559 269

AHRI (vec,hbwa) osp 4000000 28148 1168 529
AHRI (vec,hbwa) pos 4000000 28465 1008 286
AHRI (vec,hbwa) spo 4000000 28911 576 297

Hash osp 4000000 26106 1419 811
Hash pos 4000000 24002 1481 537
Hash spo 4000000 28946 1117 695

AHRI (cbp) osp 4000000 26338 1254 580
AHRI (cbp) pos 4000000 53756 1471 380
AHRI (cbp) spo 4000000 35320 865 460
AHRI (hb) osp 4000000 28827 1254 567
AHRI (hb) pos 4000000 27374 1205 376
AHRI (hb) spo 4000000 36922 828 402

AHRI (hbwa) osp 4000000 27008 1346 711
AHRI (hbwa) pos 4000000 31283 1126 344
AHRI (hbwa) spo 4000000 37699 891 481

Table D.14: TLB performance counters: restriction by three attributes

D.2.2.5 Restriction by Mixed Attributes

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
Bitmap osp 2000 49388 300 192
Bitmap pos 400 86648 458 234
Bitmap spo 20000 256033 1410 1292
BPTree osp 30000 139612 409 373
BPTree pos 3000 154290 580 545
BPTree spo 4000000 116373 1612 878
BST osp 30000 291112 1066 974
BST pos 3000 289999 1516 1432
BST spo 4000000 170723 3202 1584

continued on next page



Appendix D Raw Evaluation Data 289

Structure
Attribute

Order
Iterations

L1 TLB
Accesses
(x10,000)

L1 TLB
Misses

(x10,000)

L2 TLB
Misses

(x10,000)
BTree osp 30000 168810 315 218
BTree pos 3000 186458 835 748
BTree spo 4000000 137493 1779 1083

BTreeRef osp 30000 104624 699 524
BTreeRef pos 3000 128119 708 515
BTreeRef spo 4000000 143827 2842 1718

AHRI (vec,cbp) osp 30000 99042 188 156
AHRI (vec,cbp) pos 3000 79101 216 189
AHRI (vec,cbp) spo 4000000 35162 645 340
AHRI (vec,hb) osp 30000 79942 271 246
AHRI (vec,hb) pos 3000 118801 361 330
AHRI (vec,hb) spo 4000000 44288 589 298

AHRI (vec,hbwa) osp 30000 79704 99 71
AHRI (vec,hbwa) pos 3000 78688 238 207
AHRI (vec,hbwa) spo 4000000 35792 641 336

Hash osp 30000 794429 2380 2120
Hash pos 3000 721939 2395 2158
Hash spo 4000000 95303 1154 719

AHRI (cbp) osp 30000 65297 82 57
AHRI (cbp) pos 3000 75662 183 156
AHRI (cbp) spo 4000000 39983 1069 651
AHRI (hb) osp 30000 66553 230 207
AHRI (hb) pos 3000 135983 457 429
AHRI (hb) spo 4000000 45546 743 360

AHRI (hbwa) osp 30000 68699 222 197
AHRI (hbwa) pos 3000 94760 198 167
AHRI (hbwa) spo 4000000 41687 1016 591

Table D.15: TLB performance counters: restriction by mixed attributes

D.2.3 Branch

D.2.3.1 Load



290 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

Bitmap osp 4000000 39205 1994
Bitmap pos 4000000 40244 1530
Bitmap spo 4000000 42627 1668
BPTree osp 4000000 200393 5525
BPTree pos 4000000 213223 5254
BPTree spo 4000000 184619 3196
BST osp 4000000 68658 3969
BST pos 4000000 75886 4497
BST spo 4000000 61036 1862
BTree osp 4000000 183760 4758
BTree pos 4000000 210191 4926
BTree spo 4000000 196933 3267

BTreeRef osp 4000000 226495 6453
BTreeRef pos 4000000 255684 7103
BTreeRef spo 4000000 168458 2946

AHRI (vec,cbp) osp 4000000 28340 1646
AHRI (vec,cbp) pos 4000000 254296 3023
AHRI (vec,cbp) spo 4000000 21834 1517
AHRI (vec,hb) osp 4000000 27350 1493
AHRI (vec,hb) pos 4000000 34473 2177
AHRI (vec,hb) spo 4000000 22481 1412

AHRI (vec,hbwa) osp 4000000 27034 1742
AHRI (vec,hbwa) pos 4000000 32476 1991
AHRI (vec,hbwa) spo 4000000 19026 1255

Hash osp 4000000 26451 1746
Hash pos 4000000 24761 1529
Hash spo 4000000 21590 1234

AHRI (cbp) osp 4000000 27990 1786
AHRI (cbp) pos 4000000 251303 2701
AHRI (cbp) spo 4000000 22689 1311
AHRI (hb) osp 4000000 31821 2134
AHRI (hb) pos 4000000 37196 2328
AHRI (hb) spo 4000000 26289 1634

AHRI (hbwa) osp 4000000 29319 1863

continued on next page



Appendix D Raw Evaluation Data 291

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

AHRI (hbwa) pos 4000000 35446 2173
AHRI (hbwa) spo 4000000 26574 1704

Table D.16: Branch performance counters: load

D.2.3.2 Restriction by One Attribute

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

Bitmap osp 1000 73365 3848
Bitmap pos 120 61759 2598
Bitmap spo 4000000 80628 5452
BPTree osp 6000 100529 1186
BPTree pos 1200 185622 1807
BPTree spo 4000000 101830 4049
BST osp 6000 292042 12765
BST pos 1200 525635 22660
BST spo 4000000 210896 10194
BTree osp 6000 104562 1606
BTree pos 1200 187697 2325
BTree spo 4000000 119806 4589

BTreeRef osp 6000 109242 1093
BTreeRef pos 1200 192785 2490
BTreeRef spo 4000000 125952 5424

AHRI (vec,cbp) osp 6000 101274 597
AHRI (vec,cbp) pos 1200 116792 1003
AHRI (vec,cbp) spo 4000000 29716 456
AHRI (vec,hb) osp 6000 91734 509
AHRI (vec,hb) pos 1200 185003 11425
AHRI (vec,hb) spo 4000000 30345 619

AHRI (vec,hbwa) osp 6000 98997 485
AHRI (vec,hbwa) pos 1200 144604 1052
AHRI (vec,hbwa) spo 4000000 29955 461

Hash osp 6000 189475 9438

continued on next page



292 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

Hash pos 1200 393819 18850
Hash spo 4000000 80311 3574

AHRI (cbp) osp 6000 98023 572
AHRI (cbp) pos 1200 122701 994
AHRI (cbp) spo 4000000 30346 468
AHRI (hb) osp 6000 90794 474
AHRI (hb) pos 1200 179381 10386
AHRI (hb) spo 4000000 30315 454

AHRI (hbwa) osp 6000 100495 564
AHRI (hbwa) pos 1200 142665 888
AHRI (hbwa) spo 4000000 30328 454

Table D.17: Branch performance counters: restriction by one attribute

D.2.3.3 Restriction by Two Attributes

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

Bitmap osp 20000 113580 2137
Bitmap pos 600 56072 1858
Bitmap spo 20000 422127 1617
BPTree osp 4000000 70111 4492
BPTree pos 6000 101303 819
BPTree spo 4000000 66725 4000
BST osp 4000000 70611 4335
BST pos 6000 257133 10271
BST spo 4000000 91264 5831
BTree osp 4000000 71610 4577
BTree pos 6000 83582 1033
BTree spo 4000000 73716 4296

BTreeRef osp 4000000 71775 4687
BTreeRef pos 6000 85630 1197
BTreeRef spo 4000000 76701 5071

AHRI (vec,cbp) osp 4000000 14347 834
AHRI (vec,cbp) pos 6000 45384 354

continued on next page



Appendix D Raw Evaluation Data 293

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

AHRI (vec,cbp) spo 4000000 22919 569
AHRI (vec,hb) osp 4000000 12603 840
AHRI (vec,hb) pos 6000 91873 7037
AHRI (vec,hb) spo 4000000 25191 735

AHRI (vec,hbwa) osp 4000000 13319 531
AHRI (vec,hbwa) pos 6000 55421 381
AHRI (vec,hbwa) spo 4000000 26586 640

Hash osp 12000 343757 19153
Hash pos 4000 979724 63736
Hash spo 4000000 75173 4353

AHRI (cbp) osp 4000000 14949 595
AHRI (cbp) pos 6000 49915 400
AHRI (cbp) spo 4000000 25633 575
AHRI (hb) osp 4000000 13270 531
AHRI (hb) pos 6000 84908 6304
AHRI (hb) spo 4000000 28877 652

AHRI (hbwa) osp 4000000 13788 561
AHRI (hbwa) pos 6000 61027 316
AHRI (hbwa) spo 4000000 23360 548

Table D.18: Branch performance counters: restriction by two attributes

D.2.3.4 Restriction by Three Attributes

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

Bitmap osp 20000 582056 4202
Bitmap pos 20000 913879 10748
Bitmap spo 20000 570845 3766
BPTree osp 4000000 68723 4479
BPTree pos 4000000 77821 4880
BPTree spo 4000000 64739 4155
BST osp 4000000 69004 4224
BST pos 4000000 81926 4751
BST spo 4000000 79531 5257

continued on next page



294 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

BTree osp 4000000 68070 4406
BTree pos 4000000 83937 4990
BTree spo 4000000 65653 4144

BTreeRef osp 4000000 70226 4643
BTreeRef pos 4000000 78654 5240
BTreeRef spo 4000000 65053 5098

AHRI (vec,cbp) osp 4000000 13970 768
AHRI (vec,cbp) pos 4000000 28048 1779
AHRI (vec,cbp) spo 4000000 24270 552
AHRI (vec,hb) osp 4000000 13129 831
AHRI (vec,hb) pos 4000000 15769 680
AHRI (vec,hb) spo 4000000 23148 669

AHRI (vec,hbwa) osp 4000000 12234 435
AHRI (vec,hbwa) pos 4000000 14898 657
AHRI (vec,hbwa) spo 4000000 23944 587

Hash osp 4000000 12394 443
Hash pos 4000000 11765 366
Hash spo 4000000 12865 471

AHRI (cbp) osp 4000000 13821 932
AHRI (cbp) pos 4000000 26316 2115
AHRI (cbp) spo 4000000 23341 506
AHRI (hb) osp 4000000 12223 526
AHRI (hb) pos 4000000 15664 568
AHRI (hb) spo 4000000 22887 535

AHRI (hbwa) osp 4000000 13929 549
AHRI (hbwa) pos 4000000 14442 524
AHRI (hbwa) spo 4000000 21409 510

Table D.19: Branch performance counters: restriction by three attributes

D.2.3.5 Restriction by Mixed Attributes

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

continued on next page



Appendix D Raw Evaluation Data 295

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

Bitmap osp 2000 46804 1040
Bitmap pos 400 55979 1618
Bitmap spo 20000 427699 2252
BPTree osp 30000 56937 610
BPTree pos 3000 65766 591
BPTree spo 4000000 73897 4460
BST osp 30000 151845 6276
BST pos 3000 193102 10108
BST spo 4000000 98621 6665
BTree osp 30000 59608 908
BTree pos 3000 64316 773
BTree spo 4000000 84834 4988

BTreeRef osp 30000 56705 607
BTreeRef pos 3000 59250 843
BTreeRef spo 4000000 77092 5156

AHRI (vec,cbp) osp 30000 58711 361
AHRI (vec,cbp) pos 3000 41899 358
AHRI (vec,cbp) spo 4000000 26095 783
AHRI (vec,hb) osp 30000 49050 261
AHRI (vec,hb) pos 3000 57121 3953
AHRI (vec,hb) spo 4000000 26354 932

AHRI (vec,hbwa) osp 30000 54817 326
AHRI (vec,hbwa) pos 3000 48116 401
AHRI (vec,hbwa) spo 4000000 26420 767

Hash osp 30000 531052 28884
Hash pos 3000 453220 27860
Hash spo 4000000 54755 3189

AHRI (cbp) osp 30000 44123 182
AHRI (cbp) pos 3000 40507 365
AHRI (cbp) spo 4000000 25025 724
AHRI (hb) osp 30000 49931 259
AHRI (hb) pos 3000 63345 4232
AHRI (hb) spo 4000000 25240 700

AHRI (hbwa) osp 30000 51401 310

continued on next page



296 Appendix D Raw Evaluation Data

Structure
Attribute

Order
Iterations

Branch
Operations
(x10,000)

Branch Mis-
predictions
(x10,000)

AHRI (hbwa) pos 3000 42697 283
AHRI (hbwa) spo 4000000 25569 722

Table D.20: Branch performance counters: restriction by mixed attributes



Bibliography

D. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution in column-
oriented database systems. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pages 671–682. ACM Press, 2006.

D. Abadi, A. Marcus, S. Madden, and K. Hollenbach. Scalable semantic web data man-
agement using vertical partitioning. In Proceedings of the 33rd International Confer-
ence on Very Large Databases, pages 411–422, 2007.

M. Adelson-Velskii and E.M Landis. An algorithm for the organization of information.
Doklady Akademii Nauk SSSR, 146:1259–1262, 1962.

A Adl-Tabatabai, M Cierniak, G Lueh, V. M Parikh, and J. M Stichnoth. Fast, effective
code generation in a just-in-time Java compiler. SIGPLAN Notices, 33(5):280–290,
1998.

V. Agarwal, MS Hrishikesh, S.W. Keckler, and D. Burger. Clock rate versus IPC:
The end of the road for conventional microarchitectures. ACM SIGARCH Computer
Architecture News, 28(2):259, 2000.

Marcos K. Aguilera, Wojciech Golab, and Mehul A. Shah. A practical scalable dis-
tributed B-tree. Proceedings of the Very Large Databases Endowment, 1(1):598–609,
2008.

A. Ailamaki, D.J. DeWitt, M.D. Hill, and M. Skounakis. Weaving relations for cache
performance. In Proceedings of the 27th International Conference on Very Large
Databases, 2001.

A. Ailamaki, D.J. DeWitt, M.D. Hill, and D.A. Wood. DBMSs on a modern processor:
Where does time go? In Proceedings of the 25th International Conference on Very
Large Databases, pages 266–277, 1999.

D.W. Anderson, F.J. Sparacio, and R.M. Tomasulo. The IBM system/360 model 91:
machine philosophy and instruction-handling. IBM Journal of Research and Develop-
ment, 11:8–24, 1967.

A.W. Appel and J. Palsberg. Modern compiler implementation in Java. Cambridge
University Press, 2002.

297



298 BIBLIOGRAPHY

R. Apweiler, A. Bairoch, C.H. Wu, W.C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger,
H. Huang, R. Lopez, M. Magrane, et al. UniProt: the universal protein knowledgebase.
Nucleic acids research, 32:D115, 2004.

C.R. Aragon and R.G. Seidel. Randomized search trees. Annual IEEE Symposium on
Foundations of Computer Science, 0:540–545, 1989.

Malcolm Atkinson, David Dewitt, David Maier, Francois Bancilhon, Klaus Dittrich, and
Stanley Zdonik. The object-oriented database system manifesto. In Proceedings of the
1st International Conference on Deductive and Object-Oriented Databases, volume 57,
pages 223–40. North-Holland/Elsevier, 1989.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A
nucleus for a web of open data. In The Semantic Web, volume 4825 of Lecture Notes
in Computer Science, pages 722–735. Springer, 2007.

A. Ayers, R. Schooler, and R. Gottlieb. Aggressive inlining. ACM SIGPLAN Notices,
32:134–145, 1997.

D.F. Bacon, S.J. Fink, and D. Grove. Space-and time-efficient implementation of the
Java object model. In ECOOP 2002 Object-Oriented Programming, volume 2374 of
Lecture Notes in Computer Science, pages 13–27. Springer, 2002.

A.H. Badawy, A. Aggarwal, D. Yeung, and C.W. Tseng. The efficacy of soft-
ware prefetching and locality optimizations on future memory systems. Journal of
Instruction-Level Parallelism, 6(7), 2004.

D. Battre, F. Heine, A. Hoing, and O. Kao. Load-balancing in P2P based RDF stores. In
Proceedings of the Second International Workshop on Scalable Semantic Web Knowl-
edge Base Systems, Athens, Georgia, 2006.

R. Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta
informatica, 1(4):290–306, 1972.

R. Bayer and V. Markl. The UB-tree: Performance of multidimensional range queries.
Technical report, Technische Universitat Munchen, Informatik, Munchen Technical
Report TUM- I, 1998.

C. Becker. RDF store benchmarks with DBpedia. http://www4.wiwiss.fu-berlin.de/
benchmarks-200801/ , 2008.

D. Beckett. The design and implementation of the Redland RDF application framework.
Computer Networks, 39(5):577–588, 2002.

F. Belleau, M.A. Nolin, N. Tourigny, P. Rigault, and J. Morissette. Bio2rdf: Towards a
mashup to build bioinformatics knowledge systems. Journal of Biomedical Informat-
ics, 41(5):706–716, 2008.

http://www4.wiwiss.fu-berlin.de/benchmarks-200801/
http://www4.wiwiss.fu-berlin.de/benchmarks-200801/
http://www4.wiwiss.fu-berlin.de/benchmarks-200801/


BIBLIOGRAPHY 299

T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach, A. Lerer,
and D. Sheets. Tabulator: Exploring and analyzing linked data on the semantic web.
In Proceedings of the 3rd International Semantic Web User Interaction Workshop,
Athens, USA, 2006.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC2396: Uniform Resource Identifiers
(URI): Generic syntax, 1998.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):28–37, 2001.

C. Bizer and R. Cyganiak. D2R Server–publishing relational databases on the seman-
tic web. In Poster and Demo Proceedings of the 5th International Semantic Web
Conference, Athens, Georgia, 2006.

C Bizer and A Schultz. The Berlin SPARQL benchmark. International Journal On
Semantic Web and Information Systems, 5(2):1–24, 2009.

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and realities:
the performance impact of garbage collection. SIGMETRICS Performance Evaluation
Review, 32(1):25–36, 2004.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422–426, 1970.

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and
W.K. Su. Myrinet: A gigabit-per-second local area network. Micro, IEEE, 15(1):
29–36, 1995. ISSN 0272-1732.

P. Boncz, S. Manegold, and M. Kersten. Database architecture optimized for the new
bottleneck: Memory access. In Proceedings of the 25th International Conference on
Very Large Databases, pages 54–65, 1999.

P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query execution.
In Proceedings of the 2nd Biennial Conference on Innovative Data Systems Research,
2005.

H. Boral. Parallelism in Bubba. In Proceedings of the International Symposium on
Databases in Parallel and Distributed Systems, pages 68–71, 1988.

H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart,
M. Smith, and P. Valduriez. Prototyping Bubba, a highly parallel database system.
IEEE Transactions on Knowledge and Data Engineering, 2(1):4–24, 1990.

D. Borthakur. The Hadoop distributed file system: Architecture and design. Technical
report, The Apache Software Foundation, http://hadoop.apache.org/common/docs/
r0.18.0/hdfs design.pdf , 2007.

http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf
http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf


300 BIBLIOGRAPHY

D. Brickley, R.V. Guha, and B. McBride. RDF vocabulary description language 1.0:
RDF Schema. W3C recommendation, http://www.w3.org/TR/rdf-schema/ , 2004.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN systems, 30(1-7):107–117, 1998.

J. Broekstra and A. Kampman. Inferencing and truth maintenance in RDF Schema.
In Proceedings of the 1st International Workshop on Practical and Scalable Semantic
Systems, 2003a.

J. Broekstra and A. Kampman. SeRQL: a second generation RDF query language. In
Proceedings of the SWAD-Europe Workshop on Semantic Web Storage and Retrieval,
2003b.

J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture for
storing and querying RDF and RDF Schema. In Proceedings of the 1st International
Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science, pages
54–68. Springer, 2002.

J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An Architecture for Storing
and Querying RDF Data and Schema Information. MIT Press, 2003.

M. Cai and M. Frank. RDFPeers: a scalable distributed RDF repository based on
a structured peer-to-peer networks. In Proceedings of the 13th International World
Wide Web Conference, pages 650–657. ACM Press, 2004.

J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: implementing the semantic web recommendations. In Proceedings of the 13th
International World Wide Web Conference, pages 74–83. ACM Press, 2004.

J Casazza. Intel Core i7-800 processor series and the Intel Core i5-700 processor series
based on Intel Microarchitecture (Nehalem). Technical report, Intel Corporation,
http://download.intel.com/products/processor/corei7/319724.pdf , 2009.

S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26(1):65–74, 1997.

S. Chen, P.B. Gibbons, and T.C. Mowry. Improving index performance through prefetch-
ing. In Proceedings of the 2001 ACM SIGMOD International Conference on Manage-
ment of Data, pages 235–246. ACM, 2001.

EF Codd. A relational model of data for large shared data banks. Communications of
the ACM, 13(6):377–387, 1970.

D. Comer. Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–137, 1979.

C.J. Date. An Introduction to Database Systems. Addison-Wesley, 1990.

http://www.w3.org/TR/rdf-schema/
http://download.intel.com/products/processor/corei7/319724.pdf
http://download.intel.com/products/processor/corei7/319724.pdf
http://download.intel.com/products/processor/corei7/319724.pdf


BIBLIOGRAPHY 301

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. In Proceedings of the 6th Symposium on Operating Systems Design & Imple-
mentation. USENIX Association, 2004.

D.J. DeWitt and R. Gerber. Multiprocessor hash-based join algorithms. In Proceedings
of the 11th International Conference on Very Large Databases, Stockholm, Sweden,
pages 151–164, 1985.

D.J. DeWitt and J. Gray. Parallel database systems: The future of high performance
database processing. Communications of the ACM, 35(6):85–98, 1992.

L. Ding, K. Wilkinson, C. Sayers, and H. Kuno. Application-specific schema design for
storing large RDF datasets. In 1st International Workshop on Practical and Scalable
Semantic Systems, 2003.

U. Drepper. What every programmer should know about memory. http://lwn.net/
Articles/250967/ , 2007.

P. J. Drongowski. Basic performance measurements for AMD Athlon 64, AMD Opteron
and AMD Phenom processors. AMD, http://developer.amd.com/documentation/
articles/pages/1212200690 3.aspx , 2008.

O. Erling. Advances in Virtuoso RDF triple storage (bitmap indexing). Technical
report, Openlink Software Inc, http://virtuoso.openlinksw.com/wiki/main/Main/
VOSBitmapIndexing , 2006.

O. Erling. Faceted views over large-scale linked data. In Proceedings of the Linked Data
on the Web Workshop, Madrid, Spain, 2009.

O. Erling and I. Mikhailov. Towards web scale RDF. In Proceedings
of the 4th International Workshop on Scalable Semantic Web Knowledge.
www.openlinksw.com/weblog/oerling/2008iswc webscale rdf. pd, 2008.

O. Erling and I. Mikhailov. RDF support in the virtuoso DBMS. In Networked Knowl-
edge - Networked Media, volume 221, pages 7–24. Springer, 2009.

B. Fulgham and I. Gouy. The computer language benchmarks game. http://shootout.
alioth.debian.org/ .

R. A. Hankins and J. M. Patel. Effect of node size on the performance of cache-conscious
b+-trees. In Proceedings of the 2003 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pages 283–294. ACM, 2003.

S. Harizopoulos, V. Liang, D.J. Abadi, and S. Madden. Performance tradeoffs in read-
optimized databases. In Proceedings of the 32nd International Conference on Very
Large Databases, pages 487–498. VLDB Endowment, 2006.

http://lwn.net/Articles/250967/
http://lwn.net/Articles/250967/
http://lwn.net/Articles/250967/
http://developer.amd.com/documentation/articles/pages/1212200690_3.aspx
http://developer.amd.com/documentation/articles/pages/1212200690_3.aspx
http://developer.amd.com/documentation/articles/pages/1212200690_3.aspx
http://developer.amd.com/documentation/articles/pages/1212200690_3.aspx
http://virtuoso.openlinksw.com/wiki/main/Main/VOSBitmapIndexing
http://virtuoso.openlinksw.com/wiki/main/Main/VOSBitmapIndexing
http://virtuoso.openlinksw.com/wiki/main/Main/VOSBitmapIndexing
http://www.openlinksw.com/weblog/oerling/lodw2.pdf
http://www.openlinksw.com/uda/wiki/OPLScan/main/Main/VOSArticles/VOSArticleWebScaleRDF.pdf
http://virtuoso.openlinksw.com/wiki/main/Main/VOSArticleRDF
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/


302 BIBLIOGRAPHY

S. Harris. SPARQL query processing with conventional relational database systems.
In Web Information Systems Engineering–WISE 2005 Workshops, volume 3807 of
Lecture Notes in Computer Science, pages 235–244, 2005.

S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and implementation of a
clustered RDF store. In The 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009), page 86.

A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A federated repository for
querying graph structured data from the web. In The Semantic Web, volume 4825 of
Lecture Notes in Computer Science, pages 211–224. Springer, 2007.

P. Hawthorn and M. Stonebraker. The use of technological advances to enhance database
system performance. In The INGRES papers: anatomy of a relational database system,
pages 106–130. Addison-Wesley Longman, 1986.

F. Heine, M. Hovestadt, and O. Kao. Processing complex RDF queries over P2P net-
works. In Proceedings of the 2005 ACM Workshop on Information Retrieval in Peer-
to-Peer Networks, pages 41–48. ACM Press, 2005.

J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–37, 2001.

K.A. Hua and C. Lee. An adaptive data placement scheme for parallel database computer
systems. In Proceedings of the 16th International Conference on Very Large Databases,
pages 493–506, 1990.

InfiniBand Trade Association. InfiniBand Architecture Specification, 2001.

E. Jain, A. Bairoch, S. Duvaud, I. Phan, N. Redaschi, B.E. Suzek, M.J. Martin, P. Mc-
Garvey, and E. Gasteiger. Infrastructure for the life sciences: design and implemen-
tation of the UniProt website. BMC bioinformatics, 10:136, 2009.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: a
declarative query language for RDF. In Proceedings of the 11th International World
Wide Web Conference, page 603. ACM, 2002.

K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, and W.E. Baker. Performance
characterization of a quad Pentium Pro SMP using OLTP workloads. ACM SIGARCH
Computer Architecture News, 26(3):15–26, 1998.

MF Khan, R. Paul, I. Ahmed, and A. Ghafoor. Intensive data management in parallel
systems: A survey. Distributed and Parallel Databases, 7(4):383–414, 1999.

B Knighten. Detailed characterization of a quad pentium pro server running TPC-D.
In Proceedings of the 1999 IEEE International Conference on Computer Design, page
108. IEEE Computer Society, 1999. ISBN 0-7695-0406-X.



BIBLIOGRAPHY 303

T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox. De-
sign of the Java HotSpot client compiler for Java 6. ACM Transactions on Architecture
and Code Optimization, 5(1):1–32, 2008.

A. Langegger and W. Wöß. RDFStats-an extensible RDF statistics generator and li-
brary. In Proceedings of the 2009 20th International Workshop on Database and Expert
Systems Application, pages 79–83. IEEE Computer Society, 2009.

O. Lassila, R.R. Swick, et al. Resource description framework (RDF) model
and syntax specification. W3C Recommendation, http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/ , 1999.

J.K. Lawder and P.J.H. King. Using space-filling curves for multi-dimensional indexing.
In Proceedings of the 17th British National Conference on Databases, volume 1832 of
Lecture Notes in Computer Science, pages 20–35. Springer, 2000.

R. Lee. Scalability report on triple store applications. Massachusetts Institute of Tech-
nology, http://simile.mit.edu/reports/stores/ , 2004.

S. Lee, B. Moon, and C. Park. Advances in flash memory SSD technology for enterprise
database applications. In SIGMOD ’09: Proceedings of the 35th SIGMOD interna-
tional conference on Management of data, pages 863–870, New York, NY, USA, 2009.
ACM.

T. J. Lehman and M. J. Carey. Query processing in main memory database management
systems. In SIGMOD ’86: Proceedings of the 1986 ACM SIGMOD international
conference on Management of data, pages 239–250. ACM, 1986. ISBN 0-89791-191-1.

H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of
objects. Communications of the ACM, 26(6):429, 1983.

D. Lomet. The evolution of effective B-trees: page organization and techniques: a
personal account. ACM SIGMOD Record, 30(3):64–69, 2001.

M. Mehta and D.J. DeWitt. Data placement in shared-nothing parallel database systems.
The International Journal on Very Large Data Bases, 6(1):53–72, 1997.

B. Motik, P.F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase, R. Hoek-
stra, I. Horrocks, A. Ruttenberg, U. Sattler, et al. OWL 2 web ontology lan-
guage: Structural specification and functional-style syntax. W3C recommendation,
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ , 2009.

Rene Mueller and Jens Teubner. FPGA: what’s in it for a database? In SIGMOD ’09:
Proceedings of the 35th SIGMOD international conference on Management of data,
pages 999–1004, New York, NY, USA, 2009. ACM.

W. Nejdl, W. Siberski, and M. Sintek. Design issues and challenges for RDF-and Schema-
based peer-to-peer systems. ACM SIGMOD Record, 32(3):41–46, 2003.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://simile.mit.edu/reports/stores/
http://simile.mit.edu/reports/stores/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/


304 BIBLIOGRAPHY

T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. In Proceedings of
the Very Large Databases Endowment, volume 1, pages 647–659. VLDB Endowment,
2008.

D. Ognyanoff, A. Kiryakov, R. Velkov, and M. Yankova. A scalable repository for massive
semantic annotation. Technical Report D2.6.3, SEKT, 2007.

M.A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proceedings of the FREENIX
Track: 1999 USENIX Annual Technical Conference, pages 43–43. USENIX Associa-
tion, 1999.

J.K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-
tra, A. Narayanan, M. Rosenblum, S.M. Rumble, et al. The case for RAMClouds:
Scalable high-performance storage entirely in DRAM. ACM SIGOPS Operating Sys-
tems Review, 43(4):92–105, 2010.

A. Owens, A. Seaborne, N. Gibbins, and m. c. schraefel. Clustered TDB: A clustered
triple store for Jena, 2008.

J.W. Palmer. Web site usability, design, and performance metrics. Information Systems
Research, 13(2):151–167, 2003.

P.F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van Harmelen. OWL web ontology
language; semantics and abstract syntax, W3C recommendation. http://www.w3.
org/TR/2003/CR-owl-semantics-20030818/ , 2004.

M. Poess and D. Potapov. Data compression in Oracle. In Proceedings of the 29th In-
ternational Conference on Very Large Databases, pages 937–947. VLDB Endowment,
2003.

E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C recom-
mendation. World Wide Web Consortium, 2006.

F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Integrating the UB-
tree into a database system kernel. In Proceedings of the 26th International Conference
on Very Large Databases, pages 263–272, 2000.

J. Rao and K.A. Ross. Cache conscious indexing for decision-support in main memory.
In Proceedings of the 25th Very Large Databases Conference, pages 78–89, 1999.

J. Rao and K.A. Ross. Making B+trees cache conscious in main memory. ACM SIGMOD
Record, 29(2):475–486, 2000.

EM Riseman and CC Foster. The Inhibition of Potential Parallelism by Conditional
Jumps. Transactions on Computers, 100(21):1405–1411, 1972.

http://eprints.ecs.soton.ac.uk/16974/
http://eprints.ecs.soton.ac.uk/16974/


BIBLIOGRAPHY 305

K. Rohloff, M. Dean, I. Emmons, D. Ryder, and J. Sumner. An evaluation of triple-
store technologies for large data stores. In Proceedings of the 2007 OTM Confederated
International Conference, volume 4806 of Lecture Notes in Computer Science, page
1105. Springer, 2007.

L.A. Rowe and M. Stonebraker. The commercial INGRES epilogue. In The INGRES
papers: anatomy of a relational database system, pages 63–82. Addison-Wesley Long-
man, 1986.

K. Russell and D. Detlefs. Eliminating synchronization-related atomic operations with
biased locking and bulk rebiasing. SIGPLAN Notices, 41(10):263–272, 2006.

H. Sagan and J. Holbrook. Space-filling curves. Springer-Verlag New York, 1994.

M. Schmidt, T. Hornung, N. Kchlin, G. Lausen, and C. Pinkel. An experimental com-
parison of RDF data management approaches in a SPARQL benchmark scenario. In
The Semantic Web - ISWC 2008, volume 5318, pages 82–97. Springer, 2010.

m. c. schraefel, Nigel R. Shadbolt, Nicholas Gibbins, Stephen Harris, and Hugh Glaser.
CS AKTive Space: representing computer science in the semantic web. In Proceedings
of the 13th International World Wide Web Conference, pages 384–392, New York, NY,
USA, 2004. ACM.

m.c. schraefel, D.A. Smith, A. Owens, A. Russell, C. Harris, and M. Wilson. The
evolving mSpace platform: Leveraging the semantic web on the trail of the memex.
In Proceedings of the 16th ACM conference on Hypertext and Hypermedia, pages 174–
183. ACM Press New York, NY, USA, 2005.

A. Seaborne. RDQL - a query language for RDF. W3C Member Submission, http:
//www.w3.org/Submission/RDQL/ , 2004.

Andy Seaborne. personal communication, August 2008.

Andy Seaborne. personal communication, February 2009.

M. Shao, J. Schindler, S.W. Schlosser, A. Ailamaki, and G.R. Ganger. Clotho: De-
coupling memory page layout from storage organization. In Proceedings of the 30th
International Conference on Very Large Databases, pages 696–707, 2004.

J.P. Sheu and T.H. Thai. Partitioning and mapping nested loops on multiprocessor
systems. IEEE Transactions on Parallel and Distributed Systems, 2(4):430–439, 1991.

D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the ACM,
32(3):652–686, 1985.

D. Smith, A. Owens, m. c. schraefel, P Sinclair, P. Andre, M.L. Wilson, A. Russell,
K. Martinez, and P. Lewis. Challenges in supporting faceted semantic browsing of
multimedia collections. In Proceedings of the Semantic and Digital Media Technologies
2nd International Conference on Semantic Multimedia, pages 280–283. Springer, 2007.

http://www.w3.org/Submission/RDQL/
http://www.w3.org/Submission/RDQL/
http://www.w3.org/Submission/RDQL/


306 BIBLIOGRAPHY

M. Stonebraker. Retrospection on a database system. ACM Transactions on Database
Systems, 5(2):225–240, 1980.

M. Stonebraker. The case for shared nothing. Database Engineering Bulletin, 9(1):4–9,
1986.

M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and implementation of
INGRES. ACM Transactions on Database Systems (TODS), 1(3):189–222, 1976.

M. Stonebraker and G. Kemnitz. The POSTGRES next generation database manage-
ment systems. Communications of the ACM, 34(10):78–92, 1991.

M. Stonebraker, S. Madden, D.J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland.
The end of an architectural era (it’s time for a complete rewrite). In Proceedings of
the 33rd International Conference on Very Large Databases, pages 1150–1160. VLDB
Endowment, 2007.

M. Stonebraker, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, S. Zdonik, D.J. Abadi,
A. Batkin, X. Chen, M. Cherniack, et al. C-store: a column-oriented DBMS. In Pro-
ceedings of the 31st International Conference on Very Large Databases, pages 553–564.
VLDB Endowment, 2005.

Sun Microsystems. Memory management in the Java HotSpot virtual machine. Tech-
nical report, http://java.sun.com/j2se/reference/whitepapers/memorymanagement
whitepaper.pdf , 2006.

Sun Microsystems. Java SE 6 performance white paper. Technical report, http://java.
sun.com/performance/reference/whitepapers/6 performance.html , 2008.

H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobbs Journal, 30(3):16–20, 2005.

K. Taylor, R. Gledhill, J.W. Essex, J.G. Frey, S.W. Harris, and D. De Roure. A se-
mantic datagrid for combinatorial chemistry. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, pages 148–155, 2005.

K.R. Taylor, R.J. Gledhill, J.W. Essex, J.G. Frey, S.W. Harris, and D. De Roure. Bring-
ing chemical data onto the semantic web. Journal of Chemical Information and Mod-
eling, 46(3):939–952, 2006.

Robert W. Taylor and Randall L. Frank. Codasyl data-base management systems. ACM
Comput. Surv., 8(1):67–103, 1976.

D. C. Tsichritzis and F. H. Lochovsky. Hierarchical data-base management: A survey.
ACM Comput. Surv., 8(1):105–123, 1976.

http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://java.sun.com/performance/reference/whitepapers/6_performance.html
http://java.sun.com/performance/reference/whitepapers/6_performance.html
http://java.sun.com/performance/reference/whitepapers/6_performance.html


BIBLIOGRAPHY 307

D. Ungar. Generation scavenging: A non-disruptive high performance storage reclama-
tion algorithm. In Proceedings of the first ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, pages 157–167.
ACM, 1984.

C. Weiss and A. Bernstein. On-disk storage techniques for semantic web data-are b-
trees always the optimal solution? In The 5th International Workshop on Scalable
Semantic Web Knowledge Base Systems, page 49, 2009.

C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic web
data management. Proceedings of the Very Large Databases Endowment archive, 1
(1):1008–1019, 2008.

T White. Hadoop: The Definitive Guide. O’Reilly, 2009.

K. Wilkinson. Jena property table design. In Proceedings of the Jena Users Conference,
Bristol, England, 2006.

K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF storage and retrieval
in Jena2. In Proceedings of the First International Workshop on Semantic Web and
Databases, volume 3, pages 7–8, 2003.

D. Wood, P. Gearon, and T. Adams. Kowari: A platform for semantic web storage and
analysis. In Proceedings of the 14th International World Wide Web Conference, 2005.

K Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient compres-
sion. ACM Transactions on Database Systems, 31(1):1–38, 2006. ISSN 0362-5915.

T. Würthinger, C. Wimmer, and H. Mössenböck. Array bounds check elimination for
the Java HotSpot client compiler. In Proceedings of the 5th international symposium
on Principles and practice of programming in Java, pages 125–133. ACM New York,
NY, USA, 2007.

T.Y. Yeh and Y.N. Patt. Two-level adaptive training branch prediction. In Proceedings
of the 24th annual international symposium on Microarchitecture, pages 51–61. ACM,
1991. ISBN 0897914600.

K. Youssefi and E. Wong. Query processing in a relational database management system.
In The Fifth International Conference on Very Large Data Bases, pages 409–417, 1979.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24(5):530–536, 1978.

M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar RAM-CPU cache com-
pression. In Proceedings of the 22nd International Conference on Data Engineering,
page 59, 2006.


