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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 
OPTOELECTRONICS RESEARCH CENTRE 

Doctor of Philosophy 
CLADDING-PUMPED RAMAN FIBRE LASER SOURCES 

by Junhua Ji 

In this thesis, I investigate cladding-pumped Raman fibre lasers and amplifiers. Such devices, 
offering a novel way to generate Raman gain, combine the advantages of the hugely successful 
cladding-pumped rare-earth doped fibre lasers with those of stimulated Raman scattering. They 
not only inherit most advantages of conventional fibre devices, such as flexibility, high 
efficiency, compactness, and robustness, but also provide their own advantages and distinct 
properties relative to conventional fibre sources, i.e., wavelength flexibility and nearly 
instantaneous gain without energy storage. 

Cladding-pumped Raman fibre laser sources utilise double-clad Raman fibres as the gain 
medium. These are similar to a rare-earth doped double-clad fibre except that there is no laser-
ion doping of the core. With double-clad fibres, the high-power output from low-cost 
multimode pump sources can be converted into diffraction-limited signal beams, e.g., through 
stimulated Raman scattering. Thus, cladding-pumped Raman fibre laser sources are a kind of 
brightness enhancers. In the beginning of this thesis, I theoretically analyse various factors that 
limit the brightness enhancement of such devices. One of the limits is unwanted 2nd-Stokes 
generation, which restricts the area ratio between the inner cladding and core. By designing a 
new DCRF with a W-type core, I successfully relax this restriction by nearly five times. 
Combined with other factors, i.e., core damage threshold, walk-off, numerical aperture, and 
background loss, a brightness enhancement of more than 3500 for the designed fibre could be 
achieved in such devices shown by a model with right pump sources and parameters.  

Secondly, I focus on the conversion efficiency of such devices. A well-designed fibre 
with inner-cladding-to-core area ratio around six was used as a double-clad Raman fibre, 
pumped by a source with nearly rectangular pulse shapes. The nearly rectangular pulses were 
obtained from an erbium and ytterbium co-doped master optical power oscillator through pre-
pulse shaping. A sufficiently short piece was chosen to reduce the background loss and walk-off. 
The highest peak power conversion into the 1st Stokes was 75% and the energy conversion 
efficiency was over 60% in a pulsed cladding-pumped Raman fibre amplifier. 

Thirdly, I study the power scalability. Theoretically, I analyse the achievable power of 
such devices. The core size turns out to be a critical factor in most cases. The ultimately output 
power is limited to around 24 kW by thermal lensing if the core is large enough and enough 
pump power available. Experimentally, in collaboration with co-workers, a 100 W cladding-
pumped Raman fibre laser was demonstrated at 1116 nm. The output beam was nearly 
diffraction-limited. It shows the potential of power scalability of such devices and the ability of 
generating high power diffraction-limited sources at wavelengths outside the conventional range 
that rare-earth doped fibres offer. 

Since a large core size is a critical factor for power scaling, new double-clad Raman 
fibres with large-mode areas were introduced. They were experimentally demonstrated to work 
as efficiently as the previous fibre. An Nd:YAG laser was used to pump one of these fibres, and 
a 1 mJ Raman fibre source with good beam quality was thus demonstrated. This shows that 
double-clad Raman fibres offer another approach to obtaining high-brightness high-energy 
sources. In addition, based on a cladding-pumped Raman fibre converter, a simple and efficient 
method was proposed to generate supercontinuum sources.  
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Chapter 1 Introduction 

This chapter will provide an introduction into the area of research undertaken 

throughout my PhD studies. The history of fibre lasers is briefly reviewed in the first 

section. This is followed by an overview of the development of cladding-pumped 

Raman fibre sources in section  1.2. After that, motivations for studying cladding-

pumped Raman fibre devices are given. Finally, in section  1.4, the layout of this thesis 

is presented. 

 

1.1 Overview of fibre lasers 

In 1964, Snitzer and Koester reported the first rare-earth (RE) doped fibre laser. It 

consisted of a coiled neodymium (Nd)-doped glass fibre transversally side-pumped by a 

flash-lamp  [1]. It was just four years after T. Maiman demonstrated the first laser, a 

ruby rod emitting at a wavelength of 694 nm  [2]. In 1973, Stone and Burrus 

longitudinally pumped an Nd-doped fibre  [3]. Compared to transverse pumping, 

longitudinal pumping improved the pumping efficiency. In the following year, they 

demonstrated the first fibre laser pumped by a laser diode (LD)  [4]. Diode-pumping 

allows for much better performance than lamp-pumping does, but the lack of reliable 

LDs still prevented fibre lasers from being an attractive proposition at the time. The 

advent of the low-loss single-mode RE-doped silica fibre in 1985 re-ignited the 

developments in this field  [5]. Poole and co-workers from the University of 

Southampton incorporated RE ions into preforms by solution doping during modified 

chemical vapour deposition (MCVD). In the next year, Mears, Reekie, Jauncey, and 

Payne experimentally reported the first low-loss, high gain erbium-doped fibre 

amplifier (EDFA) in the world  [6]. In contrast to alternative configurations, the fibre 

provided the confinement and low loss necessary for efficient operation at levels of 

pump powers realistic for diode-pumping. The EDFA is a milestone in the field of 

telecommunication. However, it not only brought a revolution in optical communication, 
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but also promoted the development of laser diodes and other optical components. In the 

early 1990’s, commercial EDFAs started to appear on the market. 

In recent years, high power fibre amplifiers and lasers have been extensively 

studied and rapidly developed. At first, this owes to the steady progress of laser diodes 

which can offer sufficient pump power. Besides, a special fibre design, the double-clad 

fibre (DCF), cleverly solves the problem that the available pump power is limited to the 

relatively small amount of pump power that can be launched into the small fibre core. 

The double-clad fibre was first proposed by Maurer  [7] and demonstrated by Snitzer 

and co-workers in 1988  [8]. They used laser diodes for pumping, as proposed by Kafka 

in the late 1980s  [9]. Since then, the output power of fibre lasers has increased very 

rapidly, reaching 1 kW with good beam quality  [10]- [13] in 2004. This can be compared 

to the watt-level of power possible with fibres diode-pumped in the core. The highest 

reported diffraction-limited output power from fibre lasers is now 10 kW  [14] while 

kW-level ytterbium-doped fibre lasers (YDFLs) are available commercially, together 

with many other types of high-power fibre sources  [15]. The power scaling of fibre 

lasers has been demonstrated by several research groups around the world, such as High 

Power Fibre Laser (HPFL) group and others at Optoelectronics Research Centre (ORC), 

University of Southampton, and other groups at the Friedrich Schiller University of Jena, 

University of the Michigan, SPI Lasers, and IPG Photonics. In Figure  1.1, the power 

evolution of continuous wave (CW) fibre lasers with good beam quality is given in the 

last 14 years based on the achievements mostly from the groups mentioned above. The 

power of fibre lasers has seen an enormous and exponential increase since 2003. It is 

possible to further increase the output power of fibre lasers with diffraction-limited 

beam, however, the potential scalability will be challenging and ultimately limited by 

several factors, i.e., thermal effects, nonlinear effects, and material damage  [16]. 

Thermal effects, e.g., thermal fracture, thermal melting and thermal lensing, limit the 

maximum heat power that can be deposited in an optical fibre core for a given length. 

The maximum extractable power is then proportional to the maximum deposited heat. 

In addition, for optical signals with narrow bandwidth, the output power will be limited 

by a nonlinear effect, i.e., stimulated Brillouin scattering (SBS). The output power will 

be limited by nonlinearities also when the signal bandwidth is broad compared to the 

Brillouin linewidth, typically by stimulated Raman scattering (SRS), which can convert 

a significant fraction of the signal power to longer wavelengths. For a detailed analysis, 
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please see reference [16]. However, as far as I am aware, the principal limiting factor in 

Figure 1.1 has been the available pump power. 
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Figure  1.1: Power evolution of CW double-clad fibre lasers with diffraction-limited 

beam quality over the last 14 years. 

1.2 Development of cladding-pumped Raman fibre sources 

Besides RE-doped fibre devices, Raman fibre devices were another type of active fibre 

devices attracting the attention of researchers due to the potential benefits of the wide 

Raman gain bandwidth in telecommunications first pointed out by Ippen, Patel, and 

Stolen  [17]. Later on, most Raman work was carried out with single-mode fibres (SMFs) 

because their relatively small cores benefited stimulated Raman scattering and also 

because of the requirements of optical fibre communications (see  [18] and references 

therein). As it comes to the output power, the current record power of Raman fibre 

sources is 150 W, set in 2009 with a SMF-based laser  [19]. On the other hand, SMFs 

require pump sources with good beam quality. In terms of enhancement of the (spatial) 

brightness, Raman fibre devices based on SMFs are severely limited and can at most 

approach a doubling of the brightness of the pump, through double-ended pumping. 

Brightness is an important term in the field of lasers. It determines the power density 

achievable in a beam focused on a target. Brightness itself is determined by the optical 

power and the beam quality factor. Whereas SMF-based Raman devices do produce 

diffraction-limited output beams, they still look limited in brightness compared to 
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cladding-pumed devices, since the more challenging pumping makes power-scaling 

more challenging. I will further discuss brightness and beam quality in section 2.3. 

Cladding-pumped (CP) Raman fibre lasers (RFLs) and amplifiers (RFAs) follow 

the approach of CP RE-doped fibre sources. They combine the cladding-pumping 

technology and advantages of SRS  [20]- [21] and were first demonstrated in 2002  [21] 

by Nilsson and co-workers in the HPFL group at ORC, University of Southampton. 

Cladding-pumped Raman fibre devices utilise so-called double clad Raman 

fibres (DCRFs), which are similar to conventional RE-doped double clad fibres except 

that the cores are not doped with RE ions. Inside such fibres, multimode (MM) pump 

sources, launched into the inner cladding can be converted through SRS into a nearly 

diffraction-limited output beam that propagates in the core at the Stokes wavelength. 

Therefore, DCRFs act as brightness enhancers. This effect is also known as “beam 

clean-up”  [22]- [23]. By contrast to other work  [24]- [25] where a graded-index fibre is 

used, the waveguide structure of DCRFs allows for robust single-mode propagation and 

ready selection of the fundamental mode, for example, by using a piece of SMF  [26] or 

a fibre Bragg grating (FBG) written specifically for the fundamental mode  [27].  

In the following several years, experiments on CP Raman fibre devices have been 

carried out in both CW  [26]- [27]and pulsed  [28]- [29] regimes. Although CP Raman 

fibre devices have been studied for some years, there are still several aspects that either 

remained unexplored or needed to be improved. Especially the output average power 

and energy of such devices have been limited to levels that would often be inadequate. 

In the CW regime, the highest average power reported was up to 10 W  [26]. In the 

pulsed regime, the highest energy reported was ~ 10 μJ  [29]. My colleagues and I 

increased the output power of the CW RFLs to 100 W  [30] with good beam quality. We 

also demonstrated a high brightness pulsed CP Raman fibre source with 210 μJ output 

energy  [31]. Later, I also used an Nd:YAG laser to pump a DCRF, generating over 1 mJ 

of pulse energy distributed over several Stokes orders with good beam quality.  

The conversion efficiency is invariably a concern. Together with colleagues, I 

theoretically and experimentally analysed the limitations set on the conversion 

efficiency into the 1st Stokes in CP Raman fibre devices  [32]. Before the work presented 

in this thesis, the brightness enhancement was limited to ~ 10. We theoretically 

investigated the achievable brightness enhancement with pulsed CP RFAs based on a 

designed fibre  [33] and showed that much higher brightness enhancement is possible 
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with CP Raman fibre devices. Recently, new DCRFs with large-mode areas have been 

fabricated by the Silica Fibre Fabrication group at ORC. We have experimentally 

demonstrated that the new fibres with large-mode areas can work as efficiently as the 

previous, much smaller, DCRFs  [34]. Moreover, the DCRFs with large-mode area 

increase the core damage threshold, and are more promising for the generation of higher 

power and energy in diffraction limited output beams. With such fibres, we also 

demonstrated a nearly diffraction-limited supercontinuum (SC) source  [35]. 

1.3 Motivations 

So why are we working on CP Raman fibre devices? For one thing, they inherit most 

advantages of the hugely successful cladding-pumped RE-doped fibre sources. At the 

same time, they bring their own features, which may be advantageous in certain 

situations.  

RE-doped fibre devices have been applied in many areas already. For example, 

fibre amplifiers have been widely used in communications  [36], particularly extensively 

in telecommunications. With the increase of output power and energy, fibre laser 

sources are utilised in a variety of industries for tasks such as laser cutting, laser 

welding, laser marking, and laser drilling. Also, fibre lasers are used or considered for 

defence and aerospace applications such as remote missile defence, remote sensing, and 

range-finding, including light detection and ranging (LIDAR). Fibre lasers play an 

important role in the scientific research as well, including sensing, atom cooling, 

spectroscopy, and nonlinear optical conversion. The development of the CP Raman 

fibre sources makes them a potential replacement of RE-doped fibre devices in many 

applications.  

1.3.1 Properties and advantages of fibre sources 

CP Raman fibre devices retain many advantages of RE-doped fibre devices such as high 

average power, high efficiency, large gain bandwidth, versatility, robustness, reliability, 

and simplicity. In this section, I will address some properties and advantages of fibre 

sources.  

First of all, in contrast to bulk-optic lasers, fibre lasers can tightly confine the 

beam, offering a long intense interaction between pump and signal. This leads to a 
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lower threshold and higher gain efficiency. For example, Ref.  [37] compares the Raman 

gain efficiencies between bulk and fibre Raman amplifiers. For a bulk Raman amplifier,  
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where GNp is the gain in nepers, Pp is the pump power, the Raman gain coefficient gR is 

10-13 m/W, Aeff is the effective area, the refractive index n is 1.45, and the wavelength λ 

is 1060 nm. Strictly, this assumes that the bulk length infinite, but most of the gain 

occurs within the Rayleigh length of the focus. For a Raman fibre amplifier, with some 

typical parameter values, the gain efficiency becomes, 

WdBWALgPG effeffRpNp /8.6014// 1 === −  ( 1.2) 

with the same gR as in the bulk laser and effective area 30 μm2. The effective length Leff 

equals to (1-exp(-αL))/α, which is close to α-1 if the fibre length L is 10 km or longer 

while the background loss α is set to 1 dB/km. The gain efficiency is improved by 7.5 

orders of magnitude! Therefore, it is much easier to amplify light through SRS in a fibre 

than in a bulk. Although the Raman gain coefficient is significantly larger in materials 

used for bulk Raman amplifiers and lasers, this example still clearly illustrates the 

attractions of fibre for Raman amplifiers and lasers. 

Normally, only SMFs have a core size as small as 30 μm2, which more or less 

rules out brightness improvement. However, thanks to the long interaction length and 

the resulting high gain efficiency, it is reasonable to scale up the area significantly and 

an increase by three orders of magnitude still leads to gain efficiencies that are realistic 

with pulsed and even cw pumping. This opens up the possibility of cladding-pumping, 

in which an inner cladding guides the pump light. Inside the inner cladding, a core 

structure can be defined, in which the signal can propagate. Fibres with such a structure 

are referred to as DCFs. Figure  1.2 illustrates a transverse cross section and refractive 

index profile (RIP) of a conventional DCF. Based on DCFs, pump sources with poor 

beam quality can be converted into the signal with good beam quality. Our DCRFs are 

one kind of DCFs and can as such enhance the brightness.  
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Figure  1.2: Cross section and refractive index distribution of a DCF. 

Moreover, through designing the RIP, desired fibre characteristics can be obtained, 

such as large-mode area fibre for power scaling, a specific cut-off wavelength, etc. For 

example, a W-type fibre can control the transmission spectrum [38]. This will be 

particularly useful in a RFL or RFA if high conversion efficiency is required into the 

1st Stokes by suppressing the 2nd-Stokes generation. 

Furthermore, thanks to the thin active medium and long interaction length, fibres 

have good thermal properties. The high damage temperature of silica, together with a 

number of other favourable properties, makes silica-based fibre particularly suitable for 

high-power fibre lasers (including amplifiers). Active thermal management like air 

cooling and water cooling can also be applied, e.g., to make lasers or other fibre-based 

devices stable over long periods. Besides, fibre is easy to handle and install, e.g., in a 

compactly coiled spool, thanks to its flexibility. 

Fibres can also be spliced together into “all-fibre” systems (e.g., lasers) 

comprising several components. This makes them easy to integrate with other fibre 

devices and systems. It also eliminates alignment problems and improves the robustness, 

which is very attractive and several all-fibre devices are available on the market. For 

example, with a FBG or through the fibre design, wavelength filters or reflectors can be 

made. There are also many other fiberised components like modulators, isolators, and 

couplers, which allow for compact all-fibre laser systems with high functionality. In an 

experiment on a CP RFA described in Chapter 4, I used an FBG to choose the core 

modes of the signal instead. In addition, using an all-fibre configuration, a compact CP 

Raman fibre source has been reported by others  [39]. 
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1.3.2 Comparison of CP Raman fibre devices and RE-doped fibre devices 

Besides keeping most advantages of RE-doped fibre devices, CP Raman fibre devices 

provide some exciting advantages and differences compared to CP RE-doped fibre 

devices. 

Firstly, SRS is ubiquitous and wavelength-agile. It will occur in any optical fibre 

at any wavelength (provided the loss is sufficiently low), determined only by the pump 

wavelength and fibre material  [17]. This is a key advantage over RE-doped fibre 

devices, which despite a number of transitions in different host materials still exhibit 

large spectral gaps  [40], in particular at high powers in silica hosts  [41]. Figure  1.3, 

shows emission bands for some RE ions in silica glass, i.e., Nd, ytterbium (Yb), 

erbium (Er), thulium (Tm), and holmium (Ho). The emission bands of RE ions are finite 

and for high-power operation, even more restricted than Figure  1.3 suggests. By 

contrast, through SRS process, amplification is possible over the whole fibre 

transmission band. 

The nearly instantaneous nature of SRS is another difference. It allows us to 

directly transfer energy from a pump pulse to a signal pulse, without the intermediate 

energy storage that occurs in RE-doped gain media, and without the need to store 

energy to create gain. This instantaneity is useful for brightness-enhancement of pulses 

as well as for high quasi-unidirectional gain. Temporally, the gain follows the profile of 

a pump pulse, in a “gain wave” that travels with the pump pulse. For pulse lengths 

shorter than the fibre, the gain in the counter-propagation direction is much reduced, 
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Figure  1.3: Silica background loss and emission bands of some RE ions in silica fibre 

up to 2 μm. 
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despite the intrinsically bi-directional nature of the Raman gain. This can eliminate the 

need for an optical isolator. By contrast, most RE-doped fibre lasers and amplifiers 

operate at a high gain that is “always on” and with a significant stored energy. This 

makes them sensitive to feedback and necessitates the use of isolators to prevent 

catastrophic events such as self-Q-switching. In the high-power regime, isolators are 

expensive, bulky, components that often degrade the brightness of the beam and limit 

the output power. A short-lived, instantaneous, travelling gain also makes it easier to 

reach a high gain, which is useful for many applications.  

In addition, pulses are in some respects a weak point of RE-doped fibre lasers, 

because of limits in energy storage and damage threshold. For example, in a pulsed fibre 

laser, higher peak power and output energy are obtained with large-core fibres because 

of the higher energy storage and higher damage threshold those fibres offer. As there 

are some practical limits on the numerical aperture (NA) and core size of single mode 

fibre, multimode cores, e.g.  [42], are also used. CP Raman fibre lasers offer a radically 

different approach to high-energy pulses. They would not store the energy, but instead 

improve the brightness of high-energy multimode pulses, which are much easier to 

produce. 

Furthermore, in the ultra-high power regime, another essential advantage is the 

lower background loss. It may allow the heat to be distributed over a longer interaction 

length, which reduces the impact of the heating on the waveguide. A further attraction 

over RE-doped fibres, is a relative freedom from photo-darkening (especially important 

at short wavelengths) and a greater freedom in choice of materials. These fibres are not 

known to photo-darkening in the infrared region.  

Finally, a very large range of materials can be used with Raman fibre devices, 

including pure silica. There may be some materials that have higher damage thresholds 

than conventional RE-doped silica  [43]. Furthermore, the freedom in materials allows 

for improved control of the refractive index profile, which is also very important in the 

high power and pulsed regimes, with the large cores they necessitate. While many of 

these advantages hold for core-pumped RFLs, too, cladding-pumping facilitates scaling 

to high average powers. Thus, the output beam quality of any multimode laser source 

can be improved through SRS in a simple add-on consisting of a section of “passive” 

multimode fibre. In addition, this cheap and simple solution allows spectral, spatial and 

polarization combination of several pump sources into a single RFL  [25],  [44], for 
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further power scaling. Again, thanks to the wavelength flexibility, the CP Raman fibre 

devices can use multimode RE-doped fibre devices as their pump. It is generally easier 

to build a MM source rather than a diffraction limited source with the same output 

power. There are also other options for pump sources, such as solid state lasers, which 

offer high energy. This makes such pump sources attractive for the generation of high-

energy diffraction-limited pulses in DCRFs. 

1.3.3 Comparison of Core-pumped and CP Raman fibre devices 

As mentioned in section 1.2, most Raman work has been carried out with SMFs due to 

the relatively low threshold. Another benefit of such devices is their compatible with 

highly developed fibre components such as WDMs and isolators. Furhtermore, the 

output beam is usually diffraction-limited. Also, in theory, core-pumped Raman fibre 

devices can achieve slightly higher conversion efficiency of the pump into the 1st Stokes. 

I will discuss this in section 4.3.4. On the other hand, the small core of a SMF requires 

pump sources with good beam quality. Compared to multimode pump sources, single-

mode pump sources are more difficult to power-scale. Cladding-pumped Raman fibre 

devices are therefore more promising for the generation of high power and high energy. 

Furthermore, a CP Raman fibre device can provide a brightness which exceeds that of 

the pump source. With a well-designed core structures, the output beam can be 

diffraction limited or nearly diffraction limited.  

1.4 Outline 

The structure of this thesis is organised as follows.  

1) In Chapter 2, background material relevant for this thesis is introduced, such as mode 

selection, walk-off, beam quality, and Raman scattering.  

2) In Chapter 3, I theoretically analyse the achievable brightness enhancement from CP 

Raman fibre devices by considering different factors, i.e., 2nd-Stokes generation, 

background loss, walk-off and material damage. To prevent the 2nd Stokes from 

building up, a novel DCRF with a W-type core is designed. The achievable brightness 

enhancement is calculated for pulse-pumped CP RFAs based on the designed fibre. The 

calculated results show that a brightness enhancement of up to 3500 can be possible 

although it depends on the pump pulse duration and pump intensity.  
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3) Work described in both Chapter 4 and Chapter 5 is based on a DCRF with fibre 

number F71-LF11 made in house. In Chapter 4, the DCRF F71-LF11 is investigated in 

terms of achievable conversion efficiency into the 1st Stokes with a pulsed fibre laser 

pump source. Special attention is paid to different factors limiting the conversion 

efficiency, i.e., inner-cladding-to-core area ratio, background loss, pump pulse shapes, 

and inner-cladding shapes. A peak power conversion over 70% was experimentally 

obtained while the energy conversion efficiency into the 1st Stokes exceeded 60%.  

4) In Chapter 5, I focus on the power scalability of CP Raman fibre devices. A 100 W 

CW CP RFL with nearly diffraction-limited output was experimentally demonstrated 

with the DCRF F71-LF11. In addition, I also theoretically analyse factors limiting the 

ultimate output power and find that the core size is the key for the power scaling most 

of the time. 

5) For the power scaling, three DCRFs with large-mode areas are introduced in 

Chapter 6. The new fibres were also fabricated at ORC. At the beginning, the new fibres 

were investigated with a pulsed fibre source, and the experimental results proved that 

these new fibres can also work efficiently. In order to generate high energy sources, a 

Q-switched multimode Nd:YAG laser was utilised for pumping. High-brightness pulses 

with 1 mJ of energy were obtained from one of the new fibres. Besides, in a novel 

approach, SC is generated in a CP Raman fibre converter. Experimentally, a SC source 

was demonstrated covering wavelengths from 1 μm to beyond 1.75 μm .  

6) Finally, Chapter 7 summarises the works described in the thesis and outlines possible 

future work related to CP Raman fibre devices. 
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Chapter 2 Background 

This chapter introduces the background knowledge and theory related to this thesis, and 

will be helpful to understand subsequent chapters. In section  2.1, mode selection is 

discussed, which is important since the Raman gain is not restricted to the core in case 

of cladding-pumping. Furthermore, with pulsed pumping, walk-off and dispersion are 

critical as explained in section  2.2. Beam quality is an important factor, and it is defined 

in section  2.3. After this, I discuss the Raman scattering process with a focus on Raman 

gain and threshold, and introduce models to simulate SRS in fibres in the quasi-CW 

regime. Following this, the conversion efficiency will be calculated in a single-stage co-

pumped CP RFA. 

 

2.1 Mode selection 

In a multimode Raman fibre, the transverse power distribution of the pump primarily 

determines the Raman gain profile in a transverse section and thus which (spatial) 

Stokes-mode can be amplified through SRS  [1]. By contrast, the dopant distribution is 

normally less important, and certainly for the fibres I have used. The transverse pump 

distribution in the fibre is given by the incident pump distribution (in case of end-

pumping), and the details of the pump propagation in the fibre. This in turn depends on 

mode coupling, longitudinal coherence, and pump depletion. If the longitudinal 

coherence is poor so that modal interference can be neglected, then the transverse pump 

power distribution is given by the sum of the power distributions of the excited modes. 

In the absence of mode coupling, the power in each pump mode and thus the transverse 

pump power distribution is determined by the modes excited at the launch end together 

with the depletion of individual modes. The modal excitation in turn depends on several 

factors such as spot size, offset, and incident angle of the incident pump beam. 

Theoretically, the modal power distribution among the excited pump modes at the 

launch end can be calculated in several ways, for example, with the mode matching 

method, plane wave expansion  [2], and direct phase vector  [3]. In reality, the modal 
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power distribution is very difficult and complicated to measure in fibre and it is 

practically cumbersome  [4]. A further complication is that mode coupling between 

modes with similar propagation constant is normally not negligible. However it may 

still be possible to treat modes that are sufficiently strongly coupled as a single group, or 

quasi-mode, with some particular intensity profile that stays constant along the fibre  [5]. 

Thus, a modal, or quasi-modal, description of the pump propagation can be helpful both 

for qualitative understanding and quantitative analysis. 

According to the mode matching method, the excitation coefficient ηm,n of a mode 

Fm,n (x, y) (where m and n are the azimuthal number and the radial mode number 

respectively) for an incident input field Fi (x, y) is calculated according to  [6], 
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Here x and y are transverse orthogonal coordinates. 

For pump sources with poor beam quality, i.e., which are heavily multimode and 

cannot be tightly focussed, it may be necessary to fill the inner cladding to achieve a 

good pump launch. In this case all pump modes will be equally excited, largely. 

However I have normally used pump sources of much better beam quality. It is then 

possible to excite a subset of the pump modes, and the Raman conversion will vary 

accordingly. In particular, lower order modes can then be selected and excited on 

purpose in a MMF  [7]. Normally for DCRFs, lower order pump-modes overlap well 

with core-modes at the signal wavelength and assist in the 1st-Stokes generation in the 

core. Thus, the ability of a pump source with high beam quality to excite only lower-

order pump modes can help with signal mode selection. This has been demonstrated in a 

MMF without a double-clad structure, with lower order modes at the Stokes wavelength 

being generated under appropriate launching conditions  [1]. An alternative method to 

restrict the generation of the 1st Stokes to core-modes in a DCRF with its well defined 

core structure and core mode(s), is to seed the core through a selective launch in case of 

an amplifier  [8] or through mode-selective feedback in case of a laser, e.g., as provided 

by a FBG written either in the core of a DCRF or in a separate SMF that is spliced to the 

DCRF [9]. In this approach, the Stokes power will build up primarily in the core even if 

the Raman gain is not higher in the core than in the inner cladding. 
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2.2 Walk-off length in a MMF 

Stimulated Raman is nearly instantaneous, and the energy is converted from a pump 

into a Stokes wave without intermediate energy storage. Thus, the Raman gain is 

temporally and spatially overlapped with the pump pulses. As soon as the Stokes wave 

no long overlaps the pump, the SRS power transfer ends. In case of pulsed co-pumping, 

the pulse energy is launched into different modes, which travel at different group 

velocities, vg. This is modal dispersion. The signal propagates in a different group 

velocity too. In addition, the pump and signal are at different wavelengths. Thus, they 

travel at different velocities due to chromatic dispersion. The difference in group 

velocities between the pump and signal leads to a walk-off in temporal and thus restrict 

SRS. Finally, the energy transfer between different parts of pump modes and Stokes 

mode can be concentrated at different locations along the fibre  [10]. In such cases, the 

walk-off length determines the effective fibre length, over which the pump and signal 

can interact effectively with each other and can be defined as  [11], 

T
vv

vv
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sp

sp
offwalk Δ

−
=−

 
( 2.2)

where vs and vp are the group velocities at the signal and pump wavelength, respectively, 

and ΔT is the launched pump pulse duration. In silica glass, the walk-off parameter due 

to the chromatic dispersion is ~ 20 ps/m both at 1 μm and 1.5 μm  [11], although with 

positive and negative differences, respectively, between the group velocities of the 

Stokes and pump waves. In my pulsed experiments, a typical pump duration is ~ 20 ns, 

and the fibre length is normally ~ 100 m or shorter. The walk-off length induced by the 

material is around 1 km, much longer than the fibre length. So in most cases, chromatic 

dispersion does not have to be taken into account with nanosecond pulses.  

The walk-off length due to modal dispersion can be calculated as  [12], 
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( 2.3)

where nco and noc are the refractive index of the core and outer cladding, respectively. 

For the DCRF with fibre number LF11-F71 used in my experiment, the walk-off length 

due to modal dispersion is 250 m for a pulse with 20 ns duration, which is comparable 

to the fibre length normally used in the experiments, i.e., ~ 100 m. Note that this is the 

worst case of the modal dispersion. Normally the walk-off length is longer than that 
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given by Eq. ( 2.3) and the walk-off effect can be reduced by adjusting launching 

conditions to excite lower order pump modes. Nevertheless, for pulsed CP Raman fibre 

devices, the walk-off effect is important. It can determine the conversion efficiency and 

fibre length should be chosen carefully to avoid it.  

This walk-off length applies for co-propagating pump and Stokes pulses, and 

generally I will reserve the term “walk-off” for this case. Nevertheless, for counter-

propagating pulses one may well take the view that also these experience walk-off. This 

is very fast, occurring at the sum rather than the difference of the group velocities of 

pump and Stokes pulse, and as a result the interaction is much reduced for the counter-

propagating case. Thus, in the unseeded case with pulsed pumping, forward SRS 

dominates. The Raman gain and SRS in the backward is much smaller. For example, 

when the pump pulse repetition frequency (PRF) is sufficiently high to have a large 

number of pump pulses in the fibre at the same time, the counter-propagating Raman 

gain equals the co-propagating gain multiplied by the duty cycle of the pump pulses. 

2.3 Beam quality and brightness enhancement 

The concepts of brightness and beam quality are generally well known and have already 

been used above. In this section, I will define and quantify them. 

The beam quality can be described by the M2 factor: 

πλ /
02 W

M
Θ

=
 

( 2.4) 

where Θ is the divergence half-angle of the far field and W0 is the beam radius at the 

waist of the light beam  [13]. The M2 factor is also known as beam quality factor or 

beam propagation factor (or parameter). The beam parameter product (BPP) is another 

quantity used to describe the beam quality: 

.2
0 π

λMWBPP =Θ=  ( 2.5) 

For a diffraction-limited Gaussian beam, the beam parameter product equals λ / π. 

The M2 factor equals the ratio between BPPs for a certain laser source and a diffraction-

limited Gaussian beam with the same wavelength. Thus, the M2 factor equals unity for a 

diffraction-limited beam.  

The beam quality of a laser corresponds to the degree to which the beam can be 

focused for a given beam divergence (or convergence) angle. Together with the optical 
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power, the M2 factor determines the brightness, which is another important term in the 

field of lasers. It is arguably even more important than its constituents, beam quality and 

power, since it, rather than the power, determines the power density achievable in a 

beam focused on a target, and thus often the effect of the beam. Nevertheless, there is 

no strict definition of this term. It can be understood as being equivalent to radiance, 

defined by  [14]: 

θθ coscos

2
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P

dAd
PdL

Ω
≈

Ω
=  ( 2.6)

where the approximation holds for small A and Ω. In Eq. ( 2.6), L is the radiance (W·m-2 

sr-1), P is the radiant flux or power (W), θ is the angle between the surface normal and 

the light flux, A is the area of the source (m2), and Ω is the solid angle (sr). However, 

the quantity usually depends on which part of the beam is measured (in the far field). 

When the quantity is a constant independent of the angle θ, the source is called 

Lambertian source. However, the laser source is not a Lambertian source so the 

brightness (or radiance) must be averaged, somehow, to come up with a quantity that 

applies to the source as a whole. One possibility is to use the approximation in Eq. ( 2.6), 

but arguably a more correct expression is: 

)/( 222
yx MMPBL λ==  ( 2.7)

where Mx
2 and My

2 are beam propagation factors in orthogonal planes. 

Compared to the approximation in Eq. ( 2.6), Eq. ( 2.7) is preferable since M2 is 

strictly defined with integral expressions, and is an invariant quantity through an 

imaging optical system without loss or aberrations  [15]. In the case of a beam of radius 

a emerging from a fibre, according to Eq. ( 2.4) and Eq. ( 2.7), the brightness can be 

expressed as, 
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Above, the beam distribution is assumed to be circular. 

Many types of lasers can be thought as brightness converters, including CP fibre 

lasers. In these devices, a multimode pump source with lower brightness is converted to 

a signal with higher brightness. In a recent paper, a state-of-the-art Yb-doped DCF was 

used to generate 2.1 kW output power in a diffraction-limited beam  [16]. The fibre has a 

0.06 NA, 50 μm diameter core and a 0.48 NA, 850 μm diameter inner cladding. The 
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power conversion efficiency is around 71% for the Yb-doped fibre (YDF) laser. The 

brightness enhancement ηB can be easily calculated based on Eq. ( 2.8): 
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In Eq. ( 2.9), the subscripts cl and co stand for inner cladding and core respectively while 

subscripts s and p are for signal and pump respectively. For the case above, the 

brightness enhancement can be 13,200. It does however assume that all modes of the 

inner cladding are excited by the pump and all modes of the cores are excited by the 

signal. However, since the output beam was diffraction-limited the quantity NAco aco = 

1.5 μm should rather be replaced by λs / π = 0.35 μm. The brightness enhancement then 

becomes 19 times larger, or 246,000. This assumes that the pump beam filled the inner 

cladding, but this was nearly the case  [17]. In addition the YDF can be, and indeed was, 

pumped from both ends, and this then opens up for a brightness enhancement of 

492,000 with this particular fibre. Thus, brightness enhancements of over five orders of 

magnitude have been demonstrated experimentally, and six orders of magnitude look 

possible theoretically with YDFs  [18]. An important part of my research is the 

development of CP Raman fibre devices that increase the brightness and beam quality, 

relative to that of the pump source.  

2.4 Raman Scattering 

2.4.1 Introduction 

The first observation of spontaneous Raman scattering dates back to 1928. C. V. Raman 

noticed the change in the spectrum when focussed sunlight was scattered from different 

liquids and vapours  [19]. However, the stimulated version, SRS generally requires much 

higher optical intensities than achievable with sunlight, and was demonstrated by 

Woodbury only in 1962  [20], following the advent of the laser. Whereas the Raman-

scattered power is proportional to the pump power in case of spontaneous Raman 

scattering, it increases exponentially with pump power in case of SRS (in the undepleted 

pump regime). It can also be seeded, so SRS can be used to amplify a signal, with the 

input signal being proportional to the output signal (in the absence of pump depletion 

and in some other cases). In 1973, Stolen and Ippen demonstrated the first RFA  [21]. In 

2002, CP Raman fibre devices were proposed  [8] [22], and J. Nilsson and co-workers at 

the ORC for the first time demonstrated a CP RFA  [8]. It was pulse-pumped and based 
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on a germanosilicate fibre. The output beam was diffraction-limited and reached a 

maximum average power of 50 mW.  

Raman scattering is an inelastic nonlinear effect arising from the interaction 

between incident light and the vibrational states of materials  [19]. During Raman 

scattering, a pump photon is scattered to longer wavelengths under the generation of an 

optical phonon in the medium. Generally, inelastic scattering to longer wavelengths is 

called Stokes scattering. The phonon’s frequency is equal to the frequency difference 

between the incident and scattered photon. The vibrational levels of a medium 

determine the frequency shift and, in case of a Raman amplifier, the gain curve relative 

to the pump frequency. The Raman spectrum and the gain curve shape are independent 

of the pump frequency. 

SRS is a nearly instantaneous process. Therefore, the signal and pump beams 

must overlap with each other to amplify the signal through SRS. Furthermore, since 

SRS can be viewed as a quite weak nonlinearity (especially in silica), it benefits from a 

strong interaction with intense beams over a significant length. As discussed in 

Chapter 1, this makes optical fibres particularly well suited for SRS. 

For silica glass, its Raman gain spectrum is shown in Figure  2.1. The gain range is 

over 40 THz, and the frequency shift to the gain peak is about 13 THz. 

 
Figure  2.1: Raman-gain spectrum for fused silica at a pump wavelength λp = 1 μm  [21]. 
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2.4.2 SRS in singe-mode optical fibres 

The following two coupled equations describe the evolution of the pump and Stokes 

(i.e., signal) intensity through SRS process along a length of a SMF in the CW or quasi-

CW regime  [11]. 

.sssPR
s IIIg

dz
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α−=  ( 2.10) 

.ppsPR
s

pp IIIg
dz

dI
α

ω
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Here, both pump and signal are assumed to propagate in the positive direction of the 

longitudinal fibre coordinate z. The intensity is represented by Ii and the fibre 

propagation loss by αi with subscripts i = p, s denoting the pump and Stokes beams. 

Furthermore, gR is the Raman gain coefficient. The power propagating in a fibre can be 

found by integrating Eq. ( 2.10) and Eq. ( 2.11) in the transverse section  [23], 
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Here, I have used ∫∫= IdSP . The intensity I is proportional to C|E|2, where C is a 

constant related to the fibre materials and wavelength, and E is the electrical field 

amplitude. Furthermore, |E|2 = |F(x,y)|2|A|2, where, F is transverse mode field 

distribution and A is the slowly varying pulse amplitude. Thus,  
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where Aeff is referred to as the effective area and its reverse is normally referred to as the 

overlap. Finally, Eq. ( 2.12) and Eq. ( 2.13) can be modified as below  [23]: 
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If the signal power is small enough for the pump depletion to be negligible, i.e., 

the first RHS term is negligible in Eq. (2.16), then we can directly get an analytic 
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solution for the pump power Pp and subsequently the signal power Ps by substituting the 

pump evolution into Eq. ( 2.15): 
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where Pi (0) and Pi (z) are the launched power and the power at a distance z from the 

launch point, respectively. The effective length Leff is defined as follows [11]: 
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The solution Eq. ( 2.17) shows that because of the background loss, the effective 

interaction length is reduced from the actual fibre L to effective length Leff. If the fibre 

length is long enough, the effective length Leff converges to αp
-1 according to Eq. (2.18). 

The small-signal net gain (i.e., the signal gain with an undepleted pump) can be 

straightforwardly deduced from Eq. ( 2.17): 
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The small signal net gain Gnet is in dB. On-off gain is often used too, and is attractive 

because it is easy to measure. It is defined as the power ratio between the signal power 

at the output of the fibre when the pump is on and off and thus takes the signal 

background loss out of the equation above, 
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From both equations above, it is clear that by reducing the effective area, increasing the 

pump power or the effective fibre length, or using a fibre with a high Raman gain 

coefficient, a higher Raman gain can be obtained. 

2.4.3 Raman critical power or threshold in fibres 

Another important parameter for a Raman amplifier is the critical power, also called 

threshold. The critical power is defined as the input pump power at which the Stokes 

power equals the pump power at the output of the fibre. Smith has offered an 

approximate expression, for the case when the 1st Stokes is built up from the noise  [24]. 

For forward SRS, i.e., with co-propagating pump and signal:  
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effR

effp
critical Lg

A
P 16≈ . ( 2.21) 

For backward SRS, i.e., with counter-propagating pump and signal: 

effR

effp
critical Lg

A
P 20≈ . ( 2.22) 

The expression for the co-propagating case is valid both cw and pulsed (if walk-

off is negligible), whereas the expression for the counter-propagating case only applies 

for cw light and for pulses that are long compared to the fibre. Another important 

assumption is that SRS occurs predominantly in the co- and counter-propagating 

direction, respectively, for Eq. (2.21) and Eq. (2.22). When the Stokes builds up from 

noise as assumed here, this will be the case for the co-propagating Stokes with pulsed 

pumping, but not otherwise. (This discards the possibility of some unidirectional effect 

such as an isolator or parametric gain overlapping with the Raman gain.) Rather, the 

local Raman gain at any one point is practically identical in all directions (in an 

isotropic material). Thus, in case of cw pump light, the forward and backward Raman 

gain will be the same, and the forward and backward Stokes wave will carry the same 

amount of power. However, in practice there are likely to be fluctuations in the pump 

power (when the pump coherence length is shorter than the fibre length), and this makes 

the forward-propagating Stokes power higher than the backward propagating power, 

although this effect is reduced by (co-propagating) walk-off between pump and signal. 

Although often quoted, the counter-propagating case of Eq. (2.22) comes across 

as a theoretical abnormality, relying on assumptions that cannot be encountered in 

practice. The reason why the critical power is higher according to Eq. (2.22), although 

the forward and backward Raman gain is everywhere the same, is that a backward 

Stokes wave depletes the pump over a longer length of fibre than a forward Stokes wave 

does. Thus, a (seeded) backward-propagating Stokes wave is more effective in reducing 

the gain for itself as the seed power increases. In reality, however, due to the pump 

fluctuations mentioned above, the forward Stokes wave will build up before or at least 

not later than the backward Stokes wave, so the assumption of Eq. (2.22) of a 

dominating backward Stokes wave will not be realised in practice. 

Despite these concerns, the critical power can be used to roughly estimate the 

pump power or fibre length needed for Raman conversion in many cases. It can also be 
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used to estimate when unwanted SRS starts to appear, e.g., in RE-doped fibre devices 

although the SRS tolerated in a RE-doped fibre may be much lower. 

Note that the 1st-Stokes power can be amplified to the point when it starts to 

generate the next-order Stokes. The 1st Stokes acts as a pump for the 2nd Stokes, and its 

power starts to decrease when the 2nd-Stokes power starts to build up. The energy is 

then rapidly transferred to the 2nd-Stokes beam. The process can continue in a cascaded 

fashion, so that, even higher-order Stokes radiation can be generated, provided that the 

input pump power is sufficiently high. Carl Farrell has studied this experimentally  [25], 

and found the following average pump powers at 1064 nm with 20% duty cycle to be 

required for the generation of Stokes orders 1 – 7 in 2 km of highly nonlinear 

germanosilicate fibre: 167, 285, 400, 581, 750, 1060, and 1510 mW. The power ratios 

relative to the 167 mW of power required for the 1st Stokes order become 1, 1.71, 2.40, 

3.48, 4.49, 6.35, and 9.04. The peak wavelengths of the Stokes orders were 1116, 1172, 

1236, 1306, 1384, 1475, and 1574 nm. These powers correspond to the point where 

essentially all the power is converted to a specific Stokes order, but this is only slightly 

higher than the critical power corresponding to Eq. (2.21). 

2.4.4 SRS in MM fibres 

In a MMF, SRS is similar but more complicated than that in a SMF, described by the 

equations given in section  2.4.2. The pump and / or signal beams are transported by 

several modes in a MMF. The power of each mode then creates an optical power 

distribution that generates a Raman gain in proportion to the local intensity. Thus, it is 

necessary to consider all modes involved in the SRS process  [5]. In the CW or quasi-

CW regime, the intensity evolution of each propagating mode at different wavelengths 

under Raman scattering can be modified from Eq. ( 2.10) and Eq. ( 2.11). Through 

integration across the transverse section similar as done in section  2.4.2, we can obtain:  
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Here, co-pumping is assumed and mode coupling is not considered, which means that 

the power of different modes (or quasi-modes) increases or decreases independently, in 

the incoherent regime. The variable P(z, λi, l) represents the power of the mode l with 
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the wavelength λi at the distance z. The subscript index i stands for any arbitrary 

wavelength. Later, for simplicity, I will consider that the subscript index i (and j) is 

referred to as the (primary) pump (i = 0), 1st Stokes (i = 1), up to Mth Stokes (i = M). In 

addition, the wavelengths are arranged to increase with the subscription. The effective 

area Aeff (λi, λj, l, k) corresponds to the interacting pump wavelength λi, signal 

wavelength λj with specific mode l and k respectively. The Raman gain coefficient 

gR (λi, λj), corresponding to the pump wavelength λi, signal wavelength λj, is 

determined by the material distribution and composition inside the transverse section S. 

The variable α(λi, l) is referred to as the background loss at wavelength λi with mode l. 

The background loss is supposed not to vary along the fibre. Finally, Nj is the number of 

modes that can be supported at the wavelength λj inside the fibre. In principle, this 

number can change along the fibre. 

The beating between pump modes is neglected during SRS process. This may be 

justified by the fact that the SRS gain is small over a characteristic length given by the 

inverse of kmax - kmin, where kmax (kmin) is the largest (smallest) wave-vector of any pump 

mode at the pump wavelength. Assuming that kmax - kmin ≈ 2π / λ(nco - noc), the 

“coherence length” of the pump light in different modes is of the order of 10-3 m in the 

DCRFs used in this thesis. Very little happens over such distances in a Raman amplifier. 

Although other modes have propagation constants closer to each other, their beat length 

is still small compared to the Raman interaction length, and / or, the power carried by 

such modes can be expected to be small compared to the total power. Therefore, it is 

normally justified to neglect the interference of the pump modes, even when the 

coherence of the pump modes is maintained throughout the fibre, even more so with 

lower-coherence pumping. 

Furthermore, the mode coupling between the core mode(s) and inner-cladding 

modes of a specific Stokers order can normally be neglected too in the DCRFs I have 

used. With a double-clad structure, the strong relative enhancement of the fundamental 

mode or lower order core mode(s) when seeded or when selected by a grating or by an 

aperture (e.g. by a SMF spliced to the DCRF), reduces modal interference. 

Here, spontaneous Raman scattering and Rayleigh back-scattering are not 

considered. During my experiments, the CP RFAs are usually seeded with sufficient 

power to make stimulated Raman scattering dominate over spontaneous Raman 
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scattering everywhere in the fibre, and the lasers operate with sufficiently low gain for 

this to be true for theme as well. Furthermore, the influence of Rayleigh back-scattering 

is related to fibre length. See the example in Ref. [26]. In there, the total back-scattered 

power is smaller than 0.1% even with a fibre length of 100 km (several times the 

attenuation length), even when the loss is dominated by Rayleigh scattering. In my case, 

the fibres were typically much shorter than the attenuation length, and this reduces the 

backscattered power in proportion. While the backscattered power increases with the 

NA, the core-NAs of my fibres were comparable to that of the standard single-mode 

fibres used in Ref. [26]. Furthermore, as it comes to back-scattering, a loss dominated 

by Rayleigh-scattering is a worst-case scenario, and it is likely that other mechanisms 

contributed to the loss in my fibres. In addition, in the case of pulse pumping, the 

backward Raman gain is much less due to walk-off as discussed in section 2.2. Thus, 

Rayleigh scattering is not considered either.  

Equation (2.23) can be simplified if the number of treated wavelengths is reduced. 

Specifically, in my work I often need to treat only the 1st and 2nd Stokes orders, together 

with the pump. If we only consider a single wavelength for each of them, we get the 

following equations. 
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Here, there are N0, N1, and N2 modes, respectively, at pump wavelength λ0, 1st-Stokes 

wavelength λ1, and 2nd-Stokes wavelength λ2. Equations (2.24) to (2.26) can be 

numerically solved with appropriate boundary conditions by commercial software such 

as MATLAB. For Raman fibre amplifiers, powers at the input are known, and the 
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equations above can be solved as an initial value problem. For Raman fibre lasers, 

another equation is needed to describe the propagation of the backward Stokes, which 

can be easily modified from Eq. (2.25) by changing the sign of the term on the LHS. At 

the cavity mirrors, the forward Stokes power and backward Stokes power are related to 

each other through the cavity reflectivities. Thus, the equations can be solved as a 

boundary value problem. In reality, however, it will be difficult to know the power in 

each excited mode, in particular when mode coupling is significant. Therefore, an 

approximate treatment that considers the power in several, or even all, modes of a 

particular Stokes order together is often better. Assume therefore that the ratio between 

a certain mode l and the total pump power PT (z, λ0) at position z is ql(z). The power of 

the mode l can be described: 

),()(),,( 00 λλ zPzqlzP Tl=  ( 2.27) 

with ∑
=

=
0

0
.1)(

N

l
l zq  After replacing the pump power in a certain mode with Eq. ( 2.27) 

from Eq. (2.24) to Eq. (2.26) and summing the pump power in all modes together, we 

obtain: 
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Here, we can define a new parameter '
effA , which I call the average effective area, 

to describe the effect on an individual Stokes mode k of the total pump power: 
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It can be named as average effective area. 

For CP Raman fibre devices, we are primarily interested in the operation of the 

fundamental mode (in the core in case of a DCRF) of the 1st Stokes. This corresponds, 

hopefully, to a diffraction-limited mode with highest possible efficiency, since emission 

at the 1st-Stokes wavelength minimizes the quantum defect. While Raman gain in a 

DCRF is induced wherever there is pump light, there are many ways to ensure that the 

Raman conversion occurs only in the core, to the fundamental mode. Besides the 

methods mentioned the section  2.1, the gain coefficient in the core is often higher than 

that in the inner cladding. For example, the core region can have a higher germanium 

concentration, which increases locally the Raman gain  [27]. Note that there will also be 

some gain at the wavelength of the 2nd Stokes induced directly at the pump, since, in 

silica, there is still some Raman gain at twice the frequency shift of the gain peak [11]. 

However, the Raman gain coefficient is much smaller there. Furthermore, in the 

brightness-enhancing regime that we are interested in, the intensity of the signal in the 

core, averaged along the fibre, will be higher than that of the pump. Therefore, the 

second order Stokes gain is, essentially always, highest in the core and generated almost 

exclusively by the light at the 1st-Stokes wavelength. Hence, the direct contribution 

from the pump to the gain at the 2nd Stokes can be neglected. With Eq. ( 2.31), Eq. ( 2.28) 

– Eq. (2.30) can be modified as follows: 
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Here, I assume that only a single (spatial) mode is excited at both 1st and 2nd Stokes 

orders. This is often the case, especially when the core of the DCRF is single-moded. 

For brevity, I remove the parameter for the mode in the different variables. Also, the 

background loss is assumed to be the same at a certain wavelength, independent of 

modes. Even though the loss in the core and inner cladding may well be different, this is 
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still a reasonable assumption, since the bulk of the pump power propagates in the inner 

cladding, and the Stokes power propagates in the core. 

Above, Eq. (2.32) – Eq. (2.34) describes the evolution of the total pump power 

and the 1st- and 2nd-Stokes power (both in the fundamental core-mode), under the 

assumption that the power in the pump modes can be treated as a single quantity. For 

this to be reasonable even when the 1st-Stokes wave starts to deplete the different pump 

modes, the pump modes should either be sufficiently strongly coupled for the powers in 

different pump modes to maintain their relative values, or the (direct) depletion rate 

should be similar for all pump modes. Otherwise, the average effective index varies 

along the fibre. The equations can also be used to calculate the gain, if a Stokes wave is 

seeded. 

In the case of strong mode-coupling of the pump modes, it is reasonable to 

assume that the pump is evenly distributed across the inner cladding. In this case, the 

effective area for SRS from the pump in the inner cladding to the 1st Stokes in the core 

is equal to the inner-cladding area Acl. If the Stokes waves are evenly distributed in the 

core, the effective area for SRS from the 1st Stokes to the higher order Stokes is equal to 

the core area Aco. Still under the assumption of co-propagating, we can get the set of 

coupled equations for SRS in DCRFs  [28]: 
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Here, the Raman gain coefficient gR’ is related to the core. I also treat the pump power 

in different modes as a single quality. The effective area for the pump and signal are 

kept constant along the fibre, which is not the necessary case for the average effective 

area given in the previous model under the assumption of weak mode coupling if 

different modes are depleted at different rates. The previous model is more suitable 

applied to devices utilising a short piece of fibre used in devices. Instead, if a relatively 

long piece is used, the model given here is more suitable. The key difference between 
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two models is the value of the average effective area between the pump and the 1st 

Stokes. It is critical to the SRS generation. The average effective area depends on the 

pump modes involved in the process. As discussed in section  2.1, we can excite lower 

order modes on purpose in different ways, and thus, get smaller average effective area. 

I normally use both sets of simplified equations for most simulations of CP RFAs 

or RFLs in this thesis. 

2.5 Simulation example on a CP RFA 

In this section, I use Eq. ( 2.35) to Eq. ( 2.37) to simulate a single-stage co-pumped 

CP RFA. The amplifier consists of a 150 m long DCRF with parameters corresponding 

to the fibre F71-LF11 I used experimentally. The single-mode core diameter is 9 μm 

and the inner-cladding diameter is 21.6 μm. A 1 kW Raman pump beam at 1550 nm and 

a 50 mW 1st-Stokes beam at 1660 nm are launched into the fibre from the same end. 

The background loss is 3.1 dB/km in the core and 2.3 dB/km in the inner cladding. The 

Raman gain coefficients are 5.29×10-14 m/W, and 6.34×10-14 m/W, respectively, in the 

inner cladding and core. Through SRS, the power is transferred from the pump to the 1st 

Stokes, and the 1st-Stokes power is limited by the 2nd-Stokes generation. The power 

evolution of the pump, 1st Stokes, and 2nd Stokes along the fibre is given in Figure 2.2. 

It is clear that the fibre length must be carefully optimised to reach the maximum power 

of the 1st Stokes. With such length optimisation, thanks to the design of this fibre, the 

pump is essentially depleted at the point where the 2nd-Stokes power starts to grow. 

However, this will not be the case for inappropriate fibre designs, as I will discuss in 

more detail in the next chapter. The conversion efficiency into the 1st Stokes with 

respect to input pump power in a 76 m long piece of this DCRF (optimised fibre length 

in Figure 2.2) is also calculated, with as well as without considering background loss. 

Other parameters are the same. Figure 2.3 show the calculated results. The conversion 

efficiency increases initially with pump power but rolls over when the pump power is 

beyond 1 kW due to the 2nd-Stokes generation. With background loss, the highest 

conversion is 84.4%. This is lower than the quantum efficiency of 93.4%, which is 

shown by a red dashed line. However, the conversion efficiency into the 1st Stokes is 

also lower than the quantum efficiency even when the background loss is ignored. I will 

discuss this further in the next chapter. 
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Figure  2.2: (Simulation) Simulation of a 
single-stage co-pumped CP RFA with a 
9 μm diameter core and a 21.6 µm 
diameter inner cladding fibre. Raman 
pump (black curve) input power at 
1550 nm: 1 kW; 1st-Stokes seed (blue 
curve) input power at 1660 nm: 50 mW; 
2nd Stokes (red curve) builds from noise. 

Figure  2.3: (Simulation) Simulation on 
the conversion efficiency into the 1st 
Stokes in a single-stage co-pumped CP 
RFA with a 76 m long piece under 
different input pump power with (red 
curve) and without background loss 
(black curve). 

2.6 Summary 

In this chapter, I have introduced background theory related to that work I present in 

this thesis. I have discussed mode selection, walk-off, beam quality, and Raman 

scattering. Equations are given to describe SRS both in SMFs and in MMFs in the CW 

and quasi-CW regime. Besides, I used the equations to simulate a single-stage co-

pumped CP RFA. The simulation results show that the fibre length and background loss 

play a role for the conversion efficiency. I will discuss these factors and other 

limitations set on the conversion efficiency in detail in next two chapters. 
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Chapter 3 Brightness enhancement limits in 
pulsed CP RFAs 

In this chapter, I theoretically analyse limitations on brightness enhancement when a 

multimode pump beam is converted into a diffraction-limited Stokes wave in an 

efficient pulsed CP RFA. There are many limiting factors. Firstly, there is unwanted 

cascaded SRS into the 2nd-Stokes order. If unchecked (e.g., in a step-index core), the 

2nd-Stokes generation restricts the inner-cladding-to-core area ratio around eight. By 

designing a new DCRF with a W-type core, I manage to improve this limitation by 

nearly five times over that of a DCRF with a step-index core, according to model 

calculations. Other limits are also analysed such as those imposed by glass damage, 

propagation loss, and pump-signal pulse walk-off in MM fibres. I have found that the 

designed fibre allows for a pump-to-signal brightness improvement of over 1000 times 

for pulses longer than 40 ns and up to 3500 times in the CW regime in case of a 

propagation loss of 3.5 dB/km. 

 

3.1 Introduction 

A simple but important application of a DCRF is to convert the output of a MM laser 

into a diffraction-limited beam. Ideally, this can be achieved by simply adding a DCRF 

to a MM source  [1]-[5]. However, the brightness enhancement achieved in the past has 

been limited to around 10, for a pump beam quality of M2 ~ 3. This unattractively low 

value is incompatible with many MM lasers. Another paper  [6] reports a brightness 

enhancement of 192 times in a pulsed CP RFA. Unfortunately, the energy conversion 

efficiency was poor, only ~ 6.6%. This illustrates the challenges of simultaneously 

achieving a high brightness enhancement and a high conversion efficiency. In contrast, 

the brightness can be improved by over five orders of magnitude in highly efficient CP 

YDF amplifiers and lasers as discussed in section 2.3. This is an exceptionally high 

number, which even allows for the damage threshold to be exceeded with state-of-the-
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art diodes. Although such high numbers may not be necessary, it is important to 

establish the brightness enhancement that can be reached in CP Raman fibre devices 

while retaining a high conversion efficiency. This is the subject of this chapter. A new 

DCRF with a W-type core for improved brightness enhancement is designed and the 

achievable brightness enhancement is calculated. The calculated result shows that over a 

1000-fold improvement of the brightness is possible with realistic parameters, 

compatible with a wide range of MM pump sources, including diodes. 

3.2 Limitations on the area ratio and fibre design 

3.2.1 Inner-cladding-to-core area ratio requirement 

Figure 2.3 illustrated that the background loss limits the conversion efficiency into the 

1st Stokes. However, even with a lossless fibre, the highest achievable conversion 

efficiency into the 1st Stokes is still lower than the quantum efficiency, as shown in the 

same plot. This is irrespective of pump power. Thus, whereas a RE-doped fibre laser 

would, to first approximation, allow for quantum-limited efficiency, in a lossless fibre if 

one operates sufficiently high above threshold, there must be other factors restricting the 

conversion efficiency besides the background loss in a DCRF. Figure 3.1 illustrates the 

impact of the inner-cladding-to-core area ratio on the conversion efficiency in a single-

stage co-pumped CP RFA, as calculated with numerical simulations of Eq. (2.35) – 

Eq. (2.37) in the quasi-CW regime. For this, I consider DCRFs which have the same 

core size, 9 μm diameter (single-moded) and different inner-cladding sizes. The inner-

cladding diameter is varied from 9 μm (the fibre becomes a SMF in this case) to 70 μm. 

The fibre length is carefully optimized for each inner-cladding size to reach highest 

possible conversion efficiency into the 1st Stokes. Background loss is not considered. 

Other parameters remain the same as the example in section  2.5. The red curve with 

circles shows the dependence of the conversion efficiencies on the inner-cladding 

diameters and corresponding inner-cladding-to-core area ratios. The red dashed line 

indicates the quantum efficiency. In the case of a SMF, the conversion efficiency into 

the 1st Stokes is practically identical to the quantum efficiency. By increasing the inner-

cladding-to-core area ratio, the conversion efficiency drops off. When the area ratio 

between the inner cladding and core is larger than 8 (the case identified with a circle), 

the conversion efficiency is below 80%. This example shows that the inner-cladding-to-

core area ratio also limits the conversion efficiency into the 1st Stokes.  
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Figure  3.1: (Simulation) Simulation of a single-pass co-pumped CP RFA based on 
fibres with different inner-cladding sizes under 1 kW input pump power. Dashed line 
represents the quantum efficiency; Solid line: conversion efficiency into the 1st 
Stokes. 

In the example above the inner-cladding-to-core area ratio should be no more than 

around eight for a high conversion efficiency into the 1st Stokes. This is actually a 

general result. In the following, I deduce the required area ratio between inner cladding 

and core for efficient CP RFAs based on fibres with basic step-index profiles. From 

Eq. (2.35) – Eq. (2.37), it follows that the SRS-induced nonlinear depletion of the pump 

by the 1st Stokes 0ζ , in nepers, is given by: 
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This quantifies the relative amount of pump power transferred to the 1st Stokes by 

SRS. Similarly to Eq. ( 3.1), disregarding background loss, the gain of the fundamental 

mode at the 2nd Stokes, induced by the 1st-Stokes wave in the core of the DCRF, is 

given by: 
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where G2 is the gain, also in nepers. Note that here, I assume the pump and signal are 

uniformly distributed in the inner cladding and core, respectively. Thus, the effective 

area (as defined in Eq. (2.14)) between the pump and 1st Stokes equals the inner-

cladding area while the effective area between the 1st Stokes and 2nd Stokes is equal to 

the core area. 
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The 2nd Stokes, building up from noise, will become important once its gain 

reaches about 16 nepers (~70 dB)  [1], or earlier if there is any feedback. This is 

however unwanted since it depletes the 1st Stokes. Furthermore, in order to have an 

efficient conversion of the pump into the 1st Stokes, the nonlinear pump absorption 

should be in the region of 2 nepers (8.7 dB) or more. Thus, the ratio of the 2nd Stokes 

gain and the pump absorption must fulfil: 
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Using Eq. ( 3.1) and Eq. ( 3.2) to replace G2 and ζ0 in Eq. ( 3.3), we obtain the following 
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where Dcl and dco are the cladding and core diameter, respectively, and where I have 

used that the Raman gain is approximately inversely proportional to the pump 

wavelength  [1]. Equation ( 3.4) forms a basic rule for the area ratio required to avoid the 

2nd Stokes, when losses are low and the nonlinear pump absorption is sufficiently large 

to allow for efficient conversion. This matches well the value given in Figure 3.1. Thus 

for a given core size, the inner-cladding area must be restricted to ensure that the pump 

power can be efficiently transferred to the 1st Stokes before the 2nd Stokes is generated. 

Otherwise, the 2nd Stokes will inevitably build up before the pump is transferred into the 

1st Stokes. Equation ( 3.4) follows from the symmetry of SRS in terms of Raman gain on 

the Stokes side and nonlinear depletion on the anti-Stokes side of the 1st Stokes, and the 

effective area dependence (see Eq. ( 3.1) and Eq. ( 3.2)). Importantly, this equation also 

sets a limit to the brightness enhancement, when combined with achievable NAs of the 

pump and signal. Still, it is possible to relax this condition if the loss at the 2nd Stokes is 

increased to prevent the 2nd Stokes from building up. At the same time, to reach a high 

efficiency, the loss for the 1st Stokes and the pump must remain low. 

Figure  3.2 illustrates how the powers of the pump and 1st and 2nd Stokes evolve, 

as calculated with Eq. (2.35) – Eq. (2.37) in a single-pass CP RFA based on DCRFs 

with inner-cladding-to-core area ratios of 5.8 and 11.1 respectively. For the fibre with 

the inner-cladding-to-core ratio at 5.8, the DCRF is exactly same as one in Figure 2.2, 

and the inequality ( 3.4) is satisfied. Thanks to the appropriate area ratio, the pump 

power is well depleted at the point where the 2nd Stokes at 1790 nm starts to grow. The 
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residual pump power is about 0.4% of the input Raman pump. By contrast, if the inner 

cladding diameter is 30 µm while the other parameters remain the same, a significant 

amount of pump power, over 10%, will not be converted into the 1st Stokes before the 

2nd Stokes is generated. Here, the inner-cladding-to-core area ratio is 11.1, not meeting 

the inequality above. Furthermore, with even larger inner-cladding-to-core area ratio, 

the conversion efficiency becomes even worse, as for the case shown in Figure 3.1. 

Once the 1st-Stokes power has been converted into the 2nd Stokes, there is no longer any 

effective conversion of the pump, so a fraction of the power will remain in the low-

brightness pump beam. This is seen in Figure  3.2, even with the relatively benign area 

ratio of 11.1. Eventually, a new 1st-Stokes wave can build up from the remaining pump, 

but only if the 1st-Stokes gain induced by the pump overcomes the 1st-Stokes depletion 

rate induced by the 2nd Stokes, as well as the fibre background loss. 
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Figure  3.2: (Simulation) Simulation of single-stage co-pumped CP RFAs based on a 
fibre with a 9 μm diameter core. Solid lines: Area ratio 5.8 between the inner 
cladding and core; Dashed lines: Area ratio 11.1 between the inner cladding and 
core; Raman pump (black curves) input power at 1550 nm: 1 kW; 1st Stokes seed 
(blue curves) input power: 50 mW. Red curves present 2nd Stokes. 

3.2.2 Loss required to suppress buildup of the 2nd-Stokes gain peak 

It would be helpful to relax the restriction of the geometry described by Eq. ( 3.4), so 

that larger inner claddings and lower brightness pump sources can be employed. As 

mentioned above, this is possible if a loss at the 2nd-Stokes wavelength is introduced to 

prevent the growth of the 2nd-Stokes power through SRS process. A waveguide filter 

such as a W-type fibre  [7], is one method for introducing a high loss at longer 

wavelengths (i.e., at the 2nd Stokes) while keeping the loss low at the 1st Stokes when 
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the W-type fibre is bended. The induced loss through bending is normally referred to as 

bendloss, and the bendloss spectrum depends on the fibre design and the bend radius, as 

well. With a waveguide filter, Eq. ( 3.4) should be modified as: 

8/)( 022 <− ζα LG  ( 3.5) 
where α2 is the loss per unit length at the 2nd Stokes and L is the fibre length. Again 

using Eq. ( 3.1) and Eq. ( 3.2), we get 
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Here I have used that with loss, the condition for avoiding build-up of the 2nd Stokes 

becomes 

1622 <− LG α . ( 3.7) 
Therefore, the area ratio condition in Eq. ( 3.4) is relaxed and the inner-cladding area can 

be increased for a given core size. The required loss can be deduced from Eq. ( 3.6): 
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If the background loss is negligible for both the 1st Stokes and Raman pump, and 

there is no power conversion to the 2nd Stokes, we have, 
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Here, G1 is the Raman gain at the 1st Stokes, gR
’(λ0, λ1) is the Raman gain coefficient in 

the core at the 1st-Stokes wavelength λ1 with a pump at λ0, and P0 and P1 are the powers 

at the pump and 1st Stokes respectively. Note further that in the absence of loss, the total 

number of photons is preserved. In case of co-propagating pump and 1st Stokes, the sum 

(λ1/λ0) P1 + P0 is then constant along z. Thus, add Eq. ( 3.9) can be added to Eq. ( 3.10) 

to obtain: 
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where P0(0) is the Raman pump power at the input. The initial power of the 1st Stokes, 

P1(0), is assumed to be negligible compared to that of the pump. Otherwise, this can be 

readily added to the right hand side of Eq. ( 3.11). 

From Eq. ( 3.11), the fibre length can now be determined as: 
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Substituting Eq. ( 3.12) into Eq. ( 3.8) yields, 
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As a representative numerical example, I suppose next that G1 = 7 Np (i.e., 30.4 dB) and, 

as before, that ζ0 = 2 Np. Then, equation ( 3.13) becomes: 
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This will be a reasonable approximation for the required 2nd Stokes loss for most 

realistic Raman gain values, say, between 3 and 12 Np. 
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Figure  3.3: (Simulation) Loss required to suppress the generation of the 2nd Stokes in 
a germanosilicate fibre pumped at 1.55 μm with a pump power of 10 kW and a 
Raman gain coefficient of 0.35×10-13 m/W. 

For a numerical illustration, I will next assume a pump wavelength of 1.55 μm 

and a power of 10 kW. This leads to a 1st-Stokes wavelength of 1.66 μm in a 

germanosilicate fibre, with a typical value of gR’(λ0, λ1) of 0.35×10–13 m/W. Figure  3.3 

shows the resulting loss α2 that is required to suppress the 2nd Stokes according to 
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Eq. ( 3.14) as a function of core area, for different inner-cladding areas. This assumes 

that the fibre length is chosen according to Eq. ( 3.12). When the inner-cladding-to-core 

area ratio is small enough, i.e., below 8, no loss is needed to suppress the 2nd Stokes in 

the core. The required loss is inversely proportional to the length, and therefore 

proportional to the pump, and can easily be scaled to other pump powers (when chosen 

according to Eq. ( 3.12)). 

3.2.3 Spectral bendloss filtering and the influence of off-peak SRS on the area 
ratio limitation 

Clearly, in a fibre that reaches the loss of Figure  3.3, the 2nd Stokes will not build up. 

However, even if it is possible to reach this loss at the 2nd-Stokes gain peak wavelength, 

it is not realistic to expect it to be reached across the entire 2nd-Stokes gain band, which 

extends all the way to the 1st-Stokes wavelength. Therefore, to determine if the 2nd 

Stokes is totally suppressed, one must consider all wavelengths within the 2nd-Stokes 

band, and the precise spectral dependence of the Raman gain and the bendloss within 

this region. Since the loss at the 1st-Stoke wavelength must be small, and since the 

attenuation increases only gradually from the 1st-Stokes wavelength (λ1) to the 2nd-

Stokes peak wavelength (λ2), the loss for small Stokes shift will necessarily be small. At 

the same time, the Raman gain coefficient for the 2nd Stokes also increases gradually for 

wavelengths λi in the range λ1 ≤ λi < λ2. Depending on which increases faster, and 

therefore on the filter sharpness, the net gain in the presence of the bendloss may then 

peak at the intrinsic Raman gain peak wavelength, or at some shorter wavelength. 

Mathematically, Eq. ( 3.6) should be modified as follows: 
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This condition must hold across the spectral range from  λ1 to λ2, so the condition of 

Eq. ( 3.15) becomes wavelength-dependent. Figure  3.4(a) shows a bendloss spectrum for 

a representative W-type fibre and the spectrum of the Raman gain coefficient. The 

corresponding area ratio limitation is shown against wavelength in Figure  3.4(b) for a 

100 m long fibre, which corresponds, for example, to a pump power of 10 kW and an 

inner-cladding area of 3889 μm2. Without filtering, the most stringent area ratio 

limitation occurs for a 2nd Stokes at the intrinsic gain-peak wavelength λ2 (1.79 μm), as 

expected. However, with bendloss, the limiting area ratio occurs for a smaller 2nd-
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Stokes shift, at a wavelength of ~ 1.685 μm in this case. This wavelength corresponds to 

a hump in the silica Raman spectrum at ~ 80 cm-1, which appears to be particularly 

difficult to suppress. For the calculations I neglect the gain induced directly by the 

pump at 2nd-Stokes wavelengths, which is acceptable given the limited gain induced by 

the pump even at the peak of the signal gain (7 Np). 
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Figure  3.4: (Simulation) (a) Bendloss spectrum and Raman gain coefficient spectrum; 
(b) maximum inner-cladding-to-core area ratio with 100 m long piece of fibre. 
Parameters of the W-type fibre: core radius aco = 6 μm; depressed region radius adp = 
15 μm; core refractive index nco = 1.4654; depressed region refractive index ndp = 1.44; 
cladding refractive index ncl = 1.462; cut-off wavelength λc = 1.85 μm. Figure  3.6 
clarifies the meaning of these parameters. 

For a quantitative analysis of the effect of bendloss and filter sharpness on the 

area ratio, I introduce a simple model to fit fibre bendloss spectra as below: 
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Here, Δλ = λi – λ1, α1 equals the loss at the 1st Stokes, and p is the slope of the bendloss 

curve close to the 1st-Stokes wavelength on a logarithmic scale. The unit of α can either 

be Np/m or dB/m, according to the unit of α1. This model is sufficiently accurate for 

different fibres and for different bending conditions, for the ranges of wavelengths and 

bendloss slopes of primary interest. I use it to investigate how the maximum area ratio 

depends on the bendloss slope p at the 1st Stokes for different values of the bendloss at 

the 1st Stokes, which, to repeat, must be kept small. 

To proceed further with the analysis, I next set a specific value of the 1st-Stokes 

loss α1L of 1 dB, which is sufficiently low to allow for high conversion efficiency. This 
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allows us to calculate the spectrally resolved area ratio limit for different p-values by 

substituting Eq. ( 3.16) into Eq. ( 3.15). Figure  3.5 shows the results for a total 1st-Stokes 

loss. From Figure  3.5(b), the area ratio limit improves rapidly with p up to p ≈ 0.03, but 

only slowly thereafter.  
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 Figure  3.5: (Simulation) (a) Area ratio limit for different p-value vs. wavelength. For p-

values larger than ~ 0.03, the overall limit is set by Stokes shifts smaller than ~ 20 nm. 
For such small Stokes shift, the logarithmic bendloss curve will deviate only slightly 
from a straight line, and the approximation of Eq. ( 3.16) will be good. (b) Limiting area 
ratio vs. p. Each curve represents a single wavelength within the range λ1 to λ2, with 
the shallower-slope curves representing shorter wavelengths. The lower envelope of 
the curves represents the limiting area ratio across the whole spectral range. 

 

It is difficult to combine the desired sharp bendloss characteristics (i.e., a large p-

value) with a large core  [7]. Therefore, a compromise must be found. I propose that the 

best point of operation may be at the knee around p = 0.03. A p-value above this value 

will only slowly increase the maximum area ratio, and given the smaller core that a 

higher p-value necessitates, the maximum inner-cladding area is likely to decrease. This 

is indeed found to be the case for W-type fibres, analysed in detail in the next section.  

3.2.4 W-type fibre design 

This section discusses in detail the design of a W-type fibre that best combines the 

requirements of a filter sharpness and a large core area. I choose to work with W-type 

fibres, because of their sharp bendloss characteristics  [7]. Figure  3.6 shows the RIP of a 

W-type fibre. Under the assumption of weak guidance, the transverse distribution of LP-

modes becomes  [8]: 



 Chapter 3 Brightness enhancement limits in pulsed CP RFAs 

 
 

65

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥=

<<+=

≤=

dpdpm

dpcodpmdpm

cocom

arawrKA

araarwKAarwIA

araurJA

),/(

),/()/(

),/(

32

'
2

'
11

00

ϕ

ϕ

ϕ

 

( 3.17)

where r is the radial coordinate, Ai (i = 0, 1, 2, 3) are constants, and Jm, Km, and Im 

represent Bessel functions, modified Bessel functions of the 1st kind, and modified 

Bessel functions of the 2nd kind, respectively. Other parameters are defined in Figure  3.6. 

Furthermore, u = aco k0(nco
2-neff

2)0.5, w’= adp k0(neff
2-ndp

2)0.5, and w = adp k0(neff
2-ncl

2)0.5, 

with neff being the effective index of the mode and k0 the wavenumber in vacuum. The 

effective index is determined by the characteristic equation, which follows from the 

boundary conditions, that is, 
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Here, { })(/)()(ˆ
1 xxZxZxZ mmm += , with Z representing Bessel functions, and 

q = aco/adp. This then allows us to calculate the mode field distribution. 

 
Figure  3.6: Schematic diagram of the RIP of a W-type fibre. 

 

Because of the large number of parameters of a W-type fibre, some are fixed to 

simplify the analysis. To make a W-type fibre with a sharp cut-off, it helps to have the 

difference between the refractive index of the cladding and the depressed region as large 

as possible  [9], although this difference is limited by the fabrication process for the low-

loss silica fibres that are required. The refractive index of the pure silica is 1.445 at 

1.55 μm. I assume that the refractive index can be reduced to 1.44, by the MCVD 

fabrication process. Therefore, ndp is set at 1.44. Moreover, ncl is set at 1.457, 

corresponding to a moderate up-doping of the cladding. This is typically done with 

germanium, and at the corresponding doping-level, machining of the preform is still 

relatively straightforward. The preform can be machined to make the inner cladding 

non-circular, as this improves the interaction between the signal in the core and the 
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pump in the inner cladding  [10]. The radius of the depressed region (adp) is set to twice 

that of the core radius (aco). This is a somewhat arbitrary choice, but I have found it to 

work well in our simulations. 

The bendloss characteristics are then calculated for a range of different values of 

the core refractive index nco and radius aco, using Marcuse’s bendloss model  [11]. The 

fibre bend radius is adjusted to yield a specific, maximum tolerable, loss at the 1st-

Stokes wavelength. I set this to be 0.01 dB/m, which leads to a loss of 1 dB in a 100 m 

long fibre. The fibre length is somehow arbitrary choice. However, I will prove later 

that the designed fibre optimised at this length works well at other lengths. Furthermore, 

the filter sharpness parameter p is determined by fitting the calculated bendloss 

spectrum to Eq. ( 3.16). This is done for each core design and bend radius. Several 

combinations of core parameters and bend radii can yield the same value for p. Of these, 

the best core designs (i.e., the design with the largest area) are typically such that they 

result in the maximum tolerable 1st-Stokes bendloss at the maximum tolerable bend 

radius, which was 20 cm in the case to allow for practical packaging. It seems likely that 

if larger bend radii are accepted, somewhat larger core areas can be used. I also 

determine the maximum allowable area ratio by using Eq. ( 3.15), and from that, 

calculate the maximum allowable inner-cladding area. These are plotted in Figure  3.7, 

as a function of the filter sharpness. 
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Figure  3.7: (Simulation) Inner-cladding-to-core area ratio and inner-cladding area vs. 

filter sharpness parameter p for W-type fibre with different cut-off wavelengths. 

The area ratio limit with the numerically determined bendloss spectra 

(parameterized by the filter sharpness) in Figure  3.7 is nearly the same as the one in 
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Figure  3.5(b), using bendloss spectra according to Eq. ( 3.16). This is expected, given 

that Eq. ( 3.16) is a good approximation of the bendloss spectrum for all fibres, at the 

relatively small Stokes shifts that limit the area ratio (see Figure  3.5(a)). By contrast, the 

core areas, and therefore the inner-cladding areas, differ considerably between different 

core designs with the same filter sharpness. Figure  3.7 only includes data for the best 

core design, i.e., those that allow for the largest core area for a given filter sharpness, 

while designs falling below that have been discarded. 

Figure  3.7 can be used to assess which filter sharpness is best. As suggested in 

conjunction with Figure  3.5(b), filter sharpnesses beyond p = 0.027 nm–1 lead to a more 

stringent inner-cladding area limit. This is caused by the rapidly decreasing core sizes 

required for such sharp filters, in conjunction with the hump in the Raman spectrum at 

around 80 cm–1 (see Figure  3.4), which reduces the benefits of filters sharper than 

p = 0.027 nm–1. For p < 0.027 nm–1, the allowable inner-cladding area varies somewhat 

around an approximate value of 9000 μm2. In this regime, the core area is larger and the 

area ratio smaller than at p = 0.027 nm–1. This regime can also be interesting, e.g., when 

optical damage necessitates a large core. However, micro-bending can be a concern 

with some core and inner-cladding parameters in the region p < 0.027 nm–1. A thick 

glass structure and a small core help to reduce micro-bending. A thick fibre is possible 

irrespective of core and inner-cladding parameters in so-called jacketed air-clad fibres 

or rod-fibres  [12]. However, they are much more difficult to fabricate than conventional 

DCFs with a polymer outer cladding. Amongst the fibres with inner-cladding areas of 

~9000 μm2 in Figure  3.7, the fibre with the highest area ratio, and therefore the smallest 

core, would fare best as it comes to micro-bending. Hence, I view the W-type fibre with 

p = 0.027 nm–1, i.e., with the following parameters as being particularly interesting: 

aco = 9 μm, adp = 18 μm, acl = 52.5 μm, nco = 1.4589, ndp = 1.44, ncl = 1.457, and 

λc = 2000 nm. This core should be sufficiently small, and the inner cladding sufficiently 

large to make the fibre relatively immune to micro-bending  [13] even when fabricated 

with a polymer outer-cladding. Furthermore, with an inner-cladding diameter of 105 μm 

and an area ratio of 34, it allows for considerable brightness enhancement and the use of 

pump sources of low beam quality. 

While I have treated a specific fibre length, I have found that the designed fibre 

performs similarly with different lengths, provided that the pump intensity is adjusted 

appropriately. For example, with a pump intensity of 5 W/μm2, a 57 m long fibre should 



Cladding-pumped Raman fibre laser sources 
 

 
 

68 

be chosen according to Eq. ( 3.12), and in case of a W-type core according to the design 

above, the inner-cladding-to-core area ratio could be 32 with 1 dB loss at the 1st Stokes, 

although now with 19 cm bend radius instead of 20 cm. With a 575 m long piece, as 

appropriate for a pump intensity of 0.5 W/μm2, the same W-type core design allows for 

an area ratio of 39. This is even slightly better than for the design length of 100 m, 

although now with a 22 cm bend radius. Thus, the designed fibre works well for fibre 

lengths in the ranger 57 m to 575 m, which is the limit of what I considered. 

Ideally, for best performance, if a length other than 100 m is targeted, the same 

procedure should be repeated to design a new fibre. However, for the cases I have 

considered, the improvement is small. For example, if a 1 km long fibre is targeted, 

again with a total 1st-Stokes loss of 1 dB, a similarly optimised fibre has a 1.4587 

refractive index and 19.8 μm diameter core, a 112 μm diameter inner cladding, and a 

cut-off wavelength at 2100 nm. The inner-cladding-to-core area ratio is 32. Thus, the 

fibre dimensions and area ratio are very similar to the fibre optimised for 100 m. 

I conclude that a W-type fibre optimised for one length works well also at other 

lengths, and that fibres optimised for different lengths are similar, with small differences 

in performance. 

3.3 Core damage limitation 

Core damage can also limit the area ratio, since a high pump intensity combined with a 

large area ratio may well lead to a 1st-Stokes intensity in the core that exceeds the 

material damage threshold. Thus, if a pump of intensity I0 is launched into the inner 

cladding of a fibre, the area ratio must fulfil the following relation: 

( )
η

τ

0

1

I
I

A
A Max

co

cl ≤ . ( 3.19) 

where I1
max is the damage intensity (for the signal) at pulse duration τ, and η is the 

conversion efficiency. 

The conversion efficiency may be as high as ~ 80% in lossless DCRF; here I will 

assume a value of 68.7%. This corresponds to a pump depletion of 2 Np (86.5%) and a 

total background loss of 1 dB (20.6%) for the whole DCRF. The damage threshold is 

assumed to be 500 W/μm2 for 1 ns pulses, which is a value commonly adopted for bulk 

fused silica  [14]. Furthermore, the dependence of the damage threshold on the pulse 
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duration is assumed to follow a square-root intensity law  [15]- [16]. Thus, the area ratio 

limit depends on the pulse duration, too. This is shown in Figure  3.8, for different pump 

intensities, which correspond to different conversion (i.e., fibre) lengths, according to 

Eq. ( 3.12). The area ratio limit (= 34) resulting from the 2nd-Stokes generation for the 

W-type fibre designed in section 3.2.4 is shown as well. Therefore, Figure  3.8 indicates 

that for this fibre, it is the damage threshold rather than the 2nd Stokes that limits the 

area ratio for pulses longer than 20 ns with a pump intensity of 5 W/μm2. This pump 

intensity allows for a maximum propagation loss of 17.5 dB/km over the resulting 

conversion length (57 m), if efficient operation is to be maintained (i.e., if the total 

propagation loss is to remain below 1 dB). If the propagation loss is higher than this, 

shorter fibres and higher pump intensities are required, which further limit the area ratio. 

For a pulse duration of 625 ns, the damage threshold for pulses reaches the commonly 

accepted CW damage threshold of 20 W/μm2  [17], according to the damage equation 

used here. Therefore, data for 625 ns pulses, i.e., the longest duration shown in Figure 

 3.8, actually correspond to the CW regime. 
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Figure  3.8: (Simulation) Area ratio limit set by damage threshold for pump intensities 
of 0.5 W/μm2 (solid line with dots), 1 W/μm2 (solid line with squares), 2 W/μm2 
(solid line with up-triangles), and 5 W/μm2 (solid line with down-triangles). The 
curves are calculated according to Eq. ( 3.19), under the assumption of 1 dB of total 
loss at the 1st Stokes. This implies a maximum propagation loss of 1.7 dB/km, 
3.5 dB/km, 7.0 dB/km and 17.5 dB/km for the for different pump intensities, and fibre 
length of 575 m, 287 m, 143 m, and 57 m. The area ratio limit of 34 set by the 2nd 
Stokes in a W-type fibre is shown too, (dashed line), together with the damage 
threshold intensity (solid line, right axis). 
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3.4 Pump-signal pulse walk-off limitation 

We must also consider the walk-off that takes place between pulses at different 

wavelengths and in different modes in multimode fibres. In a CP RFA, this is important 

since the energy is directly transferred from the pump to the Stokes waves, so these 

must coincide for efficient operation. In addition, the pump and signal pulses can 

experience temporal broadening. These effects limit the brightness enhancement by 

limiting the pump-NA that can be used. The pump – signal walk-off depends on the 

differences in group velocities between the signal mode in the core and the pump modes 

in the cladding, which in turn depend on the fibre design, the material dispersion, the 

wavelengths, and which pump modes are excited. If the walk-off length is shorter than 

the fibre length needed for pump-to-signal energy transfer in the CP RFA, it will reduce 

the energy conversion efficiency. Here, I will only attempt an approximate analysis of 

this effect. For this, I consider the pulse broadening of light propagating in a multimode 

step-index fibre, i.e., the pump light in the cladding in our example. I will assume that 

the signal and pump pulses are initially temporally matched. Note that experimentally, 

configurations in which the signal pulses build up from a CW seed signal (or noise) are 

often used. Then, the pump pulses and amplified signal pulses do coincide temporally. 

Furthermore, since the signal is assumed to be in a single mode, I neglect dispersion of 

the signal pulse. For the designed DCRF, the chromatic dispersion was calculated using 

OptiFiber (a commercial software product). It is 30 ps/km/nm at 1660 nm. For a 3 ns 

pulse, the walk-off length due to chromatic dispersion is around 1 km. This is much 

longer than the fibre length that I am interested in. By contrast, the multimode pump 

pulse does broaden, through modal dispersion. The pump pulse as a whole may also 

walk away from the signal. However, I assume that the signal remains within the 

envelope of the pump pulse, i.e., that there are pump modes with higher as well as lower 

group velocity than the signal mode. This is typically the case. Nevertheless, the 

broadening of the pump pulse leads to a decrease in the pump intensity, which is 

assumed to be inversely proportional to the pulse duration. As before, I stipulate that for 

efficient conversion, this decrease should be no more than 1 dB (20%) over the length 

of the fibre, and thus that the pulse should broaden by no more than 25%. In a 

multimode step-index fibre, the pulse broadening is given by  [18]: 
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where c is the speed of light in vacuum, and L is the device length. 

From this, it is possible to solve the maximum allowable pump-NA for which the 

pump broadening Δτ = τ / 4. This depends on the fibre length as well as the pulse 

duration. We get, 
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−≈ . ( 3.21)

Note that even if the inner cladding supports a larger NA than that, it is still possible to 

operate with a lower pump-NA by under-filling the inner cladding. 

As before, the fibre length L can be calculated according to Eq. ( 3.12) for 

different pump intensities. Equation ( 3.21) then limits the inner-cladding NA that can be 

used effectively in a pulsed cladding-pumped fibre Raman amplifier. This depends on 

the fibre length, and therefore, according to Eq. ( 3.12), on the pump intensity. 
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Figure  3.9: (Simulation) Pump-NA limit set by signal – pump walk-off for pump 
intensities of 0.5 W/μm2 (solid line with dots), 1 W/μm2 (solid line with squares), 
2 W/μm2 (solid line with up-triangles), and 5 W/μm2 (solid line with down-triangles). 
The curves are calculated according to Eq. ( 3.21), under the assumption of 1 dB 
decrease in the pump intensity caused by pump-pulse broadening. The pump 
intensities correspond to fibre lengths of 575 m, 287 m, 143 m, and 57 m. The dashed 
line is the maximum NA of 0.46 set by typical fibre materials. 

Based on this analysis, one can plot the maximum pump-NA vs. pulse duration for 

different pump intensities. See Figure  3.9. At the same time, also the refractive indices 

of the used materials limit the inner-cladding NA that one can use. This is also plotted 
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in Figure  3.9, with a value of 0.46 corresponding to the inner-cladding NA typically 

obtained with a pure silica inner cladding and a fluorinated-polymer outer cladding. 

I have not attempted to precisely calculate the reduction in conversion efficiency 

that a 25% broadening corresponds to. This is complicated and depends on many factors 

such as the details of the shape of the pump pulse, which will vary along the fibre in the 

presence of modal dispersion. Furthermore, as shown in the next chapter, the impact on 

the conversion efficiency of the pulse shape depends on the area ratio. 

3.5 Brightness enhancement limits 

The limits on the area ratio set by the parasitic 2nd Stokes and by optical damage, 

combined with the limit on the inner cladding NA set by materials and walk-off, 

determine the brightness enhancement one can achieve. This can be expressed as below, 

2

1

0

2

2
0

2
1

)/()0(
)/()(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈=

co

cl

co

cl

co

cl

clcl

coco

in

out

V
V

NA
NA

A
A

ANAP
ANALP

B
B

λ
ληη

π
π

 ( 3.22) 

where Bout and Bin are the signal output and pump input brightnesses, respectively, and 

P1(L) is the signal output power in the core (1st-Stokes power), while the input pump 

power P0(0) is launched into the core and inner cladding. Furthermore, Vcl and Vco are 

the V-numbers of the inner cladding and core. If the signal is assumed to be always 

single-moded, equation ( 3.22) can be simplified as below, 
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Here, I have used that the number of pump modes guided by a step index fibre is given 

approximately by 4V2/π2  [19]. Note that this approximation is valid for large V-number. 

Thus, the brightness calculated by Eq. (3.23) will be slightly different from the result by 

Eq. (3.22). For the example given in section 2.3, the brightness enhancement is 354,000 

instead of 246,000 for the YDFL. For the W-type fibre with 18 μm core diameter 

treated in section  3.2.4, one can now calculate the maximum brightness enhancement 

achievable in a pulsed CP RFA based on Eq. ( 3.1) – Eq. ( 3.23). This is plotted in Figure 

 3.10, against the pulse duration under different pump intensities for three different 

inner-cladding NAs. In Figure  3.10(a), the inner-cladding NA is 0.22, which is typical 

for low loss all-glass fibre. In Figure  3.10(b) the inner-cladding NA is 0.46, which is 

typical in case of a low-index polymer outer cladding. Finally, in Figure  3.10(c) the 
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inner-cladding NA is 0.82, which can be achieved with jacketed air-clad fibres  [20]. For 

shorter pulse duration, pulse walk-off limits the brightness enhancement, while for 

longer pulses duration core damage sets the limit. In Figure  3.10(a), with a material-

limited pump-NA of 0.22, the central flat section occurs when the 2nd-Stokes generation 

rather than damage, limits the area ratio and the fibre materials rather than walk-off 

limit the pump-NA. With the higher NAs treated in Figure  3.10(b), this limit is never 

reached. Thus for well-design DCRF with 0.46 inner-cladding NA and background loss 

of f 3.5 dB/km, I find a maximum brightness enhancement factor of 2000. For jacketed 

air-clad fibres, the brightness enhancement factor can be as high as 3500. 
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 Figure  3.10: (Simulation) Limits on brightness enhancement vs. pulse duration for 
fibres with pump-NAs (as determined by the fibre materials) of 0.22 (a), 0.46 (b), 
and 0.82 (c). The fibre has an optimized W-type core of 18 μm diameter. Four 
different pump intensities are considered: 0.5 W/μm2 (solid line with dots), 1 W/μm2 
(solid line with squares), 2 W/μm2 (solid line with up-triangles, and 5 W/μm2 (solid 
line with down-triangles). 
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3.6 Summary 

In this chapter, I have analysed limits on brightness enhancement in efficient cladding-

pumped fibre Raman amplifiers. One limit arises from the appearance of the 2nd Stokes, 

if the inner-cladding-to-core area ratio is too large. I propose a fibre design with a W-

type core, which provides a spectrally sharp bend loss that helps to suppress the 

2nd Stokes. The designed fibre has an 18 μm diameter core and a 105 μm diameter inner 

cladding, corresponding to an inner-cladding-to-core area ratio of 34. This should allow 

for the use of pump sources with relatively poor beam quality (e.g., M2 = 12 in case of 

an all-glass fibre and pump wavelength at 1550 nm). Most types of pump lasers would 

have beam qualities better than that, with the exception of low-brightness diode lasers. 

I have also analysed the limit induced by optical damage in the pulsed regime, and 

relate it to the propagation loss of the Raman fibre. Again, this limits the area ratio that 

can be used. Finally, I considered the effect of walk-off between the pump modes and 

the signal mode, and show that this is the dominant limitation factor in the short-pulse 

regime (i.e., 10 ns or less). 

The brightness enhancement achieved is considerably better than experimental 

results for efficient CP FRA, and points to the potential for significant further 

improvements with the right pump source matched to the right fibre. 
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Chapter 4 High conversion efficiency CP RFA 

The efficiency is a concern for any laser and amplifier. While it is important throughout 

this thesis, for example through its link with brightness enhancement and pump beam 

quality requirements as discussed in chapter 3, this chapter presents work which 

explicitly targeted a high efficiency CP RFA. For this I used F71-LF11 (the same fibre 

as considered in section 2.5) as the DCRF and a multimode Er:Yb co-doped fibre 

MOPA generating pulses of 20 ns duration at around 1.55 μm as the Raman pump 

source. A fibre Raman ring laser emitting at around 1.66 μm acted as a Raman seed, 

which was then amplified in the DCRF. A peak power conversion into the 1st Stokes of 

over 75% was obtained, while the pulse energy conversion efficiency exceeded 60%. I 

will also consider the limitations on the conversion efficiency into the 1st Stokes and 

options for improving the performance of such devices, based partly on the discussions 

in chapter 3. 

 

4.1 Introduction 

For a CP RFA working in the pulsed regime, the average power or energy conversion 

efficiency into the 1st Stokes is limited by several factors, such as background loss, 

pulse shape, and walk-off. For example, in  [1]-[2], the average power conversion 

efficiency obtained in the fibre F71-LF11 from the pump at around 1550 nm to the 1st 

Stokes was ~ 36%. This is because a relatively long piece, ~ 900 m, was utilised in the 

experiments. Such a long piece led to a relatively high total background loss, which 

limits the conversion efficiency. This can be improved by using a shorter fibre with 

lower total loss. In later work by me and my colleagues [3]-[4], with the same fibre, the 

energy conversion was higher than 50% since the fibre length in these experiments was 

one order of magnitude shorter than that in  [1]-[2]. The simulations shown in Figure 2.3 

also illustrate that the background loss in a DCRF limits the power conversion 

efficiency from the pump into the 1st Stokes. In another experiment  [5], the energy 

conversion efficiency into the 1st Stokes was only 6.6%. The fibre used in this 
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experiment was a commercial fibre with an inner-cladding-to-core area ratio ~ 32. Such 

a large area ratio limits the conversion efficiency from the pump to the 1st Stoke due to 

the 2nd-Stokes generation  [3]. As I discussed in section  3.2, inner-cladding-to-core area 

ratios larger than eight degrade the conversion efficiency into the 1st Stokes in the 

absence of a spectral filter. 

In this chapter, these issues are discussed in detail, in conjunction with 

experiments on a pulse-pumped CP RFA. Special attention is paid to the conversion 

efficiency from the Raman pump to the 1st Stokes. 

4.2 Double-clad Raman fibre: F71-LF11 

The DCRF F71-LF11 is used in experiments in both this and the next chapter. It was 

also used in several publications, e.g.,  [1]-[4],  [6]-[8]. The fibre was fabricated by 

Dr. Jayanta Sahu in the Silica Fibre Fabrication group at ORC through the MCVD 

process. A careful investigation of the fibre properties is needed to understand how it 

works as a CP Raman fibre converter. Next I will describe the details of this fibre. 

4.2.1 Refractive index profile 

This fibre comprises a pure-silica outer cladding and germanium-doped silica inner 

cladding and core. They are circularly shaped and concentric. Outside the outer cladding, 

there is a polymer coating to protect the fibre. The coating has a high refractive index so 

that the outer cladding does not guide light. Thus the fibre F71-LF11 has a so-called all-

glass structure for guiding light, with neither pump nor Stokes wave in contact with the 

polymer coating. The NAs are 0.22 for the inner cladding (relative to the outer cladding) 

and 0.14 for the core (relative to the inner cladding). A picture and an idealised RIP of 

this DCRF are shown in Figure  4.1. In this, the core and inner- and outer-cladding 

diameters are 9 μm, 21.6 μm, and ~ 100 μm, respectively. However, the diameters vary 

along the length of the fibre. The fibre used in this chapter has a 7.7 μm diameter core 

and an 18.6 μm diameter inner cladding.  

The refractive index has a dip in the centre due to the evaporation of germanium 

during preform collapse. This can be seen in Figure  4.2, which shows the RIP of the 

fibre F71-LF11 as measured by Mr. Robert Standish in ORC’s Silica Fibre Fabrication 

group. The dip does affect the mode distribution, but not the principle of CP Raman 

fibre devices. The beam quality of the fundamental mode may be degraded due to the 
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existence of the dip. The M2 of the fundamental mode in the core was calculated to be 

1.18 at 1660 nm. Besides, the Raman gain coefficient is lower in the fibre centre. This 

may affect the performance of devices based on this fibre. However, I found that this 

fibre worked well in my experiments, and generally I believe that the effects of the dip 

would be difficult to discern experimentally. Although there is a degree of subjectivity 

due to the gradual transition from core to inner cladding, the cut-off wavelength is 

estimated to 1645 nm for the core. Therefore, the fibre core will be slightly multimoded 

at a pump wavelength of around 1550 nm, but single-moded at the 1st-Stokes 

wavelength.  
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Figure  4.1: Image of cross-section 
of DCRF F71-LF11 with idealized 
RIP and cross-section: (a) outer 
cladding (silica); (b) inner cladding 
(germanium-doped silica); (c) core 
(germanium-doped silica). 

Figure  4.2: Measured refractive index profile of 
F71-LF11. 

4.2.2 Background loss 

The background loss of a 484.5 m long piece of this fibre was characterised with a 

conventional cutback measurement that employed a white light source (WLS) and an 

ANDO optical spectrum analyser (OSA). When the background loss in the core was 

measured, a 1 m long SMF was spliced to the one end of the DCRF. The other end of 

the DCRF was connected to the OSA. The cut-off wavelength of the SMF is around 

1200 nm. For longer wavelengths for which the SMF only supports one spatial mode, 

with careful splicing, primarily the fundamental core-mode will be excited. However at 
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shorter wavelengths, there will be more power in higher-order modes, although 

primarily within the core of the DCRF.  

Interference becomes an issue when multiple modes are excited. Multimode 

interference effects can be detected by moving the fibre around and watching for power 

drifts or by looking for beats in the transmission spectrum. They can be avoided by 

using a sufficiently large optical bandwidth for the measurement. In case of F71-LF11, 

the effective-index spacing between modes is typically 0.001, which leads to an optical 

pass difference (OPD) of 484.5 mm in a 484.5 m long fibre and beating with a 

wavelength periodicity of 0.8 pm at 1550 nm. That is below the resolution of an OSA 

but above the linewidth of a conventional tuneable laser diode. For shorter fibres, e.g., 

after the fibre is cut back, the periodicity will be much greater and may well be 

resolvable by an OSA. The WLS beam was free-space launched into the SMF. The 

transmission spectra from the output of DCRF were recorded by the OSA both before 

and after the DCRF was cut back to a length of 1.5 m. By comparing the two spectra, 

the background loss spectrum in the core can be obtained. Figure  4.3 shows the result. 

We see also that there is no beating in the spectrum. By repeating the cut-back method 

without the SMF, the background loss for light propagating within the inner cladding 

(including the core) was measured as the black curve in Figure  4.3. The background 

losses at 1550 nm are 1.61 dB/km in the core and 1.39 dB/km in the inner cladding. 

Based on the RIP of this fibre, the germanium concentration is estimated to be 25% to 

30% (mol). The reported background loss in 30% (mol) GeO2-doped fibre is around 

1.33 dB/km at 1550 nm  [9]- [10]. The background loss measured in our fibre is very 

close to the reported value. It is also lower than what was previously reported for this 

fibre  [1]-[2], for unknown reasons. 
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Figure  4.3: Background loss spectra in the core (red curve) and inner cladding (black 

curve) of DCRF F71-LF11. 
 

4.2.3 Raman gain coefficient 

We can estimate the Raman gain coefficient based on the refractive index difference 

shown in Figure  4.2 between the pure-silica outer cladding and GeO2-doped inner 

cladding and core  [11]- [13]. At 1550 nm, the Raman gain coefficient is estimated to 

5.29×10-14 m/W in the inner cladding and 6.34×10-14 m/W in the core for unpolarised 

light. 

4.2.4 Mode excitation 

Based on the RIP in Figure  4.2, the effective index was calculated for different modes at 

different wavelengths using commercial software (OptiFiberTM from OptiwaveTM). The 

RIP was scaled to match the size of the fibre used here. At 1545 nm, there are 12 

linearly polarised (LP) fibre modes in this fibre, two of which are core-modes. These 

modes are split into 2 or 4 modes if polarisation-degenerate and sine and cosine modes 

are considered. The effective indexes of all modes at 1545 nm are shown in Figure  4.4. 

The mode distributions at 1545 nm were calculated with the same software. From 

these distributions, the overlaps between different modes have been obtained according 

to Eq. (2.14). The result is shown in Figure  4.5. Note that higher-order modes with non-

circularly symmetry, e.g., LPl,m modes with l≠0, can be degenerate with a sine and 

cosine mode. Here, the degenerate modes are supposed to be equally excited. The 

overlap is taken as the average of both cases. Maybe other treatments of the degeneracy 
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are possible, but the approach used here is correct for the calculations in this thesis. 

Depending on the involved modes, the overlap varies and is in general larger for low-

order modes than for high-order modes. Later, the overlaps between pump modes and 

signal modes are approximated by the values given here. The signal wavelength is very 

close to the pump wavelength, and thus, the signal mode distribution is slightly different 

from pump mode distribution.  
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Figure  4.4: (Simulation) Effective index of modes at 1545 nm in the DCRF F71-LF11. 
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Figure  4.5: (Simulation) Overlaps between various modes at 1545 nm. 

A modelling example of a single-stage CP RFA is given in Figure  4.6 to illustrate 

how a multimode Raman pump is converted into a diffraction-limited Raman signal 

through a DCRF converter. This is similar to the example in section 2.5 and 
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section 3.2.1, except that this now treats the pump and signal power in different modes, 

and no longer assumes that the pump power is evenly distributed across the inner 

cladding in each transverse cross-section of the DCRF. A Raman seed beam at 1660 nm 

and a pump beam at 1545 nm are launched into the same end of a 100 m DCRF F71-

LF11 and propagate in the same direction along the fibre. The total Raman seed power 

is set to 25 mW. To demonstrate how the fundamental core-mode can get amplified and 

extract most pump power than high-order modes do, two modes LP01 and LP02 at the 

1st-Stokes wavelength are supposed to be equally excited at the input. The total 

launched Raman pump power is assumed to be 1 kW. All pump modes are supposed to 

be equally excited. The resulting power ratio between different pump modes is listed in 

Table  4.1, taking the degeneracy of the modes into account. Note that the overlap values 

given in Table  4.1 were calculated between various modes at the pump wavelength. 

Nonetheless, they are only slightly different from the overlaps between pump modes 

and signal modes since their wavelengths are quite close to each other. Furthermore, the 

pump and Stokes mode coupling mechanisms are not taken into account. Walk-off is 

assumed not important either in this case. Besides, only Stokes with orders below the 

2nd order is considered.  
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Figure  4.6: (Simulation) Simulation of a single-stage co-pumped CP RFA with a 100 m 
long DCRF F71-LF11. Blue curves: pump wave; Green curves: 1st Stokes; Red curve: 
2nd Stokes. 

 

Table  4.1: Overlaps between interacting modes and relative power among pump modes.

 Relative 
power LP01 (×10-3 μm-2) LP02 (×10-3 μm-2) 

LP01 1 13.17 3.61 
LP11 2 10.06 2.72 
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LP21 2 4.69 3.07 
LP02 1 3.61 4.46 
LP12 2 3.88 3.78 
LP31 2 1.59 3.59 
LP22 2 4.83 2.53 
LP41 2 0.66 3.51 
LP03 1 5.16 3.37 
LP51 2 0.34 3.18 
LP32 2 3.68 1.71 
LP13 2 4.11 2.78 

 
Based on the overlaps and initial conditions given above, the equations Eq. (2.24) 

– Eq. (2.26) can be numerically solved and Figure  4.6 shows the calculated results. First 

of all, we see that almost all of the pump power is effectively converted into the 1st 

Stokes despite the variation in overlap between different pump modes and the Stokes 

modes. Besides, the pump modes are converted into the 1st Stokes at approximately the 

same position, i.e., where the 1st-Stokes power reaches levels for depletion to occur. 

Thus, if a fibre length is well chosen, a high efficiency such device will be achievable. 

The conversion efficiency of 74% at the optimum length can be compared to the 84% 

obtained in section 2.5. Furthermore, the LP01 mode sees a higher Raman gain at the 1st 

Stokes than the LP02 modes does, and converts most of pump power along the fibre. In 

contrast, the power of LP02 mode remains low all along the fibre. Therefore, at the 

output, the signal beam is (nearly) diffraction limited. A key reason why most of pump 

power is Raman-scattered into the LP01 mode is that the LP01 mode has a smaller 

average effective area with the pump modes (234 μm2) than the LP02 mode (322 μm2). 

The other reason is that the higher Raman gain coefficient in the core area favours the 

generation of the core-modes. Thus, the simulations suggest that this fibre can 

automatically select the fundamental mode at the Stokes wavelength. In addition, if 

even better mode selection is required, one can ensure that only core-modes (or only the 

fundamental mode) at the Stokes wavelength are excited at the fibre input, through 

careful adjustment of the launch. 

Also, the pump launch and the resulting pump power distribution are important 

since they determine the transverse Raman gain profile. While all pump modes are 

assumed to be equally excited in Figure 4.6, pump modes that cannot effectively 

transferred energy into the 1st Stokes, e.g., LP41 and LP51, can be less excited by 

adjusting the pump launch, if the pump beam quality is sufficiently good for selective 

pump-mode excitation. This can further improve the conversion efficiency.  
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The simulation presented here shows theoretically that a DCRF can work 

efficiently as a CP Raman converter and transfer power into the diffraction-limited 

signal from a multimode pump source, even when some pump modes have much 

weaker overlap with the core than others, and even though coupling of pump modes was 

neglected. This is a worst-case scenario in that coupling of pump modes will negate the 

differences between the pump modes and therefore increase the efficiency. Next, I will 

present experimental results on a high efficiency CP RFA. 

4.3 High efficiency CP RFA 

4.3.1 Multimode Raman pump 

For these experiments, the pump source was a three-stage MOPA (master oscillator – 

power amplifier) system as shown in Figure  4.7. The oscillator was a Tunics Plus 

tuneable laser source (TLS) directly modulated by shaped pulses from a dual-channel 

arbitrary waveform generator (AWG, Tektronix AFG 3102). The pulse duration from 

the AWG was 20 ns and the PRF was fixed at 100 kHz. The pulses were then first 

amplified in a core-pumped EDFA. An acousto-optic modulator (AOM) was inserted at 

the output of the first amplifier to suppress unwanted amplified spontaneous emission 

between pulses. The AOM was also controlled by the AWG and synchronized with the 

oscillator modulation. Then two cladding-pumped Er:Yb co-doped fibre amplifiers 

(EYDFAs) were used to further increase the peak power of the pump pulses. The first 

EYDFA was an early prototype amplifier from SPI Lasers capable of delivering 1 W of 

average power. The final amplification stage was a custom-built end-pumped EYDFA 

based on a 7.5 m long D-shaped DCF made in house with fibre number F402-LF122. 

 
Figure  4.7: Experimental setup of pulsed MOPA emitting at 1550 nm acting as the 

Raman pump. 
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The fibre has a 27 μm diameter core with a numerical aperture of 0.22. Therefore 

with a V-value of ~ 12 at 1550 nm the fibre is multimoded. The beam propagation 

factor (M2) was measured to 3.5 at the output of the pump source. The average output 

power was 1.27 W, corresponding to about 670 W peak power as shown in Figure  4.8. 

The inset of this plot shows the output spectrum at 1.27 W average output power. The 

conversion efficiency was low for the last stage of the pump MOPA since this was not 

optimised for high conversion efficiency. Especially the wavelength of the 3rd-stage 

pump diode was below 900 nm. This leads to insufficient pump absorption even in this 

7.5 m long fibre. The pump absorption is ~ 0.55 dB/m at 900 nm in the fibre F402-

LF122. Several 1% taps were used in the setup to monitor signal between amplifiers and 

the overall MOPA performance. The peak output power was limited by stimulated 

Brillouin scattering (SBS). SBS can be avoided with shorter pulse duration, and is 

generally considered to be completely suppressed for pulses shorter than a few 

nanoseconds. Unfortunately, I did not have an AWG with sufficient bandwidth for 

shaping of such short pulses, and the bandwidth of the TLS and the rest of the circuitry 

may well have been insufficient for shorter pulses, too. The oscillator pulses were 

shaped in order to obtain nearly rectangular pulses at the output of the pump MOPA, 

even in the presence of some distortion from gain compression  [14]. Since SRS is a 

nearly instantaneous process which depends on the instantaneous power, rectangular 

pulses make the Raman conversion more efficient  [15]. Figure  4.9 illustrates the pulse 

evolution along the MOPA at 0.56 W average output power. The output pulses of the 

Raman pump are nearly rectangular, and remain so even for the lowest (0.37 W) and 

highest output power (1.27 W) later used for Raman pumping. The power variation 

across the pulse top was smaller than ±5%.  

This formed the multimode pulsed pump source. 
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Figure  4.8: Output average (red curve) and peak powers (black curve) of the Raman 
pump MOPA vs. the 3rd-stage pump average power. Inset: output spectrum at 1.27 W 
output average power. 
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Figure  4.9: The evolution of the Raman pump pulse shapes along the MOPA at 0.56 W 

output average power.  
 

4.3.2 Diffraction-limited CW Raman seed laser 

I constructed a CW ring-cavity RFL at 1.66 μm to be used as a seed for the RFA. Figure 

 4.10 shows the setup. The 1.66 μm Raman seed laser was pumped by a CW EYDFL, 

also in a ring-cavity configuration and tuned to emit at 1.55 μm. The output from the 

1.55 μm EYDFL was launched into a 2 km long highly nonlinear fibre (HNLF) from 
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Sumitomo (Part number: HNRAC-2) via a wavelength division multiplexer (WDM). 

The residual pump exited the Raman laser cavity through another WDM. This 

prevented the pump light from reaching an isolator inserted into the cavity. This isolator 

designed for wavelengths around 1550 nm, ensured uni-directional signal propagation 

in the opposite direction of the pump. Finally, the generated light at 1.66 μm was out-

coupled by a 3 dB coupler. Another 1550 nm isolator at the laser output helped to 

stabilise the 1.66 μm seed laser, by isolating the Raman laser from the CP RFA. The 

operating wavelength of the 1.66 μm Raman seed could be tuned by changing its pump 

wavelength which was determined by a filter (JDS Uniphase TB9266) in the EYDFL. 

The tuning range of this filter was from 1.46 μm to 1.57 μm and the 3-dB bandwidth is 

0.55 nm. During my experiments, it was normally set around 1.55 μm in order to make 

the Raman seed laser operate at 1.66 μm. 

 
Figure  4.10: Experimental setup of the 1660 nm diffraction-limited CW Raman seed 

laser. OC: optical coupler; WDM: wavelength division multiplexer. 

Figure  4.11 shows the dependence of the output power of the 1.66 μm Raman 

seed laser on the pump power. The output spectrum is also shown in the inset at a pump 

power of 690 mW. During this characterisation, the tuneable filter was set to 1548 nm. 

As shown in Figure  4.11, the threshold was about 130 mW for the Raman ring-cavity 

laser. The Raman gain coefficient (gco) / effective area (Aeff) product and transmission 

loss were 6 km-1 W-1 and 0.6 dB/km, respectively, according to the manufacturer’s data. 

The cavity loss was estimated to about 5 dB based on the splice, component, and fibre 

loss. The threshold should be:  

effeffco

cavity
threshold LAg

L
P

)/(343.4
=   

( 4.1) 

where Lcavity is the cavity loss in decibels, and Leff is the effective length. The calculated 

threshold is about 110 mW, in good agreement with the measured threshold. The 

maximum 1st-Stokes output power from the Raman ring-cavity laser was 483 mW, 

which was limited by the available pump power. From the black curve in Figure  4.11, 
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the conversion efficiency into the 1st Stokes decreased with pump power over 700 mW. 

One possibility is that the 2nd Stokes was generated and caused the roll-off. This would 

not necessarily be seen at the output, depending on the spectral characteristics of the 

WDMs and isolators, although the insertion loss of the isolator was not measured. A 

high 2nd-Stokes insertion loss also leads to the higher threshold for the 2nd Stokes 

according to Eq. ( 4.1). In simulations, no 2nd Stokes was generated, and the simulation 

results matched the experimental ones for pump powers below 700 mW. The 

simulations are given in a red curve in Figure  4.11. It is not clear why the experimental 

output power is lower than the simulated one for pump powers over 700 mW, but this is 

of no practical importance. The laser linewidth broadening which occurred for pump 

powers over 700 mW (See inset of Figure  4.11.) could be more important. This may be 

induced by self-phase modulation (SPM). The nonlinear coefficient γ is about 10 W–1 

km–1 at 1550 nm for the HNLF, which leads to a nonlinear length of 2 km at the output 

signal power of 100 mW. This is estimated under the assumption that the signal power 

increases linearly with propagation distance inside the laser cavity. Above this power, 

SPM becomes increasingly important and gradually roadens the linewidth. However, 

during my experiments, the Raman seed power was always below 300 mW, which 

made the linewidth broadening unimportant, according to Figure 4.11. 
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Figure  4.11: Output power at around 1.66 μm from the Raman seed laser according to 
simulations (red curve with squares) and experiments (black curve with triangles) vs. 
pump power. Inset: Optical output spectrum for a pump power of 690 mW and 
905 mW. The OSA resolution was set to 1 nm. 
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4.3.3 Experiments and discussion 

I used the Raman pump and seed lasers together with the DCRF for cladding-pumped 

Raman amplification experiments. A schematic of the experimental setup is shown in 

Figure 4.12. The DCRF was 89 m long. One end was spliced to another section of the 

DCRF of negligible length with a FBG written in it at ORC by Dr. Morten Ibsen. The 

FBG is highly reflective at 1660 nm for light in the core. The Raman pump laser was 

tuned to 1545 nm. The pulsed multimode pump beam was free-space launched into the 

DCRF via dichroic mirrors (DMs) and lenses. From the fibre details and pulse duration, 

the pulse walk-off length was estimated to around 200 m for the pump mode with the 

largest group velocity difference to the 1st-Stokes wave in the fundamental mode 

according to Eq. (2.3). This was much longer than the fibre, and furthermore most pump 

modes have group velocities closer to the Stokes mode. Thus the effect of walk-off was 

expected to be small. The launch efficiency of the Raman pump was 69%. At the 

opposite end of the DCRF, the 1660 nm CW seed light was injected into the core of the 

DCRF through a spliced 3 dB coupler. This light was then reflected at the pump launch 

end by the FBG. After the reflection, the Stokes seed co-propagated with the pump 

pulses. Thus, the part of the 1660 nm seed which temporally overlapped with the pump 

pulses, experienced the amplification through SRS process. Although the launched seed 

was CW, it was modulated by the pump after the amplification and therefore the output 

at the 1st Stokes was pulsed with a weak, unamplified, CW background. WDM couplers 

were used to separate the residual pump in the core, the 1st Stokes, and the 2nd Stokes at 

the output of the amplifier. Any remaining pump light or any other light in the cladding 

of the DCRF was lost in the WDM couplers, since these do not transmit any cladding-

modes. I took the power at the DCRF end, just after the splice to the 3 dB coupler, to be 

the signal output power from the amplifier. For the input seed power, I used the power 

reflected by the FBG. The linewidth of the pump source and of the Raman seed laser 

were measured to be 0.15 nm and 2.8 nm respectively. This is sufficiently wide to 

suppress SBS, and this was indeed not observed in the RFA. Both pump and Stokes 

pulses were temporally stable. 

Figure  4.13 shows the 1st-Stokes output peak power of the CP RFA and 

corresponding peak power conversion with respect to the launched pump peak power. 

The 1st-Stokes input power was 25 mW at 1660 nm. At the optimum, i.e., highest 

conversion efficiency, the peak pump power was 280 W while the peak power of the 
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output 1st Stokes was 211 W for a peak power conversion of 75%. The high peak power 

conversion indicates that a high power conversion efficiency is achievable in 

CW regime with this fibre. 

 
Figure  4.12: Experimental setup of the pulsed CP RFA. Blue arrow: pump; green arrow: 

1st Stokes; red arrow: 2nd Stokes. 
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Figure  4.13: Output peak power (black solid curve: experimental results; black dashed 
curve: simulation results) and corresponding conversion efficiency (red curve) vs. 
launched pump peak power. 

The dashed line in Figure  4.13 is the result of a simulation using the same model 

as for the earlier simulation in section 4.2.4. For the 1st and 2nd Stokes, only the LP01 

mode was considered. The pump modal decomposition used in this simulation is given 

in Table  4.2. This was calculated by the software OptiFiberTM with the assumption that 

the incident pump was a diffraction-limited Gaussian beam with a 24 μm beam 

width (FWHM) centred on at a 3°incident angle. This determined the excited pump 

modes inside the fibre and the corresponding power ratios as listed in Table  4.2. 

Although the launch details were somewhat arbitrarily chosen, the calculated launch 

efficiency of 68% is in good agreement with the experimental launch efficiency, which 

was 69%. There are certainly other launch conditions that lead to a 69% launch 

efficiency but with a different modal power distribution. However, the simulation 
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results fit the experimental data well when the launched pump peak power was below 

280 W. Above 280 W, the 1st-Stokes power kept growing with increasing pump power 

in the simulations, with negligible power Raman-scattered to the 2nd Stokes, while 

experimentally, the 1st-Stokes peak power was saturated and depleted by cascaded SRS 

to the 2nd Stokes. There are many possible explanations for the earlier appearance of the 

2nd Stokes in the experiments, such as spikes in the pump pulses (leading to variations 

in peak pump power), polarisation effects, modulation instability  [16], and pump-mode 

coupling and indeed excitation. There is also the influence of the 3-dB coupler and 

WDMs at the output, in which the 1st Stokes could be further converted into the 2nd 

Stokes. The simulation did not take this into account. 

Table  4.2: Power ratio between excited pump modes at 1545 nm. 
Mode LP01 LP11 LP21 LP02 LP12 LP31 LP22 LP32 LP13 

Power ratio 22 14.5 3.5 3.2 16.5 0.5 3.1 1 4.6 
 
Figure  4.14 shows the 1st-Stokes average output power and average power 

conversion efficiency into the 1st Stokes with respect to the launched Raman pump 

average power, for a Raman seed power of 25 mW. The highest average pump 

conversion to the 1st Stokes obtained was 60.5% at 565 mW of average pump power. 

The average power conversion efficiency was lower than the peak power conversion 

since there are other limiting factors on the average power conversion, e.g., pulse shape.  
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Figure  4.14: Average output power (black curve) and conversion efficiency (red curve) 

vs. launched pump average power 

Figure  4.15 show pulse shapes of the launched pump, overlaid with traces of the 

1st Stokes and residual Raman pump in the core at the output or the 2nd Stokes, at the 
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optimal pump power of 565 mW and at the maximum pump powers, respectively. In 

Figure  4.15(a), the residual 1545 nm pump power was low, but there were peaks at the 

edges of the pulse corresponding to pump power not efficiently transferred to the 1st 

Stokes. This reduced the conversion efficiency into the 1st Stokes. The reason for this is 

that the instantaneous pump power in the edges was not high enough for efficient 

conversion. The steepness of the pulse edges was determined by the speed of the AWG, 

and I believe that a higher conversion efficiency is possible with readily available faster 

generators. Note that to a CW CP Raman fibre device, the pulse shape will not be a 

limiting factor on the conversion efficiency. At the same time, the high symmetry of the 

output pulse shapes suggests that walk-off was not important for this pulse duration. 

Figure  4.15(b) shows the depletion of the 1st Stokes by the generation of the 2nd Stokes 

at the maximum pump power. The power of the 2nd Stokes is not scaled since I did not 

characterise the couplers and WDMs at this wavelength. The energy conversion to the 

1st Stokes dropped to ~ 37%. The higher-order Stokes generation can be avoided with a 

shorter fibre. The Stokes pulses were noisy. This might be caused or enhanced by 

modulation instability because the 1545 nm pump and the signal were operating in the 

anomalous dispersion regime of this fibre  [16]. Figure  4.16 shows output spectra at the 

optimal pump power. The solid line is the residual Raman pump measured at the 

1550 nm port of the WDMs and the dashed line is the amplified Raman signal measured 

at the 1660 nm port.  
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Figure  4.15: Pulse shapes of input Raman pump (solid blue curve), 1st Stokes (green 
curve), 2nd Stokes (red curve), residual pump in the core (dashed blue curve) at the
launched average pump power of (a) 565 mW; (b) 876 mW. 
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Figure  4.16: Output spectra at 565 mW launched average pump power. 

 

Regarding brightness enhancement, the beam quality of the launched pump was 

not measured. Nevertheless, we still can estimate the maximum brightness enhancement 

obtained with this setup based on Eq. (2.8) according to: 
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Since the signal was emitted from the SMF, 2
sM  is set to 1. Given the geometry of this 

fibre and the maximum power conversion I obtained experimentally, the maximum 

brightness enhancement would be 8.7.  

To better understand the conversion process and the limits, it is useful to measure 

the spatial distribution of the transmitted pump at the output of the DCRF. For this, the 

splice at the output of the DCRF was broken and lenses were used to couple the 

1660 nm seed into the DCRF. A 4%-reflecting silica wedge was inserted to sample the 

residual 1545 nm pump. A camera (Electrophysics 7290A) imaged the output beam. A 

DM was used to reflect longer wavelengths and ensure that only the residual 1545 nm 

pump light reached the camera. The Rayleigh resolution limit of the imaging system 

became 5 μm with an NA of 0.2. This can be used as an estimate of the resolution. 

Figure 4.17 shows the images of the residual Raman pump at different input powers of 

the Raman seed. Here, the launched average Raman pump power was about 510 mW. 

The SRS in absence of a Raman seed was negligible, so Figure 4.17(d) corresponds to 

the undepleted pump distribution. 
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Figure  4.17: Residual pump power distribution at the output of the DCRF with Raman 
seed powers at: (a) 20.2 mW; (b) 1.9 mW; (c) 0.48 mW; (d) 0 mW. 

We see from Figure 4.17(d) that the power in the centre could be converted 

efficiently into the 1st Stokes. However, there was still some remaining pump power 

around the edge of the inner cladding. The camera was also used to image the output at 

the 1st Stokes, in this case together with another DM. See the inset of Figure  4.18. The 

1st Stokes was in the fundamental mode, which was diffraction limited. Its beam 

propagation factor (M2) was 1.02, measured by a Gentec P7 beam scope and analysed 

with a Gaussian-beam fit (Figure  4.18). Therefore, it was truly single-moded. The 

measured beam quality of the fundamental mode is slightly better than the calculated 

one, i.e., 1.18. One of the possibilities is that the RIP of the piece used in my experiment 

is different from the one in Figure 4.2. The central dip is not so deep. Another 

possibility is that this is measurement error.  
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Figure  4.18: M2 and fit. Inset: the image of the 1st stokes sampled by the wedge. The 

launched pump average power was 510 mW and the input Raman seed was 20.2 mW. 

The beam intensity of the residual Raman pump along the fibre radius is shown in 

Figure  4.19. In the scaling of the figure, the core radius was around 619 µm and the 

(a) (b) (c) (d)
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inner-cladding radius was about 1375 µm. The pump light in the centre of the fibre core 

was efficiently Raman-scattered to the 1st Stokes. However, the SRS efficiency of the 

pump distributed around the core edge was relatively poor. Considering the refractive 

index profile of the fibre, one of the possible modes for the Raman pump was a ring 

mode as shown in Figure 4.17. The overlap is poor between it and the 1st Stokes, which 

was localized to the core. To improve the conversion of the pump around the inner-

cladding edge, a D-shaped inner cladding can be adopted to improve the interaction of 

the modes with the core  [17]. 
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Figure  4.19: Intensity distribution of the residual Raman pump along the fibre radius 

under different input Raman seed powers. 
 

I also characterised the residual 1545 nm pump beam by scanning a piece of 

standard SMF across the image, in the image-plane, instead of using the camera. One 

end of the fibre was mounted on a translation stage and the other end was sequentially 

connected to a HP 8153A power meter, a 2.5 GHz Tektronix oscilloscope with a 5 GHz 

Thorlabs detector, and an Ando OSA, to spatially resolve the power, pulse shape, and 

spectrum. Here, the input 1660 nm seed power was 18 mW and the launched 1545 nm 

average pump power was around 525 mW. Figure  4.20 depicts pulse shapes of the 

residual 1545 nm pump at different distances from the centre. Most of the Raman pump 

in the fibre core was converted into the 1st Stokes, although also in this case the power 

conversion was limited in the leading and trailing edges of the pulses. The dotted circle 
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stands for the 1/e2 intensity radius of the 1st Stokes based on the 1st-Stokes distribution 

shown in the inset of Figure  4.18 and the radius was calculated to be ~ 770 μm. 

 
Figure  4.20: Pulses shapes of residual pump in transverse section. 

4.3.4 Conversion efficiency limited by pulse shape 

The pump pulse shape is very critical for the conversion efficiency into the 1st 

Stokes in the experiments above. The pre-pulse shaping adopted here allows for a high 

conversion efficiency with the nearly rectangular pump pulses. However, pulses 

necessarily have instantaneous powers ranging from the peak power down to zero (or 

some low minimum value), and the edges of the pulses did degrade the efficiency 

somewhat in the experiments. Below, I will analyse the effect of the pulse shape on the 

conversion efficiency in DCRFs with different inner-cladding-to-core area ratios. The 

instantaneous power can be treated as a constant power if dispersion is not important 

and if counter-propagating waves are discarded. Thus, let us first quantify effect of a 

mismatched pump power on the conversion efficiency in the CW regime for different 

inner-cladding-to-core area rations. The simplified model (Eq. (2.35) – Eq. (2.37)) is 

numerically solved in the (quasi-) CW regime for a CP RFA with co-propagating pump 

and Stokes waves, pumped at 1550 nm and seeded by 1 mW at 1660 nm. The Raman 

gain coefficient is taken to be 6.34×10-14 and 5.29×10-14 m/W, respectively, in the core 

and inner cladding. The Raman gain coefficient gR (λ0, λ2,) is set to gR (λ0, λ1) / 8. The 

core diameter is 9 μm. Both walk-off and background loss are ignored. The power is 
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assumed to be below the damage threshold. For each area ratio, the fibre length is 

optimised to yield the highest possible 1st-Stokes output power for an input pump power 

of 1 kW. Figure  4.21(a) shows the dependence of the 1st-Stokes power on the input 

pump power for different area ratios. For an excessive area ratio of 12, the 1st-Stokes 

power decreases sharply above the optimal 1 kW pump power. The same is true for an 

area ratio of eight, although this does allow for a high conversion efficiency at the 

optimal power. For smaller area ratios, however, and in particular for unity area ratio, 

the 1st-Stokes power continues to grow even beyond the 1 kW of pump power that 

yields the highest conversion efficiency. This is because as the area ratio increases, any 

2nd-Stokes power becomes progressively more effective in depleting the 1st-Stokes 

power, relative to the ability of the pump to amplify it. Therefore, excessive pump 

power leads to the buildup of the 2nd Stokes, which at high area ratios very rapidly 

depletes the 1st-Stokes power for a specific fibre length. In Figure  4.21(b), the data has 

been recalculated to directly show the conversion efficiency to the 1st Stokes. Clearly, a 

fibre with smaller area ratio can remain efficient over a wide pump-power range. For 

example, with an inner-cladding-to-core area ratio of one, the conversion efficiency 

drops by less than 10% if the pump power remains within ±40% of the optimum. 

However, higher area ratios require a better control of the pump power for efficient 

conversion into the 1st Stokes. With an inner-cladding-to-core area ratio of eight, the 

input pump power can only range from -5% to +2% of the optimal value, if the 

conversion efficiency is to remain within 10% of the maximum. This example also 

illustrates that pump power fluctuations will affect the conversion efficiency for both 

pulsed and CW Raman fibre devices. For DCRFs with large inner-cladding-to-core area 

ratios, pump stability becomes more important for high conversion efficiency.  
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Figure  4.21: (Simulation) (a) 1st Stokes output power vs. input pump power; (b) 
Conversion efficiency to 1st Stokes vs. input pump power normalized to 1 kW. 
CW / quasi-CW regime in absence of counter-propagating waves. 

The instantaneity of SRS and the sensitively of the conversion efficiency to the 

pump power is a problem for pulses because of the variations in instantaneous power. 

Figure  4.22 shows how the energy is distributed across the instantaneous power for 

Gaussian, 2nd and 4th order super-Gaussian, square pulses and a representative pulse of 

the Raman pump used experimentally in this chapter, which is the pulse given in Figure 

 4.9. Insofar as it is valid to use a quasi-CW treatment, it is possible to calculate the 

conversion efficiency for each instantaneous power of a pulse using the data of Figure 

 4.21, and from that together with the instantaneous-power distribution, the total 

conversion efficiency of a pulse. For example, for a Gaussian pulse, about 24% of the 

total energy resides in the leading and trailing edges of the pulse with instantaneous 

power smaller than half of the peak power. Given the narrow range of powers for 

efficient conversion at high area ratios, and the precipitous drop in efficiency at too high 

powers in Figure  4.21(b), the peak power can only slightly overshoot the optimal CW 

power level. Consequently, the central part of a pulse will be converted relatively 

efficiently, while a large fraction of the leading and trailing edges of the pump pulse, in 

fact more than 24% of the total pump energy, remains unconverted. However, the 

fraction of energy with instantaneous power less than half of the peak value is reduced 

to 12% and 5% for a 2nd and 4th super-Gaussian pulse, respectively. Ideally, although 

not realisable in practice due to bandwidth limitations, a square pulse would be perfect 

as a Raman pump since all energy then has the same instantaneous power. Therefore, 

rectangular pulses can eliminate the pulse-shape penalty. For the pump pulse shape used 



Cladding-pumped Raman fibre laser sources 
 

 
 

100 

experimentally in this chapter, almost 80% of the energy resides in the central part of 

the pulse with instantaneous power of over 80% of the peak power. This is achieved in 

this case in pulses of relatively low bandwidth, with pulses being pre-shaped to 

compensate for the gain-shaping that is typical for long pulses of high peak power. This 

helps in achieving high energy conversion efficiency. 
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Figure  4.22: (Simulation) Cumulative fractional energy vs. instantaneous power for 

pulses of different shapes. 

Figure  4.23 shows how the energy conversion efficiency of a quasi-CW Gaussian 

pulse and the Raman pump pulse (black curve in Figure  4.9) vary with the peak power, 

relative to the optimal instantaneous (or CW) power (i.e., 1 kW), at different area ratios. 

This was calculated from the dependence on the efficiency on the pump power and the 

energy distribution as described above. We can see that the optimal peak power exceeds 

the optimal CW value, but indeed only by a small amount at large area ratios. For 

Gaussian pulses at unity area ratio, the peak power is be nearly 40% higher than the 

optimal CW value, but this drops to 2% for an area ratio of eight. It is the same for the 

Raman pump pulse used in this chapter. For a larger area ratio, e.g., 8, Furthermore, 

with Gaussian pulses, while the efficiency only drops from the CW value of 93.4% to 

76.9% at optimal peak power for unity area ratio, the drop from 84.7% to 38.6% for an 

area ratio of eight is much more significant. For the Raman pump pulses used 

experimentally, the energy conversion efficiency is improved to 87% with unity area 

ratio while it is improved to 62.9% for an area ratio of eight. For the DCRF F71-LF11, 
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the inner-cladding-to-core area ratio is 5.76. From the Figure  4.23(b), the highest energy 

conversion could be 70%. In the experiment, the achieved energy conversion was 60%, 

which is reasonably close to the theoretical value (which neglects loss and other effects). 
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Figure  4.23: (Simulation) Energy conversion efficiency into 1st Stokes for quasi-CW (a) 
Gaussian pulses (b) Raman pump pulses (black curve in Figure  4.9) vs. peak power 
relative to optimal CW power with different inner-cladding-to-core area ratio, as 
marked in the graph. Straight lines: CW conversion efficiencies. The highest CW 
conversion efficiency is essentially the same as the quantum limit. 
 

The analysis above suggests that it is necessary to use rectangular pulses, with all 

energy at a single instantaneous power, to reach a high conversion efficiency in a DCRF. 

Alternatively, a CW pump may be used, although the power requirements will be 

prohibitive in many practical cases. Nonetheless, the high peak power conversion 

obtained in the experiments indicates that high overall pump conversion can be feasible 
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for high power CW-pumped RFAs. In addition, although this fibre is well designed 

according to Eq. (3.4), some of the Raman pump might not be efficiently absorbed 

because of the circular symmetry of the inner cladding. This leads to pump modes with 

low overlap with the core (Table  4.1.), making it difficult to convert the power in them 

to the core-mode of the first Stokes. This is similar to RE-doped fibre and the pump 

conversion is expected to improve with a D-shaped inner cladding (e.g.  [17]). These 

limitations together with the background loss may explain the lower energy conversion 

efficiency obtained in the experiment relative to the theoretical one in Figure  4.23(b).  

4.4 Summary 

In this chapter, I demonstrated a high efficiency pulse-pumped CP RFA based on the 

DCRF F71-LF11. The peak power conversion was as high as 75% while the obtained 

energy conversion efficiency was 60%. The experimental results require attention to the 

following factors: Firstly, a well-chosen area ratio of this DCRF allows for a high 

conversion efficiency into the 1st Stokes. Specifically, the inner-cladding-to-core area 

ratio should be smaller than eight since otherwise, the 2nd Stokes will inevitably grow 

before most the pump power is transferred into the 1st Stokes as discussed in chapter 3. 

Secondly, the fibre was sufficiently short to reduce the background loss and avoided 

walk-off. This requires a sufficiently high pump peak power. Finally, the Raman pump 

pulse was pre-shaped and the resulting nearly rectangular pulse shape promoted a high 

energy conversion efficiency to the 1st Stokes. With a asymmetrical inner cladding and 

more closely rectangular pump pulse, even better conversion efficiency should be 

possible. In the pulsed regime, the pump pulse shape is critical since the (instantaneous) 

conversion efficiency depends strongly on the instantaneous power. While ideal square 

pulses are unphysical, the pulse shape will not be an issue for a CW CP Raman fibre 

device. The achievable instantaneous conversion efficiency can be approximated by the 

peak power conversion into the 1st Stokes, and the 75% achieved here indicate that very 

high conversion efficiencies are achievable in CW regime with the same fibre. However, 

for CW pumping, if there are power fluctuations at sufficiently low frequencies, the 

fluctuation can be passed to the cw seed, and the seed becomes more noise after Raman 

amplification. Furthermore, the conversion efficiency can be degraded just like it is with 

pulses. If the power fluctuation frequency is high enough, the seed cannot respond and 

sees a constant Raman gain, which allows for an improved conversion efficiency. In 
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cases when the output beam is counter-directional to the pump beam, even relatively 

low-frequency fluctuations are averaged out in this way [12], which helps to make 

counter-pumped devices more efficient. In the next chapter, I will demonstrate a high 

power CW CP RFL with diffraction-limited output, with a focus on the counter-pumped 

configuration.  
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Chapter 5 High-power operation of continuous-
wave CP RFLs 

In the previous chapter, I discussed limitations on the power conversion efficiency from 

the Raman pump to the 1st Stokes in a pulse-pumped CP RFA. One limitation stems 

from the inherent variation in instantaneous power of all realistic pulses. Walk-off is an 

issue as well (see section 3.4). However, these problems can be avoided in the case of 

CW pumping. Thus, the conversion efficiency obtainable in a CW CP RFL should be 

comparable to the peak power conversion efficiency obtained from the pulse-pumped 

CP RFA. In this sense, CW operation is easier, but the large instantaneous power 

required is more difficult to obtain. This on the other hand, also makes it attractive for 

scaling to high average power. In this chapter, I will discuss the particulars of CW 

pumping, largely based on my experimental work on a 100 W CW CP RFL with 

diffraction-limited output at 1 μm but also on other devices. First, I will describe the 

progress in output power from Raman fibre sources. After that, factors limiting the 

output power will be analysed and the achievable output from CW CP RFAs will be 

considered. This is followed by descriptions of experiments and discussions. The same 

DCRF is used in this chapter as in the previous one, i.e., F71-LF11. The experiments 

were carried out by Dr. C. A. Codemard and me. 

 

5.1 Power scalability of the Raman fibre sources 

The power from Raman fibre sources has been growing rapidly in recent years. Figure 

 5.1 shows the output powers from record-breaking Raman fibre sources reported in the 

last eight years. These are all CW, with the exception of a pulsed 

CP Raman fibre source  [1] identified by a circle in Figure  5.1. Among various options 

for Raman fibre sources, SMFs have relatively small core size, which benefits the 

generation of SRS. They are also easy to splice, and compatible components are widely 

available, at least at some wavelengths. Substantial amounts of Raman research have 

been carried out with SMFs. On the other hand, small cores require pump sources with 
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good beam quality. Compared to multimode pump sources, single-mode pump sources 

with high average power are more difficult to realise. The power from Raman fibre 

sources based on SMFs increased steadily but at a comparatively low level of about 

10 W in 2003 to 80 W in 2009, as shown in Figure  5.1  [2]- [4]. Then, the output power 

increased to 150 W  [5]. This was an all-fibre system, making it a very impressive 

achievement. However, it would be very challenging to obtain even higher output power, 

in particular as it comes to the pump launch. Furthermore, as it comes to spatial 

brightness, this can only be degraded in single-mode-, single-end-pumped Raman fibre 

sources. By contrast, Raman fibre sources based on both MMFs and DCRFs can 

transfer multimode pump beams into nearly diffraction-limited signal beams, and 

improve the brightness. However, the highest power reported from MM fibre approach 

is only 5.8 W with M2 of 3.5 at the Stokes wavelength  [6]. Thus, compared to core-

pumping, the power that has been achieved is lower and the beam quality is worse. 

Although one can expect that the performance of MM fibres for high-power, high-

brightness Raman sources would increase significantly with more research, DCRFs still 

seem more promising. The output power from DCRFs has increased nearly 

exponentially since the first CW CP RFL was demonstrated in 2003  [7]. See the blue 

circles in Figure  5.1. Three years later, the power was further improved to 10 W from 

3.4 W  [8]. Recently, it reached 100 W with nearly diffraction-limited beam  [9].  
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Figure  5.1: Power evolution of CW Raman fibre sources in recent years. 

Despite the recent rapid progress, and while CP RFLs also benefit from 

wavelength agility, the power is still much lower than the record levels reported from 
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RE-doped fibres at specific wavelengths. For example, at 1 μm, a nearly single-mode 

YDF source with 10 kW output power has been reported [10], and at 2 μm, a 

diffraction-limited thulium-doped fibre (TDF) source with 1 kW output power was 

demonstrated recently  [11]. However, it is clear that CP RFLs should be scalable to 

much higher powers, possibly even to the multi-kW level achieved by RE-doped fibre 

lasers. Therefore, I will next analyse the power scalability of high-efficiency Raman 

fibre sources in a similar way as previously done for diffraction-limited RE-doped fibre 

devices  [12]- [13]. Only CW high power RFAs with broad bandwidth and diffraction-

limited output are considered. In this case SBS [14] is not a factor, nor is SPM. Four-

wave mixing (FWM) is also ignored, leaving SRS as the only nonlinearity that is 

considered. Other limiting factors that I take into account below are as described in  [12] 

and  [13], using similar but appropriately modified equations. For more information, e.g., 

on the physics behind the equations, please see  [12]- [13] and references therein. 

(1) Thermal fracture 

The heat power deposited in a piece of fibre of length L, can cause thermal 

fracture at a level (Prapture) given by  [15]: 

)2/1/(4/ 22
clcomrupture aaRLP −= π . ( 5.1)

The rupture modulus of the glass Rm is 2460 W/m in silica  [16]. In a co-pumping CP 

RFA, the maximum heat generation in per unit length is estimated as below  [17], 
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where v0 and v1 represent the frequency of the pump and 1st Stokes respectively, and 

P0 (0) is the pump power at the input. To protect the fibre, (Pthermal / L)max should be no 

more than (Prapture / L). This leads to, 
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According to this, the input pump power should be no more than 47 kW at 1064 nm in a 

fibre with a core diameter of 10 μm and inner-cladding-to-core area ratio of 8. The 

corresponding limited output power can be obtained by multiplying by the optical-to-

optical power conversion efficiency ηlaser, and is given by  [12]- [13]:  
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(2) Melting of the core 

The heat power deposited per unit length, which leads to melting of the fibre core, 

is given in a similar form as Eq. ( 5.4)  [15]: 
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π
. ( 5.5) 

For numerical evaluation, the thermal conductivity k of silica is 1.3 W/(m-K) while the 

melting temperature Tm and the coolant temperature Tc are 1983 K and 300 K 

respectively  [18]. Depending on the cooling mechanism, the convective film coefficient 

h can vary significantly  [19], and here is assumed to be 10,000 W/(m2 K) in the case of 

forced flow of a liquid coolant. In a similar fashion, to meet the requirement (Pthermal / 

L)max < (Pmelting / L) and with conversion efficiency ηlaser, the output power limited by 

the melting effect can be given by: 
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(3) Thermal lens 

The heating induces a temperature gradient in the fibre core, and creates a thermal 

lens. The strength of this becomes comparable to the index guiding from the fibre core, 

at a thermal load given by  [12]: 
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The change in index with the core temperature dn/dT is 11.8×10-6 K-1 in silica  [18]. To 

meet the requirement (Pthermal / L)max < (Plens / L), the output power as limited by thermal 

lens is given by: 
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(4) Damage limitations 
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As discussed in section  3.3, a high pump intensity combined with a large area 

ratio may well lead to a 1st-Stokes intensity in the core that exceeds the material damage 

threshold. Although the peak intensity of the fundamental mode can be more than twice 

the average intensity across the core, I will here for simplicity assume that the mode is 

uniformly distributed in the core. The output power limited by the material damage 

threshold is given by: 

co
out

damage AIP max
1= . ( 5.9)

The material damage intensity I1
max is assumed to be 20 W/μm2 for CW beams in 

silica  [20]. Note that this neglects the contribution of the pump to the damage, which is 

a reasonable approximation in case of cladding-pumping, even at relatively small area 

ratios.  

(5) Pump power limitations 

Unlike RE-doped fibre sources, Raman fibre sources should be pumped by 

relatively bright sources since SRS is proportional to the pump intensity. Together with 

the fibre size and NA, the pump beam brightness determines how much pump light can 

be coupled into the fibre, and further limits the output power as  [12]: 

))(( 22
lim clclpumplaser

out
itedpump NAaBP ππη=−  ( 5.10)

where out
itedpumpP lim−  is the output power limit due to the pump light, in case of single-

ended pumping. I will consider both direct diode-pumping and pumping with fibre 

lasers. For direct diode-pumping, the pump brightness pumpB  is taken to be 

0.021 W/(μm2 sr). Such bright laser diodes are commonly available  [21]. For pumping 

with fibre lasers, I will use a brightness of 33 W/(μm2 sr). At 1064 nm, this corresponds 

to a power of 54 W in a single mode, which is readily available. The inner-cladding NA 

is assumed to be 0.46. Furthermore, to achieve the high conversion efficiency to the 1st 

Stokes without the build-up of 2nd Stokes, the inner-cladding-to-core area ratio is 

assumed to be 8 without spectral filtering for 2nd-Stokes suppression and 34 with 

spectral 2nd-Stokes suppression, e.g., as provided by the W-type fibre designed in 

 Chapter 3 (with 18 μm core diameter). Meanwhile, the fibre length is assumed to be 

chosen to avoid 2nd-Stokes generation. Note that this also means that in contrast to [12]-

[13], limits from unwanted SRS do not have to be considered explicitly (cf., e.g., Eq. (8) 
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in [13]). Furthermore, background loss is ignored. At such high power-levels, relatively 

short fibres can be used, so that background loss can be negligible. 

Thus, for any given core size, the corresponding maximum output power 

determined by different factors can be calculated by Eq. ( 5.4) (thermal fracture), 

Eq. ( 5.6) (melting), Eq. ( 5.8) (thermal lensing), Eq. ( 5.9) (optical damage), and 

Eq. ( 5.10) (limited pump power). The lowest of these power limits will be the actual 

limit on output power. In the calculations, the fraction of the pump power converted to 

the signal ηlaser is assumed to be 70%. The Raman gain coefficient is assumed to be 

5×10-14 m/W with a pump wavelength λ0 at 1064 nm and a signal wavelength λ1 at 

1116 nm. Figure  5.2 shows the calculated results. First of all, to achieve the maximum 

output power, fibre size is key. If DCRFs are pumped by sources of sufficient brightness, 

optical damage limits the output power from fibres with small cores, e.g., core radius no 

more than 19 μm for the inner-cladding-to-core area ratio at 8. The output power due to 

the optical damage remains the same for fibres with different area ratios. With large 

cores, the output power is determined by the thermal lensing instead, reaching a core-

size-independent limit of 23.8 kW. Secondly, the beam quality of the pump source is 

important since it determines the available pump power inside the fibre. We note that a 

pump brightness of 5.37 W/(μm2 sr) (or 5.4 W in a single mode at 1064 nm) makes the 

glass damage and the available pump power limit coincide in case of an area ration of 8, 

so this is really the highest useful pump brightness according to these equations. For an 

area ratio of 34, the corresponding brightness is 1.26 W/(μm2 sr). Note also that the 

output power limited by the thermal lensing depends on the square of the working 

wavelength according to Eq. ( 5.8). Thus, if the 1st-Stokes wavelength is at 2 μm, the 

corresponding output power will be nearly four times higher. Besides, the double-clad 

structure of a DCRF allows us to launch more pump power into the fibre than a SMF 

does if cores sizes are the same, when pumping with the same brightness. For example, 

if a commercial SMF with a 9 μm diameter core and 0.12 NA is pumped by the Raman 

pump fibre source with brightness of 33 W μm–2 sr–1 (54 W in a single mode at 

1064 nm) used later in this chapter, the output power will be limited to 76 W by the 

available pump power, with 80% conversion efficiency. In contrast, for a DCRF with 

the same core size and area ratio of 8, the output power will be up to 1.27 kW limited by 

the optical damage. Therefore, DCRFs are more promising to generate high power 

sources with moderate brightness pump sources since such pump sources can be 
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launched more efficiently into DCRFs than into SMFs. In theory, it is possible to 

achieve output power from Raman fibre sources as high as that from RE-doped fibre 

sources, or even higher.  
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Figure  5.2: (Simulation) Maximum output power achievable from DCRFs with inner-
cladding-to-core area of: (a) 8; (b) 34. 

5.2 Experiments and discussions 

Though the experimental demonstrations are over two orders of magnitude lower in 

power than the theoretical limits, the powers are still useful and progress has been fast. 

Next, I will describe my experiments on high power CW CP RFLs based on the DCRF 



Cladding-pumped Raman fibre laser sources 
 

 
 

112 

F71-LF11. The highest obtained output power of 100 W is close to a tenfold 

improvement over previous results. These were also obtained with the same DCRFs. 

In the experiments, an YDF MOPA built by Dr. C. A. Codemard and capable of 

delivering up to 150 W of power at 1064 nm in a beam with M2 ≈ 2, was used as the 

Raman pump source. Thus this fibre source is slightly multimoded, and is well suited to 

pumping the DCRF F71-LF11, even though it has a relatively small inner-cladding 

diameter (~ 21 μm) and NA (~ 0.22). The high beam quality of the pump source led to a 

high launch efficiency of 84% into the DCRF. The pump launch end of the DCRF was 

held in a water-cooled metallic V-groove that is designed to prevent thermal damage to 

the fibre coating by any non-guided pump power or by the heat generated in the laser 

cycle itself. Finally, the stability of the pump source was monitored by measuring light 

reflected from wedges which were inserted into the beam path of the pump MOPA. 

5.2.1 Characteristics of DCRF F71-LF11 at 1 μm 

The DCRF F71-LF11 was used in the last chapter and details such as its geometry have 

been given in section  4.2. To understand better how it works at 1 μm, it is necessary to 

also details the specifics in this wavelength regime. First of all, the background losses at 

1064 nm are 3.4 and 3.2 dB/km, respectively, in the core and inner cladding according 

to a cut-back measurement, the results of which were presented in Figure 4.3. Secondly, 

the Raman gain coefficients are estimated to be 9.2×10-14 and 7.7×10-14 m/W, 

respectively, in the core and inner cladding  [22]- [24] based on the RIP in Figure  4.2. 

The higher Raman gain coefficient around 1 μm benefits SRS. Thirdly, there are 26 LP 

fibre modes not counting degeneracies, three of which are core-modes, i.e., with 

effective index higher than the inner-cladding index. The effective indexes of all modes 

calculated by OptiFiberTM at the pump wavelength are given in Figure  5.3. The overlaps 

between different modes are important, too. Therefore, the mode distributions at 

1064 nm were calculated by the same software. From these, the overlaps between 

different modes have been obtained according to Eq. (2.14). The result is shown in 

Figure 5.4. Here, the overlaps of degenerate sine and cosine modes are treated the same 

way as in section 4.2.4. 
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Figure  5.3: (Simulation) Effective index of modes at 1064 nm in the DCRF F71-

LF11. 
 

 
Figure  5.4: (Simulation) Overlaps between various modes at 1064 nm in the DCRF 

F71-LF11. 

5.2.2 CP RFL in a 4% - 100% linear cavity 

5.2.2.1 Experimental setup 

One of the cavity configurations investigated experimentally was a 4% - 100% linear 

cavity, as shown schematically in Figure  5.5. The multimode pump beam was free-

space launched into an 85 m long piece of the DCRF F71-LF11. The fibre facet at the 

pump-launch end was flat-cleaved and acted as one cavity mirror of the linear cavity. 
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The other end of the fibre was angle-cleaved to suppress Fresnel-reflection feedback. 

Instead, the cavity mirror comprised a lens-coupled dichroic mirror (DM4) with high 

reflection at the signal wavelength. Between the DM4 and the angled-cleaved fibre end, 

two mirrors, DM2 and DM3, were inserted to remove the residual pump power and any 

2nd-Stokes light from the laser cavity. Another dichroic mirror, DM1, separated the 

pump and signal beam paths at the pump launch end. To protect the YDF MOPA from 

any reflection originating in the RFL, a free-space isolator was inserted between the 

RFL and the Raman pump MOPA.  
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Figure  5.5: Experimental setup of the CP RFL in a 4% - 100% linear cavity. 

5.2.2.2 Experimental results 

Figure  5.6 shows the dependence of the output power of the RFL on the launched pump 

power. The residual pump power reflected by the DM2 is also plotted against the 

launched pump power. As shown in Figure  5.6, the threshold was about 28.8 W for the 

linear-cavity CP RFL. Above the laser threshold, the output power increased linearly 

with the increase of the launched pump power. The maximum signal output power was 

102.5 W at 165 W of launched pump power. The laser output power rolled off for 

higher pump powers. The output power was not limited by the 2nd-Stokes generation. 

Figure  5.7 shows the measured spectrum at the maximum signal output power. The 2nd 

Stokes was not seen. One possible explanation of the roll-off is thermal lensing in the 

free-space isolator at high power. This was observed to degrade the pump beam quality 

and modify the pump-launch efficiency. Figure  5.7 shows that the CP RFL was lasing at 
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1120 nm and the output spectrum was very clean with an extinction ratio over 40 dB at 

2 nm resolution bandwidth.  

The RFL slope efficiency was 71% with respect to the launched pump power. See 

the dashed fitting curve in Figure  5.6. This is comparable to typical ytterbium-doped 

fibre lasers. Discounting the leakage of un-converted pump power, we obtain a slope 

efficiency of 80% with respect to the lost pump power. Though quite high, it is still 

lower than the quantum defect would allow for. The excess loss, beyond the quantum 

defect, was dominated by the insertion losses induced by the DMs placed at the angle-

cleaved fibre end. This was confirmed by removing these DMs and operating the same 

fibre in a 4% - 4% linear-cavity laser, leading to a better slope efficiency. Those results 

will be shown in the next section. 
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Figure  5.6: Output Power (red curve) and pump throughput (blue curve) vs. launched 

pump power. 
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Figure  5.7: Output spectrum at 100 W output power. 
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Furthermore, the output beam quality was measured at different powers. Just 

above laser threshold, the beam propagation factor (M2) was measured to be  1.35 as 

shown in Figure  5.8(a). This is comparable to the theoretical value of 1.21 for the 

fundamental mode at this wavelength obtained from this fibre’s RIP  [25]- [26]. At 80 W 

of laser output power, the beam quality of the signal was slightly degraded. The beam 

propagation factor (M2) was determined to be 1.63, from the measured data shown in 

Figure  5.8(b). It indicates that part of the pump power was transferred into higher-order 

modes. It should be possible to improve the beam quality of the laser output light by 

inserting spatial mode filters into the laser cavity. Nonetheless, the beam quality is 

perfectly acceptable for many applications. 
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Figure  5.8: M2 measurement of the 1st Stokes at output power of: (a) 2 W; (b) 80 W. 

 

5.2.3 CP RFL in a 4% - 4% linear cavity 

5.2.3.1 Experimental setup 

The laser characteristics were also studied in a 4% - 4% linear cavity, which is 

illustrated in Figure  5.9. The Raman pump beam was free-space launched into a 75 m 

long piece of DCRF F71-LF11. Both fibre ends were flat cleaved and worked as cavity 

mirrors by using the 4% Fresnel reflection. DMs were put at both fibre ends to separate 

Raman pump beam paths from output signal beam paths. The free-spaced isolator was 

still placed between the Raman laser and the YDF MOPA, for protection.  



 Chapter 5 High-power operation of continuous-wave CP RFLs 

 
 

117

 
Figure  5.9: Experimental setup of CP RFL in a 4% - 4% linear cavity. 

 

5.2.3.2 Experimental result 

Figure  5.10 shows the dependence of the total laser output power out-coupled 

from both ends on the launched pump power. The leaked pump power is shown, as well. 

The laser threshold increased to about 43 W, as estimated from Figure  5.9. The 

maximum laser output power was 111 W, obtained at 158 W of launched pump power. 

Here, the output power includes some 2nd-Stokes power. However, the 2nd Stokes just 

started to appear at the highest pump power and its power was negligible compared to 

the 1st-Stokes power. Figure  5.11 shows output spectra near the threshold and at 110 W 

output power, at which point the 2nd Stokes can be clearly seen. The slope efficiency 

was 86% with respect to the launched pump power and as high as 91% with respect to 

the lost pump power. Given the losses in the mirror, this number is very close to the 

quantum-defect limited efficiency of 95%. The difference is largely explained by the 

fibre propagation loss, while all other loss sources appear to be negligible. 
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Figure  5.10: Output power (red curve) and residual pump power (blue curve) vs. 

launched pump power. 
 

The propagation factor M2 was measured to be 1.36 when the output power was 

low. Unfortunately, it was not measured at high output power. However, the beam 

quality should be comparable to that obtained with single-ended output. 
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Figure  5.11: Output spectra at the threshold (red curve) and at 110 W output power 

(blue curve). 
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5.3 Simulations 

I numerically solved Eq. (2.32) – Eq. (2.34) with appropriate parameters and boundary 

conditions in order to calculate the output power of the 4% - 4% linear-cavity CP RFL 

described above, and compare experimental and model data. All parameters needed for 

the simulation are known except for the average effective areas, Aeff (λ 0, λ1) for SRS 

from pump to 1st Stokes and Aeff (λ 1, λ2) for SRS from 1st to 2nd Stokes. Given the high 

beam quality obtained experimentally it seems reasonable to assume that the 1st Stokes 

builds up primarily in the fundamental mode. This creates gain primarily for the 

fundamental mode at the 2nd-Stokes wavelength. Therefore, although there will be some 

power in other modes, Aeff (λ1, λ2) can be approximated by the effective area for SRS 

from the fundamental mode at the 1st Stokes to the fundamental mode at the 2nd Stokes, 

which is about 63 μm2. With reference to Eq. (4.1), the effective area Aeff (λ0, λ1) can be 

obtained from the laser threshold, which is determined as: 

),(
)2(343.4 10 λλeff

coeff

cavity
threshold A

gL
L

P = . ( 5.11)

Here, Lcavity is the cavity loss in dB. The threshold Pthreshold was ~ 43 W in the 

experiment, from which the average effective area Aeff (λ0, λ1) is calculated to 95 μm2. 

Figure  5.12 shows the calculated and experimental output power with respect to the 

launched pump power. The simulated 1st-Stokes output power agrees well with the 

experimental results when the launched pump power is below 100 W. When the pump 

power is further increased, the 2nd Stokes starts to build up and deplete the 1st-Stokes 

power in the simulation. However, the 2nd Stokes was not seen during the experiment 

until the pump power reached the maximum, and even then, the 2nd-Stokes power was 

only 0.5% of the 1st-Stokes power. This discrepancy is tentatively attributed to an 

increase in effective area as the pump power increases. Considering first the gradual 

roll-over in the experimental curve seen in Figure 5.12, there are two reasons why the 

effective area for this process (SRS from pump to Stokes) increases at higher pump 

power. One is that the pump beam quality degrades, e.g., because of thermal lensing in 

the isolator. At low pump power a significant fraction of the pump power may actually 

be launched into the core, or have a stronger overlap with the core than the fibre 

geometry suggests. Note here that the 11 μm diameter of the effective area Aeff (λ 0, λ1), 

evaluated at low pump power is much smaller than the geometric diameter of 21 μm as 
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shown in Figure 4.2. In addition, power in pump modes with high overlap with the 

signal mode depletes quicker than other modes, which implies that the pump – signal 

overlap decreases at higher pump depletion. At the highest pump power in Figure 5.12, 

the pump depletion exceeds 70%. If the effective area is adjusted to match the high-

power characteristics rather than the threshold it becomes 178 μm2. See Figure 5.13. As 

it comes to the onset of the 2nd Stokes, this occurs at ~ 45% higher 1st-Stokes power 

experimentally (110 W) than it does in the model calculations (76 W). This may be due 

to 1st-Stokes power in higher-order modes, and the corresponding increase in effective 

area. For the 4% - 100% cavity, the beam quality (M2) degraded from 1.35 at low power 

to 1.63 at high power. If this attributed to an increased beam area, it corresponds to an 

increase of 41%. While Figure  5.8 appears to suggest that it is the beam divergence 

rather than the beam area that increased when the beam quality decreased, this is not 

necessarily so since the optical alignment used when measuring the beam quality at 

those two powers is likely to have been different. 
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Figure  5.12: Simulations and experimental results of laser output power vs. launched 
pump power in the case of 4% – 4% linear-cavity CP RFL. Aeff (λ0, λ1): π(11/2)2 ≈ 
95 μm2; Aeff (λ 1, λ2): π(8.95/2)2 ≈ 63 μm2. 
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Figure  5.13: Simulations (blue curve) and experimental results (red curve) vs. the 
launched pump power in the case of 4% – 4% linear-cavity CP RFL. Aeff (λ 0, λ1): 
π(15/2)2 ≈ 178 μm2; Aeff (λ1, λ2): π(10.5/2)2 ≈ 86.6 μm2. 

5.4 Summary 

In this chapter, I have described experiments on high-power CW CP RFL in 4% – 100% 

and 4% – 4% linear cavities. The output was nearly diffraction limited with both 

schemes, and reached over 100 W of output power at 1120 nm. This is the highest 

output power obtained from a CP Raman fibre device so far. The experimental slope 

efficiency was high, reaching 80% and 91% with respect to absorbed pump power in the 

4% – 100% and 4% – 4% laser cavity configurations, respectively. The output beam is 

slightly multimoded at high power since the core of this fibre is not single-moded at the 

emitting wavelength. Even higher powers should be possible through this approach. In 

the experiments, thermal lensing in the isolator was the principal obstacle to scaling to 

higher powers. While an isolator may be necessary during experimental work, it is quite 

possible that a finalised configuration can work without an isolator, if pump feedback is 

minimised by angle-cleaving the ends of the DCRF. 

The power scalability of CW CP Raman fibre devices with broad linewidth was 

analysed theoretically by considering the limiting factors, e.g., thermal effect, optical 

damage, and pump brightness. If a DCRF is pumped by the source with the same 

intensity as that of the YDF MOPA used in this chapter, the ultimate power can be as 

high as 23.8 kW for inner-cladding-to-core area ratios of both 8 and 34. This is limited 
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by thermal lensing, and requires very large cores. For smaller cores, the output power is 

limited by the material damage. Thus, a large core is critical for high-power operation. 

The relatively small core size of the DCRF F71-LF11 would be a hurdle for power-

scaling to very high levels. In the next chapter I will introduce new DCRFs with large-

mode areas. Although those were only investigated in the pulsed regime, they should be 

scalable to the multi-kW regime in the cw regime. 
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Chapter 6 DCRFs with large-mode areas 

The only DCRF used in my experiments presented so far in this thesis is F71-LF11. 

Several good results have been obtained, demonstrating the versatility of DCRFs and 

this fibre in particular. For example, a high conversion efficiency pulse-pumped 

CP RFA was described in Chapter 4. The peak power conversion was more than 75% 

while the energy conversion efficiency exceeded 60%. In Chapter 5, a 100 W CW 

CP RFL was described. Besides, this fibre was also used as a cladding-pumped Raman 

converter, generating nearly diffraction-limited pulses with 210 μJ output energy  [1]. In 

spite of these results, the comparatively small size of this fibre restricts its applications. 

Firstly, the core dimension is critical for the power scalability of CP Raman fibre 

devices as discussed in the previous chapter. The relatively small core (about 9 μm 

diameter) leads to a relatively low core damage threshold, and further limits the 

achievable power and energy from this fibre. Secondly, because of its small inner 

cladding (~ 21.6 μm diameter) together with its small inner-cladding NA (~ 0.22), the 

fibre has to be pumped by sources with relatively good beam quality. Thirdly, as 

discussed in  Chapter 3, a small area ratio between inner cladding and core is required 

for high conversion efficiency into the 1st Stokes. According to Eq. (3.4), the inner-

cladding-to-core area ratio should be no more than eight. However, the area ratio of this 

fibre is even more restricted, just 5.76. Thus, these geometrical factors ultimately limit 

the brightness enhancement that this fibre can provide. The brightness enhancement 

obtained in the experiments with this fibre was limited to ~ 10  [1]-[8].  

To overcome the limitations set by the fibre geometry, we have recently 

introduced new DCRFs with large-mode areas [9]- [11]. These new fibres with fibre 

number T0340, T0342 and T0343 allow sources with relatively poor beam quality to be 

used as Raman pumps, and thus achieve better brightness enhancement. Furthermore, 

they are more promising for high-power or high-energy sources with good beam quality 

compared to the old fibre F71-LF11. More details of the new fibres will be given in this 

chapter, in conjunction with the experiments carried out with these three large-mode-

area DCRFs. Firstly, section  6.1 presents the characteristics of the new fibres. 
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Subsequently, section  6.2 describes pulse-pumped CP RFAs that were built with these 

new fibres and pumped by a multimode fibre source. The experimental results show that 

the DCRFs T0340, T0342 and T0343 can work as efficiently as the old fibre F71-LF11. 

The peak power conversion into the 1st Stokes was above 60% obtained for all three 

new fibres. The highest output peak power of 2.72 kW was obtained at 4.88 kW input 

pump peak power in the DCRF T0343. The brightness gain (degree of brightness 

enhancement) was also improved by these new fibres compared to that of the old fibre.  

Then, a simple and effective approach is proposed for SC-generation based on CP 

Raman fibre converters. Its principle and benefits in comparison with the normal 

methods are given in section  6.3. A 19 W average power SC ranging from 1 μm to 

beyond 1.75 μm was generated in 100 m of DCRF T0340. Section 6.4 reports a 1 mJ 

energy source based on a piece of DCRF T0343, pumped by a Q-switched Nd:YAG 

laser. The output energy was restricted by fibre facet damage. To my knowledge, this is 

the highest energy ever achieved from a Raman fibre device. I also discuss the 

performances of the Raman fibre converters pumped by temporally spiky pulses, which 

is exactly the case of the Nd:YAG laser used in this chapter. Finally, section 

6.5 summarises the chapter. 

 

6.1 Double-clad Raman fibres with large-mode areas 

The new DCRFs with large-mode areas, T0340, T0342, and T0343, were fabricated 

through the MCVD process by Mr. Andrew Web and Mr. Robert Standish in the Silica 

Fibre Fabrication group at ORC. These fibres were drawn from the same preform 

(preform number: L30199) into three different sizes. Thus, they have almost the same 

area ratio between the inner cladding and the core. The fibres were carefully 

investigated and their details are as follows.  

6.1.1 Refractive index profile 

All three fibres comprise a germanium-doped silica core and a pure-silica inner cladding. 

Outside the inner cladding, there is a layer of fluorine-doped silica glass to confine the 

inner-cladding modes. The fluorine-doped silica layer is surrounded by another layer of 

pure-silica to make the fibre sufficiently thick to avoid micro-bending  [12] as well as a 

polymer coating for protection. Thus, like the fibre F71-LF11, these new fibres also 
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have an all-glass-structure for guiding light. Note that the pure-silica layer next to the 

coating can guide the light too since the coating has a low index, so caution is required 

to make sure the light is launched into the core or inner cladding rather than this outside 

region, which is optically isolated from the core at the NAs I use. The dimensions of 

these three fibres are summarised in Table  6.1. The largest fibre, T0343, has a 40 μm 

diameter core and 107 μm diameter inner cladding, which is almost five times larger 

than for the fibre F71-LF11. The inner-cladding-to-core area ratio is around 7.2 for the 

new DCRFs, which is also larger than that of F71-LF11, but still meets the requirement 

set on the area ratio given by Eq. (3.4) in order to obtain high conversion efficiency into 

the 1st Stokes.  

Table  6.1: Geometrical characteristics of DCRFs with large-mode areas. 
Fibre number T0340 T0342 T0343 

Core diameter (μm) 18.4 31 40 
Inner-cladding diameter (μm) 49.1 83.4 107 
Outer-cladding diameter (μm) 160 275 350 
Area ratio between the inner 

cladding and core 7.1 7.2 7.2 

 
A picture and an idealized RIP of the fibre T0340 are shown in Figure 6.1(a). 

During the preform preparation, unwanted air bubbles were generated around the inner 

cladding. This is caused by the difference of the volatility between pure silica and 

fluorine-doped silica glass  [13]. Air bubbles appear inside the fibres T0342 and T0343 

too. The existence of the air bubbles makes the new fibres more fragile than normal 

fibres. Thus, special cautions are required when handling these new fibres, e.g., in fibre 

facet preparation. Another issue brought by the air bubbles is the background loss. Loss 

measurements (described in the next section) show that the air bubbles do induce extra 

loss, but the background loss is still acceptable for a CP RFA, and the fibres are still 

useful. The undesirable air bubbles could well change the inner-cladding NA too, but 

did not in reality. I measured the inner-cladding NA of the three fibres, and they are all 

around 0.2, which matches the NA expected from the refractive index of the glasses. 

The core NA (relative to the inner cladding) is estimated to be 0.066 from the RIP in 

Figure 6.1(b). It was directly measured on the preform by Mr. Robert Standish, scaled to 

match the size of the fibre. Similar as the fibre F71-LF11, the refractive index has a dip 

in the centre due to the evaporation of germanium during preform collapse. It changes 

the mode distribution but not the principle of the CP Raman converters. The V-numbers 
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of the cores are about 3.8, 6.4, and 8.3, respectively, for the fibre T0340, T0342, and 

T0343 at a wavelength of 1 μm, making them all slightly multimoded. The cut-off 

wavelength is estimated to around 1.7 μm for the DCRF T0340. It will be even longer 

for the other two, in proportion to their V-values. 
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Figure  6.1: (a) Image of cross-section of DCRF T0340 with idealised RIP: (1) 
germanium-doped silica core; (2) pure-silica inner cladding; (3) fluorine-doped silica 
layer with air-bubbles; (4) pure-silica outer cladding; (b) Measured RIP of preform 
L30199, scaled to match the core size of DCRF T0340. 

6.1.2 Background loss 

The air bubbles might induce unacceptable loss for my SRS experiments. Therefore, the 

transmission spectrum of a 709 m long piece of DCRF T0340 was characterised with a 

WLS and an ANDO OSA. The fibre was then cut back to a length of 1.5 m and the 

transmission spectrum re-measured so that the background loss of the inner cladding 

could be determined according to the conventional cut-back method. The WLS beam 

was free-space-coupled to the fibre. The recorded transmission spectra are shown as red 
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and blue curves in Figure 6.2, together with the background loss for the inner cladding, 

as determined from the two. The background loss at 1 μm is around 7 dB/km in the 

inner cladding. The background loss in the core was measured with a single-mode fibre 

source at 1116 nm. The light from the fibre source was launched into the core of a 

100 m long DCRF T0340 by careful alignment. The beam quality at the output was 

monitored to ensure that the light was guided inside the core. After cutting back the 

fibre, the background loss was obtained, ~ 2.4 dB/km. Thus, for wavelengths around 

1 μm, the propagation loss is much higher in the inner cladding than in the core, 

presumably because of the air bubbles. The high background loss will affect the 

conversion efficiency for long fibres, but not for sufficiently short ones. Since the other 

two fibres T0342 and T0343 were drawn from the same preform, their background 

losses are assumed to be similar to that of the DCRF T0340. Compared to the 

background loss of the fibre F71-LF11 (3.4 dB/km and 3.2 dB/km in the core and inner 

cladding, respectively), the loss in the core of this fibre is slightly lower, perhaps 

because the germanium concentration in the core is lower in this fibre while its inner-

cladding loss is higher, probably because of the air bubbles. 

Wavelength (nm)
800 1000 1200 1400 1600

R
el

at
iv

e 
po

w
er

 (d
B

)

-70

-65

-60

-55

-50

-45

-40

-35

B
ac

kg
ro

un
d 

lo
ss

 (d
B

/k
m

)

0

5

10

15

20

25

30

35

Before cutting back
After cutting back
Background loss

 
Figure  6.2: Inner-cladding background loss spectrum of DCRF T0340. 

6.1.3 Raman gain coefficient 

Since the inner cladding is pure silica, the Raman gain coefficient is 5×10-14 m/W for 

unpolarised light at 1 μm. Based on the RIP of this fibre, the germanium concentration 

in the core is estimated to be around 1.2% (mol). With such low concentration of 

germanium, the Raman gain coefficient in the core remains almost the same as in the 

inner cladding  [14]- [16]. Due to the high germanium concentration, the Raman gain 
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coefficients are higher in the fibre F71-LF11. Furthermore, in F71-LF11, the Raman 

gain coefficient is higher in the core than in the inner cladding, which favours SRS into 

the core modes. The less favourable situation in the new fibres calls for special attention. 

6.1.4 Modes 

Based on the RIP in Figure 6.1, the effective index was calculated for the modes in the 

new fibres at a wavelength of 1064 nm with OptiFiberTM. The RIP measured on the 

preform was scaled to match the real size of these fibres. Furthermore, circularly 

symmetric RIPs approximated the actual RIPs for these calculations. The number of 

modes increases with increasing fibre size as shown in Figure 6.3. There are 118, 261, 

460 LP fibre modes, respectively, inside the fibre T0340, T0342, and T0343. In contrast, 

there are only 26 LP fibre modes inside the fibre F71-LF11 at 1 μm. These numbers do 

not include the sine / cosine mode multiplicity of modes with azimuthal dependence. 

The black horizontal line in the plot marks the inner-cladding refractive index. At 

1064 nm, there are four, six, and ten core-modes, respectively, in T0340, T0342, and 

T0343. The fibre F71-LF11 has three core modes. More core modes make it more 

difficult to obtain good beam quality.  
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Figure  6.3: (Simulation) Effective index of modes at 1064 nm in the new DCRFs, 
from left to right, T0340 (red dots), T0342 (green dots), and T0343 (blue dots). 

 

6.2 Pulse-pumped CP RFAs with DCRFs T0340, T0342, and T0343 

In this section, I describe the Raman amplifier experiments performed with the new 

fibres T0340, T0342, and T0343. As discussed in the previous section, a short fibre is 



 Chapter 6 DCRFs with large-mode areas 

 
 

131

preferred for high conversion efficiency due to the relatively high inner-cladding 

background loss. Together with the large inner-cladding areas, this leads to a high 

Raman threshold. Thus, a pulse-pumping is chosen for these experiments. The DCRFs 

were set up as CP RFAs, pumped by a commercial multimode pulsed fibre source and 

seeded by a diffraction-limited CW fibre source built in-house, as described below. 

6.2.1 Multimode Raman pump 

An industrial pulsed fibre source from SPI Laser Inc. (SP-30P-0031-000 “G3”) was 

used as the Raman pump. It is a diode-seeded two-stage YDF MOPA system at 

1064 nm with tuneable pulse duration and PRF. It can produce up to 16 kW peak power 

at 30 kHz PRF. Unfortunately, the pulse shape is less suitable for efficient Raman 

conversion and well-controlled experimentation than was the case for the in-house 

EYDF pump MOPA used in chapter 4. There is a spike in the leading edge of the pulse, 

followed by a long tail. By increasing the PRF, the pulse becomes more square-like at 

the price of the output peak power. At 150 kHz PRF, the output peak power is lowered 

to 10 kW. The output pulses are of a more suitable super-Gaussian-like shape. 

Figure 6.4 shows the pulse shapes at different peak powers. As a compromise between 

the pulse shape and the peak power, the PRF was fixed at 150 kHz during the 

experiments. At this PRF, the pulse duration is around 23 ns (FWHM). The beam 

quality (M2) is around 3.2. The inset shows the corresponding output spectra. It 

broadens with the increase of the peak power due to SPM. 
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Figure  6.4: Raman pump pulse shapes under different output peak power at 150 kHz 

PRF. Inset: corresponding output spectra. 
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6.2.2 Diffraction-limited CW Raman seed laser 

A CW core-pumped RFL at 1116 nm in a linear cavity was constructed to be used as a 

seed laser for the CP RFA. Figure 6.5 shows the configuration. The seed laser itself was 

pumped by a linear-cavity YDFL at 1064 nm. The YDFL consists of a piece of 

GTwave™ fibre, a 10 W, 915 nm laser diode, and two FBGs acting as cavity mirrors 

with 99.9% and 14.5% reflections at 1064.5 nm. The output end of the YDFL was 

spliced to a 2 kW long piece of Pirelli FreelightTM fibre. This, together with two FBGs 

serving as cavity mirrors, formed the RFL at 1116 nm. The FBG reflectivities were 

99.9% and 15% at 1116 nm. At the output of the RFL, a WDM from Lightel 

Technologies Inc was used to separate the residual pump at 1064 nm from the signal at 

1116 nm. The pigtails of all the FBGs and the WDM are Hi1060 fibre. Thus, although 

the FreelightTM fibre is not single-moded at 1 μm, the output beam from the CW Raman 

seed was truly single-moded and very close to diffraction-limited.  

 
Figure  6.5: Experimental setup of the diffraction-limited CW Raman seed laser at 

1116 nm. 

Figure 6.6 shows the output power and spectra (inset) of the seed laser at 1116 nm 

after the WDM against its pump power. The black curve in the plot shows experimental 

data while the red curve shows the simulation results. Based on the experimental data, 

the threshold was estimated to be about 360 mW for the RFL. The Raman gain 

coefficient gR is about 6.22×10-14 m/W at 1116 nm, from calculations based on the RIP 

of the FreelightTM fibre. The calculated effective area Aeff was 31.4 μm2 for the 

fundamental mode based on the mode distribution obtained through the software 

OptiFiberTM. The total cavity loss Lcavity was around 10 dB. The threshold in a linear-

cavity Raman laser should be: 

)2)(/(343.4 effeffco

cavity
threshold LAg

L
P = .  ( 6.1) 

The calculated threshold is about 349 mW, in good agreement with the experimental 

result. The slope efficiency was 64.6% with respect to the pump power. The maximum 
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signal power obtained is 1.12 W, limited by the available pump power. The 

corresponding conversion efficiency was 54% with respect to the pump power. 

However, there was also some power in the 2nd Stokes, which can be seen from the inset 

of Figure 6.6. The simulation also shows that the 2nd Stokes starts to appear at the 

maximum pump power. The simulation results of the RFL fit the experimental value 

well. In the simulation, the total background loss was assumed to be 1.8 dB including 

the fibre background loss and the insertion loss of the WDM.  
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Figure  6.6: Output power at the 1st Stokes vs. pump power. Black curve: 
experimental data; Red curve: simulation result. Inset: Output spectra after the 
WDM under different pump powers. 

 

6.2.3 CP RFA configuration 

I used the multimode Raman pump and the diffraction-limited seed laser together with 

the new DCRFs T0340, T0342, and T0343 for CP Raman amplification experiments. 

Figure  6.7 illustrates the experimental setup. In this scheme, both the pulsed Raman 

pump beam and the CW Raman seed beam were free-space launched into the same end 

of the DCRF via DMs and focusing lenses. The lenses were carefully chosen so that the 

CW Raman seed beam was launched into the DCRF core and excited the core modes. 

At the same time, the Raman pump beam was launched into the core and inner cladding. 

The seed travelled in the same direction as the Raman pump along the fibre. As before 

in section 4.3.3, the part of the seed that overlapped in time with the Raman pump 

pulses experienced Raman gain, which strongly modulated the amplified signal output. 

At the output, several DMs were utilized to separate the residual pump, and 1st Stokes 
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and 2nd Stokes beams. Finally, a polarisation-independent free-space isolator was used 

to protect the pulsed Raman pump laser from back-reflections from the Raman amplifier. 

 
Figure  6.7: Experimental setup of pulsed CP RFAs. DM1, DM2, DM3: 

HR@1064 nm, HT@1116 nm and 1178 nm; DM4: HR@1178 nm, HT@1116 nm. 

6.2.4 Experimental results and discussion 

First, to investigate the effect on the conversion efficiency of the background loss, a 

relative long piece of DCRF T0340, around 700 m, was used in the pulse-pumped 

Raman fibre amplifier. The launch efficiencies of the Raman pump and the Raman seed 

were 86% and 90%, respectively, with a small fraction of the seed and most of the pump 

propagating in the inner cladding. The background losses in this piece were measured 

and found to be 4.9 dB and 2.2 dB for the pump and seed, respectively. During the 

experiment, the launched Raman seed power was kept constant at 180 mW while the 

Raman pump power was varied.  

Figure  6.8 shows the output peak power against the peak power of the launched 

Raman pump. At the optimum, i.e., highest relative conversion into the 1st Stokes, the 

1st-Stokes output peak power was 296 W, and the launched pump peak power was 

1.0 kW. The corresponding conversion into the 1st Stokes was 30% with respect to the 

launched pump peak power. The slope was 65% with respect to the launched pump 

power. The 1st-Stokes power was limited by the generation of the 2nd Stokes. The 2nd 

Stokes depleted the 1st-Stokes power and increased in a 249% slope relative to the 

launched pump peak power. This fast growth can be explained by the difference 

between the effective area for the pump-to-1st-Stokes energy transfer, which was about 

the size of the inner-cladding area (depending on the launch conditions and modal 

excitations), and the effective area for the 1st-to-2nd-Stokes transfer, which was about the 

core size  [2]. Since the Raman gain is inversely proportional to the effective area, the 
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nonlinear growth of the 2nd Stokes was faster than that of the 1st Stokes. Also note that 

with Raman fibre amplifiers, the slopes can exceed 100% over a limited power range, 

due to increased pump depletion at higher powers. This is true for SRS from the pump 

to the 1st Stokes, and even more so for cascaded SRS in a CP RFA. 
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Figure  6.8: Output peak power of the residual pump (blue curve), 1st Stokes (green 
curve), and 2nd Stokes (red curve) vs. launched pump peak power in a 700 m long 
DCRF T0340. Solid lines: experimental results; Dashed lines: simulation results. 

In the measurements of Figure 6.8, the peak power of the residual pump was 

almost constant at ~130 W regardless of the launched pump power. In the absence of 

walk-off between pump and signal modes, this can be understood as follows. There is 

an instantaneous launched pump power that leads to the highest transmitted 

instantaneous pump power. Beyond this launched power, the transmitted pump power 

decreases due to increased depletion. However once the launched peak power exceeds 

this level, the level will always be reached somewhere within the pulse. This then 

clamps the transmitted peak power of the residual pump. A similar clamping was found 

in Figure 4.13 in section 4.3.3. 

Figure  6.9 shows the average powers of the 1st Stokes, 2nd Stokes, and residual 

pump with respect to the average power of the launched pump. From 2.2 W to 3.5 W, 

the Raman pump power was converted into the 1st Stokes with a slope efficiency of 

59%. The highest average power of the 1st Stokes obtained was 890 mW at 3.48 W 

average launched pump power. At higher pump power, the 2nd Stokes quickly built up 

from the 1st Stokes with a 103% slope with respect to the average launched pump power. 
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The highest conversion efficiency into the 1st Stokes was 26% relative to the launched 

pump power. The corresponding pump power was also 3.48 W. The average power 

conversion was lower than the peak power conversion, mainly due at least partly to the 

imperfect pump pulse shape as discussed in section 4.3.4. Since the power between 

pulses is small, the pulse energy can be found by simply dividing the average power in 

Figure  6.9 by the PRF. 
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Figure  6.9: Output average power of the residual pump (blue curve), 1st Stokes (green 
curve), and 2nd Stokes (red curve) vs. launched pump average power in a 700 m long 
DCRF T0340. Solid lines: experimental results; Dashed lines: simulation results. 

The simulation results in Figure  6.8 and Figure  6.9 were obtained by numerically 

solving Eq. (2.32) – Eq. (2.34) with appropriate initial conditions. In the simulation, 

SRS to the 2nd Stokes directly from the Raman pump was also included, at a rate 

corresponding to gR (λ0, λ1) / 8 ≈ 0.625×10-14 m/W. The average effective areas Aeff (λ0, 

λ1) and Aeff (λ0, λ2) were assumed to be 1960 μm2, corresponding to a disc of 50 μm 

diameter and close to the actual inner-cladding size Acl of 1893 μm2. The average 

effective area Aeff (λ1, λ2) was assumed to be 346 μm2, corresponding to a disc of 

10.5 μm diameter, and close to the core area Aco of 266 μm2. It is difficult to know 

exactly the effective area, with which waves interact, but these areas are reasonable and 

the simulation results were in good agreement with the experimental results for both the 

peak powers and average power. 
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As mentioned in section  6.1, there are more modes in the new large-mode-area 

cores than previously with fibre F71-LF11. It is not straightforward to ensure a high 

beam quality of the amplified output signal since the fundamental mode may not 

dominate the Raman amplification. I measured the M2-parameter of the 1st Stokes and 

the 2nd Stokes at 1.0 kW peak power of the launched pump with a beam profiler 

(Thorlabs model number BP104-IR). The measured M2 was 2.7 and 1.4, respectively, 

for the 1st- and 2nd-Stokes beam. The 1st-Stokes beam quality was slightly worse than 

the results obtained from the fibre F71-LF11. However, the beam quality of the 2nd 

Stokes was better and close to the beam quality of the fundamental core mode, 

calculated to 1.01 based on the RIP  [17]- [18]. Also as mentioned in the last section, 

better pump-to-signal brightness enhancement should be possible with the new fibres 

than with F71-LF11. According to the Eq. (4.2), the brightness enhancement obtained 

here was 6.7 at 3.48 W average power of the launched Raman pump, which is actually 

slightly worse than that obtained in the pulse-pumped CP RFL with F71-LF11 in 

 Chapter 4. The worse pump-to-signal brightness enhancement was partly caused by the 

high brightness of the pump source, which did not make the most of the inner cladding 

of T0340. Other contributing factors were the low average-power conversion into the 1st 

Stokes, only 25%, and the limited 1st-Stokes beam quality. The low conversion 

efficiency was caused mainly by the relatively high background loss in the long fibre 

used in the experiment, and also by the imperfect pulse shape.  

In order to improve the conversion efficiency and the brightness enhancement, I 

shortened the fibre to 100 m. This time, the measured launched efficiencies for the 

Raman pump and Raman seed were 89% and 92.5%, respectively. The launched Raman 

seed power was now fixed at 88 mW while the Raman pump power was varied during 

the experiment. 

Figure  6.10 shows the dependence of the output peak power of the 1st Stokes, 2nd 

Stokes, and the residual pump on the peak power of the launched Raman pump. The 

peak power conversion into the 1st Stokes was improved to 77% from the 35% obtained 

with the 700 m long piece. The corresponding launched pump peak power was 2.81 kW. 

At the same pump power, the highest peak power of the 1st Stokes was achieved, which 

was around 2.15 kW. The 1st-Stokes power was limited by the generation of the 2nd 

Stokes. 
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Figure  6.10: Output peak power of the residual pump (blue curve), 1st Stokes (green 
curve), and 2nd Stokes (red curve) vs. launched pump peak power in a 100 m long 
DCRF T0340. Solid lines: experimental results; Dashed lines: simulation results. 
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Figure  6.11: Average output power of the residual pump (blue curve), 1st Stokes 
(green curve), and 2nd Stokes (red curve) vs. launched pump average power in a 
100 m DCRF T0340. Solid lines: experimental results; Dashed lines: simulation 
results. 

 
The average output powers of the 1st Stokes, 2nd Stokes, and the residual pump 

against the average power of the launched pump are given in Figure  6.11. The average 

power conversion efficiency into the 1st Stokes was improved from 26% to 58%, 

obtained at 9.77 W launched pump power. At the same pump power, the 1st-Stokes 

reached its maximum average power of 5.65 W. This was limited by the 2nd Stokes 
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generation. The 1st Stokes increased with a 112% slope with respect to the launched 

pump power before the 2nd Stokes built up, increasing with a 149% slope. With an even 

shorter piece of this fibre pumped by the same pump source, additional, but smaller 

improvements in the 1st-Stokes power are expected. 

The same model as used for simulating the 700-m length RFA was used again to 

produce the simulation results shown in Figure  6.10 and Figure  6.11. All parameters 

were kept the same except that the average effective areas Aeff (λ0, λ1) and Aeff (λ1, λ2) 

were replaced by 908 μm2 and 314 μm2 respectively. However, the simulation results 

do not match the experimental results as well as for the 700 m fibre. The numerical 

model used here is a simplified one that ignores many factors, e.g., mode coupling. The 

effect of pump mode coupling can often be simplified as one of two extreme cases: 

weak and strong mode coupling  [19]. In the case of strong mode coupling, the pump 

power is distributed equally over the strongly coupled modes, which are then depleted at 

the same rate by SRS. In other words, the mode coupling is stronger than the SRS. Thus, 

an average effective area can be used to describe the power evolution of all pump 

modes. This seems to be the case for the 700 m piece. On the other hand, if there is no 

mode coupling, or if the mode coupling is weaker than the SRS, then the pump modes 

are depleted at different rates. See the example given in section 4.2.4. The situation 

becomes more complicated. Usually, the average effective area then varies along the 

fibre. This seems to be the case for the 100 m piece. Thus, the simple model used here 

cannot match the experimental results very well.  

Walk-off has been neglected and this needs to be justified. According to Eq. (2.3), 

the walk-off length of this fibre is 450 m. This justifies the neglect of walk-off for the 

100 m long fibre, but it may be an issue for the 700 m fibre. Nevertheless, although 

walk-off was neglected, the simulation results still match the experimental data well. 

Thus, it seems that walk-off is not a concern for the 700 m long fibre either. As I 

discussed in section 2.2, since a relatively high brightness pump source was used in this 

experiment, it is possible that predominantly lower-order pump modes were excited 

inside the fibre. The walk-off of these from the 1st-Stokes core modes is slower, and will 

for some modes lead to a walk-off length that exceeds 700 m. 

Figure  6.12 shows the output pulse shapes of the residual pump, the 1st Stokes, 

and the 2nd Stokes at the output for different pump powers. Temporal pulse shapes were 

measured by a detector with 0.1 ns rise time (Thorlabs D400FC) and an oscilloscope 
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with 6 GHz bandwidth (Agilent 54855A). As discussed in  Chapter 4, the pulse shape is 

critical for the conversion efficiency into the 1st Stokes. Here, the measured pulse 

shapes proved this once again, and again, this can be improved by using square-shape 

pulses [20]. Furthermore, in Figure  6.12, some of the pump power remained in the 

middle of the pulses even at high pump power where one might expect complete 

depletion. Besides, there was a spike in the middle of the pulse of the residual pump in 

Figure  6.12(d). The limited depletion is tentatively attributed to pump modes with poor 

spatial overlap with the 1st-Stokes core modes. However, this can be mitigated by non-

circular inner-cladding designs, e.g. D-shape ones  [21].  
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Figure  6.12: Output pulses shapes of the residual Raman pump (blue curves), 1st 
Stokes (green curves), and 2nd Stokes (red curves) under the peak power of the 
launched Raman pump: (a) 1.18 kW; (b) 2.03 kW; (c) 2.81 kW; (d) 3.28 kW. 

 

Figure  6.13 shows output spectra corresponding to different pump powers. The 

spectra were measured by an OSA (Ando AQ-6315E). At the highest of these pump 

powers, there is significant power in the second Stokes, while the power in the third 

Stokes remains negligible. 
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Figure  6.13: Output spectra of Raman pump peak power at: (a) 1.18 kW; (b) 2.03 kW; 

(c) 2.81 kW; (d) 3.28 kW. 

I measured the beam quality of the seed at the 1st Stokes at the output of the 

DCRF T0340 in absence of the pump. Its M2 was around 2.2, which indicates that the 

seed power propagating in the inner cladding was low and several core modes were 

excited. The beam quality of the 1st Stokes improved when the pump was turned on, i.e., 

through the Raman amplification. The measured M2 was around 1.69 at 2.5 kW of 

launched pump power. The measured beam propagation is depicted in Figure  6.14. This 

implies that in the amplification process, the pump power was transferred primarily into 

the core modes of lower orders. After further increasing the pump power to 3.1 kW, the 

M2 of the 2nd Stokes was measured, and was about 1.54. According to the Eq. (4.2), the 

pump-to-signal brightness enhancement was calculated to 40.6. As before, this was 

calculated based on the fibre geometry since the beam quality of the launched pump was 

not measured (but was much better than the beam quality corresponding to a completely 

filled inner cladding). Compared to that obtained in the 700 m piece, the brightness gain 

is now nearly seven times higher. 
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Figure  6.14: Beam quality measurement data for the 1st Stokes with 2.5 kW peak power of 
the launched Raman pump: (a) x-axis data; (b) y-axis data. 

Then, with the same setup, the fibre T0340 was replaced by the other two fibres, 

T0342 and T0343. The fibre parameters as well as the experimental results of the pulse-

pumped CP RFAs are summarised and compared in Table  4.1. 

Table  6.2: Results of CP FRAs with DCRF T0340, T0342, and T0343. 

Fibre number T0340 T0342 T0343 
Core diameter (μm) 18 31 40 
Inner-cladding diameter (μm) 49 83 107 
Area ratio between the inner cladding 
and core 7.4 7.2 7.2 

Beam diameter of the effective area 
Aeff (λ1, λ2) with both Stokes beams in 
the fundamental core-mode (μm) 

16.0 19.3 22.0 

Area ratio between the inner cladding 
and the effective area Aeff (λ1, λ2) above 9.5 18.7 23.6 

Fibre length (m) 700 100 100 160 
Input seed power (mW) 200 95 95 80 
Pump launch efficiency (%) 86 89 92 92* 
Seed launch efficiency (%) 90 92 93 93* 
1st-Stokes threshold (peak power) 
(kW)** 0.74 2.10 2.90 3.72 

Maximum 1st-Stokes average power 
(W) 0.89 5.65 7.15 6.99 

Maximum 1st-Stokes peak power (kW) 0.3 2.1 2.5 2.7 
Maximum average power conversion 
efficiency into 1st Stokes (%) 25 58 54 43 

Maximum peak power conversion 
efficiency into 1st Stokes (%) 30 77 68 60 

Transmitted seed M2 (unamplified) NA 2.2 5.0 8.2 
Amplified 1st-Stokes M2 2.7 1.6 2.5 2.2 
2nd-Stokes M2 1.4 1.5 1.9 1.5 
Brightness enhancement*** 6.7 40.6 47.9 79.7 

* This value was not measured, but was assumed to be the same as for T0342. 
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** The threshold definition here is the launched pump power at which the 1st Stokes 
output peak power equals the residual pump peak power. 

*** Brightness enhancement was calculated according to Eq. (4.2). 

My experimental results prove that with the new fibres T0340, T0342, and T0343, 

high-efficiency CP Raman fibre devices can be made, provided that the power is 

sufficient to keep the fibre reasonably short. The achieved peak power conversion into 

the 1st Stokes was over 60% for all three fibres. The highest 1st-Stokes peak power 

obtained was 2.7 kW from the 160 m long DCRF T0343. It was limited by the build-up 

of the 2nd Stokes. With the current Raman pump sources, higher peak power can be 

expected in even shorter fibres. The average power conversion efficiencies into the 

1st Stokes were around 50% for three fibres. Here, this is restricted by several factors, 

e.g., pump pulse shapes, background loss, inner-cladding shapes, and inner-cladding-to-

core area ratio.  

My results also show that both the peak power and average power conversion into 

the 1st Stokes decreased when the fibre size increased although the area ratio between 

the inner cladding and core is almost the same, 7.2, for these new fibres. In order to 

assess the effect of the pulse shape on the conversion efficiency into the 1st Stokes, the 

process previously done for Figure  4.23 was repeated for the new fibres with the shape 

of the real pump pulse used here. Background losses were ignored. The calculated 

maximum energy conversion is about 59% for all three fibres regardless of fibre sizes. 

The calculated energy conversion efficiency is close to the experimental value obtained 

with 100 m of T0340, but much higher than that of T0343. In the calculation, the 

average effective area for 1st-to-2nd-order conversion, Aeff (λ1, λ2), is assumed equal to 

the core size, which, for example, is valid if the signal is uniformly distributed over the 

cross-section of the core. However this is typically not the case. If both the 1st and 2nd 

Stokes are in the fundamental mode in the core, the effective area Aeff (λ1, λ2) becomes 

different for the three fibres as shown in the table above. The calculated maximum 

conversion efficiencies become 52, 35, and 30, respectively, for T0340, T0342, and 

T0343, in the absence of background loss. The theoretical conversion efficiencies thus 

decrease with increasing fibre size and are, with the assumptions implicit in the 

calculations, even lower than the corresponding ones obtained experimentally. One 

reason is that the 1st-Stokes power did not build up only in the fundamental mode. This 

is clear from the beam quality of the amplified signals, which is larger than that 
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calculated theoretically for the fundamental mode. Another possibility is that the inner 

cladding was not fully filled in the experiments so that the real average effective area 

for pump-to-1st-Stokes conversion, Aeff (λ0, λ1), was smaller than the inner-cladding area, 

which was used in the calculations. Both possibilities decrease the area ratio between 

Aeff (λ0, λ1) and Aeff (λ1, λ2), which in turn increases the achievable conversion efficiency. 

Thirdly, my experiments show that thanks to the large size and good beam quality 

of the signal, the pump-to-signal brightness enhancement obtainable in the new fibres is 

much better than those reported for the fibre F71-LF11. 

In conclusion, the new DCRFs with large-mode areas work well experimentally 

and largely as expected. 

6.3 Beam quality improvement through cascaded SRS and SC source 
based on CP Raman converters 

6.3.1 Beam quality improvement through cascaded SRS 

The seed beam was not diffraction-limited at the DCRF output in the absence of SRS. 

Thus, when seed light was launched into the core, it excited higher-order modes as well 

as the fundamental mode. The beam quality of the transmitted seed degraded with 

increasing core V-number. While the seed M2 was as good as 2.2 after 100 m of fibre 

T0340, it degraded to 8.2 at the output of the 160 m fibre T0343. However, with Raman 

amplification (SRS), the beam quality of the amplified 1st Stokes improved. For 

example, at the output of the 160 m fibre T0343, the beam propagation factor (M2) of 

the amplified 1st-Stokes wave improved to 2.22. This is a variant of so-called “beam 

cleanup” [22]. Also, see the simulation example given in Figure  4.6, which shows 

cleanup in fibre F71-LF11.  

The beam quality of the 2nd Stokes was further improved and better than that of 

the 1st Stokes shown in the Table 6.2. This is another example of beam clean-up, in this 

case through SRS from 1st to 2nd Stokes. For instance, the M2-factor of the 2nd Stokes 

was measured to ~ 1.48 at the output of the 160 m fibre T0343. This is an improvement, 

and further improvements may still be possible with further SRS to even higher Stokes 

orders. I investigated this using a 700 m long piece of T0340. The experimental 

conditions and setup (Figure  6.7) were the same as for my previous experiments with 

the same length of this fibre, but the pump power was increased to generate higher-
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order SRS.  Furthermore, another DM was added at the output to separate the 2nd and 3rd 

Stokes. At 1.23 kW of launched pump power, the M2 of the 3rd Stokes was measured to 

about 1.35, which is better than that of both the amplified 1st Stokes and 2nd Stokes. 

However, the improvement is small, even smaller, relatively, than the change in 

wavelength. Therefore, the beam parameter product did not improve, and this rules out 

an improvement in brightness even at 100% conversion efficiency. 

The M2 of the LP01 and LP11 mode were calculated to 1.01 and 2.01, respectively, 

at the 3rd-Stokes wavelength according to the RIP of this fibre  [17]- [18]. The beam 

qualities of other core modes are worse. Thus, most of the 3rd-Stokes power was 

distributed between the LP01 and lower order core-modes, e.g., LP11 mode.  

Figure  6.15 compares the measured beam qualities of the residual pump, 1st 

Stokes, 2nd Stokes, and 3rd Stokes. The pump source with poor beam quality was 

converted into a signal with much better beam quality at the output, then through 

cascaded SRS, the beam quality of the output signal at longer wavelength was further 

improved and became nearly diffraction limited. However, the BPP did not improve 

from the 2nd to the 3rd Stokes. Unfortunately, I did not have a DM to separate the 3rd 

Stokes from higher order Stokes and could therefore not measure the beam quality of 

the 4th Stokes (nor that of the 3rd Stokes at higher pump power). 

The spectral content is interesting, too, and will be detailed in the following 

section, in terms of a novel method for SC generation. 
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Figure  6.15: M2 at the output of the CP RFA for the signals. The dashed line indicates 

the diffraction-limit. 
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6.3.2 SC source based on CP RFAs 

The spectral output shown in Figure  6.13 begs the question how well cladding-pumped 

DCRFs may work for supercontinuum generation. SC generation has been widely 

reported and intensely studied since it was discovered by Alfano and Shapiro  [23]. With 

the development of ultra-short pulse diffraction-limited pump lasers, fibres with novel 

geometries and new materials, SC sources can now cover wavelength from the mid-IR 

region, e.g., in soft glass  [24], to the UV region, e.g., in silica, by tailoring the 

dispersion  [25]. Notwithstanding this success, power-scaling of diffraction-limited 

pulsed pump sources, especially ultra-fast sources widely used in the SC 

generation  [26]- [28], is challenging, and this restricts the SC power. However, 

nowadays the intensities needed for the nonlinear process can be reached readily also by 

CW pump sources. These are easier to power-scale, and the record average output 

power reported from SC sources is 50 W, pumped by a single mode CW 400 W 

industrial fibre laser  [29]. Still, this approach presents many challenges, e.g., the pump 

launch efficiency into a small-core fibre, and altogether, the power conversion 

efficiency was only 13% from the pump into the SC source. 

Based on the experiment above in section 6.3.1, a cladding-pumped DCRF is 

proposed as a simple and effective approach for high-power SC sources, with excellent 

power scalability also in the pulsed regime. First, a pulsed multimode pump beam is 

launched into a DCRF. Next, a 1st-Stokes wave is generated primarily in the core 

through SRS, which can be seeded. By further increasing the pump power, higher order 

Stokes waves with good beam quality are generated through cascaded SRS in the core 

as described in the previous section until the Stokes light reaches or exceeds the zero 

dispersion wavelengths (ZDW) of the generated core-modes. Then, a broad SC builds 

up, growing in spectral width and power as the pump power increases. The SC beam 

quality is largely determined by the core RIP. However, for efficient Raman conversion 

efficiency, the inner-cladding-to-core area ratio must largely meet the basic rule given 

by Eq. (3.4). Otherwise, significant power may remain in the pump even as the Raman 

cascade progresses, as illustrated in Figure  3.2. There is some room for the 1st Stokes to 

build up anew from the partly depleted pump, after the initial 1st-Stokes wave has 

cascaded to the 3rd order, but the subsequent cascading and broadening occurs too 

quickly for this to be efficient in most cases. Other limitations on the conversion 

efficiency were also discussed in the previous chapters.  
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The experimental setup of the SC source was the same as the one shown in Figure 

 6.7 except that a 100 m long piece of DCRF T0340 was used. The launch efficiencies 

for the pump and the seed were 89% and 92%, respectively. In the experiments, the 

launched seed power was kept at 90 mW while the pump power was varied.  
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Figure  6.16: (Simulation) Dispersion curve of the fundamental core mode. 

 
As discussed in section 6.3.1, I found experimentally that most of the higher-order 

Stokes power is distributed in the fundamental mode in the core. Since dispersion is 

very important for SC generation, I calculated the dispersion curve of the fundamental 

core-mode using the commercial software OptifberTM together with the RIP of the fibre. 

Figure  6.16 shows the calculated results. The ZDW of the fundamental core mode is at 

about 1.28 μm. The SC is expected to start when the Stokes wave has Raman-scattered 

to around this wavelength.  

This is indeed the case. Figure  6.17 shows experimental output spectra, generated 

at different pump powers in this 100 m long piece of fibre T0340. For low powers, an 

increasing number of discrete Raman Stokes orders were generated as the power 

increased, up to the 3rd Stokes, at about 1230 nm, which is still below the ZDW of the 

fundamental core mode. The 4th Raman Stokes order is at 1300 nm but cannot be 

resolved. It is in the anomalous dispersion regime in which the spectrum broadens 

quickly and continuously through various nonlinear effects, primarily to longer but also 

to shorter wavelengths. In this region, the output spectrum was getting flatter and flatter 

as the pump power increased. At the maximum launched pump power of 8.05 kW, the 

spectrum was much flatter than at lower pump powers, and extended beyond 1.75 μm, 
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which was outside the measurement range of the ANDO OSA (model number AQ-

6315E) used here.  
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Figure  6.17: Output spectra for different launched pump powers. The dashed vertical 

line is at the ZDW of the fundamental core-mode. 

In addition to this 100 m piece, a 700 m long fibre T0340 was also used to 

generate SC. Figure  6.18 compares the output spectra from both lengths of fibre at the 

maximum launched pump power of 8.05 kW. For the 100 m long piece, the power 

density was over 40 mW/nm around 1400 nm. This value is close to the record power 

density of 50 mW/nm reported in  [29]. In the case of the 700 m long piece, the SC 

extended to longer wavelengths although the conversion efficiency was lower because 

of the higher total background loss. The part of the SC spectrum extending beyond 

1750 nm could not be accurately measured. However, by using an Agilent 86140B OSA, 

capable of uncalibrated measurements to 2 μm, I verified that the SC extended out to 

2 μm. See the inset of Figure  6.18. The pink curve in the plot shows the noise level 

while the dashed black curve is the measured SC from a 700 m long fibre. 

Unfortunately, the output spectrum from the 100 m long fibre was not measured with 

the Agilent OSA. 
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Figure  6.18: Power spectra at maximum launched pump power (8.05 kW peak power, 
27.2 W average power) with 100 m (red curve) and 700 m (black curves) lengths of 
DCRF T0340. Inset: Spectrum measured by un-calibrated OSA for the 700 m length. 

Figure  6.19 shows the dependence of the average output power on the average 

power of the launched pump. The slope efficiency with respect to the launched pump 

power was over 70%, excluding the power remaining in the pump.. The highest 

conversion efficiency with respect to the launched pump power was 75%, obtained at 

20.4 W of launched pump power. At the maximum pump power, the conversion 

efficiency was 70.5% with respect to the launched pump power. The maximum SC 

power was 19 W, excluding the residual pump power, obtained with the 100 m long 

fibre. 

For the 700 m long piece, the output power saturated very quickly. Once the 

pump power exceeded 8.4 W, the SC spectrum extended over 2 μm. The high loss at 

wavelengths longer than 2 μm in silica fibres limited the output power of the SC source. 

Also, the background loss in such long fibre resulted in a relatively low conversion 

efficiency also for pump powers too low for long wavelengths to be reached. 
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Figure  6.19: Average output power from a 100 m long DCRF T0340 including (red 
curve with squares) and excluding residual pump power (black curve with squares) as 
well as from a 700 m long piece of the same fibre (red curve with triangles) vs. 
average launched pump power. 

In order to measure the beam quality at wavelengths beyond the 3rd Stokes, a filter 

sampled the SC from the 100 m long DCRF at 1539 nm for 6.51 kW of launched pump 

power. The measured M2-factor at this wavelength was 1.57, which again can be 

considered to be nearly diffraction limited. A Thorlabs D400FC detector with 0.1 ns rise 

time and an Agilent 54855A oscilloscope with 6 GHz bandwidth were used to measure 

the pulse shape at this wavelength. Figure  6.20 shows the resulting pulse shape together 

with that of the launched pump at 6.51 kW of peak power, scaled to similar heights. The 

pulse duration at 1539 nm was about 10 ns, which is shorter than the pump pulse 

duration of around 23 ns. This is because the instantaneous power at the edges of the 

pump pulse cannot be effectively nonlinearly converted to 1539 nm. A similar situation 

is shown in Figure  6.12. In Figure  6.12(c), the 1st-Stokes pulse duration was about 

17.5 ns while the 2nd-Stokes pulse duration was shortened to about 10.8 ns as shown in 

Figure  6.12(d).  
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Figure  6.20: Normalized pulse shape of the beam at 1539 nm (black curve) and pulse 

shape of the launched pump with the 6.51 kW peak power (red curve). 

I conclude that the DCRF represents a new, simple and effective approach to SC-

generation that opens up for substantial further power-scaling even in the pulsed regime. 

Firstly, multimode fibre sources with nanosecond pulse durations are adopted as pumps. 

Such sources are cheaper and easier to build in comparison to the ultra-fast fibre sources 

with diffraction-limited output that are conventionally used for pumping. Secondly, due 

to the large inner-cladding diameter (e.g., 50 μm), the pump launch efficiency was 

nearly 90% even with a multimode pump source. Besides, large cores, e.g., with 20 μm 

diameter as used in the experiment, will be helpful for power scalability. Thirdly, a high 

conversion efficiency can be achieved, e.g., 75% as obtained in the experiment. 

Furthermore, the generated SC can be nearly diffraction limited. Thus, a 19 W average 

power, pulsed, nearly diffraction-limited SC was generated in a 100 m length of the 

fibre T0340. The fibres T0342 and T0343 with even larger cores are believed to work as 

efficiently as this fibre, and should be scalable to higher powers. With a CW multimode 

pump source used as a pump instead, I believe this approach is scalable beyond a kW of 

average power and even higher conversion efficiencies may be possible if the effect of 

the varying instantaneous power of the pulse shapes that I used is eliminated. The same 

method should be applicable to other types of material such as soft glass fibres which 

exhibit large nonlinear coefficients and wide transmission windows  [30]. The generated 

SC is still narrower and less flat than what is possible with single-mode fibres. It is 

unclear if the double-clad fibres can be dispersion-engineered to allow for SC spectra of 

comparable width and flatness. 
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6.4 High-energy pulse conversion 

In the past, the fibre F71-LF11 was used with high-energy pulses [1]- [2],  [6]- [7], and 

those experiments show the brightness-enhancement capability of CP Raman fibres also 

in this regime. Reference  [1] reported a CP Raman fibre converter producing record-

breaking pulse energies of 210 μJ. The nearly diffraction-limited Stokes pulses were 

generated in a 50 m long F71-LF11 pumped by a slightly multimode YDF MOPA. 

When I introduced the new DCRFs with large-mode areas in section 6.1, I described 

them as being promising for (nearly) diffraction-limited high-energy sources. This 

section confirms this, based on experiments on a piece of DCRF T0343 with a 40 μm 

diameter core. It was pumped by a spatially and longitudinally multimode Nd:YAG 

laser producing temporally spiky pulses. With this, I managed to produce high-

brightness pulses with over 1 mJ of energy. To my knowledge, this is the highest energy 

so far from any Raman fibre device. 

6.4.1 Raman pump: Nd:YAG laser 

A Q-switched Nd:YAG laser (Spectron Laser System SL400/SL800) was used as the 

Raman pump. Figure  6.21 shows the characteristics of this laser. The Nd:YAG laser is 

capable of delivering output energies of up to 23 mJ as shown in Figure  4.2(a) in 

linearly polarised pulses. The pulse energy was measured by an Ophir energy meter 

(model number PE10-SH). During the experiment, the PRF was fixed at 29 Hz. 

Although the laser can produce diffraction-limited pulses, it was not well aligned at that 

time, so the output beam was slightly multimoded and the beam quality was measured 

to M2 ≈ 3.5. The beam quality is assumed to have remained constant for the duration of 

these experiments. The output spectrum was measured by an ANDO 6315E OSA. The 

wavelength was 1064 nm with 0.096 nm linewidth as shown in Figure  6.21(b). Figure 

 6.21(c) illustrates a representative pulse trace for the Nd:YAG laser, as measured with a 

20 GHz oscilloscope (Tektronix DSA72004B) and a 22.6 GHz detector (Discovery 

DSC30S). The figure also shows a fit of a Gaussian pulse of 14 ns FWHM. The pulses 

from the Nd:YAG laser contained very sharp spikes within the Gaussian envelope. Such 

behaviour is well-know for longitudinally multimode Nd:YAG lasers such as the one 

used here. The peak power in the spikes can be much higher than that of the 

approximately Gaussian envelope. In addition, neither the temporal shape nor energy of 

the output pulses was stable. Figure  6.19(d) shows three representative pulse traces at 



 Chapter 6 DCRFs with large-mode areas 

 
 

153

the output. Because of the laser instabilities, the pulse energy varied by up to 3 dB. 

Together with the spikes inside the pulse envelope, these variations will certainly affect 

the Raman scattering and the conversion efficiency into the 1st Stokes. 
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Figure  6.21: Characteristics of the Nd:YAG laser: (a) Output energy vs. pump voltage 
(with which the pulse energy is controlled); (b) Output spectrum; (c) A representative 
temporal pulse trace (red curve) and a Gaussian fit (black curve) with 14 ns FWHM; 
(d) Examples of three pulses at the output. Spectrum and pulse shapes were measured 
at 10 V pump voltage. 

6.4.2 Experimental setup 

The experimental schematic is shown in Figure  6.22. The free-space output of the 

Nd:YAG laser was launched through a focusing lens into a 40 m long piece of DCRF 

T0343. This is a quite simple configuration, without any seeding of the 1st Stokes. In 

order not to change the operating conditions of the Nd:YAG laser, and thus 

(systematically) change, e.g., pulse duration or pulse shape (beyond the significant 

random fluctuations) during the experiment, a half-wave plate and a polarizer were used 

as a variable optical attenuator between the Nd:YAG laser and fibre T0343. The output 

end of the DCRF was angle-cleaved to suppress feedback, which can otherwise induce 
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back-propagating SRS at high pulse energies  [1]. DMs were used to separate the 

residual pump, 1st Stokes, and longer wavelengths in the output beam. 

 
Figure  6.22: Experimental schematic. DM1: HR@ < 1064 nm, HT@ > 1116 nm; 

DM2: HR@ >1178 nm, HT@1116 nm. 

6.4.3 Experimental results and discussion 
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Figure  6.23: Output energy vs. pump energy incident on the DCRF. The upper scale 
shows the corresponding peak power, under the assumption of an ideal Gaussian pulse 
of 14 ns duration (full width at half maximum). Solid curve with up-triangles: energy 
in the 1st-Stokes; solid curve with down-triangles: energy in higher-order Stokes; solid 
curve with circles: energy in all Stokes order; dashed curve with up-triangles: 
conversion efficiency into the 1st Stokes; dashed curve with squares: conversion 
efficiency into all Stokes orders. 

 

Figure  6.23 plots the output pulse energies in the 1st Stokes, higher Stokes order, and in 

all Stokes order together against the pump energy incident on the DCRF. The 

conversion efficiencies into the 1st Stokes and all Stokes order with respect to the 

incident pump energy are also given in Figure  6.23. The maximum Raman-converted 
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output energy was 1.02 mJ, distributed across all present Stokes orders. The highest 

conversion efficiency into all Stokes orders was ~ 46% relative to incident pump energy, 

obtained at a pump energy of 2.22 mJ. Of this, up to 400 μJ was in the 1st Stokes. The 

launch efficiency was not measured, but it was high, and estimated to 92% in this case. 

Figure  6.24 shows the output spectrum after transmission through DM1 and reflection 

in DM2, out to a wavelength of 1750 nm for a pump energy of 2.22 mJ. In stark contrast 

to the spectra given in Figure  6.13 and similar to the spectra in Figure  6.18, the 

spectrum clearly extended beyond 1750 nm. The broad output spectrum complicated the 

measurements. Shorter wavelengths than the 2nd Stokes were rejected by DM1 

(reflected) and DM2 (transmitted), while 1750 nm was the upper wavelength limit of 

the OSA used here. Furthermore, DM1 also rejected some power at wavelengths over 

1700 nm. These imperfections affected the measured spectrum as well as the pulse 

energy. Thus, at high pump energies, for which wavelengths above 1700 nm were 

reached, the total energy in all Stokes orders was actually somewhat higher than shown 

in Figure  6.23. There was also some energy leaking through DM2 at wavelengths over 

1500 nm. DM2 was meant to separate the 1st Stokes from higher Stokes orders, but at 

1 mJ of output energy across all Stokes orders, approximately 10% of the higher-order 

Stokes energy leaked through DM2 and added to the 1st-Stokes energy. Neither of these 

effects was compensated for in Figure  6.23.  

Wavlength (nm)
1100 1200 1300 1400 1500 1600 1700

Po
w

er
 (d

B
)

-75

-70

-65

-60

-55

-50

-45

-40

-35

 
Figure  6.24: Output spectrum at 2.22 mJ incident pump energy following reflection in 

DM2. The structure in the spectrum was caused by DM1 and DM2. 
 

The M2-factor of the 1st Stokes was 1.37. Although the beam quality at longer 

wavelength was not measured, the beam quality of higher order Stokes is normally 

improved through cascaded SRS, as demonstrated experimentally in section 6.3. I 

therefore expect a comparable, or better, beam quality for all Stokes orders. 
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The pulse energy was limited by facet damage at the launch end. An endcap 

should increase the damage threshold, as should thermal treatment of the cleaved end- 

facet  [31], and allow us to reach even higher energies with nearly diffraction-limited 

output. For example, assuming an effective area of 1000 μm2, the damage threshold for 

14 ns pulses should exceed 1.5 mJ. However, the damage location at the input is 

somewhat surprising given that the intensity should be relatively low across the inner 

cladding at launch. Therefore, the details of the damage are not clear, e.g., what the 

effective area is for the damage, and this makes it difficult to predict what pulse 

energies can be reached. The temporal variations add to this difficulty. 

As it comes to the 1st-Stokes energy, this was primarily limited by the rapid rise of 

higher-order SRS. The 2nd Stokes was generated almost directly when the 1st Stokes 

appeared, at around 846 μJ of incident pump energy and 58 kW of nominal peak power, 

i.e., for a Gaussian pulse with 14 ns duration (FWHM). Scaled with the fibre length, the 

pump threshold was 2.1 MW×m for both 1st and 2nd Stokes. Note however the large 

fluctuations in instantaneous power, which may greatly change the nominal peak power 

at which threshold is reached, and that the actual pump as well as Stokes peak power 

were unknown. With these caveats, these thresholds can still be compared to the 

0.31 MW×m and 0.62 MW×m of scaled threshold (launched pump peak power × fibre 

length) for the 1st and 2nd Stokes, respectively, in case of the 160 m long T0343 pumped 

by the temporally much cleaner SPI fibre laser in section 6.2. For this, the threshold 

Stokes power is taken as that at which the 1st Stokes reaches 10% of the launched pump 

power. For example, this corresponds to 240 mW of average Stokes power in Figure 6.9. 

At 0.31 MW×m, the Raman gain can be calculated to approximately 7.5 dB if the pump 

is distributed evenly over the inner cladding (area 9000 μm2). However, given that the 

seed power was only 81 mW, the gain would have to be three or four times higher than 

that, before the 1st-Stokes power becomes noticeable relative to the pump power. I 

conclude tentatively that the reason is that pump overlapped better with the core than if 

the pump would be distributed evenly over the inner cladding. Generally this can be 

expected, for example if a relatively large fraction of the pump power is launched into 

the core because of a high beam quality of the pump. Even if we disregard the pump 

power guided in the core, a spatially Gaussian beam with high beam quality launched 

into the centre of the inner cladding, thus exciting primarily modes without azimuthal 

dependence, tends to maintain a central peak when propagating down the fibre  [32]. I 
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conclude that a higher central pump intensity may well explain the relatively low pump 

threshold obtained with fibre laser pumping.  
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 Figure  6.25: (Simulation) Pulse instantaneous power vs. cumulative energy for 

pulse shapes in Figure  6.21(d) together with a Gaussian pulse shape with 14 ns 
FWHM in (a) linear scale; (b) logarithmic scale. 

 

In case of Nd:YAG laser pumping, the scaled threshold (launched pump peak 

power × fibre length) is higher, but the gain requirements are considerably higher, too, 

given that the 1st Stokes builds up from noise in a short pulse. We estimate the gain at 

threshold to between 90 and 100 dB, which would require a pumping of around 

4 MW×m. This is again almost twice higher than the experimental value, so one could 

attribute this to a pump power distribution that peaks in the center of the fibre, this time 

too. However, also the generation of 2nd and higher Stokes orders was much different, 

with rapid SC generation that warrants further consideration. The similar threshold for 

the 1st and 2nd Stokes cannot be explained by a pump distribution centered on the core, 

since the reduction in effective area ratio that this implies if anything would increase the 

relative difference between the 1st and 2nd-Stokes thresholds rather than decrease it. 

Rather, we attribute this to variations in the instantaneous power of the pump pulses, 

which rule out operation within the narrow range of instantaneous power that allows for 

efficient 1st-Stokes generation (See section 6.4.1). In addition to the variations intrinsic 

to a Gaussian pulse, there are the pulse-to-pulse energy variations by up to 3 dB due to 

laser instabilities, as well as the sharp spikes. See Figure  6.21(d). The peak power in the 

spikes is up to six times higher than that of the envelope, which is approximately 

Gaussian. The spikes (See Figure 6.21(d)) result in an energy distribution which is 

considerably worse than that of a Gaussian. This is a concern with core-pumped fibre 

Raman amplifiers  [33]- [34], and even more so with a DCRF. Figure  6.25 shows how 
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the energy of three different pulses from the Nd:YAG laser is distributed over the 

instantaneous power. The distribution of a Gaussian pulse is shown as well. The range 

of powers that allow for efficient conversion into the 1st Stokes is only around 10% for 

an area ratio of eight, but the relatively wide and flat peak of a Gaussian pulse, with 

35% of the energy falling within the center of the pulse with instantaneous powers of 

over 90% of the peak, still allows for relatively efficient conversion into the 1st Stokes. 

This concentration of energy to the highest instantaneous powers allows for a sharp 

threshold for the 1st Stokes, with significant margin to the onset of the 2nd Stokes 

(approximately 2.5 dB for CW pumping, for an area ratio of eight, in the absence of 

seeding). 

The spiky Nd:YAG pulses create distinctly different characteristics. The energy 

distribution is such that the instantaneous power varies by around 3 dB for the 10% of 

the energy that has the highest instantaneous power. Thus, the highest-power spikes 

reach the 2nd-Stokes threshold before the instantaneous power of most of the pulse 

energy reaches the 1st-Stokes threshold, in a quasi-CW approximation. This leads to 

thresholds for 1st and 2nd Stokes quite close to each other. 

Even if we disregard the relatively low fraction of energy in the spikes (around 

10% according to Figure  6.25) the distribution of the remaining energy remains 

unfavorable, without the concentration of the (remaining) energy to the highest 

(remaining) instantaneous power (or any other power) that Gaussian pulses exhibit. 

Rather, the energy is distributed relatively evenly, i.e., close to a straight line in Figure 

 6.25, from the origin to 80 – 90% of the total energy. With this unfavorably energy 

distribution, a large fraction of the energy will inevitably Raman-scatter to high Stokes 

orders before the less intense parts of the pulse is converted to the 1st Stokes. This, in a 

quasi-CW approximation, explains why we see such rapid broadening of the spectrum. 

However, the quasi-CW approximation is not necessarily valid, as the spike 

duration of around 0.1 ns makes them sufficiently short to be affected by dispersion and 

walk-off even in our relatively short fibre. In our case, with an inner-cladding NA of 0.2, 

the modal dispersion becomes 46 ps/m and the dispersion length becomes 2.2 m for 

0.1 ns spike duration. This follows from Eq. (2.3), if we assume that the dispersion Δτ 

should equal the duration τ, (the best choice here depends on the shape of the spike, 

which is unknown). In a dispersion-limited case, the critical power for SRS Pcr 

becomes [35]: 
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Here, Aeff is the effective area for the interaction, gR is the Raman gain coefficient, and 

LD is the dispersion length. Furthermore, we have used the conventional factor of 16 for 

the gain (in nepers) required to amplify the 1st Stokes, from noise, to the point where it 

depletes the pump. However, at the kW power-level, a gain of around 20 Np may well 

be required. Since the Raman conversion length is inversely proportional to the peak 

power of a spike, and the dispersion length is proportional to the duration of the spike, it 

is actually the energy of a spike that determines if it, by itself, generates significant SRS 

before walk-off smears out the interaction. There is thus a critical energy Ecr, given by: 
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Figure  6.26: Fractional energy and average power vs. length of time interval of the 
pulse shown in Figure 6.21(c). The peak power of a gaussian pulse with 14 ns pulse 
duration is also included. The total launched pulse energy is 778 μJ. 

With our parameters, with the inner-cladding area used for the effective area, I 

calculate a critical energy of 131 μJ. This energy would require a peak power of 

1.31 MW in a 0.1 ns long spike or 2.62 MW in a 0.05 ns spike, which exceeds our 

maximum spike power, estimated to 0.8 MW in 0.05 ns at our highest pump pulse 

energy of 2.2 mJ. These characteristics suggest that the spikes disperse temporally 

before SRS can build up, and it is largely the average envelope of the pulse that matters. 

To further consider this, Figure  6.26 plots the maximum energy within a time interval 
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anywhere along the pulse, vs. the length of the time interval, for the pulse shown in 

Figure  6.21(c). The average power within the time interval is plotted, too, together with 

the peak power of a best-fit Gaussian pulse (FWHM 14 ns). This can be compared to 

the measured threshold energy in Figure  6.23 of 846 μJ incident or 778 μJ launched, for 

which the 1st-Stokes energy was 75 μJ. If we use this energy to scale the energy in 

Figure  6.26, the critical energy of 131 μJ (which would lead to a 1st-Stokes energy of 

around 65 μJ) requires a time interval of 2.88 ns. However, 2.88 ns exceeds the total 

dispersion in 40 m of our fibre, which is 1.8 ns. This actually sets an upper limit on the 

time interval that we should consider: only energy that falls within 1.8 ns can contribute 

to the Raman gain of a signal pulse at a given point in (retarded) time. The energy 

within 1.8 ns is 12% of the total, or 93 μJ, which is somewhat lower than 131 μJ. 

For this particular pulse, the average power within the 2.88 ns becomes 44 kW, 

which is similar to the 43 kW peak power of a matching Gaussian pulse. The maximum 

average power over 1.8 ns is slightly higher, at 48 kW, so again similar and around 

43 kW. Using the 46 kW, the power × length product becomes 1.8 MW×m at the 

experimental threshold of 778 μJ. This is less than our previous quasi-CW theoretical 

estimate of 4 MW×m. On the other hand, it is very close to the experimental result of 

2.1 MW×m. This thus suggests that the experimentally measured threshold can be 

understood in terms of a spiky energy distribution. Still, numerical simulations with 

representative pulse shapes are needed to confirm agreement between theory and 

experiments. Simulations are also needed to confirm that the spikes explain qualitatively 

and quantitatively the low threshold for the 2nd Stokes, which is difficult to assess 

analytically in a dispersion-limited case. However, detailed simulations of a DCRF with 

dispersion of spiky pulses have yet to be reported. The challenges are many, and 

exacerbated by additional effects that may be important. Thus, though measurements 

show that the spikes in the pump pulses do broaden upon transmission through 40 m of 

the DCRF at powers sufficiently low to avoid SRS, the broadening was smaller than 

suggested by Eq. (2.3). This may be partly explained by an under-filled NA, but it is 

also possible that some spikes excited a subset of fibre modes with relatively low 

dispersion. 

I conclude that the conversion of spiky pump pulses in a DCRF is a very 

complicated and challenging problem. My data do not contradict what can be expected, 

but more precise data and models are required to establish the degree of agreement 
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between theory and experiments. I will also point out that the dispersion and walk-off in 

a DCRF allows for some engineering of the effective frequency response of the Raman 

gain, which could be used favorably to eliminate the spikes. 

Finally, I conducted these experiments late in my PhD, with an oscilloscope and a 

detector that allowed for measurements with 20 GHz bandwidth. It is possible that the 

spikes in the pulses would not have been resolved with the equipment used earlier in the 

thesis. One may think that likewise, this high bandwidth might have revealed spikes in 

pulses used in earlier work in earlier chapters. However, the peak powers and energies 

used in those chapters were much lower, and the fibres much longer. Thus, the 

frequency bandwidth of the pump-to-signal transfer was lower than the 6 GHz 

bandwidth equipment used in those chapters, so even if there were spikes they should 

not have made any difference. 

6.5 Summary 

In conclusion, this chapter has described several experiments with new large-mode-area 

DCRFs (T0340, T0342, T0343). Compared to the relatively small fibre F71-LF11 used 

in previous chapters, the much larger sizes of these new fibres, e.g. with 18.4, 31, and 

40 μm diameter cores, make them more promising for high peak power and high energy 

operation. In addition, thanks to the large inner cladding, pump sources with relatively 

poor beam quality can be used to pump these fibres, and this opens up for considerable 

brightness enhancement. This was verified by the pulse-pumped CP RFAs based on the 

new fibres as shown in section 6.2. Besides, the experimental results show that the new 

DCRFs can work as efficiently as F71-LF11. Despite of these advantages brought by 

the increased geometric sizes, the experimental results also show that the conversion 

efficiency into the 1st Stokes becomes slightly worse with the increase of the fibre size.  

In the pulsed regime, a 1 mJ energy source with high brightness was demonstrated 

in section 6.4. A 40 m length of DCRF T0343 was used as a Raman converter, which 

cladding-pumped by a Q-switched Nd:YAG laser and operating on several Raman 

orders. The output energy was limited by end-facet damage at the launch, which can be 

mitigated by end-capping. I believe this is the highest pulse energy reported from a 

Raman fibre device reported to date. 
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A novel application of the DCRFs was introduced in section 6.3, namely SC 

generation. A multimode pump wave is Raman-scattered into a 1st-Stokes wave 

propagating in the core of the DCRF. Following cascaded SRS to higher Raman orders, 

broadband SC generation commences when the Raman cascade reaches or exceeds the 

zero dispersion wavelength of the excited core mode(s). A 19 W SC source was realised 

using a 100 m long fibre T0340 with 75% conversion efficiency with respect to the 

launched pump power. The generated SC extended beyond 1.8 μm. This is a new, 

simple and efficient way to obtain a high-power pulsed SC.  
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Chapter 7 Summary and future work 

In this chapter, I will summarise the work presented in this thesis and suggest possible 

improvements and future research direction on CP Raman fibre devices. 

 

7.1 Summary  

This thesis presents my research on cladding-pumped Raman fibre amplifiers and lasers. 

This is a new concept to obtain Raman gain and power conversion in a single- or few-

moded core, whilst allowing for multimode pumping. This approach combines many 

attractions of the hugely successful cladding-pumped RE-doped fibres with the 

versatility and flexibility of Raman gain. Such devices are potential alternatives to RE-

doped fibre devices, which are currently used in many applications. Since the first 

demonstration of cladding-pumped Raman fibre amplifiers  [1], various work has been 

carried out in our group in the CW [2]-[3] and pulsed regime [4]- [6] both at around 

1 μm and 1.5 μm. Based on these results, this thesis further investigated such novel 

fibre devices in various respects as described below. 

• In Chapter 3, I theoretically investigated the achievable brightness enhancement in 

pulsed CP RFAs. I analysed several factors that can limit on the brightness 

enhancement. One of the limits is from the 2nd-Stokes generation. It leads to a 

limited inner-cladding-to-core area ratio if high conversion efficiency into the 1st 

Stokes is required. To solve this, I designed a new DCRF with a W-type core, 

which relaxes the restriction on the area ratio and improves it from 8 to 34 by 

suppressing the 2nd-Stokes build-up. The designed DCRF will allow pump sources 

with poorer beam quality to be used and further achieve higher brightness 

enhancement. Besides the 2nd Stokes, the material damage also limits the area ratio. 

Moreover, walk-off is also critical for the brightness enhancement in the short 

pulse regime in that it restricts the inner-cladding NA that can be used. The NA 

value depends on the material too. By combining all of these factors, I calculated 
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the maximum achievable brightness enhancement to be around 3000 for the W-

type fibre I designed, although this depends both on the duration of the pump 

pulses and their peak intensity. This theoretically achievable brightness gain is 

much better than any results obtained from any efficient CP RFA so far. It points to 

the potential for significant further improvements with the right pump source 

matched to the right fibre. 

• In Chapter 4, I focussed on the conversion efficiency of CP Raman fibre devices. A 

high-efficiency CP RFA with diffraction-limited output was demonstrated with the 

DCRF F71-LF11, which has a good design for this purpose. I experimentally 

obtained a peak power conversion from the pump to the 1st Stokes of 75% and a 

pulse energy conversion efficiency of 60%, both with respect to the launched pump. 

In the experiment, I paid attention to various factors limiting the conversion 

efficiency. Without careful attention, such good results cannot be obtained. Firstly, 

DCRF F71-LF11 has an inner-cladding-to-core area ratio of 5.8, which ensures that 

the 1st Stokes can deplete most of the pump before the 2nd Stokes is generated. 

Secondly, a short fibre was used to reduce the total background loss, e.g., to 

0.14 dB in one experiment. Thirdly, the pump pulse shape was nearly rectangular 

thanks to the use of a MOPA with pre-shaped seed pulses. I theoretically analysed 

the effect of the pump pulse shape on the conversion efficiency in fibres with 

various inner-cladding-to-core area ratios. The results show that with an area ratio 

of eight, high conversion efficiency is possible. However, the pulse shape is critical, 

and rectangular-pulse (or CW) pumping will work best. Other limitations, e.g., 

inner-cladding shape, were also discussed. Finally, I experimentally obtained a 

brightness enhancement of 8.7. 

• In Chapter 5, I concentrated on high-power CW CP Raman fibre devices. Firstly, I 

theoretically analysed their power scalability by considering factors such as thermal 

effects, optical damage, pump brightness, and 2nd-Stokes generation. With 

sufficient pump brightness (and enough pump power), the core damage turns out to 

be a critical factor in determining the achievable power when fibre core diameter is 

less than 38 μm. Thus, a large core is the key to high power, similarly as for RE-

doped fibre devices. When the core is large enough, the ultimate power is decided 

by thermal lensing. The achievable power can be as high as 23 kW for the inner-

cladding-to-core area ratio of both 8 and 34 (although less bright pumps can be 



 Chapter 7 Summary and future work 

 
 

167

used in the latter case). Experimentally, a 100 W CP RFL based on F71-LF11 was 

demonstrated at 1.1 μm with nearly diffraction-limited output. Compared to 

previously published results of 10 W  [3], from a CW CP RFL, this is a significantly 

improved, and this is the highest output power of CP Raman devices demonstrated 

to date, as far as I am aware. The achievable brightness enhancement here was 

estimated to be 11.5. 

• In Chapter 6, three new DCRFs with large-mode areas were introduced. The new 

fibres were drawn from the same preform and had similar inner-cladding-to-core 

area ratios, ~ 7.2. Their core diameters are 18.4, 31, and 40 μm, respectively, for 

the fibre T0340, T0342, and T0343. Thanks to their large sizes, the new fibres are 

promising for high energy and high power sources. In addition, sources with 

relatively poor beam quality can be used to pump the new fibres, leading to better 

brightness enhancement. This is confirmed experimentally in pulsed CP RFAs 

incorporating the new fibres. The achievable brightness enhancement was 40, 48, 

and 80 from the fibre T0340, T0342, and T0343, respectively. The experimental 

results also show that the new fibres can work as efficiently as the previous fibre 

F71-LF11. In terms of high-energy Raman sources, a Q-switched Nd:YAG laser 

was used to cladding-pump 40 m of T0343, which was then able to turn out pulses 

with up to 1 mJ of energy, distributed over several Stokes orders. This is a 

significant improvement over the previous record of 210 μJ  [6], obtained with the 

fibre F71-LF11. The output energy was restricted by fibre facet damage at the input 

end. A simple endcap should allow for higher output energy. Besides, I also 

discussed the issues brought about by the spiky and unstable Nd:YAG pump source 

I used, and proposed possible solutions. Still, further studies are needed to 

understand the very complex behaviour of CP Raman devices with such pump 

sources. Furthermore, as a novel application of a DCRF, I also demonstrated a 

cladding-pumped supercontinuum source using 100 m of T0340 in a simple, cheap 

and efficient configuration. The obtained SC had an output power of up to 19 W 

and extended beyond 1750 nm, which was the limit of the OSA measurement range. 

The power density achieved around 1400 nm exceeded 40 mW/nm, close to the 

record power density of 50 mW/nm reported in  [7]. Overall, these new DCRFs 

with large-mode areas once again experimentally prove that cladding-pumping 

technology is an elegant solution for creating high-power and high-energy 
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nonlinear fibre sources with good beam quality and attractive properties. The 

potential for future scaling of power and energy should be significant with these 

new DCRFs. 

7.2 Future work 

In this section, I describe some aspects of cladding-pumped Raman fibre devices that 

remain unexplored and are worth investigation in the future in my view. 

• High efficiency and high brightness 

1. 2nd-order Stokes suppression: By suppressing the 2nd-Stokes generation, the 

limitation set on the area ratio between inner cladding and core can be relaxed, so 

fibres with larger area ratios and pumps with relative poor beam quality can be 

used. Furthermore, the range of pump powers that allow for efficient conversion is 

also limited by the 2nd Stokes. While I designed such fibres, they have yet to be 

fabricated and proven experimentally. 

1.1 Experimental demonstration: While I designed such fibres in section 3.2, they 

have not yet been fabricated and proven experimentally. 

 
Figure  7.1: Schematic of the principle of the filter based on material dispersions  [9]. 

1.2 Improved W-type fibres: Fibre waveguide filters that use two dispersive 

materials have been demonstrated  [8]- [9]. In  [9], an optical fibre with 

borosilicate core and fluorosilicate cladding was experimentally demonstrated 

to work as a short-pass filter. Its principle is illustrated in Figure  7.1. Thanks to 

the different dispersion of the cladding and the core, a cut-off wavelength exits 

where the core refractive index equals to the cladding refractive index. Beyond 

the cut-off wavelength, light cannot be guided in the fibre core. Such materials 
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can also be used in combination with a W-type waveguide filter, allowing for a 

sharper cutoff of the 2nd Stokes and larger area ratios than I could reach (=34) 

without using such dispersive materials..  

1.3 Other approaches to suppress the 2nd Stokes: Besides a W-type fibre and 

material dispersion, there are other options to suppress the 2nd Stokes, such as 

the recently demonstrated photonic bandgap fibre  [10]- [11]. In addition, RE ion 

absorbers have been used to suppress the Raman scattering in the past  [12]. 

Furthermore, depressed-clad hollow optical fibres have been demonstrated as 

alternative to W-type fibre, with the advantage that they allow for larger core 

sizes  [13]. This facilitates brightness enhancement as well as scaling of both 

power and energy. 

• High power and high energy sources: When it comes to the power scalability, the 

core size is a critical factor as discussed in Chapter 5. Thus, it will be interesting to 

fabricate fibres with large single-mode cores. 

1. Enlarged core size: As it comes to core size, there are a large number of methods 

proposed for core area scaling, for example, leakage channel fibres  [14], chirally 

coupled cores  [15], and high-order-mode operation  [16]. Although these 

approaches are originally proposed for RE-doped and passive fibres, it is still 

reasonable to expect that different area-scaling approaches will bring advantages 

for DCRFs that are comparable to those for RE-doped fibres (if any). Meanwhile, if 

the core size is increased, the inner-cladding size can be enlarged accordingly. 

Better brightness enhancement can then be expected. 

2. Experimentally, we have demonstrated a CW CP RFL with a record-breading 

100 W of output power with a piece of DCRF F71-LF11. I believe significant 

further power-scaling should be relatively straightforward. Firstly, new efficient 

DCRFs with large-mode areas have already been realised. Secondly, we will soon 

have a multi-kW thin disk laser (Triumph) in our lab. The prospect of 

demonstrating a diffraction-limited CP RFL with kW-level output power based on 

the large-mode-area DCRFs and the thin disk laser looks very promising. In the 

pulsed regime, we have realised a 1 mJ of pulse energy distributed over several 

Stokes orders by pumping a piece of DCRF T0343 with an Nd:YAG laser. 

Although the conversion efficiency into the 1st Stokes is limited due to the 
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characteristics of this pump laser, it should still be possible to further improve the 

conversion efficiency into the 1st Stokes and obtain high energy sources at the 1st 

Stokes. One option is to launch the Nd:YAG laser beam into a passive fibre with 

suitable length and remove the spikes through Raman scattering process at the 

beginning. The resulting spike-free beam can then be used to pump a CP RFA. 

Another option is to smear out the spikes by dispersion. This can be achieved by 

launching the Nd:YAG laser beam into a passive fibre with large NA. Alternatively, 

multimode high energy fibre MOPA sources  [17] can be used to pump Raman fibre 

converters. For example, one YDF MOPA produced 82 mJ pulses with M2 = 25 

 [17]. 

• Directly diode-pumped CP Raman fibre devices: The brightness of high-power 

laser diodes has improved rapidly in recent years. In this thesis, I have used them to 

pump RE-doped fibres, which in turn pumped the CP Raman fibre devices. Such 

tow-stage pumping generally makes a system more complex and reduces the 

electrical-to-optical conversion efficiency. Thus, it would be interesting to directly 

cladding-pump DCRFs. With laser diode. Such an arrangement also benefits from 

the wide range of wavelengths available from LDs, including relatively short 

wavelength such as 800 nm. The Raman gain of the core mode in the DCRF in the 

un-depleted regime can be expressed as: 

.343.4
cl

effR A
PLgG =  ( 7.1) 

Here, the Raman gain is in dB, and we assume that the pump is uniformly 

distributed transversely across the inner cladding. State-of-the-art laser diodes can 

deliver 100 W in a 105 μm diameter delivery fibre with 0.12 NA for a brightness of 

0.25 W/(Sr×μm2). The power from this LD can be efficiently launched into a 

DCRF with inner-cladding diameter as small as 27 μm if the inner-cladding NA is 

0.48. Suppose that two such LDs pump the fibre from both ends with 90% 

launching efficiency and Raman gain coefficient of 10-13 m/W. We can then 

calculate the achievable Raman gain per meter as a function of the inner-cladding 

diameter. This is shown in Figure 7.2.  

Fibres with smaller inner cladding see higher Raman gain, for example, that 

the Raman gain becomes 0.1 dB/m for a fibre with a 31 μm diameter inner 
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cladding. This is a small, but not unrealistic, diameter. For a DCRF with a 105 μm 

diameter inner cladding, the Raman gain is only 0.009 dB/m. However, through 

tapered fibre bundles (TFBs)  [18], the power from several laser diodes can be 

combined and launched into the DCRF. Assume that the power coming from 

six 100-W LDs is combined through a TFB with six pump ports at 90% launching 

efficiency into a DCRF with 105 μm diameter, 0.48 NA inner cladding. The 

Raman gain can then be 54 dB/km, if one such TFB is used in each end of the 

DCRF. This gain is low, but should be sufficiently for a, say, 250 m long fibre. 

Meanwhile, various methods can be utilised to enable the core size to meet the area 

ratio requirement for efficient conversion. Thus, it looks possible to build an 

efficient all-fiberised CP Raman converter directly pumped by LDs. 
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Figure  7.2: (Simulation) Raman gain vs. different inner-cladding size with 200 W 

pump and Raman gain coefficient of 10-13 m/W. 
 

• Other fibre hosts: Raman gain can be generated at any wavelength determined by 

the pump wavelength and transparency window of fibre materials. In this thesis, I 

only used silica fibres. These are only transparent up to around 2 μm  [19]. 

However, cladding-pumped Raman devices are also possible with other fibre hosts, 

e.g. soft glasses, which can be transparent at longer wavelengths  [20]. Furthermore, 

a mid-IR SC light source has applications in a variety of areas  [21]- [22]. Our 

approach to generate SC light source can also be used in the mid-IR in appropriate 

soft-glass fibres. 
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