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Some magnetic materials show a magnetoelectric coupling between inhomogeneous magnetization
patterns and electric polarization that is sufficiently strong to allow external control of magnetization
structure by electric fields. Numerical simulations of ‘magnetoelectric’ materials of this type require
an extension of the standard micromagnetic model which conceptually parallels the introduction of
spin-current interaction terms. We show how the micromagnetic simulator ‘Nmag’ can be extended
to support the inhomogeneous magnetoelectric interaction term and also give a simple self-contained
example for simulating the micromagnetic dynamics of a magnetoelectric system in the presence of
an external electric field.

INTRODUCTION

Magnetoelectric behaviour is related to the existence of a
coupling term in the Free Energy functional that links the
material’s electric and magnetic polarizabilities. Generi-
cally, such terms are expected to arise due to spin-orbit
coupling - unless forbidden by some (here: crystal) sym-
metry. As the ability to easily control magnetization
structures by electric fields (and vice versa) would be
very appealing from an application perspective, a key
question is which materials exhibit a sufficiently strong
magnetoelectric effect to make this feasible.

Generally, magnetoelectric behaviour can in princi-
ple arise not only in ferroelectric-ferromagnetic materials
(multiferroics) where it is most often observed, but also
e.g. in paramagnetic ferroelectrics or non-ferroelectric
ferromagnets (cf. [1–3] for history and terminology). The
first demonstration of the time reversal symmetry vio-
lating homogeneous magnetoelectric effect was given by
Dzyaloshinskii in 1960 [4], while electric polarization of
Neel domain walls – the inhomogeneous effect relevant
for this work – was predicted in [5]. A magnetoelectric
effect of considerable strength can in particular arise in
composite materials, where it may be mechanically me-
diated through piezoelectric-magnetostrictive coupling.
While the simulation as well as the production of mag-
netoelectric composites for device applications poses a
number of interesting research challenges, it recently has
been demonstrated that even in some single-phase mag-
netoelectric materials (such as some suitably grown iron
garnets), electric control of micromagnetic magnetiza-
tion structure via the magnetoelectric effect is feasible
at room temperature [6]. Considering a systematic ap-
proach towards micromagnetic simulations of magneto-
electric materials, it certainly is attractive to start from
the simplest possible model that is of wider scientific in-
terest and then gradually extend this by taking other
effects into account – in continuation of the spirit of the
original micromagnetic model. Such a philosophy sug-
gests to first tackle the simulation of magnetoelectric ma-
terials whose behaviour can be described without having
to introduce extra dynamical degrees of freedom beyond

the magnetic ones, before this then is extended to fer-
roelectric materials (with additional polarization degrees
of freedom) and beyond.

Naturally, any modeling approach of some particular
effect that is based on taking the corresponding leading
order correction term(s) in a Ginzburg-Landau ansatz
for the Free Energy into account will make choices about
terms that can be dropped. These choices usually depend
on simplifying properties of the specific system under
study. This makes the idea of a generic ‘magnetism+X’
simulation framework appear very attractive which han-
dles extensions to the micromagnetic model by being re-
configurable at the level of field theoretic equations. As
the free micromagnetic simulation package Nmag (that
has been developed by the authors, [7]) supports this
concept by design, we will in the following describe how
the simulation of a magnetoelectric material for the sim-
plest possible case that is physically interesting can be
done with Nmag.

THE MODEL

Simple considerations about the behaviour of thermody-
namic potentials under time and space reflections show
that the leading order magnetoelectric terms must be
quadratic in the magnetization ~M and can be linear in
the polarization ~P if accompanied by an additional spa-
tial derivative. In the simplest case, the leading magne-
toelectric contribution will be of the form (cf. e.g. [8]):

FME =

∫
d3xγPj (Mj∂kMk − Mk∂kMj) (1)

In order to simplify this even further, we take the po-
larization ~P to be proportional to the externally applied
electric field. The extension to non-linear relations be-
tween the externally applied electric field ~Eext and po-
larization ~P will not be discussed in detail here – in the
simplest case, we can consider ~P to be given (rather than
~E).

We then arrive at:

FME =

∫
d3x γ̃Ej (Mj∂kMk − Mk∂kMj) (2)
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with some externally specified field ~E (or instead, ~P ).
Taking variational derivatives of this expression at spe-

cific locations δ/δMj(xk) gives an extra contribution
~HME to the total effective magnetic field ~Htotal which
conceptually resembles the exchange field ~Hexch. This
field strength is:

HME, i = 2γ̃Msat (Eiµjj − Ejµji) (3)

where the rank-2 tensor µij is an auxiliary intermediate
quantity defined as:

µij := ∂jmi (mi = Mi/Msat) (4)

Evidently, in addition to the introduction of this new
field ~HME, the micromagnetic simulator also must be ex-
tended to support the applied electric field ~Eext as well as
the vector gradient of the magnetization. In Nmag, this is
comparatively straightforward, in particular as the pack-
age internally supports tensor fields of arbitrary rank.
Incidentally, the calculation of µij already has been im-
plemented before for Nmag’s spin torque capabilities.

SIMULATION AND RESULTS

The specific toy system to be simulated is a
200 nm× 100 nm× 10 nm slab of some fictitious magne-
toelectric material whose properties have been chosen in
order to permit an example that neither requires much
memory nor CPU time (well below 1.5 GB and 5 hours
on a recent system using one CPU). The edges of this
block lie parallel to the coordinate axes, and two opposite
corners are given by (all coordinates in nm) (−100, 0, 0)
and (100, 100, 10). In addition, there is a long electrically
charged wire at (0,−500, 0) running in (0, 0, 1)-direction,
which produces an (inhomogeneous) electric field that
falls off with distance from the wire as 1/|~r|. In this
example, the maximum field strength occurs at (0, 0, 0),
with a value of ±2 · 106 V/m in +y-direction (well be-
low the dielectric breakdown voltage of most materials).
Along the faces that are perpendicular to the y-axis, the
slab’s magnetization is ’pinned’ to point in ±x-direction
(for y = 0 and y = 100 respectively). The calculation
starts by determining the equilibrium domain wall con-
figuration under these conditions from an initial magne-
tization configuration that gradually rotates in the x−y-
plane (angle proportional to y-coordinate), with a small
+z-component to break the artificial alignment with the
coordinate axes. Then, an electric field is turned on
that has a maximal value of +2 MV/m in +y-direction
at (0, 0, 0) and the new equilibrium configuration is cal-
culated. Afterwards, the electric field is reversed and
the magnetization configuration is again allowed to relax.
Starting from this particular initial magnetization config-
uration, the film relaxes into a Y-like branched domain
wall structure of (locally) minimal energy. The “tail”

of the Y-configuration then reacts fairly strongly to an
externally applied electric field.

Due to the structure of the EM∂M term, neither spa-
tially homogeneous magnetizations nor Bloch walls cou-
ple to electric fields, while Neel wall type configurations
do. In thin films, shape anisotropy will hence play an
important role for the occurrence of this effect, but more
generically, magnetocrystalline anisotropy may also be
employed to achieve this, as in [6]. For this reason, a
weak uniaxial anisotropy that is not aligned with the axes
of the simulated sample but has its easy axis pointing
in the (0, 1, 1) direction has been included in the exam-
ple. The material parameters are: (Msat, J, K1, γ̃) =
(0.5 MA/m, 10−12 J/m, 100 J/m3, 3 · 109 1/As). In order
to speed up the relaxation process, the LLG precession
term has been turned off.

As the magnetoelectric extension to Nmag is in an early
development stage, the code for this extension has been
separated off into an experimental/evolving branch for
which no user support guarantees can be given. To the
Nmag user, this means that in order to use the magneto-
electric extension, the simulation script can use standard
Nmag but should not start with the line ‘import nmag’,
but instead:

import nmag.nmag magnetoelectric as nmag

The complete script is shown in figure 1. After defin-
ing the material (lines 05-16), it sets up a simulation
(line 18), loads the mesh (lines 19-20), and uses three
auxiliary functions fun pin, fun m, fun E (lines 24-42)
to set the (inhomogeneous) ‘pinning field’, initial magne-
tization, and electric field (lines 44, 45, 47, 49). Special
attention has to be paid to fun E: as this takes an extra
field strength argument, but sim.set Electric ext()

has to provide a function of the coordinates only, we
use an anonymous lambda function to fix the first (field
strength) parameter (lines 47 and 49).

The simulation results are shown in figure 2: Depend-
ing on polarity, the wire can either attract or repel the
domain wall, in qualitative accordance with [6]. Simu-
lations of more realistic problems typically will involve
wider domain walls and hence require larger meshes.

CONCLUSIONS AND OUTLOOK

The toy model presented here exemplifies how to use an
experimental extension to the Nmag micromagnetic sim-
ulator (that gets shipped with the standard codebase) to
set up micromagnetic calculations with magnetoelectric
coupling for more involved systems than the one pre-
sented here. While the toy example utilizes non-physical
parameter choices to minimize the size of the problem,
it qualitatively reproduces behaviour that has been ob-
served experimentally in [6]. As usual with Nmag, this



3

01 import nmag.nmag_magnetoelectric as nmag

02 from nmag import SI
03 import math

04
05 ME=nmag.MagMaterial(name="ME",

06 Ms=SI(5e5,"A/m"),
07 exchange_coupling=\
08 SI(1e-12,"J/m"),

09 anisotropy=\
10 nmag.uniaxial_anisotropy(\

11 axis=[0,1,1],\
12 K1=SI(100,"J/m^3")),
13 magnetoelectric_coupling=\

14 SI(3e9,"1/A s"),
15 llg_damping=0.5,

16 do_precession=False)
17

18 sim=nmag.Simulation("ME_example")
19 sim.load_mesh("ME_mesh.nmesh.h5",[("ME",ME)],
20 unit_length=SI(1e-9,"m"))

21 # This is a slab with these dimensions (in nm):
22 (dimX,dimY,dimZ)=(200,100,10)

23
24 # Cf. Manual example: Pinning Magnetisation
25 def fun_pin(coords):

26 if coords[1]<1*1e-9\
27 or coords[1]>(dimY-1)*1e-9:

28 return 0.0
29 return 1.0

30
31 def fun_m(coords):
32 h=coords[1]/1e-9

33 return [math.cos(math.pi*h/dimY),
34 math.sin(math.pi*h/dimY),

35 1e-6] # to break the symmetry
36

37 def fun_E(E0,coords):
38 (x_nm,y_nm)=(coords[0]/1e-9,coords[1]/1e-9+500)
39 r_nm=(x_nm**2+y_nm**2)**0.5

40 return [E0*x_nm/r_nm**2,
41 E0*y_nm/r_nm**2,

42 0.0]
43
44 sim.set_pinning(fun_pin)

45 sim.set_m(fun_m)
46 sim.relax()

47 sim.set_Electric_ext(lambda c:fun_E(+1e9,c),SI(1,"V/m"))
48 sim.relax()

49 sim.set_Electric_ext(lambda c:fun_E(-1e9,c),SI(1,"V/m"))
50 sim.relax()

FIG. 1: The Nmag simulation script

extension feature is fully compatible with MPI-parallel
execution, as described in [9].

Considering future extensions of this basic model
which then will also have to take electrical polarization
dynamics into account, the task of extending the basic
micromagnetic model in Nmag would greatly benefit from
an extension to the Nsim [7] simulation core (on top of
which Nmag is implemented) that automatically generates
the field dependency tree from the user-supplied physi-
cal field equations. This tree is used internally to find
out which dependent fields have become invalid after a
field update and need to be re-computed (automatically)
before they can be read. So far, this has to be specified
manually for every new extension.
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FIG. 2: Exchange energy density (color coded, color online)
and magnetization structure for Emax, y = 0, +2, −2MV/m
(top to bottom). For the electric field strengths and material
parameters used in this example, the open end of the domain
wall on the left y-z face moves by about 17 nm in either direc-
tion. Electric equipotential surfaces are shown as black arcs,
the (perpendicular) field strengths being ±1.67, ±1.82 and
±2.00 MV/m (outer to inner).
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