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We study the supersymmetric N = (2, 2) Wess-Zumino model in two dimensions with the func-
tional renormalization group. At leading order in the supercovariant derivative expansion we recover
the nonrenormalization theorem which states that the superpotential has no running couplings. Be-
yond leading order the renormalization of the bare mass is caused by a momentum-dependent wave
function renormalization. To deal with the partial differential equations we have developed a nu-
merical toolbox called FlowPy. For weak couplings the quantum corrections to the bare mass found
in lattice simulations are reproduced with high accuracy. But in the regime with intermediate cou-
plings higher-order-operators that are not constrained by the nonrenormalization theorem yield the
dominating contribution to the renormalized mass.
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I. INTRODUCTION

In the search for high energy theories beyond the stan-
dard model supersymmetric models are a topic of great
interest. Supersymmetry reduces the hierarchy and the
fine-tuning problem. It has to be broken at some energy
scale since supersymmetry has not been observed in low
energy physics. The breaking does not occur on the per-
turbative level and therefore nonperturbative tools are
needed to analyze these models, e. g. lattice formulations
or the function renormalization group.
Lattice formulations and simulations have been suc-

cessfully applied to nonperturbative problems in field
theory. Although there has been considerable progress in
the last years [1–4] there are still some difficulties in the
lattice formulation of supersymmetry. The discretization
leads to a (partial) breaking of supersymmetry and the
implementation of dynamical fermions on the lattice still
poses a challenge.
Nonperturbative continuummethods, such as the func-

tional renormalization group (FRG) which manifestly
preserve supersymmetry, can complement the lattice cal-
culations. The FRG has previously been applied to a
wide range of nonperturbative problems such as criti-
cal phenomena, fermionic systems, gauge theories and
quantum gravity, see e. g. [5–13] for reviews. Applied to
supersymmetric theories it circumvents problems of the
lattice formulation such as supersymmetry breaking due
to discretization. But in order to solve the FRG equa-
tions truncations have to be employed which introduce a
different kind of error.
Quite a few conceptual studies of supersymmetric the-

ories in the framework of the FRG have already been per-
formed. The main ingredient is the construction and use
of a manifestly supersymmetric regularization scheme.
For example such a regulator has been presented for the
four-dimensional Wess-Zumino model in [14, 15]. Inves-

tigations for one-, two- and three-dimensional N = 1
Wess-Zumino models have been performed in [16–19].
A FRG formulation of supersymmetric Yang-Mills the-
ory employing the superfield formalism has been given
in [20]; for further applications see also [21, 22]. General
theories of a scalar superfield including the Wess-Zumino
model were studied with a Polchinski-type RG equation
in [11], which yields a new approach to supersymmet-
ric nonrenormalization theorems. The nonrenormaliza-
tion theorem has also been proven with FRG methods in
[23]. In [24] a Wilsonian effective action for the Wess-
Zumino model by perturbatively iterating the FRG is
constructed.
The aim of this work is twofold. On the one hand,

we want to compare the results from the supersymmetric
formulation of the FRG equations to lattice data for the
renormalized mass in the two-dimensional N = (2, 2)
Wess-Zumino model [4]. This comparison allows us to
estimate the truncation error. The renormalized mass is
defined as the location of the pole of the propagator in the
complex plane therefore we have to take the momentum
dependence in the FRG framework into account.

There are several applications, where this dependence
is important but the related contributions lead to a much
higher numerical effort for the solution of the flow equa-
tions. Full momentum dependence of propagators and
vertices has previously been treated successfully in the
literature [25–32]. We introduce a numerical toolbox
called FlowPy which is designed to solve the flow equa-
tions with momentum dependence as encountered in this
paper. FlowPy can be adapted to solve not only flow
equations with momentum dependence but also other
differential equations encountered in the FRG framework
e. g. for field dependent effective potentials. In this paper
we demonstrate that FlowPy solves the flow equations
reliably.
The paper is organized as follows: In section II we
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introduce the N = (2, 2) Wess-Zumino model in two
dimensions. In section III we sketch the derivation of
the supersymmetric flow equations for the superpotential
and the (momentum-dependent) wave function renormal-
ization. The flow equation for the superpotential will
lead to the nonrenormalization theorem. In section IV
first FlowPy is described and then we specialize our flow
equations and demonstrate that perturbation theory is
reproduced correctly. In section V we compare the renor-
malized mass calculated in the FRG approach with the
results from lattice simulations.

II. THE N = (2, 2) WESS-ZUMINO MODEL IN

TWO DIMENSIONS

The N = (2, 2) Wess-Zumino model in two dimensions
can be found by a dimensional reduction of the N = 1
model in four dimensions [33]. The Lagrange density is
given by

L = 2∂̄φ̄∂φ+ ψ̄Mψ − 1

2
F̄F +

1

2
FW ′(φ) +

1

2
F̄ W̄ ′(φ)

(1)

with Dirac fermions ψ and ψ̄. The fermion matrix M
reads

M = /∂ +W ′′(φ)P+ + W̄ ′′(φ)P− (2)

with P± = (1 ± γ∗)/2, F = F1 + iF2 and φ = φ1 + iφ2
as well as ∂ = 1

2 (∂1 − i∂2) and z = x1 + ix2. The super-
potential is denoted by W (φ) = u(φ1, φ2) + iv(φ1, φ2).
We work in the Weyl basis with γ1 = σ1, γ

2 = −σ2 and
γ∗ = iγ1γ2 = σ3. The complex spinors can be decom-

posed as ψ =
(

ψ1 ψ2

)T
and ψ̄ =

(

ψ̄1 ψ̄2

)

. The Lagrange
density is invariant under the supersymmetry transfor-
mations

δφ = ψ̄1ε1 + ε̄1ψ1, δφ̄ = ψ̄2ε2 + ε̄2ψ2,

δψ̄1 = −1

2
F ε̄1 − ∂φε̄2, δψ̄2 = −∂̄φ̄ε̄1 −

1

2
F̄ ε̄2,

δψ1 = −1

2
Fε1 + ∂̄φε2, δψ2 = ∂φ̄ε1 −

1

2
F̄ ε2,

δF = 2(∂ψ̄1ε2 − ε̄2∂̄ψ1), δF̄ = 2(∂ψ̄2ε1 − ε̄1∂̄ψ2).

(3)

The superspace formulation of this model is constructed
in appendix A. A detailed discussion of the underlying
supersymmetry algebra and a construction of the super-
space can be found e. g. in [34].
Integrating out the auxiliary fields yields the on-shell

Lagrangian

Lon = 2∂̄φ̄∂φ+
1

2
W ′(φ)W̄ ′(φ) + ψ̄Mψ. (4)

In this paper we will consider the superpotential

W (φ) =
1

2
mφ2 +

1

3
gφ3. (5)

The system has two bosonic ground states which lead to
a nonzero Witten index [35], therefore supersymmetry
is never spontaneously broken in the N = (2, 2) Wess-
Zumino model.
A characteristic feature of the N = 1 Wess-Zumino

model in four dimensions survives the dimensional reduc-
tion, namely that bosonic and fermionic loop corrections
cancel in such a way that the effective superpotential
receives no quantum corrections. This is called the non-
renormalization theorem [36–38]. In the two-dimensional
model considered here the cancellations even render the
model finite. The model has been studied intensively in
the literature, see e. g. [3, 4, 39–41] for lattice simula-
tions.

III. SUPERSYMMETRIC RG FLOW

Following the lines of our previous works [16–19] we
construct a manifestly supersymmetric flow equation in
the off-shell formulation. Our approach is based on the
FRG formulated in terms of a flow equation for the effec-
tive average action Γk, i.e. the Wetterich equation [42]

∂kΓk =
1

2
STr

{

[

Γ
(2)
k +Rk

]−1

∂kRk

}

. (6)

The scale dependent Γk interpolates between the micro-
scopic action S for k → Λ, with Λ denoting the micro-
scopic UV scale, and the full quantum effective action
Γ = Γk→0. As the model considered in this paper is UV-
finite, the cutoff Λ can be set to infinity. The interpolat-
ing scale k denotes an infrared (IR) regulator scale below
which all fluctuations with momenta smaller than k are
suppressed. For k → 0, all fluctuations are taken into ac-
count and we arrive at the full solution of the quantum
theory in terms of the effective action Γ. The Wetterich
equation defines an RG trajectory in the space of action
functionals with the classical action S serving as initial
condition.
The second functional derivative of Γk in Eq. (6) is

defined as

(

Γ
(2)
k

)

ab
=

−→
δ

δΨa
Γk

←−
δ

δΨb
, (7)

where the indices a, b summarize field components, in-
ternal and Lorentz indices, as well as spacetime or mo-
mentum coordinates. In the present case, we have
ΨT = (φ, φ̄, F, F̄ , ψ̄, ψ) where Ψ is not a superfield, but
merely a collection of fields. The momentum-dependent
regulator function Rk in Eq. (6) establishes the IR
suppression of modes below k. In the general case,
three properties of the regulator Rk(p) are essential: (i)
Rk(p)|p2/k2→0 > 0 which implements the IR regulariza-
tion, (ii) Rk(p)|k2/p2→0 = 0 which guarantees that the
regulator vanishes for k → 0, (iii) Rk(p)|k→Λ→∞ → ∞
which serves to fix the theory at the classical action in
the UV. Different functional forms of Rk correspond to
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different RG trajectories manifesting the RG scheme de-
pendence but the end point Γk→0 → Γ remains invariant,
see e. g. Refs. [8, 43–48]. Supersymmetry is preserved
if the regulator contribution to the cutoff action ∆Sk

(cf. Eq. (11)) is supersymmetric.
As an ansatz for the effective action we use an expan-

sion in superspace (see Appendix A for our conventions)1

Γk =− 2

∫

d2x

∫

dy dȳ Z2
k(∂∂̄)Φ̄Φ (8)

− 2

∫

d2x

∫

dy Wk(Φ)− 2

∫

d2x

∫

dȳ W̄k(Φ̄)

=

∫

d2p

4π2

[

Z2
k(p

2)

(

2p2φ̄φ+ ψ̄i/pψ −
1

2
F̄F

)

(9)

+
1

2
FW ′

k +
1

2
F̄ W̄ ′

k + ψ̄
(

W ′′

k P+ + W̄ ′′

k P−

)

ψ

]

.

In contrast to the usual supercovariant derivative ex-
pansion we have included those combinations of the su-
percovariant derivatives that merely reduce to spacetime
derivatives. A momentum dependence inWk is irrelevant
as found in section III B. An arbitrary Kähler potential
(K(Φ̄,Φ) integrated over the whole superspace) is not
taken into account here, since we expect only a small
influence for the renormalized mass. Another contribu-
tion neglected in this truncation comes from the terms of
higher than quadratic order in the auxiliary field and the
corresponding supersymmetric partner terms, denoted as
auxiliary field potential. In the following we will only
work with real and imaginary part φ1, φ2, F1, F2.
For this scale dependent effective action the auxiliary

fields obey the equations of motion F = W̄ ′

k(φ)/Z
2
k and

F̄ =W ′

k(φ)/Z
2
k. This leads to the on-shell action

Γon
k =

∫

d2p

4π2

[

1

2
Z2
k(p

2)p2φφ̄+
1

2

|W ′

k(φ)|
2

Z2
k(p

2)

+iZ2
k(p

2)ψ̄/pψ + ψ̄(W ′′

k P+ + W̄ ′′

k P−)ψ
]

. (10)

A. Supersymmetric regulator

Supersymmetry is preserved if we shift the mass by
a momentum-dependent infrared regulator2, m → m +
Z2
k · r1(k, p2) or multiply the wave function renormal-

ization by a momentum-dependent regulator function,
Z2
k → Z2

k · r2(k, p2). Such regulators are the same as
the ones used in the previous models [16–19]. To get a

1 For the Fourier transformation we use the convention ∂j → ipj
with the notations p = (p1, p2)T and p = |p| where there is no
risk of misunderstanding.

2 The regulator function is multiplied with the wave function
renormalization to ensure reparametrization invariance of the
flow equation.

regularized path integral Rk is included in terms of the
cutoff action ∆Sk. It reads in a matrix notation

∆Sk =
1

2

∫

d2p

4π2
Ψ̄Z2

kR
T
k ΨT (11)

with Ψ = (φ1 φ2 F1 F2 ψ(−p)T ψ̄(p)) and

Rk =

(

RB
k 0
0 RF

k

)

with RB
k =

(

p2r2 · 1 r1 · σ3
r1 · σ3 −r2 · 1

)

and RF
k =

(

0 i/p · r2 − r1 · 1
i/p · r2 + r1 · 1 0

)

.

(12)

With these regulators at hand we can proceed to calcu-
late the flow equation. Inserting ansatz (9) in the flow
equation (6), the propagator can be calculated along the

lines described in [49]: The fluctuation matrix Γ
(2)
k +Rk

is decomposed into the propagator Γ
(2)
0 + Rk including

the regulator functions and a part ∆Γk containing all
field dependencies. The flow equation (6) is expanded in
the number of fields, see Appendix B for the expansion
and the explicit matrices.

B. Flow equation for the superpotential – The

nonrenormalization theorem

The quantity at leading order in the supercovariant
derivative expansion is the scale dependent superpoten-
tial. We obtain the flow equation by projecting onto the
terms linear in the auxiliary fields. We can choose either
the real or imaginary part of the auxiliary field as they
are bound to give the same results due to supersymme-
try. The superpotential W (φ) = u(φ1, φ2) + iv(φ1, φ2)
is a holomorphic function of φ1 and φ2, and therefore
its real and imaginary part obey the Cauchy-Riemann
differential equations

∂u

∂φ1
=

∂v

∂φ2
,

∂u

∂φ2
= − ∂v

∂φ1
. (13)

Using these equations we find for the flow equations of
the superpotential

∂kuk = 0, ∂kvk = 0 ⇒ ∂kWk = ∂kW̄k = 0. (14)

This means that the superpotential remains unchanged
during the RG flow. The Kähler potential does therefore
not influence the flow of the superpotential, as found in
[37]. Even the nontrivial momentum dependence consid-
ered here does not change this result. The nonrenormal-
ization theorem is verified by the flow equations in the
present truncation. This result is similar to the proofs in
four dimensions discussed in [23] and [11].
As the flow vanishes at leading order, the first quan-

tity with a nonvanishing flow is the wave function renor-
malization which is a term at next-to-leading order in
our truncation. It will turn out later that the momen-
tum dependence is important for the renormalized mass
(cf. Sec. V) therefore we already include it in ansatz (9).
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C. Momentum-dependent flow equation for the

wave function renormalization

The flow equation for the wave function renormaliza-
tion can be obtained from a projection onto the terms
quadratic in the auxiliary fields. It is derived in Ap-
pendix B and reads

∂kZ
2
k(p) = −8g2

∫

d2q

4π2

h(p− q)h(q)

v(q)2v(p− q)2
×

[∂kR1(q − p)M(p− q)v(q) + ∂kR1(q)M(q)v(p− q)]

+ 4g2
∫

d2q

4π2

h(p− q)∂kR2(q)u(q)v(p − q)

v(q)2v(p− q)2

+ 4g2
∫

d2q

4π2

h(q)∂kR2(q − p)v(q)u(p− q)

v(q)2v(p− q)2
(15)

with the abbreviations (recall that |q| = q)

h(q) = (r2 (q) + 1)Z2
k (q) , (16)

M(q) =m+ r1(q)Z
2
k (q) , Ri(q) = ri (q)Z

2
k (q) ,

u(q) =M(q)2 − q2h2(q), v(q) =M(q)2 + q2h2(q).

Here we are dealing with a UV-finite theory and there-
fore it is sufficient to use the simple, masslike infrared
regulator

r1(k, p
2) = k and r2(k, p

2) = 0. (17)

After a shift in the integration variables in the second
part of the integral (15) the flow equation simplifies to

∂kZ
2
k(p) = −16g2

∫

d2q

4π2

kZ2
k (q) +m

N(q)2N(p− q)
×

Z2
k (q)Z

2
k (|p− q|) ∂k

(

kZ2
k (q)

)

, (18)

where we have introduced the abbreviation

N(q) =
(

q2Z4
k (q) + (kZ2

k (q) +m)2
)

. (19)

In order to deal with the partial differential equa-
tion we have developed a (parallelizable) numerical tool-
box called FlowPy. In the next section we present
the main ideas behind our numerical setup to solve the
momentum-dependent flow equation. A detailed presen-
tation of FlowPy is deferred to a future paper [50].

IV. NUMERICAL SETUP

Structurally, the flow equation to be solved numerically
is of the form

∂kz(k; p) =

∫

dnq I [k; p; q; z(k; f1(p, q));

z(k; f2(p, q)); . . . ; z(k; fn(p, q))] , (20)

where the external momentum p is treated with a dis-
cretized grid. While the integrand I may actually also

 1
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k=10-2
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perturbation theory

FIG. 1. Perturbative flow for the parameters λ = g/m = 0.3
and m = 1 . The solid line is the plot of Eq. (21).

be a function of ∂kz(k; p), and hence the integral flow
equation be given in implicit form only, numerical re-
sults suggest that, at least in the model studied here,
∂kz(k; p) should be sufficiently small to allow an itera-
tive approach, where the integrand is evaluated first un-
der the assumption ∂kz(k; p) = 0, and the result is then
used to re-evaluate the integrand with a better approxi-
mation to ∂kz(k; p) until convergence is reached. Apart
from this conceptual issue, the technology to deal with
an evolution equation of this kind is readily available in
an accessible form via the SciPy “Scientific Python” ex-
tension [51] to the Python [52] programming language.
The details of the numerical strategy are described in
Appendix C.
As a test for the numerical approximation and the abil-

ities of FlowPy, we solve the flow of the perturbative wave
function renormalization. It is inferred by setting Zk(q)
to its classical value Zk(q) ≡ 1 on the right hand side
of Eq. (18). The perturbative flow with 60 discretization
points is shown in Fig. 1 for different values of k.
It is possible to calculate the perturbative expres-

sion for Z2
1−loop(p) analytically from the perturba-

tive flow equation by performing the k-integral using
limk→∞ r1, r2 →∞ and limk→0 r1, r2 → 0. This yields

Z2
1−loop =1 +

g2

π2

∫

d2q

(m2 + q2)(m2 + |q − p|2)

=1 + 4g2
artanh

(

p(4m2 + p2)−1/2
)

πp
√

4m2 + p2
, (21)

which is shown as a solid line in Fig. 1. This shows
that possible errors in the numerical calculation of the
wave function renormalization with FlowPy due to dis-
cretization, interpolation and the boundary condition
Zk(q → ∞) = 1 are under control. We will consider Zk

and the renormalized masses obtained from it as exact in
the employed truncation.
In the next section we will determine renormalized
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masses from the nonperturbative wave function renor-
malization with full momentum dependence calculated
with FlowPy.

V. THE RENORMALIZED MASS

The analytic continuation of the bosonic propagator

Gbos(p) =
1

p2 +m2 +Σ(p,m, g)
(22)

has a pole which defines the renormalized mass. Since
the bare mass m is a parameter of the superpotential (5)
it is not changed during the flow. Σ is the self-energy.
As expected from a supersymmetric theory, the pole of
the fermionic propagator leads to the same renormalized
mass as the bosonic propagator.
The Fourier transformation of Gbos(p) yields the cor-

relator

Cbos(x1) =

∫

dp

2π
G(p1, 0)e

ip1x1 . (23)

The renormalized mass can be obtained from the long
range exponential decay of this quantity and is in the
following denoted as correlator mass mcorr. One can also
define a renormalized mass, which we denote as propaga-
tor mass, through m2

prop = (Gbos(p))
−1|p=0 .

To compare the renormalized masses from the FRG
with the results of the lattice simulation [4] we consider
the masses of the particles in the on-shell theory. In
our truncation the bosonic propagator from the on-shell
action (10) reads in the infrared limit

GNLO
bos (p) =

1

p2Z2
k→0(p

2) +m2/Z2
k→0(p

2)
, (24)

and the fermionic propagator reads

GNLO
ferm (p) =

/p

p2Z4
k→0(p

2) +m2
. (25)

Both propagators have the same poles and therefore lead
to the same renormalized masses for bosons and fermions.
For the propagator mass the fields in the on-shell ac-

tion have to be rescaled with the wave function renor-
malization such that the kinetic term is of the canonical
form. Neglecting the momentum dependence in the wave
function renormalization we obtain

mprop =
m

Z2
k→0(p = 0)

. (26)

For a small self-energy Σ a comparison between Eq. (22)
and (24) leads to the approximate relation

Z2
k→0(p) = 1 +

Σ(p,m, g)

p2 −m2
. (27)

A numerical calculation can provide Z2
k(p) only for

real p and its analytic continuation cannot be deter-
mined straightforwardly. Instead we consider the dis-
crete Fourier transformation of GNLO

bos (p) with momenta
p = {0, 2π/aN, . . . , 2π(N − 1)/aN} on the interval x ∈
[0, aN = L]. For distances much smaller than L this
should approximate CNLO

bos (x) in a well-defined way. More
precisely, instead of the exponential decay one gets the
long distance behavior

Ca,mcor
(x1) ∝ cosh(mcorr(x1 − L/2)) (28)

after the integration over the spatial direction. The mass
can be determined from a fit to this function, as it is done
in lattice simulations. The details of this procedure can
be found in Appendix D.
With the analytic result (21) for Z2

1−loop at hand we

can calculate the poles of GNLO
bos (p) and obtain a per-

turbative approximation of mcorr.Note that this analytic
solution of the perturbative flow together with eq. (27)
leads to the same result as a one-loop on-shell calcula-
tion of the polarization Σ (cf. Appendix E). Expanding
the pole of the propagator (22) to first order in the di-
mensionless parameter λ2 = g2/m2 leads to the one-loop
approximation of the renormalized mass

(m1−loop
corr )2 = m2

(

1− 4√
27
λ2 +O

(

λ4
)

)

. (29)

A. Weak couplings

Let us start with an investigation of the weak coupling
sector which is defined as λ < 0.3, where perturbation
theory provides an excellent cross-check to establish the
correctness of our ansatz and the errors in the numerical
approximation.
The bare mass in the lattice simulations [4] is taken

to be m = 15. Concerning the units of the mass note
the following: In the lattice calculation, the mass is mea-
sured in units of the box size, i. e. the physical volume of
the lattice simulation. Similarly, everything can be refor-
mulated in terms of the dimensionless ratio of bare and
renormalized mass.
For the numerical treatment of Eq. (18) we have to

use dimensionless quantities. Because of the nonrenor-
malization theorem the bare mass quantities in the su-
perpotential enter in the flow equation only as parame-
ters. Rescaling the dimensionful quantities with the bare
mass sets the scale in this model. We have set this scale
to m = 1. To get the same units as in the lattice simula-
tions the resulting renormalized mass is multiplied with
15.
The correlator masses in the weak coupling regime are

calculated with the momentum-dependent wave function
renormalization from the flow equation (18) solved with
FlowPy. The technical details of the determination of
the correlator masses are described in Appendix D. The
results are shown in the second column of Table I. The
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FIG. 2. Comparison between lattice data taken from [4] and
our results for the correlator mass mFRG

corr with momentum
dependence and mFRG

prop without momentum dependence in the
weak coupling regime

TABLE I. Renormalized masses obtained with the flow equa-
tion with and without momentum dependence (mFRG

corr and
mFRG

prop ) as well as lattice data mlattice
corr from a continuum ex-

trapolation [4] in the weak coupling regime.

λ mFRG
corr mFRG

prop mlattice
corr

0.02 14.998 14.998 14.999(1)

0.04 14.991 14.992 14.993(3)

0.06 14.979 14.983 14.977(4)

0.08 14.963 14.970 14.963(5)

0.10 14.943 14.952 14.935(6)

0.12 14.917 14.931 14.905(9)

0.14 14.888 14.907 14.871(9)

0.16 14.854 14.878 14.83(1)

0.18 14.815 14.846 14.82(1)

0.20 14.773 14.810 14.75(2)

0.22 14.674 14.771 14.71(2)

0.24 14.674 14.728 14.63(2)

0.26 14.619 14.681 14.60(2)

0.28 14.559 14.631 14.53(2)

0.30 14.496 14.578 14.45(3)

values in the fourth column are taken from aMonte-Carlo
simulation on the lattice [4]. We discuss the lattice results
further in Sec. VB. For the time being it suffices to note
the agreement of lattice and perturbative results within
the statistical errors. Hence perturbation theory already
provides a good check for our results.

In Fig. 2 we show the correlator masses from the flow
equation, the lattice simulation and the one-loop result
(29) for mcorr. The masses calculated from the flow
equation agree very well with perturbation theory and
with the results from lattice simulations. This can be
quantified by comparing the correction to the bare mass
∆mcorr = m−mcorr. We find ∆mFRG

corr /∆m
lattice
corr ≃ 0.95.

Taking into account the statistical error of the lattice
data no significant difference to the FRG results can be
found.
We conclude that in the weak coupling regime the trun-

cation of the flow equation with full momentum depen-
dence suffices to capture the main aspects of the model.
Higher-order-operators, which yield an auxiliary field ef-
fective potential, have, as expected, little influence.
To investigate the influence of the momentum depen-

dence in the wave function renormalization, we calculate
the propagator mass (26). The results are shown in the
third column of Tab. I and in Fig. 2. A comparison be-
tween the propagator mass and the correlator mass from
the lattice calculation yields ∆mFRG

prop/∆m
lattice
corr ≃ 0.75.

Already in the weak coupling regime it is necessary to
include the momentum dependence in order to determine
the corrections to the renormalized mass with satisfying
accuracy.

B. Intermediate couplings

At intermediate couplings 0.3 ≤ λ ≤ 1 a significant de-
viation of our numerical results from perturbation the-
ory can be observed. In this regime the perturbative
calculations can no longer provide a reliable test for the
numerical results and we have to rely on lattice calcu-
lations. In a supersymmetric theory their result must,
however, be considered with care as a lattice formulation
of supersymmetry still poses difficulties [53]. A common
approach is to implement only a part of the supersym-
metry which allows to recover the complete symmetry in
the continuum limit in many cases.
In the present model there are further complications

for a lattice formulation, especially in the intermediate
coupling sector [4]. The considered discretizations are
invariant under half of the supersymmetry. They suffer,
however, from the dominance of a contribution to the
action that is a mere discretization of a surface term at
larger couplings. In general the correct continuum limit
can only be obtained with unrealistically high numeri-
cal effort. The relevance of this effect depends on the
coupling strength and on the specific discretization. For
intermediate couplings the nonlocal SLAC discretization
and the Twisted Wilson discretization provides the most
reliable results (cf. [4] for details). The renormalized
masses of these discretizations are used for a comparison
with our results. They are shown in the third and fourth
column of Table II 3 and displayed in Fig. 3 (boxes with
error bars) together with the order λ2 expanded result
(29) for mcorr (dashed line).
Note that the spontaneous breaking of the Z2 sym-

metry introduces also finite volume effects in the lattice
simulations. Although there are well known prescriptions

3 All lattice results are extrapolated to the continuum.
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our results for the correlator mass mFRG

corr with momentum
dependence and mFRG

prop without momentum dependence in the
intermediate coupling regime

TABLE II. Masses obtained with the flow equation with and
without momentum dependence mFRG

corr and mFRG
prop ) as well as

lattice data [4] in the regime with intermediate couplings.

λ mFRG
corr mFRG

prop tw. Wilson SLAC imp.

0.35 14.321 14.428 14.23(2)

0.40 14.123 14.259 13.99(3) 14.00(1)

0.45 13.905 14.069 13.62(5)

0.50 13.666 13.861 13.30(6)

0.55 13.411 13.636 12.8(1)

0.60 13.138 13.394 12.2(1) 12.44(6)

0.65 12.854 13.137 11.9(2)

0.70 12.556 12.866 10.4(5)

0.75 12.248 12.583

0.80 11.932 12.290 10.2(3)

0.85 11.609 11.987

0.90 11.280 11.676

0.95 10.948 11.358

1.00 10.613 11.036 8.1(3)a

a C. Wozar, private communication

to implement these properties of the theory in lattice sim-
ulations, they still lead to additional complications [54].
The correlator masses determined from the FRG are

shown in the second column of Tab. II and displayed
in Fig. 3 (crosses). Additionally the perturbative result
for the renormalized mass is shown (solid line), which is
determined from the pole of the propagator (22) with the
polarization calculated in Appendix E4.
Although the corrections from the wave function renor-

4 The perturbative results in this regime have to be interpreted
with care. The dashed line is an expansion of the on-shell one-
loop pole mass to order O(λ2) whereas the solid line is the result

malization with full momentum dependence to the bare
mass capture some of the quantum effects, they do not
account for all the nonperturbative effects present in this
model. To quantify this, we compare these corrections to
the corrections found in lattice calculations. This yields
results between ∆mFRG

corr /∆m
lattice
corr ≃ 0.9 for λ = 0.35

and ∆mFRG
corr /∆m

lattice
corr ≃ 0.65 for λ = 1.0. The fact that

the wave function renormalization accounts for less of
the quantum corrections as the coupling grows is due to
the growing influence of higher-order operators especially
the auxiliary field potential. In the present truncation we
have only considered terms that are at most quadratic in
the auxiliary field and have neglected back reactions from
a potential for the auxiliary field. As can be seen from a
diagrammatic expansion of the flow equation, terms up to
order F 4

i directly modify the flow equation for the wave
function renormalization, which is proportional to F 2

i . It
is known from our previous investigations of scalar super-
symmetric models [16] that the influence of higher order
operators grows with the strength of the couplings. A
truncation that goes beyond the momentum-dependent
wave function renormalization has to be considered to
improve the results in the regime with intermediate cou-
plings.
The results for the propagator mass are shown in the

third column of Tab. II and in Fig. 3 (triangles). Com-
pared to the lattice results we find ∆mFRG

prop/∆m
lattice
corr ≃

0.75 for λ = 0.35 and ∆mFRG
prop/∆m

lattice
corr ≃ 0.6 for

λ = 1.0. The improvement due to the momentum de-
pendence in Z2

k is not as pronounced as it is in the weak
coupling regime.

VI. CONCLUSIONS

In this paper we have applied the functional renormal-
ization group to the N = (2, 2) Wess-Zumino model in
two dimensions. The model is UV-finite which allows a
direct comparison to results from lattice simulation.
The first quantity to be calculated in a supercovari-

ant derivative expansion is the superpotential. It is well
known from the nonrenormalization theorem that it does
not receive quantum corrections. In the language of the
FRG the nonrenormalization theorem is recovered in a
very simple form, namely that the superpotential has a
vanishing flow equation. The proof only uses the fact
that the superpotential is a holomorphic function and
therefore the Cauchy-Riemann differential equations for
its real and imaginary parts hold.

of an off-shell calculation. Both results agree up to order λ2

but perturbation theory can no longer be trusted in the regime
with intermediate coupling strength. The on-shell calculation
has to fail at large values of λ2 because otherwise the renormal-
ized masses will become negative. To preserve supersymmetry
in the RG flow the FRG uses an off-shell formulation. Therefore
it is not unexpected that it is close to the off-shell perturbation
theory.
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Hence the first term in the expansion that receives
a correction from renormalization is the wave function
renormalization. It leads to the renormalization of the
bare mass in the on-shell theory, with the renormalized
mass defined as the pole of the propagator in the complex
plane. We have calculated the renormalized mass with
and without momentum dependence in the wave function
renormalization.
In order to benchmark our results we use lattice cal-

culations. In the weak coupling regime the results for
the renormalized mass calculated without the full mo-
mentum dependence capture only 75% of the quantum
corrections to the bare mass whereas 95% of the correc-
tions are captured if the full momentum dependence in
the wave function renormalization is taken into account.
This leads to the conclusion that the momentum depen-
dence of wave function renormalization dominates in this
regime. Higher-order-operators only have a small influ-
ence.
For intermediate couplings the picture changes. We

have investigated the complete contribution to the flow
from the momentum-dependent wave function renormal-
ization. Our findings are that in this truncation only
65% of the quantum corrections to the bare mass de-
termined in the lattice simulations are captured for the
largest coupling considered in this paper. Without mo-
mentum dependence 60% of the corrections are gener-
ated. This leads to the conclusion that in the regime
with intermediate couplings the momentum dependence
in the wave function renormalization does not include
all important contributions to the renormalized mass.
Instead, the quantum corrections generated by higher-
order-operators which lead to an auxiliary field potential
are expected to be relevant for the renormalized mass.
They have to be included in order to reduce the devi-
ations between the results from lattice calculations and
the FRG. The calculation of these contributions as well
as contributions from the Kähler potential remains an
interesting challenge for future work.
Although there have been great improvements in the

simulations of the model on the lattice they still suffer
from finite size effects and the finite lattice spacing, which
leads to a breaking of supersymmetry5. An interesting
application of the FRG is an analysis that includes finite
volume effects which could help to estimate the influence
of the finite size. This can allow one to separate it from
the discretization errors.
The analysis presented in this paper can easily be ap-

plied to the N = 1 Wess-Zumino model in four dimen-
sions from which the two-dimensional N = (2, 2) model
is derived. Especially the nonrenormalization theorem
for the superpotential emerges in the same way. In both

5 In contrast to common lattice formulations the basic require-
ments of locality and reflection positivity are broken in the cur-
rent simulations of this theory. This was done to reduce the
unavoidable breaking of supersymmetry on the lattice.

models the momentum-dependent wave function renor-
malization is the first relevant contribution in the covari-
ant derivative expansion and the flow equations differ
only in the measure of integration. As we have found in
the present model the effective potential for the auxiliary
field is expected to dominate the quantum effects as the
strength of the coupling constant grows.
For the treatment of the partial differential equation

we have developed FlowPy, a numerical toolbox. It can
be applied in quite generic situations to solve the FRG
equations and to calculate contributions such as the full
momentum dependence of vertices. We hope that nu-
merical software like FlowPy will help to obtain better
predictions from FRG calculations. We would like to
add that it can also be applied for the calculation of an
arbitrary potential V (φ) instead of the full momentum
dependence Z(p). We plan to make FlowPy available
soon [50].
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Appendix A: Superspace formulation

The superspace formulation is constructed from the su-
persymmetry transformations. The chiral and antichiral
superfields can be obtained from the lowest component
by acting on it with the exponentiated supersymmetry
transformations

Φ(z, z̄, α, ᾱ) = exp(−δα)φ(z, z̄) =
4
∑

n=0

1

n!
(−δα)nφ(z, z̄)

=φ(u, ū)− ψ̄1(u, ū)α1 − ᾱ1ψ1(u, ū)−
F (u, ū)

2
ᾱ1α1

Φ̄(z, z̄, α, ᾱ) = exp(−δα)φ̄(z, z̄) =
4
∑

n=0

1

n!
(−δα)nφ̄(z, z̄)

=φ̄(u, ū)− ψ̄2(u, ū)α2 − ᾱ2ψ2(u, ū)−
F̄ (u, ū)

2
ᾱ2α2

(A1)

with the chiral variables u = z − 1
2 ᾱ2α1 and ū = z̄ +

1
2 ᾱ1α2. The supercharges are

Q1 = − ∂

∂ᾱ1
+

1

2
α2∂̄, Q̄1 =

∂

∂α1
− 1

2
ᾱ2∂

Q2 = −
∂

∂ᾱ2
+

1

2
α1∂, Q̄2 =

∂

∂α2
− 1

2
ᾱ1∂̄,

(A2)
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and the supercovariant derivatives read

D1 = − ∂

∂ᾱ1
− 1

2
α2∂̄, D̄1 =

∂

∂α1
+

1

2
ᾱ2∂

D2 = − ∂

∂ᾱ2
− 1

2
α1∂, D̄2 =

∂

∂α2
+

1

2
ᾱ1∂̄.

(A3)

The superfield obeys the (anti)chiral constraint

D2Φ = D̄2Φ = 0, D1Φ̄ = D̄1Φ̄ = 0. (A4)

The supersymmetry transformations are generated by

δΦ = (ε̄Q+ Q̄ε)Φ, δΦ̄ = (ε̄Q+ Q̄ε)Φ̄. (A5)

The Lagrange density is given by

L =Lkin + Lpot (A6)

=− 2

∫

dy dȳ Φ̄Φ− 2

∫

dy W (Φ)− 2

∫

dȳ W̄ (Φ̄)

with dy ≡ dᾱ1dα1 and dȳ ≡ dα2dᾱ2.

Appendix B: Flow equation for the

momentum-dependent wave function

renormalization

To obtain the flow equations for the wave function
renormalization we decompose the second derivative of

the effective action into a field independent part Γ
(2)
0 +Rk

and a field dependent part ∆Γ
(2)
k (in the following we

drop the momentum dependence of the regulators for
simplicity of notation):

(Γ
(2)
0 +Rk)(q, q

′) + ∆Γk(q, q
′)

=

(

A0 0

0 B0

)

δ(q − q
′) +

(

∆A ∆C

∆D ∆B

)

(B1)

with (h = (1 + r2)Z
2
k(q), M = (r1Z

2
k(q) +m))

A0 =

(

q2h · 1 M · σ3
M · σ3 −h · 1

)

, B0 = i/qh+M1 (B2)

and

∆A = 2g











F1 −F2 φ1 −φ2
−F2 −F1 −φ2 −φ1
φ1 −φ2 0 0

−φ2 −φ1 0 0











(q + q
′) ,

∆C = 2g











ψ̄1 iψ̄2

ψ̄1 −iψ̄2

0 0

0 0











(q + q
′)

∆D = 2g

(

ψ1 iψ1 0 0

ψ2 −iψ2 0 0

)

(q + q
′) ,

∆B = 2g

(

φ1 + iφ2 0

0 φ1 − iφ2

)

(q + q
′) .

(B3)

The flow equation can then be expanded [49] in

∂tΓk =
1

2
∂̃t STr

(

(Γ
(2)
0 +Rk)

−1∆Γ
)

− 1

4
∂̃t STr

(

(Γ
(2)
0 +Rk)

−1∆Γ
)2

+ . . . (B4)

with ∂̃t acting only on the regulator. STr denotes a trace
in field space as well as an integration in momentum
space. The wave function renormalization is a term pro-
portional to F 2

i and can be obtained from the second
term in this expansion. To calculate this we define

M(q, q′) ≡
∫

q′′

(Γ
(2)
0 +Rk)

−1(q)δ(q + q
′′)∆Γ(q′′, q′)

=(Γ
(2)
0 +Rk)

−1(q)∆Γ(−q, q′) (B5)

and the second term in the expansion reads

∂̃t Str

∫

q,q′

M(q, q′)M(q′, q)

= Str

∫

q,q′

(Γ
(2)
0 +Rk)

−1(q)∂tRk(Γ
(2)
0 +Rk)

−1(q)

×∆Γ(−q, q′)(Γ
(2)
0 +Rk)

−1(q′)∆Γ(−q′, q)

+ Str

∫

q,q′

(Γ
(2)
0 +Rk)

−1(q)∆Γ(−q, q′)(Γ
(2)
0 +Rk)

−1(q′)

× ∂tRk(q
′)(Γ

(2)
0 +Rk)

−1(q′)∆Γ(−q′, q) (B6)

where Str denotes a trace in field space. We take the
functional derivative with respect to Fi(p) and Fi(−p)
and set all fields to zero in order to project on the wave
function renormalization Zk(p

2). This yields

∂kZ
2
k(p) = −8g2

∫

d2q

4π2

h(p− q)h(q)

v(q)2v(p− q)2
×

[∂kR1(q − p)M(p− q)v(q) + ∂kR1(q)M(q)v(p − q)]

+ 4g2
∫

d2q

4π2

h(p− q)∂kR2(q)u(q)v(p − q)

v(q)2v(p− q)2

+ 4g2
∫

d2q

4π2

h(q)∂kR2(q − p)v(q)u(p− q)

v(q)2v(p− q)2
(B7)

with the abbreviations

h(q) = (r2 (q) + 1)Z2
k (q) ,

M(q) =m+ r1(q)Z
2
k (q) , Ri(q) = ri (q)Z

2
k (q) , (B8)

u(q) =M(q)2 − q2h2(q), v(q) =M(q)2 + q2h2(q)

Appendix C: The computational strategy

To solve flow equations depending on an external mo-
mentum the computational strategy is as follows:
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• Mapping the k → 0 flow to a forward time evolution
problem by introducing k̃ = −k.

• Discretization of the problem by approximating z(k; p)
with an interpolation function that is determined by N
support points. These are best chosen to be equidistant
on a logarithmic scale, accounting for the expectation
that a wide range of scales should contribute in a com-
parable way to the integral.

• For now, we have been using interpolation in con-
junction with the two-dimensional integration function
scipy.integrate.dblquad() from Scientific Python.
However, this ad-hoc approach should allow great ef-
ficiency improvements by instead considering a tighter
integration of numerical quadrature with adaptive dis-
cretization. In particular, it should then also be pos-
sible to also pass on information about the discretized
flow equation’s Jacobian matrix to the numerical ODE
integrator. There hence is considerable potential for
further efficiency improvements of numerical RG flow
code.

• Solving the resulting ordinary differential equation
for the values of z(k; p) at the support points with
SciPy’s scipy.integrate.odeint() function (which
internally uses lsoda from ODEPACK).

Concerning the numerical solution of the ODE, some
manual tweaking of integration parameters such as max-
imal step sizes is required when the coupling constant g
is large and k ∼ m. We note that, by the very na-
ture of this problem, the computation is readily paral-
lelized: The effort to numerically determine the right
hand side integral is expected to roughly grow likeO(N2)
with the number N of support points, and computations
for different support points are independent. In com-
parison to the computational effort required to compute
the integrals, the communication overhead to distribute
the values of z(k; p) at different support points is fairly
negligible, hence using one of the readily available MPI-
extensions to Python to intelligently distribute the work-
load becomes an attractive option. One should, however,
take care that the core structure of the integrand then
is implemented in a compiled (C code) Python extension
before even thinking about parallelization.

Appendix D: Determination of the renormalized

mass

The numerical calculations of Z2
k in the main text use

a grid of N = 60 points in the direction of p2, dis-
tributed equidistantly on a logarithmic scale. The result
for Zk→0(p) is interpolated with splines to calculate the
propagator GNLO

bos (p). A discreet Fourier transformation
of GNLO

bos (p) yields the correlator C(x1) on the interval
x1 ∈ [0, L] with n = 10 001 intermediate points. In the
main text we have used L = 15. From its large distance

behavior

Ca,mcor
(x1) ∝ cosh(mcorr(x1 − L/2)) (D1)

the correlator mass mcorr is determined by a least
square fit. The fit range is constrained to the interval
[x1,skip, . . . , L − x1,skip] where the contributions of ex-
cited states are negligible. The value of x1,skip is deter-
mined such that mcorr(x1,skip) shows a plateau. We can
either fit on the whole range [x1,skip, . . . , L − x1,skip] –
this quantity is called mglobal

corr – or make the fit just in-
side a small interval of size 0.2 starting from x1,skip – this
quantity is called mlocal

corr .
In the left panel of Fig. 4 mlocal

corr is shown for two dif-
ferent discretisations of Z2

k(p
2), N = 200 in the upper

and N = 600 in the lower panel. In the right panel the
same is shown for mglobal

corr . From these plots we can read
off that for x1,skip not too large there is a clear plateau
which is stable if the box size is increased. But for very
large x1,skip the local mass oscillates. As this oscillation
is reduced if the discretization is increased it is due to
fluctuations in the spline interpolation of Z2

k . At small
values of the correlator the numerical errors are more
important for the masses. As the fluctuations become
visible for large box sizes, in these cases the global mass
fit is of no use because it averages over the local mass
and is strongly influenced by the oscillations. We will
therefore take the plateau of mlocal

corr as the value of the
renormalized mass.

Appendix E: Perturbation Theory

In perturbation theory the mass is determined from
the one particle irreducible (proper) vertex Σ(p). The
perturbative expansion of this vertex is

= + (E1)

+ + +O(g4)

Σ(p) =2g2
∫

d2s

4π2

6m2 − 4((p− s)2 +m2)

(s2 +m2)((s − p)2 +m2)

+ 2g2
∫

d2s

4π2

4(s2 − s · p− iǫµνsµ(sν − pν))

(s2 +m2)((s− p)2 +m2)

=2g2
∫

d2s

4π2

2(m2 − p
2)

(s2 +m2)((s − p)2 +m2)

=2g2
∫ 1

0

dz

∫

d2s

4π2

2(m2 − p2)
(s2 + z(1− z)p2 +m2)2

=2g2
∫ 1

0

dz
2(m2 − p2)

4π(z(1− z)p2 +m2)2

=
4g2(m2 − p2)
πp
√

4m2 + p2
artanh

(

p(4m2 + p2)−1/2
)

(E2)
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FIG. 4. Left panel: mlocal
corr with λ = 0.6 for discretizations N = 200 and N = 600 and different box sizes L = 15, 25, 35 and 45.

Right panel: mglobal
corr with λ = 0.6 for discretizations N = 200 and N = 600 and different box sizes L = 15, 25, 35 and 45.
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